Multiple velocity encoding in the phase of an MRI signal
NASA Astrophysics Data System (ADS)
Benitez-Read, E. E.
2017-01-01
The measurement of fluid velocity by encoding it in the phase of a magnetic resonance imaging (MRI) signal could allow the discrimination of the stationary spins signals from those of moving spins. This results in a wide variety of applications i.e. in medicine, in order to obtain more than angiograms, blood velocity images of veins, arteries and other vessels without having static tissue perturbing the signal of fluid in motion. The work presented in this paper is a theoretical analysis of some novel methods for multiple fluid velocity encoding in the phase of an MRI signal. These methods are based on a tripolar gradient (TPG) and can be an alternative to the conventional methods based on a bipolar gradient (BPG) and could be more suitable for multiple velocity encoding in the phase of an MRI signal.
Zhang, Ziheng; Dione, Donald P.; Brown, Peter B.; Shapiro, Erik M.; Sinusas, Albert J.; Sampath, Smita
2011-01-01
A novel MR imaging technique, spatial modulation of magnetization with polarity alternating velocity encoding (SPAMM-PAV), is presented to simultaneously examine the left ventricular early diastolic temporal relationships between myocardial deformation and intra-cavity hemodynamics with a high temporal resolution of 14 ms. This approach is initially evaluated in a dynamic flow and tissue mimicking phantom. A comparison of regional longitudinal strains and intra-cavity pressure differences (integration of computed in-plane pressure gradients within a selected region) in relation to mitral valve inflow velocities is performed in eight normal volunteers. Our results demonstrate that apical regions have higher strain rates (0.145 ± 0.005 %/ms) during the acceleration period of rapid filling compared to mid-ventricular (0.114 ± 0.007 %/ms) and basal regions (0.088 ± 0.009 %/ms), and apical strain curves plateau at peak mitral inflow velocity. This pattern is reversed during the deceleration period, when the strain-rates in the basal regions are the highest (0.027 ± 0.003 %/ms) due to ongoing basal stretching. A positive base-to-apex gradient in peak pressure difference is observed during acceleration, followed by a negative base-to apex gradient during deceleration. These studies shed insight into the regional volumetric and pressure difference changes in the left ventricle during early diastolic filling. PMID:21630348
Accelerated radial Fourier-velocity encoding using compressed sensing.
Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert
2014-09-01
Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus, compared to normal Phase Contrast measurements delivering only mean velocities, no additional scan time is necessary to retrieve meaningful velocity spectra in small vessels. Copyright © 2013. Published by Elsevier GmbH.
Brenner, L D; Caputo, G R; Mostbeck, G; Steiman, D; Dulce, M; Cheitlin, M D; O'Sullivan, M; Higgins, C B
1992-11-01
The purpose of this study was to evaluate the ability of velocity-encoded nuclear magnetic resonance (NMR) imaging to quantify left to right intracardiac shunts in patients with an atrial septal defect. Quantification of intracardiac shunts is clinically important in planning therapy. Velocity-encoded NMR imaging was used to quantify stroke flow in the aorta and in the main pulmonary artery in a group of patients who were known to have an increased pulmonary to systemic flow ratio (Qp/Qs). The velocity-encoded NMR flow data were used to calculate Qp/Qs, and these values were compared with measurements of Qp/Qs obtained with oximetric data derived from cardiac catheterization and from stroke volume measurements of the two ventricles by using volumetric data from biphasic spin echo and cine NMR images obtained at end-diastole and end-systole. Two independent observers measured Qp/Qs by using velocity-encoded NMR imaging in 11 patients and found Qp/Qs ranging from 1.4:1 to 3.9:1. These measurements correlated well with both oximetric data (r = 0.91, SEE = 0.35) and ventricular volumetric data (r = 0.94, SEE = 0.30). Interobserver reproducibility for Qp/Qs by velocity-encoded NMR imaging was good (r = 0.97, SEE = 0.20). Velocity-encoded NMR imaging is an accurate and reproducible method for measuring Qp/Qs in left to right shunts. Because it is completely noninvasive, it can be used to monitor shunt volume over time.
Source encoding in multi-parameter full waveform inversion
NASA Astrophysics Data System (ADS)
Matharu, Gian; Sacchi, Mauricio D.
2018-04-01
Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.
Hall effect encoding of brushless dc motors
NASA Technical Reports Server (NTRS)
Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.
1970-01-01
Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.
Alternative intronic promoters in development and disease.
Vacik, Tomas; Raska, Ivan
2017-05-01
Approximately 20,000 mammalian genes are estimated to encode between 250 thousand and 1 million different proteins. This enormous diversity of the mammalian proteome is caused by the ability of a single-gene locus to encode multiple protein isoforms. Protein isoforms encoded by one gene locus can be functionally distinct, and they can even have antagonistic functions. One of the mechanisms involved in creating this proteome complexity is alternative promoter usage. Alternative intronic promoters are located downstream from their canonical counterparts and drive the expression of alternative RNA isoforms that lack upstream exons. These upstream exons can encode some important functional domains, and proteins encoded by alternative mRNA isoforms can be thus functionally distinct from the full-length protein encoded by canonical mRNA isoforms. Since any misbalance of functionally distinct protein isoforms is likely to have detrimental consequences for the cell and the whole organism, their expression must be precisely regulated. Misregulation of alternative intronic promoters is frequently associated with various developmental defects and diseases including cancer, and it is becoming increasingly clear that this phenomenon deserves more attention.
Radial k-t SPIRiT: autocalibrated parallel imaging for generalized phase-contrast MRI.
Santelli, Claudio; Schaeffter, Tobias; Kozerke, Sebastian
2014-11-01
To extend SPIRiT to additionally exploit temporal correlations for highly accelerated generalized phase-contrast MRI and to compare the performance of the proposed radial k-t SPIRiT method relative to frame-by-frame SPIRiT and radial k-t GRAPPA reconstruction for velocity and turbulence mapping in the aortic arch. Free-breathing navigator-gated two-dimensional radial cine imaging with three-directional multi-point velocity encoding was implemented and fully sampled data were obtained in the aortic arch of healthy volunteers. Velocities were encoded with three different first gradient moments per axis to permit quantification of mean velocity and turbulent kinetic energy. Velocity and turbulent kinetic energy maps from up to 14-fold undersampled data were compared for k-t SPIRiT, frame-by-frame SPIRiT, and k-t GRAPPA relative to the fully sampled reference. Using k-t SPIRiT, improvements in magnitude and velocity reconstruction accuracy were found. Temporally resolved magnitude profiles revealed a reduction in spatial blurring with k-t SPIRiT compared with frame-by-frame SPIRiT and k-t GRAPPA for all velocity encodings, leading to improved estimates of turbulent kinetic energy. k-t SPIRiT offers improved reconstruction accuracy at high radial undersampling factors and hence facilitates the use of generalized phase-contrast MRI for routine use. Copyright © 2013 Wiley Periodicals, Inc.
Van Hellemond, J J; Simons, B; Millenaar, F F; Tielens, A G
1998-01-01
The constituents of the respiratory chain are believed to differ among the trypanosomatids; bloodstream stages of African trypanosomes and Phytomonas promastigotes oxidize ubiquinol by a ubiquinol:oxygen oxidoreductase, also known as alternative oxidase, whereas Leishmania spp. oxidize ubiquinol via a classic cytochrome-containing respiratory chain. The molecular basis for this elementary difference in ubiquinol oxidation by the mitochondrial electron-transport chain in distinct trypanosomatids was investigated. The presence of a gene encoding the plant-like alternative oxidase could be demonstrated in Phytomonas and Trypanosoma brucei, trypanosomatids that are known to contain alternative oxidase activity. Our results further demonstrated that Leishmania spp. lack a gene encoding the plant-like alternative oxidase, and therefore, all stages of Leishmania spp. will lack the alternative oxidase protein. The observed fundamental differences between the respiratory chains of distinct members of the trypanosomatid family are thus caused by the presence or absence of a gene encoding the plant-like alternative oxidase.
Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B
2014-06-01
To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.
Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation
Cromer, Jason A; Waitzman, David M
2006-01-01
Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward). According to each respective proposal, specific predictions about cMRF neuronal discharge have been formulated. Individual neurones should: (1) encode instantaneous eye velocity, (2) burst specifically in relation to saccade duration but not to other saccade metrics, or (3) have a spectrum of weak to strong correlations to saccade dynamics. To determine if cMRF neurones could subserve these multiple oculomotor roles, we examined neuronal activity in relation to a variety of saccade metrics including amplitude, velocity and duration. We found separate groups of cMRF neurones that have the characteristics predicted by each of the proposed models. We also identified a number of subgroups for which no specific model prediction had previously been established. We found that we could accurately predict the neuronal firing pattern during one type of saccade behaviour (visually guided) using the activity during an alternative behaviour with different saccade metrics (memory guided saccades). We suggest that this evidence of a close relationship of cMRF neuronal discharge to individual saccade metrics supports the hypothesis that the cMRF participates in multiple saccade control pathways carrying saccade amplitude, velocity and duration information within the brainstem. PMID:16308353
What happened (and what didn’t): Discourse constraints on encoding of plausible alternatives
Fraundorf, Scott H.; Benjamin, Aaron S.; Watson, Duane G.
2013-01-01
Three experiments investigated how font emphasis influences reading and remembering discourse. Although past work suggests that contrastive pitch contours benefit memory by promoting encoding of salient alternatives, it is unclear both whether this effect generalizes to other forms of linguistic prominence and how the set of alternatives is constrained. Participants read discourses in which some true propositions had salient alternatives (e.g., British scientists found the endangered monkey when the discourse also mentioned French scientists) and completed a recognition memory test. In Experiments 1 and 2, font emphasis in the initial presentation increased participants’ ability to later reject false statements about salient alternatives but not about unmentioned items (e.g., Portuguese scientists). In Experiment 3, font emphasis helped reject false statements about plausible alternatives, but not about less plausible alternatives that were nevertheless established in the discourse. These results suggest readers encode a narrow set of only those alternatives plausible in the particular discourse. They also indicate that multiple manipulations of linguistic prominence, not just prosody, can lead to consideration of alternatives. PMID:24014934
A Bayesian Model for Highly Accelerated Phase-Contrast MRI
Rich, Adam; Potter, Lee C.; Jin, Ning; Ash, Joshua; Simonetti, Orlando P.; Ahmad, Rizwan
2015-01-01
Purpose Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to PC-MRI. Theory and Methods ReVEAL models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. Results ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging (n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10. Conclusion ReVEAL enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration may be possible due to additional redundancy. PMID:26444911
Ankle joint movements are encoded by both cutaneous and muscle afferents in humans.
Aimonetti, Jean-Marc; Roll, Jean-Pierre; Hospod, Valérie; Ribot-Ciscar, Edith
2012-08-01
We analyzed the cutaneous encoding of two-dimensional movements by investigating the coding of movement velocity for differently oriented straight-line movements and the coding of complex trajectories describing cursive letters. The cutaneous feedback was then compared with that of the underlying muscle afferents previously recorded during the same "writing-like" movements. The unitary activity of 43 type II cutaneous afferents was recorded in the common peroneal nerve in healthy subjects during imposed ankle movements. These movements consisted first of ramp-and-hold movements imposed at two different and close velocities in seven directions and secondly of "writing-like" movements. In both cases, the responses were analyzed using the neuronal population vector model. The results show that movement velocity encoding depended on the direction of the ongoing movement. Discriminating between two velocities therefore involved processing the activity of afferent populations located in the various skin areas surrounding the moving joint, as shown by the statistically significant difference observed in the amplitude of the sum vectors. Secondly, "writing-like" movements induced cutaneous neuronal patterns of activity, which were reproducible and specific to each trajectory. Lastly, the "cutaneous neuronal trajectories," built by adding the sum vectors tip-to-tail, nearly matched both the movement trajectories and the "muscle neuronal trajectories," built from previously recorded muscle afferents. It was concluded that type II cutaneous and the underlying muscle afferents show similar encoding properties of two-dimensional movement parameters. This similarity is discussed in relation to a central gating process that would for instance increase the gain of cutaneous inputs when muscle information is altered by the fusimotor drive.
Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme
2010-01-01
The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001) but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37). The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key pointsSome commercial devices allow to estimate 1 RM from the force-velocity relationship.These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription.Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations.
Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme
2010-01-01
The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab’s software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001) but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37). The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key points Some commercial devices allow to estimate 1 RM from the force-velocity relationship. These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription. Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations. PMID:24149641
Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.
Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting
2016-10-05
An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.
Oddo, Calogero Maria; Beccai, Lucia; Wessberg, Johan; Wasling, Helena Backlund; Mattioli, Fabio; Carrozza, Maria Chiara
2011-01-01
The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system.
Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats
Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.
2015-01-01
Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486
A Bayesian model for highly accelerated phase-contrast MRI.
Rich, Adam; Potter, Lee C; Jin, Ning; Ash, Joshua; Simonetti, Orlando P; Ahmad, Rizwan
2016-08-01
Phase-contrast magnetic resonance imaging is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to four-dimensional flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to phase-contrast magnetic resonance imaging. The proposed approach models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. The proposed approach is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R≤10. For SV, Pearson r≥0.99 for phantom imaging (n = 24) and r≥0.96 for prospectively accelerated in vivo imaging (n = 10) for R≤10. The proposed approach enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to four-dimensional flow imaging, where higher acceleration may be possible due to additional redundancy. Magn Reson Med 76:689-701, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A metronome for controlling the mean velocity during the bench press exercise.
Moras, Gerard; Rodríguez-Jiménez, Sergio; Busquets, Albert; Tous-Fajardo, Julio; Pozzo, Marco; Mujika, Iñigo
2009-05-01
Lifting velocity may have a great impact on strength training-induced adaptations. The purpose of this study was to validate a method including a metronome and a measurement tape as inexpensive tools for the estimation of mean lifting velocity during the bench press exercise. Fifteen subjects participated in this study. After determining their one repetition maximum (1RM) load, we estimated the maximum metronome rhythm (R) that each subject could maintain in the concentric phase for loads of 40 and 60% of 1RM. To estimate R, the 3 repetitions with highest concentric power, as measured by means of a linear encoder, were selected, and their average duration was calculated and converted to lifting rhythm in beats per minute (bpm) for each subject. The range of motion was measured using a regular tape and kept constant during all exercises. Subjects were instructed to begin with the barbell at arm lengths and lower it in correspondence with the metronome beep. They subsequently performed 5 repetitions at 3 different rhythms relative to R (50, 70, and 90% R) for each training load (40 and 60% of 1RM). A linear encoder was attached to the bar and used as a criterion to measure the vertical displacement over time. For each rhythm, the mean velocity was calculated with the metronome (time) and the reference distance and compared with that recorded by the linear encoder. The SEM for velocity between both testing methods ranged from 0.02 to 0.05 m.s (coefficient of variation, 4.0-6.4%; Pearson's correlation, 0.8-0.95). The present results showed that the use of a metronome and a measurement tape may be a valid method to estimate the mean velocity of execution during the bench press exercise. This simple method could help coaches and athletes achieve their strength training goals, which are partly determined by lifting velocity.
Oddo, Calogero Maria; Beccai, Lucia; Wessberg, Johan; Wasling, Helena Backlund; Mattioli, Fabio; Carrozza, Maria Chiara
2011-01-01
The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system. PMID:22163915
Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis
Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo
2016-01-01
Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern “vitality forms”. Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing. PMID:27375461
NASA Astrophysics Data System (ADS)
Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua
2017-02-01
Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.
Vitality Forms Processing in the Insula during Action Observation: A Multivoxel Pattern Analysis.
Di Cesare, Giuseppe; Valente, Giancarlo; Di Dio, Cinzia; Ruffaldi, Emanuele; Bergamasco, Massimo; Goebel, Rainer; Rizzolatti, Giacomo
2016-01-01
Observing the style of an action done by others allows the observer to understand the cognitive state of the agent. This information has been defined by Stern "vitality forms". Previous experiments showed that the dorso-central insula is selectively active both during vitality form observation and execution. In the present study, we presented participants with videos showing hand actions performed with different velocities and asked them to judge either their vitality form (gentle, neutral, rude) or their velocity (slow, medium, fast). The aim of the present study was to assess, using multi-voxel pattern analysis, whether vitality forms and velocities of observed goal-directed actions are differentially processed in the insula, and more specifically whether action velocity is encoded per se or it is an element that triggers neural populations of the insula encoding the vitality form. The results showed that, consistently across subjects, in the dorso-central sector of the insula there were voxels selectively tuned to vitality forms, while voxel tuned to velocity were rare. These results indicate that the dorso-central insula, which previous data showed to be involved in the vitality form processing, contains voxels specific for the action style processing.
Hewitt, Angela L.; Popa, Laurentiu S.; Pasalar, Siavash; Hendrix, Claudia M.
2011-01-01
Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of Radj2), followed by position (28 ± 24% of Radj2) and speed (11 ± 19% of Radj2). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower Radj2 values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics. PMID:21795616
Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation
Brostek, Lukas; Büttner, Ulrich; Mustari, Michael J.; Glasauer, Stefan
2015-01-01
Lesion studies argue for an involvement of cortical area dorsal medial superior temporal area (MSTd) in the control of optokinetic response (OKR) eye movements to planar visual stimulation. Neural recordings during OKR suggested that MSTd neurons directly encode stimulus velocity. On the other hand, studies using radial visual flow together with voluntary smooth pursuit eye movements showed that visual motion responses were modulated by eye movement-related signals. Here, we investigated neural responses in MSTd during continuous optokinetic stimulation using an information-theoretic approach for characterizing neural tuning with high resolution. We show that the majority of MSTd neurons exhibit gain-field-like tuning functions rather than directly encoding one variable. Neural responses showed a large diversity of tuning to combinations of retinal and extraretinal input. Eye velocity-related activity was observed prior to the actual eye movements, reflecting an efference copy. The observed tuning functions resembled those emerging in a network model trained to perform summation of 2 population-coded signals. Together, our findings support the hypothesis that MSTd implements the visuomotor transformation from retinal to head-centered stimulus velocity signals for the control of OKR. PMID:24557636
Identification of protein features encoded by alternative exons using Exon Ontology.
Tranchevent, Léon-Charles; Aubé, Fabien; Dulaurier, Louis; Benoit-Pilven, Clara; Rey, Amandine; Poret, Arnaud; Chautard, Emilie; Mortada, Hussein; Desmet, François-Olivier; Chakrama, Fatima Zahra; Moreno-Garcia, Maira Alejandra; Goillot, Evelyne; Janczarski, Stéphane; Mortreux, Franck; Bourgeois, Cyril F; Auboeuf, Didier
2017-06-01
Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. © 2017 Tranchevent et al.; Published by Cold Spring Harbor Laboratory Press.
Rummel, Jan; Einstein, Gilles O; Rampey, Hilary
2012-01-01
Although forming implementation intentions (Gollwitzer, 1999) has been demonstrated to generally improve prospective memory, the underlying cognitive mechanisms are not completely understood. It has been proposed that implementation-intention encoding encourages spontaneous retrieval (McDaniel & Scullin, 2010). Alternatively one could assume the positive effect of implementation-intention encoding is caused by increased or more efficient monitoring for target cues. To test these alternative explanations and to further investigate the cognitive mechanisms underlying implementation-intention benefits, in two experiments participants formed the intention to respond to specific target cues in a lexical decision task with a special key, but then had to suspend this intention during an intervening word-categorisation task. Response times on trials directly following the occurrence of target cues in the intervening task were significantly slower with implementation-intention encoding than with standard encoding, indicating that spontaneous retrieval was increased (Experiment 1). However, when activation of the target cues was controlled for, similar slowing was found with both standard and implementation-intention encoding (Experiment 2). The results imply that implementation-intention encoding as well as increased target-cue activation foster spontaneous retrieval processes.
Large-scale, multi-genome analysis of alternate open reading frames in bacteria and archaea.
Veloso, Felipe; Riadi, Gonzalo; Aliaga, Daniela; Lieph, Ryan; Holmes, David S
2005-01-01
Analysis of over 300,000 annotated genes in 105 bacterial and archaeal genomes reveals an unexpectedly high frequency of large (>300 nucleotides) alternate open reading frames (ORFs). Especially notable is the very high frequency of alternate ORFs in frames +3 and -1 (where the annotated gene is defined as frame +1). The occurrence of alternate ORFs is correlated with genomic G+C content and is strongly influenced by synonymous codon usage bias. The frequency of alternate ORFs in frame -1 is also influenced by the occurrence of codons encoding leucine and serine in frame +1. Although some alternate ORFs have been shown to encode proteins, many others are probably not expressed because they lack appropriate signals for transcription and translation. These latter can be mis-annotated by automatic gene finding programs leading to errors in public databases. Especially prone to mis-annotation is frame -1, because it exhibits a potential codon usage and theoretical capacity to encode proteins with an amino acid composition most similar to real genes. Some alternate ORFs are conserved across bacterial or archaeal species, and can give rise to misannotated "conserved hypothetical" genes, while others are unique to a genome and are misidentified as "hypothetical orphan" genes, contributing significantly to the orphan gene paradox.
2013-01-01
Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691
Purkayastha, Sagar N; Byrne, Michael D; O'Malley, Marcia K
2012-01-01
Gaming controllers are attractive devices for research due to their onboard sensing capabilities and low-cost. However, a proper quantitative analysis regarding their suitability for use in motion capture, rehabilitation and as input devices for teleoperation and gesture recognition has yet to be conducted. In this paper, a detailed analysis of the sensors of two of these controllers, the Nintendo Wiimote and the Sony Playstation 3 Sixaxis, is presented. The acceleration and angular velocity data from the sensors of these controllers were compared and correlated with computed acceleration and angular velocity data derived from a high resolution encoder. The results show high correlation between the sensor data from the controllers and the computed data derived from the position data of the encoder. From these results, it can be inferred that the Wiimote is more consistent and better suited for motion capture applications and as an input device than the Sixaxis. The applications of the findings are discussed with respect to potential research ventures.
Holstein, Gay R; Rabbitt, Richard D; Martinelli, Giorgio P; Friedrich, Victor L; Boyle, Richard D; Highstein, Stephen M
2004-11-02
The vestibular semicircular canals respond to angular acceleration that is integrated to angular velocity by the biofluid mechanics of the canals and is the primary origin of afferent responses encoding velocity. Surprisingly, some afferents actually report angular acceleration. Our data indicate that hair-cell/afferent synapses introduce a mathematical derivative in these afferents that partially cancels the biomechanical integration and results in discharge rates encoding angular acceleration. We examined the role of convergent synaptic inputs from hair cells to this mathematical differentiation. A significant reduction in the order of the differentiation was observed for low-frequency stimuli after gamma-aminobutyric acid type B receptor antagonist administration. Results demonstrate that gamma-aminobutyric acid participates in shaping the temporal dynamics of afferent responses.
Water Flow Investigation on Quartz Sand with 13-interval Stimulated Echo Multi Slice Imaging
NASA Astrophysics Data System (ADS)
Spindler, Natascha; Pohlmeier, Andreas; Galvosas, Petrik
2011-03-01
Understanding root water uptake in soils is of high importance for securing nutrition in the context of climate change and linked phenomena like stronger varying weather conditions (draught, strong rain). One step to understand how root water uptake occurs is the knowledge of the water flow in soil towards plant roots. Magnetic Resonance Imaging (MRI) in combination with q-space imaging is potentially the most powerful analytical tool for non-invasive three dimensional visualization of flow and transport in porous media. Numerous attempts have been made to measure local velocity in porous media by combining velocity phase encoding with fast imaging methods, where flow velocities in the vascular bundles of plant stems were investigated. In contrast to water situated in the cellular structure of plants, NMR signal arising from water in the pore space in soil may be much more affected by the presence of internal magnetic field gradients. In this work we account for the existence of these gradients by employing bipolar pulsed field magnetic gradients for velocity encoding. This enables one to study flow through sand (as a model system for soil) at flow rates relevant for the water uptake of plant roots.
