Sample records for alternating decision trees

  1. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.

    PubMed

    Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert

    2015-11-01

    Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination. © 2015 American Academy of Forensic Sciences.

  3. Policy Route Map for Academic Libraries' Digital Content

    ERIC Educational Resources Information Center

    Koulouris, Alexandros; Kapidakis, Sarantos

    2012-01-01

    This paper presents a policy decision tree for digital information management in academic libraries. The decision tree is a policy guide, which offers alternative access and reproduction policy solutions according to the prevailing circumstances (for example acquisition method, copyright ownership). It refers to the digital information life cycle,…

  4. Objective consensus from decision trees.

    PubMed

    Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Dal Pra, Alan; Hundsberger, Thomas; Plasswilm, Ludwig

    2014-12-05

    Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties.

  5. Multi-test decision tree and its application to microarray data classification.

    PubMed

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Predictive models for subtypes of autism spectrum disorder based on single-nucleotide polymorphisms and magnetic resonance imaging.

    PubMed

    Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H

    2011-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.

  7. Decision-Tree Formulation With Order-1 Lateral Execution

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive-disjunctive paths to a flattened conjunctive form composed only of equality checks when possible. If each reduced conjunctive form contains only equality checks and all of these forms use the same variables, then the decision tree can be reduced to an order-one operation through a table lookup. The speedup to order one is accomplished by distributing each decision variable over a surface of a multidimensional object by mapping the equality constant to an index

  8. An Approach for Implementing a Microcomputer Based Report Origination System in the Ada Programming Language

    DTIC Science & Technology

    1983-03-01

    Decision Tree -------------------- 62 4-E. PACKAGE unitrep Action/Area Selection flow Chart 82 4-7. PACKAGE unitrep Control Flow Chart...the originetor wculd manually draft simple, readable, formatted iressages using "-i predef.ined forms and decision logic trees . This alternative was...Study Analysis DATA CCNTENT ERRORS PERCENT OF ERRORS Character Type 2.1 Calcvlations/Associations 14.3 Message Identification 4.? Value Pisiratch 22.E

  9. Comparing wavefront-optimized, wavefront-guided and topography-guided laser vision correction: clinical outcomes using an objective decision tree.

    PubMed

    Stonecipher, Karl; Parrish, Joseph; Stonecipher, Megan

    2018-05-18

    This review is intended to update and educate the reader on the currently available options for laser vision correction, more specifically, laser-assisted in-situ keratomileusis (LASIK). In addition, some related clinical outcomes data from over 1000 cases performed over a 1-year are presented to highlight some differences between the various treatment profiles currently available including the rapidity of visual recovery. The cases in question were performed on the basis of a decision tree to segregate patients on the basis of anatomical, topographic and aberrometry findings; the decision tree was formulated based on the data available in some of the reviewed articles. Numerous recent studies reported in the literature provide data related to the risks and benefits of LASIK; alternatives to a laser refractive procedure are also discussed. The results from these studies have been used to prepare a decision tree to assist the surgeon in choosing the best option for the patient based on the data from several standard preoperative diagnostic tests. The data presented here should aid surgeons in understanding the effects of currently available LASIK treatment profiles. Surgeons should also be able to appreciate how the findings were used to create a decision tree to help choose the most appropriate treatment profile for patients. Finally, the retrospective evaluation of clinical outcomes based on the decision tree should provide surgeons with a realistic expectation for their own outcomes should they adopt such a decision tree in their own practice.

  10. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.

    PubMed

    Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto

    2012-11-21

    This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.

  11. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data

    PubMed Central

    2012-01-01

    Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000

  12. Kernel and divergence techniques in high energy physics separations

    NASA Astrophysics Data System (ADS)

    Bouř, Petr; Kůs, Václav; Franc, Jiří

    2017-10-01

    Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.

  13. Identification of the Criteria for Decision Making of Cut-Away Peatland Reuse

    NASA Astrophysics Data System (ADS)

    Padur, Kadi; Ilomets, Mati; Põder, Tõnis

    2017-03-01

    The total area of abandoned milled peatlands which need to be rehabilitated for sustainable land-use is nearly 10,000 ha in Estonia. According to the agreement between Estonia and the European Union, Estonia has to create suitable conditions for restoration of 2000 ha of abandoned cut-away peatlands by 2023. The decisions on rehabilitation of abandoned milled peatlands have so far relied on a limited knowledgebase with unestablished methodologies, thus the decision making process needs a significant improvement. This study aims to improve the methodology by identifying the criteria for optimal decision making to ensure sustainable land use planning after peat extraction. Therefore relevant environmental, social and economic restrictive and weighted comparison criteria, which assess reuse alternatives suitability for achieving the goal, is developed in cooperation with stakeholders. Restrictive criteria are arranged into a decision tree to help to determine the implementable reuse alternatives in various situations. Weighted comparison criteria are developed in cooperation with stakeholders to rank the reuse alternatives. The comparison criteria are organised hierarchically into a value tree. In the situation, where the selection of a suitable rehabilitation alternative for a specific milled peatland is going to be made, the weighted comparison criteria values need to be identified and the presented approach supports the optimal and transparent decision making. In addition to Estonian context the general results of the study could also be applied to a cut-away peatlands in other regions with need-based site-dependent modifications of criteria values and weights.

  14. Identification of the Criteria for Decision Making of Cut-Away Peatland Reuse.

    PubMed

    Padur, Kadi; Ilomets, Mati; Põder, Tõnis

    2017-03-01

    The total area of abandoned milled peatlands which need to be rehabilitated for sustainable land-use is nearly 10,000 ha in Estonia. According to the agreement between Estonia and the European Union, Estonia has to create suitable conditions for restoration of 2000 ha of abandoned cut-away peatlands by 2023. The decisions on rehabilitation of abandoned milled peatlands have so far relied on a limited knowledgebase with unestablished methodologies, thus the decision making process needs a significant improvement. This study aims to improve the methodology by identifying the criteria for optimal decision making to ensure sustainable land use planning after peat extraction. Therefore relevant environmental, social and economic restrictive and weighted comparison criteria, which assess reuse alternatives suitability for achieving the goal, is developed in cooperation with stakeholders. Restrictive criteria are arranged into a decision tree to help to determine the implementable reuse alternatives in various situations. Weighted comparison criteria are developed in cooperation with stakeholders to rank the reuse alternatives. The comparison criteria are organised hierarchically into a value tree. In the situation, where the selection of a suitable rehabilitation alternative for a specific milled peatland is going to be made, the weighted comparison criteria values need to be identified and the presented approach supports the optimal and transparent decision making. In addition to Estonian context the general results of the study could also be applied to a cut-away peatlands in other regions with need-based site-dependent modifications of criteria values and weights.

  15. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  16. The use of decision trees and naïve Bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs.

    PubMed

    Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando

    2014-09-01

    This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation. © 2014 Institute of Food Technologists®

  17. Identifying the performance characteristics of a winning outcome in elite mixed martial arts competition.

    PubMed

    James, Lachlan P; Robertson, Sam; Haff, G Gregory; Beckman, Emma M; Kelly, Vincent G

    2017-03-01

    To determine those performance indicators that have the greatest influence on classifying outcome at the elite level of mixed martial arts (MMA). A secondary objective was to establish the efficacy of decision tree analysis in explaining the characteristics of victory when compared to alternate statistical methods. Cross-sectional observational. Eleven raw performance indicators from male Ultimate Fighting Championship bouts (n=234) from July 2014 to December 2014 were screened for analysis. Each raw performance indicator was also converted to a rate-dependent measure to be scaled to fight duration. Further, three additional performance indicators were calculated from the dataset and included in the analysis. Cohen's d effect sizes were employed to determine the magnitude of the differences between Wins and Losses, while decision tree (chi-square automatic interaction detector (CHAID)) and discriminant function analyses (DFA) were used to classify outcome (Win and Loss). Effect size comparisons revealed differences between Wins and Losses across a number of performance indicators. Decision tree (raw: 71.8%; rate-scaled: 76.3%) and DFA (raw: 71.4%; rate-scaled 71.2%) achieved similar classification accuracies. Grappling and accuracy performance indicators were the most influential in explaining outcome. The decision tree models also revealed multiple combinations of performance indicators leading to victory. The decision tree analyses suggest that grappling activity and technique accuracy are of particular importance in achieving victory in elite-level MMA competition. The DFA results supported the importance of these performance indicators. Decision tree induction represents an intuitive and slightly more accurate approach to explaining bout outcome in this sport when compared to DFA. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1989-01-01

    A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.

  19. Decision analysis in clinical cardiology: When is coronary angiography required in aortic stenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgeson, S.; Meyer, K.B.; Pauker, S.G.

    1990-03-15

    Decision analysis offers a reproducible, explicit approach to complex clinical decisions. It consists of developing a model, typically a decision tree, that separates choices from chances and that specifies and assigns relative values to outcomes. Sensitivity analysis allows exploration of alternative assumptions. Cost-effectiveness analysis shows the relation between dollars spent and improved health outcomes achieved. In a tutorial format, this approach is applied to the decision whether to perform coronary angiography in a patient who requires aortic valve replacement for critical aortic stenosis.

  20. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150/person and 0.6/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is no value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300/person or the bottled water cost increases to 2.3/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by manager recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  1. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Khader, A.; Rosenberg, D.; McKee, M.

    2012-12-01

    Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i) ignore the health risk of nitrate contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150 $/person and 0.6 $/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is not value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300 $/person or the bottled water cost increases to 2.3 $/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by managers' recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  2. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.

    PubMed

    Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu

    2018-06-15

    Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  4. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  5. Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research

    ERIC Educational Resources Information Center

    He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne

    2018-01-01

    In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…

  6. A new approach to enhance the performance of decision tree for classifying gene expression data.

    PubMed

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  7. Safety validation of decision trees for hepatocellular carcinoma.

    PubMed

    Wang, Xian-Qiang; Liu, Zhe; Lv, Wen-Ping; Luo, Ying; Yang, Guang-Yun; Li, Chong-Hui; Meng, Xiang-Fei; Liu, Yang; Xu, Ke-Sen; Dong, Jia-Hong

    2015-08-21

    To evaluate a different decision tree for safe liver resection and verify its efficiency. A total of 2457 patients underwent hepatic resection between January 2004 and December 2010 at the Chinese PLA General Hospital, and 634 hepatocellular carcinoma (HCC) patients were eligible for the final analyses. Post-hepatectomy liver failure (PHLF) was identified by the association of prothrombin time < 50% and serum bilirubin > 50 μmol/L (the "50-50" criteria), which were assessed at day 5 postoperatively or later. The Swiss-Clavien decision tree, Tokyo University-Makuuchi decision tree, and Chinese consensus decision tree were adopted to divide patients into two groups based on those decision trees in sequence, and the PHLF rates were recorded. The overall mortality and PHLF rate were 0.16% and 3.0%. A total of 19 patients experienced PHLF. The numbers of patients to whom the Swiss-Clavien, Tokyo University-Makuuchi, and Chinese consensus decision trees were applied were 581, 573, and 622, and the PHLF rates were 2.75%, 2.62%, and 2.73%, respectively. Significantly more cases satisfied the Chinese consensus decision tree than the Swiss-Clavien decision tree and Tokyo University-Makuuchi decision tree (P < 0.01,P < 0.01); nevertheless, the latter two shared no difference (P = 0.147). The PHLF rate exhibited no significant difference with respect to the three decision trees. The Chinese consensus decision tree expands the indications for hepatic resection for HCC patients and does not increase the PHLF rate compared to the Swiss-Clavien and Tokyo University-Makuuchi decision trees. It would be a safe and effective algorithm for hepatectomy in patients with hepatocellular carcinoma.

  8. Decision tree analysis as a supplementary tool to enhance histomorphological differentiation when distinguishing human from non-human cranial bone in both burnt and unburnt states: A feasibility study.

    PubMed

    Simmons, T; Goodburn, B; Singhrao, S K

    2016-01-01

    This feasibility study was undertaken to describe and record the histological characteristics of burnt and unburnt cranial bone fragments from human and non-human bones. Reference series of fully mineralized, transverse sections of cranial bone, from all variables and specimen states, were prepared by manual cutting and semi-automated grinding and polishing methods. A photomicrograph catalogue reflecting differences in burnt and unburnt bone from human and non-humans was recorded and qualitative analysis was performed using an established classification system based on primary bone characteristics. The histomorphology associated with human and non-human samples was, for the main part, preserved following burning at high temperature. Clearly, fibro-lamellar complex tissue subtypes, such as plexiform or laminar primary bone, were only present in non-human bones. A decision tree analysis based on histological features provided a definitive identification key for distinguishing human from non-human bone, with an accuracy of 100%. The decision tree for samples where burning was unknown was 96% accurate, and multi-step classification to taxon was possible with 100% accuracy. The results of this feasibility study strongly suggest that histology remains a viable alternative technique if fragments of cranial bone require forensic examination in both burnt and unburnt states. The decision tree analysis may provide an additional but vital tool to enhance data interpretation. Further studies are needed to assess variation in histomorphology taking into account other cranial bones, ontogeny, species and burning conditions. © The Author(s) 2015.

  9. Empirical Analysis and Refinement of Expert System Knowledge Bases

    DTIC Science & Technology

    1990-03-31

    the number of hidden units and the error rates is listed in Figure 6. 3.3. Cancer Data A data qet for eva!ukting th.- Frognosis of breast cancer ...Alternative Rule Induction Methods A data set for evaluating the prognosis of breast cancer recurrence was analyzed by Michalski’s AQI5 rule induction program...AQ15 7 2 32% PVM 2 1 23% Figure 6-3: Comparative Summa-y for AQI5 and PVM on Breast Cancer Data 6.2.2. Alternative Decision Tree Induction Methods

  10. Policy Tree Optimization for Adaptive Management of Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Giuliani, M.

    2016-12-01

    Water resources systems must cope with irreducible uncertainty in supply and demand, requiring policy alternatives capable of adapting to a range of possible future scenarios. Recent studies have developed adaptive policies based on "signposts" or "tipping points", which are threshold values of indicator variables that signal a change in policy. However, there remains a need for a general method to optimize the choice of indicators and their threshold values in a way that is easily interpretable for decision makers. Here we propose a conceptual framework and computational algorithm to design adaptive policies as a tree structure (i.e., a hierarchical set of logical rules) using a simulation-optimization approach based on genetic programming. We demonstrate the approach using Folsom Reservoir, California as a case study, in which operating policies must balance the risk of both floods and droughts. Given a set of feature variables, such as reservoir level, inflow observations and forecasts, and time of year, the resulting policy defines the conditions under which flood control and water supply hedging operations should be triggered. Importantly, the tree-based rule sets are easy to interpret for decision making, and can be compared to historical operating policies to understand the adaptations needed under possible climate change scenarios. Several remaining challenges are discussed, including the empirical convergence properties of the method, and extensions to irreversible decisions such as infrastructure. Policy tree optimization, and corresponding open-source software, provide a generalizable, interpretable approach to designing adaptive policies under uncertainty for water resources systems.

  11. A decision support tool to prioritize risk management options for contaminated sites.

    PubMed

    Sorvari, Jaana; Seppälä, Jyri

    2010-03-15

    The decisions on risk management (RM) of contaminated sites in Finland have typically been driven by practical factors such as time and money. However, RM is a multifaceted task that generally involves several additional determinants, e.g. performance and environmental effects of remediation methods, psychological and social factors. Therefore, we adopted a multi-criteria decision analysis approach and developed a decision support tool (DST) that is viable in decision-making in such a complex situation. The basic components of the DST are based on the Dutch REC system. However, our DST is more case-specific and allows the consideration of the type, magnitude and scale of contamination, land use, environmental conditions and socio-cultural aspects (e.g. loss of cultural heritage, image aspects). The construction of the DST was started by structuring the decision problem using a value tree. Based on this work we adopted the Multi-Attribute Value Theory (MAVT) for data aggregation. The final DST was demonstrated by two model sites for which the RM alternatives and site-specific data were created on the basis of factual remediation projects and by interviewing experts. The demonstration of the DST was carried out in a workshop where representatives of different stakeholders were requested to rank and weight the decision criteria involved. To get information on the consistency of the ranking of the RM alternatives, we used different weighting techniques (ratio estimation and pair-wise weighting) and alternative ways to treat individual respondents' weights in calculating the preference scores for each RM alternative. These dissimilar approaches resulted in some differences in the preference order of the RM alternatives. The demonstration showed that attention has to be paid to the proper description of the site, the principles of the procedure and the decision criteria. Nevertheless, the procedure proved to enable efficient communication between different stakeholders and the identification of the preferred RM option.

  12. Decision Making on Regional Landfill Site Selection in Hormozgan Province Using Smce

    NASA Astrophysics Data System (ADS)

    Majedi, A. S.; Kamali, B. M.; Maghsoudi, R.

    2015-12-01

    Landfill site selection and suitable conditions to bury hazardous wastes are among the most critical issues in modern societies. Taking several factors and limitations into account along with true decision making requires application of different decision techniques. To this end, current paper aims to make decisions about regional landfill site selection in Hormozgan province and utilizes SMCE technique combined with qualitative and quantitative criteria to select the final alternatives. To this respect, we first will describe the existing environmental situation in our study area and set the goals of our study in the framework of SMCE and will analyze the effective factors in regional landfill site selection. Then, methodological procedure of research was conducted using Delphi approach and questionnaires (in order to determine research validity, Chronbach Alpha (0.94) method was used). Spatial multi-criteria analysis model was designed in the form of criteria tree in SMCE using IL WIS software. Prioritization of respective spatial alternatives included: Bandar Abbas city with total 4 spatial alternatives (one zone with 1st priority, one zone with 3rd priority and two zones with 4thpriority) was considered the first priority, Bastak city with total 3 spatial alternatives (one zone with 2nd priority, one zone with 3rdpriorit and one zone with 4th priority) was the second priority and Bandar Abbas, Minab, Jask and Haji Abad cities were considered as the third priority.

  13. Decision tree-based method for integrating gene expression, demographic, and clinical data to determine disease endotypes

    PubMed Central

    2013-01-01

    Background Complex diseases are often difficult to diagnose, treat and study due to the multi-factorial nature of the underlying etiology. Large data sets are now widely available that can be used to define novel, mechanistically distinct disease subtypes (endotypes) in a completely data-driven manner. However, significant challenges exist with regard to how to segregate individuals into suitable subtypes of the disease and understand the distinct biological mechanisms of each when the goal is to maximize the discovery potential of these data sets. Results A multi-step decision tree-based method is described for defining endotypes based on gene expression, clinical covariates, and disease indicators using childhood asthma as a case study. We attempted to use alternative approaches such as the Student’s t-test, single data domain clustering and the Modk-prototypes algorithm, which incorporates multiple data domains into a single analysis and none performed as well as the novel multi-step decision tree method. This new method gave the best segregation of asthmatics and non-asthmatics, and it provides easy access to all genes and clinical covariates that distinguish the groups. Conclusions The multi-step decision tree method described here will lead to better understanding of complex disease in general by allowing purely data-driven disease endotypes to facilitate the discovery of new mechanisms underlying these diseases. This application should be considered a complement to ongoing efforts to better define and diagnose known endotypes. When coupled with existing methods developed to determine the genetics of gene expression, these methods provide a mechanism for linking genetics and exposomics data and thereby accounting for both major determinants of disease. PMID:24188919

  14. Classification and Progression Based on CFS-GA and C5.0 Boost Decision Tree of TCM Zheng in Chronic Hepatitis B.

    PubMed

    Chen, Xiao Yu; Ma, Li Zhuang; Chu, Na; Zhou, Min; Hu, Yiyang

    2013-01-01

    Chronic hepatitis B (CHB) is a serious public health problem, and Traditional Chinese Medicine (TCM) plays an important role in the control and treatment for CHB. In the treatment of TCM, zheng discrimination is the most important step. In this paper, an approach based on CFS-GA (Correlation based Feature Selection and Genetic Algorithm) and C5.0 boost decision tree is used for zheng classification and progression in the TCM treatment of CHB. The CFS-GA performs better than the typical method of CFS. By CFS-GA, the acquired attribute subset is classified by C5.0 boost decision tree for TCM zheng classification of CHB, and C5.0 decision tree outperforms two typical decision trees of NBTree and REPTree on CFS-GA, CFS, and nonselection in comparison. Based on the critical indicators from C5.0 decision tree, important lab indicators in zheng progression are obtained by the method of stepwise discriminant analysis for expressing TCM zhengs in CHB, and alterations of the important indicators are also analyzed in zheng progression. In conclusion, all the three decision trees perform better on CFS-GA than on CFS and nonselection, and C5.0 decision tree outperforms the two typical decision trees both on attribute selection and nonselection.

  15. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.

    PubMed

    Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald

    2018-01-01

    Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

  16. Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa).

    PubMed

    Koch, Hauke; Stevenson, Philip C

    2017-09-01

    For decades, linden trees (basswoods or lime trees), and particularly silver linden ( Tilia tomentosa ), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation. © 2017 The Author(s).

  17. A regret theory approach to decision curve analysis: a novel method for eliciting decision makers' preferences and decision-making.

    PubMed

    Tsalatsanis, Athanasios; Hozo, Iztok; Vickers, Andrew; Djulbegovic, Benjamin

    2010-09-16

    Decision curve analysis (DCA) has been proposed as an alternative method for evaluation of diagnostic tests, prediction models, and molecular markers. However, DCA is based on expected utility theory, which has been routinely violated by decision makers. Decision-making is governed by intuition (system 1), and analytical, deliberative process (system 2), thus, rational decision-making should reflect both formal principles of rationality and intuition about good decisions. We use the cognitive emotion of regret to serve as a link between systems 1 and 2 and to reformulate DCA. First, we analysed a classic decision tree describing three decision alternatives: treat, do not treat, and treat or no treat based on a predictive model. We then computed the expected regret for each of these alternatives as the difference between the utility of the action taken and the utility of the action that, in retrospect, should have been taken. For any pair of strategies, we measure the difference in net expected regret. Finally, we employ the concept of acceptable regret to identify the circumstances under which a potentially wrong strategy is tolerable to a decision-maker. We developed a novel dual visual analog scale to describe the relationship between regret associated with "omissions" (e.g. failure to treat) vs. "commissions" (e.g. treating unnecessary) and decision maker's preferences as expressed in terms of threshold probability. We then proved that the Net Expected Regret Difference, first presented in this paper, is equivalent to net benefits as described in the original DCA. Based on the concept of acceptable regret we identified the circumstances under which a decision maker tolerates a potentially wrong decision and expressed it in terms of probability of disease. We present a novel method for eliciting decision maker's preferences and an alternative derivation of DCA based on regret theory. Our approach may be intuitively more appealing to a decision-maker, particularly in those clinical situations when the best management option is the one associated with the least amount of regret (e.g. diagnosis and treatment of advanced cancer, etc).

  18. A regret theory approach to decision curve analysis: A novel method for eliciting decision makers' preferences and decision-making

    PubMed Central

    2010-01-01

    Background Decision curve analysis (DCA) has been proposed as an alternative method for evaluation of diagnostic tests, prediction models, and molecular markers. However, DCA is based on expected utility theory, which has been routinely violated by decision makers. Decision-making is governed by intuition (system 1), and analytical, deliberative process (system 2), thus, rational decision-making should reflect both formal principles of rationality and intuition about good decisions. We use the cognitive emotion of regret to serve as a link between systems 1 and 2 and to reformulate DCA. Methods First, we analysed a classic decision tree describing three decision alternatives: treat, do not treat, and treat or no treat based on a predictive model. We then computed the expected regret for each of these alternatives as the difference between the utility of the action taken and the utility of the action that, in retrospect, should have been taken. For any pair of strategies, we measure the difference in net expected regret. Finally, we employ the concept of acceptable regret to identify the circumstances under which a potentially wrong strategy is tolerable to a decision-maker. Results We developed a novel dual visual analog scale to describe the relationship between regret associated with "omissions" (e.g. failure to treat) vs. "commissions" (e.g. treating unnecessary) and decision maker's preferences as expressed in terms of threshold probability. We then proved that the Net Expected Regret Difference, first presented in this paper, is equivalent to net benefits as described in the original DCA. Based on the concept of acceptable regret we identified the circumstances under which a decision maker tolerates a potentially wrong decision and expressed it in terms of probability of disease. Conclusions We present a novel method for eliciting decision maker's preferences and an alternative derivation of DCA based on regret theory. Our approach may be intuitively more appealing to a decision-maker, particularly in those clinical situations when the best management option is the one associated with the least amount of regret (e.g. diagnosis and treatment of advanced cancer, etc). PMID:20846413

  19. VC-dimension of univariate decision trees.

    PubMed

    Yildiz, Olcay Taner

    2015-02-01

    In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.

  20. Multiple Criteria Decision Analysis (MCDA) for evaluating new medicines in Health Technology Assessment and beyond: The Advance Value Framework.

    PubMed

    Angelis, Aris; Kanavos, Panos

    2017-09-01

    Escalating drug prices have catalysed the generation of numerous "value frameworks" with the aim of informing payers, clinicians and patients on the assessment and appraisal process of new medicines for the purpose of coverage and treatment selection decisions. Although this is an important step towards a more inclusive Value Based Assessment (VBA) approach, aspects of these frameworks are based on weak methodologies and could potentially result in misleading recommendations or decisions. In this paper, a Multiple Criteria Decision Analysis (MCDA) methodological process, based on Multi Attribute Value Theory (MAVT), is adopted for building a multi-criteria evaluation model. A five-stage model-building process is followed, using a top-down "value-focused thinking" approach, involving literature reviews and expert consultations. A generic value tree is structured capturing decision-makers' concerns for assessing the value of new medicines in the context of Health Technology Assessment (HTA) and in alignment with decision theory. The resulting value tree (Advance Value Tree) consists of three levels of criteria (top level criteria clusters, mid-level criteria, bottom level sub-criteria or attributes) relating to five key domains that can be explicitly measured and assessed: (a) burden of disease, (b) therapeutic impact, (c) safety profile (d) innovation level and (e) socioeconomic impact. A number of MAVT modelling techniques are introduced for operationalising (i.e. estimating) the model, for scoring the alternative treatment options, assigning relative weights of importance to the criteria, and combining scores and weights. Overall, the combination of these MCDA modelling techniques for the elicitation and construction of value preferences across the generic value tree provides a new value framework (Advance Value Framework) enabling the comprehensive measurement of value in a structured and transparent way. Given its flexibility to meet diverse requirements and become readily adaptable across different settings, the Advance Value Framework could be offered as a decision-support tool for evaluators and payers to aid coverage and reimbursement of new medicines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The Decision Tree: A Tool for Achieving Behavioral Change.

    ERIC Educational Resources Information Center

    Saren, Dru

    1999-01-01

    Presents a "Decision Tree" process for structuring team decision making and problem solving about specific student behavioral goals. The Decision Tree involves a sequence of questions/decisions that can be answered in "yes/no" terms. Questions address reasonableness of the goal, time factors, importance of the goal, responsibilities, safety,…

  2. Development and acceptability testing of decision trees for self-management of prosthetic socket fit in adults with lower limb amputation.

    PubMed

    Lee, Daniel Joseph; Veneri, Diana A

    2018-05-01

    The most common complaint lower limb prosthesis users report is inadequacy of a proper socket fit. Adjustments to the residual limb-socket interface can be made by the prosthesis user without consultation of a clinician in many scenarios through skilled self-management. Decision trees guide prosthesis wearers through the self-management process, empowering them to rectify fit issues, or referring them to a clinician when necessary. This study examines the development and acceptability testing of patient-centered decision trees for lower limb prosthesis users. Decision trees underwent a four-stage process: literature review and expert consultation, designing, two-rounds of expert panel review and revisions, and target audience testing. Fifteen lower limb prosthesis users (average age 61 years) reviewed the decision trees and completed an acceptability questionnaire. Participants reported agreement of 80% or above in five of the eight questions related to acceptability of the decision trees. Disagreement was related to the level of experience of the respondent. Decision trees were found to be easy to use, illustrate correct solutions to common issues, and have terminology consistent with that of a new prosthesis user. Some users with greater than 1.5 years of experience would not use the decision trees based on their own self-management skills. Implications for Rehabilitation Discomfort of the residual limb-prosthetic socket interface is the most common reason for clinician visits. Prosthesis users can use decision trees to guide them through the process of obtaining a proper socket fit independently. Newer users may benefit from using the decision trees more than experienced users.

  3. Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.

    PubMed

    Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael

    2015-08-01

    The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.

  4. Soft context clustering for F0 modeling in HMM-based speech synthesis

    NASA Astrophysics Data System (ADS)

    Khorram, Soheil; Sameti, Hossein; King, Simon

    2015-12-01

    This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.

  5. Decision trees in epidemiological research.

    PubMed

    Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone

    2017-01-01

    In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  6. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  7. Creating ensembles of decision trees through sampling

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  8. Bioinformatics in proteomics: application, terminology, and pitfalls.

    PubMed

    Wiemer, Jan C; Prokudin, Alexander

    2004-01-01

    Bioinformatics applies data mining, i.e., modern computer-based statistics, to biomedical data. It leverages on machine learning approaches, such as artificial neural networks, decision trees and clustering algorithms, and is ideally suited for handling huge data amounts. In this article, we review the analysis of mass spectrometry data in proteomics, starting with common pre-processing steps and using single decision trees and decision tree ensembles for classification. Special emphasis is put on the pitfall of overfitting, i.e., of generating too complex single decision trees. Finally, we discuss the pros and cons of the two different decision tree usages.

  9. Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features.

    PubMed

    Hor, Soheil; Moradi, Mehdi

    2016-12-01

    Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the concept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset of the feature set. We show how scandent trees can be used to enhance the performance of decision forests trained on a small number of multimodal samples when we have access to larger datasets with vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms enable us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset of features of the training data. Using this methodology, we build a model trained on MRI and PET images of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly more effective in staging of cognitive impairments compared to a similar decision forest model trained and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. Copyright © 2016. Published by Elsevier B.V.

  10. Predicting membrane protein types using various decision tree classifiers based on various modes of general PseAAC for imbalanced datasets.

    PubMed

    Sankari, E Siva; Manimegalai, D

    2017-12-21

    Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas

    Science.gov Websites

    Tree Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative

  12. Comprehensive decision tree models in bioinformatics.

    PubMed

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.

  13. Comprehensive Decision Tree Models in Bioinformatics

    PubMed Central

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449

  14. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees.

    PubMed

    Martínez-Alcántara, Belén; Iglesias, Domingo J; Reig, Carmina; Mesejo, Carlos; Agustí, Manuel; Primo-Millo, Eduardo

    2015-03-15

    Fruit load in alternate-bearing citrus trees is reported to alter shoot number and growth during spring, summer, and autumn flushes, and the source-sink balance, which affects the storage and mobilization of reserve nutrients. The aim of this work was to assess the extent of shoot growth inhibition resulting from the presence of fruits in 'Moncada' mandarin trees loaded with fruit (ON) or with very light fruit load (OFF), and to identify the role of carbohydrates and nitrogenous compounds in the competition between fruits and shoots. Growth of reproductive and vegetative organs was measured on a monthly basis. (13)C- and (15)N-labeled compounds were supplied to trace the allocation of reserve nutrients and subsequent translocation from source to sink. At the end of the year, OFF trees produced more abundant flushes (2.4- and 4.9-fold higher in number and biomass, respectively) than ON trees. Fruits from ON trees accumulated higher C amounts at the expense of developing flushes, whereas OFF trees exhibited the opposite pattern. An inverse relationship was identified between the amount of C utilized by fruits and vegetative flush growth. (13)C-labeling revealed an important role for mature leaves of fruit-bearing branches in supporting shoot/fruit growth, and the elevated sink strength of growing fruits on shoots. N availability for vegetative shoots was not affected by the presence or absence of fruits, which accumulated important amounts of (15)N. In conclusion, our results show that shoot growth is resource-limited as a consequence of fruit development, and vegetative-growth inhibition is caused by photoassimilate limitation. The competence for N is not a decisive factor in limiting vegetative growth under the experimental conditions of this study. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Using histograms to introduce randomization in the generation of ensembles of decision trees

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick; Littau, David

    2005-02-22

    A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.

  16. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.

    2009-01-01

    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  17. The decision tree approach to classification

    NASA Technical Reports Server (NTRS)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  18. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.

    PubMed

    Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin

    2015-08-01

    Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.

  19. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users

    USGS Publications Warehouse

    Collins, A.L; Pulley, S.; Foster, I.D.L; Gellis, Allen; Porto, P.; Horowitz, A.J.

    2017-01-01

    The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach.

  20. The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Kucharski, John; Tkach, Mark; Olszewski, Jennifer; Chaudhry, Rabia; Mendoza, Guillermo

    2016-04-01

    This presentation demonstrates the application of Climate Risk Informed Decision Analysis (CRIDA) at Zambia's principal water treatment facility, The Iolanda Water Treatment Plant. The water treatment plant is prone to unacceptable failures during periods of low hydropower production at the Kafue Gorge Dam Hydroelectric Power Plant. The case study explores approaches of increasing the water treatment plant's ability to deliver acceptable levels of service under the range of current and potential future climate states. The objective of the study is to investigate alternative investments to build system resilience that might have been informed by the CRIDA process, and to evaluate the extra resource requirements by a bilateral donor agency to implement the CRIDA process. The case study begins with an assessment of the water treatment plant's vulnerability to climate change. It does so by following general principals described in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework". By utilizing relatively simple bootstrapping methods a range of possible future climate states is generated while avoiding the use of more complex and costly downscaling methodologies; that are beyond the budget and technical capacity of many teams. The resulting climate vulnerabilities and uncertainty in the climate states that produce them are analyzed as part of a "Level of Concern" analysis. CRIDA principals are then applied to this Level of Concern analysis in order to arrive at a set of actionable water management decisions. The principal goals of water resource management is to transform variable, uncertain hydrology into dependable services (e.g. water supply, flood risk reduction, ecosystem benefits, hydropower production, etc…). Traditional approaches to climate adaptation require the generation of predicted future climate states but do little guide decision makers how this information should impact decision making. In this context it is not surprising that the increased hydrologic variability and uncertainty produced by many climate risk analyses bedevil water resource decision making. The Climate Risk Informed Decision Analysis (CRIDA) approach builds on work found in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework" which provide guidance of vulnerability assessments. It guides practitioners through a "Level of Concern" analysis where climate vulnerabilities are analyzed to produce actionable alternatives and decisions.

  1. Decision tree and ensemble learning algorithms with their applications in bioinformatics.

    PubMed

    Che, Dongsheng; Liu, Qi; Rasheed, Khaled; Tao, Xiuping

    2011-01-01

    Machine learning approaches have wide applications in bioinformatics, and decision tree is one of the successful approaches applied in this field. In this chapter, we briefly review decision tree and related ensemble algorithms and show the successful applications of such approaches on solving biological problems. We hope that by learning the algorithms of decision trees and ensemble classifiers, biologists can get the basic ideas of how machine learning algorithms work. On the other hand, by being exposed to the applications of decision trees and ensemble algorithms in bioinformatics, computer scientists can get better ideas of which bioinformatics topics they may work on in their future research directions. We aim to provide a platform to bridge the gap between biologists and computer scientists.

  2. A Decision Tree for Psychology Majors: Supplying Questions as Well as Answers.

    ERIC Educational Resources Information Center

    Poe, Retta E.

    1988-01-01

    Outlines the development of a psychology careers decision tree to help faculty advise students plan their program. States that students using the decision tree may benefit by learning more about their career options and by acquiring better question-asking skills. (GEA)

  3. [Prediction of regional soil quality based on mutual information theory integrated with decision tree algorithm].

    PubMed

    Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu

    2012-02-01

    In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.

  4. The value of decision tree analysis in planning anaesthetic care in obstetrics.

    PubMed

    Bamber, J H; Evans, S A

    2016-08-01

    The use of decision tree analysis is discussed in the context of the anaesthetic and obstetric management of a young pregnant woman with joint hypermobility syndrome with a history of insensitivity to local anaesthesia and a previous difficult intubation due to a tongue tumour. The multidisciplinary clinical decision process resulted in the woman being delivered without complication by elective caesarean section under general anaesthesia after an awake fibreoptic intubation. The decision process used is reviewed and compared retrospectively to a decision tree analytical approach. The benefits and limitations of using decision tree analysis are reviewed and its application in obstetric anaesthesia is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Building of fuzzy decision trees using ID3 algorithm

    NASA Astrophysics Data System (ADS)

    Begenova, S. B.; Avdeenko, T. V.

    2018-05-01

    Decision trees are widely used in the field of machine learning and artificial intelligence. Such popularity is due to the fact that with the help of decision trees graphic models, text rules can be built and they are easily understood by the final user. Because of the inaccuracy of observations, uncertainties, the data, collected in the environment, often take an unclear form. Therefore, fuzzy decision trees becoming popular in the field of machine learning. This article presents a method that includes the features of the two above-mentioned approaches: a graphical representation of the rules system in the form of a tree and a fuzzy representation of the data. The approach uses such advantages as high comprehensibility of decision trees and the ability to cope with inaccurate and uncertain information in fuzzy representation. The received learning method is suitable for classifying problems with both numerical and symbolic features. In the article, solution illustrations and numerical results are given.

  6. Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery

    DTIC Science & Technology

    2007-09-21

    a previous application of a GP as a data mining function to evolve fuzzy decision trees symbolically [3-5], the terminal set consisted of fuzzy...of input and output information is required. In the case of fuzzy decision trees, the database represented a collection of scenarios about which the...fuzzy decision tree to be evolved would make decisions . The database also had entries created by experts representing decisions about the scenarios

  7. Planning for ex situ conservation in the face of uncertainty

    USGS Publications Warehouse

    Canessa, Stefano; Converse, Sarah J.; West, Matt; Clemann, Nick; Gillespie, Graeme; McFadden, Michael; Silla, Aimee J; Parris, Kirsten M; McCarthy, Michael A

    2016-01-01

    Ex situ conservation strategies for threatened species often require long-term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex-situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species’ persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species.

  8. Creating ensembles of oblique decision trees with evolutionary algorithms and sampling

    DOEpatents

    Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA

    2006-06-13

    A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.

  9. The decision tree classifier - Design and potential. [for Landsat-1 data

    NASA Technical Reports Server (NTRS)

    Hauska, H.; Swain, P. H.

    1975-01-01

    A new classifier has been developed for the computerized analysis of remote sensor data. The decision tree classifier is essentially a maximum likelihood classifier using multistage decision logic. It is characterized by the fact that an unknown sample can be classified into a class using one or several decision functions in a successive manner. The classifier is applied to the analysis of data sensed by Landsat-1 over Kenosha Pass, Colorado. The classifier is illustrated by a tree diagram which for processing purposes is encoded as a string of symbols such that there is a unique one-to-one relationship between string and decision tree.

  10. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  11. Decision tree methods: applications for classification and prediction.

    PubMed

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  12. Learning from examples - Generation and evaluation of decision trees for software resource analysis

    NASA Technical Reports Server (NTRS)

    Selby, Richard W.; Porter, Adam A.

    1988-01-01

    A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.

  13. Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments

    ERIC Educational Resources Information Center

    Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.

    2009-01-01

    The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…

  14. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process

    PubMed Central

    Masías, Víctor H.; Krause, Mariane; Valdés, Nelson; Pérez, J. C.; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657

  15. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process.

    PubMed

    Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.

  16. Computerized Adaptive Test vs. decision trees: Development of a support decision system to identify suicidal behavior.

    PubMed

    Delgado-Gomez, D; Baca-Garcia, E; Aguado, D; Courtet, P; Lopez-Castroman, J

    2016-12-01

    Several Computerized Adaptive Tests (CATs) have been proposed to facilitate assessments in mental health. These tests are built in a standard way, disregarding useful and usually available information not included in the assessment scales that could increase the precision and utility of CATs, such as the history of suicide attempts. Using the items of a previously developed scale for suicidal risk, we compared the performance of a standard CAT and a decision tree in a support decision system to identify suicidal behavior. We included the history of past suicide attempts as a class for the separation of patients in the decision tree. The decision tree needed an average of four items to achieve a similar accuracy than a standard CAT with nine items. The accuracy of the decision tree, obtained after 25 cross-validations, was 81.4%. A shortened test adapted for the separation of suicidal and non-suicidal patients was developed. CATs can be very useful tools for the assessment of suicidal risk. However, standard CATs do not use all the information that is available. A decision tree can improve the precision of the assessment since they are constructed using a priori information. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets

    PubMed Central

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662

  18. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets.

    PubMed

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.

  19. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    PubMed

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  20. Cloud Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar

    2004-01-01

    Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.

  1. Modifiable risk factors predicting major depressive disorder at four year follow-up: a decision tree approach.

    PubMed

    Batterham, Philip J; Christensen, Helen; Mackinnon, Andrew J

    2009-11-22

    Relative to physical health conditions such as cardiovascular disease, little is known about risk factors that predict the prevalence of depression. The present study investigates the expected effects of a reduction of these risks over time, using the decision tree method favoured in assessing cardiovascular disease risk. The PATH through Life cohort was used for the study, comprising 2,105 20-24 year olds, 2,323 40-44 year olds and 2,177 60-64 year olds sampled from the community in the Canberra region, Australia. A decision tree methodology was used to predict the presence of major depressive disorder after four years of follow-up. The decision tree was compared with a logistic regression analysis using ROC curves. The decision tree was found to distinguish and delineate a wide range of risk profiles. Previous depressive symptoms were most highly predictive of depression after four years, however, modifiable risk factors such as substance use and employment status played significant roles in assessing the risk of depression. The decision tree was found to have better sensitivity and specificity than a logistic regression using identical predictors. The decision tree method was useful in assessing the risk of major depressive disorder over four years. Application of the model to the development of a predictive tool for tailored interventions is discussed.

  2. Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree

    NASA Astrophysics Data System (ADS)

    Wahyuni, Sri

    2018-03-01

    Data mining was the process of finding useful information from a large set of databases. One of the existing techniques in data mining was classification. The method used was decision tree method and algorithm used was C4.5 algorithm. The decision tree method was a method that transformed a very large fact into a decision tree which was presenting the rules. Decision tree method was useful for exploring data, as well as finding a hidden relationship between a number of potential input variables with a target variable. The decision tree of the C4.5 algorithm was constructed with several stages including the selection of attributes as roots, created a branch for each value and divided the case into the branch. These stages would be repeated for each branch until all the cases on the branch had the same class. From the solution of the decision tree there would be some rules of a case. In this case the researcher classified the data of prisoners at Labuhan Deli prison to know the factors of detainees committing criminal acts of drugs. By applying this C4.5 algorithm, then the knowledge was obtained as information to minimize the criminal acts of drugs. From the findings of the research, it was found that the most influential factor of the detainee committed the criminal act of drugs was from the address variable.

  3. An Improved Decision Tree for Predicting a Major Product in Competing Reactions

    ERIC Educational Resources Information Center

    Graham, Kate J.

    2014-01-01

    When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…

  4. Decision Tree Phytoremediation

    DTIC Science & Technology

    1999-12-01

    aromatic hydrocarbons, and landfill leachates . Phytoremediation has been used for point and nonpoint source hazardous waste control. 1.2 Types of... Phytoremediation Prepared by Interstate Technology and Regulatory Cooperation Work Group Phytoremediation Work Team December 1999 Decision Tree...1999 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Phytoremediation Decision Tree 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  5. Defender-Attacker Decision Tree Analysis to Combat Terrorism.

    PubMed

    Garcia, Ryan J B; von Winterfeldt, Detlof

    2016-12-01

    We propose a methodology, called defender-attacker decision tree analysis, to evaluate defensive actions against terrorist attacks in a dynamic and hostile environment. Like most game-theoretic formulations of this problem, we assume that the defenders act rationally by maximizing their expected utility or minimizing their expected costs. However, we do not assume that attackers maximize their expected utilities. Instead, we encode the defender's limited knowledge about the attacker's motivations and capabilities as a conditional probability distribution over the attacker's decisions. We apply this methodology to the problem of defending against possible terrorist attacks on commercial airplanes, using one of three weapons: infrared-guided MANPADS (man-portable air defense systems), laser-guided MANPADS, or visually targeted RPGs (rocket propelled grenades). We also evaluate three countermeasures against these weapons: DIRCMs (directional infrared countermeasures), perimeter control around the airport, and hardening airplanes. The model includes deterrence effects, the effectiveness of the countermeasures, and the substitution of weapons and targets once a specific countermeasure is selected. It also includes a second stage of defensive decisions after an attack occurs. Key findings are: (1) due to the high cost of the countermeasures, not implementing countermeasures is the preferred defensive alternative for a large range of parameters; (2) if the probability of an attack and the associated consequences are large, a combination of DIRCMs and ground perimeter control are preferred over any single countermeasure. © 2016 Society for Risk Analysis.

  6. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging.

    PubMed

    Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman

    2013-06-01

    To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

  7. Application of preprocessing filtering on Decision Tree C4.5 and rough set theory

    NASA Astrophysics Data System (ADS)

    Chan, Joseph C. C.; Lin, Tsau Y.

    2001-03-01

    This paper compares two artificial intelligence methods: the Decision Tree C4.5 and Rough Set Theory on the stock market data. The Decision Tree C4.5 is reviewed with the Rough Set Theory. An enhanced window application is developed to facilitate the pre-processing filtering by introducing the feature (attribute) transformations, which allows users to input formulas and create new attributes. Also, the application produces three varieties of data set with delaying, averaging, and summation. The results prove the improvement of pre-processing by applying feature (attribute) transformations on Decision Tree C4.5. Moreover, the comparison between Decision Tree C4.5 and Rough Set Theory is based on the clarity, automation, accuracy, dimensionality, raw data, and speed, which is supported by the rules sets generated by both algorithms on three different sets of data.

  8. Prediction of strontium bromide laser efficiency using cluster and decision tree analysis

    NASA Astrophysics Data System (ADS)

    Iliev, Iliycho; Gocheva-Ilieva, Snezhana; Kulin, Chavdar

    2018-01-01

    Subject of investigation is a new high-powered strontium bromide (SrBr2) vapor laser emitting in multiline region of wavelengths. The laser is an alternative to the atom strontium lasers and electron free lasers, especially at the line 6.45 μm which line is used in surgery for medical processing of biological tissues and bones with minimal damage. In this paper the experimental data from measurements of operational and output characteristics of the laser are statistically processed by means of cluster analysis and tree-based regression techniques. The aim is to extract the more important relationships and dependences from the available data which influence the increase of the overall laser efficiency. There are constructed and analyzed a set of cluster models. It is shown by using different cluster methods that the seven investigated operational characteristics (laser tube diameter, length, supplied electrical power, and others) and laser efficiency are combined in 2 clusters. By the built regression tree models using Classification and Regression Trees (CART) technique there are obtained dependences to predict the values of efficiency, and especially the maximum efficiency with over 95% accuracy.

  9. Multivariate analysis of flow cytometric data using decision trees.

    PubMed

    Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver

    2012-01-01

    Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.

  10. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by alternating artificial intelligence and molecular simulation

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2017-08-01

    Eighteen tripeptides that fit into the thermally vibrating active site of cathepsin K were discovered by alternating artificial intelligence and molecular simulation. The 18 tripeptides fit the active site better than the cysteine protease inhibitor E64, and a better inhibitor of cathepsin K could be designed considering these tripeptides. Among the 18 tripeptides, Phe-Arg-Asp and Tyr-Arg-Asp fit the active site the best and their structural similarity should be considered in the design process. Interesting factors emerged from the structure of the decision tree, and its structural information will guide exploration of potential inhibitor molecules for proteases.

  11. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  12. 15 CFR Supplement No 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6...

  13. 15 CFR Supplement No 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6...

  14. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  15. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  16. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  17. Activity classification using realistic data from wearable sensors.

    PubMed

    Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka

    2006-01-01

    Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.

  18. A universal hybrid decision tree classifier design for human activity classification.

    PubMed

    Chien, Chieh; Pottie, Gregory J

    2012-01-01

    A system that reliably classifies daily life activities can contribute to more effective and economical treatments for patients with chronic conditions or undergoing rehabilitative therapy. We propose a universal hybrid decision tree classifier for this purpose. The tree classifier can flexibly implement different decision rules at its internal nodes, and can be adapted from a population-based model when supplemented by training data for individuals. The system was tested using seven subjects each monitored by 14 triaxial accelerometers. Each subject performed fourteen different activities typical of daily life. Using leave-one-out cross validation, our decision tree produced average classification accuracies of 89.9%. In contrast, the MATLAB personalized tree classifiers using Gini's diversity index as the split criterion followed by optimally tuning the thresholds for each subject yielded 69.2%.

  19. An Isometric Mapping Based Co-Location Decision Tree Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.

    2018-05-01

    Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.

  20. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    PubMed

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of Web tools to predict axillary lymph node metastasis and pathological response to neoadjuvant chemotherapy in breast cancer patients.

    PubMed

    Sugimoto, Masahiro; Takada, Masahiro; Toi, Masakazu

    2014-12-09

    Nomograms are a standard computational tool to predict the likelihood of an outcome using multiple available patient features. We have developed a more powerful data mining methodology, to predict axillary lymph node (AxLN) metastasis and response to neoadjuvant chemotherapy (NAC) in primary breast cancer patients. We developed websites to use these tools. The tools calculate the probability of AxLN metastasis (AxLN model) and pathological complete response to NAC (NAC model). As a calculation algorithm, we employed a decision tree-based prediction model known as the alternative decision tree (ADTree), which is an analog development of if-then type decision trees. An ensemble technique was used to combine multiple ADTree predictions, resulting in higher generalization abilities and robustness against missing values. The AxLN model was developed with training datasets (n=148) and test datasets (n=143), and validated using an independent cohort (n=174), yielding an area under the receiver operating characteristic curve (AUC) of 0.768. The NAC model was developed and validated with n=150 and n=173 datasets from a randomized controlled trial, yielding an AUC of 0.787. AxLN and NAC models require users to input up to 17 and 16 variables, respectively. These include pathological features, including human epidermal growth factor receptor 2 (HER2) status and imaging findings. Each input variable has an option of "unknown," to facilitate prediction for cases with missing values. The websites developed facilitate the use of these tools, and serve as a database for accumulating new datasets.

  2. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users.

    PubMed

    Collins, A L; Pulley, S; Foster, I D L; Gellis, A; Porto, P; Horowitz, A J

    2017-06-01

    The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Comparative analysis of tree classification models for detecting fusarium oxysporum f. sp cubense (TR4) based on multi soil sensor parameters

    NASA Astrophysics Data System (ADS)

    Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica

    2017-09-01

    Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.

  4. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    PubMed

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P < 0.01). A clinically useful classification tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  5. A survey of decision tree classifier methodology

    NASA Technical Reports Server (NTRS)

    Safavian, S. R.; Landgrebe, David

    1991-01-01

    Decision tree classifiers (DTCs) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps the most important feature of DTCs is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issues. After considering potential advantages of DTCs over single-state classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  6. A survey of decision tree classifier methodology

    NASA Technical Reports Server (NTRS)

    Safavian, S. Rasoul; Landgrebe, David

    1990-01-01

    Decision Tree Classifiers (DTC's) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps, the most important feature of DTC's is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issue. After considering potential advantages of DTC's over single stage classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  7. An illustrative analysis of technological alternatives for satellite communications

    NASA Technical Reports Server (NTRS)

    Metcalfe, M. R.; Cazalet, E. G.; North, D. W.

    1979-01-01

    The demand for satellite communications services in the domestic market is discussed. Two approaches to increasing system capacity are the expansion of service into frequencies presently allocated but not used for satellite communications, and the development of technologies that provide a greater level of service within the currently used frequency bands. The development of economic models and analytic techniques for evaluating capacity expansion alternatives such as these are presented. The satellite orbit spectrum problem, and also outlines of some suitable analytic approaches are examined. Illustrative analysis of domestic communications satellite technology options for providing increased levels of service are also examined. The analysis illustrates the use of probabilities and decision trees in analyzing alternatives, and provides insight into the important aspects of the orbit spectrum problem that would warrant inclusion in a larger scale analysis.

  8. Accounting for no net loss: A critical assessment of biodiversity offsetting metrics and methods.

    PubMed

    Carreras Gamarra, Maria Jose; Lassoie, James Philip; Milder, Jeffrey

    2018-08-15

    Biodiversity offset strategies are based on the explicit calculation of both losses and gains necessary to establish ecological equivalence between impact and offset areas. Given the importance of quantifying biodiversity values, various accounting methods and metrics are continuously being developed and tested for this purpose. Considering the wide array of alternatives, selecting an appropriate one for a specific project can be not only challenging, but also crucial; accounting methods can strongly influence the biodiversity outcomes of an offsetting strategy, and if not well-suited to the context and values being offset, a no net loss outcome might not be delivered. To date there has been no systematic review or comparative classification of the available biodiversity accounting alternatives that aim at facilitating metric selection, and no tools that guide decision-makers throughout such a complex process. We fill this gap by developing a set of analyses to support (i) identifying the spectrum of available alternatives, (ii) understanding the characteristics of each and, ultimately (iii) making the most sensible and sound decision about which one to implement. The metric menu, scoring matrix, and decision tree developed can be used by biodiversity offsetting practitioners to help select an existing metric, and thus achieve successful outcomes that advance the goal of no net loss of biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    PubMed Central

    in ’t Veen, Johannes C.C.M.; Dekhuijzen, P.N. Richard; van Heijst, Ellen; Kocks, Janwillem W.H.; Muilwijk-Kroes, Jacqueline B.; Chavannes, Niels H.; van der Molen, Thys

    2016-01-01

    The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years) with suspicion of an obstructive pulmonary disease was derived from an asthma/chronic obstructive pulmonary disease (COPD) service where patients were assessed using spirometry, the Asthma Control Questionnaire, the Clinical COPD Questionnaire, history data and medication use. All patients were diagnosed through the Internet by a pulmonologist. The Chi-squared Automatic Interaction Detection method was used to build the decision tree. The tree was externally validated in another real-life primary care population (n=3215). Our tree correctly diagnosed 79% of the asthma patients, 85% of the COPD patients and 32% of the asthma–COPD overlap syndrome (ACOS) patients. External validation showed a comparable pattern (correct: asthma 78%, COPD 83%, ACOS 24%). Our decision tree is considered to be promising because it was based on real-life primary care patients with a specialist's diagnosis. In most patients the diagnosis could be correctly predicted. Predicting ACOS, however, remained a challenge. The total decision tree can be implemented in computer-assisted diagnostic systems for individual patients. A simplified version of this tree can be used in daily clinical practice as a desk tool. PMID:27730177

  10. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  11. A Decision Tree for Nonmetric Sex Assessment from the Skull.

    PubMed

    Langley, Natalie R; Dudzik, Beatrix; Cloutier, Alesia

    2018-01-01

    This study uses five well-documented cranial nonmetric traits (glabella, mastoid process, mental eminence, supraorbital margin, and nuchal crest) and one additional trait (zygomatic extension) to develop a validated decision tree for sex assessment. The decision tree was built and cross-validated on a sample of 293 U.S. White individuals from the William M. Bass Donated Skeletal Collection. Ordinal scores from the six traits were analyzed using the partition modeling option in JMP Pro 12. A holdout sample of 50 skulls was used to test the model. The most accurate decision tree includes three variables: glabella, zygomatic extension, and mastoid process. This decision tree yielded 93.5% accuracy on the training sample, 94% on the cross-validated sample, and 96% on a holdout validation sample. Linear weighted kappa statistics indicate acceptable agreement among observers for these variables. Mental eminence should be avoided, and definitions and figures should be referenced carefully to score nonmetric traits. © 2017 American Academy of Forensic Sciences.

  12. A framework for sensitivity analysis of decision trees.

    PubMed

    Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław

    2018-01-01

    In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.

  13. Learning accurate very fast decision trees from uncertain data streams

    NASA Astrophysics Data System (ADS)

    Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo

    2015-12-01

    Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.

  14. Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree

    DTIC Science & Technology

    2008-04-01

    REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music

  15. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    NASA Astrophysics Data System (ADS)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  16. [Comparison of Discriminant Analysis and Decision Trees for the Detection of Subclinical Keratoconus].

    PubMed

    Kleinhans, Sonja; Herrmann, Eva; Kohnen, Thomas; Bühren, Jens

    2017-08-15

    Background Iatrogenic keratectasia is one of the most dreaded complications of refractive surgery. In most cases, keratectasia develops after refractive surgery of eyes suffering from subclinical stages of keratoconus with few or no signs. Unfortunately, there has been no reliable procedure for the early detection of keratoconus. In this study, we used binary decision trees (recursive partitioning) to assess their suitability for discrimination between normal eyes and eyes with subclinical keratoconus. Patients and Methods The method of decision tree analysis was compared with discriminant analysis which has shown good results in previous studies. Input data were 32 eyes of 32 patients with newly diagnosed keratoconus in the contralateral eye and preoperative data of 10 eyes of 5 patients with keratectasia after laser in-situ keratomileusis (LASIK). The control group was made up of 245 normal eyes after LASIK and 12-month follow-up without any signs of iatrogenic keratectasia. Results Decision trees gave better accuracy and specificity than did discriminant analysis. The sensitivity of decision trees was lower than the sensitivity of discriminant analysis. Conclusion On the basis of the patient population of this study, decision trees did not prove to be superior to linear discriminant analysis for the detection of subclinical keratoconus. Georg Thieme Verlag KG Stuttgart · New York.

  17. Pruning a decision tree for selecting computer-related assistive devices for people with disabilities.

    PubMed

    Chi, Chia-Fen; Tseng, Li-Kai; Jang, Yuh

    2012-07-01

    Many disabled individuals lack extensive knowledge about assistive technology, which could help them use computers. In 1997, Denis Anson developed a decision tree of 49 evaluative questions designed to evaluate the functional capabilities of the disabled user and choose an appropriate combination of assistive devices, from a selection of 26, that enable the individual to use a computer. In general, occupational therapists guide the disabled users through this process. They often have to go over repetitive questions in order to find an appropriate device. A disabled user may require an alphanumeric entry device, a pointing device, an output device, a performance enhancement device, or some combination of these. Therefore, the current research eliminates redundant questions and divides Anson's decision tree into multiple independent subtrees to meet the actual demand of computer users with disabilities. The modified decision tree was tested by six disabled users to prove it can determine a complete set of assistive devices with a smaller number of evaluative questions. The means to insert new categories of computer-related assistive devices was included to ensure the decision tree can be expanded and updated. The current decision tree can help the disabled users and assistive technology practitioners to find appropriate computer-related assistive devices that meet with clients' individual needs in an efficient manner.

  18. Uncertain decision tree inductive inference

    NASA Astrophysics Data System (ADS)

    Zarban, L.; Jafari, S.; Fakhrahmad, S. M.

    2011-10-01

    Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.

  19. Data Exploration and Analysis of Alternative Learning System Accreditation and Equivalency Test Result Using Data Mining

    NASA Astrophysics Data System (ADS)

    Talingdan, J. A.; Trinidad, J. T., Jr.; Palaoag, T. D.

    2018-03-01

    Alternative Learning System (ALS) is a subsystem of Depatment of Education (DepEd) that serves as an option of learners who cannot afford to go in a formal education. The research focuses on the data exploration and analysis of ALS accreditation and equivalency test result using data mining. The ALS 2014 to 2016 A & E test results in the secondary level were used as data sets in the study. The A & E test results revealed that the passing rate is doubled per year. The results were clustered using k- means clustering algorithm and they were grouped into good, medium, and low standard learners to identify students need exceptional stuff for enhancement. From the clustered data, it was found out that the strand they are weak in is strand 4 which is the Development of Self and a Sense of Community with a general average of 84.23. It also revealed that the essay type of exam got the lowest score with a general average of 2.14 compared to the multiple type of exam that covers the five learning strands. Furthermore, decision tree and naive bayes were also employed in the study to predict the performance of the learners in the A & E test and determine which is better to use for prediction. It was concluded that naive bayes performs better because the accuracy rate is higher than the decision tree algorithm.

  20. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon

    2011-05-01

    Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.

  1. Comparative Issues and Methods in Organizational Diagnosis. Report II. The Decision Tree Approach.

    DTIC Science & Technology

    organizational diagnosis . The advantages and disadvantages of the decision-tree approach generally, and in this study specifically, are examined. A pre-test, using a civilian sample of 174 work groups with Survey of Organizations data, was conducted to assess various decision-tree classification criteria, in terms of their similarity to the distance function used by Bowers and Hausser (1977). The results suggested the use of a large developmental sample, which should result in more distinctly defined boundary lines between classification profiles. Also, the decision matrix

  2. FDT 2.0: Improving scalability of the fuzzy decision tree induction tool - integrating database storage.

    PubMed

    Durham, Erin-Elizabeth A; Yu, Xiaxia; Harrison, Robert W

    2014-12-01

    Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.

  3. Planning for ex situ conservation in the face of uncertainty.

    PubMed

    Canessa, Stefano; Converse, Sarah J; West, Matt; Clemann, Nick; Gillespie, Graeme; McFadden, Michael; Silla, Aimee J; Parris, Kirsten M; McCarthy, Michael A

    2016-06-01

    Ex situ conservation strategies for threatened species often require long-term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex-situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species' persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  5. MRI-based decision tree model for diagnosis of biliary atresia.

    PubMed

    Kim, Yong Hee; Kim, Myung-Joon; Shin, Hyun Joo; Yoon, Haesung; Han, Seok Joo; Koh, Hong; Roh, Yun Ho; Lee, Mi-Jung

    2018-02-23

    To evaluate MRI findings and to generate a decision tree model for diagnosis of biliary atresia (BA) in infants with jaundice. We retrospectively reviewed features of MRI and ultrasonography (US) performed in infants with jaundice between January 2009 and June 2016 under approval of the institutional review board, including the maximum diameter of periportal signal change on MRI (MR triangular cord thickness, MR-TCT) or US (US-TCT), visibility of common bile duct (CBD) and abnormality of gallbladder (GB). Hepatic subcapsular flow was reviewed on Doppler US. We performed conditional inference tree analysis using MRI findings to generate a decision tree model. A total of 208 infants were included, 112 in the BA group and 96 in the non-BA group. Mean age at the time of MRI was 58.7 ± 36.6 days. Visibility of CBD, abnormality of GB and MR-TCT were good discriminators for the diagnosis of BA and the MRI-based decision tree using these findings with MR-TCT cut-off 5.1 mm showed 97.3 % sensitivity, 94.8 % specificity and 96.2 % accuracy. MRI-based decision tree model reliably differentiates BA in infants with jaundice. MRI can be an objective imaging modality for the diagnosis of BA. • MRI-based decision tree model reliably differentiates biliary atresia in neonatal cholestasis. • Common bile duct, gallbladder and periportal signal changes are the discriminators. • MRI has comparable performance to ultrasonography for diagnosis of biliary atresia.

  6. Predictability of the future development of aggressive behavior of cranial dural arteriovenous fistulas based on decision tree analysis.

    PubMed

    Satomi, Junichiro; Ghaibeh, A Ammar; Moriguchi, Hiroki; Nagahiro, Shinji

    2015-07-01

    The severity of clinical signs and symptoms of cranial dural arteriovenous fistulas (DAVFs) are well correlated with their pattern of venous drainage. Although the presence of cortical venous drainage can be considered a potential predictor of aggressive DAVF behaviors, such as intracranial hemorrhage or progressive neurological deficits due to venous congestion, accurate statistical analyses are currently not available. Using a decision tree data mining method, the authors aimed at clarifying the predictability of the future development of aggressive behaviors of DAVF and at identifying the main causative factors. Of 266 DAVF patients, 89 were eligible for analysis. Under observational management, 51 patients presented with intracranial hemorrhage/infarction during the follow-up period. The authors created a decision tree able to assess the risk for the development of aggressive DAVF behavior. Evaluated by 10-fold cross-validation, the decision tree's accuracy, sensitivity, and specificity were 85.28%, 88.33%, and 80.83%, respectively. The tree shows that the main factor in symptomatic patients was the presence of cortical venous drainage. In its absence, the lesion location determined the risk of a DAVF developing aggressive behavior. Decision tree analysis accurately predicts the future development of aggressive DAVF behavior.

  7. [Analysis of the characteristics of the older adults with depression using data mining decision tree analysis].

    PubMed

    Park, Myonghwa; Choi, Sora; Shin, A Mi; Koo, Chul Hoi

    2013-02-01

    The purpose of this study was to develop a prediction model for the characteristics of older adults with depression using the decision tree method. A large dataset from the 2008 Korean Elderly Survey was used and data of 14,970 elderly people were analyzed. Target variable was depression and 53 input variables were general characteristics, family & social relationship, economic status, health status, health behavior, functional status, leisure & social activity, quality of life, and living environment. Data were analyzed by decision tree analysis, a data mining technique using SPSS Window 19.0 and Clementine 12.0 programs. The decision trees were classified into five different rules to define the characteristics of older adults with depression. Classification & Regression Tree (C&RT) showed the best prediction with an accuracy of 80.81% among data mining models. Factors in the rules were life satisfaction, nutritional status, daily activity difficulty due to pain, functional limitation for basic or instrumental daily activities, number of chronic diseases and daily activity difficulty due to disease. The different rules classified by the decision tree model in this study should contribute as baseline data for discovering informative knowledge and developing interventions tailored to these individual characteristics.

  8. Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.

    PubMed

    Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin

    2017-08-16

    The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.

  9. Comparison of neurofuzzy logic and decision trees in discovering knowledge from experimental data of an immediate release tablet formulation.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required.

  10. Parallel object-oriented decision tree system

    DOEpatents

    Kamath,; Chandrika, Cantu-Paz [Dublin, CA; Erick, [Oakland, CA

    2006-02-28

    A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.

  11. Generation and Termination of Binary Decision Trees for Nonparametric Multiclass Classification.

    DTIC Science & Technology

    1984-10-01

    O M coF=F;; UMBER2. GOVT ACCE5SION NO.1 3 . REC,PINS :A7AL:,G NUMBER ( ’eneration and Terminat_,on :)f Binary D-ecision jC j ik; Trees for Nonnararetrc...1-I . v)IAMO 0~I4 EDvt" O F I 00 . 3 15I OR%.OL.ETL - S-S OCTOBER 1984 LIDS-P-1411 GENERATION AND TERMINATION OF BINARY DECISION TREES FOR...minimizes the Bayes risk. Tree generation and termination are based on the training and test samples, respectively. 0 0 0/ 6 0¢ A 3 I. Introduction We state

  12. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  13. A new methodology to integrate planetary quarantine requirements into mission planning, with application to a Jupiter orbiter

    NASA Technical Reports Server (NTRS)

    Howard, R. A.; North, D. W.; Pezier, J. P.

    1975-01-01

    A new methodology is proposed for integrating planetary quarantine objectives into space exploration planning. This methodology is designed to remedy the major weaknesses inherent in the current formulation of planetary quarantine requirements. Application of the methodology is illustrated by a tutorial analysis of a proposed Jupiter Orbiter mission. The proposed methodology reformulates planetary quarantine planning as a sequential decision problem. Rather than concentrating on a nominal plan, all decision alternatives and possible consequences are laid out in a decision tree. Probabilities and values are associated with the outcomes, including the outcome of contamination. The process of allocating probabilities, which could not be made perfectly unambiguous and systematic, is replaced by decomposition and optimization techniques based on principles of dynamic programming. Thus, the new methodology provides logical integration of all available information and allows selection of the best strategy consistent with quarantine and other space exploration goals.

  14. The Decision Tree for Teaching Management of Uncertainty

    ERIC Educational Resources Information Center

    Knaggs, Sara J.; And Others

    1974-01-01

    A 'decision tree' consists of an outline of the patient's symptoms and a logic for decision and action. It is felt that this approach to the decisionmaking process better facilitates each learner's application of his own level of knowledge and skills. (Author)

  15. Predicting metabolic syndrome using decision tree and support vector machine methods.

    PubMed

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.

  16. Tree diversity in relation to tree height: alternative perspectives.

    PubMed

    Givnish, Thomas J

    2017-03-01

    Marks et al. (Ecol. Lett., 19, 2016, 743-751) show that tree diversity increases with tree height in North America and argue it reflects habitat 'suitability'. This finding conflicts with classical results, lacks controls for covariates of tree height, and can be explained alternatively using the modified Janzen-Connell effect and regional variance in habitats. © 2017 John Wiley & Sons Ltd/CNRS.

  17. Cost-effectiveness Analysis with Influence Diagrams.

    PubMed

    Arias, M; Díez, F J

    2015-01-01

    Cost-effectiveness analysis (CEA) is used increasingly in medicine to determine whether the health benefit of an intervention is worth the economic cost. Decision trees, the standard decision modeling technique for non-temporal domains, can only perform CEA for very small problems. To develop a method for CEA in problems involving several dozen variables. We explain how to build influence diagrams (IDs) that explicitly represent cost and effectiveness. We propose an algorithm for evaluating cost-effectiveness IDs directly, i.e., without expanding an equivalent decision tree. The evaluation of an ID returns a set of intervals for the willingness to pay - separated by cost-effectiveness thresholds - and, for each interval, the cost, the effectiveness, and the optimal intervention. The algorithm that evaluates the ID directly is in general much more efficient than the brute-force method, which is in turn more efficient than the expansion of an equivalent decision tree. Using OpenMarkov, an open-source software tool that implements this algorithm, we have been able to perform CEAs on several IDs whose equivalent decision trees contain millions of branches. IDs can perform CEA on large problems that cannot be analyzed with decision trees.

  18. Discovering Decision Knowledge from Web Log Portfolio for Managing Classroom Processes by Applying Decision Tree and Data Cube Technology.

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Liu, Chen-Chung; Ou, Kuo-Liang; Liu, Baw-Jhiune

    2000-01-01

    Discusses the use of Web logs to record student behavior that can assist teachers in assessing performance and making curriculum decisions for distance learning students who are using Web-based learning systems. Adopts decision tree and data cube information processing methodologies for developing more effective pedagogical strategies. (LRW)

  19. Assessing School Readiness for a Practice Arrangement Using Decision Tree Methodology.

    ERIC Educational Resources Information Center

    Barger, Sara E.

    1998-01-01

    Questions in a decision-tree address mission, faculty interest, administrative support, and practice plan as a way of assessing arrangements for nursing faculty's clinical practice. Decisions should be based on congruence between the human resource allocation and the reward systems. (SK)

  20. Automated Decision Tree Classification of Corneal Shape

    PubMed Central

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645

  1. Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

    PubMed

    Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman

    2016-02-01

    To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.

  2. On Parallelism and the Penman Natural Language Generation System.

    DTIC Science & Technology

    1988-04-01

    TagfiniteA Tagsubject L untag ed Figure 2-2: System network with choosers & realization statements 7 decision . We will give a more detailed account of...2: enter the current system. The chooser of the system is in charge of * selection of features. The chooser is itself a decision tree with certain...organization of a chooser is the same as a decision (discrimination) tree, and each branching point in the tree is defined by Ask operation. For example, in

  3. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, P.; Beaudet, P.

    1980-01-01

    The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included.

  4. Evaluation of Decision Trees for Cloud Detection from AVHRR Data

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Nemani, Ramakrishna

    2005-01-01

    Automated cloud detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based cloud masks that assign cloud-cover classifications to pixels. Many cloud-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In a previous study we compared automatically learned decision trees to cloud masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks p < 0.001.

  5. Decision-Tree Analysis for Predicting First-Time Pass/Fail Rates for the NCLEX-RN® in Associate Degree Nursing Students.

    PubMed

    Chen, Hsiu-Chin; Bennett, Sean

    2016-08-01

    Little evidence shows the use of decision-tree algorithms in identifying predictors and analyzing their associations with pass rates for the NCLEX-RN(®) in associate degree nursing students. This longitudinal and retrospective cohort study investigated whether a decision-tree algorithm could be used to develop an accurate prediction model for the students' passing or failing the NCLEX-RN. This study used archived data from 453 associate degree nursing students in a selected program. The chi-squared automatic interaction detection analysis of the decision trees module was used to examine the effect of the collected predictors on passing/failing the NCLEX-RN. The actual percentage scores of Assessment Technologies Institute®'s RN Comprehensive Predictor(®) accurately identified students at risk of failing. The classification model correctly classified 92.7% of the students for passing. This study applied the decision-tree model to analyze a sequence database for developing a prediction model for early remediation in preparation for the NCLEXRN. [J Nurs Educ. 2016;55(8):454-457.]. Copyright 2016, SLACK Incorporated.

  6. Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models

    NASA Technical Reports Server (NTRS)

    Mjoisness, Eric; Castano, Rebecca; Gray, Alexander

    1999-01-01

    We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.

  7. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

    PubMed

    Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-07-30

    Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sequential decision tree using the analytic hierarchy process for decision support in rectal cancer.

    PubMed

    Suner, Aslı; Çelikoğlu, Can Cengiz; Dicle, Oğuz; Sökmen, Selman

    2012-09-01

    The aim of the study is to determine the most appropriate method for construction of a sequential decision tree in the management of rectal cancer, using various patient-specific criteria and treatments such as surgery, chemotherapy, and radiotherapy. An analytic hierarchy process (AHP) was used to determine the priorities of variables. Relevant criteria used in two decision steps and their relative priorities were established by a panel of five general surgeons. Data were collected via a web-based application and analyzed using the "Expert Choice" software specifically developed for the AHP. Consistency ratios in the AHP method were calculated for each set of judgments, and the priorities of sub-criteria were determined. A sequential decision tree was constructed for the best treatment decision process, using priorities determined by the AHP method. Consistency ratios in the AHP method were calculated for each decision step, and the judgments were considered consistent. The tumor-related criterion "presence of perforation" (0.331) and the patient-surgeon-related criterion "surgeon's experience" (0.630) had the highest priority in the first decision step. In the second decision step, the tumor-related criterion "the stage of the disease" (0.230) and the patient-surgeon-related criterion "surgeon's experience" (0.281) were the paramount criteria. The results showed some variation in the ranking of criteria between the decision steps. In the second decision step, for instance, the tumor-related criterion "presence of perforation" was just the fifth. The consistency of decision support systems largely depends on the quality of the underlying decision tree. When several choices and variables have to be considered in a decision, it is very important to determine priorities. The AHP method seems to be effective for this purpose. The decision algorithm developed by this method is more realistic and will improve the quality of the decision tree. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Comparison of Taxi Time Prediction Performance Using Different Taxi Speed Decision Trees

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2017-01-01

    In the STBO modeler and tactical surface scheduler for ATD-2 project, taxi speed decision trees are used to calculate the unimpeded taxi times of flights taxiing on the airport surface. The initial taxi speed values in these decision trees did not show good prediction accuracy of taxi times. Using the more recent, reliable surveillance data, new taxi speed values in ramp area and movement area were computed. Before integrating these values into the STBO system, we performed test runs using live data from Charlotte airport, with different taxi speed settings: 1) initial taxi speed values and 2) new ones. Taxi time prediction performance was evaluated by comparing various metrics. The results show that the new taxi speed decision trees can calculate the unimpeded taxi-out times more accurately.

  10. A decision support tool for selecting the optimal sewage sludge treatment.

    PubMed

    Turunen, Ville; Sorvari, Jaana; Mikola, Anna

    2018-02-01

    Sewage sludge contains significant amounts of resources, such as nutrients and organic matter. At the same time, the organic contaminants (OC) found in sewage sludge are of growing concern. Consequently, in many European countries incineration is currently favored over recycling in agriculture. This study presents a Multi-Attribute Value Theory (MAVT)-based decision support tool (DST) for facilitating sludge treatment decisions. Essential decision criteria were recognized and prioritized, i.e., weighted, by experts from water utilities. Since the fate of organic contaminants was in focus, a simple scoring method was developed to take into account their environmental risks. The final DST assigns each sludge treatment method a preference score expressing its superiority compared to alternative methods. The DST was validated by testing it with data from two Finnish municipal wastewater treatment plants (WWTP). The validation results of the first case study preferred sludge pyrolysis (preference score: 0.629) to other alternatives: composting and incineration (score 0.580, and 0.484 respectively). The preference scores were influenced by WWTP dependent factors, i.e., the operating environment and the weighting of the criteria. A lack of data emerged as the main practical limitation. Therefore, not all of the relevant criteria could be included in the value tree. More data are needed on the effects of treatment methods on the availability of nutrients, the quality of organic matter and sludge-borne OCs. Despite these shortcomings, the DST proved useful and adaptable in decision-making. It can also help achieve a more transparent, understandable and comprehensive decision-making process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    PubMed

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  12. RE-Powering’s Electronic Decision Tree

    EPA Pesticide Factsheets

    Developed by US EPA's RE-Powering America's Land Initiative, the RE-Powering Decision Trees tool guides interested parties through a process to screen sites for their suitability for solar photovoltaics or wind installations

  13. Monte Carlo simulation: Its status and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murtha, J.A.

    1997-04-01

    Monte Carlo simulation is a statistics-based analysis tool that yields probability-vs.-value relationships for key parameters, including oil and gas reserves, capital exposure, and various economic yardsticks, such as net present value (NPV) and return on investment (ROI). Monte Carlo simulation is a part of risk analysis and is sometimes performed in conjunction with or as an alternative to decision [tree] analysis. The objectives are (1) to define Monte Carlo simulation in a more general context of risk and decision analysis; (2) to provide some specific applications, which can be interrelated; (3) to respond to some of the criticisms; (4) tomore » offer some cautions about abuses of the method and recommend how to avoid the pitfalls; and (5) to predict what the future has in store.« less

  14. Observations and Modelling of Alternative Tree Cover States of the Boreal Ecosystem

    NASA Astrophysics Data System (ADS)

    Abis, B.; Brovkin, V.

    2017-12-01

    Recently, multimodality of the tree cover distribution of the boreal forests has been detected, revealing the existence of three alternative vegetation modes. Identifying which are the regions with a potential for alternative tree cover states, and assessing which are the main factors underlying their existence, is important to project future change of natural vegetation cover and its effect on climate.Through the use of generalised additive models and phase-space analysis, we study the link between tree cover distribution and eight globally-observed environmental factors, such as rainfall, temperature, and permafrost distribution. Using a classification based on these factors, we show the location of areas with potentially alternative tree cover states under the same environmental conditions in the boreal region. Furthermore, to explain the multimodality found in the data and the asymmetry between North America and Eurasia, we study a conceptual model based on tree species competition, and use it to simulate the sensitivity of tree cover to changes in environmental factors.We find that the link between individual environmental variables and tree cover differs regionally. Nonetheless, environmental conditions uniquely determine the vegetation state among the three dominant modes in ˜95% of the cases. On the other hand, areas with potentially alternative tree cover states encompass ˜1.1 million km2, and correspond to possible transition zones with a reduced resilience to disturbances. Employing our conceptual model, we show that multimodality can be explained through competition between tree species with different adaptations to environmental factors and disturbances. Moreover, the model is able to reproduce the asymmetry in tree species distribution between Eurasia and North America. Finally, we find that changes in permafrost could be associated with bifurcation points of the model, corroborating the importance of permafrost in a changing climate.

  15. Decision Tree Approach for Soil Liquefaction Assessment

    PubMed Central

    Gandomi, Amir H.; Fridline, Mark M.; Roke, David A.

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view. PMID:24489498

  16. Decision tree approach for soil liquefaction assessment.

    PubMed

    Gandomi, Amir H; Fridline, Mark M; Roke, David A

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view.

  17. Fast Image Texture Classification Using Decision Trees

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  18. Determinants of farmers' tree planting investment decision as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, B.; Bewket, W.; Bräuning, A.

    2015-11-01

    Land degradation due to lack of sustainable land management practices are one of the critical challenges in many developing countries including Ethiopia. This study explores the major determinants of farm level tree planting decision as a land management strategy in a typical framing and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and binary logistic regression model. The model significantly predicted farmers' tree planting decision (Chi-square = 37.29, df = 15, P<0.001). Besides, the computed significant value of the model suggests that all the considered predictor variables jointly influenced the farmers' decision to plant trees as a land management strategy. In this regard, the finding of the study show that local land-users' willingness to adopt tree growing decision is a function of a wide range of biophysical, institutional, socioeconomic and household level factors, however, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system have positively and significantly influence on tree growing investment decisions in the study watershed. Eventually, the processes of land use conversion and land degradation are serious which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, devising sustainable and integrated land management policy options and implementing them would enhance ecological restoration and livelihood sustainability in the study watershed.

  19. Determinants of farmers' tree-planting investment decisions as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, Berhan; Bewket, Woldeamlak; Bräuning, Achim

    2016-04-01

    Land degradation due to lack of sustainable land management practices is one of the critical challenges in many developing countries including Ethiopia. This study explored the major determinants of farm-level tree-planting decisions as a land management strategy in a typical farming and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and a binary logistic regression model. The model significantly predicted farmers' tree-planting decisions (χ2 = 37.29, df = 15, P < 0.001). Besides, the computed significant value of the model revealed that all the considered predictor variables jointly influenced the farmers' decisions to plant trees as a land management strategy. The findings of the study demonstrated that the adoption of tree-growing decisions by local land users was a function of a wide range of biophysical, institutional, socioeconomic and household-level factors. In this regard, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system had a critical influence on tree-growing investment decisions in the study watershed. Eventually, the processes of land-use conversion and land degradation were serious, which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, the study recommended that devising and implementing sustainable land management policy options would enhance ecological restoration and livelihood sustainability in the study watershed.

  20. The global extent and determinants of savanna and forest as alternative biome states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon A

    2011-10-14

    Theoretically, fire-tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire-driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. We use tree cover, climate, fire, and soils data sets to show that tree cover is globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to 2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire differentiates between savanna and forest. These may be alternative states over large areas, including parts of Amazonia and the Congo. Changes in biome distributions, whether at the cost of savanna (due to fragmentation) or forest (due to climate), will be neither smooth nor easily reversible.