Single-Molecule Encoders for Tracking Motor Proteins on DNA
NASA Astrophysics Data System (ADS)
Lipman, Everett A.
2012-02-01
Devices such as inkjet printers and disk drives track position and velocity using optical encoders, which produce periodic signals precisely synchronized with linear or rotational motion. We have implemented this technique at the nanometer scale by labeling DNA with regularly spaced fluorescent dyes. The resulting molecular encoders can be used in several ways for high-resolution continuous tracking of individual motor proteins. These measurements do not require mechanical coupling to macroscopic instrumentation, are automatically calibrated by the underlying structure of DNA, and depend on signal periodicity rather than absolute level. I will describe the synthesis of single-molecule encoders, data from and modeling of experiments on a helicase and a DNA polymerase, and some ideas for future work.
Survey of Navy Funded Marine Mammal Research and Studies FY 00-01
2001-05-10
protein of canine distemper virus as a reporter system in order to evaluate 103 the humoral response to DNA-mediated vaccination in cetaceans. If...PCR/ RT PCR, DNA cloning and sequencing, etc. Efforts are ongoing to design and clone a vector encoding Canine Distemper Virus, a virus closely...alternative plasmid as our reporter gene delivery vector. This alternate plasmid will encode for Canine Distemper virus genes, closely related to
Digital storage and analysis of color Doppler echocardiograms
NASA Technical Reports Server (NTRS)
Chandra, S.; Thomas, J. D.
1997-01-01
Color Doppler flow mapping has played an important role in clinical echocardiography. Most of the clinical work, however, has been primarily qualitative. Although qualitative information is very valuable, there is considerable quantitative information stored within the velocity map that has not been extensively exploited so far. Recently, many researchers have shown interest in using the encoded velocities to address the clinical problems such as quantification of valvular regurgitation, calculation of cardiac output, and characterization of ventricular filling. In this article, we review some basic physics and engineering aspects of color Doppler echocardiography, as well as drawbacks of trying to retrieve velocities from video tape data. Digital storage, which plays a critical role in performing quantitative analysis, is discussed in some detail with special attention to velocity encoding in DICOM 3.0 (medical image storage standard) and the use of digital compression. Lossy compression can considerably reduce file size with minimal loss of information (mostly redundant); this is critical for digital storage because of the enormous amount of data generated (a 10 minute study could require 18 Gigabytes of storage capacity). Lossy JPEG compression and its impact on quantitative analysis has been studied, showing that images compressed at 27:1 using the JPEG algorithm compares favorably with directly digitized video images, the current goldstandard. Some potential applications of these velocities in analyzing the proximal convergence zones, mitral inflow, and some areas of future development are also discussed in the article.
Hewitt, Angela L; Popa, Laurentiu S; Pasalar, Siavash; Hendrix, Claudia M; Ebner, Timothy J
2011-11-01
Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of R(adj)(2)), followed by position (28 ± 24% of R(adj)(2)) and speed (11 ± 19% of R(adj)(2)). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower R(adj)(2) values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics.
Partial Arc Curvilinear Direct Drive Servomotor
NASA Technical Reports Server (NTRS)
Sun, Xiuhong (Inventor)
2014-01-01
A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.
Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array
Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara
2009-01-01
A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304
Lewis, Jason A; Pitcher, Trevor E
2017-04-01
Sperm competition is prevalent and intense in many animal mating systems, and is a major force driving evolution of such mating systems. The objective of this study was to determine the effect of seminal plasma on sperm velocity of male Chinook salmon (Onchorhynchus tshawytscha), which possesses a mating system with male alternative reproductive tactics and intense sperm competition. Male Chinook salmon either adopt a small, precocious sneaking tactic (jack) or a large, dominant tactic (hooknose). To test whether the seminal plasma can effect sperm velocity amongst sperm competitors, two experiments were done whereby males were paired based upon the alternative tactic each male adopted, with the first experiment consisting of jack-hooknose pairs (N = 16) and the second experiment consisting of jack-jack and hooknose-hooknose pairs (N = 12 and 14, respectively). Within each pair, milt of each male was manipulated such that seminal plasma was removed and swapped between the males in each pair and sperm velocity was measured. Jack seminal plasma caused a significant decrease (∼11.9%) in hooknose sperm velocity while causing a significant increase in jack sperm velocity (∼7%), while alternatively, hooknose seminal plasma had no affect on sperm velocity of jack or other hooknose males. This study shows that rival seminal plasma may affect the outcome of sperm competition between males; males adopting a sneaking tactic, that spawn in a disadvantageous mating position, may be able to compensate for this deficit by being more competitive through the effects of their seminal plasma on their competitor's sperm velocity. Copyright © 2016. Published by Elsevier Inc.
Comparison of compression efficiency between HEVC/H.265 and VP9 based on subjective assessments
NASA Astrophysics Data System (ADS)
Řeřábek, Martin; Ebrahimi, Touradj
2014-09-01
Current increasing effort of broadcast providers to transmit UHD (Ultra High Definition) content is likely to increase demand for ultra high definition televisions (UHDTVs). To compress UHDTV content, several alternative encoding mechanisms exist. In addition to internationally recognized standards, open access proprietary options, such as VP9 video encoding scheme, have recently appeared and are gaining popularity. One of the main goals of these encoders is to efficiently compress video sequences beyond HDTV resolution for various scenarios, such as broadcasting or internet streaming. In this paper, a broadcast scenario rate-distortion performance analysis and mutual comparison of one of the latest video coding standards H.265/HEVC with recently released proprietary video coding scheme VP9 is presented. Also, currently one of the most popular and widely spread encoder H.264/AVC has been included into the evaluation to serve as a comparison baseline. The comparison is performed by means of subjective evaluations showing actual differences between encoding algorithms in terms of perceived quality. The results indicate a general dominance of HEVC based encoding algorithm in comparison to other alternatives, while VP9 and AVC showing similar performance.
Eprintsev, A T; Mal'tseva, E V; Shatskikh, A S; Popov, V N
2011-01-01
The involvement of active oxygen forms in the regulation of the expression of mitochondrial respiratory chain components, which are not related to energy storing, has been in vitro and in vivo studied in Lycopersicum esculentum L. The highest level of transcription of genes encoding alternative oxidase and NADH dehydrogenase has been observed in green tomato leaves. It has been shown that even low H2O2 concentrations activate both aoxlalpha and ndb1 genes, encoding alternative oxidase and external mitochondrial rotenone-insensitive NADH dehydrogenase, respectively. According to our results, in the case of an oxidative stress, alternative oxidase and NADH dehydrogenase are coexpressed in tomato plant tissues, and active oxygen forms serve as the secondary messengers of their coexpression.
Visual Processing of Object Velocity and Acceleration
1991-12-13
more recently, Dr. Grzywacz’s applications of filtering models to the psychophysics of speed discrimination; 3) the McKee-Welch studies on the...population of spatio-temporally oriented filters to encode velocity. Dr. Grzywacz has attempted to reconcile his model with a variety of psychophysical...by many authors.23 In these models , the image is tectors have different sizes and spatial positions, but they all spatially and temporally filtered
NASA Astrophysics Data System (ADS)
Poepping, Tamie L.; Rankin, Richard N.; Holdsworth, David W.
2001-05-01
A unique in-vitro system has been developed that incorporates both realistic phantoms and flow. The anthropomorphic carotid phantoms are fabricated in agar with stenosis severity of 30% or 70% (by NASCET standards) and one of two geometric configurations- concentric or eccentric. The phantoms are perfused with a flow waveform that simulates normal common carotid flow. Pulsed Doppler ultrasound data are acquired at a 1 mm grid spacing throughout the lumen of the carotid bifurcation. To obtain a half-lumen volume, symmetric about the mid plane, requires a 13 hour acquisition over 3238 interrogation sites, producing 5.6 Gbytes of data. The spectral analysis produces estimates of parameters such as the peak velocity, mean velocity, spectral-broadening index, and turbulence intensity. Color-encoded or grayscale-encoded maps of these spectral parameters show distinctly different flow patterns resulting from stenoses of equal severity but different eccentricity. The most noticeable differences are seen in the volumes of the recirculation zones and the paths of the high-velocity jets. Elevated levels of turbulence intensity are also seen distal to the stenosis in the 70%-stenosed models.
2008-10-13
Furthermore, the encoded protein of this gene is only 30 kDa. A potential GTG start codon at position 625 also encodes a protein that is too small...horizontal bar and putative alternate translation initiation sites (ATG, GTG , and TTG) are indicated. The sizes and locations of the proteins encoded... gray line with rounded rectangles showing sequence features and motifs, including the Ala- and Pro-rich N-terminal region and the C-terminal Cys and
ERIC Educational Resources Information Center
Hasselmo, Michael E.
2007-01-01
Many memory models focus on encoding of sequences by excitatory recurrent synapses in region CA3 of the hippocampus. However, data and modeling suggest an alternate mechanism for encoding of sequences in which interference between theta frequency oscillations encodes the position within a sequence based on spatial arc length or time. Arc length…
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.
2017-12-01
Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.
Dynamic coding of vertical facilitated vergence by premotor saccadic burst neurons.
Van Horn, Marion R; Cullen, Kathleen E
2008-10-01
To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It has been proposed that the traditionally assumed "conjugate" saccadic premotor pathway does not encode conjugate commands but rather encodes monocular commands for the right or left eye during saccades. Here, we directly test this proposal by recording from the premotor neurons of the horizontal saccade generator during a dissociation task that required a vergence but no horizontal conjugate saccadic command. Specifically, saccadic burst neurons (SBNs) in the paramedian pontine reticular formation were recorded while rhesus monkeys made vertical saccades made between near and far targets. During this task, we first show that peak vergence velocities were enhanced to saccade-like speeds (e.g., >150 vs. <100 degrees/s during saccade-free movements for comparable changes in vergence angle). We then quantified the discharge dynamics of SBNs during these movements and found that the majority of the neurons preferentially encode the velocity of the ipsilateral eye. Notably, a given neuron typically encoded the movement of the same eye during horizontal saccades that were made in depth. Taken together, our findings demonstrate that the brain stem saccadic burst generator encodes integrated conjugate and vergence commands, thus providing strong evidence for the proposal that the classic saccadic premotor pathway controls gaze in three-dimensional space.
Aberrant alternative splicing is another hallmark of cancer.
Ladomery, Michael
2013-01-01
The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.
Ambrus, Géza Gergely; Pisoni, Alberto; Primaßin, Annika; Turi, Zsolt; Paulus, Walter; Antal, Andrea
2015-01-01
High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.
Haselier, André; Akbari, Hana; Weth, Agnes; Baumgartner, Werner; Frentzen, Margrit
2010-01-01
Cytidinediphosphate diacylglycerol synthase (CDS) catalyzes the formation of cytidinediphosphate diacylglycerol, an essential precursor of anionic phosphoglycerolipids like phosphatidylglycerol or -inositol. In plant cells, CDS isozymes are located in plastids, mitochondria, and microsomes. Here, we show that these isozymes are encoded by five genes in Arabidopsis (Arabidopsis thaliana). Alternative translation initiation or alternative splicing of CDS2 and CDS4 transcripts can result in up to 10 isoforms. Most of the cDNAs encoding the various plant isoforms were functionally expressed in yeast and rescued the nonviable phenotype of the mutant strain lacking CDS activity. The closely related genes CDS4 and CDS5 were found to encode plastidial isozymes with similar catalytic properties. Inactivation of both genes was required to obtain Arabidopsis mutant lines with a visible phenotype, suggesting that the genes have redundant functions. Analysis of these Arabidopsis mutants provided further independent evidence for the importance of plastidial phosphatidylglycerol for structure and function of thylakoid membranes and, hence, for photoautotrophic growth. PMID:20442275
In this paper, we describe the limitations of radius of influence (ROI) evaluation for venting design in more detail than has been done previously and propose an alternative method based on specification and attainment of critical pore-gas velocities in contaminated subsurface me...