  1. Ethnographic Decision Tree Modeling: A Research Method for Counseling Psychology.

    ERIC Educational Resources Information Center

    Beck, Kirk A.

    2005-01-01

    This article describes ethnographic decision tree modeling (EDTM; C. H. Gladwin, 1989) as a mixed method design appropriate for counseling psychology research. EDTM is introduced and located within a postpositivist research paradigm. Decision theory that informs EDTM is reviewed, and the 2 phases of EDTM are highlighted. The 1st phase, model…

  2. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  3. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.

    PubMed

    Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

  4. PRIA 3 Fee Determination Decision Tree

    EPA Pesticide Factsheets

    The PRIA 3 decision tree will help applicants requesting a pesticide registration or certain tolerance action to accurately identify the category of their application and the amount of the required fee before they submit the application.

  5. Solar and Wind Site Screening Decision Trees

    EPA Pesticide Factsheets

    EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.

  6. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides.

    PubMed

    Stanislawski, Jerzy; Kotulska, Malgorzata; Unold, Olgierd

    2013-01-17

    Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to seconds (machine learning). We showed that the simplified profile generation method does not introduce an error with regard to the original method, while increasing the computational efficiency. Our new dataset proved representative enough to use simple statistical methods for testing the amylogenicity based only on six letter sequences. Statistical machine learning methods such as Alternating Decision Tree and Multilayer Perceptron can replace the energy based classifier, with advantage of very significantly reduced computational time and simplicity to perform the analysis. Additionally, a decision tree provides a set of very easily interpretable rules.

  7. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction.

    PubMed

    Hajiloo, Mohsen; Sapkota, Yadav; Mackey, John R; Robson, Paula; Greiner, Russell; Damaraju, Sambasivarao

    2013-02-22

    Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case-control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual's continental and sub-continental ancestry. To predict an individual's continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control's λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of 86.5% ± 2.4%, 95.6% ± 3.9%, 95.6% ± 2.1%, 98.3% ± 2.0%, and 95.9% ± 1.5%. However, ETHNOPRED was unable to produce a classifier that can accurately distinguish Chinese in Beijing vs. Chinese in Denver. ETHNOPRED is a novel technique for producing classifiers that can identify an individual's continental and sub-continental heritage, based on a small number of SNPs. We show that its learned classifiers are simple, cost-efficient, accurate, transparent, flexible, fast, applicable to large scale GWASs, and robust to missing values.

  8. Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities.

    PubMed

    Moon, Mikyung; Lee, Soo-Kyoung

    2017-01-01

    The purpose of this study was to use decision tree analysis to explore the factors associated with pressure ulcers (PUs) among elderly people admitted to Korean long-term care facilities. The data were extracted from the 2014 National Inpatient Sample (NIS)-data of Health Insurance Review and Assessment Service (HIRA). A MapReduce-based program was implemented to join and filter 5 tables of the NIS. The outcome predicted by the decision tree model was the prevalence of PUs as defined by the Korean Standard Classification of Disease-7 (KCD-7; code L89 * ). Using R 3.3.1, a decision tree was generated with the finalized 15,856 cases and 830 variables. The decision tree displayed 15 subgroups with 8 variables showing 0.804 accuracy, 0.820 sensitivity, and 0.787 specificity. The most significant primary predictor of PUs was length of stay less than 0.5 day. Other predictors were the presence of an infectious wound dressing, followed by having diagnoses numbering less than 3.5 and the presence of a simple dressing. Among diagnoses, "injuries to the hip and thigh" was the top predictor ranking 5th overall. Total hospital cost exceeding 2,200,000 Korean won (US $2,000) rounded out the top 7. These results support previous studies that showed length of stay, comorbidity, and total hospital cost were associated with PUs. Moreover, wound dressings were commonly used to treat PUs. They also show that machine learning, such as a decision tree, could effectively predict PUs using big data.

  9. Predicting the probability of mortality of gastric cancer patients using decision tree.

    PubMed

    Mohammadzadeh, F; Noorkojuri, H; Pourhoseingholi, M A; Saadat, S; Baghestani, A R

    2015-06-01

    Gastric cancer is the fourth most common cancer worldwide. This reason motivated us to investigate and introduce gastric cancer risk factors utilizing statistical methods. The aim of this study was to identify the most important factors influencing the mortality of patients who suffer from gastric cancer disease and to introduce a classification approach according to decision tree model for predicting the probability of mortality from this disease. Data on 216 patients with gastric cancer, who were registered in Taleghani hospital in Tehran,Iran, were analyzed. At first, patients were divided into two groups: the dead and alive. Then, to fit decision tree model to our data, we randomly selected 20% of dataset to the test sample and remaining dataset considered as the training sample. Finally, the validity of the model examined with sensitivity, specificity, diagnosis accuracy and the area under the receiver operating characteristic curve. The CART version 6.0 and SPSS version 19.0 softwares were used for the analysis of the data. Diabetes, ethnicity, tobacco, tumor size, surgery, pathologic stage, age at diagnosis, exposure to chemical weapons and alcohol consumption were determined as effective factors on mortality of gastric cancer. The sensitivity, specificity and accuracy of decision tree were 0.72, 0.75 and 0.74 respectively. The indices of sensitivity, specificity and accuracy represented that the decision tree model has acceptable accuracy to prediction the probability of mortality in gastric cancer patients. So a simple decision tree consisted of factors affecting on mortality of gastric cancer may help clinicians as a reliable and practical tool to predict the probability of mortality in these patients.

  10. Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.

    PubMed

    Malehi, Amal Saki

    2014-01-01

    The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.

  11. Ultrasonographic Diagnosis of Biliary Atresia Based on a Decision-Making Tree Model.

    PubMed

    Lee, So Mi; Cheon, Jung-Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun-Hae; Cho, Hyun-Hye; Kim, In-One; You, Sun Kyoung

    2015-01-01

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.

  12. Correlation Between the System Capabilities Analytic Process (SCAP) and the Missions and Means Framework (MMF)

    DTIC Science & Technology

    2013-05-01

    specifics of the correlation will be explored followed by discussion of new paradigms— the ordered event list (OEL) and the decision tree — that result from...4.2.1  Brief Overview of the Decision Tree Paradigm ................................................15  4.2.2  OEL Explained...6  Figure 3. A depiction of a notional fault/activation tree . ................................................................7

  13. Personalized Modeling for Prediction with Decision-Path Models

    PubMed Central

    Visweswaran, Shyam; Ferreira, Antonio; Ribeiro, Guilherme A.; Oliveira, Alexandre C.; Cooper, Gregory F.

    2015-01-01

    Deriving predictive models in medicine typically relies on a population approach where a single model is developed from a dataset of individuals. In this paper we describe and evaluate a personalized approach in which we construct a new type of decision tree model called decision-path model that takes advantage of the particular features of a given person of interest. We introduce three personalized methods that derive personalized decision-path models. We compared the performance of these methods to that of Classification And Regression Tree (CART) that is a population decision tree to predict seven different outcomes in five medical datasets. Two of the three personalized methods performed statistically significantly better on area under the ROC curve (AUC) and Brier skill score compared to CART. The personalized approach of learning decision path models is a new approach for predictive modeling that can perform better than a population approach. PMID:26098570

  14. Space/age forestry: Implications of planting density and rotation age in SRIC management decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merriam, R.A.; Phillips, V.D.; Liu, W.

    1993-12-31

    Short-rotation intensive-culture (SRIC) of promising tree crops is being evaluated worldwide for the production of methanol, ethanol, and electricity from renewable biomass resources. Planting density and rotation age are fundamental management decisions associated with SRIC energy plantations. Most studies of these variables have been conducted without the benefit of a unifying theory of the effects of growing space and rotation age on individual tree growth and stand level productivity. A modeling procedure based on field trials of Eucalyptus spp. is presented that evaluates the growth potential of a tree in the absence and presence of competition of neighboring trees inmore » a stand. The results of this analysis are useful in clarifying economic implications of different growing space and rotation age decisions that tree plantation managers must make. The procedure is readily applicable to other species under consideration for SRIC plantations at any location.« less

  15. Is it worth changing pattern recognition methods for structural health monitoring?

    NASA Astrophysics Data System (ADS)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  16. A conceptual framework for effectively anticipating water-quality changes resulting from changes in agricultural activities

    USGS Publications Warehouse

    Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.

    2018-01-10

    Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables better decision making for future agricultural activities as a means to reduce current, and prevent new, water-quality issues.

  17. Vlsi implementation of flexible architecture for decision tree classification in data mining

    NASA Astrophysics Data System (ADS)

    Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak

    2017-07-01

    The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.

  18. Alternative construction of graceful symmetric trees

    NASA Astrophysics Data System (ADS)

    Sandy, I. P.; Rizal, A.; Manurung, E. N.; Sugeng, K. A.

    2018-04-01

    Graceful labeling is one of the interesting topics in graph theory. Let G = (V, E) be a tree. The injective mapping f:V\\to \\{0,1,\\ldots,|E|\\} is called graceful if the weight of edge w(xy)=|f(x)-f(y)| are all different for every edge xy. The famous conjecture in this area is all trees are graceful. In this paper we give alternative construction of graceful labeling on symmetric tree using adjacency matrix.

  19. Assessment of student learning associated with tree thinking in an undergraduate introductory organismal biology course.

    PubMed

    Smith, James J; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted of designing and implementing a set of experiences to help students learn to read, interpret, and manipulate phylogenetic trees, with a particular emphasis on using data to evaluate alternative phylogenetic hypotheses (trees). To assess the outcomes of these learning experiences, we designed and implemented a Phylogeny Assessment Tool (PhAT), an open-ended response instrument that asked students to: 1) map characters on phylogenetic trees; 2) apply an objective criterion to decide which of two trees (alternative hypotheses) is "better"; and 3) demonstrate understanding of phylogenetic trees as depictions of ancestor-descendant relationships. A pre-post test design was used with the PhAT to collect data from students in two consecutive Fall semesters. Students in both semesters made significant gains in their abilities to map characters onto phylogenetic trees and to choose between two alternative hypotheses of relationship (trees) by applying the principle of parsimony (Occam's razor). However, learning gains were much lower in the area of student interpretation of phylogenetic trees as representations of ancestor-descendant relationships.

  20. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    PubMed Central

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor–descendant relationships, a core concept of evolutionary theory. We introduced “tree thinking” into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted of designing and implementing a set of experiences to help students learn to read, interpret, and manipulate phylogenetic trees, with a particular emphasis on using data to evaluate alternative phylogenetic hypotheses (trees). To assess the outcomes of these learning experiences, we designed and implemented a Phylogeny Assessment Tool (PhAT), an open-ended response instrument that asked students to: 1) map characters on phylogenetic trees; 2) apply an objective criterion to decide which of two trees (alternative hypotheses) is “better”; and 3) demonstrate understanding of phylogenetic trees as depictions of ancestor–descendant relationships. A pre–post test design was used with the PhAT to collect data from students in two consecutive Fall semesters. Students in both semesters made significant gains in their abilities to map characters onto phylogenetic trees and to choose between two alternative hypotheses of relationship (trees) by applying the principle of parsimony (Occam's razor). However, learning gains were much lower in the area of student interpretation of phylogenetic trees as representations of ancestor–descendant relationships. PMID:24006401

  1. Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study.

    PubMed

    Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah

    2016-01-01

    Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.

  2. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.

    PubMed

    Kendall, Michelle; Colijn, Caroline

    2016-10-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. The Utility of Decision Trees in Oncofertility Care in Japan.

    PubMed

    Ito, Yuki; Shiraishi, Eriko; Kato, Atsuko; Haino, Takayuki; Sugimoto, Kouhei; Okamoto, Aikou; Suzuki, Nao

    2017-03-01

    To identify the utility and issues associated with the use of decision trees in oncofertility patient care in Japan. A total of 35 women who had been diagnosed with cancer, but had not begun anticancer treatment, were enrolled. We applied the oncofertility decision tree for women published by Gardino et al. to counsel a consecutive series of women on fertility preservation (FP) options following cancer diagnosis. Percentage of women who decided to undergo oocyte retrieval for embryo cryopreservation and the expected live-birth rate for these patients were calculated using the following equation: expected live-birth rate = pregnancy rate at each age per embryo transfer × (1 - miscarriage rate) × No. of cryopreserved embryos. Oocyte retrieval was performed for 17 patients (48.6%; mean ± standard deviation [SD] age, 36.35 ± 3.82 years). The mean ± SD number of cryopreserved embryos was 5.29 ± 4.63. The expected live-birth rate was 0.66. The expected live-birth rate with FP indicated that one in three oncofertility patients would not expect to have a live birth following oocyte retrieval and embryo cryopreservation. While the decision trees were useful as decision-making tools for women contemplating FP, in the context of the current restrictions on oocyte donation and the extremely small number of adoptions in Japan, the remaining options for fertility after cancer are limited. In order for cancer survivors to feel secure in their decisions, the decision tree may need to be adapted simultaneously with improvements to the social environment, such as greater support for adoption.

  4. Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic Algorithm for Classification Problem

    NASA Astrophysics Data System (ADS)

    Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.

  5. The application of a decision tree to establish the parameters associated with hypertension.

    PubMed

    Tayefi, Maryam; Esmaeili, Habibollah; Saberi Karimian, Maryam; Amirabadi Zadeh, Alireza; Ebrahimi, Mahmoud; Safarian, Mohammad; Nematy, Mohsen; Parizadeh, Seyed Mohammad Reza; Ferns, Gordon A; Ghayour-Mobarhan, Majid

    2017-02-01

    Hypertension is an important risk factor for cardiovascular disease (CVD). The goal of this study was to establish the factors associated with hypertension by using a decision-tree algorithm as a supervised classification method of data mining. Data from a cross-sectional study were used in this study. A total of 9078 subjects who met the inclusion criteria were recruited. 70% of these subjects (6358 cases) were randomly allocated to the training dataset for the constructing of the decision-tree. The remaining 30% (2720 cases) were used as the testing dataset to evaluate the performance of decision-tree. Two models were evaluated in this study. In model I, age, gender, body mass index, marital status, level of education, occupation status, depression and anxiety status, physical activity level, smoking status, LDL, TG, TC, FBG, uric acid and hs-CRP were considered as input variables and in model II, age, gender, WBC, RBC, HGB, HCT MCV, MCH, PLT, RDW and PDW were considered as input variables. The validation of the model was assessed by constructing a receiver operating characteristic (ROC) curve. The prevalence rates of hypertension were 32% in our population. For the decision-tree model I, the accuracy, sensitivity, specificity and area under the ROC curve (AUC) value for identifying the related risk factors of hypertension were 73%, 63%, 77% and 0.72, respectively. The corresponding values for model II were 70%, 61%, 74% and 0.68, respectively. We have developed a decision tree model to identify the risk factors associated with hypertension that maybe used to develop programs for hypertension management. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis.

    PubMed

    Hostettler, Isabel Charlotte; Muroi, Carl; Richter, Johannes Konstantin; Schmid, Josef; Neidert, Marian Christoph; Seule, Martin; Boss, Oliver; Pangalu, Athina; Germans, Menno Robbert; Keller, Emanuela

    2018-01-19

    OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission. CONCLUSIONS The multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.

  7. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  8. Statistical Power of Alternative Structural Models for Comparative Effectiveness Research: Advantages of Modeling Unreliability.

    PubMed

    Coman, Emil N; Iordache, Eugen; Dierker, Lisa; Fifield, Judith; Schensul, Jean J; Suggs, Suzanne; Barbour, Russell

    2014-05-01

    The advantages of modeling the unreliability of outcomes when evaluating the comparative effectiveness of health interventions is illustrated. Adding an action-research intervention component to a regular summer job program for youth was expected to help in preventing risk behaviors. A series of simple two-group alternative structural equation models are compared to test the effect of the intervention on one key attitudinal outcome in terms of model fit and statistical power with Monte Carlo simulations. Some models presuming parameters equal across the intervention and comparison groups were underpowered to detect the intervention effect, yet modeling the unreliability of the outcome measure increased their statistical power and helped in the detection of the hypothesized effect. Comparative Effectiveness Research (CER) could benefit from flexible multi-group alternative structural models organized in decision trees, and modeling unreliability of measures can be of tremendous help for both the fit of statistical models to the data and their statistical power.

  9. Evaluation with Decision Trees of Efficacy and Safety of Semirigid Ureteroscopy in the Treatment of Proximal Ureteral Calculi.

    PubMed

    Sancak, Eyup Burak; Kılınç, Muhammet Fatih; Yücebaş, Sait Can

    2017-01-01

    The decision on the choice of proximal ureteral stone therapy depends on many factors, and sometimes urologists have difficulty in choosing the treatment option. This study is aimed at evaluating the factors affecting the success of semirigid ureterorenoscopy (URS) using the "decision tree" method. From January 2005 to November 2015, the data of consecutive patients treated for proximal ureteral stone were retrospectively analyzed. A total of 920 patients with proximal ureteral stone treated with semirigid URS were included in the study. All statistically significant attributes were tested using the decision tree method. The model created using decision tree had a sensitivity of 0.993 and an accuracy of 0.857. While URS treatment was successful in 752 patients (81.7%), it was unsuccessful in 168 patients (18.3%). According to the decision tree method, the most important factor affecting the success of URS is whether the stone is impacted to the ureteral wall. The second most important factor affecting treatment was intramural stricture requiring dilatation if the stone is impacted, and the size of the stone if not impacted. Our study suggests that the impacted stone, intramural stricture requiring dilatation and stone size may have a significant effect on the success rate of semirigid URS for proximal ureteral stone. Further studies with population-based and longitudinal design should be conducted to confirm this finding. © 2017 S. Karger AG, Basel.

  10. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.).

    PubMed

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between "on year" and "off year" leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree.

  11. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  12. C-fuzzy variable-branch decision tree with storage and classification error rate constraints

    NASA Astrophysics Data System (ADS)

    Yang, Shiueng-Bien

    2009-10-01

    The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.

  13. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  14. Planning effectiveness may grow on fault trees.

    PubMed

    Chow, C W; Haddad, K; Mannino, B

    1991-10-01

    The first step of a strategic planning process--identifying and analyzing threats and opportunities--requires subjective judgments. By using an analytical tool known as a fault tree, healthcare administrators can reduce the unreliability of subjective decision making by creating a logical structure for problem solving and decision making. A case study of 11 healthcare administrators showed that an analysis technique called prospective hindsight can add to a fault tree's ability to improve a strategic planning process.

  15. Validation of criteria for the definition of transient lower esophageal sphincter relaxations using high-resolution manometry.

    PubMed

    Roman, S; Holloway, R; Keller, J; Herbella, F; Zerbib, F; Xiao, Y; Bernard, L; Bredenoord, A J; Bruley des Varannes, S; Chen, M; Fox, M; Kahrilas, P J; Mittal, R K; Penagini, R; Savarino, E; Sifrim, D; Wu, J; Decullier, E; Pandolfino, J E; Mion, F

    2017-02-01

    Criteria for transient lower esophageal sphincter relaxations (TLESRs) are well-defined for Dentsleeve manometry. As high-resolution manometry (HRM) is now the gold standard to assess esophageal motility, our aim was to propose a consensus definition of TLESRs using HRM. Postprandial esophageal HRM combined with impedance was performed in 10 patients with gastroesophageal reflux disease. Transient lower esophageal sphincter relaxations identification was performed by 17 experts using a Delphi process. Four investigators then characterized TLESR candidates that achieved 100% agreement (TLESR events) and those that achieved less than 25% agreement (non-events) after the third round. Logistic regression and decision tree analysis were used to define optimal diagnostic criteria. All diagnostic criteria were more frequently encountered in the 57 TLESR events than in the 52 non-events. Crural diaphragm (CD) inhibition and LES relaxation duration >10 seconds had the highest predictive value to identify TLESR. Based on decision tree analysis, reflux on impedance, esophageal shortening, common cavity, upper esophageal sphincter relaxation without swallow and secondary peristalsis were alternate diagnostic criteria. Using HRM, TLESR might be defined as LES relaxation occurring in absence of swallowing, lasting more than 10 seconds and associated with CD inhibition. © 2016 John Wiley & Sons Ltd.

  16. Automated structural classification of lipids by machine learning.

    PubMed

    Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T

    2015-03-01

    Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. "Trees Live on Soil and Sunshine!"--Coexistence of Scientific and Alternative Conception of Tree Assimilation.

    PubMed

    Thorn, Christine Johanna; Bissinger, Kerstin; Thorn, Simon; Bogner, Franz Xaver

    2016-01-01

    Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner's characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on "soil and sunshine", representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile.

  18. “Trees Live on Soil and Sunshine!”- Coexistence of Scientific and Alternative Conception of Tree Assimilation

    PubMed Central

    Thorn, Simon; Bogner, Franz Xaver

    2016-01-01

    Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner’s characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on “soil and sunshine”, representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile. PMID:26807974

  19. Prescriptive models to support decision making in genetics.

    PubMed

    Pauker, S G; Pauker, S P

    1987-01-01

    Formal prescriptive models can help patients and clinicians better understand the risks and uncertainties they face and better formulate well-reasoned decisions. Using Bayes rule, the clinician can interpret pedigrees, historical data, physical findings and laboratory data, providing individualized probabilities of various diagnoses and outcomes of pregnancy. With the advent of screening programs for genetic disease, it becomes increasingly important to consider the prior probabilities of disease when interpreting an abnormal screening test result. Decision trees provide a convenient formalism for structuring diagnostic, therapeutic and reproductive decisions; such trees can also enhance communication between clinicians and patients. Utility theory provides a mechanism for patients to understand the choices they face and to communicate their attitudes about potential reproductive outcomes in a manner which encourages the integration of those attitudes into appropriate decisions. Using a decision tree, the relevant probabilities and the patients' utilities, physicians can estimate the relative worth of various medical and reproductive options by calculating the expected utility of each. By performing relevant sensitivity analyses, clinicians and patients can understand the impact of various soft data, including the patients' attitudes toward various health outcomes, on the decision making process. Formal clinical decision analytic models can provide deeper understanding and improved decision making in clinical genetics.

  20. Applications of urban tree canopy assessment and prioritization tools: supporting collaborative decision making to achieve urban sustainability goals

    Treesearch

    Dexter H. Locke; J. Morgan Grove; Michael Galvin; Jarlath P.M. ONeil-Dunne; Charles Murphy

    2013-01-01

    Urban Tree Canopy (UTC) Prioritizations can be both a set of geographic analysis tools and a planning process for collaborative decision-making. In this paper, we describe how UTC Prioritizations can be used as a planning process to provide decision support to multiple government agencies, civic groups and private businesses to aid in reaching a canopy target. Linkages...

  1. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  2. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    PubMed

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej

    2018-06-01

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  3. Decision tree analysis to stratify risk of de novo non-melanoma skin cancer following liver transplantation.

    PubMed

    Tanaka, Tomohiro; Voigt, Michael D

    2018-03-01

    Non-melanoma skin cancer (NMSC) is the most common de novo malignancy in liver transplant (LT) recipients; it behaves more aggressively and it increases mortality. We used decision tree analysis to develop a tool to stratify and quantify risk of NMSC in LT recipients. We performed Cox regression analysis to identify which predictive variables to enter into the decision tree analysis. Data were from the Organ Procurement Transplant Network (OPTN) STAR files of September 2016 (n = 102984). NMSC developed in 4556 of the 105984 recipients, a mean of 5.6 years after transplant. The 5/10/20-year rates of NMSC were 2.9/6.3/13.5%, respectively. Cox regression identified male gender, Caucasian race, age, body mass index (BMI) at LT, and sirolimus use as key predictive or protective factors for NMSC. These factors were entered into a decision tree analysis. The final tree stratified non-Caucasians as low risk (0.8%), and Caucasian males > 47 years, BMI < 40 who did not receive sirolimus, as high risk (7.3% cumulative incidence of NMSC). The predictions in the derivation set were almost identical to those in the validation set (r 2  = 0.971, p < 0.0001). Cumulative incidence of NMSC in low, moderate and high risk groups at 5/10/20 year was 0.5/1.2/3.3, 2.1/4.8/11.7 and 5.6/11.6/23.1% (p < 0.0001). The decision tree model accurately stratifies the risk of developing NMSC in the long-term after LT.

  4. Evaluation of cost-effectiveness from the funding body's point of view of ultrasound-guided central venous catheter insertion compared with the conventional technique.

    PubMed

    Noritomi, Danilo Teixeira; Zigaib, Rogério; Ranzani, Otavio T; Teich, Vanessa

    2016-01-01

    To evaluate the cost-effectiveness, from the funding body's point of view, of real-time ultrasound-guided central venous catheter insertion compared to the traditional method, which is based on the external anatomical landmark technique. A theoretical simulation based on international literature data was applied to the Brazilian context, i.e., the Unified Health System (Sistema Único de Saúde - SUS). A decision tree was constructed that showed the two central venous catheter insertion techniques: real-time ultrasonography versus external anatomical landmarks. The probabilities of failure and complications were extracted from a search on the PubMed and Embase databases, and values associated with the procedure and with complications were taken from market research and the Department of Information Technology of the Unified Health System (DATASUS). Each central venous catheter insertion alternative had a cost that could be calculated by following each of the possible paths on the decision tree. The incremental cost-effectiveness ratio was calculated by dividing the mean incremental cost of real-time ultrasound compared to the external anatomical landmark technique by the mean incremental benefit, in terms of avoided complications. When considering the incorporation of real-time ultrasound and the concomitant lower cost due to the reduced number of complications, the decision tree revealed a final mean cost for the external anatomical landmark technique of 262.27 Brazilian reals (R$) and for real-time ultrasound of R$187.94. The final incremental cost of the real-time ultrasound-guided technique was -R$74.33 per central venous catheter. The incremental cost-effectiveness ratio was -R$2,494.34 due to the pneumothorax avoided. Real-time ultrasound-guided central venous catheter insertion was associated with decreased failure and complication rates and hypothetically reduced costs from the view of the funding body, which in this case was the SUS.

  5. Interpretation of diagnostic data: 6. How to do it with more complex maths.

    PubMed

    1983-11-15

    We have now shown you how to use decision analysis in making those rare, tough diagnostic decisions that are not soluble through other, easier routes. In summary, to "use more complex maths" the following steps will be useful: Create a decision tree or map of all the pertinent courses of action and their consequences. Assign probabilities to the branches of each chance node. Assign utilities to each of the potential outcomes shown on the decision tree. Combine the probabilities and utilities for each node on the decision tree. Pick the decision that leads to the highest expected utility. Test your decision for its sensitivity to clinically sensible changes in probabilities and utilities. That concludes this series of clinical epidemiology rounds. You've come a long way from "doing it with pictures" and are now able to extract most of the diagnostic information that can be provided from signs, symptoms and laboratory investigations. We would appreciate learning whether you have found this series useful and how we can do a better job of presenting these and other elements of "the science of the art of medicine".

  6. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory

    EPA Science Inventory

    Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...

  7. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    PubMed

    Korucu, M Kemal; Karademir, Aykan

    2014-02-01

    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  8. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  9. Information processing requirements for on-board monitoring of automatic landing

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Karmarkar, J. S.

    1977-01-01

    A systematic procedure is presented for determining the information processing requirements for on-board monitoring of automatic landing systems. The monitoring system detects landing anomalies through use of appropriate statistical tests. The time-to-correct aircraft perturbations is determined from covariance analyses using a sequence of suitable aircraft/autoland/pilot models. The covariance results are used to establish landing safety and a fault recovery operating envelope via an event outcome tree. This procedure is demonstrated with examples using the NASA Terminal Configured Vehicle (B-737 aircraft). The procedure can also be used to define decision height, assess monitoring implementation requirements, and evaluate alternate autoland configurations.

  10. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  11. Green Islands - nutrition not predation -an alternative hypothesis.

    PubMed

    White, T C R

    1985-10-01

    Mountain birch trees are said to survive as "green islands" around nests of red ants in Finnish Lapland because the ants kill larvae which would defoliate trees during outbreaks of the moth O. autumnata. An alternative hypothesis says that because the ants will concentrate soil nutrients (and possibly ameliorate soil moisture and temperature) in and around their nests, they provide a more favourable site for trees growing nearby. These trees are therefore less stressed and a poorer source of food for defoliators at times of outbreaks. Few if any young O. autumnata larvae survive on the trees which then survive in green islands around ant nests.

  12. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  13. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.

    PubMed

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A

    2016-03-05

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.

  14. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals

    PubMed Central

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R.; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J.; Ibarra-Manzano, Mario A.

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029

  15. [The applications of periodontal gingival surgery. Ⅱ: alternative materials].

    PubMed

    Mao, Er-Jia

    2018-04-01

    The main purposes of periodontal graft surgery include achieving root coverage, improving the clinical attachment level and keratinized tissue, and advancing the procedure of periodontal plastic surgery. Autogenous graft, such as subepithelial connective tissue graft-based procedure, provide the best outcomes for mean and complete root coverage, as well as increase in keratinized tissue. However, a disadvantage of the procedure is in the location of the operation itself: the additional surgical site (palate). Therefore, clinicians are always looking for graft substitutes. This article will discuss the evidence supporting the use of 1) acellular dermal matrix (ADM); 2) xenogeneic collagen matrix (XCM); 3) recombinant human platelet-derived growth factor (rhPDGF); 4) enamel matrix derivative (EMD); 5) guided tissue regeneration (GTR); 6) living cellular construct (LCC), all of which are used in conjunction with coronally advanced flaps as alternatives to autogenous donor tissue. The decision tree for treatments of Miller recession-type defects are also discussed.

  16. Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic

    PubMed Central

    Brown, Jeffrey S.; Petronis, Kenneth R.; Bate, Andrew; Zhang, Fang; Dashevsky, Inna; Kulldorff, Martin; Avery, Taliser R.; Davis, Robert L.; Chan, K. Arnold; Andrade, Susan E.; Boudreau, Denise; Gunter, Margaret J.; Herrinton, Lisa; Pawloski, Pamala A.; Raebel, Marsha A.; Roblin, Douglas; Smith, David; Reynolds, Robert

    2013-01-01

    Background: Drug adverse event (AE) signal detection using the Gamma Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we conducted a pilot study to evaluate the implementation and findings of the GPS approach for two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels of granularity. Several signaling thresholds were assessed. GPS results were compared to findings from a companion study using the identical analytic dataset but an alternative statistical method—the tree-based scan statistic (TreeScan). Results: We identified 71 statistical signals across two signaling thresholds and two methods, including closely-related signals of overlapping diagnosis definitions. Initial review found that most signals represented known adverse drug reactions or confounding. About 31% of signals met the highest signaling threshold. Conclusions: The GPS method was successfully applied to observational health plan data in a distributed data environment as a drug safety data mining method. There was substantial concordance between the GPS and TreeScan approaches. Key method implementation decisions relate to defining exposures and outcomes and informed choice of signaling thresholds. PMID:24300404

  17. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    2004-01-01

    To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

  18. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree

    NASA Astrophysics Data System (ADS)

    Luo, Qiu; Xin, Wu; Qiming, Xiong

    2017-06-01

    In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.

  19. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction

    PubMed Central

    2013-01-01

    Background Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case–control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. Results We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual’s continental and sub-continental ancestry. To predict an individual’s continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control’s λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of 86.5% ± 2.4%, 95.6% ± 3.9%, 95.6% ± 2.1%, 98.3% ± 2.0%, and 95.9% ± 1.5%. However, ETHNOPRED was unable to produce a classifier that can accurately distinguish Chinese in Beijing vs. Chinese in Denver. Conclusions ETHNOPRED is a novel technique for producing classifiers that can identify an individual’s continental and sub-continental heritage, based on a small number of SNPs. We show that its learned classifiers are simple, cost-efficient, accurate, transparent, flexible, fast, applicable to large scale GWASs, and robust to missing values. PMID:23432980

  20. Understanding and planning ecological restoration of plant-pollinator networks.

    PubMed

    Devoto, Mariano; Bailey, Sallie; Craze, Paul; Memmott, Jane

    2012-04-01

    Theory developed from studying changes in the structure and function of communities during natural or managed succession can guide the restoration of particular communities. We constructed 30 quantitative plant-flower visitor networks along a managed successional gradient to identify the main drivers of change in network structure. We then applied two alternative restoration strategies in silico (restoring for functional complementarity or redundancy) to data from our early successional plots to examine whether different strategies affected the restoration trajectories. Changes in network structure were explained by a combination of age, tree density and variation in tree diameter, even when variance explained by undergrowth structure was accounted for first. A combination of field data, a network approach and numerical simulations helped to identify which species should be given restoration priority in the context of different restoration targets. This combined approach provides a powerful tool for directing management decisions, particularly when management seeks to restore or conserve ecosystem function. © 2012 Blackwell Publishing Ltd/CNRS.

  1. A decision tree model for predicting mediastinal lymph node metastasis in non-small cell lung cancer with F-18 FDG PET/CT.

    PubMed

    Pak, Kyoungjune; Kim, Keunyoung; Kim, Mi-Hyun; Eom, Jung Seop; Lee, Min Ki; Cho, Jeong Su; Kim, Yun Seong; Kim, Bum Soo; Kim, Seong Jang; Kim, In Joo

    2018-01-01

    We aimed to develop a decision tree model to improve diagnostic performance of positron emission tomography/computed tomography (PET/CT) to detect metastatic lymph nodes (LN) in non-small cell lung cancer (NSCLC). 115 patients with NSCLC were included in this study. The training dataset included 66 patients. A decision tree model was developed with 9 variables, and validated with 49 patients: short and long diameters of LNs, ratio of short and long diameters, maximum standardized uptake value (SUVmax) of LN, mean hounsfield unit, ratio of LN SUVmax and ascending aorta SUVmax (LN/AA), and ratio of LN SUVmax and superior vena cava SUVmax. A total of 301 LNs of 115 patients were evaluated in this study. Nodular calcification was applied as the initial imaging parameter, and LN SUVmax (≥3.95) was assessed as the second. LN/AA (≥2.92) was required to high LN SUVmax. Sensitivity was 50% for training dataset, and 40% for validation dataset. However, specificity was 99.28% for training dataset, and 96.23% for validation dataset. In conclusion, we have developed a new decision tree model for interpreting mediastinal LNs. All LNs with nodular calcification were benign, and LNs with high LN SUVmax and high LN/AA were metastatic Further studies are needed to incorporate subjective parameters and pathologic evaluations into a decision tree model to improve the test performance of PET/CT.

  2. Identifying Risk Factors for Drug Use in an Iranian Treatment Sample: A Prediction Approach Using Decision Trees.

    PubMed

    Amirabadizadeh, Alireza; Nezami, Hossein; Vaughn, Michael G; Nakhaee, Samaneh; Mehrpour, Omid

    2018-05-12

    Substance abuse exacts considerable social and health care burdens throughout the world. The aim of this study was to create a prediction model to better identify risk factors for drug use. A prospective cross-sectional study was conducted in South Khorasan Province, Iran. Of the total of 678 eligible subjects, 70% (n: 474) were randomly selected to provide a training set for constructing decision tree and multiple logistic regression (MLR) models. The remaining 30% (n: 204) were employed in a holdout sample to test the performance of the decision tree and MLR models. Predictive performance of different models was analyzed by the receiver operating characteristic (ROC) curve using the testing set. Independent variables were selected from demographic characteristics and history of drug use. For the decision tree model, the sensitivity and specificity for identifying people at risk for drug abuse were 66% and 75%, respectively, while the MLR model was somewhat less effective at 60% and 73%. Key independent variables in the analyses included first substance experience, age at first drug use, age, place of residence, history of cigarette use, and occupational and marital status. While study findings are exploratory and lack generalizability they do suggest that the decision tree model holds promise as an effective classification approach for identifying risk factors for drug use. Convergent with prior research in Western contexts is that age of drug use initiation was a critical factor predicting a substance use disorder.

  3. Exploratory Use of Decision Tree Analysis in Classification of Outcome in Hypoxic-Ischemic Brain Injury.

    PubMed

    Phan, Thanh G; Chen, Jian; Singhal, Shaloo; Ma, Henry; Clissold, Benjamin B; Ly, John; Beare, Richard

    2018-01-01

    Prognostication following hypoxic ischemic encephalopathy (brain injury) is important for clinical management. The aim of this exploratory study is to use a decision tree model to find clinical and MRI associates of severe disability and death in this condition. We evaluate clinical model and then the added value of MRI data. The inclusion criteria were as follows: age ≥17 years, cardio-respiratory arrest, and coma on admission (2003-2011). Decision tree analysis was used to find clinical [Glasgow Coma Score (GCS), features about cardiac arrest, therapeutic hypothermia, age, and sex] and MRI (infarct volume) associates of severe disability and death. We used the area under the ROC (auROC) to determine accuracy of model. There were 41 (63.7% males) patients having MRI imaging with the average age 51.5 ± 18.9 years old. The decision trees showed that infarct volume and age were important factors for discrimination between mild to moderate disability and severe disability and death at day 0 and day 2. The auROC for this model was 0.94 (95% CI 0.82-1.00). At day 7, GCS value was the only predictor; the auROC was 0.96 (95% CI 0.86-1.00). Our findings provide proof of concept for further exploration of the role of MR imaging and decision tree analysis in the early prognostication of hypoxic ischemic brain injury.

  4. Fish to meat intake ratio and cooking oils are associated with hepatitis C virus carriers with persistently normal alanine aminotransferase levels.

    PubMed

    Otsuka, Momoka; Uchida, Yuki; Kawaguchi, Takumi; Taniguchi, Eitaro; Kawaguchi, Atsushi; Kitani, Shingo; Itou, Minoru; Oriishi, Tetsuharu; Kakuma, Tatsuyuki; Tanaka, Suiko; Yagi, Minoru; Sata, Michio

    2012-10-01

      Dietary habits are involved in the development of chronic inflammation; however, the impact of dietary profiles of hepatitis C virus carriers with persistently normal alanine transaminase levels (HCV-PNALT) remains unclear. The decision-tree algorithm is a data-mining statistical technique, which uncovers meaningful profiles of factors from a data collection. We aimed to investigate dietary profiles associated with HCV-PNALT using a decision-tree algorithm.   Twenty-seven HCV-PNALT and 41 patients with chronic hepatitis C were enrolled in this study. Dietary habit was assessed using a validated semiquantitative food frequency questionnaire. A decision-tree algorithm was created by dietary variables, and was evaluated by area under the receiver operating characteristic curve analysis (AUROC).   In multivariate analysis, fish to meat ratio, dairy product and cooking oils were identified as independent variables associated with HCV-PNALT. The decision-tree algorithm was created with two variables: a fish to meat ratio and cooking oils/ideal bodyweight. When subjects showed a fish to meat ratio of 1.24 or more, 68.8% of the subjects were HCV-PNALT. On the other hand, 11.5% of the subjects were HCV-PNALT when subjects showed a fish to meat ratio of less than 1.24 and cooking oil/ideal bodyweight of less than 0.23 g/kg. The difference in the proportion of HCV-PNALT between these groups are significant (odds ratio 16.87, 95% CI 3.40-83.67, P = 0.0005). Fivefold cross-validation of the decision-tree algorithm showed an AUROC of 0.6947 (95% CI 0.5656-0.8238, P = 0.0067).   The decision-tree algorithm disclosed that fish to meat ratio and cooking oil/ideal bodyweight were associated with HCV-PNALT. © 2012 The Japan Society of Hepatology.

  5. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  6. Computerization of guidelines: a knowledge specification method to convert text to detailed decision tree for electronic implementation.

    PubMed

    Aguirre-Junco, Angel-Ricardo; Colombet, Isabelle; Zunino, Sylvain; Jaulent, Marie-Christine; Leneveut, Laurence; Chatellier, Gilles

    2004-01-01

    The initial step for the computerization of guidelines is the knowledge specification from the prose text of guidelines. We describe a method of knowledge specification based on a structured and systematic analysis of text allowing detailed specification of a decision tree. We use decision tables to validate the decision algorithm and decision trees to specify and represent this algorithm, along with elementary messages of recommendation. Edition tools are also necessary to facilitate the process of validation and workflow between expert physicians who will validate the specified knowledge and computer scientist who will encode the specified knowledge in a guide-line model. Applied to eleven different guidelines issued by an official agency, the method allows a quick and valid computerization and integration in a larger decision support system called EsPeR (Personalized Estimate of Risks). The quality of the text guidelines is however still to be developed further. The method used for computerization could help to define a framework usable at the initial step of guideline development in order to produce guidelines ready for electronic implementation.

  7. Benefit-based tree valuation

    Treesearch

    E.G. McPherson

    2007-01-01

    Benefit-based tree valuation provides alternative estimates of the fair and reasonable value of trees while illustrating the relative contribution of different benefit types. This study compared estimates of tree value obtained using cost- and benefit-based approaches. The cost-based approach used the Council of Landscape and Tree Appraisers trunk formula method, and...

  8. Validating a decision tree for serious infection: diagnostic accuracy in acutely ill children in ambulatory care.

    PubMed

    Verbakel, Jan Y; Lemiengre, Marieke B; De Burghgraeve, Tine; De Sutter, An; Aertgeerts, Bert; Bullens, Dominique M A; Shinkins, Bethany; Van den Bruel, Ann; Buntinx, Frank

    2015-08-07

    Acute infection is the most common presentation of children in primary care with only few having a serious infection (eg, sepsis, meningitis, pneumonia). To avoid complications or death, early recognition and adequate referral are essential. Clinical prediction rules have the potential to improve diagnostic decision-making for rare but serious conditions. In this study, we aimed to validate a recently developed decision tree in a new but similar population. Diagnostic accuracy study validating a clinical prediction rule. Acutely ill children presenting to ambulatory care in Flanders, Belgium, consisting of general practice and paediatric assessment in outpatient clinics or the emergency department. Physicians were asked to score the decision tree in every child. The outcome of interest was hospital admission for at least 24 h with a serious infection within 5 days after initial presentation. We report the diagnostic accuracy of the decision tree in sensitivity, specificity, likelihood ratios and predictive values. In total, 8962 acute illness episodes were included, of which 283 lead to admission to hospital with a serious infection. Sensitivity of the decision tree was 100% (95% CI 71.5% to 100%) at a specificity of 83.6% (95% CI 82.3% to 84.9%) in the general practitioner setting with 17% of children testing positive. In the paediatric outpatient and emergency department setting, sensitivities were below 92%, with specificities below 44.8%. In an independent validation cohort, this clinical prediction rule has shown to be extremely sensitive to identify children at risk of hospital admission for a serious infection in general practice, making it suitable for ruling out. NCT02024282. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Decay fungi of oaks and associated hardwoods for western arborists

    Treesearch

    Jessie A. Glaeser; Kevin T. Smith

    2010-01-01

    Examination of trees for the presence and extent of decay should be part of any hazard tree assessment. Identification of the fungi responsible for the decay improves prediction of tree performance and the quality of management decisions, including tree pruning or removal. Scouting for Sudden Oak Death (SOD) in the West has drawn attention to hardwood tree species,...

  10. Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty.

    PubMed

    Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul

    2012-06-01

    Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.

  11. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Treesearch

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  12. Which Types of Leadership Styles Do Followers Prefer? A Decision Tree Approach

    ERIC Educational Resources Information Center

    Salehzadeh, Reza

    2017-01-01

    Purpose: The purpose of this paper is to propose a new method to find the appropriate leadership styles based on the followers' preferences using the decision tree technique. Design/methodology/approach: Statistical population includes the students of the University of Isfahan. In total, 750 questionnaires were distributed; out of which, 680…

  13. The Americans with Disabilities Act: A Decision Tree for Social Services Administrators

    ERIC Educational Resources Information Center

    O'Brien, Gerald V.; Ellegood, Christina

    2005-01-01

    The 1990 Americans with Disabilities Act has had a profound influence on social workers and social services administrators in virtually all work settings. Because of the multiple elements of the act, however, assessing the validity of claims can be a somewhat arduous and complicated task. This article provides a "decision tree" for…

  14. A Decision-Tree-Oriented Guidance Mechanism for Conducting Nature Science Observation Activities in a Context-Aware Ubiquitous Learning

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Chu, Hui-Chun; Shih, Ju-Ling; Huang, Shu-Hsien; Tsai, Chin-Chung

    2010-01-01

    A context-aware ubiquitous learning environment is an authentic learning environment with personalized digital supports. While showing the potential of applying such a learning environment, researchers have also indicated the challenges of providing adaptive and dynamic support to individual students. In this paper, a decision-tree-oriented…

  15. A decision tree approach using silvics to guide planning for forest restoration

    Treesearch

    Sharon M. Hermann; John S. Kush; John C. Gilbert

    2013-01-01

    We created a decision tree based on silvics of longleaf pine (Pinus palustris) and historical descriptions to develop approaches for restoration management at Horseshoe Bend National Military Park located in central Alabama. A National Park Service goal is to promote structure and composition of a forest that likely surrounded the 1814 battlefield....

  16. What Satisfies Students? Mining Student-Opinion Data with Regression and Decision-Tree Analysis. AIR 2002 Forum Paper.

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…

  17. Foraging Behaviour in Magellanic Woodpeckers Is Consistent with a Multi-Scale Assessment of Tree Quality

    PubMed Central

    Vergara, Pablo M.; Soto, Gerardo E.; Rodewald, Amanda D.; Meneses, Luis O.; Pérez-Hernández, Christian G.

    2016-01-01

    Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox’s proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales. PMID:27416115

  18. Foraging Behaviour in Magellanic Woodpeckers Is Consistent with a Multi-Scale Assessment of Tree Quality.

    PubMed

    Vergara, Pablo M; Soto, Gerardo E; Moreira-Arce, Darío; Rodewald, Amanda D; Meneses, Luis O; Pérez-Hernández, Christian G

    2016-01-01

    Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox's proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales.

  19. A method of building of decision trees based on data from wearable device during a rehabilitation of patients with tibia fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupriyanov, M. S., E-mail: mikhail.kupriyanov@gmail.com; Shukeilo, E. Y., E-mail: eyshukeylo@gmail.com; Shichkina, J. A., E-mail: strange.y@mail.ru

    2015-11-17

    Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient’s health condition using data from a wearable device considers in this article.

  20. A method of building of decision trees based on data from wearable device during a rehabilitation of patients with tibia fractures

    NASA Astrophysics Data System (ADS)

    Kupriyanov, M. S.; Shukeilo, E. Y.; Shichkina, J. A.

    2015-11-01

    Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient's health condition using data from a wearable device considers in this article.

  1. Protein attributes contribute to halo-stability, bioinformatics approach

    PubMed Central

    2011-01-01

    Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393

  2. Classification tree for the assessment of sedentary lifestyle among hypertensive.

    PubMed

    Castelo Guedes Martins, Larissa; Venícios de Oliveira Lopes, Marcos; Gomes Guedes, Nirla; Paixão de Menezes, Angélica; de Oliveira Farias, Odaleia; Alves Dos Santos, Naftale

    2016-04-01

    To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL) in people with high blood pressure (HTN). A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection). The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.

  3. An improved classification tree analysis of high cost modules based upon an axiomatic definition of complexity

    NASA Technical Reports Server (NTRS)

    Tian, Jianhui; Porter, Adam; Zelkowitz, Marvin V.

    1992-01-01

    Identification of high cost modules has been viewed as one mechanism to improve overall system reliability, since such modules tend to produce more than their share of problems. A decision tree model was used to identify such modules. In this current paper, a previously developed axiomatic model of program complexity is merged with the previously developed decision tree process for an improvement in the ability to identify such modules. This improvement was tested using data from the NASA Software Engineering Laboratory.

  4. A Methodology for Robust Comparative Life Cycle Assessments Incorporating Uncertainty.

    PubMed

    Gregory, Jeremy R; Noshadravan, Arash; Olivetti, Elsa A; Kirchain, Randolph E

    2016-06-21

    We propose a methodology for conducting robust comparative life cycle assessments (LCA) by leveraging uncertainty. The method evaluates a broad range of the possible scenario space in a probabilistic fashion while simultaneously considering uncertainty in input data. The method is intended to ascertain which scenarios have a definitive environmentally preferable choice among the alternatives being compared and the significance of the differences given uncertainty in the parameters, which parameters have the most influence on this difference, and how we can identify the resolvable scenarios (where one alternative in the comparison has a clearly lower environmental impact). This is accomplished via an aggregated probabilistic scenario-aware analysis, followed by an assessment of which scenarios have resolvable alternatives. Decision-tree partitioning algorithms are used to isolate meaningful scenario groups. In instances where the alternatives cannot be resolved for scenarios of interest, influential parameters are identified using sensitivity analysis. If those parameters can be refined, the process can be iterated using the refined parameters. We also present definitions of uncertainty quantities that have not been applied in the field of LCA and approaches for characterizing uncertainty in those quantities. We then demonstrate the methodology through a case study of pavements.

  5. A key for the Forest Service hardwood tree grades

    Treesearch

    Gary W. Miller; Leland F. Hanks; Harry V., Jr. Wiant

    1986-01-01

    A dichotomous key organizes the USDA Forest Service hardwood tree grade specifications into a stepwise procedure for those learning to grade hardwood sawtimber. The key addresses the major grade factors, tree size, surface characteristics, and allowable cull deductions in a series of paried choices that lead the user to a decision regarding tree grade.

  6. Inferences from growing trees backwards

    Treesearch

    David W. Green; Kent A. McDonald

    1997-01-01

    The objective of this paper is to illustrate how longitudinal stress wave techniques can be useful in tracking the future quality of a growing tree. Monitoring the quality of selected trees in a plantation forest could provide early input to decisions on the effectiveness of management practices, or future utilization options, for trees in a plantation. There will...

  7. Acute Mental Discomfort Associated with Suicide Behavior in a Clinical Sample of Patients with Affective Disorders: Ascertaining Critical Variables Using Artificial Intelligence Tools.

    PubMed

    Morales, Susana; Barros, Jorge; Echávarri, Orietta; García, Fabián; Osses, Alex; Moya, Claudia; Maino, María Paz; Fischman, Ronit; Núñez, Catalina; Szmulewicz, Tita; Tomicic, Alemka

    2017-01-01

    In efforts to develop reliable methods to detect the likelihood of impending suicidal behaviors, we have proposed the following. To gain a deeper understanding of the state of suicide risk by determining the combination of variables that distinguishes between groups with and without suicide risk. A study involving 707 patients consulting for mental health issues in three health centers in Greater Santiago, Chile. Using 345 variables, an analysis was carried out with artificial intelligence tools, Cross Industry Standard Process for Data Mining processes, and decision tree techniques. The basic algorithm was top-down, and the most suitable division produced by the tree was selected by using the lowest Gini index as a criterion and by looping it until the condition of belonging to the group with suicidal behavior was fulfilled. Four trees distinguishing the groups were obtained, of which the elements of one were analyzed in greater detail, since this tree included both clinical and personality variables. This specific tree consists of six nodes without suicide risk and eight nodes with suicide risk (tree decision 01, accuracy 0.674, precision 0.652, recall 0.678, specificity 0.670, F measure 0.665, receiver operating characteristic (ROC) area under the curve (AUC) 73.35%; tree decision 02, accuracy 0.669, precision 0.642, recall 0.694, specificity 0.647, F measure 0.667, ROC AUC 68.91%; tree decision 03, accuracy 0.681, precision 0.675, recall 0.638, specificity 0.721, F measure, 0.656, ROC AUC 65.86%; tree decision 04, accuracy 0.714, precision 0.734, recall 0.628, specificity 0.792, F measure 0.677, ROC AUC 58.85%). This study defines the interactions among a group of variables associated with suicidal ideation and behavior. By using these variables, it may be possible to create a quick and easy-to-use tool. As such, psychotherapeutic interventions could be designed to mitigate the impact of these variables on the emotional state of individuals, thereby reducing eventual risk of suicide. Such interventions may reinforce psychological well-being, feelings of self-worth, and reasons for living, for each individual in certain groups of patients.

  8. Analytical and CASE study on Limited Search, ID3, CHAID, C4.5, Improved C4.5 and OVA Decision Tree Algorithms to design Decision Support System

    NASA Astrophysics Data System (ADS)

    Kaur, Parneet; Singh, Sukhwinder; Garg, Sushil; Harmanpreet

    2010-11-01

    In this paper we study about classification algorithms for farm DSS. By applying classification algorithms i.e. Limited search, ID3, CHAID, C4.5, Improved C4.5 and One VS all Decision Tree on common data set of crop with specified class, results are obtained. The tool used to derive results is SPINA. The graphical results obtained from tool are compared to suggest best technique to develop farm Decision Support System. This analysis would help to researchers to design effective and fast DSS for farmer to take decision for enhancing their yield.

  9. Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables

    NASA Astrophysics Data System (ADS)

    Zeng, Yuandi; Liu, Yanfang; Liu, Yaolin; de Leeuw, Jan

    2007-06-01

    Information on the spatial distribution of grass communities in wetland is increasingly recognized as important for effective wetland management and biological conservation. Remote sensing techniques has been proved to be an effective alternative to intensive and costly ground surveys for mapping grass community. However, the mapping accuracy of grass communities in wetland is still not preferable. The aim of this paper is to develop an effective method to map grass communities in Poyang Lake Natural Reserve. Through statistic analysis, elevation is selected as an environmental variable for its high relationship with the distribution of grass communities; NDVI stacked from images of different months was used to generate Carex community map; the image in October was used to discriminate Miscanthus and Cynodon communities. Classifications were firstly performed with maximum likelihood classifier using single date satellite image with and without elevation; then layered classifications were performed using multi-temporal satellite imagery and elevation with maximum likelihood classifier, decision tree and artificial neural network separately. The results show that environmental variables can improve the mapping accuracy; and the classification with multitemporal imagery and elevation is significantly better than that with single date image and elevation (p=0.001). Besides, maximum likelihood (a=92.71%, k=0.90) and artificial neural network (a=94.79%, k=0.93) perform significantly better than decision tree (a=86.46%, k=0.83).

  10. Benefits and Limitations of Real Options Analysis for the Practice of River Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Kind, Jarl M.; Baayen, Jorn H.; Botzen, W. J. Wouter

    2018-04-01

    Decisions on long-lived flood risk management (FRM) investments are complex because the future is uncertain. Flexibility and robustness can be used to deal with future uncertainty. Real options analysis (ROA) provides a welfare-economics framework to design and evaluate robust and flexible FRM strategies under risk or uncertainty. Although its potential benefits are large, ROA is hardly used in todays' FRM practice. In this paper, we investigate benefits and limitations of a ROA, by applying it to a realistic FRM case study for an entire river branch. We illustrate how ROA identifies optimal short-term investments and values future options. We develop robust dike investment strategies and value the flexibility offered by additional room for the river measures. We benchmark the results of ROA against those of a standard cost-benefit analysis and show ROA's potential policy implications. The ROA for a realistic case requires a high level of geographical detail, a large ensemble of scenarios, and the inclusion of stakeholders' preferences. We found several limitations of applying the ROA. It is complex. In particular, relevant sources of uncertainty need to be recognized, quantified, integrated, and discretized in scenarios, requiring subjective choices and expert judgment. Decision trees have to be generated and stakeholders' preferences have to be translated into decision rules. On basis of this study, we give general recommendations to use high discharge scenarios for the design of measures with high fixed costs and few alternatives. Lower scenarios may be used when alternatives offer future flexibility.

  11. Uninjured trees - a meaningful guide to white-pine weevil control decisions

    Treesearch

    William E. Waters

    1962-01-01

    The white-pine weevil, Pissodes strobi, is a particularly insidious forest pest that can render a stand of host trees virtually worthless. It rarely, if ever, kills a tree; but the crooks, forks, and internal defects that develop in attacked trees over a period of years may reduce the merchantable volume and value of the tree at harvest age to zero. Dollar losses are...

  12. Compensatory value of urban trees in the United States

    Treesearch

    David J. Nowak; Daniel E. Crane; John F. Dwyer

    2002-01-01

    Understanding the value of an urban forest can give decision makers a better foundation for urban tree namagement. Based on tree-valuation methods of the Council of Tree and Landscape Appraisers and field data from eight cities, total compensatory value of tree populations in U.S. cities ranges from $101 million in Jersey City, New Jersey, to $6.2 billion in New York,...

  13. A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.

    PubMed

    Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A

    2018-01-01

    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.

  14. A decision analysis approach for risk management of near-earth objects

    NASA Astrophysics Data System (ADS)

    Lee, Robert C.; Jones, Thomas D.; Chapman, Clark R.

    2014-10-01

    Risk management of near-Earth objects (NEOs; e.g., asteroids and comets) that can potentially impact Earth is an important issue that took on added urgency with the Chelyabinsk event of February 2013. Thousands of NEOs large enough to cause substantial damage are known to exist, although only a small fraction of these have the potential to impact Earth in the next few centuries. The probability and location of a NEO impact are subject to complex physics and great uncertainty, and consequences can range from minimal to devastating, depending upon the size of the NEO and location of impact. Deflecting a potential NEO impactor would be complex and expensive, and inter-agency and international cooperation would be necessary. Such deflection campaigns may be risky in themselves, and mission failure may result in unintended consequences. The benefits, risks, and costs of different potential NEO risk management strategies have not been compared in a systematic fashion. We present a decision analysis framework addressing this hazard. Decision analysis is the science of informing difficult decisions. It is inherently multi-disciplinary, especially with regard to managing catastrophic risks. Note that risk analysis clarifies the nature and magnitude of risks, whereas decision analysis guides rational risk management. Decision analysis can be used to inform strategic, policy, or resource allocation decisions. First, a problem is defined, including the decision situation and context. Second, objectives are defined, based upon what the different decision-makers and stakeholders (i.e., participants in the decision) value as important. Third, quantitative measures or scales for the objectives are determined. Fourth, alternative choices or strategies are defined. Fifth, the problem is then quantitatively modeled, including probabilistic risk analysis, and the alternatives are ranked in terms of how well they satisfy the objectives. Sixth, sensitivity analyses are performed in order to examine the impact of uncertainties. Finally, the need for further analysis, data collection, or refinement is determined. The first steps of defining the problem and the objectives are critical to constructing an informative decision analysis. Such steps must be undertaken with participation from experts, decision-makers, and stakeholders (defined here as "decision participants"). The basic problem here can be framed as: “What is the best strategy to manage risk associated with NEOs?” Some high-level objectives might be to minimize: mortality and injuries, damage to critical infrastructure (e.g., power, communications and food distribution), ecosystem damage, property damage, ungrounded media and public speculation, resources expended, and overall cost. Another valuable objective would be to maximize inter-agency/government coordination. Some of these objectives (e.g., “minimize mortality”) are readily quantified (e.g., deaths and injuries averted). Others are less so (e.g., “maximize inter-agency/government coordination”), but these can be scaled. Objectives may be inversely related: e.g., a strategy that minimizes mortality may cost more. They are also unlikely to be weighted equally. Defining objectives and assessing their relative weight and interactions requires early engagement with decision participants. High-level decisions include whether to deflect a NEO, when to deflect, what is the best alternative for deflection/destruction, and disaster management strategies if an impact occurs. Important influences include, for example: NEO characteristics (orbital characteristics, diameter, mass, spin and composition), impact probability and location, interval between discovery and projected impact date, interval between discovery and deflection target date, costs of information collection, costs and technological feasibility of deflection alternatives, risks of deflection campaigns, requirements for inter-agency and international cooperation, and timing of informing the public. The analytical aspects of decision analysis center on estimation of the expected value (i.e. utility) of different alternatives. The expected value of an alternative is a function of the probability-weighted consequences, estimated using Bayesian calculations in a decision tree or influence diagram model. The result is a set of expected-value estimates for all alternatives evaluated that enables a ranking; the higher the expected value, the more preferred the alternative. A common way to include resource limitations is by framing the decision analysis in the context of economics (e.g., cost-effectiveness analysis). An important aspect of decision analysis in the NEO risk management case is the ability, known as sensitivity analysis, to examine the effect of parameter uncertainty upon decisions. The simplest way to evaluate uncertainty associated with the information used in a decision analysis is to adjust the input values one at a time (or simultaneously) to examine how the results change. Monte Carlo simulations can be used to adjust the inputs over ranges or distributions of values; statistical means then are used to determine the most influential variables. These techniques yield a measure known as the expected value of imperfect information. This value is highly informative, because it allows the decision-maker with imperfect information to evaluate the impact of using experiments, tests, or data collection (e.g. Earth-based observations, space-based remote sensing, etc.) to refine judgments; and indeed to estimate how much should be spent to reduce uncertainty.

  15. Prognostic Factors and Decision Tree for Long-term Survival in Metastatic Uveal Melanoma.

    PubMed

    Lorenzo, Daniel; Ochoa, María; Piulats, Josep Maria; Gutiérrez, Cristina; Arias, Luis; Català, Jaum; Grau, María; Peñafiel, Judith; Cobos, Estefanía; Garcia-Bru, Pere; Rubio, Marcos Javier; Padrón-Pérez, Noel; Dias, Bruno; Pera, Joan; Caminal, Josep Maria

    2017-12-04

    The purpose of this study was to demonstrate the existence of a bimodal survival pattern in metastatic uveal melanoma. Secondary aims were to identify the characteristics and prognostic factors associated with long-term survival and to develop a clinical decision tree. The medical records of 99 metastatic uveal melanoma patients were retrospectively reviewed. Patients were classified as either short (≤ 12 months) or long-term survivors (> 12 months) based on a graphical interpretation of the survival curve after diagnosis of the first metastatic lesion. Ophthalmic and oncological characteristics were assessed in both groups. Of the 99 patients, 62 (62.6%) were classified as short-term survivors, and 37 (37.4%) as long-term survivors. The multivariate analysis identified the following predictors of long-term survival: age ≤ 65 years (p=0.012) and unaltered serum lactate dehydrogenase levels (p=0.018); additionally, the size (smaller vs. larger) of the largest liver metastasis showed a trend towards significance (p=0.063). Based on the variables significantly associated with long-term survival, we developed a decision tree to facilitate clinical decision-making. The findings of this study demonstrate the existence of a bimodal survival pattern in patients with metastatic uveal melanoma. The presence of certain clinical characteristics at diagnosis of distant disease is associated with long-term survival. A decision tree was developed to facilitate clinical decision-making and to counsel patients about the expected course of disease.

  16. Test Reviews: Euler, B. L. (2007). "Emotional Disturbance Decision Tree". Lutz, FL: Psychological Assessment Resources

    ERIC Educational Resources Information Center

    Tansy, Michael

    2009-01-01

    The Emotional Disturbance Decision Tree (EDDT) is a teacher-completed norm-referenced rating scale published by Psychological Assessment Resources, Inc., in Lutz, Florida. The 156-item EDDT was developed for use as part of a broader assessment process to screen and assist in the identification of 5- to 18-year-old children for the special…

  17. Phytotechnology Technical and Regulatory Guidance Document

    DTIC Science & Technology

    2001-04-01

    contaminated media is rather new. Throughout the development process of this document, we referred to the science as “ phytoremediation .” Recently...the media containing contaminants, we now refer to “phytotechnologies” as the overarching terminology, while using “ phytoremediation ” more...publication of the ITRC document, Phytoremediation Decision Tree. The decision tree was designed to allow potential users to take basic information

  18. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    PubMed

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  19. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study.

    PubMed

    Ramezankhani, Azra; Pournik, Omid; Shahrabi, Jamal; Khalili, Davood; Azizi, Fereidoun; Hadaegh, Farzad

    2014-09-01

    The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Intelligent Diagnostic Assistant for Complicated Skin Diseases through C5's Algorithm.

    PubMed

    Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Kermany, Zahra Arab

    2017-09-01

    Intelligent Diagnostic Assistant can be used for complicated diagnosis of skin diseases, which are among the most common causes of disability. The aim of this study was to design and implement a computerized intelligent diagnostic assistant for complicated skin diseases through C5's Algorithm. An applied-developmental study was done in 2015. Knowledge base was developed based on interviews with dermatologists through questionnaires and checklists. Knowledge representation was obtained from the train data in the database using Excel Microsoft Office. Clementine Software and C5's Algorithms were applied to draw the decision tree. Analysis of test accuracy was performed based on rules extracted using inference chains. The rules extracted from the decision tree were entered into the CLIPS programming environment and the intelligent diagnostic assistant was designed then. The rules were defined using forward chaining inference technique and were entered into Clips programming environment as RULE. The accuracy and error rates obtained in the training phase from the decision tree were 99.56% and 0.44%, respectively. The accuracy of the decision tree was 98% and the error was 2% in the test phase. Intelligent diagnostic assistant can be used as a reliable system with high accuracy, sensitivity, specificity, and agreement.

  1. Data mining for multiagent rules, strategies, and fuzzy decision tree structure

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin

    2002-03-01

    A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.

  2. Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods.

    PubMed

    Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi

    2017-06-01

    Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.

  3. Decision tree and PCA-based fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Sun, Weixiang; Chen, Jin; Li, Jiaqing

    2007-04-01

    After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN.

  4. Decision Tree based Prediction and Rule Induction for Groundwater Trichloroethene (TCE) Pollution Vulnerability

    NASA Astrophysics Data System (ADS)

    Park, J.; Yoo, K.

    2013-12-01

    For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.

  5. The application of data mining techniques to oral cancer prognosis.

    PubMed

    Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan

    2015-05-01

    This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.

  6. Machine Learning Through Signature Trees. Applications to Human Speech.

    ERIC Educational Resources Information Center

    White, George M.

    A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…

  7. Modeling individual tree survial

    Treesearch

    Quang V. Cao

    2016-01-01

    Information provided by growth and yield models is the basis for forest managers to make decisions on how to manage their forests. Among different types of growth models, whole-stand models offer predictions at stand level, whereas individual-tree models give detailed information at tree level. The well-known logistic regression is commonly used to predict tree...

  8. Predicting Tillage Patterns in the Tiffin River Watershed Using Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Brooks, C.; McCarty, J. L.; Dean, D. B.; Mann, B. F.

    2012-12-01

    Previous research in tillage mapping has focused primarily on utilizing low to no-cost, moderate (30 m to 15 m) resolution satellite data. Successful data processing techniques published in the scientific literature have focused on extracting and/or classifying tillage patterns through manipulation of spectral bands. For instance, Daughtry et al. (2005) evaluated several spectral indices for crop residue cover using satellite multispectral and hyperspectral data and to categorize soil tillage intensity in agricultural fields. A weak to moderate relationship between Landsat Thematic Mapper (TM) indices and crop residue cover was found; similar results were reported in Minnesota. Building on the findings from the scientific literature and previous work done by MTRI in the heavily agricultural Tiffin watershed of northwest Ohio and southeast Michigan, a decision tree classifier approach (also referred to as a classification tree) was used, linking several satellite data to on-the-ground tillage information in order to boost classification results. This approach included five tillage indices and derived products. A decision tree methodology enabled the development of statistically optimized (i.e., minimizing misclassification rates) classification algorithms at various desired time steps: monthly, seasonally, and annual over the 2006-2010 time period. Due to their flexibility, processing speed, and availability within all major remote sensing and statistical software packages, decision trees can ingest several data inputs from multiple sensors and satellite products, selecting only the bands, band ratios, indices, and products that further reduce misclassification errors. The project team created crop-specific tillage pattern classification trees whereby a training data set (~ 50% of available ground data) was created for production of the actual decision tree and a validation data set was set aside (~ 50% of available ground data) in order to assess the accuracy of the classification. A seasonal time step was used, optimizing a decision tree based on seasonal ground data for tillage patterns and satellite data and products for years 2006 through 2010. Annual crop type maps derived by the project team and the USDA Cropland Data Layer project was used an input to understand locations of corn, soybeans, wheat, etc. on a yearly basis. As previously stated, the robustness of the decision tree approach is the ability to implement various satellite data and products across temporal, spectral, and spatial resolutions, thereby improving the resulting classification and providing a reliable method that is not sensor-dependent. Tillage pattern classification from satellite imagery is not a simple task and has proven a challenge to previous researchers investigating this remote sensing topic. The team's decision tree method produced a practical, usable output within a focused project time period. Daughtry, C.S.T., Hunt Jr., E.R., Doraiswamy, P.C., McMurtrey III, J.E. 2005. Remote sensing the spatial distribution of crop residues. Agron. J. 97, 864-871.

  9. Using decision tree models to depict primary care physicians CRC screening decision heuristics.

    PubMed

    Wackerbarth, Sarah B; Tarasenko, Yelena N; Curtis, Laurel A; Joyce, Jennifer M; Haist, Steven A

    2007-10-01

    The purpose of this study was to identify decision heuristics utilized by primary care physicians in formulating colorectal cancer screening recommendations. Qualitative research using in-depth semi-structured interviews. We interviewed 66 primary care internists and family physicians evenly drawn from academic and community practices. A majority of physicians were male, and almost all were white, non-Hispanic. Three researchers independently reviewed each transcript to determine the physician's decision criteria and developed decision trees. Final trees were developed by consensus. The constant comparative methodology was used to define the categories. Physicians were found to use 1 of 4 heuristics ("age 50," "age 50, if family history, then earlier," "age 50, if family history, then screen at age 40," or "age 50, if family history, then adjust relative to reference case") for the timing recommendation and 5 heuristics ["fecal occult blood test" (FOBT), "colonoscopy," "if not colonoscopy, then...," "FOBT and another test," and "a choice between options"] for the type decision. No connection was found between timing and screening type heuristics. We found evidence of heuristic use. Further research is needed to determine the potential impact on quality of care.

  10. Epidemiological performance and subsequent costs of different surveillance strategies to control bovine herpesvirus type 1 in dairy farms.

    PubMed

    Veldhuis, Anouk; Santman-Berends, Inge; Schauer, Birgit; Mars, Jet; Waldeck, Frederik; Staubach, Christoph; van Schaik, Gerdien

    2017-04-01

    This study aimed at comparing the surveillance program of bovine herpesvirus type 1 (BHV1) as laid down by EU Decision 2004/558/EC and 2007/584/EC ('conventional design') with an alternative design. The alternative design was based on monthly bulk-milk testing, clinical surveillance and a risk-based component that involves testing of animals that are purchased from non-free cattle herds. Scenario-tree analyses were carried out to determine sensitivities of the surveillance system (and its components) and the monthly confidence of freedom on herd-level. Also, the expected costs per surveillance design and components thereof were calculated. Results showed that the conventional (EU) and alternative surveillance designs to obtain a BHV1-free status performed equally well in terms of sensitivity. However, total costs per cattle herd to obtain a free status were highest in the conventional design. In an endemic situation and with a within-herd design prevalence of 10%, the conventional design led to a varying probability of freedom ranging from 99.6% to 100% per month. With the alternative design, in this situation, a constant probability of freedom of >99.9% per month was found. In a disease-free situation, both designs performed equally well (probability of freedom >99.9% per month). The yearly costs per farm for monitoring the disease-free status decreased by approximately 25% in the alternative design. The alternative strategy based on monthly bulk-milk monitoring therefore was deemed most cost-effective. This study showed that the surveillance regime to attain and maintain a BHV1-free status as described by EU-legislation can be improved to reduce the monitoring costs without reduction of the system's sensitivity, given a within-herd design prevalence of 10%. The assessment of various surveillance designs could be highly useful to support decision-making towards a more risk-based approach of animal health surveillance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Health economic evaluation of Gd-EOB-DTPA MRI vs ECCM-MRI and multi-detector computed tomography in patients with suspected hepatocellular carcinoma in Thailand and South Korea.

    PubMed

    Lee, Jeong-Min; Kim, Myeong-Jin; Phongkitkarun, Sith; Sobhonslidsuk, Abhasnee; Holtorf, Anke-Peggy; Rinde, Harald; Bergmann, Karsten

    2016-08-01

    The effectiveness of treatment decisions and economic outcomes of using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) were compared with extracellular contrast media-enhanced MRI (ECCM-MRI) and multi-detector computed tomography (MDCT) as initial procedures in patients with suspected hepatocellular carcinoma (HCC) in South Korea and Thailand. A decision-tree model simulated the clinical pathway for patients with suspected HCC from the first imaging procedure to a confirmed treatment decision. Input data (probabilities and resource consumptions) were estimated and validated by clinical experts. Costs for diagnostic alternatives and related treatment options were derived from published sources, taking into account both payer's and hospital's perspectives. All experts from Korea and Thailand agreed that Gd-EOB-DTPA-MRI yields the highest diagnostic certainty and minimizes the need for additional confirmatory diagnostic procedures in HCC. In Korea, from the payer's perspective, total cost was USD $3087/patient to reach a confirmed treatment decision using Gd-EOB-DTPA-MRI (vs $3205/patient for MDCT and $3403/patient for ECCM-MRI). From the hospital's perspective, Gd-EOB-DTPA-MRI incurred the lowest cost ($2289/patient vs $2320/patient and $2528/patient, respectively). In Thailand, Gd-EOB-DTPA-MRI was the least costly alternative for the payer ($702/patient vs $931/patient for MDCT and $873/patient for ECCM-MRI). From the hospital's perspective, costs were $1106/patient, $1178/patient, and $1087/patient for Gd-EOB-DTPA-MRI, MDCT, and ECCM-MRI, respectively. Gd-EOB-DTPA-MRI as an initial imaging procedure in patients with suspected HCC provides better diagnostic certainty and relevant statutory health insurance cost savings in Thailand and Korea, compared with ECCM-MRI and MDCT.

  12. Semi-Automated Approach for Mapping Urban Trees from Integrated Aerial LiDAR Point Cloud and Digital Imagery Datasets

    NASA Astrophysics Data System (ADS)

    Dogon-Yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.

    2016-09-01

    Mapping of trees plays an important role in modern urban spatial data management, as many benefits and applications inherit from this detailed up-to-date data sources. Timely and accurate acquisition of information on the condition of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting trees include ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraints, such as labour intensive field work and a lot of financial requirement which can be overcome by means of integrated LiDAR and digital image datasets. Compared to predominant studies on trees extraction mainly in purely forested areas, this study concentrates on urban areas, which have a high structural complexity with a multitude of different objects. This paper presented a workflow about semi-automated approach for extracting urban trees from integrated processing of airborne based LiDAR point cloud and multispectral digital image datasets over Istanbul city of Turkey. The paper reveals that the integrated datasets is a suitable technology and viable source of information for urban trees management. As a conclusion, therefore, the extracted information provides a snapshot about location, composition and extent of trees in the study area useful to city planners and other decision makers in order to understand how much canopy cover exists, identify new planting, removal, or reforestation opportunities and what locations have the greatest need or potential to maximize benefits of return on investment. It can also help track trends or changes to the urban trees over time and inform future management decisions.

  13. Decision-Tree Program

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1994-01-01

    IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.

  14. Interpretable Categorization of Heterogeneous Time Series Data

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Silbermann, Joshua

    2017-01-01

    We analyze data from simulated aircraft encounters to validate and inform the development of a prototype aircraft collision avoidance system. The high-dimensional and heterogeneous time series dataset is analyzed to discover properties of near mid-air collisions (NMACs) and categorize the NMAC encounters. Domain experts use these properties to better organize and understand NMAC occurrences. Existing solutions either are not capable of handling high-dimensional and heterogeneous time series datasets or do not provide explanations that are interpretable by a domain expert. The latter is critical to the acceptance and deployment of safety-critical systems. To address this gap, we propose grammar-based decision trees along with a learning algorithm. Our approach extends decision trees with a grammar framework for classifying heterogeneous time series data. A context-free grammar is used to derive decision expressions that are interpretable, application-specific, and support heterogeneous data types. In addition to classification, we show how grammar-based decision trees can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply grammar-based decision trees to a simulated aircraft encounter dataset and evaluate the performance of four variants of our learning algorithm. The best algorithm is used to analyze and categorize near mid-air collisions in the aircraft encounter dataset. We describe each discovered category in detail and discuss its relevance to aircraft collision avoidance.

  15. Application of data mining techniques to explore predictors of upper urinary tract damage in patients with neurogenic bladder.

    PubMed

    Fang, H; Lu, B; Wang, X; Zheng, L; Sun, K; Cai, W

    2017-08-17

    This study proposed a decision tree model to screen upper urinary tract damage (UUTD) for patients with neurogenic bladder (NGB). Thirty-four NGB patients with UUTD were recruited in the case group, while 78 without UUTD were included in the control group. A decision tree method, classification and regression tree (CART), was then applied to develop the model in which UUTD was used as a dependent variable and history of urinary tract infections, bladder management, conservative treatment, and urodynamic findings were used as independent variables. The urethra function factor was found to be the primary screening information of patients and treated as the root node of the tree; Pabd max (maximum abdominal pressure, >14 cmH2O), Pves max (maximum intravesical pressure, ≤89 cmH2O), and gender (female) were also variables associated with UUTD. The accuracy of the proposed model was 84.8%, and the area under curve was 0.901 (95%CI=0.844-0.958), suggesting that the decision tree model might provide a new and convenient way to screen UUTD for NGB patients in both undeveloped and developing areas.

  16. Selection of summer roosting sites by Indiana bats (Myotis sodalis) in Missouri

    USGS Publications Warehouse

    Callahan, E.V.; Drobney, R.D.; Clawson, R.L.

    1997-01-01

    Summer roosting sites were studied at four maternity colonies of Indiana bats (Myotis sodalis) in northern Missouri. Colonies of Indiana bats used two types of roosts, primary and alternate, that differed in intensity of use, number, and probable function. Primary roosts were denned as roosts where use by >30 bats on more than one occasion was observed. The number of primary roosts per colony ranged from one to three. All primary roosts were in standing dead trees situated in trees exposed to direct sunlight. Alternate roosts were used by smaller numbers of bats. These roosts included both living and dead trees that typically were located within the shaded forest interior. Differences in patterns of use between types of roosts seemed to be influenced by weather conditions in that use of alternate roost trees increased during periods of elevated temperature and precipitation. Indiana bats have specific requirements for roost sites, but also must be able to relocate when loss of bark, tree fall, or other events render their current roost sites unusable. Practices of forest management within the summer range of Indiana bats should favor retention of large-diameter, mature, and senescent trees.

  17. Graphic Representations as Tools for Decision Making.

    ERIC Educational Resources Information Center

    Howard, Judith

    2001-01-01

    Focuses on the use of graphic representations to enable students to improve their decision making skills in the social studies. Explores three visual aids used in assisting students with decision making: (1) the force field; (2) the decision tree; and (3) the decision making grid. (CMK)

  18. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-11-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.

  19. Facilitating smallholder tree farming in fragmented tropical landscapes: Challenges and potentials for sustainable land management.

    PubMed

    Rahman, Syed Ajijur; Sunderland, Terry; Roshetko, James M; Healey, John Robert

    2017-08-01

    Under changing land use in tropical Asia, there is evidence of forest product diversification through implementation of tree-based farming by smallholders. This paper assesses in two locations, West Java, Indonesia and eastern Bangladesh, current land use conditions from the perspective of smallholder farmers, the factors that facilitate their adoption of tree farming, and the potential of landscape-scale approaches to foster sustainable land management. Data were collected through rapid rural appraisals, focus group discussions, field observations, semi-structured interviews of farm households and key informant interviews of state agricultural officers. Land at both study sites is typically fragmented due to conversion of forest to agriculture and community settlement. Local land use challenges are associated with pressures of population increase, poverty, deforestation, shortage of forest products, lack of community-scale management, weak tenure, underdeveloped markets, government decision-making with insufficient involvement of local people, and poor extension services. Despite these challenges, smallholder tree farming is found to be successful from farmers' perspectives. However, constraints of local food crop cultivation traditions, insecure land tenure, lack of capital, lack of knowledge, lack of technical assistance, and perceived risk of investing in land due to local conflict (in Bangladesh) limit farmers' willingness to adopt this land use alternative. Overcoming these barriers to adoption will require management at a landscape scale, including elements of both segregation and integration of land uses, supported by competent government policies and local communities having sufficiently high social capital. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-06-01

    Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.

  1. The '06 trap trees in '07

    Treesearch

    Andrea C. Anulewicz; Deborah G. McCullough; Therese M. Poland; David Cappaert

    2008-01-01

    To date, use of girdled trap trees remain the most effective method employed by regulatory and resource management agencies for detecting low-density populations of emerald ash borer (EAB), Agrilus planipennis Fairmaire. Locating suitable trees can be difficult, and felling and debarking trap trees is expensive. Alternative options for EAB detection...

  2. DIF Trees: Using Classification Trees to Detect Differential Item Functioning

    ERIC Educational Resources Information Center

    Vaughn, Brandon K.; Wang, Qiu

    2010-01-01

    A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…

  3. The Effect of Defense R&D Expenditures on Military Capability and Technological Spillover

    DTIC Science & Technology

    2013-03-01

    ix List of Figures Page Figure 1. Decision Tree for Sectoring R&D Units...approach, often called sectoring , categorizes R&D activities by funding source, and the functional approach categorizes R&D activities by their objective...economic objectives (defense, and control and care of environment) (OECD, 2002). Figure 1 shows the decision tree for sectoring R&D units and

  4. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters. Overall, the probability of detection of an event with a return period of 10 years is 62%. 44% of all 10-year flood peaks can be detected with a timing error of 2 hours or less. These results indicate that the modeling system can provide useful information about the timing and magnitude of flood events at ungauged sites.

  5. Blood oxygen level dependent magnetic resonance imaging for detecting pathological patterns in lupus nephritis patients: a preliminary study using a decision tree model.

    PubMed

    Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-02-09

    Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.