Neural field model of memory-guided search.
Kilpatrick, Zachary P; Poll, Daniel B
2017-12-01
Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.
Neural field model of memory-guided search
NASA Astrophysics Data System (ADS)
Kilpatrick, Zachary P.; Poll, Daniel B.
2017-12-01
Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
Li, Simin; Li, Jie; Li, Zheng
2016-01-01
Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces
Li, Simin; Li, Jie; Li, Zheng
2016-01-01
Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well. PMID:28066170
Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements
NASA Technical Reports Server (NTRS)
Angelaki, Dora E.; Dickman, J. David
2003-01-01
Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.
Method for controlling a vehicle with two or more independently steered wheels
Reister, D.B.; Unseren, M.A.
1995-03-28
A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.
USDA-ARS?s Scientific Manuscript database
In plants alternative oxidase (AOX) is an important nuclear-encoded enzyme active in the mitochondrial electron-transport chain, transferring electrons from ubiquinol to alternative oxidase instead of the cytochrome pathway to yield ubiquinone and water. AOX protects against unexpected inhibition of...
Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.
1998-08-01
A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.
Gaze pursuit responses in nucleus reticularis tegmenti pontis of head-unrestrained macaques.
Suzuki, David A; Betelak, Kathleen F; Yee, Robert D
2009-01-01
Eye-head gaze pursuit-related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit-related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position-related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit-related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged approximately 1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII.
Takeda, Jun-ichi; Suzuki, Yutaka; Nakao, Mitsuteru; Barrero, Roberto A.; Koyanagi, Kanako O.; Jin, Lihua; Motono, Chie; Hata, Hiroko; Isogai, Takao; Nagai, Keiichi; Otsuki, Tetsuji; Kuryshev, Vladimir; Shionyu, Masafumi; Yura, Kei; Go, Mitiko; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Wiemann, Stefan; Nomura, Nobuo; Sugano, Sumio; Gojobori, Takashi; Imanishi, Tadashi
2006-01-01
We report the first genome-wide identification and characterization of alternative splicing in human gene transcripts based on analysis of the full-length cDNAs. Applying both manual and computational analyses for 56 419 completely sequenced and precisely annotated full-length cDNAs selected for the H-Invitational human transcriptome annotation meetings, we identified 6877 alternative splicing genes with 18 297 different alternative splicing variants. A total of 37 670 exons were involved in these alternative splicing events. The encoded protein sequences were affected in 6005 of the 6877 genes. Notably, alternative splicing affected protein motifs in 3015 genes, subcellular localizations in 2982 genes and transmembrane domains in 1348 genes. We also identified interesting patterns of alternative splicing, in which two distinct genes seemed to be bridged, nested or having overlapping protein coding sequences (CDSs) of different reading frames (multiple CDS). In these cases, completely unrelated proteins are encoded by a single locus. Genome-wide annotations of alternative splicing, relying on full-length cDNAs, should lay firm groundwork for exploring in detail the diversification of protein function, which is mediated by the fast expanding universe of alternative splicing variants. PMID:16914452
van der Hulst, Annelies E; Roest, Arno A W; Delgado, Victoria; Kroft, Lucia J M; Holman, Eduard R; Blom, Nico A; Bax, Jeroen J; de Roos, Albert; Westenberg, Jos J M
2011-07-01
To compare velocity-encoded (VE) magnetic resonance (MR) imaging with tissue Doppler imaging to assess right ventricular (RV) peak systolic velocities and timing of velocities in patients with corrected tetralogy of Fallot and healthy subjects. Local institutional review board approval was obtained; patients or their parents gave informed consent. Thirty-three patients (20 male, 13 female; median age, 12 years; interquartile range [IQR], 11-15 years; age range, 8-18 years) and 19 control subjects (12 male, seven female; median age, 14 years; IQR, 12-16 years; age range, 8-18 years) underwent VE MR imaging and tissue Doppler imaging. Peak systolic velocity and time to peak systolic velocity (percentage of cardiac cycle) were assessed at the RV free wall (RVFW) and RV outflow tract (RVOT). Data were analyzed by using linear regression, paired and unpaired tests, and Bland-Altman plots. Good correlation and agreement between the two techniques were observed. For peak systolic velocity at RVFW, r = 0.95 (mean difference, -0.4 cm/sec, P < .01), and at RVOT, r = 0.95 (mean difference, -0.4 cm/sec, P = .02). For timing at RVFW, r = 0.94 (mean difference, -0.2%, P = .44), and at RVOT, r = 0.89 (mean difference, -0.5%, P = .01). Peak systolic velocity was reduced in patients with corrected tetralogy of Fallot (at RVFW, median was 8.2 cm/sec [IQR, 6.4-9.7 cm/sec] vs 12.4 cm/sec [IQR, 10.8-13.8 cm/sec], P < .01; at RVOT, 4.7 cm/sec [IQR, 4.1-7.2 cm/sec] vs 10.2 cm/sec [IQR, 8.7-11.2 cm/sec], P < .01). The time delay between RVFW and RVOT was observed, which was significantly shorter in patients with corrected tetralogy of Fallot (median, 5.9% [IQR, 4.9%-7.4%] vs 8.4% [IQR, 6.6%-12.4%], P < .01). VE MR imaging and tissue Doppler imaging enable assessment of RV systolic performance and timing of velocities at the RVFW and RVOT in patients with corrected tetralogy of Fallot. Both techniques can be used interchangeably to clinically assess velocities and timing of velocities of the RV.
Jonas, V; Lin, C R; Kawashima, E; Semon, D; Swanson, L W; Mermod, J J; Evans, R M; Rosenfeld, M G
1985-01-01
Two mRNAs generated as a consequence of alternative RNA processing events in expression of the human calcitonin gene encode the protein precursors of either calcitonin or calcitonin gene-related peptide (CGRP). Both calcitonin and CGRP RNAs and their encoded peptide products are expressed in the human pituitary and in medullary thyroid tumors. On the basis of sequence comparison, it is suggested that both the calcitonin and CGRP exons arose from a common primordial sequence, suggesting that duplication and rearrangement events are responsible for the generation of this complex transcription unit. Images PMID:3872459
Richter, Franziska R.; Chanales, Avi J. H.; Kuhl, Brice A.
2015-01-01
The hippocampal memory system is thought to alternate between two opposing processing states: encoding and retrieval. When present experience overlaps with past experience, this creates a potential tradeoff between encoding the present and retrieving the past. This tradeoff may be resolved by memory integration—that is, by forming a mnemonic representation that links present experience with overlapping past experience. Here, we used fMRI decoding analyses to predict when—and establish how—past and present experiences become integrated in memory. In an initial experiment, we alternately instructed subjects to adopt encoding, retrieval or integration states during overlapping learning. We then trained across-subject pattern classifiers to ‘read out’ the instructed processing states from fMRI activity patterns. We show that an integration state was clearly dissociable from encoding or retrieval states. Moreover, trial-by-trial fluctuations in decoded evidence for an integration state during learning reliably predicted behavioral expressions of successful memory integration. Strikingly, the decoding algorithm also successfully predicted specific instances of spontaneous memory integration in an entirely independent sample of subjects for whom processing state instructions were not administered. Finally, we show that medial prefrontal cortex and hippocampus differentially contribute to encoding, retrieval, and integration states: whereas hippocampus signals the tradeoff between encoding vs. retrieval states, medial prefrontal cortex actively represents past experience in relation to new learning. PMID:26327243
NASA Astrophysics Data System (ADS)
Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.
2018-04-01
The method of Doppler color mapping of one specific (previously chosen) velocity in a turbulent flow inside biological tissues using optical coherence tomography is described. The key features of the presented method are: the raw data are separated into three parts, corresponding to the unmoving biological tissue, the positively and negatively directed biological fluid flows; the further independent signal processing procedure yields the structure image and two images of the chosen velocity, which are then normalised, encoded and joined. The described method can be used to obtain in real time the anatomical maps of the chosen velocities in normal and pathological states. The described method can be applied not only in optical coherence tomography, but also in endoscopic and Doppler ultrasonic medical imaging systems.
14 CFR 171.309 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... satisfactorily under the following conditions: Wind Velocity: The ground equipment shall remain within monitor... equipment, associated monitor, remote control and indicator equipment. (2) Approach elevation equipment, associated monitor, remote control and indicator equipment. (3) A means for the encoding and transmission of...
14 CFR 171.309 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... satisfactorily under the following conditions: Wind Velocity: The ground equipment shall remain within monitor... equipment, associated monitor, remote control and indicator equipment. (2) Approach elevation equipment, associated monitor, remote control and indicator equipment. (3) A means for the encoding and transmission of...
14 CFR 171.309 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... satisfactorily under the following conditions: Wind Velocity: The ground equipment shall remain within monitor... equipment, associated monitor, remote control and indicator equipment. (2) Approach elevation equipment, associated monitor, remote control and indicator equipment. (3) A means for the encoding and transmission of...
Belote, R Travis; Carroll, Carlos; Martinuzzi, Sebastián; Michalak, Julia; Williams, John W; Williamson, Matthew A; Aplet, Gregory H
2018-06-21
Addressing uncertainties in climate vulnerability remains a challenge for conservation planning. We evaluate how confidence in conservation recommendations may change with agreement among alternative climate projections and metrics of climate exposure. We assessed agreement among three multivariate estimates of climate exposure (forward velocity, backward velocity, and climate dissimilarity) using 18 alternative climate projections for the contiguous United States. For each metric, we classified maps into quartiles for each alternative climate projections, and calculated the frequency of quartiles assigned for each gridded location (high quartile frequency = more agreement among climate projections). We evaluated recommendations using a recent climate adaptation heuristic framework that recommends emphasizing various conservation strategies to land based on current conservation value and expected climate exposure. We found that areas where conservation strategies would be confidently assigned based on high agreement among climate projections varied substantially across regions. In general, there was more agreement in forward and backward velocity estimates among alternative projections than agreement in estimates of local dissimilarity. Consensus of climate predictions resulted in the same conservation recommendation assignments in a few areas, but patterns varied by climate exposure metric. This work demonstrates an approach for explicitly evaluating alternative predictions in geographic patterns of climate change.
Li, Qingshun Q; Liu, Zhaoyang; Lu, Wenjia; Liu, Man
2017-05-17
Pre-mRNA alternative splicing and alternative polyadenylation have been implicated to play important roles during eukaryotic gene expression. However, much remains unknown regarding the regulatory mechanisms and the interactions of these two processes in plants. Here we focus on an Arabidopsis gene OXT6 (Oxidative Tolerant-6) that has been demonstrated to encode two proteins through alternative splicing and alternative polyadenylation. Specifically, alternative polyadenylation at Intron-2 of OXT6 produces a transcript coding for AtCPSF30, an Arabidopsis ortholog of 30 kDa subunit of the Cleavage and Polyadenylation Specificity Factor. On the other hand, alternative splicing of Intron-2 generates a longer transcript encoding a protein named AtC30Y, a polypeptide including most part of AtCPSF30 and a YT521B domain. To investigate the expression outcome of OXT6 in plants, a set of mutations were constructed to alter the splicing and polyadenylation patterns of OXT6. Analysis of transgenic plants bearing these mutations by quantitative RT-PCR revealed a competition relationship between these two processes. Moreover, when both splice sites and poly(A) signals were mutated, polyadenylation became the preferred mode of OXT6 processing. These results demonstrate the interplay between alternative splicing and alternative polyadenylation, and it is their concerted actions that define a gene's expression outcome.