  6. A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected With an Extended-Spectrum β-Lactamase-Producing Organism.

    PubMed

    Goodman, Katherine E; Lessler, Justin; Cosgrove, Sara E; Harris, Anthony D; Lautenbach, Ebbing; Han, Jennifer H; Milstone, Aaron M; Massey, Colin J; Tamma, Pranita D

    2016-10-01

    Timely identification of extended-spectrum β-lactamase (ESBL) bacteremia can improve clinical outcomes while minimizing unnecessary use of broad-spectrum antibiotics, including carbapenems. However, most clinical microbiology laboratories currently require at least 24 additional hours from the time of microbial genus and species identification to confirm ESBL production. Our objective was to develop a user-friendly decision tree to predict which organisms are ESBL producing, to guide appropriate antibiotic therapy. We included patients ≥18 years of age with bacteremia due to Escherichia coli or Klebsiella species from October 2008 to March 2015 at Johns Hopkins Hospital. Isolates with ceftriaxone minimum inhibitory concentrations ≥2 µg/mL underwent ESBL confirmatory testing. Recursive partitioning was used to generate a decision tree to determine the likelihood that a bacteremic patient was infected with an ESBL producer. Discrimination of the original and cross-validated models was evaluated using receiver operating characteristic curves and by calculation of C-statistics. A total of 1288 patients with bacteremia met eligibility criteria. For 194 patients (15%), bacteremia was due to a confirmed ESBL producer. The final classification tree for predicting ESBL-positive bacteremia included 5 predictors: history of ESBL colonization/infection, chronic indwelling vascular hardware, age ≥43 years, recent hospitalization in an ESBL high-burden region, and ≥6 days of antibiotic exposure in the prior 6 months. The decision tree's positive and negative predictive values were 90.8% and 91.9%, respectively. Our findings suggest that a clinical decision tree can be used to estimate a bacteremic patient's likelihood of infection with ESBL-producing bacteria. Recursive partitioning offers a practical, user-friendly approach for addressing important diagnostic questions. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Ensemble stump classifiers and gene expression signatures in lung cancer.

    PubMed

    Frey, Lewis; Edgerton, Mary; Fisher, Douglas; Levy, Shawn

    2007-01-01

    Microarray data sets for cancer tumor tissue generally have very few samples, each sample having thousands of probes (i.e., continuous variables). The sparsity of samples makes it difficult for machine learning techniques to discover probes relevant to the classification of tumor tissue. By combining data from different platforms (i.e., data sources), data sparsity is reduced, but this typically requires normalizing data from the different platforms, which can be non-trivial. This paper proposes a variant on the idea of ensemble learners to circumvent the need for normalization. To facilitate comprehension we build ensembles of very simple classifiers known as decision stumps--decision trees of one test each. The Ensemble Stump Classifier (ESC) identifies an mRNA signature having three probes and high accuracy for distinguishing between adenocarcinoma and squamous cell carcinoma of the lung across four data sets. In terms of accuracy, ESC outperforms a decision tree classifier on all four data sets, outperforms ensemble decision trees on three data sets, and simple stump classifiers on two data sets.

  8. Evaluation of a Decision Support System for Obstructive Sleep Apnea with Nonlinear Analysis of Respiratory Signals.

    PubMed

    Kaimakamis, Evangelos; Tsara, Venetia; Bratsas, Charalambos; Sichletidis, Lazaros; Karvounis, Charalambos; Maglaveras, Nikolaos

    2016-01-01

    Obstructive Sleep Apnea (OSA) is a common sleep disorder requiring the time/money consuming polysomnography for diagnosis. Alternative methods for initial evaluation are sought. Our aim was the prediction of Apnea-Hypopnea Index (AHI) in patients potentially suffering from OSA based on nonlinear analysis of respiratory biosignals during sleep, a method that is related to the pathophysiology of the disorder. Patients referred to a Sleep Unit (135) underwent full polysomnography. Three nonlinear indices (Largest Lyapunov Exponent, Detrended Fluctuation Analysis and Approximate Entropy) extracted from two biosignals (airflow from a nasal cannula, thoracic movement) and one linear derived from Oxygen saturation provided input to a data mining application with contemporary classification algorithms for the creation of predictive models for AHI. A linear regression model presented a correlation coefficient of 0.77 in predicting AHI. With a cutoff value of AHI = 8, the sensitivity and specificity were 93% and 71.4% in discrimination between patients and normal subjects. The decision tree for the discrimination between patients and normal had sensitivity and specificity of 91% and 60%, respectively. Certain obtained nonlinear values correlated significantly with commonly accepted physiological parameters of people suffering from OSA. We developed a predictive model for the presence/severity of OSA using a simple linear equation and additional decision trees with nonlinear features extracted from 3 respiratory recordings. The accuracy of the methodology is high and the findings provide insight to the underlying pathophysiology of the syndrome. Reliable predictions of OSA are possible using linear and nonlinear indices from only 3 respiratory signals during sleep. The proposed models could lead to a better study of the pathophysiology of OSA and facilitate initial evaluation/follow up of suspected patients OSA utilizing a practical low cost methodology. ClinicalTrials.gov NCT01161381.

  9. Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods

    PubMed Central

    Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable technology to deploy wide-scale Wireless Sensor Networks (WSNs). These networks are usually designed to support convergecast traffic, where all communication paths go through the PAN (Personal Area Network) coordinator. Nevertheless, peer-to-peer communication relationships may be also required for different types of WSN applications. That is the typical case of sensor and actuator networks, where local control loops must be closed using a reduced number of communication hops. The use of communication schemes optimised just for the support of convergecast traffic may result in higher network congestion and in a potentially higher number of communication hops. Within this context, this paper proposes an Alternative-Route Definition (ARounD) communication scheme for WSNs. The underlying idea of ARounD is to setup alternative communication paths between specific source and destination nodes, avoiding congested cluster-tree paths. These alternative paths consider shorter inter-cluster paths, using a set of intermediate nodes to relay messages during their inactive periods in the cluster-tree network. Simulation results show that the ARounD communication scheme can significantly decrease the end-to-end communication delay, when compared to the use of standard cluster-tree communication schemes. Moreover, the ARounD communication scheme is able to reduce the network congestion around the PAN coordinator, enabling the reduction of the number of message drops due to queue overflows in the cluster-tree network. PMID:28481245

  10. Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods.

    PubMed

    Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-05-06

    The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable technology to deploy wide-scale Wireless Sensor Networks (WSNs). These networks are usually designed to support convergecast traffic, where all communication paths go through the PAN (Personal Area Network) coordinator. Nevertheless, peer-to-peer communication relationships may be also required for different types of WSN applications. That is the typical case of sensor and actuator networks, where local control loops must be closed using a reduced number of communication hops. The use of communication schemes optimised just for the support of convergecast traffic may result in higher network congestion and in a potentially higher number of communication hops. Within this context, this paper proposes an Alternative-Route Definition (ARounD) communication scheme for WSNs. The underlying idea of ARounD is to setup alternative communication paths between specific source and destination nodes, avoiding congested cluster-tree paths. These alternative paths consider shorter inter-cluster paths, using a set of intermediate nodes to relay messages during their inactive periods in the cluster-tree network. Simulation results show that the ARounD communication scheme can significantly decrease the end-to-end communication delay, when compared to the use of standard cluster-tree communication schemes. Moreover, the ARounD communication scheme is able to reduce the network congestion around the PAN coordinator, enabling the reduction of the number of message drops due to queue overflows in the cluster-tree network.

  11. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sig Drellack, Lance Prothro

    2007-12-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result ofmore » the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides in situ concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions.« less

  12. Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China

    PubMed Central

    Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin

    2016-01-01

    Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6–12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%–40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities. PMID:27174328

  13. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  14. The risk of disabling, surgery and reoperation in Crohn's disease - A decision tree-based approach to prognosis.

    PubMed

    Dias, Cláudia Camila; Pereira Rodrigues, Pedro; Fernandes, Samuel; Portela, Francisco; Ministro, Paula; Martins, Diana; Sousa, Paula; Lago, Paula; Rosa, Isadora; Correia, Luis; Moura Santos, Paula; Magro, Fernando

    2017-01-01

    Crohn's disease (CD) is a chronic inflammatory bowel disease known to carry a high risk of disabling and many times requiring surgical interventions. This article describes a decision-tree based approach that defines the CD patients' risk or undergoing disabling events, surgical interventions and reoperations, based on clinical and demographic variables. This multicentric study involved 1547 CD patients retrospectively enrolled and divided into two cohorts: a derivation one (80%) and a validation one (20%). Decision trees were built upon applying the CHAIRT algorithm for the selection of variables. Three-level decision trees were built for the risk of disabling and reoperation, whereas the risk of surgery was described in a two-level one. A receiver operating characteristic (ROC) analysis was performed, and the area under the curves (AUC) Was higher than 70% for all outcomes. The defined risk cut-off values show usefulness for the assessed outcomes: risk levels above 75% for disabling had an odds test positivity of 4.06 [3.50-4.71], whereas risk levels below 34% and 19% excluded surgery and reoperation with an odds test negativity of 0.15 [0.09-0.25] and 0.50 [0.24-1.01], respectively. Overall, patients with B2 or B3 phenotype had a higher proportion of disabling disease and surgery, while patients with later introduction of pharmacological therapeutic (1 months after initial surgery) had a higher proportion of reoperation. The decision-tree based approach used in this study, with demographic and clinical variables, has shown to be a valid and useful approach to depict such risks of disabling, surgery and reoperation.

  15. Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China.

    PubMed

    Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin

    2016-05-20

    In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.

  16. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  17. Trees Are Terrific!

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1992-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes a Tree a Tree?," including…

  18. Finding structure in data using multivariate tree boosting

    PubMed Central

    Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.

    2016-01-01

    Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183

  19. Fox Squirrels Match Food Assessment and Cache Effort to Value and Scarcity

    PubMed Central

    Delgado, Mikel M.; Nicholas, Molly; Petrie, Daniel J.; Jacobs, Lucia F.

    2014-01-01

    Scatter hoarders must allocate time to assess items for caching, and to carry and bury each cache. Such decisions should be driven by economic variables, such as the value of the individual food items, the scarcity of these items, competition for food items and risk of pilferage by conspecifics. The fox squirrel, an obligate scatter-hoarder, assesses cacheable food items using two overt movements, head flicks and paw manipulations. These behaviors allow an examination of squirrel decision processes when storing food for winter survival. We measured wild squirrels' time allocations and frequencies of assessment and investment behaviors during periods of food scarcity (summer) and abundance (fall), giving the squirrels a series of 15 items (alternating five hazelnuts and five peanuts). Assessment and investment per cache increased when resource value was higher (hazelnuts) or resources were scarcer (summer), but decreased as scarcity declined (end of sessions). This is the first study to show that assessment behaviors change in response to factors that indicate daily and seasonal resource abundance, and that these factors may interact in complex ways to affect food storing decisions. Food-storing tree squirrels may be a useful and important model species to understand the complex economic decisions made under natural conditions. PMID:24671221

  20. Tools of the Future: How Decision Tree Analysis Will Impact Mission Planning

    NASA Technical Reports Server (NTRS)

    Otterstatter, Matthew R.

    2005-01-01

    The universe is infinitely complex; however, the human mind has a finite capacity. The multitude of possible variables, metrics, and procedures in mission planning are far too many to address exhaustively. This is unfortunate because, in general, considering more possibilities leads to more accurate and more powerful results. To compensate, we can get more insightful results by employing our greatest tool, the computer. The power of the computer will be utilized through a technology that considers every possibility, decision tree analysis. Although decision trees have been used in many other fields, this is innovative for space mission planning. Because this is a new strategy, no existing software is able to completely accommodate all of the requirements. This was determined through extensive research and testing of current technologies. It was necessary to create original software, for which a short-term model was finished this summer. The model was built into Microsoft Excel to take advantage of the familiar graphical interface for user input, computation, and viewing output. Macros were written to automate the process of tree construction, optimization, and presentation. The results are useful and promising. If this tool is successfully implemented in mission planning, our reliance on old-fashioned heuristics, an error-prone shortcut for handling complexity, will be reduced. The computer algorithms involved in decision trees will revolutionize mission planning. The planning will be faster and smarter, leading to optimized missions with the potential for more valuable data.

  1. New paradoxes of risky decision making.

    PubMed

    Birnbaum, Michael H

    2008-04-01

    During the last 25 years, prospect theory and its successor, cumulative prospect theory, replaced expected utility as the dominant descriptive theories of risky decision making. Although these models account for the original Allais paradoxes, 11 new paradoxes show where prospect theories lead to self-contradiction or systematic false predictions. The new findings are consistent with and, in several cases, were predicted in advance by simple "configural weight" models in which probability-consequence branches are weighted by a function that depends on branch probability and ranks of consequences on discrete branches. Although they have some similarities to later models called "rank-dependent utility," configural weight models do not satisfy coalescing, the assumption that branches leading to the same consequence can be combined by adding their probabilities. Nor do they satisfy cancellation, the "independence" assumption that branches common to both alternatives can be removed. The transfer of attention exchange model, with parameters estimated from previous data, correctly predicts results with all 11 new paradoxes. Apparently, people do not frame choices as prospects but, instead, as trees with branches.

  2. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study.

    PubMed

    Shouval, Roni; Labopin, Myriam; Bondi, Ori; Mishan-Shamay, Hila; Shimoni, Avichai; Ciceri, Fabio; Esteve, Jordi; Giebel, Sebastian; Gorin, Norbert C; Schmid, Christoph; Polge, Emmanuelle; Aljurf, Mahmoud; Kroger, Nicolaus; Craddock, Charles; Bacigalupo, Andrea; Cornelissen, Jan J; Baron, Frederic; Unger, Ron; Nagler, Arnon; Mohty, Mohamad

    2015-10-01

    Allogeneic hematopoietic stem-cell transplantation (HSCT) is potentially curative for acute leukemia (AL), but carries considerable risk. Machine learning algorithms, which are part of the data mining (DM) approach, may serve for transplantation-related mortality risk prediction. This work is a retrospective DM study on a cohort of 28,236 adult HSCT recipients from the AL registry of the European Group for Blood and Marrow Transplantation. The primary objective was prediction of overall mortality (OM) at 100 days after HSCT. Secondary objectives were estimation of nonrelapse mortality, leukemia-free survival, and overall survival at 2 years. Donor, recipient, and procedural characteristics were analyzed. The alternating decision tree machine learning algorithm was applied for model development on 70% of the data set and validated on the remaining data. OM prevalence at day 100 was 13.9% (n=3,936). Of the 20 variables considered, 10 were selected by the model for OM prediction, and several interactions were discovered. By using a logistic transformation function, the crude score was transformed into individual probabilities for 100-day OM (range, 3% to 68%). The model's discrimination for the primary objective performed better than the European Group for Blood and Marrow Transplantation score (area under the receiver operating characteristics curve, 0.701 v 0.646; P<.001). Calibration was excellent. Scores assigned were also predictive of secondary objectives. The alternating decision tree model provides a robust tool for risk evaluation of patients with AL before HSCT, and is available online (http://bioinfo.lnx.biu.ac.il/∼bondi/web1.html). It is presented as a continuous probabilistic score for the prediction of day 100 OM, extending prediction to 2 years. The DM method has proved useful for clinical prediction in HSCT. © 2015 by American Society of Clinical Oncology.

  3. Pollution mitigation and carbon sequestration by an urban forest.

    PubMed

    Brack, C L

    2002-01-01

    At the beginning of the 1900s, the Canberra plain was largely treeless. Graziers had carried out extensive clearing of the original trees since the 1820s leaving only scattered remnants and some plantings near homesteads. With the selection of Canberra as the site for the new capital of Australia, extensive tree plantings began in 1911. These trees have delivered a number of benefits, including aesthetic values and the amelioration of climatic extremes. Recently, however, it was considered that the benefits might extend to pollution mitigation and the sequestration of carbon. This paper outlines a case study of the value of the Canberra urban forest with particular reference to pollution mitigation. This study uses a tree inventory, modelling and decision support system developed to collect and use data about trees for tree asset management. The decision support system (DISMUT) was developed to assist in the management of about 400,000 trees planted in Canberra. The size of trees during the 5-year Kyoto Commitment Period was estimated using DISMUT and multiplied by estimates of value per square meter of canopy derived from available literature. The planted trees are estimated to have a combined energy reduction, pollution mitigation and carbon sequestration value of US$20-67 million during the period 2008-2012.

  4. Using real options analysis to support strategic management decisions

    NASA Astrophysics Data System (ADS)

    Kabaivanov, Stanimir; Markovska, Veneta; Milev, Mariyan

    2013-12-01

    Decision making is a complex process that requires taking into consideration multiple heterogeneous sources of uncertainty. Standard valuation and financial analysis techniques often fail to properly account for all these sources of risk as well as for all sources of additional flexibility. In this paper we explore applications of a modified binomial tree method for real options analysis (ROA) in an effort to improve decision making process. Usual cases of use of real options are analyzed with elaborate study on the applications and advantages that company management can derive from their application. A numeric results based on extending simple binomial tree approach for multiple sources of uncertainty are provided to demonstrate the improvement effects on management decisions.

  5. A practical alternative to single tree selection?

    Treesearch

    Gary W. Miller; H. Clay Smith

    1993-01-01

    When landowners want to develop and maintain an uneven-aged tree structure in eastern hardwood stands, single-tree selection often is suggested as the only advisable, long-term partial regeneration harvest method. Single-tree selection is preferred because it provides a means for improving quality and controlling stocking of the residual stand necessary for sustained...

  6. Recovery efficiency of whole-tree harvesting

    Treesearch

    Bryce J. Stokes; William F. Watson

    1988-01-01

    The recovery of total tree biomass and most components of a stand is a practical economic and management alternative to tree-length harvesting. First, the increased utilization of woody biomass provides additional revenues from the site. Second, the removal and utilization of the stems and crowns reduces site preparation costs and makes tree planting easier. Third,...

  7. Improving ensemble decision tree performance using Adaboost and Bagging

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rajib; Siraj, Fadzilah; Sainin, Mohd Shamrie

    2015-12-01

    Ensemble classifier systems are considered as one of the most promising in medical data classification and the performance of deceision tree classifier can be increased by the ensemble method as it is proven to be better than single classifiers. However, in a ensemble settings the performance depends on the selection of suitable base classifier. This research employed two prominent esemble s namely Adaboost and Bagging with base classifiers such as Random Forest, Random Tree, j48, j48grafts and Logistic Model Regression (LMT) that have been selected independently. The empirical study shows that the performance varries when different base classifiers are selected and even some places overfitting issue also been noted. The evidence shows that ensemble decision tree classfiers using Adaboost and Bagging improves the performance of selected medical data sets.

  8. Knowledge Quality Functions for Rule Discovery

    DTIC Science & Technology

    1994-09-01

    Managers in many organizations finding themselves in the possession of large and rapidly growing databases are beginning to suspect the information in their...missing values (Smyth and Goodman, 1992, p. 303). Decision trees "tend to grow very large for realistic applications and are thus difficult to interpret...by humans" (Holsheimer, 1994, p. 42). Decision trees also grow excessively complicated in the presence of noisy databases (Dhar and Tuzhilin, 1993, p

  9. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  10. a Rough Set Decision Tree Based Mlp-Cnn for Very High Resolution Remotely Sensed Image Classification

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.

    2017-09-01

    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  11. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  13. hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm.

    PubMed

    Tayefi, Maryam; Tajfard, Mohammad; Saffar, Sara; Hanachi, Parichehr; Amirabadizadeh, Ali Reza; Esmaeily, Habibollah; Taghipour, Ali; Ferns, Gordon A; Moohebati, Mohsen; Ghayour-Mobarhan, Majid

    2017-04-01

    Coronary heart disease (CHD) is an important public health problem globally. Algorithms incorporating the assessment of clinical biomarkers together with several established traditional risk factors can help clinicians to predict CHD and support clinical decision making with respect to interventions. Decision tree (DT) is a data mining model for extracting hidden knowledge from large databases. We aimed to establish a predictive model for coronary heart disease using a decision tree algorithm. Here we used a dataset of 2346 individuals including 1159 healthy participants and 1187 participant who had undergone coronary angiography (405 participants with negative angiography and 782 participants with positive angiography). We entered 10 variables of a total 12 variables into the DT algorithm (including age, sex, FBG, TG, hs-CRP, TC, HDL, LDL, SBP and DBP). Our model could identify the associated risk factors of CHD with sensitivity, specificity, accuracy of 96%, 87%, 94% and respectively. Serum hs-CRP levels was at top of the tree in our model, following by FBG, gender and age. Our model appears to be an accurate, specific and sensitive model for identifying the presence of CHD, but will require validation in prospective studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Comparison between Decision Tree and Random Forest in Determining the Risk Factors Associated with Type 2 Diabetes.

    PubMed

    Esmaily, Habibollah; Tayefi, Maryam; Doosti, Hassan; Ghayour-Mobarhan, Majid; Nezami, Hossein; Amirabadizadeh, Alireza

    2018-04-24

    We aimed to identify the associated risk factors of type 2 diabetes mellitus (T2DM) using data mining approach, decision tree and random forest techniques using the Mashhad Stroke and Heart Atherosclerotic Disorders (MASHAD) Study program. A cross-sectional study. The MASHAD study started in 2010 and will continue until 2020. Two data mining tools, namely decision trees, and random forests, are used for predicting T2DM when some other characteristics are observed on 9528 subjects recruited from MASHAD database. This paper makes a comparison between these two models in terms of accuracy, sensitivity, specificity and the area under ROC curve. The prevalence rate of T2DM was 14% among these subjects. The decision tree model has 64.9% accuracy, 64.5% sensitivity, 66.8% specificity, and area under the ROC curve measuring 68.6%, while the random forest model has 71.1% accuracy, 71.3% sensitivity, 69.9% specificity, and area under the ROC curve measuring 77.3% respectively. The random forest model, when used with demographic, clinical, and anthropometric and biochemical measurements, can provide a simple tool to identify associated risk factors for type 2 diabetes. Such identification can substantially use for managing the health policy to reduce the number of subjects with T2DM .

  15. Attunement and alignment of people with schizophrenia and their preferred alternative decision-makers: An exploratory pilot study comparing treatment and research decisions.

    PubMed

    Roberts, Laura Weiss; Kim, Jane Paik

    2015-12-01

    Schizophrenia is a serious mental disorder that may affect the decisional capacity, and as a consequence, preferred alternative decision-makers may be engaged to help with clinical care and research-related choices. Ideally, alternative decision-makers will seek to make decisions that fit with the views and preferences of the ill individual. Few data exist, however, comparing the views of alternative decision-makers to those of individuals with schizophrenia. We conducted a written survey with individuals with schizophrenia living in a community setting, and a parallel survey with the person whom the ill individual identified as being a preferred alternative decision-maker. Complete data were obtained on 20 pairs (n = 40, total). Domains queried included (a) burden, happiness, and safety of the ill individual and of his or her family in treatment and research decisions and (b) importance of ethical principles in every day life. Two-sided paired t-tests and graphical summaries were used to compare responses. Individuals with schizophrenia and their linked preferred alternative decision-makers were attuned on four of six aspects of treatment decision-making and on all six aspects of research decision-making that we queried. The preferred alternative decision-makers overall demonstrated attunement to the views of the ill individuals in this small study. Ill individuals and their preferred alternative decision-makers were aligned in their views of ethically-salient aspects of every day life. These novel findings suggest that alternative decision-makers identified by ill individuals may be able to guide choices based on an accurate understanding of the ill individuals' views and values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Environmental justice and factors that influence participation in tree planting programs in Portland, Oregon, U.S

    Treesearch

    Geoffrey H. Donovan; John Mills

    2014-01-01

    Many cities have policies encouraging homeowners to plant trees. For these policies to be effective, it is important to understand what motivates a homeowner’s tree-planting decision. Researchers address this question by identifying variables that influence participation in a tree-planting program in Portland, Oregon, U.S. According to the study, homeowners with street...

  17. Advancing Alternative Analysis: Integration of Decision Science.

    PubMed

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  18. Advancing Alternative Analysis: Integration of Decision Science

    PubMed Central

    Zaunbrecher, Virginia M.; Batteate, Christina M.; Blake, Ann; Carroll, William F.; Corbett, Charles J.; Hansen, Steffen Foss; Lempert, Robert J.; Linkov, Igor; McFadden, Roger; Moran, Kelly D.; Olivetti, Elsa; Ostrom, Nancy K.; Romero, Michelle; Schoenung, Julie M.; Seager, Thomas P.; Sinsheimer, Peter; Thayer, Kristina A.

    2017-01-01

    Background: Decision analysis—a systematic approach to solving complex problems—offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. Objectives: We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. Methods: A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups’ findings. Results: We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. Conclusions: We advance four recommendations: a) engaging the systematic development and evaluation of decision approaches and tools; b) using case studies to advance the integration of decision analysis into alternatives analysis; c) supporting transdisciplinary research; and d) supporting education and outreach efforts. https://doi.org/10.1289/EHP483 PMID:28669940

  19. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    PubMed

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  20. Identification of consensus biomarkers for predicting non-genotoxic hepatocarcinogens

    PubMed Central

    Huang, Shan-Han; Tung, Chun-Wei

    2017-01-01

    The assessment of non-genotoxic hepatocarcinogens (NGHCs) is currently relying on two-year rodent bioassays. Toxicogenomics biomarkers provide a potential alternative method for the prioritization of NGHCs that could be useful for risk assessment. However, previous studies using inconsistently classified chemicals as the training set and a single microarray dataset concluded no consensus biomarkers. In this study, 4 consensus biomarkers of A2m, Ca3, Cxcl1, and Cyp8b1 were identified from four large-scale microarray datasets of the one-day single maximum tolerated dose and a large set of chemicals without inconsistent classifications. Machine learning techniques were subsequently applied to develop prediction models for NGHCs. The final bagging decision tree models were constructed with an average AUC performance of 0.803 for an independent test. A set of 16 chemicals with controversial classifications were reclassified according to the consensus biomarkers. The developed prediction models and identified consensus biomarkers are expected to be potential alternative methods for prioritization of NGHCs for further experimental validation. PMID:28117354

  1. Decision Tree Algorithm-Generated Single-Nucleotide Polymorphism Barcodes of rbcL Genes for 38 Brassicaceae Species Tagging.

    PubMed

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2018-01-01

    DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.

  2. A divide and conquer approach to cope with uncertainty, human health risk, and decision making in contaminant hydrology

    NASA Astrophysics Data System (ADS)

    de Barros, Felipe P. J.; Bolster, Diogo; Sanchez-Vila, Xavier; Nowak, Wolfgang

    2011-05-01

    Assessing health risk in hydrological systems is an interdisciplinary field. It relies on the expertise in the fields of hydrology and public health and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties and variabilities present in hydrological, physiological, and human behavioral parameters. Despite significant theoretical advancements in stochastic hydrology, there is still a dire need to further propagate these concepts to practical problems and to society in general. Following a recent line of work, we use fault trees to address the task of probabilistic risk analysis and to support related decision and management problems. Fault trees allow us to decompose the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural divide and conquer approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance, and stage of analysis. Three differences are highlighted in this paper when compared to previous works: (1) The fault tree proposed here accounts for the uncertainty in both hydrological and health components, (2) system failure within the fault tree is defined in terms of risk being above a threshold value, whereas previous studies that used fault trees used auxiliary events such as exceedance of critical concentration levels, and (3) we introduce a new form of stochastic fault tree that allows us to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.

  3. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling.

    PubMed

    Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I; Kotsia, Anna P; Vakalis, Konstantinos V; Naka, Katerina K; Michalis, Lampros K

    2008-07-01

    A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made.

  4. Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree.

    PubMed

    Liu, Xiaogang; Li, Fusheng; Yang, Qiliang; Wang, Xinle

    2016-07-01

    To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree.

  5. A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: skin irritation.

    PubMed

    Macfarlane, Martin; Jones, Penny; Goebel, Carsten; Dufour, Eric; Rowland, Joanna; Araki, Daisuke; Costabel-Farkas, Margit; Hewitt, Nicola J; Hibatallah, Jalila; Kirst, Annette; McNamee, Pauline; Schellauf, Florian; Scheel, Julia

    2009-07-01

    Evaluation of the skin irritancy and corrosivity potential of an ingredient is a necessity in the safety assessment of cosmetic ingredients. To date, there are two formally validated alternatives to the rabbit Draize test for skin corrosivity in place, namely the rat skin transcutaneous electrical resistance (TER) assay and the Human Skin Model Test using EpiSkin, EpiDerm and SkinEthic reconstructed human epidermal equivalents. For skin irritation, EpiSkin, EpiDerm and SkinEthic are validated as stand-alone test replacements for the rabbit Draize test. Data from these tests are rarely considered in isolation and are evaluated in combination with other factors to establish the overall irritating or corrosive potential of an ingredient. In light of the deadlines established in the Cosmetics Directive for cessation of animal testing for cosmetic ingredients, a COLIPA scientific meeting was held in Brussels on 30th January, 2008 to review the use of alternative approaches and to set up a decision tree approach for their integration into tiered testing strategies for hazard and safety assessment of cosmetic ingredients and their use in products. In conclusion, the safety assessments for skin irritation/corrosion of new chemicals for use in cosmetics can be confidently accomplished using exclusively alternative methods.

  6. Regional height-diameter equations for major tree species of southwest Oregon.

    Treesearch

    H. Temesgen; D.W. Hann; V.J. Monleon

    2006-01-01

    Selected tree height and diameter functions were evaluated for their predictive abilities for major tree species of southwest Oregon. The equations included tree diameter alone, or diameter plus alternative measures of stand density and relative position. Two of the base equations were asymptotic functions, and two were exponential functional forms. The inclusion of...

  7. Above- and belowground responses to tree thinning depend on the treatment of tree debris

    Treesearch

    Suzanne M. Owen; Carolyn Hull Sieg; Catherine A. Gehring; Matthew A. Bowker

    2009-01-01

    Mechanical mastication is increasingly prescribed for wildfire mitigation, yet little is known about the ecological impacts of this fuels treatment. Mastication shreds trees into woodchips as an alternative to tree thinning and burning the resulting slash, which can create soil disturbances that favor exotic plants. Previous research on mastication has not...

  8. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  9. Modelling available crown fuel for Pinus pinaster Ait. stands in the "Cazorla, Segura and Las Villas Natural Park" (Spain).

    PubMed

    Molina, Juan Ramón; Rodríguez y Silva, Francisco; Mérida, Enrique; Herrera, Miguel Ángel

    2014-11-01

    One of the main limiting aspects in the application of crown fire models at landscape scale has been the uncertainty derived to describe canopy fuel stratum. Available crown fuel and canopy bulk density are essential in order to simulate crown fire behaviour and are of potential use in the evaluation of silvicultural treatments. Currently, the more accurate approach to estimate these parameters is to develop allometric models from common stand inventory data. In this sense, maritime pine (Pinus pinaster Aiton) trees were destructively sampled in the South of the Iberian Peninsula, covering natural and artificial stands. Crown fine fuel was separated into size classes and allometric equations that estimate crown fuel load by biomass fractions were developed. Available crown fuel was determined according to the fuel load differences between un-burned and burned trees with similar characteristics. Taking our destructive post-fire inventory into account, available crown fuel was estimated as the sum of needles biomass, 87.63% of the twigs biomass and 62.79% of the fine branches biomass. In spite of the differences between natural and artificial stands, generic models explained 82% (needles biomass), 89% (crown fuel), 92% (available crown fuel) and 94% (canopy bulk density) of the observed variation. Inclusion of the fitted models in fire management decision-making can provide a decision support system for assessing the potential crown fire of different silvicultural alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Re-Construction of Reference Population and Generating Weights by Decision Tree

    DTIC Science & Technology

    2017-07-21

    2017 Claflin University Orangeburg, SC 29115 DEFENSE EQUAL OPPORTUNITY MANAGEMENT INSTITUTE RESEARCH, DEVELOPMENT, AND STRATEGIC...Original Dataset 32 List of Figures in Appendix B Figure 1: Flow and Components of Project 20 Figure 2: Decision Tree 31 Figure 3: Effects of Weight...can compare the sample data. The dataset of this project has the reference population on unit level for group and gender, which is in red-dotted box

  11. Method and apparatus for detecting a desired behavior in digital image data

    DOEpatents

    Kegelmeyer, Jr., W. Philip

    1997-01-01

    A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spatially filtered to enforce local consensus among neighboring pixels and the spatially filtered image is output.

  12. Method and apparatus for detecting a desired behavior in digital image data

    DOEpatents

    Kegelmeyer, Jr., W. Philip

    1997-01-01

    A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spacially filtered to enforce local consensus among neighboring pixels and the spacially filtered image is output.

  13. Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China.

    PubMed

    Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying

    2016-11-09

    Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities-for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals-were the main external sources of a large amount of Hg in the farmland soil.

  14. A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements

    PubMed Central

    Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338

  15. Identifying Risk and Protective Factors in Recidivist Juvenile Offenders: A Decision Tree Approach

    PubMed Central

    Ortega-Campos, Elena; García-García, Juan; Gil-Fenoy, Maria José; Zaldívar-Basurto, Flor

    2016-01-01

    Research on juvenile justice aims to identify profiles of risk and protective factors in juvenile offenders. This paper presents a study of profiles of risk factors that influence young offenders toward committing sanctionable antisocial behavior (S-ASB). Decision tree analysis is used as a multivariate approach to the phenomenon of repeated sanctionable antisocial behavior in juvenile offenders in Spain. The study sample was made up of the set of juveniles who were charged in a court case in the Juvenile Court of Almeria (Spain). The period of study of recidivism was two years from the baseline. The object of study is presented, through the implementation of a decision tree. Two profiles of risk and protective factors are found. Risk factors associated with higher rates of recidivism are antisocial peers, age at baseline S-ASB, problems in school and criminality in family members. PMID:27611313

  16. Circum-Arctic petroleum systems identified using decision-tree chemometrics

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.; Gautier, D.L.

    2007-01-01

    Source- and age-related biomarker and isotopic data were measured for more than 1000 crude oil samples from wells and seeps collected above approximately 55??N latitude. A unique, multitiered chemometric (multivariate statistical) decision tree was created that allowed automated classification of 31 genetically distinct circumArctic oil families based on a training set of 622 oil samples. The method, which we call decision-tree chemometrics, uses principal components analysis and multiple tiers of K-nearest neighbor and SIMCA (soft independent modeling of class analogy) models to classify and assign confidence limits for newly acquired oil samples and source rock extracts. Geochemical data for each oil sample were also used to infer the age, lithology, organic matter input, depositional environment, and identity of its source rock. These results demonstrate the value of large petroleum databases where all samples were analyzed using the same procedures and instrumentation. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  17. Three-dimensional object recognition using similar triangles and decision trees

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.

  18. Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China

    PubMed Central

    Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying

    2016-01-01

    Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities—for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals—were the main external sources of a large amount of Hg in the farmland soil. PMID:27834884

  19. A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements.

    PubMed

    Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.

  20. Health economic evaluation: important principles and methodology.

    PubMed

    Rudmik, Luke; Drummond, Michael

    2013-06-01

    To discuss health economic evaluation and improve the understanding of common methodology. This article discusses the methodology for the following types of economic evaluations: cost-minimization, cost-effectiveness, cost-utility, cost-benefit, and economic modeling. Topics include health-state utility measures, the quality-adjusted life year (QALY), uncertainty analysis, discounting, decision tree analysis, and Markov modeling. Economic evaluation is the comparative analysis of alternative courses of action in terms of both their costs and consequences. With increasing health care expenditure and limited resources, it is important for physicians to consider the economic impact of their interventions. Understanding common methodology involved in health economic evaluation will improve critical appraisal of the literature and optimize future economic evaluations. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Tree value system: users guide.

    Treesearch

    J.K. Ayer Sachet; D.G. Briggs; R.D. Fight

    1989-01-01

    This paper instructs resource analysts on use of the Tree Value System (TREEVAL). TREEVAL is a microcomputer system of programs for calculating tree or stand values and volumes based on predicted product recovery. Designed for analyzing silvicultural decisions, the system can also be used for appraisals and for evaluating log bucking. The system calculates results...

  2. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony.

    PubMed

    Wehe, André; Bansal, Mukul S; Burleigh, J Gordon; Eulenstein, Oliver

    2008-07-01

    DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree

  3. A decision support tool for identifying abuse of controlled substances by ForwardHealth Medicaid members.

    PubMed

    Mailloux, Allan T; Cummings, Stephen W; Mugdh, Mrinal

    2010-01-01

    Our objective was to use Wisconsin's Medicaid Evaluation and Decision Support (MEDS) data warehouse to develop and validate a decision support tool (DST) that (1) identifies Wisconsin Medicaid fee-for-service recipients who are abusing controlled substances, (2) effectively replicates clinical pharmacist recommendations for interventions intended to curb abuse of physician and pharmacy services, and (3) automates data extraction, profile generation and tracking of recommendations and interventions. From pharmacist manual reviews of medication profiles, seven measures of overutilization of controlled substances were developed, including (1-2) 6-month and 2-month "shopping" scores, (3-4) 6-month and 2-month forgery scores, (5) duplicate/same day prescriptions, (6) count of controlled substance claims, and the (7) shopping 6-month score for the individual therapeutic class with the highest score. The pattern analysis logic for the measures was encoded into SQL and applied to the medication profiles of 190 recipients who had already undergone manual review. The scores for each measure and numbers of providers were analyzed by exhaustive chi-squared automatic interaction detection (CHAID) to determine significant thresholds and combinations of predictors of pharmacist recommendations, resulting in a decision tree to classify recipients by pharmacist recommendations. The overall correct classification rate of the decision tree was 95.3%, with a 2.4% false positive rate and 4.0% false negative rate for lock-in versus prescriber-alert letter recommendations. Measures used by the decision tree include the 2-month and 6-month shopping scores, and the number of pharmacies and prescribers. The number of pharmacies was the best predictor of abuse of controlled substances. When a Medicaid recipient receives prescriptions for controlled substances at 8 or more pharmacies, the likelihood of a lock-in recommendation is 90%. The availability of the Wisconsin MEDS data warehouse has enabled development and application of a decision tree for detecting recipient fraud and abuse of controlled substance medications. Using standard pharmacy claims data, the decision tree effectively replicates pharmacist manual review recommendations. The DST has automated extraction and evaluation of pharmacy claims data for creating recommendations for guiding pharmacists in the selection of profiles for manual review. The DST is now the primary method used by the Wisconsin Medicaid program to detect fraud and abuse of physician and pharmacy services committed by recipients.

  4. A decision support system using combined-classifier for high-speed data stream in smart grid

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun

    2016-11-01

    Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.

  5. Species trees for the tree swallows (Genus Tachycineta): an alternative phylogenetic hypothesis to the mitochondrial gene tree.

    PubMed

    Dor, Roi; Carling, Matthew D; Lovette, Irby J; Sheldon, Frederick H; Winkler, David W

    2012-10-01

    The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Resource Limitation Issues In Real-Time Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Green, Peter E.

    1986-03-01

    This paper examines resource limitation problems that can occur in embedded AI systems which have to run in real-time. It does this by examining two case studies. The first is a system which acoustically tracks low-flying aircraft and has the problem of interpreting a high volume of often ambiguous input data to produce a model of the system's external world. The second is a robotics problem in which the controller for a robot arm has to dynamically plan the order in which to pick up pieces from a conveyer belt and sort them into bins. In this case the system starts with a continuously changing model of its environment and has to select which action to perform next. This latter case emphasizes the issues in designing a system which must operate in an uncertain and rapidly changing environment. The first system uses a distributed HEARSAY methodology running on multiple processors. It is shown, in this case, how the com-binatorial growth of possible interpretation of the input data can require large and unpredictable amounts of computer resources for data interpretation. Techniques are presented which achieve real-time operation by limiting the combinatorial growth of alternate hypotheses and processing those hypotheses that are most likely to lead to meaningful interpretation of the input data. The second system uses a decision tree approach to generate and evaluate possible plans of action. It is shown how the combina-torial growth of possible alternate plans can, as in the previous case, require large and unpredictable amounts of computer time to evalu-ate and select from amongst the alternative. The use of approximate decisions to limit the amount of computer time needed is discussed. The use of concept of using incremental evidence is then introduced and it is shown how this can be used as the basis of systems that can combine heuristic and approximate evidence in making real-time decisions.

  7. [Cost effectiveness and budget impact analysis of inhaled nitric oxide in a neonatal unit from the perspective of the public health system].

    PubMed

    Kilchemmann Fuentes, Carlos; Vallejos Vallejos, Carlos; Román Navarro, Andrés

    Inhaled nitric oxide (iNO) is currently the first-line therapy in severe hypoxaemic respiratory failure of the newborn. Most of regional neonatal centres in Chile do not have this therapeutic alternative. To determine the cost effectiveness of inhaled nitric oxide in the treatment of respiratory failure associated with pulmonary hypertension of the newborn compared to the usual care, including the transfer to a more complex unit. A clinical decision tree was designed from the perspective of Chilean Public Health Service. Incremental cost effectiveness rates (ICER) were calculated, deterministic sensitivity analysis was performed, and probabilistic budget impact was estimated using: TreeAge Pro Healthcare 2014 software. The iNO option leads to an increase in mean cost of $ 11.7 million Chilean pesos (€15,000) per patient treated, with an ICER compared with the usual care of $23 million pesos (€30,000) in case of death or ECMO avoided. By sensitising the results by incidence, it was found that from 7 cases and upwards treated annually, inhaled nitric oxide is less costly than the transfer to a more complex unit. From the perspective of a Chilean regional hospital, incorporating inhaled nitric oxide into the management of neonatal respiratory failure is the optimal alternative in most scenarios. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Visual preference and ecological assessments for designed alternative brownfield rehabilitations.