Ni, Zhi; Wu, Sean F
2010-09-01
This paper presents experimental validation of an alternate integral-formulation method (AIM) for predicting acoustic radiation from an arbitrary structure based on the particle velocities specified on a hypothetical surface enclosing the target source. Both the normal and tangential components of the particle velocity on this hypothetical surface are measured and taken as the input to AIM codes to predict the acoustic pressures in both exterior and interior regions. The results obtained are compared with the benchmark values measured by microphones at the same locations. To gain some insight into practical applications of AIM, laser Doppler anemometer (LDA) and double hotwire sensor (DHS) are used as measurement devices to collect the particle velocities in the air. Measurement limitations of using LDA and DHS are discussed.
Wavelet filtered shifted phase-encoded joint transform correlation for face recognition
NASA Astrophysics Data System (ADS)
Moniruzzaman, Md.; Alam, Mohammad S.
2017-05-01
A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.
Klarhöfer, Markus; Dilharreguy, Bixente; van Gelderen, Peter; Moonen, Chrit T W
2003-10-01
A 3D sequence for dynamic susceptibility imaging is proposed which combines echo-shifting principles (such as PRESTO), sensitivity encoding (SENSE), and partial-Fourier acquisition. The method uses a moderate SENSE factor of 2 and takes advantage of an alternating partial k-space acquisition in the "slow" phase encode direction allowing an iterative reconstruction using high-resolution phase estimates. Offering an isotropic spatial resolution of 4 x 4 x 4 mm(3), the novel sequence covers the whole brain including parts of the cerebellum in 0.5 sec. Its temporal signal stability is comparable to that of a full-Fourier, full-FOV EPI sequence having the same dynamic scan time but much less brain coverage. Initial functional MRI experiments showed consistent activation in the motor cortex with an average signal change slightly less than that of EPI. Copyright 2003 Wiley-Liss, Inc.
Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera
Biswas, Sunita; Russell, Robyn J.; Jackson, Colin J.; Vidovic, Maria; Ganeshina, Olga; Oakeshott, John G.; Claudianos, Charles
2008-01-01
Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31–246 kb, up to 12 exons each) neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons). However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate α- and β-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3′ region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3′ splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development. PMID:18974885
Moro, Pierre-Julien; Flavian, Antonin; Jacquier, Alexis; Kober, Frank; Quilici, Jacques; Gaborit, Bénédicte; Bonnet, Jean-Louis; Moulin, Guy; Cozzone, Patrick J; Bernard, Monique
2011-09-23
Gender-specific differences in cardiovascular risk are well known, and current evidence supports an existing role of endothelium in these differences. The purpose of this study was to assess non invasively coronary endothelial function in male and female young volunteers by myocardial blood flow (MBF) measurement using coronary sinus (CS) flow quantification by velocity encoded cine cardiovascular magnetic resonance (CMR) at rest and during cold pressor test (CPT). Twenty-four healthy volunteers (12 men, 12 women) underwent CMR in a 3 Tesla MR imager. Coronary sinus flow was measured at rest and during CPT using non breath-hold velocity encoded phase contrast cine-CMR. Myocardial function and morphology were acquired using a cine steady-state free precession sequence. At baseline, mean MBF was 0.63 ± 0.23 mL·g⁻¹·min⁻¹ in men and 0.79 ± 0.21 mL·g⁻¹·min⁻¹ in women. During CPT, the rate pressure product in men significantly increased by 49 ± 36% (p < 0.0001) and in women by 52 ± 22% (p < 0.0001). MBF increased significantly in both men and women by 0.22 ± 0.19 mL·g⁻¹·min⁻¹ (p = 0.0022) and by 0.73 ± 0.43 mL·g⁻¹·min⁻¹ (p = 0.0001), respectively. The increase in MBF was significantly higher in women than in men (p = 0.0012). CMR coronary sinus flow quantification for measuring myocardial blood flow revealed a higher response of MBF to CPT in women than in men. This finding may reflect gender differences in endothelial-dependent vasodilatation in these young subjects. This non invasive rest/stress protocol may become helpful to study endothelial function in normal physiology and in physiopathology.
Gaze Pursuit Responses in Nucleus Reticularis Tegmenti Pontis of Head-Unrestrained Macaques
Suzuki, David A.; Betelak, Kathleen F.; Yee, Robert D.
2009-01-01
Eye-head gaze pursuit–related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit–related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position–related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit–related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged ∼1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII. PMID:18987125
Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A
2011-01-01
The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.
Wang, Yanyan; Zhang, Tianbao; Song, Xiaxia; Zhang, Jianping; Dang, Zhanhai; Pei, Xinwu; Long, Yan
2018-01-01
Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.
Zhang, Wuhong; Chen, Lixiang
2016-06-15
Digital spiral imaging has been demonstrated as an effective optical tool to encode optical information and retrieve topographic information of an object. Here we develop a conceptually new and concise scheme for optical image encoding and decoding toward free-space digital spiral imaging. We experimentally demonstrate that the optical lattices with ℓ=±50 orbital angular momentum superpositions and a clover image with nearly 200 Laguerre-Gaussian (LG) modes can be well encoded and successfully decoded. It is found that an image encoded/decoded with a two-index LG spectrum (considering both azimuthal and radial indices, ℓ and p) possesses much higher fidelity than that with a one-index LG spectrum (only considering the ℓ index). Our work provides an alternative tool for the image encoding/decoding scheme toward free-space optical communications.
NASA Technical Reports Server (NTRS)
Ingels, F.; Schoggen, W. O.
1981-01-01
Several methods for increasing bit transition densities in a data stream are summarized, discussed in detail, and compared against constraints imposed by the 2 MHz data link of the space shuttle high rate multiplexer unit. These methods include use of alternate pulse code modulation waveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding, and use of bit scramblers. The psuedo-random cover sequence generator was chosen for application to the 2 MHz data link of the space shuttle high rate multiplexer unit. This method is fully analyzed and a design implementation proposed.
Delcourt, Vivian; Lucier, Jean-François; Gagnon, Jules; Beaudoin, Maxime C; Vanderperre, Benoît; Breton, Marc-André; Motard, Julie; Jacques, Jean-François; Brunelle, Mylène; Gagnon-Arsenault, Isabelle; Fournier, Isabelle; Ouangraoua, Aida; Hunting, Darel J; Cohen, Alan A; Landry, Christian R; Scott, Michelle S
2017-01-01
Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open-reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins. PMID:29083303
Wang, Xinye; Xu, Xindong; Lu, Xingyu; Zhang, Yuanbin; Pan, Weiqing
2015-01-01
Alternative splicing is a molecular process that contributes greatly to the diversification of proteome and to gene functions. Understanding the mechanisms of stage-specific alternative splicing can provide a better understanding of the development of eukaryotes and the functions of different genes. Schistosoma japonicum is an infectious blood-dwelling trematode with a complex lifecycle that causes the tropical disease schistosomiasis. In this study, we analyzed the transcriptome of Schistosoma japonicum to discover alternative splicing events in this parasite, by applying RNA-seq to cDNA library of adults and schistosomula. Results were validated by RT-PCR and sequencing. We found 11,623 alternative splicing events among 7,099 protein encoding genes and average proportion of alternative splicing events per gene was 42.14%. We showed that exon skip is the most common type of alternative splicing events as found in high eukaryotes, whereas intron retention is the least common alternative splicing type. According to intron boundary analysis, the parasite possesses same intron boundaries as other organisms, namely the classic “GT-AG” rule. And in alternative spliced introns or exons, this rule is less strict. And we have attempted to detect alternative splicing events in genes encoding proteins with signal peptides and transmembrane helices, suggesting that alternative splicing could change subcellular locations of specific gene products. Our results indicate that alternative splicing is prevalent in this parasitic worm, and that the worm is close to its hosts. The revealed secretome involved in alternative splicing implies new perspective into understanding interaction between the parasite and its host. PMID:26407301
Tang, F; Yang, S; Zhu, H
2016-05-01
The Rj2 gene is a TIR-NBS-LRR-type resistance gene in soybean (Glycine max) that restricts root nodule symbiosis with a group of Bradyrhizobium japonicum strains including USDA122. Rj2 generates two distinct transcript variants in its expression profile through alternative splicing. Alternative splicing of Rj2 is caused by the retention of the 86-bp intron 4. Inclusion of intron 4 in mature mRNA introduces an in-frame stop codon; as such, the alternative transcript is predicted to encode a truncated protein consisting of the entire portion of the TIR, NBS and LRR domains but missing the C-terminal domain of the full-length Rj2 protein encoded by the regular transcript. Since alternative splicing has been shown to be essential for full activity of several plant R genes, we attempted to test whether the alternative splicing is required for Rj2-mediated nodulation restriction. Here we demonstrated that the Rj2-mediated nodulation restriction does not require the combined presence of the regular and alternative transcripts, and the expression of the regular transcript alone is sufficient to confer nodulation restriction. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.
1984-04-19
In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.
Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J
2015-01-21
The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.
Hewitt, Angela L.; Popa, Laurentiu S.
2015-01-01
The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. PMID:25609626
Popa, Laurentiu S.; Streng, Martha L.
2017-01-01
Abstract Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing. PMID:28413823
Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J.
2016-01-01
The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = −3 to 6 %), peak flow (−7 %) and net volume (−14 to −9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = −35 to −7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA). PMID:27435230
An Efficient Variable Length Coding Scheme for an IID Source
NASA Technical Reports Server (NTRS)
Cheung, K. -M.
1995-01-01
A scheme is examined for using two alternating Huffman codes to encode a discrete independent and identically distributed source with a dominant symbol. This combined strategy, or alternating runlength Huffman (ARH) coding, was found to be more efficient than ordinary coding in certain circumstances.
Sensor for Direct Measurement of the Boundary Shear Stress in Fluid Flow
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick
2011-01-01
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution laser optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.
Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor
ERIC Educational Resources Information Center
Pili, Unofre; Violanda, Renante
2018-01-01
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…
Off-axis targets maximize bearing Fisher Information in broadband active sonar.
Kloepper, Laura N; Buck, John R; Liu, Yang; Nachtigall, Paul E
2018-01-01
Broadband active sonar systems estimate range from time delay and velocity from Doppler shift. Relatively little attention has been paid to how the received echo spectrum encodes information about the bearing of an object. This letter derives the bearing Fisher Information encoded in the frequency dependent transmitter beampattern. This leads to a counter-intuitive result: directing the sonar beam so that a target of interest is slightly off-axis maximizes the bearing information about the target. Beam aim data from a dolphin biosonar experiment agree closely with the angle predicted to maximize bearing information.
Measuring average angular velocity with a smartphone magnetic field sensor
NASA Astrophysics Data System (ADS)
Pili, Unofre; Violanda, Renante
2018-02-01
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.
Oberauer, Klaus; Lewandowsky, Stephan
2016-11-01
The article reports four experiments with complex-span tasks in which encoding of memory items alternates with processing of distractors. The experiments test two assumptions of a computational model of complex span, SOB-CS: (1) distractor processing impairs memory because distractors are encoded into working memory, thereby interfering with memoranda; and (2) free time following distractors is used to remove them from working memory by unbinding their representations from list context. Experiment 1 shows that distractors are erroneously chosen for recall more often than not-presented stimuli, demonstrating that distractors are encoded into memory. Distractor intrusions declined with longer free time, as predicted by distractor removal. Experiment 2 shows these effects even when distractors precede the memory list, ruling out an account based on selective rehearsal of memoranda during free time. Experiments 3 and 4 test the notion that distractors decay over time. Both experiments show that, contrary to the notion of distractor decay, the chance of a distractor intruding at test does not decline with increasing time since encoding of that distractor. Experiment 4 provides additional evidence against the prediction from distractor decay that distractor intrusions decline over an unfilled retention interval. Taken together, the results support SOB-CS and rule out alternative explanations. Data and simulation code are available on Open Science Framework: osf.io/3ewh7. Copyright © 2016 Elsevier B.V. All rights reserved.
TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, randomised controlled trial
Ware, Russell E.; Davis, Barry R.; Schultz, William H.; Brown, R. Clark; Aygun, Banu; Sarnaik, Sharada; Odame, Isaac; Fuh, Beng; George, Alex; Owen, William; Luchtman-Jones, Lori; Rogers, Zora R.; Hilliard, Lee; Gauger, Cynthia; Piccone, Connie; Lee, Margaret T.; Kwiatkowski, Janet L.; Jackson, Sherron; Miller, Scott T.; Roberts, Carla; Heeney, Matthew M.; Kalfa, Theodosia A.; Nelson, Stephen; Imran, Hamayun; Nottage, Kerri; Alvarez, Ofelia; Rhodes, Melissa; Thompson, Alexis A.; Rothman, Jennifer A.; Helton, Kathleen J.; Roberts, Donna; Coleman, Jamie; Bonner, Melanie J.; Kutlar, Abdullah; Patel, Niren; Wood, John; Piller, Linda; Wei, Peng; Luden, Judy; Mortier, Nicole A.; Stuber, Susan E.; Luban, Naomi L. C.; Cohen, Alan R.; Pressel, Sara; Adams, Robert J.
2017-01-01
Background For children with sickle cell anaemia and elevated transcranial Doppler (TCD) flow velocities, regular blood transfusions effectively prevent primary stroke, but must be continued indefinitely. The efficacy of hydroxyurea in this setting is unknown. Methods TWiTCH was a multicentre Phase III randomised open label, non-inferiority trial comparing standard treatment (transfusions) to alternative treatment (hydroxyurea) in children with abnormal TCD velocities but no severe vasculopathy. Iron overload was managed with chelation (Standard Arm) and serial phlebotomy (Alternative Arm). The primary study endpoint was the 24-month TCD velocity calculated from a general linear mixed model, with non-inferiority margin = 15 cm/sec. Findings Among 121 randomised participants (61 transfusions, 60 hydroxyurea), children on transfusions maintained <30% sickle haemoglobin, while those taking hydroxyurea (mean 27 mg/kg/day) averaged 25% fetal haemoglobin. The first scheduled interim analysis demonstrated non-inferiority, and the sponsor terminated the study. Final model-based TCD velocities (mean ± standard error) on Standard versus Alternative Arm were 143 ± 1.6 and 138 ± 1.6 cm/sec, respectively, with difference (95% CI) = 4.54 (0.10, 8.98), non-inferiority p=8.82 × 10−16 and post-hoc superiority p=0.023. Among 29 new neurological events adjudicated centrally by masked reviewers, no strokes occurred but there were 3 transient ischaemic attacks per arm. Exit brain MRI/MRA revealed no new cerebral infarcts in either arm, but worse vasculopathy in one participant (Standard Arm). Iron burden decreased more in the Alternative Arm, with ferritin difference −1047 ng/mL (−1524, −570), p<0.001 and liver iron difference −4.3 mg Fe/gm dry weight (−6.1, −2.5), p=0.001. Interpretation For high-risk children with sickle cell anaemia and abnormal TCD velocities, after four years of transfusions and without severe MRA vasculopathy, hydroxyurea therapy can substitute for chronic transfusions to maintain TCD velocities and help prevent primary stroke. PMID:26670617
Evolution in the Cycles of Life.
Bowman, John L; Sakakibara, Keiko; Furumizu, Chihiro; Dierschke, Tom
2016-11-23
The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-to-diploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-to-diploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle. Organisms, such as land plants, exhibiting a life cycle whereby multicellular bodies develop in both the haploid and diploid phases are often referred to as possessing an alternation of generations. We review recent progress on understanding the genetic basis for the land plant alternation of generations and highlight the roles that homeodomain-encoding genes may have played in the evolution of complex multicellularity in this lineage.
Exploring the influence of encoding format on subsequent memory.
Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha
2017-05-01
Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.
Model of human visual-motion sensing
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.
1985-01-01
A model of how humans sense the velocity of moving images is proposed. The model exploits constraints provided by human psychophysics, notably that motion-sensing elements appear tuned for two-dimensional spatial frequency, and by the frequency spectrum of a moving image, namely, that its support lies in the plane in which the temporal frequency equals the dot product of the spatial frequency and the image velocity. The first stage of the model is a set of spatial-frequency-tuned, direction-selective linear sensors. The temporal frequency of the response of each sensor is shown to encode the component of the image velocity in the sensor direction. At the second stage, these components are resolved in order to measure the velocity of image motion at each of a number of spatial locations and spatial frequencies. The model has been applied to several illustrative examples, including apparent motion, coherent gratings, and natural image sequences. The model agrees qualitatively with human perception.
From Genomes to Protein Models and Back
NASA Astrophysics Data System (ADS)
Tramontano, Anna; Giorgetti, Alejandro; Orsini, Massimiliano; Raimondo, Domenico
2007-12-01
The alternative splicing mechanism allows genes to generate more than one product. When the splicing events occur within protein coding regions they can modify the biological function of the protein. Alternative splicing has been suggested as one way for explaining the discrepancy between the number of human genes and functional complexity. We analysed the putative structure of the alternatively spliced gene products annotated in the ENCODE pilot project and discovered that many of the potential alternative gene products will be unlikely to produce stable functional proteins.
On Animating 2D Velocity Fields
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Yan, Jerry (Technical Monitor)
2001-01-01
A velocity field, even one that represents a steady state flow, implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives. These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunctions with several examples.
On Animating 2D Velocity Fields
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex
2000-01-01
A velocity field. even one that represents a steady state flow implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives, These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunction with several examples.
Okamoto, Susumu; Taguchi, Takaaki; Ochi, Kozo; Ichinose, Koji
2009-02-27
All known benzoisochromanequinone (BIQ) biosynthetic gene clusters carry a set of genes encoding a two-component monooxygenase homologous to the ActVA-ORF5/ActVB system for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Here, we conducted molecular genetic and biochemical studies of this enzyme system. Inactivation of actVA-ORF5 yielded a shunt product, actinoperylone (ACPL), apparently derived from 6-deoxy-dihydrokalafungin. Similarly, deletion of actVB resulted in accumulation of ACPL, indicating a critical role for the monooxygenase system in C-6 oxygenation, a biosynthetic step common to all BIQ biosyntheses. Furthermore, in vitro, we showed a quinone-forming activity of the ActVA-ORF5/ActVB system in addition to that of a known C-6 monooxygenase, ActVA-ORF6, by using emodinanthrone as a model substrate. Our results demonstrate that the act gene cluster encodes two alternative routes for quinone formation by C-6 oxygenation in BIQ biosynthesis.
Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel.
Li, Fengqin; Jian, Yongjun; Chang, Long; Zhao, Guangpu; Yang, Liangui
2016-11-01
In this work, we investigate the time periodic electroosmotic flow (EOF) of an electrolyte solution through a slit polyelectrolyte-grafted (PE-grafted) nanochannel under applied alternating current (AC) electrical field. The PE-grafted nanochannel is represented by a rigid surface covered by a polyelectrolyte layer (PEL) in a brush-like configuration. Under Debye-Hückel approximation, we obtain analytical solutions of electrical potential in decoupled regime of PE-grafted nanochannel, where the thickness of PEL is independent of the electrostatic effects triggered by polyelectrolyte charges. Based upon the electrical potential obtained above, we calculate EOF velocities with uniform and non-uniform drag coefficients for PE-grafted nanochannel and compare their results. The effects of pertinent dimensionless parameters on EOF velocity amplitude are discussed in detail. Moreover, the amplitude of EOF velocity in a PE-grafted nanochannel is compared with that in a rigid one. It is shown that larger EOF velocity and volume flow rate are found for a PE-grafted nanochannel. In addition, AC EOF velocity is further investigated. The oscillation of velocity reduces and is restricted within the region near the PEL-electrolyte interface for higher oscillating Reynolds number Re. Copyright © 2016 Elsevier B.V. All rights reserved.
JPEG 2000 Encoding with Perceptual Distortion Control
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Liu, Zhen; Karam, Lina J.
2008-01-01
An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.
Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L
2002-07-24
mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.
Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.
Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth
2015-04-01
The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (<1 % for both methods), while larger deviations were seen using Cartesian readouts (-2.3 and 13 %, respectively). Peak pressure drop calculations from 3D through-plane PC and 4D PC spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stols, L.; Donnelly, M.I.; Kulkarni, G.
The malic enzyme gene of Ascaris suum was cloned into the vector pTRC99a in two forms encoding alternative amino-termini. The resulting plasmids, pMEA1 and pMEA2, were introduced into Escherichia coli NZN111, a strain that is unable to grow fermentatively because of inactivation of the genes encoding pyruvate dissimilation. Induction of pMEA1, which encodes the native animoterminus, gave better overexpression of malic enzyme, approx 12-fold compared to uninduced cells. Under the appropriate culture conditions, expression of malic enzyme allowed the fermentative dissimilation of glucose by NZN111. The major fermentation product formed in induced cultures was succinic acid.
Magnetic resonance imaging of convection in laser-polarized xenon
NASA Technical Reports Server (NTRS)
Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.
2000-01-01
We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.
COMMUNICATION: Alternative splicing and genomic stability
NASA Astrophysics Data System (ADS)
Cahill, Kevin
2004-06-01
Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.
Interactive searching of facial image databases
NASA Astrophysics Data System (ADS)
Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean
1995-09-01
A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.
Molecular mechanisms for protein-encoded inheritance
Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David
2013-01-01
Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598
Magnetic resonance imaging of living systems by remote detection
Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah
2013-10-29
A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.
Sherrah, Andrew G.; Callaghan, Fraser M.; Puranik, Rajesh; Jeremy, Richmond W.; Bannon, Paul G.; Vallely, Michael P.; Grieve, Stuart M.
2017-01-01
Background Chronic descending thoracic aortic dissection (CDTAD) following surgical repair of ascending aortic dissection requires long-term imaging surveillance. We investigated four-dimensional (4D)-flow magnetic resonance imaging (MRI) with a novel multi-velocity encoding (multi-VENC) technique as an emerging clinical method enabling the dynamic quantification of blood volume and velocity throughout the cardiac cycle. Methods Patients with CDTAD (n = 10; mean age, 55.1 years; standard deviation (SD) 10.8) and healthy volunteers (n = 9; mean age, 37.1 years; SD 11.4; p < 0.01) underwent 3T MRI, and standard views and 4D-flow data were obtained. Flow measurements were made in selected regions of interest within the ascending and descending thoracic aorta. Results The overall flow profile at peak systole was reduced in the false lumen (FL) compared with the true lumen (TL) and normal aortas (p < 0.05 for velocity < 0.4 m/s). Peak systolic flow rate per aortic lumen area (mL/s/cm2) was lower in the FL than in the TL (p < 0.05), and both rates were lower than that of control aortas (p < 0.05). Blood flow reversal was higher in the FL than in the TL throughout the descending aorta in CDTAD patients (p < 0.05). A derived pulsatility index was elevated in the TL compared with that in the FL in CDTAD patients. Generated pathline images demonstrated flow patterns in detail, including sites of communication between the true and FL. Conclusions 4D-flow MRI revealed FL blood flow and reduced blood flow velocity and flow rate in the TL of CDTAD patients compared with normal aortas of healthy participants. Thus, multi-VENC 4D-flow MRI could serve as an adjunct in the long-term assessment of CDTAD following surgical repair of ascending aortic dissection. PMID:29675440
Heart deformation analysis: measuring regional myocardial velocity with MR imaging.
Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C
2016-07-01
The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure.
ERIC Educational Resources Information Center
Lee, Ming-Wei; Gibbons, Julie
2007-01-01
In a recall-based spoken production experiment, native English-speaking participants' variable use of the complementiser "that" to introduce the sentential complement in sentences like "Henry knew (that) Lucy/Louise washed the dishes" was found to be related to whether "that" inclusion/omission resulted in an alternating sequence of stressed and…
Noel, Jean-Paul; Blanke, Olaf; Magosso, Elisa; Serino, Andrea
2018-06-01
Interactions between the body and the environment occur within the peripersonal space (PPS), the space immediately surrounding the body. The PPS is encoded by multisensory (audio-tactile, visual-tactile) neurons that possess receptive fields (RFs) anchored on the body and restricted in depth. The extension in depth of PPS neurons' RFs has been documented to change dynamically as a function of the velocity of incoming stimuli, but the underlying neural mechanisms are still unknown. Here, by integrating a psychophysical approach with neural network modeling, we propose a mechanistic explanation behind this inherent dynamic property of PPS. We psychophysically mapped the size of participant's peri-face and peri-trunk space as a function of the velocity of task-irrelevant approaching auditory stimuli. Findings indicated that the peri-trunk space was larger than the peri-face space, and, importantly, as for the neurophysiological delineation of RFs, both of these representations enlarged as the velocity of incoming sound increased. We propose a neural network model to mechanistically interpret these findings: the network includes reciprocal connections between unisensory areas and higher order multisensory neurons, and it implements neural adaptation to persistent stimulation as a mechanism sensitive to stimulus velocity. The network was capable of replicating the behavioral observations of PPS size remapping and relates behavioral proxies of PPS size to neurophysiological measures of multisensory neurons' RF size. We propose that a biologically plausible neural adaptation mechanism embedded within the network encoding for PPS can be responsible for the dynamic alterations in PPS size as a function of the velocity of incoming stimuli. NEW & NOTEWORTHY Interactions between body and environment occur within the peripersonal space (PPS). PPS neurons are highly dynamic, adapting online as a function of body-object interactions. The mechanistic underpinning PPS dynamic properties are unexplained. We demonstrate with a psychophysical approach that PPS enlarges as incoming stimulus velocity increases, efficiently preventing contacts with faster approaching objects. We present a neurocomputational model of multisensory PPS implementing neural adaptation to persistent stimulation to propose a neurophysiological mechanism underlying this effect.
Ye, Junqiang; Beetz, Nadine; O'Keeffe, Sean; Tapia, Juan Carlos; Macpherson, Lindsey; Chen, Weisheng V; Bassel-Duby, Rhonda; Olson, Eric N; Maniatis, Tom
2015-06-09
We report that mice lacking the heterogeneous nuclear ribonucleoprotein U (hnRNP U) in the heart develop lethal dilated cardiomyopathy and display numerous defects in cardiac pre-mRNA splicing. Mutant hearts have disorganized cardiomyocytes, impaired contractility, and abnormal excitation-contraction coupling activities. RNA-seq analyses of Hnrnpu mutant hearts revealed extensive defects in alternative splicing of pre-mRNAs encoding proteins known to be critical for normal heart development and function, including Titin and calcium/calmodulin-dependent protein kinase II delta (Camk2d). Loss of hnRNP U expression in cardiomyocytes also leads to aberrant splicing of the pre-mRNA encoding the excitation-contraction coupling component Junctin. We found that the protein product of an alternatively spliced Junctin isoform is N-glycosylated at a specific asparagine site that is required for interactions with specific protein partners. Our findings provide conclusive evidence for the essential role of hnRNP U in heart development and function and in the regulation of alternative splicing.
Kowalik, Grzegorz T; Knight, Daniel S; Steeden, Jennifer A; Tann, Oliver; Odille, Freddy; Atkinson, David; Taylor, Andrew; Muthurangu, Vivek
2015-02-01
To develop a real-time phase contrast MR sequence with high enough temporal resolution to assess cardiac time intervals. The sequence utilized spiral trajectories with an acquisition strategy that allowed a combination of temporal encoding (Unaliasing by fourier-encoding the overlaps using the temporal dimension; UNFOLD) and parallel imaging (Sensitivity encoding; SENSE) to be used (UNFOLDed-SENSE). An in silico experiment was performed to determine the optimum UNFOLD filter. In vitro experiments were carried out to validate the accuracy of time intervals calculation and peak mean velocity quantification. In addition, 15 healthy volunteers were imaged with the new sequence, and cardiac time intervals were compared to reference standard Doppler echocardiography measures. For comparison, in silico, in vitro, and in vivo experiments were also carried out using sliding window reconstructions. The in vitro experiments demonstrated good agreement between real-time spiral UNFOLDed-SENSE phase contrast MR and the reference standard measurements of velocity and time intervals. The protocol was successfully performed in all volunteers. Subsequent measurement of time intervals produced values in keeping with literature values and good agreement with the gold standard echocardiography. Importantly, the proposed UNFOLDed-SENSE sequence outperformed the sliding window reconstructions. Cardiac time intervals can be successfully assessed with UNFOLDed-SENSE real-time spiral phase contrast. Real-time MR assessment of cardiac time intervals may be beneficial in assessment of patients with cardiac conditions such as diastolic dysfunction. © 2014 Wiley Periodicals, Inc.
Assessment of Liver Fibrosis Using Fast Strain-Encoded (FSENC) MRI Driven by Inherent Cardiac Motion
Harouni, Ahmed A.; Gharib, Ahmed M.; Osman, Nael F.; Morse, Caryn; Heller, Theo; Abd-Elmoniem, Khaled Z.
2014-01-01
Purpose An external driver-free MRI method for assessment of liver fibrosis offers a promising non-invasive tool for diagnosis and monitoring of liver disease. Lately, the heart’s intrinsic motion and MR tagging have been utilized for the quantification of liver strain. However, MR tagging requires multiple breath-hold acquisitions and substantial post-processing. This work proposes a fast strain-encoded (FSENC) MRI methodology to measure the peak strain (Sp) in the liver’s left lobe, which is in close proximity and caudal to the heart. Additionally, a new method is introduced to measure heart-induced shear wave velocity (SWV) inside the liver. Methods Phantom and in-vivo experiments (11 healthy subjects, and 11 patients with liver fibrosis) were conducted. Reproducibility experiments were performed in seven healthy subjects. Results Peak liver strain Sp significantly decreased in fibrotic liver compared healthy liver (6.46%±2.27% vs. 12.49%±1.76%, P<0.05). Heart-induced SWV significantly increased in patients compared to healthy subjects (0.15±0.04 m/s vs. 0.63±0.32 m/s, P<0.05). Reproducibility analysis yielded no significant difference in Sp (P=0.47) or SWV (P=0.56). Conclusion Accelerated external driver-free noninvasive assessment of left liver lobe strain and shear wave velocity is feasible using strain-encoded MRI. The two measures significantly separate healthy subjects from patients with fibrotic liver. PMID:25081734
Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K
2016-06-01
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Random walks with random velocities.
Zaburdaev, Vasily; Schmiedeberg, Michael; Stark, Holger
2008-07-01
We consider a random walk model that takes into account the velocity distribution of random walkers. Random motion with alternating velocities is inherent to various physical and biological systems. Moreover, the velocity distribution is often the first characteristic that is experimentally accessible. Here, we derive transport equations describing the dispersal process in the model and solve them analytically. The asymptotic properties of solutions are presented in the form of a phase diagram that shows all possible scaling regimes, including superdiffusive, ballistic, and superballistic motion. The theoretical results of this work are in excellent agreement with accompanying numerical simulations.
Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grażyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob
2012-01-01
The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application. PMID:23305359
Miri, Andrew; Daie, Kayvon; Burdine, Rebecca D.; Aksay, Emre
2011-01-01
The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating principles of neural circuits. Here we report a regression-based approach to semiautomatically identify neurons that is based on the correlation of fluorescence time series with quantitative measurements of behavior. The approach is illustrated with a novel preparation allowing synchronous eye tracking and two-photon laser scanning fluorescence imaging of calcium changes in populations of hindbrain neurons during spontaneous eye movement in the larval zebrafish. Putative velocity-to-position oculomotor integrator neurons were identified that showed a broad spatial distribution and diversity of encoding. Optical identification of integrator neurons was confirmed with targeted loose-patch electrical recording and laser ablation. The general regression-based approach we demonstrate should be widely applicable to calcium imaging time series in behaving animals. PMID:21084686
The in vivo use of alternate 3'-splice sites in group I introns.
Sellem, C H; Belcour, L
1994-04-11
Alternative splicing of group I introns has been postulated as a possible mechanism that would ensure the translation of proteins encoded into intronic open reading frames, discontinuous with the upstream exon and lacking an initiation signal. Alternate splice sites were previously depicted according to secondary structures of several group I introns. We present here strong evidence that, in the case of Podospora anserina nad 1-i4 and cox1-i7 mitochondrial introns, alternative splicing events do occur in vivo. Indeed, by PCR experiments we have detected molecules whose sequence is precisely that expected if the predicted alternate 3'-splice sites were used.
Alcoholism and alternative splicing of candidate genes.
Sasabe, Toshikazu; Ishiura, Shoichi
2010-04-01
Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.
Approximate Stokes Drift Profiles in Deep Water
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond
2014-09-01
A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.
Eye instability induced by vestibular stimulation in rabbits.
Ferraresi, A; Azzena, G B; Troiani, D
2001-07-03
The slow compensatory phases of the vestibulo-ocular reflex (VOR) in the rabbit tend to drift and the drift reverses the direction. This periodic alternating drift (PAD) has two peculiar characteristics: (1) it is induced by sinusoidal vestibular stimulation in naive animals, being evoked immediately after stimulus onset and persisting after the end of stimulation; (2) the peak velocity and period of the drift are dependent on stimulus amplitude. PAD of the rabbit has strong similarities with PAN, a periodic alternating nystagmus observed in humans with cerbellar disorders and in monkeys after nodulo-uvulectomy, although its peak velocity is smaller. It is hypothesized that PAD is due to a slight instability, caused by vestibular stimulation in darkness, of the cerebellar adaptive loop, which exerts a variable gain control on the time constant of the velocity storage integrator.
RNA Splicing: Regulation and Dysregulation in the Heart.
van den Hoogenhof, Maarten M G; Pinto, Yigal M; Creemers, Esther E
2016-02-05
RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease. © 2016 American Heart Association, Inc.
Beating time: How ensemble musicians' cueing gestures communicate beat position and tempo.
Bishop, Laura; Goebl, Werner
2018-01-01
Ensemble musicians typically exchange visual cues to coordinate piece entrances. "Cueing-in" gestures indicate when to begin playing and at what tempo. This study investigated how timing information is encoded in musicians' cueing-in gestures. Gesture acceleration patterns were expected to indicate beat position, while gesture periodicity, duration, and peak gesture velocity were expected to indicate tempo. Same-instrument ensembles (e.g., piano-piano) were expected to synchronize more successfully than mixed-instrument ensembles (e.g., piano-violin). Duos performed short passages as their head and (for violinists) bowing hand movements were tracked with accelerometers and Kinect sensors. Performers alternated between leader/follower roles; leaders heard a tempo via headphones and cued their partner in nonverbally. Violin duos synchronized more successfully than either piano duos or piano-violin duos, possibly because violinists were more experienced in ensemble playing than pianists. Peak acceleration indicated beat position in leaders' head-nodding gestures. Gesture duration and periodicity in leaders' head and bowing hand gestures indicated tempo. The results show that the spatio-temporal characteristics of cueing-in gestures guide beat perception, enabling synchronization with visual gestures that follow a range of spatial trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man
Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accuratemore » as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.« less
NASA Astrophysics Data System (ADS)
Kang, Dongwoo; duk Kim, Young; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Dongmin
2013-12-01
Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.
Makeyev, E V; Kolb, V A; Spirin, A S
1999-02-12
A novel cloning-independent strategy has been developed to generate a combinatorial library of PCR fragments encoding a murine single-chain antibody repertoire and express it directly in a cell-free system. The new approach provides an effective alternative to the techniques involving in vivo procedures of preparation and handling large libraries of antibodies. The possible use of the described strategy in the ribosome display is discussed.