    PubMed

    Lafortezza, Raffaele; Corry, Robert C; Sanesi, Giovanni; Brown, Robert D

    2008-11-01

    This paper describes an integrative method for quantifying, analyzing, and comparing the effects of alternative rehabilitation approaches with visual preference. The method was applied to a portion of a major industrial area located in southern Italy. Four alternative approaches to rehabilitation (alternative designs) were developed and analyzed. The scenarios consisted of the cleanup of the brownfields plus: (1) the addition of ground cover species; (2) the addition of ground cover species and a few trees randomly distributed; (3) the addition of ground cover species and a few trees in small groups; and (4) the addition of ground cover species and several trees in large groups. The approaches were analyzed and compared to the baseline condition through the use of cost-surface modeling (CSM) and visual preference assessment (VPA). Statistical results showed that alternatives that were more ecologically functional for forest bird species dispersal were also more visually preferable. Some differences were identified based on user groups and location of residence. The results of the study are used to identify implications for enhancing both ecological attributes and visual preferences of rehabilitating landscapes through planning and design.

  9. 76 FR 5396 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Rising Tree Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ...] Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Rising Tree Wind Farm... on issues and alternatives related to the Rising Tree Wind Farm Draft EIS/EIR and possible CDCA PA by...-megawatt Rising Tree Wind Farm. The proposed project is approximately three miles west of the town of...

  10. Nondestructive detection of decay in living trees

    Treesearch

    Bertil Larsson; Bengt Bengtsson; Mats Gustaffson

    2004-01-01

    We used a four-point resistivity method to detect wood decay in living trees. low-frequency alternating current was applied to the stem and the induced voltage measured between two points along the stem. The effective resistivity of the stem was estimated based on stem cross-sectional area. A comparison within a group of trees showed that trees with butt rot had an...

  11. Clustering and group selection of multiple criteria alternatives with application to space-based networks.

    PubMed

    Malakooti, Behnam; Yang, Ziyong

    2004-02-01

    In many real-world problems, the range of consequences of different alternatives are considerably different. In addition, sometimes, selection of a group of alternatives (instead of only one best alternative) is necessary. Traditional decision making approaches treat the set of alternatives with the same method of analysis and selection. In this paper, we propose clustering alternatives into different groups so that different methods of analysis, selection, and implementation for each group can be applied. As an example, consider the selection of a group of functions (or tasks) to be processed by a group of processors. The set of tasks can be grouped according to their similar criteria, and hence, each cluster of tasks to be processed by a processor. The selection of the best alternative for each clustered group can be performed using existing methods; however, the process of selecting groups is different than the process of selecting alternatives within a group. We develop theories and procedures for clustering discrete multiple criteria alternatives. We also demonstrate how the set of alternatives is clustered into mutually exclusive groups based on 1) similar features among alternatives; 2) ideal (or most representative) alternatives given by the decision maker; and 3) other preferential information of the decision maker. The clustering of multiple criteria alternatives also has the following advantages. 1) It decreases the set of alternatives to be considered by the decision maker (for example, different decision makers are assigned to different groups of alternatives). 2) It decreases the number of criteria. 3) It may provide a different approach for analyzing multiple decision makers problems. Each decision maker may cluster alternatives differently, and hence, clustering of alternatives may provide a basis for negotiation. The developed approach is applicable for solving a class of telecommunication networks problems where a set of objects (such as routers, processors, or intelligent autonomous vehicles) are to be clustered into similar groups. Objects are clustered based on several criteria and the decision maker's preferences.

  12. Advanced Subspace Techniques for Modeling Channel and Session Variability in a Speaker Recognition System

    DTIC Science & Technology

    2012-03-01

    with each SVM discriminating between a pair of the N total speakers in the data set. The (( + 1))/2 classifiers then vote on the final...classification of a test sample. The Random Forest classifier is an ensemble classifier that votes amongst decision trees generated with each node using...Forest vote , and the effects of overtraining will be mitigated by the fact that each decision tree is overtrained differently (due to the random

  13. GLOBAL WARMING MITIGATION POTENTIAL OF THREE TREE PLANTATION SCENARIIOS

    EPA Science Inventory

    The report gives results of an analysis of three alternative uses of forests in the U.S. to reduce atmospheric carbon dioxide (CO2)concentrations: (1) planting trees with no harvesting, (2) traditional forestry, and (3) short-rotation intensive culture of trees for biomass. ncrea...

  14. Using Decision Trees for Estimating Mode Choice of Trips in Buca-Izmir

    NASA Astrophysics Data System (ADS)

    Oral, L. O.; Tecim, V.

    2013-05-01

    Decision makers develop transportation plans and models for providing sustainable transport systems in urban areas. Mode Choice is one of the stages in transportation modelling. Data mining techniques can discover factors affecting the mode choice. These techniques can be applied with knowledge process approach. In this study a data mining process model is applied to determine the factors affecting the mode choice with decision trees techniques by considering individual trip behaviours from household survey data collected within Izmir Transportation Master Plan. From this perspective transport mode choice problem is solved on a case in district of Buca-Izmir, Turkey with CRISP-DM knowledge process model.

  15. Interacting with mobile devices by fusion eye and hand gestures recognition systems based on decision tree approach

    NASA Astrophysics Data System (ADS)

    Elleuch, Hanene; Wali, Ali; Samet, Anis; Alimi, Adel M.

    2017-03-01

    Two systems of eyes and hand gestures recognition are used to control mobile devices. Based on a real-time video streaming captured from the device's camera, the first system recognizes the motion of user's eyes and the second one detects the static hand gestures. To avoid any confusion between natural and intentional movements we developed a system to fuse the decision coming from eyes and hands gesture recognition systems. The phase of fusion was based on decision tree approach. We conducted a study on 5 volunteers and the results that our system is robust and competitive.

  16. A dynamic fault tree model of a propulsion system

    NASA Technical Reports Server (NTRS)

    Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila

    2006-01-01

    We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.

  17. Including public-health benefits of trees in urban-forestry decision making

    Treesearch

    Geoffrey H. Donovan

    2017-01-01

    Research demonstrating the biophysical benefits of urban trees are often used to justify investments in urban forestry. Far less emphasis, however, is placed on the non-bio-physical benefits such as improvements in public health. Indeed, the public-health benefits of trees may be significantly larger than the biophysical benefits, and, therefore, failure to account for...

  18. Goal Programming: A New Tool for the Christmas Tree Industry

    Treesearch

    Bruce G. Hansen

    1977-01-01

    Goal programing (GP) can be useful for decision making in the natural Christmas tree industry. Its usefulness is demonstrated through an analysis of a hypothetical problem in which two potential growers decide how to use 10 acres in growing Christmas trees. Though the physical settings are identical, distinct differences between their goals significantly influence the...

  19. Lessons learned from Applications of a Decision Tree for Confronting Climate Change Uncertainty - the Short Term and the Long Term

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Wi, S.; Bonzanigo, L.; Taner, M. U.; Rodriguez, D.; Garcia, L.; Brown, C.

    2016-12-01

    The Decision Tree for Confronting Climate Change Uncertainty is a hierarchical, staged framework for accomplishing climate change risk management in water resources system investments. Since its development for the World Bank Water Group two years ago, the framework has been applied to pilot demonstration projects in Nepal (hydropower generation), Mexico (water supply), Kenya (multipurpose reservoir operation), and Indonesia (flood risks to dam infrastructure). An important finding of the Decision Tree demonstration projects has been the need to present the risks/opportunities of climate change to stakeholders and investors in proportion to risks/opportunities and hazards of other kinds. This presentation will provide an overview of tools and techniques used to quantify risks/opportunities to each of the project types listed above, with special attention to those found most useful for exploration of the risk space. Careful exploration of the risk/opportunity space shows that some interventions would be better taken now, whereas risks/opportunities of other types would be better instituted incrementally in order to maintain reversibility and flexibility. A number of factors contribute to the robustness/flexibility tradeoff: available capital, magnitude and imminence of potential risk/opportunity, modular (or not) character of investment, and risk aversion of the decision maker, among others. Finally, in each case, nuance was required in the translation of Decision Tree findings into actionable policy recommendations. Though the narrative of stakeholder solicitation, engagement, and ultimate partnership is unique to each case, summary lessons are available from the portfolio that can serve as a guideline to the community of climate change risk managers.

  20. Decision tree analysis of treatment strategies for mild and moderate cases of clinical mastitis occurring in early lactation.

    PubMed

    Pinzón-Sánchez, C; Cabrera, V E; Ruegg, P L

    2011-04-01

    The objective of this study was to develop a decision tree to evaluate the economic impact of different durations of intramammary treatment for the first case of mild or moderate clinical mastitis (CM) occurring in early lactation with various scenarios of pathogen distributions and use of on-farm culture. The tree included 2 decision and 3 probability events. The first decision evaluated use of on-farm culture (OFC; 2 programs using OFC and 1 not using OFC) and the second decision evaluated treatment strategies (no intramammary antimicrobials or antimicrobials administered for 2, 5, or 8 d). The tree included probabilities for the distribution of etiologies (gram-positive, gram-negative, or no growth), bacteriological cure, and recurrence. The economic consequences of mastitis included costs of diagnosis and initial treatment, additional treatments, labor, discarded milk, milk production losses due to clinical and subclinical mastitis, culling, and transmission of infection to other cows (only for CM caused by Staphylococcus aureus). Pathogen-specific estimates for bacteriological cure and milk losses were used. The economically optimal path for several scenarios was determined by comparison of expected monetary values. For most scenarios, the optimal economic strategy was to treat CM caused by gram-positive pathogens for 2 d and to avoid antimicrobials for CM cases caused by gram-negative pathogens or when no pathogen was recovered. Use of extended intramammary antimicrobial therapy (5 or 8 d) resulted in the least expected monetary values. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Binary Decision Trees for Preoperative Periapical Cyst Screening Using Cone-beam Computed Tomography.

    PubMed

    Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa

    2017-03-01

    Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.

  2. Rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems in the presence of trees.

    PubMed

    Scholz, Miklas; Uzomah, Vincent C

    2013-08-01

    The retrofitting of sustainable drainage systems (SuDS) such as permeable pavements is currently undertaken ad hoc using expert experience supported by minimal guidance based predominantly on hard engineering variables. There is a lack of practical decision support tools useful for a rapid assessment of the potential of ecosystem services when retrofitting permeable pavements in urban areas that either feature existing trees or should be planted with trees in the near future. Thus the aim of this paper is to develop an innovative rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems close to trees. This unique tool proposes the retrofitting of permeable pavements that obtained the highest ecosystem service score for a specific urban site enhanced by the presence of trees. This approach is based on a novel ecosystem service philosophy adapted to permeable pavements rather than on traditional engineering judgement associated with variables based on quick community and environment assessments. For an example case study area such as Greater Manchester, which was dominated by Sycamore and Common Lime, a comparison with the traditional approach of determining community and environment variables indicates that permeable pavements are generally a preferred SuDS option. Permeable pavements combined with urban trees received relatively high scores, because of their great potential impact in terms of water and air quality improvement, and flood control, respectively. The outcomes of this paper are likely to lead to more combined permeable pavement and tree systems in the urban landscape, which are beneficial for humans and the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elter, M.; Schulz-Wendtland, R.; Wittenberg, T.

    2007-11-15

    Mammography is the most effective method for breast cancer screening available today. However, the low positive predictive value of breast biopsy resulting from mammogram interpretation leads to approximately 70% unnecessary biopsies with benign outcomes. To reduce the high number of unnecessary breast biopsies, several computer-aided diagnosis (CAD) systems have been proposed in the last several years. These systems help physicians in their decision to perform a breast biopsy on a suspicious lesion seen in a mammogram or to perform a short term follow-up examination instead. We present two novel CAD approaches that both emphasize an intelligible decision process to predictmore » breast biopsy outcomes from BI-RADS findings. An intelligible reasoning process is an important requirement for the acceptance of CAD systems by physicians. The first approach induces a global model based on decison-tree learning. The second approach is based on case-based reasoning and applies an entropic similarity measure. We have evaluated the performance of both CAD approaches on two large publicly available mammography reference databases using receiver operating characteristic (ROC) analysis, bootstrap sampling, and the ANOVA statistical significance test. Both approaches outperform the diagnosis decisions of the physicians. Hence, both systems have the potential to reduce the number of unnecessary breast biopsies in clinical practice. A comparison of the performance of the proposed decision tree and CBR approaches with a state of the art approach based on artificial neural networks (ANN) shows that the CBR approach performs slightly better than the ANN approach, which in turn results in slightly better performance than the decision-tree approach. The differences are statistically significant (p value <0.001). On 2100 masses extracted from the DDSM database, the CRB approach for example resulted in an area under the ROC curve of A(z)=0.89{+-}0.01, the decision-tree approach in A(z)=0.87{+-}0.01, and the ANN approach in A(z)=0.88{+-}0.01.« less

  4. Analyzing and synthesizing phylogenies using tree alignment graphs.

    PubMed

    Smith, Stephen A; Brown, Joseph W; Hinchliff, Cody E

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.

  5. Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs

    PubMed Central

    Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118

  6. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the reservoir life.

  7. Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining.

    PubMed

    Habibi, Shafi; Ahmadi, Maryam; Alizadeh, Somayeh

    2015-03-18

    The aim of this study was to examine a predictive model using features related to the diabetes type 2 risk factors. The data were obtained from a database in a diabetes control system in Tabriz, Iran. The data included all people referred for diabetes screening between 2009 and 2011. The features considered as "Inputs" were: age, sex, systolic and diastolic blood pressure, family history of diabetes, and body mass index (BMI). Moreover, we used diagnosis as "Class". We applied the "Decision Tree" technique and "J48" algorithm in the WEKA (3.6.10 version) software to develop the model. After data preprocessing and preparation, we used 22,398 records for data mining. The model precision to identify patients was 0.717. The age factor was placed in the root node of the tree as a result of higher information gain. The ROC curve indicates the model function in identification of patients and those individuals who are healthy. The curve indicates high capability of the model, especially in identification of the healthy persons. We developed a model using the decision tree for screening T2DM which did not require laboratory tests for T2DM diagnosis.

  8. Weed suppression by grasses for orchard floor management

    USDA-ARS?s Scientific Manuscript database

    Fruit trees in orchards of the mid-Atlantic region of the U.S. are often planted in vegetation-free rows alternating with grass travel alleys. The tree rows can be maintained vegetation-free by herbicides or tillage, but soil degradation or tree injury can result. Grass that is managed to suppress...

  9. Weed suppression by grasses for orchard floor management

    USDA-ARS?s Scientific Manuscript database

    Fruit trees in orchards of the mid-Atlantic region are often planted in vegetation-free rows alternating with grass travel alleys. The tree rows can be maintained vegetation-free by herbicides or tillage but soil degradation or tree injury can result from these practices. Grasses that suppress wee...

  10. Predicting the disease of Alzheimer with SNP biomarkers and clinical data using data mining classification approach: decision tree.

    PubMed

    Erdoğan, Onur; Aydin Son, Yeşim

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.

  11. Initial response to understory plant diversity and overstory tree diameter growth to a green tree retention harvest

    Treesearch

    Malcolm North; Jiquan Chen; Gordon Smith; Lucy Krakowlak; Jerry Franklin

    1996-01-01

    The increasing use of harvest techniques other than clearcutting in forests west of the Cascade mountains has created an urgent need to understand the effects of these practices on ecosystem species composition and structure. One common alternative, "green tree retention" (GTR), leaves some live trees on a harvest site to more closely mimic a moderate-...

  12. Simulated cavity tree dynamics under alternative timber harvest regimes

    Treesearch

    Zhaofei Fan; Stephen R Shifley; Frank R Thompson; David R Larsen

    2004-01-01

    We modeled cavity tree abundance on a landscape as a function of forest stand age classes and as a function of aggregate stand size classes.We explored the impact of five timber harvest regimes on cavity tree abundance on a 3261 ha landscape in southeast Missouri, USA, by linking the stand level cavity tree distribution model to the landscape age structure simulated by...

  13. Pricing and reimbursement frameworks in Central Eastern Europe: a decision tool to support choices.

    PubMed

    Kolasa, Katarzyna; Kalo, Zoltan; Hornby, Edward

    2015-02-01

    Given limited financial resources in the Central Eastern European (CEE) region, challenges in obtaining access to innovative medical technologies are formidable. The objective of this research was to develop a decision tree that supports decision makers and drug manufacturers from CEE region in their search for optimal innovative pricing and reimbursement scheme (IPRSs). A systematic literature review was performed to search for published IPRSs, and then ten experts from the CEE region were interviewed to ascertain their opinions on these schemes. In total, 33 articles representing 46 unique IPRSs were analyzed. Based on our literature review and subsequent expert input, key decision nodes and branches of the decision tree were developed. The results indicate that outcome-based schemes are better suited to deal with uncertainties surrounding cost effectiveness, while non-outcome-based schemes are more appropriate for pricing and budget impact challenges.

  14. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    NASA Astrophysics Data System (ADS)

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.

    2014-11-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.

  15. Fuzzy sets, rough sets, and modeling evidence: Theory and Application. A Dempster-Shafer based approach to compromise decision making with multiattributes applied to product selection

    NASA Technical Reports Server (NTRS)

    Dekorvin, Andre

    1992-01-01

    The Dempster-Shafer theory of evidence is applied to a multiattribute decision making problem whereby the decision maker (DM) must compromise with available alternatives, none of which exactly satisfies his ideal. The decision mechanism is constrained by the uncertainty inherent in the determination of the relative importance of each attribute element and the classification of existing alternatives. The classification of alternatives is addressed through expert evaluation of the degree to which each element is contained in each available alternative. The relative importance of each attribute element is determined through pairwise comparisons of the elements by the decision maker and implementation of a ratio scale quantification method. Then the 'belief' and 'plausibility' that an alternative will satisfy the decision maker's ideal are calculated and combined to rank order the available alternatives. Application to the problem of selecting computer software is given.

  16. A systematic review of the quality of economic models comparing thrombosis inhibitors in patients with acute coronary syndrome undergoing percutaneous coronary intervention.

    PubMed

    Hatz, Maximilian H M; Leidl, Reiner; Yates, Nichola A; Stollenwerk, Björn

    2014-04-01

    Thrombosis inhibitors can be used to treat acute coronary syndromes (ACS). However, there are various alternative treatment strategies, of which some have been compared using health economic decision models. To assess the quality of health economic decision models comparing thrombosis inhibitors in patients with ACS undergoing percutaneous coronary intervention, and to identify areas for quality improvement. The literature databases MEDLINE, EMBASE, EconLit, National Health Service Economic Evaluation Database (NHS EED), Database of Abstracts of Reviews of Effects (DARE) and Health Technology Assessment (HTA). A review of the quality of health economic decision models was conducted by two independent reviewers, using the Philips checklist. Twenty-one relevant studies were identified. Differences were apparent regarding the model type (six decision trees, four Markov models, eight combinations, three undefined models), the model structure (types of events, Markov states) and the incorporation of data (efficacy, cost and utility data). Critical issues were the absence of particular events (e.g. thrombocytopenia, stroke) and questionable usage of utility values within some studies. As we restricted our search to health economic decision models comparing thrombosis inhibitors, interesting aspects related to the quality of studies of adjacent medical areas that compared stents or procedures could have been missed. This review identified areas where recommendations are indicated regarding the quality of future ACS decision models. For example, all critical events and relevant treatment options should be included. Models also need to allow for changing event probabilities to correctly reflect ACS and to incorporate appropriate, age-specific utility values and decrements when conducting cost-utility analyses.

  17. Development and Validation of a Primary Care-Based Family Health History and Decision Support Program (MeTree)

    PubMed Central

    Orlando, Lori A.; Buchanan, Adam H.; Hahn, Susan E.; Christianson, Carol A.; Powell, Karen P.; Skinner, Celette Sugg; Chesnut, Blair; Blach, Colette; Due, Barbara; Ginsburg, Geoffrey S.; Henrich, Vincent C.

    2016-01-01

    INTRODUCTION Family health history is a strong predictor of disease risk. To reduce the morbidity and mortality of many chronic diseases, risk-stratified evidence-based guidelines strongly encourage the collection and synthesis of family health history to guide selection of primary prevention strategies. However, the collection and synthesis of such information is not well integrated into clinical practice. To address barriers to collection and use of family health histories, the Genomedical Connection developed and validated MeTree, a Web-based, patient-facing family health history collection and clinical decision support tool. MeTree is designed for integration into primary care practices as part of the genomic medicine model for primary care. METHODS We describe the guiding principles, operational characteristics, algorithm development, and coding used to develop MeTree. Validation was performed through stakeholder cognitive interviewing, a genetic counseling pilot program, and clinical practice pilot programs in 2 community-based primary care clinics. RESULTS Stakeholder feedback resulted in changes to MeTree’s interface and changes to the phrasing of clinical decision support documents. The pilot studies resulted in the identification and correction of coding errors and the reformatting of clinical decision support documents. MeTree’s strengths in comparison with other tools are its seamless integration into clinical practice and its provision of action-oriented recommendations guided by providers’ needs. LIMITATIONS The tool was validated in a small cohort. CONCLUSION MeTree can be integrated into primary care practices to help providers collect and synthesize family health history information from patients with the goal of improving adherence to risk-stratified evidence-based guidelines. PMID:24044145

  18. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction.

    PubMed

    Kamphuis, C; Mollenhorst, H; Heesterbeek, J A P; Hogeveen, H

    2010-08-01

    The objective was to develop and validate a clinical mastitis (CM) detection model by means of decision-tree induction. For farmers milking with an automatic milking system (AMS), it is desirable that the detection model has a high level of sensitivity (Se), especially for more severe cases of CM, at a very high specificity (Sp). In addition, an alert for CM should be generated preferably at the quarter milking (QM) at which the CM infection is visible for the first time. Data were collected from 9 Dutch dairy herds milking automatically during a 2.5-yr period. Data included sensor data (electrical conductivity, color, and yield) at the QM level and visual observations of quarters with CM recorded by the farmers. Visual observations of quarters with CM were combined with sensor data of the most recent automatic milking recorded for that same quarter, within a 24-h time window before the visual assessment time. Sensor data of 3.5 million QM were collected, of which 348 QM were combined with a CM observation. Data were divided into a training set, including two-thirds of all data, and a test set. Cows in the training set were not included in the test set and vice versa. A decision-tree model was trained using only clear examples of healthy (n=24,717) or diseased (n=243) QM. The model was tested on 105 QM with CM and a random sample of 50,000 QM without CM. While keeping the Se at a level comparable to that of models currently used by AMS, the decision-tree model was able to decrease the number of false-positive alerts by more than 50%. At an Sp of 99%, 40% of the CM cases were detected. Sixty-four percent of the severe CM cases were detected and only 12.5% of the CM that were scored as watery milk. The Se increased considerably from 40% to 66.7% when the time window increased from less than 24h before the CM observation, to a time window from 24h before to 24h after the CM observation. Even at very wide time windows, however, it was impossible to reach an Se of 100%. This indicates the inability to detect all CM cases based on sensor data alone. Sensitivity levels varied largely when the decision tree was validated per herd. This trend was confirmed when decision trees were trained using data from 8 herds and tested on data from the ninth herd. This indicates that when using the decision tree as a generic CM detection model in practice, some herds will continue having difficulties in detecting CM using mastitis alert lists, whereas others will perform well. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Predicting post-fire tree mortality for 12 western US conifers using the First-Order Fire Effects Model (FOFEM)

    Treesearch

    Sharon Hood; Duncan Lutes

    2017-01-01

    Accurate prediction of fire-caused tree mortality is critical for making sound land management decisions such as developing burning prescriptions and post-fire management guidelines. To improve efforts to predict post-fire tree mortality, we developed 3-year post-fire mortality models for 12 Western conifer species - white fir (Abies concolor [Gord. &...

  20. Context-Sensitive Ethics in School Psychology

    ERIC Educational Resources Information Center

    Lasser, Jon; Klose, Laurie McGarry; Robillard, Rachel

    2013-01-01

    Ethical codes and licensing rules provide foundational guidance for practicing school psychologists, but these sources fall short in their capacity to facilitate effective decision-making. When faced with ethical dilemmas, school psychologists can turn to decision-making models, but step-wise decision trees frequently lack the situation…

  1. Experimental tree removal in tallgrass prairie: variable responses of flora and fauna along a woody cover gradient.

    PubMed

    Alford, Aaron L; Hellgren, Eric C; Limb, Ryan; Engle, David M

    2012-04-01

    Woody plant encroachment is a worldwide phenomenon in grassland and savanna systems whose consequence is often the development of an alternate woodland state. Theoretically, an alternate state may be associated with changes in system state variables (e.g., species composition) or abiotic parameter shifts (e.g., nutrient availability). When state-variable changes are cumulative, such as in woody plant encroachment, the probability of parameter shifts increases as system feedbacks intensify over time. Using a Before-After Control-Impact (BACI) design, we studied eight pairs of grassland sites undergoing various levels of eastern redcedar (Juniperus virginiana) encroachment to determine whether responses of flora and fauna to experimental redcedar removal differed according to the level of pretreatment redcedar cover. In the first year after removal, herbaceous plant species diversity and evenness, woody plant evenness, and invertebrate family richness increased linearly with pretreatment redcedar cover, whereas increases in small-mammal diversity and evenness were described by logarithmic trends. In contrast, increases in woody plant diversity and total biomass of terrestrial invertebrates were accentuated at levels of higher pretreatment cover. Tree removal also shifted small-mammal species composition toward a more grassland-associated assemblage. During the second year postremoval, increases in herbaceous plant diversity followed a polynomial trend, but increases in most other metrics did not vary along the pretreatment cover gradient. These changes were accompanied by extremely high growing-season precipitation, which may have homogenized floral and faunal responses to removal. Our results demonstrate that tree removal increases important community metrics among grassland flora and fauna within two years, with some responses to removal being strongly influenced by the stage of initial encroachment and modulated by climatic variability. Our results underscore the importance of decisive management for reversing the effects of woody plant encroachment in imperiled grassland ecosystems.

  2. Branch: an interactive, web-based tool for testing hypotheses and developing predictive models.

    PubMed

    Gangavarapu, Karthik; Babji, Vyshakh; Meißner, Tobias; Su, Andrew I; Good, Benjamin M

    2016-07-01

    Branch is a web application that provides users with the ability to interact directly with large biomedical datasets. The interaction is mediated through a collaborative graphical user interface for building and evaluating decision trees. These trees can be used to compose and test sophisticated hypotheses and to develop predictive models. Decision trees are built and evaluated based on a library of imported datasets and can be stored in a collective area for sharing and re-use. Branch is hosted at http://biobranch.org/ and the open source code is available at http://bitbucket.org/sulab/biobranch/ asu@scripps.edu or bgood@scripps.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  3. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees

    PubMed Central

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-01-01

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597

  4. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less

  5. Online adaptive decision trees: pattern classification and function approximation.

    PubMed

    Basak, Jayanta

    2006-09-01

    Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.

  6. A hybrid method for classifying cognitive states from fMRI data.

    PubMed

    Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R

    2015-09-01

    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.

  7. Application of the pessimistic pruning to increase the accuracy of C4.5 algorithm in diagnosing chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.

    2018-03-01

    A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.

  8. The economic impact of pig-associated parasitic zoonosis in Northern Lao PDR.

    PubMed

    Choudhury, Adnan Ali Khan; Conlan, James V; Racloz, Vanessa Nadine; Reid, Simon Andrew; Blacksell, Stuart D; Fenwick, Stanley G; Thompson, Andrew R C; Khamlome, Boualam; Vongxay, Khamphouth; Whittaker, Maxine

    2013-03-01

    The parasitic zoonoses human cysticercosis (Taenia solium), taeniasis (other Taenia species) and trichinellosis (Trichinella species) are endemic in the Lao People's Democratic Republic (Lao PDR). This study was designed to quantify the economic burden pig-associated zoonotic disease pose in Lao PDR. In particular, the analysis included estimation of the losses in the pork industry as well as losses due to human illness and lost productivity. A Markov-probability based decision-tree model was chosen to form the basis of the calculations to estimate the economic and public health impacts of taeniasis, trichinellosis and cysticercosis. Two different decision trees were run simultaneously on the model's human cohort. A third decision tree simulated the potential impacts on pig production. The human capital method was used to estimate productivity loss. The results found varied significantly depending on the rate of hospitalisation due to neurocysticerosis. This study is the first systematic estimate of the economic impact of pig-associated zoonotic diseases in Lao PDR that demonstrates the significance of the diseases in that country.

  9. Parkinsonia L.

    Treesearch

    Kristina F. Connor; Jane E. Rodgers; Carol Miller

    2008-01-01

    There are three noteworthy species of Parkinsonia grown in the United States. Palo verde is a thorny, green-barked shrub/small tree which can reach a height of 11 m. The name refers to the very noticeable green color of the smooth trunk of this drought-resistant tree of the hot southern deserts. The open-crowned trees have alternate, bipinnate...

  10. Mycorrhizal fungi and trees - a successful reforestation alternative for mineland reclamation

    Treesearch

    C. E. Cordell; L. F. Mans; D. H. Marx

    2002-01-01

    Successful consistent revegetation of drastically disturbed mine sites (in other words, acid coal spoils and mineral waste dumps) throughout the United States and several foreign countries has been achieved by using the biological "tools" - tree seedlings, native shrubs and grass species inoculated with mycorrhizal fungi. These trees and shrubs are custom-...

  11. The optimality of different strategies for supplemental staging of non-small-cell lung cancer: a health economic decision analysis.

    PubMed

    Søgaard, Rikke; Fischer, Barbara Malene B; Mortensen, Jann; Rasmussen, Torben R; Lassen, Ulrik

    2013-01-01

    To assess the expected costs and outcomes of alternative strategies for staging of lung cancer to inform a Danish National Health Service perspective about the most cost-effective strategy. A decision tree was specified for patients with a confirmed diagnosis of non-small-cell lung cancer. Six strategies were defined from relevant combinations of mediastinoscopy, endoscopic or endobronchial ultrasound with needle aspiration, and combined positron emission tomography-computed tomography with F18-fluorodeoxyglucose. Patients without distant metastases and central or contralateral nodal involvement (N2/N3) were considered to be candidates for surgical resection. Diagnostic accuracies were informed from literature reviews, prevalence and survival from the Danish Lung Cancer Registry, and procedure costs from national average tariffs. All parameters were specified probabilistically to determine the joint decision uncertainty. The cost-effectiveness analysis was based on the net present value of expected costs and life years accrued over a time horizon of 5 years. At threshold values of around €30,000 for cost-effectiveness, it was found to be cost-effective to send all patients to positron emission tomography-computed tomography with confirmation of positive findings on nodal involvement by endobronchial ultrasound. This result appeared robust in deterministic sensitivity analysis. The expected value of perfect information was estimated at €52 per patient, indicating that further research might be worthwhile. The policy recommendation is to make combined positron emission tomography-computed tomography and endobronchial ultrasound available for supplemental staging of patients with non-small-cell lung cancer. The effects of alternative strategies on patients' quality of life, however, should be examined in future studies. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. A cost-effectiveness analysis of screening for silent atrial fibrillation after ischaemic stroke.

    PubMed

    Levin, Lars-Åke; Husberg, Magnus; Sobocinski, Piotr Doliwa; Kull, Viveka Frykman; Friberg, Leif; Rosenqvist, Mårten; Davidson, Thomas

    2015-02-01

    The purpose of this study was to estimate the cost-effectiveness of two screening methods for detection of silent AF, intermittent electrocardiogram (ECG) recordings using a handheld recording device, at regular time intervals for 30 days, and short-term 24 h continuous Holter ECG, in comparison with a no-screening alternative in 75-year-old patients with a recent ischaemic stroke. The long-term (20-year) costs and effects of all alternatives were estimated with a decision analytic model combining the result of a clinical study and epidemiological data from Sweden. The structure of a cost-effectiveness analysis was used in this study. The short-term decision tree model analysed the screening procedure until the onset of anticoagulant treatment. The second part of the decision model followed a Markov design, simulating the patients' health states for 20 years. Continuous 24 h ECG recording was inferior to intermittent ECG in terms of cost-effectiveness, due to both lower sensitivity and higher costs. The base-case analysis compared intermittent ECG screening with no screening of patients with recent stroke. The implementation of the screening programme on 1000 patients resulted over a 20-year period in 11 avoided strokes and the gain of 29 life-years, or 23 quality-adjusted life years, and cost savings of €55 400. Screening of silent AF by intermittent ECG recordings in patients with a recent ischaemic stroke is a cost-effective use of health care resources saving costs and lives and improving the quality of life. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  13. The social and economic impact of biofortification through genetic modification.

    PubMed

    De Steur, Hans; Demont, Matty; Gellynck, Xavier; Stein, Alexander J

    2017-04-01

    Genetic modification (GM) has been advocated as an alternative or complement to micronutrient interventions such as supplementation, fortification or dietary diversification. While proof-of-concept of various GM biofortified crops looks promising, the decision tree of policy makers is much more complex, and requires insight on their socio-economic impacts: Will it actually work? Is it financially sound? Will people accept it? Can it be implemented in a globalized world? This review shows that GM biofortification could effectively reduce the burden of micronutrient deficiencies, in an economically viable way, and is generally well received by target beneficiaries, despite some resistance and uncertainty. Practically, however, protectionist and/or unscientific regulations in some developed countries raise the (perceived) bar for implementation in target countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Industrial and occupational ergonomics in the petrochemical process industry: a regression trees approach.

    PubMed

    Bevilacqua, M; Ciarapica, F E; Giacchetta, G

    2008-07-01

    This work is an attempt to apply classification tree methods to data regarding accidents in a medium-sized refinery, so as to identify the important relationships between the variables, which can be considered as decision-making rules when adopting any measures for improvement. The results obtained using the CART (Classification And Regression Trees) method proved to be the most precise and, in general, they are encouraging concerning the use of tree diagrams as preliminary explorative techniques for the assessment of the ergonomic, management and operational parameters which influence high accident risk situations. The Occupational Injury analysis carried out in this paper was planned as a dynamic process and can be repeated systematically. The CART technique, which considers a very wide set of objective and predictive variables, shows new cause-effect correlations in occupational safety which had never been previously described, highlighting possible injury risk groups and supporting decision-making in these areas. The use of classification trees must not, however, be seen as an attempt to supplant other techniques, but as a complementary method which can be integrated into traditional types of analysis.

  15. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  16. Comparison of two data mining techniques in labeling diagnosis to Iranian pharmacy claim dataset: artificial neural network (ANN) versus decision tree model.

    PubMed

    Rezaei-Darzi, Ehsan; Farzadfar, Farshad; Hashemi-Meshkini, Amir; Navidi, Iman; Mahmoudi, Mahmoud; Varmaghani, Mehdi; Mehdipour, Parinaz; Soudi Alamdari, Mahsa; Tayefi, Batool; Naderimagham, Shohreh; Soleymani, Fatemeh; Mesdaghinia, Alireza; Delavari, Alireza; Mohammad, Kazem

    2014-12-01

    This study aimed to evaluate and compare the prediction accuracy of two data mining techniques, including decision tree and neural network models in labeling diagnosis to gastrointestinal prescriptions in Iran. This study was conducted in three phases: data preparation, training phase, and testing phase. A sample from a database consisting of 23 million pharmacy insurance claim records, from 2004 to 2011 was used, in which a total of 330 prescriptions were assessed and used to train and test the models simultaneously. In the training phase, the selected prescriptions were assessed by both a physician and a pharmacist separately and assigned a diagnosis. To test the performance of each model, a k-fold stratified cross validation was conducted in addition to measuring their sensitivity and specificity. Generally, two methods had very similar accuracies. Considering the weighted average of true positive rate (sensitivity) and true negative rate (specificity), the decision tree had slightly higher accuracy in its ability for correct classification (83.3% and 96% versus 80.3% and 95.1%, respectively). However, when the weighted average of ROC area (AUC between each class and all other classes) was measured, the ANN displayed higher accuracies in predicting the diagnosis (93.8% compared with 90.6%). According to the result of this study, artificial neural network and decision tree model represent similar accuracy in labeling diagnosis to GI prescription.

  17. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    PubMed

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  18. Topological Analysis and Gaussian Decision Tree: Effective Representation and Classification of Biosignals of Small Sample Size.

    PubMed

    Zhang, Zhifei; Song, Yang; Cui, Haochen; Wu, Jayne; Schwartz, Fernando; Qi, Hairong

    2017-09-01

    Bucking the trend of big data, in microdevice engineering, small sample size is common, especially when the device is still at the proof-of-concept stage. The small sample size, small interclass variation, and large intraclass variation, have brought biosignal analysis new challenges. Novel representation and classification approaches need to be developed to effectively recognize targets of interests with the absence of a large training set. Moving away from the traditional signal analysis in the spatiotemporal domain, we exploit the biosignal representation in the topological domain that would reveal the intrinsic structure of point clouds generated from the biosignal. Additionally, we propose a Gaussian-based decision tree (GDT), which can efficiently classify the biosignals even when the sample size is extremely small. This study is motivated by the application of mastitis detection using low-voltage alternating current electrokinetics (ACEK) where five categories of bisignals need to be recognized with only two samples in each class. Experimental results demonstrate the robustness of the topological features as well as the advantage of GDT over some conventional classifiers in handling small dataset. Our method reduces the voltage of ACEK to a safe level and still yields high-fidelity results with a short assay time. This paper makes two distinctive contributions to the field of biosignal analysis, including performing signal processing in the topological domain and handling extremely small dataset. Currently, there have been no related works that can efficiently tackle the dilemma between avoiding electrochemical reaction and accelerating assay process using ACEK.

  19. Insurance Contract Analysis for Company Decision Support in Acquisition Management

    NASA Astrophysics Data System (ADS)

    Chernovita, H. P.; Manongga, D.; Iriani, A.

    2017-01-01

    One of company activities to retain their business is marketing the products which include in acquisition management to get new customers. Insurance contract analysis using ID3 to produce decision tree and rules to be decision support for the insurance company. The decision tree shows 13 rules that lead to contract termination claim. This could be a guide for the insurance company in acquisition management to prevent contract binding with these contract condition because it has a big chance for the customer to terminate their insurance contract before its expired date. As the result, there are several strong points that could be the determinant of contract termination such as: 1) customer age whether too young or too old, 2) long insurance period (above 10 years), 3) big insurance amount, 4) big amount of premium charges, and 5) payment method.

  20. Bridging the gap between regulatory acceptance and industry use of non-animal methods.

    PubMed

    Clippinger, Amy J; Hill, Erin; Curren, Rodger; Bishop, Patricia

    2016-01-01

    Collaboration between industry and regulators resulted in the development of a decision tree approach using in vitro or ex vivo assays to replace animal tests when determining the eye irritation potential of antimicrobial cleaning products (AMCPs) under the United States Environmental Protection Agency (EPA) Office of Pesticide Programs' hazard classification and labeling system. A policy document issued by the EPA in 2013 and updated in 2015 describes the alternate testing framework that industry could apply to new registrations of AMCPs and, on a case-by-case basis, to conventional pesticide products. Despite the collaborative effort, the availability of relevant non-animal methods, and the EPA's change in policy, only a limited number of AMCPs have been registered using the framework. Companies continue to conduct animal tests when registering AMCPs due to various challenges surrounding adoption of the new testing framework; however, recent discussions between industry, regulators, and other interested parties have identified ways these challenges may be overcome. In this article we explore how use of the alternate framework could be expanded through efforts such as increasing international harmonization, more proactively publicizing the framework, and enhancing the training of regulatory reviewers. Not only can these strategies help to increase use of the EPA alternate eye irritation framework, they can also be applied to facilitate the uptake of other alternative approaches to animal testing in the future.

  1. Comparative seed-tree and selection harvesting costs in young-growth mixed-conifer stands

    Treesearch

    William A. Atkinson; Dale O. Hall

    1963-01-01

    Little difference was found between yarding and felling costs in seed-tree and selection harvest cuts. The volume per acre logged was 23,800 board feet on the seed-tree compartments and 10,600 board feet on the selection compartments. For a comparable operation with this range of volumes, cutting method decisions should be based on factors other than logging costs....

  2. Merger of three modeling approaches to assess potential effects of climate change on trees in the eastern United States

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2010-01-01

    Climate change will likely cause impacts that are species specific and significant; modeling is critical to better understand potential changes in suitable habitat. We use empirical, abundance-based habitat models utilizing decision tree-based ensemble methods to explore potential changes of 134 tree species habitats in the eastern United States (http://www.nrs.fs.fed....

  3. Neural mechanisms underlying conflict monitoring over risky decision alternatives: evidence from ERP in a Go/Nogo task.

    PubMed

    Wang, Shuzhen; Hui, Ning; Zhou, Xinsheng; He, Kaifeng; Yu, Yuanyuan; Shuai, Jing

    2014-09-01

    This study assessed conflict monitoring during presentation of risky decision alternatives, as indexed by the Nogo-N2, Nogo-P3, N2d and P3d event-related potentials (ERP). Decision-makers were tested on a Go/Nogo gambling task in which gain/loss outcomes as well as stimulus type (Go/Nogo) were equiprobable. Frontal-central Nogo-N2 and Nogo-P3 did not significantly differ across risky decision alternatives, whereas N2d and P3d amplitudes were more sensitive to the nature of risky decision alternatives. Frontal-central N2d was moderated by the magnitude of alternatives, with N2d amplitude greater for large than small alternatives, a result that suggests a greater degree of conflict monitoring for the former. Central P3d was associated with alternative valence, such that P3d amplitude was greater for loss than gain valences, again suggestive of more conflict monitoring for the former. The N2d and P3d potentials in risky decision alternatives are discussed in terms of the functional significance of the N2/P3 complex.

  4. Thermal power systems small power systems applications project. Decision analysis for evaluating and ranking small solar thermal power system technologies. Volume 1: A brief introduction to multiattribute decision analysis. [explanation of multiattribute decision analysis methods used in evaluating alternatives for small powered systems

    NASA Technical Reports Server (NTRS)

    Feinberg, A.; Miles, R. F., Jr.

    1978-01-01

    The principal concepts of the Keeney and Raiffa approach to multiattribute decision analysis are described. Topics discussed include the concepts of decision alternatives, outcomes, objectives, attributes and their states, attribute utility functions, and the necessary independence properties for the attribute states to be aggregated into a numerical representation of the preferences of the decision maker for the outcomes and decision alternatives.

  5. Divide and Conquer: A Valid Approach for Risk Assessment and Decision Making under Uncertainty for Groundwater-Related Diseases

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; de Barros, F.; Bolster, D.; Nowak, W.

    2010-12-01

    Assessing the potential risk of hydro(geo)logical supply systems to human population is an interdisciplinary field. It relies on the expertise in fields as distant as hydrogeology, medicine, or anthropology, and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties in hydrological, physiological and human behavioral parameters. We propose the use of fault trees to address the task of probabilistic risk analysis (PRA) and to support related management decisions. Fault trees allow decomposing the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural “Divide and Conquer” approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance and stage of analysis. The separation in modules allows for a true inter- and multi-disciplinary approach. This presentation highlights the three novel features of our work: (1) we define failure in terms of risk being above a threshold value, whereas previous studies used auxiliary events such as exceedance of critical concentration levels, (2) we plot an integrated fault tree that handles uncertainty in both hydrological and health components in a unified way, and (3) we introduce a new form of stochastic fault tree that allows to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.

  6. Comparison of Pinus taeda L. whole-tree wood property calibrations using diffuse reflectance near infrared spectra obtained using a variety of sampling options

    Treesearch

    P. David Jones; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark; Robert C. Purnell

    2008-01-01

    A necessary objective for tree-breeding programs, with a focus on wood quality, is the measurement of wood properties on a whole-tree basis, however, the time and cost involved limits the numbers of trees sampled. Near infrared (NIR) spectroscopy provides an alternative and recently, it has been demonstrated that calibrations based on milled increment cores and whole-...

  7. An esthetic alternative to clearcutting?

    Treesearch

    H. Clay Smith; Neil I. Lamson; Gary W. Miller

    1989-01-01

    Although deferment cutting is not a practice common in the United States, it has been used in Europe to harvest some forest stands. After a deferment cutting, the residual stand resembles a seed tree cut; however, residual trees are not cut when the regenerated stand becomes established. Instead, residual trees remain until the regenerated stand is at the end of a...

  8. Tree rings and the local environment

    Treesearch

    Kevin T. Smith

    2011-01-01

    The amount of wood produced by a tree each year depends on tree condition, genetic programming, and growing conditions. Wood is mature xylem, the result of inward cell divisions by the vascular cambium, the new cell generator located between the wood and the inner bark (phloem). In temperate climatic zones, where a spring and summer growing season alternates with...

  9. Tree improvement opportunities in the North-Central States related to economic trends, a problem analysis.

    Treesearch

    David H. Dawson; John A. Pitcher

    1970-01-01

    Economic trends are interpreted and related to planning applied forest tree-improvement programs for the North-Central Region. Projected demands for forest products are considered in light of the forest resource and alternatives for its use. Suggestions are given for tree-improvement programs for seven conifer and three hardwood species.

  10. Energy state affects exploratory behavior of tree sparrows in a group context under differential food-patch distributions.

    PubMed

    Lee, Ya-Fu; Kuo, Yen-Min; Chu, Wen-Chen

    2016-01-01

    When facing a novel situation, animals can retreat or leave to avoid risks, but will miss potential resources and opportunities. Alternatively they may reduce environmental uncertainty by exploration, while risking no energy rewards and exposure to hazards, and use the information retrieved for subsequent decision making. When exploring, however, animals may adopt different tactics according to individual states. We tested that energy states will affect exploratory behavior by experimenting with wild-caught untrained Eurasian tree sparrows ( Passer montanus ) in fasted or fed states exploring in a novel space with hidden food supply in different patch distribution patterns. Our data revealed that fasted sparrows risked being earlier explorers more often, initiated more exploratory bouts before patches were found, and stayed longer on the ground under both patch patterns. Fasted sparrows discovered more patches and consumed more food than fed sparrows in dispersed, but not necessary so in clumped, patch patterns; whereas fed birds also increased patch finding to a certain level in dispersed patterns. Sparrows of both energy states, however, did not differ in feeding rates in either patch pattern. Exploratory behavior of tree sparrows is state-dependent, which supports our prediction that birds with an energy shortage will be risk-prone and explore more readily. Our study also indicates a game nature of tree sparrow exploratory behavior in a group context when explorers are in different energy states and are exposed to different patch distributions. Birds of lower energy state adopting an active exploring tactic may be favored by obtaining higher energy gains in dispersed patch patterns with lower patch richness. More satiated birds, however, achieved a similar feeding rate by lowered exposure time.

  11. Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients.

    PubMed

    Aguiar, Fabio S; Almeida, Luciana L; Ruffino-Netto, Antonio; Kritski, Afranio Lineu; Mello, Fernanda Cq; Werneck, Guilherme L

    2012-08-07

    Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.

  12. Tree-to-tree variation in seed size and its consequences for seed dispersal versus predation by rodents.

    PubMed

    Wang, Bo; Ives, Anthony R

    2017-03-01

    Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.

  13. Forestry 101.

    ERIC Educational Resources Information Center

    Markham, Mary T.

    2000-01-01

    Introduces a unit on forest management in which students manage the school forest. Involves students in tree identification, determining the size or volume and height of trees, and evaluation of the forest for management decisions. Integrates mathematics, writing, and social studies with plant classification, plant reproduction, and the use of…

  14. Decision and Game Theory for Security

    NASA Astrophysics Data System (ADS)

    Alpcan, Tansu; Buttyán, Levente; Baras, John S.

    Attack--defense trees are used to describe security weaknesses of a system and possible countermeasures. In this paper, the connection between attack--defense trees and game theory is made explicit. We show that attack--defense trees and binary zero-sum two-player extensive form games have equivalent expressive power when considering satisfiability, in the sense that they can be converted into each other while preserving their outcome and their internal structure.

  15. Interactions between factors related to the decision of sex offenders to confess during police interrogation: a classification-tree approach.

    PubMed

    Beauregard, Eric; Deslauriers-Varin, Nadine; St-Yves, Michel

    2010-09-01

    Most studies of confessions have looked at the influence of individual factors, neglecting the potential interactions between these factors and their impact on the decision to confess or not during an interrogation. Classification and regression tree analyses conducted on a sample of 624 convicted sex offenders showed that certain factors related to the offenders (e.g., personality, criminal career), victims (e.g., sex, relationship to offender), and case (e.g., time of day of the crime) were related to the decision to confess or not during the police interrogation. Several interactions were also observed between these factors. Results will be discussed in light of previous findings and interrogation strategies for sex offenders.

  16. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    PubMed

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.

  17. Bird exclosures for branches and whole trees.

    Treesearch

    Robert W. Campbell; Torolf R. Torgersen; Steven C. Forrest; Lorna C. Youngs

    1981-01-01

    Two types of lightweight, portable bird exclosures are described. One is for individual branches or branch tips; the other is for whole trees up to 9 m tall. Several alternative configurations and uses of these exclosures are discussed.

  18. A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: eye irritation.

    PubMed

    McNamee, Pauline; Hibatallah, Jalila; Costabel-Farkas, Margit; Goebel, Carsten; Araki, Daisuke; Dufour, Eric; Hewitt, Nicola J; Jones, Penny; Kirst, Annette; Le Varlet, Béatrice; Macfarlane, Martin; Marrec-Fairley, Monique; Rowland, Joanna; Schellauf, Florian; Scheel, Julia

    2009-07-01

    The need for alternative approaches to replace the in vivo rabbit Draize eye test for evaluation of eye irritation of cosmetic ingredients has been recognised by the cosmetics industry for many years. Extensive research has lead to the development of several assays, some of which have undergone formal validation. Even though, to date, no single in vitro assay has been validated as a full replacement for the rabbit Draize eye test, organotypic assays are accepted for specific and limited regulatory purposes. Although not formally validated, several other in vitro models have been used for over a decade by the cosmetics industry as valuable tools in a weight of evidence approach for the safety assessment of ingredients and finished products. In light of the deadlines established in the EU Cosmetics Directive for cessation of animal testing for cosmetic ingredients, a COLIPA scientific meeting was held in Brussels on 30th January, 2008 to review the use of alternative approaches and to set up a decision-tree approach for their integration into tiered testing strategies for hazard and safety assessment of cosmetic ingredients and their use in products. Furthermore, recommendations are given on how remaining data gaps and research needs can be addressed.

  19. An economic evaluation of maxillary implant overdentures based on six vs. four implants.

    PubMed

    Listl, Stefan; Fischer, Leonhard; Giannakopoulos, Nikolaos Nikitas

    2014-08-18

    The purpose of the present study was to assess the value for money achieved by bar-retained implant overdentures based on six implants compared with four implants as treatment alternatives for the edentulous maxilla. A Markov decision tree model was constructed and populated with parameter estimates for implant and denture failure as well as patient-centred health outcomes as available from recent literature. The decision scenario was modelled within a ten year time horizon and relied on cost reimbursement regulations of the German health care system. The cost-effectiveness threshold was identified above which the six-implant solution is preferable over the four-implant solution. Uncertainties regarding input parameters were incorporated via one-way and probabilistic sensitivity analysis based on Monte-Carlo simulation. Within a base case scenario of average treatment complexity, the cost-effectiveness threshold was identified to be 17,564 € per year of denture satisfaction gained above of which the alternative with six implants is preferable over treatment including four implants. Sensitivity analysis yielded that, depending on the specification of model input parameters such as patients' denture satisfaction, the respective cost-effectiveness threshold varies substantially. The results of the present study suggest that bar-retained maxillary overdentures based on six implants provide better patient satisfaction than bar-retained overdentures based on four implants but are considerably more expensive. Final judgements about value for money require more comprehensive clinical evidence including patient-centred health outcomes.

  20. An economic evaluation of maxillary implant overdentures based on six vs. four implants

    PubMed Central

    2014-01-01

    Background The purpose of the present study was to assess the value for money achieved by bar-retained implant overdentures based on six implants compared with four implants as treatment alternatives for the edentulous maxilla. Methods A Markov decision tree model was constructed and populated with parameter estimates for implant and denture failure as well as patient-centred health outcomes as available from recent literature. The decision scenario was modelled within a ten year time horizon and relied on cost reimbursement regulations of the German health care system. The cost-effectiveness threshold was identified above which the six-implant solution is preferable over the four-implant solution. Uncertainties regarding input parameters were incorporated via one-way and probabilistic sensitivity analysis based on Monte-Carlo simulation. Results Within a base case scenario of average treatment complexity, the cost-effectiveness threshold was identified to be 17,564 € per year of denture satisfaction gained above of which the alternative with six implants is preferable over treatment including four implants. Sensitivity analysis yielded that, depending on the specification of model input parameters such as patients’ denture satisfaction, the respective cost-effectiveness threshold varies substantially. Conclusions The results of the present study suggest that bar-retained maxillary overdentures based on six implants provide better patient satisfaction than bar-retained overdentures based on four implants but are considerably more expensive. Final judgements about value for money require more comprehensive clinical evidence including patient-centred health outcomes. PMID:25135370

  1. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result ofmore » the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar PV project is feasible on the new sites. (authors)« less

  2. A mechanism for value-sensitive decision-making.

    PubMed

    Pais, Darren; Hogan, Patrick M; Schlegel, Thomas; Franks, Nigel R; Leonard, Naomi E; Marshall, James A R

    2013-01-01

    We present a dynamical systems analysis of a decision-making mechanism inspired by collective choice in house-hunting honeybee swarms, revealing the crucial role of cross-inhibitory 'stop-signalling' in improving the decision-making capabilities. We show that strength of cross-inhibition is a decision-parameter influencing how decisions depend both on the difference in value and on the mean value of the alternatives; this is in contrast to many previous mechanistic models of decision-making, which are typically sensitive to decision accuracy rather than the value of the option chosen. The strength of cross-inhibition determines when deadlock over similarly valued alternatives is maintained or broken, as a function of the mean value; thus, changes in cross-inhibition strength allow adaptive time-dependent decision-making strategies. Cross-inhibition also tunes the minimum difference between alternatives required for reliable discrimination, in a manner similar to Weber's law of just-noticeable difference. Finally, cross-inhibition tunes the speed-accuracy trade-off realised when differences in the values of the alternatives are sufficiently large to matter. We propose that the model, and the significant role of the values of the alternatives, may describe other decision-making systems, including intracellular regulatory circuits, and simple neural circuits, and may provide guidance in the design of decision-making algorithms for artificial systems, particularly those functioning without centralised control.

  3. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  4. Mismatch between herbivore behavior and demographics contributes to scale-dependence of host susceptibility in two pine species

    Treesearch

    Tiina Ylioja; Daniel H. Slone; Matthew P. Ayres

    2005-01-01

    The impacts on forests of tree-killing bark beetles can depend on the species composition of potential host trees. Host susceptibility might be an intrinsic property of tree species, or it might depend on spatial patterning of alternative host species. We compared the susceptibility of loblolly pine (Pinus taeda) and Virginia pine (P. ...

  5. Database for estimating tree responses of walnut and other hardwoods to ground cover management practices

    Treesearch

    J.W. Van Sambeek

    2010-01-01

    The ground cover in plantings of walnut and other hardwoods can substantially affect tree growth and seed production. The number of alternative ground covers that have been suggested for establishment in tree plantings far exceeds the number that have already been tested with walnut and other temperate hardwoods. Knowing how other hardwood species respond to ground...

  6. Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments

    Treesearch

    Tracey S. Frescino; Gretchen G. Moisen

    2012-01-01

    A spatially-explicit representation of live tree canopy cover, such as the National Land Cover Dataset (NLCD) percent tree canopy cover layer, is a valuable tool for many applications, such as defining forest land, delineating wildlife habitat, estimating carbon, and modeling fire risk and behavior. These layers are generated by predictive models wherein their accuracy...

  7. A call to improve methods for estimating tree biomass for regional and national assessments

    Treesearch

    Aaron R. Weiskittel; David W. MacFarlane; Philip J. Radtke; David L.R. Affleck; Hailemariam Temesgen; Christopher W. Woodall; James A. Westfall; John W. Coulston

    2015-01-01

    Tree biomass is typically estimated using statistical models. This review highlights five limitations of most tree biomass models, which include the following: (1) biomass data are costly to collect and alternative sampling methods are used; (2) belowground data and models are generally lacking; (3) models are often developed from small and geographically limited data...

  8. Recycling Municipal Trees, A Guide for Marketing Sawlogs from Street Removals Municipalities, NA_TP_02_94

    Treesearch

    Edward Cesa; Edward Lempicki; Howard Knotts

    2003-01-01

    The purpose of this guide is to make officials of municipalities aware of an alternative strategy for using their street tree removals; a "recycling" strategy which can potentially turn a cost-burden scenario into an income-generating opportunity. The strategy involves merchandising sawmill-size logs from street tree removals to sawmills or other companies...

  9. Response of terrestrial small mammals to varying amounts and patterns of green-tree retention in Pacific Northwest forests

    Treesearch

    Robert A. Gitzen; Stephen West; Chris C. Maguireb; Tom Manning; Charles B. Halpern

    2007-01-01

    To sustain native species in managed forests, landowners need silvicultural strategies that retain habitat elements often eliminated during traditional harvests such as clearcut logging. One alternative is green-tree or variable retention. We investigated the response of terrestrial small mammals to experimental harvests that retained large live trees in varying...

  10. Using Decision-Analytic Modeling to Isolate Interventions That Are Feasible, Efficient and Optimal: An Application from the Norwegian Cervical Cancer Screening Program.

    PubMed

    Pedersen, Kine; Sørbye, Sveinung Wergeland; Burger, Emily Annika; Lönnberg, Stefan; Kristiansen, Ivar Sønbø

    2015-12-01

    Decision makers often need to simultaneously consider multiple criteria or outcomes when deciding whether to adopt new health interventions. Using decision analysis within the context of cervical cancer screening in Norway, we aimed to aid decision makers in identifying a subset of relevant strategies that are simultaneously efficient, feasible, and optimal. We developed an age-stratified probabilistic decision tree model following a cohort of women attending primary screening through one screening round. We enumerated detected precancers (i.e., cervical intraepithelial neoplasia of grade 2 or more severe (CIN2+)), colposcopies performed, and monetary costs associated with 10 alternative triage algorithms for women with abnormal cytology results. As efficiency metrics, we calculated incremental cost-effectiveness, and harm-benefit, ratios, defined as the additional costs, or the additional number of colposcopies, per additional CIN2+ detected. We estimated capacity requirements and uncertainty surrounding which strategy is optimal according to the decision rule, involving willingness to pay (monetary or resources consumed per added benefit). For ages 25 to 33 years, we eliminated four strategies that did not fall on either efficiency frontier, while one strategy was efficient with respect to both efficiency metrics. Compared with current practice in Norway, two strategies detected more precancers at lower monetary costs, but some required more colposcopies. Similar results were found for women aged 34 to 69 years. Improving the effectiveness and efficiency of cervical cancer screening may necessitate additional resources. Although efficient and feasible, both society and individuals must specify their willingness to accept the additional resources and perceived harms required to increase effectiveness before a strategy can be considered optimal. Copyright © 2015. Published by Elsevier Inc.

  11. Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats.

    PubMed

    Awaysheh, Abdullah; Wilcke, Jeffrey; Elvinger, François; Rees, Loren; Fan, Weiguo; Zimmerman, Kurt L

    2016-11-01

    Inflammatory bowel disease (IBD) and alimentary lymphoma (ALA) are common gastrointestinal diseases in cats. The very similar clinical signs and histopathologic features of these diseases make the distinction between them diagnostically challenging. We tested the use of supervised machine-learning algorithms to differentiate between the 2 diseases using data generated from noninvasive diagnostic tests. Three prediction models were developed using 3 machine-learning algorithms: naive Bayes, decision trees, and artificial neural networks. The models were trained and tested on data from complete blood count (CBC) and serum chemistry (SC) results for the following 3 groups of client-owned cats: normal, inflammatory bowel disease (IBD), or alimentary lymphoma (ALA). Naive Bayes and artificial neural networks achieved higher classification accuracy (sensitivities of 70.8% and 69.2%, respectively) than the decision tree algorithm (63%, p < 0.0001). The areas under the receiver-operating characteristic curve for classifying cases into the 3 categories was 83% by naive Bayes, 79% by decision tree, and 82% by artificial neural networks. Prediction models using machine learning provided a method for distinguishing between ALA-IBD, ALA-normal, and IBD-normal. The naive Bayes and artificial neural networks classifiers used 10 and 4 of the CBC and SC variables, respectively, to outperform the C4.5 decision tree, which used 5 CBC and SC variables in classifying cats into the 3 classes. These models can provide another noninvasive diagnostic tool to assist clinicians with differentiating between IBD and ALA, and between diseased and nondiseased cats. © 2016 The Author(s).

  12. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    PubMed

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Three screening methods for cognitive dysfunction using the Mini-Mental State Examination and Korean Dementia Screening Questionnaire.

    PubMed

    Choi, Seong Hye; Park, Moon Ho

    2016-02-01

    To screen for and determine cognitive dysfunction, cognitive tests and/or informant reports are commonly used. However, these cognitive tests and informant reports are not always available. The present study investigated three screening methods using the Mini-Mental State Examination (MMSE) as the cognitive test, and the Korean dementia screening questionnaire (KDSQ) as the informant report. Participants were recruited from the Korea Clinical Research Center for Dementia of South Korea, and included 2861 patients with Alzheimer's disease (dementia), 3519 patients with mild cognitive impairment and 1375 controls with no cognitive dysfunction. Three screening methods were tested: (i) MMSE alone (MMSE(cut-off) ); (ii) a conventional combination of MMSE and KDSQ (MMSE+KDSQ(cut-off) ); and (iii) a decision tree with MMSE and KDSQ (MMSE+KDSQ(decision tree) ). For discriminating any cognitive dysfunction from controls, MMSE+KDSQ(cut-off) had the highest area under the receiver operating characteristic curve (0.784). For discriminating dementia from controls, MMSE+KDSQ(cut-off) had the highest area under the receiver operating characteristic curve (0.899). For discriminating mild cognitive impairment from controls, MMSE(cut-off) had the highest area under the receiver operating characteristic curve (0.683). MMSE+KDSQ(decision tree) showed the highest sensitivity for all discriminations. For overall classification accuracy, MMSE+KDSQ(decision tree) had the highest value (70.0%). These three methods had different advantageous properties for screening and staging cognitive dysfunction. As there might be different availability across clinical settings, these three methods can be selected and used according to situational needs. © 2015 Japan Geriatrics Society.

  14. The risk factors of laryngeal pathology in Korean adults using a decision tree model.

    PubMed

    Byeon, Haewon

    2015-01-01

    The purpose of this study was to identify risk factors affecting laryngeal pathology in the Korean population and to evaluate the derived prediction model. Cross-sectional study. Data were drawn from the 2008 Korea National Health and Nutritional Examination Survey. The subjects were 3135 persons (1508 male and 2114 female) aged 19 years and older living in the community. The independent variables were age, sex, occupation, smoking, alcohol drinking, and self-reported voice problems. A decision tree analysis was done to identify risk factors for predicting a model of laryngeal pathology. The significant risk factors of laryngeal pathology were age, gender, occupation, smoking, and self-reported voice problem in decision tree model. Four significant paths were identified in the decision tree model for the prediction of laryngeal pathology. Those identified as high risk groups for laryngeal pathology included those who self-reported a voice problem, those who were males in their 50s who did not recognize a voice problem, those who were not economically active males in their 40s, and male workers aged 19 and over and under 50 or 60 and over who currently smoked. The results of this study suggest that individual risk factors, such as age, sex, occupation, health behavior, and self-reported voice problem, affect the onset of laryngeal pathology in a complex manner. Based on the results of this study, early management of the high-risk groups is needed for the prevention of laryngeal pathology. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models

    NASA Astrophysics Data System (ADS)

    Saha, Debasish; Kemanian, Armen R.; Rau, Benjamin M.; Adler, Paul R.; Montes, Felipe

    2017-04-01

    Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (corn-soybean rotation), College Station, TX (corn-vetch rotation), Fort Collins, CO (irrigated corn), and Pullman, WA (winter wheat), representing diverse agro-ecoregions of the United States. Fertilization source, rate, and timing were site-specific. These simulated fluxes surrogated daily measurements in the analysis. We ;sampled; the fluxes using a fixed interval (1-32 days) or a rule-based (decision tree-based) sampling method. Two types of decision trees were built: a high-input tree (HI) that included soil inorganic nitrogen (SIN) as a predictor variable, and a low-input tree (LI) that excluded SIN. Other predictor variables were identified with Random Forest. The decision trees were inverted to be used as rules for sampling a representative number of members from each terminal node. The uncertainty of the annual N2O flux estimation increased along with the fixed interval length. A 4- and 8-day fixed sampling interval was required at College Station and Ames, respectively, to yield ±20% accuracy in the flux estimate; a 12-day interval rendered the same accuracy at Fort Collins and Pullman. Both the HI and the LI rule-based methods provided the same accuracy as that of fixed interval method with up to a 60% reduction in sampling events, particularly at locations with greater temporal flux variability. For instance, at Ames, the HI rule-based and the fixed interval methods required 16 and 91 sampling events, respectively, to achieve the same absolute bias of 0.2 kg N ha-1 yr-1 in estimating cumulative N2O flux. These results suggest that using simulation models along with decision trees can reduce the cost and improve the accuracy of the estimations of cumulative N2O fluxes using the discrete chamber-based method.

  16. Inside the black box: starting to uncover the underlying decision rules used in one-by-one expert assessment of occupational exposure in case-control studies

    PubMed Central

    Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Yu, Kai; Shortreed, Susan M.; Pronk, Anjoeka; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Silverman, Debra T.; Friesen, Melissa C.

    2014-01-01

    Objectives Evaluating occupational exposures in population-based case-control studies often requires exposure assessors to review each study participants' reported occupational information job-by-job to derive exposure estimates. Although such assessments likely have underlying decision rules, they usually lack transparency, are time-consuming and have uncertain reliability and validity. We aimed to identify the underlying rules to enable documentation, review, and future use of these expert-based exposure decisions. Methods Classification and regression trees (CART, predictions from a single tree) and random forests (predictions from many trees) were used to identify the underlying rules from the questionnaire responses and an expert's exposure assignments for occupational diesel exhaust exposure for several metrics: binary exposure probability and ordinal exposure probability, intensity, and frequency. Data were split into training (n=10,488 jobs), testing (n=2,247), and validation (n=2,248) data sets. Results The CART and random forest models' predictions agreed with 92–94% of the expert's binary probability assignments. For ordinal probability, intensity, and frequency metrics, the two models extracted decision rules more successfully for unexposed and highly exposed jobs (86–90% and 57–85%, respectively) than for low or medium exposed jobs (7–71%). Conclusions CART and random forest models extracted decision rules and accurately predicted an expert's exposure decisions for the majority of jobs and identified questionnaire response patterns that would require further expert review if the rules were applied to other jobs in the same or different study. This approach makes the exposure assessment process in case-control studies more transparent and creates a mechanism to efficiently replicate exposure decisions in future studies. PMID:23155187

  17. A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products.

    PubMed

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H; Hirota, Marina; Chapin, F Stuart; Scheffer, Marten

    2015-01-01

    Publicly available remote sensing products have boosted science in many ways. The openness of these data sources suggests high reproducibility. However, as we show here, results may be specific to versions of the data products that can become unavailable as new versions are posted. We focus on remotely-sensed tree cover. Recent studies have used this public resource to detect multi-modality in tree cover in the tropical and boreal biomes. Such patterns suggest alternative stable states separated by critical tipping points. This has important implications for the potential response of these ecosystems to global climate change. For the boreal region, four distinct ecosystem states (i.e., treeless, sparse and dense woodland, and boreal forest) were previously identified by using the Collection 3 data of MODIS Vegetation Continuous Fields (VCF). Since then, the MODIS VCF product has been updated to Collection 5; and a Landsat VCF product of global tree cover at a fine spatial resolution of 30 meters has been developed. Here we compare these different remote-sensing products of tree cover to show that identification of alternative stable states in the boreal biome partly depends on the data source used. The updated MODIS data and the newer Landsat data consistently demonstrate three distinct modes around similar tree-cover values. Our analysis suggests that the boreal region has three modes: one sparsely vegetated state (treeless), one distinct 'savanna-like' state and one forest state, which could be alternative stable states. Our analysis illustrates that qualitative outcomes of studies may change fundamentally as new versions of remote sensing products are used. Scientific reproducibility thus requires that old versions remain publicly available.

  18. 76 FR 9777 - Recent Postings of Broadly Applicable Alternative Test Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... technical questions about individual alternative test method decisions, refer to the contact person...

  19. ALTERNATIVE FUTURES ANALYSIS: A FRAMEWORK FOR COMMUNITY DECISION-MAKING

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions about land and water use. We conducted an alternative futures analysis in Oregon's Willamette River Basin. Three alternative future landscapes for the year 2050 were depicted and compare...

  20. Team decision problems with classical and quantum signals

    PubMed Central

    Brandenburger, Adam; La Mura, Pierfrancesco

    2016-01-01

    We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570–576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193–216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79–96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. PMID:26621985

  1. Spatial modeling and classification of corneal shape.

    PubMed

    Marsolo, Keith; Twa, Michael; Bullimore, Mark A; Parthasarathy, Srinivasan

    2007-03-01

    One of the most promising applications of data mining is in biomedical data used in patient diagnosis. Any method of data analysis intended to support the clinical decision-making process should meet several criteria: it should capture clinically relevant features, be computationally feasible, and provide easily interpretable results. In an initial study, we examined the feasibility of using Zernike polynomials to represent biomedical instrument data in conjunction with a decision tree classifier to distinguish between the diseased and non-diseased eyes. Here, we provide a comprehensive follow-up to that work, examining a second representation, pseudo-Zernike polynomials, to determine whether they provide any increase in classification accuracy. We compare the fidelity of both methods using residual root-mean-square (rms) error and evaluate accuracy using several classifiers: neural networks, C4.5 decision trees, Voting Feature Intervals, and Naïve Bayes. We also examine the effect of several meta-learning strategies: boosting, bagging, and Random Forests (RFs). We present results comparing accuracy as it relates to dataset and transformation resolution over a larger, more challenging, multi-class dataset. They show that classification accuracy is similar for both data transformations, but differs by classifier. We find that the Zernike polynomials provide better feature representation than the pseudo-Zernikes and that the decision trees yield the best balance of classification accuracy and interpretability.

  2. Team decision problems with classical and quantum signals.

    PubMed

    Brandenburger, Adam; La Mura, Pierfrancesco

    2016-01-13

    We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570-576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193-216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79-96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. © 2015 The Authors.

  3. Diagnostic Features of Common Oral Ulcerative Lesions: An Updated Decision Tree

    PubMed Central

    Safi, Yaser

    2016-01-01

    Diagnosis of oral ulcerative lesions might be quite challenging. This narrative review article aims to introduce an updated decision tree for diagnosing oral ulcerative lesions on the basis of their diagnostic features. Various general search engines and specialized databases including PubMed, PubMed Central, Medline Plus, EBSCO, Science Direct, Scopus, Embase, and authenticated textbooks were used to find relevant topics by means of MeSH keywords such as “oral ulcer,” “stomatitis,” and “mouth diseases.” Thereafter, English-language articles published since 1983 to 2015 in both medical and dental journals including reviews, meta-analyses, original papers, and case reports were appraised. Upon compilation of the relevant data, oral ulcerative lesions were categorized into three major groups: acute, chronic, and recurrent ulcers and into five subgroups: solitary acute, multiple acute, solitary chronic, multiple chronic, and solitary/multiple recurrent, based on the number and duration of lesions. In total, 29 entities were organized in the form of a decision tree in order to help clinicians establish a logical diagnosis by stepwise progression. PMID:27781066

  4. Using decision-tree classifier systems to extract knowledge from databases

    NASA Technical Reports Server (NTRS)

    St.clair, D. C.; Sabharwal, C. L.; Hacke, Keith; Bond, W. E.

    1990-01-01

    One difficulty in applying artificial intelligence techniques to the solution of real world problems is that the development and maintenance of many AI systems, such as those used in diagnostics, require large amounts of human resources. At the same time, databases frequently exist which contain information about the process(es) of interest. Recently, efforts to reduce development and maintenance costs of AI systems have focused on using machine learning techniques to extract knowledge from existing databases. Research is described in the area of knowledge extraction using a class of machine learning techniques called decision-tree classifier systems. Results of this research suggest ways of performing knowledge extraction which may be applied in numerous situations. In addition, a measurement called the concept strength metric (CSM) is described which can be used to determine how well the resulting decision tree can differentiate between the concepts it has learned. The CSM can be used to determine whether or not additional knowledge needs to be extracted from the database. An experiment involving real world data is presented to illustrate the concepts described.

  5. Behaviour change in overweight and obese pregnancy: a decision tree to support the development of antenatal lifestyle interventions.

    PubMed

    Ainscough, Kate M; Lindsay, Karen L; O'Sullivan, Elizabeth J; Gibney, Eileen R; McAuliffe, Fionnuala M

    2017-10-01

    Antenatal healthy lifestyle interventions are frequently implemented in overweight and obese pregnancy, yet there is inconsistent reporting of the behaviour-change methods and behavioural outcomes. This limits our understanding of how and why such interventions were successful or not. The current paper discusses the application of behaviour-change theories and techniques within complex lifestyle interventions in overweight and obese pregnancy. The authors propose a decision tree to help guide researchers through intervention design, implementation and evaluation. The implications for adopting behaviour-change theories and techniques, and using appropriate guidance when constructing and evaluating interventions in research and clinical practice are also discussed. To enhance the evidence base for successful behaviour-change interventions during pregnancy, adoption of behaviour-change theories and techniques, and use of published guidelines when designing lifestyle interventions are necessary. The proposed decision tree may be a useful guide for researchers working to develop effective behaviour-change interventions in clinical settings. This guide directs researchers towards key literature sources that will be important in each stage of study development.

  6. Using Boosting Decision Trees in Gravitational Wave Searches triggered by Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Zuraw, Sarah; LIGO Collaboration

    2015-04-01

    The search for gravitational wave bursts requires the ability to distinguish weak signals from background detector noise. Gravitational wave bursts are characterized by their transient nature, making them particularly difficult to detect as they are similar to non-Gaussian noise fluctuations in the detector. The Boosted Decision Tree method is a powerful machine learning algorithm which uses Multivariate Analysis techniques to explore high-dimensional data sets in order to distinguish between gravitational wave signal and background detector noise. It does so by training with known noise events and simulated gravitational wave events. The method is tested using waveform models and compared with the performance of the standard gravitational wave burst search pipeline for Gamma-ray Bursts. It is shown that the method is able to effectively distinguish between signal and background events under a variety of conditions and over multiple Gamma-ray Burst events. This example demonstrates the usefulness and robustness of the Boosted Decision Tree and Multivariate Analysis techniques as a detection method for gravitational wave bursts. LIGO, UMass, PREP, NEGAP.

  7. Accuracy and Calibration of Computational Approaches for Inpatient Mortality Predictive Modeling.

    PubMed

    Nakas, Christos T; Schütz, Narayan; Werners, Marcus; Leichtle, Alexander B

    2016-01-01

    Electronic Health Record (EHR) data can be a key resource for decision-making support in clinical practice in the "big data" era. The complete database from early 2012 to late 2015 involving hospital admissions to Inselspital Bern, the largest Swiss University Hospital, was used in this study, involving over 100,000 admissions. Age, sex, and initial laboratory test results were the features/variables of interest for each admission, the outcome being inpatient mortality. Computational decision support systems were utilized for the calculation of the risk of inpatient mortality. We assessed the recently proposed Acute Laboratory Risk of Mortality Score (ALaRMS) model, and further built generalized linear models, generalized estimating equations, artificial neural networks, and decision tree systems for the predictive modeling of the risk of inpatient mortality. The Area Under the ROC Curve (AUC) for ALaRMS marginally corresponded to the anticipated accuracy (AUC = 0.858). Penalized logistic regression methodology provided a better result (AUC = 0.872). Decision tree and neural network-based methodology provided even higher predictive performance (up to AUC = 0.912 and 0.906, respectively). Additionally, decision tree-based methods can efficiently handle Electronic Health Record (EHR) data that have a significant amount of missing records (in up to >50% of the studied features) eliminating the need for imputation in order to have complete data. In conclusion, we show that statistical learning methodology can provide superior predictive performance in comparison to existing methods and can also be production ready. Statistical modeling procedures provided unbiased, well-calibrated models that can be efficient decision support tools for predicting inpatient mortality and assigning preventive measures.

  8. Restoration of contaminated ecosystems: adaptive management in a changing climate

    USGS Publications Warehouse

    Farag, Aida; Larson, Diane L.; Stauber, Jenny; Stahl, Ralph; Isanhart, John; McAbee, Kevin T.; Walsh, Christopher J.

    2017-01-01

    Three case studies illustrate how adaptive management (AM) has been used in ecological restorations that involve contaminants. Contaminants addressed include mercury, selenium, and contaminants and physical disturbances delivered to streams by urban stormwater runoff. All three cases emphasize the importance of broad stakeholder input early and consistently throughout decision analysis for AM. Risk of contaminant exposure provided input to the decision analyses (e.g. selenium exposure to endangered razorback suckers, Stewart Lake; multiple contaminants in urban stormwater runoff, Melbourne) and was balanced with the protection of resources critical for a desired future state (e.g. preservation old growth trees, South River). Monitoring also played a critical role in the ability to conduct the decision analyses necessary for AM plans. For example, newer technologies in the Melbourne case provided a testable situation where contaminant concentrations and flow disturbance were reduced to support a return to good ecological condition. In at least one case (Stewart Lake), long-term monitoring data are being used to document the potential effects of climate change on a restoration trajectory. Decision analysis formalized the process by which stakeholders arrived at the priorities for the sites, which together constituted the desired future condition towards which each restoration is aimed. Alternative models were developed that described in mechanistic terms how restoration can influence the system towards the desired future condition. Including known and anticipated effects of future climate scenarios in these models will make them robust to the long-term exposure and effects of contaminants in restored ecosystems.

  9. Integrating climate forecasts and natural gas supply information into a natural gas purchasing decision

    NASA Astrophysics Data System (ADS)

    Changnon, David; Ritsche, Michael; Elyea, Karen; Shelton, Steve; Schramm, Kevin

    2000-09-01

    This paper illustrates a key lesson related to most uses of long-range climate forecast information, namely that effective weather-related decision-making requires understanding and integration of weather information with other, often complex factors. Northern Illinois University's heating plant manager and staff meteorologist, along with a group of meteorology students, worked together to assess different types of available information that could be used in an autumn natural gas purchasing decision. Weather information assessed included the impact of ENSO events on winters in northern Illinois and the Climate Prediction Center's (CPC) long-range climate outlooks. Non-weather factors, such as the cost and available supplies of natural gas prior to the heating season, contribute to the complexity of the natural gas purchase decision. A decision tree was developed and it incorporated three parts: (a) natural gas supply levels, (b) the CPC long-lead climate outlooks for the region, and (c) an ENSO model developed for DeKalb. The results were used to decide in autumn whether to lock in a price or ride the market each winter. The decision tree was tested for the period 1995-99, and returned a cost-effective decision in three of the four winters.

  10. Moral Fiber?

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2000-01-01

    Discusses a 2000 federal trial court decision upholding a Kentucky district's termination of a tenured teacher who presented a curricular segment on industrial hemp as part of a "save-the-trees" unit. The decision underscores teachers' severely limited constitutional rights in the curricular context. (MLH)

  11. IND - THE IND DECISION TREE PACKAGE

    NASA Technical Reports Server (NTRS)

    Buntine, W.

    1994-01-01

    A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The generation routines are used to build classifiers. The test routines are used to evaluate classifiers and to classify data using a classifier. And the display routines are used to display classifiers in various formats. IND is written in C-language for Sun4 series computers. It consists of several programs with controlling shell scripts. Extensive UNIX man entries are included. IND is designed to be used on any UNIX system, although it has only been thoroughly tested on SUN platforms. The standard distribution medium for IND is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in PostScript format is included on the distribution medium. IND was developed in 1992.

  12. Assessing the safety of co-exposure to food packaging migrants in food and water using the maximum cumulative ratio and an established decision tree.

    PubMed

    Price, Paul; Zaleski, Rosemary; Hollnagel, Heli; Ketelslegers, Hans; Han, Xianglu

    2014-01-01

    Food contact materials can release low levels of multiple chemicals (migrants) into foods and beverages, to which individuals can be exposed through food consumption. This paper investigates the potential for non-carcinogenic effects from exposure to multiple migrants using the Cefic Mixtures Ad hoc Team (MIAT) decision tree. The purpose of the assessment is to demonstrate how the decision tree can be applied to concurrent exposures to multiple migrants using either hazard or structural data on the specific components, i.e. based on the acceptable daily intake (ADI) or the threshold of toxicological concern. The tree was used to assess risks from co-exposure to migrants reported in a study on non-intentionally added substances (NIAS) eluting from food contact-grade plastic and two studies of water bottles: one on organic compounds and the other on ionic forms of various elements. The MIAT decision tree assigns co-exposures to different risk management groups (I, II, IIIA and IIIB) based on the hazard index, and the maximum cumulative ratio (MCR). The predicted co-exposures for all examples fell into Group II (low toxicological concern) and had MCR values of 1.3 and 2.4 (indicating that one or two components drove the majority of the mixture's toxicity). MCR values from the study of inorganic ions (126 mixtures) ranged from 1.1 to 3.8 for glass and from 1.1 to 5.0 for plastic containers. The MCR values indicated that a single compound drove toxicity in 58% of the mixtures. MCR values also declined with increases in the hazard index for the screening assessments of exposure (suggesting fewer substances contributed as risk potential increased). Overall, it can be concluded that the data on co-exposure to migrants evaluated in these case studies are of low toxicological concern and the safety assessment approach described in this paper was shown to be a helpful screening tool.

  13. Decision tree analysis of factors influencing rainfall-related building damage

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-04-01

    Flood damage prediction models are essential building blocks in flood risk assessments. Little research has been dedicated so far to damage of small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period of 1998-2011. The databases include claims of water-related damage, for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor. Response variables being modelled are average claim size and claim frequency, per district per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), ownership structure (content data only) and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size, which suggest that variability in average claim size is related to explanatory variables that cannot be defined at the district scale. Cross-validation results show that decision trees were able to predict 22-26% of variance in claim frequency, which is considerably better compared to results from global multiple regression models (11-18% of variance explained). Still, a large part of the variance in claim frequency is left unexplained, which is likely to be caused by variations in data at subdistrict scale and missing explanatory variables.

  14. The use of decision tree induction and artificial neural networks for recognizing the geochemical distribution patterns of LREE in the Choghart deposit, Central Iran

    NASA Astrophysics Data System (ADS)

    Zaremotlagh, S.; Hezarkhani, A.

    2017-04-01

    Some evidences of rare earth elements (REE) concentrations are found in iron oxide-apatite (IOA) deposits which are located in Central Iranian microcontinent. There are many unsolved problems about the origin and metallogenesis of IOA deposits in this district. Although it is considered that felsic magmatism and mineralization were simultaneous in the district, interaction of multi-stage hydrothermal-magmatic processes within the Early Cambrian volcano-sedimentary sequence probably caused some epigenetic mineralizations. Secondary geological processes (e.g., multi-stage mineralization, alteration, and weathering) have affected on variations of major elements and possible redistribution of REE in IOA deposits. Hence, the geochemical behaviors and distribution patterns of REE are expected to be complicated in different zones of these deposits. The aim of this paper is recognizing LREE distribution patterns based on whole-rock chemical compositions and automatic discovery of their geochemical rules. For this purpose, the pattern recognition techniques including decision tree and neural network were applied on a high-dimensional geochemical dataset from Choghart IOA deposit. Because some data features were irrelevant or redundant in recognizing the distribution patterns of each LREE, a greedy attribute subset selection technique was employed to select the best subset of predictors used in classification tasks. The decision trees (CART algorithm) were pruned optimally to more accurately categorize independent test data than unpruned ones. The most effective classification rules were extracted from the pruned tree to describe the meaningful relationships between the predictors and different concentrations of LREE. A feed-forward artificial neural network was also applied to reliably predict the influence of various rock compositions on the spatial distribution patterns of LREE with a better performance than the decision tree induction. The findings of this study could be effectively used to visualize the LREE distribution patterns as geochemical maps.

  15. Decision Making: The Toughest Job in the World

    ERIC Educational Resources Information Center

    Bullis, Robert V.

    1977-01-01

    The four phases in rational decision-making are (1) diagnosis, (2) discovering alternative solutions, (3) analyzing and comparing alternatives, and (4) selecting the proper alternative or plan to follow. (Author)

  16. 78 FR 76855 - Record of Decision for the General Management Plan/Wilderness Study, Fort Pulaski National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... the availability of the Record of Decision (ROD) for the General Management Plan/Wilderness Study (GMP... and development of the national monument in the GMP/WS/ FEIS, Alternative A--no action Alternative, and two action Alternatives. The preferred alternative (Alternative B) from the GMP/ WS/FEIS [[Page...

  17. Post-decision consolidation in large group decision-making.

    PubMed

    Bäck, Emma A; Esaiasson, Peter; Gilljam, Mikael; Svenson, Ola; Lindholm, Torun

    2011-08-01

    Decision-makers tend to change the psychological attractiveness of decision alternatives in favor of their own preferred alternative after the decision is made. In two experiments, the present research examined whether such decision consolidation occurs also among individual group members in a large group decision-making situation. High-school students were presented with a decision scenario on an important issue in their school. The final decision was made by in-group authority, out-group authority or by majority after a ballot voting. Results showed that individual members of large groups changed the attractiveness of their preferred alternative from a pre- to a post-decision phase, that these consolidation effects increased when decisions were made by in-group members, and when participants identified strongly with their school. Implications of the findings for understanding of group behavior and subgroup relations are discussed. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  18. Analysts guide: TreeVal for Windows, Version 2.0.

    Treesearch

    R.D. Fight; J.T. Chmelik; E.A. Coulter

    2001-01-01

    TreeVal for Windows provides financial information and analysis to support silvicultural decisions in coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). It integrates the effect of growth and yield, management costs, harvesting costs, product and mill type, manufacturing costs, product prices, and product grade premiums. Output files from...

  19. A decision tool for selecting trench cap designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paige, G.B.; Stone, J.J.; Lane, L.J.

    1995-12-31

    A computer based prototype decision support system (PDSS) is being developed to assist the risk manager in selecting an appropriate trench cap design for waste disposal sites. The selection of the {open_quote}best{close_quote} design among feasible alternatives requires consideration of multiple and often conflicting objectives. The methodology used in the selection process consists of: selecting and parameterizing decision variables using data, simulation models, or expert opinion; selecting feasible trench cap design alternatives; ordering the decision variables and ranking the design alternatives. The decision model is based on multi-objective decision theory and uses a unique approach to order the decision variables andmore » rank the design alternatives. Trench cap designs are evaluated based on federal regulations, hydrologic performance, cover stability and cost. Four trench cap designs, which were monitored for a four year period at Hill Air Force Base in Utah, are used to demonstrate the application of the PDSS and evaluate the results of the decision model. The results of the PDSS, using both data and simulations, illustrate the relative advantages of each of the cap designs and which cap is the {open_quotes}best{close_quotes} alternative for a given set of criteria and a particular importance order of those decision criteria.« less

  20. Effect of altering local protein fluctuations using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  1. Case-based explanation of non-case-based learning methods.

    PubMed Central

    Caruana, R.; Kangarloo, H.; Dionisio, J. D.; Sinha, U.; Johnson, D.

    1999-01-01

    We show how to generate case-based explanations for non-case-based learning methods such as artificial neural nets or decision trees. The method uses the trained model (e.g., the neural net or the decision tree) as a distance metric to determine which cases in the training set are most similar to the case that needs to be explained. This approach is well suited to medical domains, where it is important to understand predictions made by complex machine learning models, and where training and clinical practice makes users adept at case interpretation. PMID:10566351

  2. A Multi Criteria Group Decision-Making Model for Teacher Evaluation in Higher Education Based on Cloud Model and Decision Tree

    ERIC Educational Resources Information Center

    Chang, Ting-Cheng; Wang, Hui

    2016-01-01

    This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…

  3. The Relation of Student Behavior, Peer Status, Race, and Gender to Decisions about School Discipline Using CHAID Decision Trees and Regression Modeling

    ERIC Educational Resources Information Center

    Horner, Stacy B.; Fireman, Gary D.; Wang, Eugene W.

    2010-01-01

    Peer nominations and demographic information were collected from a diverse sample of 1493 elementary school participants to examine behavior (overt and relational aggression, impulsivity, and prosociality), context (peer status), and demographic characteristics (race and gender) as predictors of teacher and administrator decisions about…

  4. A bark-shaving technique to deter rat snakes from climbing red-cockaded woodpecker cavity trees

    Treesearch

    Daniel Saenz; Christopher S. Collins; Richard N. Conner

    1999-01-01

    We developed a bark-shaving technique to deter rat snakes (Elaphe obsoleta) from climbing red-cockaded woodpecker (Picoides borealis) trees as an aesthetically pleasing, more cost-effective, and safer alternative to other snake excluder devices. We used a drawknife to carefully shave the bark around the circumference of 4 treatment trees in a l-m-wide band to...

  5. Control of pest species: Tree shelters help protect seedlings from nutria

    USGS Publications Warehouse

    Allen, J.A.; Boykin, R.

    1991-01-01

    Various methods of nutria preventative techniques were tested in attempts to curb the loss of seedlings due to nutria capturing. The results of testing possibly indicate that tree shelters have real potential for use in forest restoration projects on sites with moderate nutria populations. Tree shelters may even prove effective on sites with high nutria populations, as long as alternative food supplies are available.

  6. Extracting whole short rotation trees with a skidder and a front-end loader

    Treesearch

    R. Spinelli; B.R. Hartsough

    2001-01-01

    We time-studied a Caterpillar 950F front-end loader and a Caterpillar 528 grapple skidder used to extract bunched whole trees to a landing in a short rotation Eucalyptus plantation. The loader was 40-60% more productive than the grapple skidder, depending on extraction distance. Alternatively, the single loader could both extract trees and handle the landing duties,...

  7. OAKSIM: An individual-tree growth and yield simulator for managed, even-aged, upland oak stands

    Treesearch

    Donald E. Hilt; Donald E. Hilt

    1985-01-01

    OAKSIM is an individual-tree growth and yield simulator for managed, even-aged, upland oak stands. Growth and yield projections for various thinning alternatives can be made with OAKSIM for a period of up to 50 years. Simulator components include an individual-tree diameter growth model, a mortality model, height prediction equations, bark ratio equations, a taper-...

  8. Portfolio theory and the alternative decision rule of cost-effectiveness analysis: theoretical and practical considerations.

    PubMed

    Sendi, Pedram; Al, Maiwenn J; Gafni, Amiram; Birch, Stephen

    2004-05-01

    Bridges and Terris (Soc. Sci. Med. (2004)) critique our paper on the alternative decision rule of economic evaluation in the presence of uncertainty and constrained resources within the context of a portfolio of health care programs (Sendi et al. Soc. Sci. Med. 57 (2003) 2207). They argue that by not adopting a formal portfolio theory approach we overlook the optimal solution. We show that these arguments stem from a fundamental misunderstanding of the alternative decision rule of economic evaluation. In particular, the portfolio theory approach advocated by Bridges and Terris is based on the same theoretical assumptions that the alternative decision rule set out to relax. Moreover, Bridges and Terris acknowledge that the proposed portfolio theory approach may not identify the optimal solution to resource allocation problems. Hence, it provides neither theoretical nor practical improvements to the proposed alternative decision rule.

  9. Constructing a Graphic Organizer in the Classroom: Introductory Students' Perception of Achievement Using a Decision Map to Solve Aqueous Acid-Base Equilibria Problems

    ERIC Educational Resources Information Center

    DeMeo, Stephen

    2007-01-01

    Common examples of graphic organizers include flow diagrams, concept maps, and decision trees. The author has created a novel type of graphic organizer called a decision map. A decision map is a directional heuristic that helps learners solve problems within a generic framework. It incorporates questions that the user must answer and contains…

  10. The estimation of tree posterior probabilities using conditional clade probability distributions.

    PubMed

    Larget, Bret

    2013-07-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample.

  11. Outsourcing the Portal: Another Branch in the Decision Tree.

    ERIC Educational Resources Information Center

    McMahon, Tim

    2000-01-01

    Discussion of the management of information resources in organizations focuses on the use of portal technologies to update intranet capabilities. Considers application outsourcing decisions, reviews benefits (including reducing costs) as well as concerns, and describes application service providers (ASPs). (LRW)

  12. Not seeing the forest for the trees: size of the minimum spanning trees (MSTs) forest and branch significance in MST-based phylogenetic analysis.

    PubMed

    Teixeira, Andreia Sofia; Monteiro, Pedro T; Carriço, João A; Ramirez, Mário; Francisco, Alexandre P

    2015-01-01

    Trees, including minimum spanning trees (MSTs), are commonly used in phylogenetic studies. But, for the research community, it may be unclear that the presented tree is just a hypothesis, chosen from among many possible alternatives. In this scenario, it is important to quantify our confidence in both the trees and the branches/edges included in such trees. In this paper, we address this problem for MSTs by introducing a new edge betweenness metric for undirected and weighted graphs. This spanning edge betweenness metric is defined as the fraction of equivalent MSTs where a given edge is present. The metric provides a per edge statistic that is similar to that of the bootstrap approach frequently used in phylogenetics to support the grouping of taxa. We provide methods for the exact computation of this metric based on the well known Kirchhoff's matrix tree theorem. Moreover, we implement and make available a module for the PHYLOViZ software and evaluate the proposed metric concerning both effectiveness and computational performance. Analysis of trees generated using multilocus sequence typing data (MLST) and the goeBURST algorithm revealed that the space of possible MSTs in real data sets is extremely large. Selection of the edge to be represented using bootstrap could lead to unreliable results since alternative edges are present in the same fraction of equivalent MSTs. The choice of the MST to be presented, results from criteria implemented in the algorithm that must be based in biologically plausible models.

  13. Predictions of the pathological response to neoadjuvant chemotherapy in patients with primary breast cancer using a data mining technique.

    PubMed

    Takada, M; Sugimoto, M; Ohno, S; Kuroi, K; Sato, N; Bando, H; Masuda, N; Iwata, H; Kondo, M; Sasano, H; Chow, L W C; Inamoto, T; Naito, Y; Tomita, M; Toi, M

    2012-07-01

    Nomogram, a standard technique that utilizes multiple characteristics to predict efficacy of treatment and likelihood of a specific status of an individual patient, has been used for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. The aim of this study was to develop a novel computational technique to predict the pathological complete response (pCR) to NAC in primary breast cancer patients. A mathematical model using alternating decision trees, an epigone of decision tree, was developed using 28 clinicopathological variables that were retrospectively collected from patients treated with NAC (n = 150), and validated using an independent dataset from a randomized controlled trial (n = 173). The model selected 15 variables to predict the pCR with yielding area under the receiver operating characteristics curve (AUC) values of 0.766 [95 % confidence interval (CI)], 0.671-0.861, P value < 0.0001) in cross-validation using training dataset and 0.787 (95 % CI 0.716-0.858, P value < 0.0001) in the validation dataset. Among three subtypes of breast cancer, the luminal subgroup showed the best discrimination (AUC = 0.779, 95 % CI 0.641-0.917, P value = 0.0059). The developed model (AUC = 0.805, 95 % CI 0.716-0.894, P value < 0.0001) outperformed multivariate logistic regression (AUC = 0.754, 95 % CI 0.651-0.858, P value = 0.00019) of validation datasets without missing values (n = 127). Several analyses, e.g. bootstrap analysis, revealed that the developed model was insensitive to missing values and also tolerant to distribution bias among the datasets. Our model based on clinicopathological variables showed high predictive ability for pCR. This model might improve the prediction of the response to NAC in primary breast cancer patients.

  14. A Pattern-Based Definition of Urban Context Using Remote Sensing and GIS

    PubMed Central

    Benza, Magdalena; Weeks, John R.; Stow, Douglas A.; López-Carr, David; Clarke, Keith C.

    2016-01-01

    In Sub-Saharan Africa rapid urban growth combined with rising poverty is creating diverse urban environments, the nature of which are not adequately captured by a simple urban-rural dichotomy. This paper proposes an alternative classification scheme for urban mapping based on a gradient approach for the southern portion of the West African country of Ghana. Landsat Enhanced Thematic Mapper Plus (ETM+) and European Remote Sensing Satellite-2 (ERS-2) synthetic aperture radar (SAR) imagery are used to generate a pattern based definition of the urban context. Spectral mixture analysis (SMA) is used to classify a Landsat scene into Built, Vegetation and Other land covers. Landscape metrics are estimated for Built and Vegetation land covers for a 450 meter uniform grid covering the study area. A measure of texture is extracted from the SAR imagery and classified as Built/Non-built. SMA based measures of Built and Vegetation fragmentation are combined with SAR texture based Built/Non-built maps through a decision tree classifier to generate a nine class urban context map capturing the transition from unsettled land at one end of the gradient to the compact urban core at the other end. Training and testing of the decision tree classifier was done using very high spatial resolution reference imagery from Google Earth. An overall classification agreement of 77% was determined for the nine-class urban context map, with user’s accuracy (commission errors) being lower than producer’s accuracy (omission errors). Nine urban contexts were classified and then compared with data from the 2000 Census of Ghana. Results suggest that the urban classes appropriately differentiate areas along the urban gradient. PMID:27867227

  15. Application of data mining techniques to explore predictors of HCC in Egyptian patients with HCV-related chronic liver disease.

    PubMed

    Omran, Dalia Abd El Hamid; Awad, AbuBakr Hussein; Mabrouk, Mahasen Abd El Rahman; Soliman, Ahmad Fouad; Aziz, Ashraf Omar Abdel

    2015-01-01

    Hepatocellular carcinoma (HCC) is the second most common malignancy in Egypt. Data mining is a method of predictive analysis which can explore tremendous volumes of information to discover hidden patterns and relationships. Our aim here was to develop a non-invasive algorithm for prediction of HCC. Such an algorithm should be economical, reliable, easy to apply and acceptable by domain experts. This cross-sectional study enrolled 315 patients with hepatitis C virus (HCV) related chronic liver disease (CLD); 135 HCC, 116 cirrhotic patients without HCC and 64 patients with chronic hepatitis C. Using data mining analysis, we constructed a decision tree learning algorithm to predict HCC. The decision tree algorithm was able to predict HCC with recall (sensitivity) of 83.5% and precession (specificity) of 83.3% using only routine data. The correctly classified instances were 259 (82.2%), and the incorrectly classified instances were 56 (17.8%). Out of 29 attributes, serum alpha fetoprotein (AFP), with an optimal cutoff value of ≥50.3 ng/ml was selected as the best predictor of HCC. To a lesser extent, male sex, presence of cirrhosis, AST>64U/L, and ascites were variables associated with HCC. Data mining analysis allows discovery of hidden patterns and enables the development of models to predict HCC, utilizing routine data as an alternative to CT and liver biopsy. This study has highlighted a new cutoff for AFP (≥50.3 ng/ml). Presence of a score of >2 risk variables (out of 5) can successfully predict HCC with a sensitivity of 96% and specificity of 82%.

  16. Cost-utility evaluation of vortioxetine in patients with Major Depressive Disorder experiencing inadequate response to alternative antidepressants in the United Kingdom.

    PubMed

    Young, A H; Evitt, L; Brignone, M; Diamand, F; Atsou, K; Campbell, R; Cure, S; Danchenko, N

    2017-08-15

    Patients frequently require several lines of therapy for treatment of major depressive episodes. This economic analysis details the management of patients who responded inadequately due to lack of efficacy or intolerability to two previous antidepressants in the UK. The model included a decision tree and a Markov component. Health states considered in the decision tree were remission, response, no response, withdrawal due to adverse events, relapse, recovery, and recurrence. The time horizon was 24 months. Patients were on third-line treatment for up to a 3-month acute phase and a 6-month maintenance phase. As third-line efficacy data were not available, inputs were calculated by adjusting original second-line data to third-line based on proportionate reductions observed in STAR*D. Equivalent efficacy was assumed for all comparators. Healthcare resource use and utilities were based on UK estimates. Vortioxetine was a cost-effective treatment option at a threshold of £20,000/QALY vs. escitalopram, citalopram, sertraline, and was associated with more health benefits, less costs (was dominant) versus relevant third-line comparators venlafaxine and duloxetine. Agomelatine was found not to be a cost-effective option. The 22-month maintenance phase treatment scenario results were similar to the 6-month base case. Third-line efficacy data were not available. This highlights the need for studies in patients receiving third-line treatment. This model provides an overview for the management of patients receiving third-line treatment where limited evidence currently exists. Vortioxetine, with its novel mechanism of action, is expected to be a dominant treatment option versus relevant comparators in the UK. Copyright © 2017. Published by Elsevier B.V.

  17. A Pattern-Based Definition of Urban Context Using Remote Sensing and GIS.

    PubMed

    Benza, Magdalena; Weeks, John R; Stow, Douglas A; López-Carr, David; Clarke, Keith C

    2016-09-15

    In Sub-Saharan Africa rapid urban growth combined with rising poverty is creating diverse urban environments, the nature of which are not adequately captured by a simple urban-rural dichotomy. This paper proposes an alternative classification scheme for urban mapping based on a gradient approach for the southern portion of the West African country of Ghana. Landsat Enhanced Thematic Mapper Plus (ETM+) and European Remote Sensing Satellite-2 (ERS-2) synthetic aperture radar (SAR) imagery are used to generate a pattern based definition of the urban context. Spectral mixture analysis (SMA) is used to classify a Landsat scene into Built, Vegetation and Other land covers. Landscape metrics are estimated for Built and Vegetation land covers for a 450 meter uniform grid covering the study area. A measure of texture is extracted from the SAR imagery and classified as Built/Non-built. SMA based measures of Built and Vegetation fragmentation are combined with SAR texture based Built/Non-built maps through a decision tree classifier to generate a nine class urban context map capturing the transition from unsettled land at one end of the gradient to the compact urban core at the other end. Training and testing of the decision tree classifier was done using very high spatial resolution reference imagery from Google Earth. An overall classification agreement of 77% was determined for the nine-class urban context map, with user's accuracy (commission errors) being lower than producer's accuracy (omission errors). Nine urban contexts were classified and then compared with data from the 2000 Census of Ghana. Results suggest that the urban classes appropriately differentiate areas along the urban gradient.

  18. Multi-Criteria Decision Making for a Spatial Decision Support System on the Analysis of Changing Risk

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; van Westen, Cees; Bakker, Wim H.; Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri

    2014-05-01

    Natural hazard risk management requires decision making in several stages. Decision making on alternatives for risk reduction planning starts with an intelligence phase for recognition of the decision problems and identifying the objectives. Development of the alternatives and assigning the variable by decision makers to each alternative are employed to the design phase. Final phase evaluates the optimal choice by comparing the alternatives, defining indicators, assigning a weight to each and ranking them. This process is referred to as Multi-Criteria Decision Making analysis (MCDM), Multi-Criteria Evaluation (MCE) or Multi-Criteria Analysis (MCA). In the framework of the ongoing 7th Framework Program "CHANGES" (2011-2014, Grant Agreement No. 263953) of the European Commission, a Spatial Decision Support System is under development, that has the aim to analyse changes in hydro-meteorological risk and provide support to selecting the best risk reduction alternative. This paper describes the module for Multi-Criteria Decision Making analysis (MCDM) that incorporates monetary and non-monetary criteria in the analysis of the optimal alternative. The MCDM module consists of several components. The first step is to define criteria (or Indicators) which are subdivided into disadvantages (criteria that indicate the difficulty for implementing the risk reduction strategy, also referred to as Costs) and advantages (criteria that indicate the favorability, also referred to as benefits). In the next step the stakeholders can use the developed web-based tool for prioritizing criteria and decision matrix. Public participation plays a role in decision making and this is also planned through the use of a mobile web-version where the general local public can indicate their agreement on the proposed alternatives. The application is being tested through a case study related to risk reduction of a mountainous valley in the Alps affected by flooding. Four alternatives are evaluated in this case study namely: construction of defense structures, relocation, implementation of an early warning system and spatial planning regulations. Some of the criteria are determined partly in other modules of the CHANGES SDSS, such as the costs for implementation, the risk reduction in monetary values, and societal risk. Other criteria, which could be environmental, economic, cultural, perception in nature, are defined by different stakeholders such as local authorities, expert organizations, private sector, and local public. In the next step, the stakeholders weight the importance of the criteria by pairwise comparison and visualize the decision matrix, which is a matrix based on criteria versus alternatives values. Finally alternatives are ranked by Analytic Hierarchy Process (AHP) method. We expect that this approach will help the decision makers to ease their works and reduce their costs, because the process is more transparent, more accurate and involves a group decision. In that way there will be more confidence in the overall decision making process. Keywords: MCDM, Analytic Hierarchy Process (AHP), SDSS, Natural Hazard Risk Management

  19. An Assessment of Differences in Tree Cover Measurements between Landsat and Lidar-derived Products

    NASA Astrophysics Data System (ADS)

    Tang, H.; Song, X. P.; Armston, J.; Hancock, S.; Duncanson, L.; Zhao, F. A.; Schaaf, C.; Strahler, A. H.; Huang, C.; Hansen, M.; Goetz, S. J.; Dubayah, R.

    2016-12-01

    Tree cover is one of the most important canopy structural variables describe interactions between atmosphere and biosphere, and is also linked to the function and quality of ecosystem services. Large-area tree cover measurements are traditionally based on multispectral satellite imagery, and there are several global products available at high to medium spatial resolution (30m-1km). Recent developments in lidar remote sensing, including the upcoming Global Ecosystem Dynamics Investigation (GEDI) lidar, offers an alternative means to map tree cover over broad geographical extents. However, differences in the definition of tree cover and the retrieval method can result in large discrepancies between products derived from multispectral imagery and lidar data, and can potentially impact their further use in ecosystem modelling and above-ground biomass mapping. To separate the effects of cover definition and retrieval method, we first conducted a meta-analysis of several tree cover data sets across different biogeographic regions using three publicly available Landsat-based tree cover products (GLCF, NLCD and GLAD), and two waveform and discrete return airborne lidar products. We found that, whereas Landsat products had low-moderate agreements (up to 40% mean difference) on tree cover estimates particularly at the high end (e.g. >80%), airborne lidar can provide more accurate and consistent measurements (mean difference < 5%) when compared with field data. The differences among Landsat products were mainly due to low measurement accuracy and those among lidar products were caused by different definitions of tree cover (e.g. crown cover vs. fractional cover). We further recommended the use of lidar data as a complement or alternative to ultra-fine resolution images in training/validating Landsat-class images for large-area tree cover mapping.

  20. A novel decision tree approach based on transcranial Doppler sonography to screen for blunt cervical vascular injuries.

    PubMed

    Purvis, Dianna; Aldaghlas, Tayseer; Trickey, Amber W; Rizzo, Anne; Sikdar, Siddhartha

    2013-06-01

    Early detection and treatment of blunt cervical vascular injuries prevent adverse neurologic sequelae. Current screening criteria can miss up to 22% of these injuries. The study objective was to investigate bedside transcranial Doppler sonography for detecting blunt cervical vascular injuries in trauma patients using a novel decision tree approach. This prospective pilot study was conducted at a level I trauma center. Patients undergoing computed tomographic angiography for suspected blunt cervical vascular injuries were studied with transcranial Doppler sonography. Extracranial and intracranial vasculatures were examined with a portable power M-mode transcranial Doppler unit. The middle cerebral artery mean flow velocity, pulsatility index, and their asymmetries were used to quantify flow patterns and develop an injury decision tree screening protocol. Student t tests validated associations between injuries and transcranial Doppler predictive measures. We evaluated 27 trauma patients with 13 injuries. Single vertebral artery injuries were most common (38.5%), followed by single internal carotid artery injuries (30%). Compared to patients without injuries, mean flow velocity asymmetry was higher for single internal carotid artery (P = .003) and single vertebral artery (P = .004) injuries. Similarly, pulsatility index asymmetry was higher in single internal carotid artery (P = .015) and single vertebral artery (P = .042) injuries, whereas the lowest pulsatility index was elevated for bilateral vertebral artery injuries (P = .006). The decision tree yielded 92% specificity, 93% sensitivity, and 93% correct classifications. In this pilot feasibility study, transcranial Doppler measures were significantly associated with the blunt cervical vascular injury status, suggesting that transcranial Doppler sonography might be a viable bedside screening tool for trauma. Patient-specific hemodynamic information from transcranial Doppler assessment has the potential to alter patient care pathways to improve outcomes.

  1. An evaluation of consensus techniques for diagnostic interpretation

    NASA Astrophysics Data System (ADS)

    Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.

    2018-02-01

    Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.

  2. Engineering design for pedestrian safety at highway-rail grade crossings

    DOT National Transportation Integrated Search

    2016-07-01

    A number of pedestrian treatments at railroad grade crossings have been developed and are used throughout the United States. The decision of when to use these treatments is generally a matter of best practices, using a decision tree, or conducting a ...

  3. Health and climate related ecosystem services provided by street trees in the urban environment.

    PubMed

    Salmond, Jennifer A; Tadaki, Marc; Vardoulakis, Sotiris; Arbuthnott, Katherine; Coutts, Andrew; Demuzere, Matthias; Dirks, Kim N; Heaviside, Clare; Lim, Shanon; Macintyre, Helen; McInnes, Rachel N; Wheeler, Benedict W

    2016-03-08

    Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.

  4. A tree biomass and carbon estimation system

    Treesearch

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  5. Comparison of a Skidder and Front-End Loader for Primary Transport of Short-Rotation Trees

    Treesearch

    Raffaele Spinelli; Bruce R. Hartsough

    1999-01-01

    We time-studied a Cat 950F and a Cat 528 grapple skidder as extraction devices for moving bunched whole trees to a landing in a short rotation eucalyptus plantation. The front-end loader was 40 to 60% more productive than the grapple skidder, depending on extraction distance. Alternatively, the single loader could both extract trees and handle the landing duties such...

  6. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    PubMed Central

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  7. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-02-10

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community.

  8. A quantitative method for evaluating alternatives. [aid to decision making

    NASA Technical Reports Server (NTRS)

    Forthofer, M. J.

    1981-01-01

    When faced with choosing between alternatives, people tend to use a number of criteria (often subjective, rather than objective) to decide which is the best alternative for them given their unique situation. The subjectivity inherent in the decision-making process can be reduced by the definition and use of a quantitative method for evaluating alternatives. This type of method can help decision makers achieve degree of uniformity and completeness in the evaluation process, as well as an increased sensitivity to the factors involved. Additional side-effects are better documentation and visibility of the rationale behind the resulting decisions. General guidelines for defining a quantitative method are presented and a particular method (called 'hierarchical weighted average') is defined and applied to the evaluation of design alternatives for a hypothetical computer system capability.

  9. Observational research with adolescents: a framework for the management of the parental permission

    PubMed Central

    2013-01-01

    Background Waiving parent permission can be an option in some epidemiological and social research with adolescents. However, exemptions have not been uniformly considered or applied. Our aim is to critically assess the different factors that could be taken into account when making decisions about waiving active parental permission in observational research with adolescents. Discussion In some cases alternatives to parental permission could be applied to protect the rights of both adolescents and parents and also to assure the benefits to adolescents as a group that can come from appropriately conducted studies. However, the criteria of ensuring minimal risk can be difficult to define and apply and a distinction between harm and discomfort is reviewed. Waiving active parental permission could be acceptable when the risk of harm is minimal; when the research questions are related to an activity for which adolescents are not legally considered to be children; when the risk of harm or discomfort may increase if parental permission is required; and when risk of discomfort is low because the questionnaire is not potentially offensive for some adolescents and/or for some parents. Summary Stringent rules concerning parental permission in some studies could be detrimental to adolescents. A framework and a decision tree guide are proposed to help researchers and Research Ethics Committees in their decisions on whether active parental permission must be obtained. PMID:23286743

  10. Development of decision tools to assess migration from plastic materials in contact with food.

    PubMed

    Gillet, G; Vitrac, O; Tissier, D; Saillard, P; Desobry, S

    2009-12-01

    Testing the specific migration limits of all substances intentionally added to polymer material according to European Union (EU) regulation is a time-consuming and expensive task. Although mathematical modeling offers an interesting alternative, it can significantly overestimate the migration in situations which are strongly conservative due to significant uncertainty in transport properties. In addition, its application is of little use for end-users or enforcement laboratories, which do not have access to the formulation. This paper revises the paradigm of migration modeling by combining modeling with deformulation experiments and iterative modeling in the framework of decision theory. The complete approach is illustrated for polyolefins in contact with 50% ethanol for eight typical migrants, including hindered phenolic antioxidants and low molecular weight surrogates. Results from a French ACTIA project on the identification of formulation fingerprints and on the prediction of partition coefficients with alcoholic and aqueous stimulants is described. When the true migration was close but still lower than the limit of concern, the proposed compact decision tree, including up to four sources of uncertainty, showed that the chance of demonstrating compliance was about 3 : 4 in the presence of one source of uncertainty, whereas it fell below 2 : 4 and 1 : 4 with two and three sources of uncertainty, respectively. The recommendations for further food packaging safety surveys and future developments are discussed.

  11. Local dynamics in decision making: The evolution of preference within and across decisions

    NASA Astrophysics Data System (ADS)

    O'Hora, Denis; Dale, Rick; Piiroinen, Petri T.; Connolly, Fionnuala

    2013-07-01

    Within decisions, perceived alternatives compete until one is preferred. Across decisions, the playing field on which these alternatives compete evolves to favor certain alternatives. Mouse cursor trajectories provide rich continuous information related to such cognitive processes during decision making. In three experiments, participants learned to choose symbols to earn points in a discrimination learning paradigm and the cursor trajectories of their responses were recorded. Decisions between two choices that earned equally high-point rewards exhibited far less competition than decisions between choices that earned equally low-point rewards. Using positional coordinates in the trajectories, it was possible to infer a potential field in which the choice locations occupied areas of minimal potential. These decision spaces evolved through the experiments, as participants learned which options to choose. This visualisation approach provides a potential framework for the analysis of local dynamics in decision-making that could help mitigate both theoretical disputes and disparate empirical results.

  12. Visualizing Decision-making Behaviours in Agent-based Autonomous Spacecraft

    NASA Technical Reports Server (NTRS)

    North, Steve; Hennessy, Joseph F. (Technical Monitor)

    2003-01-01

    The authors will report initial progress on the PIAudit project as a Research Resident Associate Program. The objective of this research is to prototype a tool for visualizing decision-making behaviours in autonomous spacecraft. This visualization will serve as an information source for human analysts. The current visualization prototype for PIAudit combines traditional Decision Trees with Weights of Evidence.

  13. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  14. The Estimation of Tree Posterior Probabilities Using Conditional Clade Probability Distributions

    PubMed Central

    Larget, Bret

    2013-01-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample. [Bayesian phylogenetics; conditional clade distributions; improved accuracy; posterior probabilities of trees.] PMID:23479066

  15. Evaluation of the cost-effectiveness of bovine brucellosis surveillance in a disease-free country using stochastic scenario tree modelling.

    PubMed

    Hénaux, Viviane; Calavas, Didier

    2017-01-01

    Surveillance systems of exotic infectious diseases aim to ensure transparency about the country-specific animal disease situation (i.e. demonstrate disease freedom) and to identify any introductions. In a context of decreasing resources, evaluation of surveillance efficiency is essential to help stakeholders make relevant decisions about prioritization of measures and funding allocation. This study evaluated the efficiency (sensitivity related to cost) of the French bovine brucellosis surveillance system using stochastic scenario tree models. Cattle herds were categorized into three risk groups based on the annual number of purchases, given that trading is considered as the main route of brucellosis introduction in cattle herds. The sensitivity in detecting the disease and the costs of the current surveillance system, which includes clinical (abortion) surveillance, programmed serological testing and introduction controls, were compared to those of 19 alternative surveillance scenarios. Surveillance costs included veterinary fees and laboratory analyses. The sensitivity over a year of the current surveillance system was predicted to be 91±7% at a design prevalence of 0.01% for a total cost of 14.9±1.8 million €. Several alternative surveillance scenarios, based on clinical surveillance and random or risk-based serological screening in a sample (20%) of the population, were predicted to be at least as sensitive but for a lower cost. Such changes would reduce whole surveillance costs by 20 to 61% annually, and the costs for farmers only would be decreased from about 12.0 million € presently to 5.3-9.0 million € (i.e. 25-56% decrease). Besides, fostering the evolution of the surveillance system in one of these directions would be in agreement with the European regulations and farmers perceptions on brucellosis risk and surveillance.

  16. Evaluation of the cost-effectiveness of bovine brucellosis surveillance in a disease-free country using stochastic scenario tree modelling

    PubMed Central

    Calavas, Didier

    2017-01-01

    Surveillance systems of exotic infectious diseases aim to ensure transparency about the country-specific animal disease situation (i.e. demonstrate disease freedom) and to identify any introductions. In a context of decreasing resources, evaluation of surveillance efficiency is essential to help stakeholders make relevant decisions about prioritization of measures and funding allocation. This study evaluated the efficiency (sensitivity related to cost) of the French bovine brucellosis surveillance system using stochastic scenario tree models. Cattle herds were categorized into three risk groups based on the annual number of purchases, given that trading is considered as the main route of brucellosis introduction in cattle herds. The sensitivity in detecting the disease and the costs of the current surveillance system, which includes clinical (abortion) surveillance, programmed serological testing and introduction controls, were compared to those of 19 alternative surveillance scenarios. Surveillance costs included veterinary fees and laboratory analyses. The sensitivity over a year of the current surveillance system was predicted to be 91±7% at a design prevalence of 0.01% for a total cost of 14.9±1.8 million €. Several alternative surveillance scenarios, based on clinical surveillance and random or risk-based serological screening in a sample (20%) of the population, were predicted to be at least as sensitive but for a lower cost. Such changes would reduce whole surveillance costs by 20 to 61% annually, and the costs for farmers only would be decreased from about 12.0 million € presently to 5.3–9.0 million € (i.e. 25–56% decrease). Besides, fostering the evolution of the surveillance system in one of these directions would be in agreement with the European regulations and farmers perceptions on brucellosis risk and surveillance. PMID:28859107

  17. Ignorance isn't bliss: why patients become angry.

    PubMed

    Sonnenberg, Amnon

    2015-06-01

    Patients with cognitive limitations may struggle understanding complex arguments and feel overwhelmed by the need to choose among medical options that they poorly understand. Such struggle may result in frustration and anger directed at the physician. The aim of the present study is to explain the characteristics underlying such situations. A decision tree is modeled to capture the choice that every patient has to make after receiving medical advice. Patient choices are phrased in terms of a threshold probability for accepting or rejecting advice by physicians. To a patient with poor understanding of medical exigencies all differences between present or absent disease state, prognosis, and risks of intervention may seem largely arbitrary and meaningless. With little or no guidance to make an informed decision, taking any medical action is deemed wasted and harmful, whereas inaction leaves the underlying medical problem unsolved. Both choices appear equally ineffective with respect to the patient's symptoms and therefore unappealing. As shown by applying threshold analysis to a patient in a state of ignorance, no threshold probability for following medical advice exists. Patients with cognitive limitations will become frustrated and angry by a seemingly dismal situation without good alternatives to choose from.

  18. [Study on extraction method of Panax notoginseng plots in Wenshan of Yunnan province based on decision tree model].

    PubMed

    Shi, Ting-Ting; Zhang, Xiao-Bo; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    The herbs used as the material for traditional Chinese medicine are always planted in the mountainous area where the natural environment is suitable. As the mountain terrain is complex and the distribution of planting plots is scattered, the traditional survey method is difficult to obtain accurate planting area. It is of great significance to provide decision support for the conservation and utilization of traditional Chinese medicine resources by studying the method of extraction of Chinese herbal medicine planting area based on remote sensing and realizing the dynamic monitoring and reserve estimation of Chinese herbal medicines. In this paper, taking the Panax notoginseng plots in Wenshan prefecture of Yunnan province as an example, the China-made GF-1multispectral remote sensing images with a 16 m×16 m resolution were obtained. Then, the time series that can reflect the difference of spectrum of P. notoginseng shed and the background objects were selected to the maximum extent, and the decision tree model of extraction the of P. notoginseng plots was constructed according to the spectral characteristics of the surface features. The results showed that the remote sensing classification method based on the decision tree model could extract P. notoginseng plots in the study area effectively. The method can provide technical support for extraction of P. notoginseng plots at county level. Copyright© by the Chinese Pharmaceutical Association.

  19. A New Decision Tree to Solve the Puzzle of Alzheimer's Disease Pathogenesis Through Standard Diagnosis Scoring System.

    PubMed

    Kumar, Ashwani; Singh, Tiratha Raj

    2017-03-01

    Alzheimer's disease (AD) is a progressive, incurable and terminal neurodegenerative disorder of the brain and is associated with mutations in amyloid precursor protein, presenilin 1, presenilin 2 or apolipoprotein E, but its underlying mechanisms are still not fully understood. Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the clinical dataset are therefore increasingly becoming necessary. The current study deals with the construction of classifiers that can be human readable as well as robust in performance for gene dataset of AD using a decision tree. Models of classification for different AD genes were generated according to Mini-Mental State Examination scores and all other vital parameters to achieve the identification of the expression level of different proteins of disorder that may possibly determine the involvement of genes in various AD pathogenesis pathways. The effectiveness of decision tree in AD diagnosis is determined by information gain with confidence value (0.96), specificity (92 %), sensitivity (98 %) and accuracy (77 %). Besides this functional gene classification using different parameters and enrichment analysis, our finding indicates that the measures of all the gene assess in single cohorts are sufficient to diagnose AD and will help in the prediction of important parameters for other relevant assessments.

  20. Operational Performance Risk Assessment in Support of A Supervisory Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denning, Richard S.; Muhlheim, Michael David; Cetiner, Sacit M.

    Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activatingmore » plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.« less

Top