Chen, Hsu-Hsin; Luche, Ralf; Wei, Bo; Tonks, Nicholas K
2004-10-01
Dual specificity phosphatases (DSPs) are members of the protein-tyrosine phosphatase superfamily that dephosphorylate both phosphotyrosine and phosphoserine/threonine residues in vitro. Many DSPs have been found to play important roles in various aspects of cellular function and to be involved in human disease. We have identified a gene located on human chromosome 10q22.2, which utilizes alternative open reading frames (ORFs) to encode the following two distinct DSPs: the previously described testis and skeletal muscle-specific dual specificity phosphatase (TMDP) and a novel DSP, muscle-restricted dual specificity phosphatase (MDSP). Use of alternative ORFs encoding distinct proteins from a single gene is extremely rare in eukaryotes, and in all previously reported cases the two proteins produced from one gene are unrelated. To our knowledge this is the first example of a gene from which two distinct proteins of the same family are expressed using alternative ORFs. Here we provide evidence that both MDSP and TMDP proteins are expressed in vivo and are restricted to specific tissues, skeletal muscle and testis, respectively. Most interestingly, the protein expression profiles of both MDSP and TMDP during mouse postnatal development are strikingly similar. MDSP is expressed at very low levels in myotubes and early postnatal muscle. TMDP is not detectable in testis lysate in the first 3 weeks of life. The expression of both MDSP and TMDP proteins was markedly increased at approximately the 3rd week after birth and continued to increase gradually into adulthood, implying that the physiological functions of both DSPs are specific to the mature/late-developing organs. The conserved gene structure and the similarity in postnatal expression profile of these two proteins suggest biological significance of the unusual gene arrangement.
Blumhagen, Rachel Z; Hedin, Brenna R; Malcolm, Kenneth C; Burnham, Ellen L; Moss, Marc; Abraham, Edward; Huie, Tristan J; Nick, Jerry A; Fingerlin, Tasha E; Alper, Scott
2017-11-01
A key physiological feature of acute respiratory distress syndrome (ARDS) is inflammation. Toll-like receptor (TLR) signaling is required to combat the infection that underlies many ARDS cases but also contributes to pathological inflammation. Several TLR signaling pathway genes encoding positive effectors of inflammation also produce alternatively spliced mRNAs encoding negative regulators of inflammation. An imbalance between these isoforms could contribute to pathological inflammation and disease severity. To determine whether splicing in TLR pathways is altered in patients with ARDS, we monitored alternative splicing of MyD88 and IRAK1 , two genes that function in multiple TLR pathways. The MyD88 and IRAK1 genes produce long proinflammatory mRNAs (MyD88 L and IRAK1) and shorter anti-inflammatory mRNAs (MyD88 S and IRAK1c). We quantified mRNA encoding inflammatory cytokines and MyD88 and IRAK1 isoforms in peripheral blood mononuclear cells (PBMCs) from 104 patients with ARDS and 30 healthy control subjects. We found that MyD88 pre-mRNA splicing is altered in patients with ARDS in a proinflammatory direction. We also observed altered MyD88 isoform levels in a second critically ill patient cohort, suggesting that these changes may not be unique to ARDS. Early in ARDS, PBMC IRAK1c levels were associated with patient survival. Despite the similarities in MyD88 and IRAK1 alternative splicing observed in previous in vitro studies, there were differences in how MyD88 and IRAK1 alternative splicing was altered in patients with ARDS. We conclude that pre-mRNA splicing of TLR signaling genes is altered in patients with ARDS, and further investigation of altered splicing may lead to novel prognostic and therapeutic approaches. Copyright © 2017 the American Physiological Society.
Kusakabe, Tamami; Tatsuke, Tsuneyuki; Tsuruno, Keigo; Hirokawa, Yasutaka; Atsumi, Shota; Liao, James C; Hanai, Taizo
2013-11-01
Production of alternate fuels or chemicals directly from solar energy and carbon dioxide using engineered cyanobacteria is an attractive method to reduce petroleum dependency and minimize carbon emissions. Here, we constructed a synthetic pathway composed of acetyl-CoA acetyl transferase (encoded by thl), acetoacetyl-CoA transferase (encoded by atoAD), acetoacetate decarboxylase (encoded by adc) and secondary alcohol dehydrogenase (encoded by adh) in Synechococcus elongatus strain PCC 7942 to produce isopropanol. The enzyme-coding genes, heterogeneously originating from Clostridium acetobutylicum ATCC 824 (thl and adc), Escherichia coli K-12 MG1655 (atoAD) and Clostridium beijerinckii (adh), were integrated into the S. elongatus genome. Under the optimized production conditions, the engineered cyanobacteria produced 26.5 mg/L of isopropanol after 9 days. © 2013 Published by Elsevier Inc.
Mixture theory-based poroelasticity as a model of interstitial tissue growth
Cowin, Stephen C.; Cardoso, Luis
2011-01-01
This contribution presents an alternative approach to mixture theory-based poroelasticity by transferring some poroelastic concepts developed by Maurice Biot to mixture theory. These concepts are a larger RVE and the subRVE-RVE velocity average tensor, which Biot called the micro-macro velocity average tensor. This velocity average tensor is assumed here to depend upon the pore structure fabric. The formulation of mixture theory presented is directed toward the modeling of interstitial growth, that is to say changing mass and changing density of an organism. Traditional mixture theory considers constituents to be open systems, but the entire mixture is a closed system. In this development the mixture is also considered to be an open system as an alternative method of modeling growth. Growth is slow and accelerations are neglected in the applications. The velocity of a solid constituent is employed as the main reference velocity in preference to the mean velocity concept from the original formulation of mixture theory. The standard development of statements of the conservation principles and entropy inequality employed in mixture theory are modified to account for these kinematic changes and to allow for supplies of mass, momentum and energy to each constituent and to the mixture as a whole. The objective is to establish a basis for the development of constitutive equations for growth of tissues. PMID:22184481
Mixture theory-based poroelasticity as a model of interstitial tissue growth.
Cowin, Stephen C; Cardoso, Luis
2012-01-01
This contribution presents an alternative approach to mixture theory-based poroelasticity by transferring some poroelastic concepts developed by Maurice Biot to mixture theory. These concepts are a larger RVE and the subRVE-RVE velocity average tensor, which Biot called the micro-macro velocity average tensor. This velocity average tensor is assumed here to depend upon the pore structure fabric. The formulation of mixture theory presented is directed toward the modeling of interstitial growth, that is to say changing mass and changing density of an organism. Traditional mixture theory considers constituents to be open systems, but the entire mixture is a closed system. In this development the mixture is also considered to be an open system as an alternative method of modeling growth. Growth is slow and accelerations are neglected in the applications. The velocity of a solid constituent is employed as the main reference velocity in preference to the mean velocity concept from the original formulation of mixture theory. The standard development of statements of the conservation principles and entropy inequality employed in mixture theory are modified to account for these kinematic changes and to allow for supplies of mass, momentum and energy to each constituent and to the mixture as a whole. The objective is to establish a basis for the development of constitutive equations for growth of tissues.
Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms.
Helms, Lucas; Clune, Jeff
2017-01-01
Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding.
78 FR 76035 - Airworthiness Directives; Maule Aerospace Technology, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... precision machined step wedge made of 4340 steel (or similar steel with equivalent sound velocity) or at... unless an alternative instrument calibration procedure is used to set the sound velocity. 6. Obtain a... reflection of the thick section. If the digital display does not agree with the thickest thickness, follow...
Positively Charged Residues Are the Major Determinants of Ribosomal Velocity
Charneski, Catherine A.; Hurst, Laurence D.
2013-01-01
Both for understanding mechanisms of disease and for the design of transgenes, it is important to understand the determinants of ribosome velocity, as changes in the rate of translation are important for protein folding, error attenuation, and localization. While there is great variation in ribosomal occupancy along even a single transcript, what determines a ribosome's occupancy is unclear. We examine this issue using data from a ribosomal footprinting assay in yeast. While codon usage is classically considered a major determinant, we find no evidence for this. By contrast, we find that positively charged amino acids greatly retard ribosomes downstream from where they are encoded, consistent with the suggestion that positively charged residues interact with the negatively charged ribosomal exit tunnel. Such slowing is independent of and greater than the average effect owing to mRNA folding. The effect of charged amino acids is additive, with ribosomal occupancy well-predicted by a linear fit to the density of positively charged residues. We thus expect that a translated poly-A tail, encoding for positively charged lysines regardless of the reading frame, would act as a sandtrap for the ribosome, consistent with experimental data. PMID:23554576
Carling, Phillippa J.; Buist, Thomas; Zhang, Chaolin; Grellscheid, Sushma N.; Armstrong, Kelly; Stockley, Jacqueline; Simillion, Cedric; Gaughan, Luke; Kalna, Gabriela; Zhang, Michael Q.; Robson, Craig N.; Leung, Hing Y.; Elliott, David J.
2011-01-01
Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa. PMID:22194994
Velocity navigator for motion compensated thermometry.
Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael
2012-02-01
Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.
Mechanisms and consequences of alternative polyadenylation
Di Giammartino, Dafne Campigli; Nishida, Kensei; Manley, James L.
2011-01-01
Summary Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3’UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechansims governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenlyation. PMID:21925375
De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco
2010-02-01
During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Perceived freedom of choice is associated with neural encoding of option availability.
Rens, Natalie; Bode, Stefan; Cunnington, Ross
2018-05-03
Freedom of choice has been defined as the opportunity to choose alternative plans of action. In this fMRI study, we investigated how the perceived freedom of choice and the underlying neural correlates are influenced by the availability of options. Participants made an initial free choice between left or right doors before beginning a virtual walk along a corridor. At the mid-point of the corridor, lock cues appeared to reveal whether one or both doors remained available, requiring participants either to select a particular door or allowing them to freely choose to stay or switch their choice. We found that participants rated trials as free when they were able to carry out their initial choice, but even more so when both doors remained available. Multi-voxel pattern analysis showed that upcoming choices could initially be decoded from visual cortices before the appearance of the lock cues, and additionally from the motor cortex after the lock cues had confirmed which doors were open. When participants were able to maintain the same choice that they originally selected, the availability of alternative options was represented in fine-grained patterns of activity in the dorsolateral prefrontal cortex. Further, decoding accuracy in this region correlated with the subjective level of freedom that participants reported. These results suggest that there is neural encoding of the availability of alternative options in the dorsolateral prefrontal cortex, and the degree of this encoding predicts an individual's perceived freedom of choice. Copyright © 2018 Elsevier Inc. All rights reserved.
Lagrangian postprocessing of computational hemodynamics.
Shadden, Shawn C; Arzani, Amirhossein
2015-01-01
Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.
Lagrangian postprocessing of computational hemodynamics
Shadden, Shawn C.; Arzani, Amirhossein
2014-01-01
Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows. PMID:25059889
Safe Maritime Navigation with COLREGS Using Velocity Obstacles
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki; Wolf, Michael T.; Zarzhitsky, Dimitri; Huntsberger, Terrance L.
2011-01-01
This paper presents a motion planning algorithm for Unmanned Surface Vehicles (USVs) to navigate safely in dynamic, cluttered environments. The proposed algorithm not only addresses Hazard Avoidance (HA) for stationary and moving hazards but also applies the International Regulations for Preventing Collisions at Sea (known as COLREGs). The COLREG rules specify, for example, which vessel is responsible for giving way to the other and to which side of the "stand-on" vessel to maneuver. The three primary COLREG rules were considered in this paper: crossing, overtaking, and head-on situations. For USVs to be safely deployed in environments with other traffic boats, it is imperative that the USV's navigation algorithm obey COLREGs. Note also that if other boats disregard their responsibility under COLREGs, the USV will still apply its HA algorithms to avoid a collision. The proposed approach is based on Velocity Obstacles, which generates a cone-shaped obstacle in the velocity space. Because Velocity Obstacles also specify which side of the obstacle the vehicle will pass during the avoidance maneuver, COLREGs are encoded in the velocity space in a natural way. The algorithm is demonstrated via both simulation and on-water tests.
NASA Astrophysics Data System (ADS)
van de Moortele, Pierre-Francois; Amili, Omid; Coletti, Filippo; Toloui, Mostafa
2017-11-01
Cardiovascular flows are predominantly laminar. Nevertheless, transient and even turbulent flows have been observed in the vicinity of the heart (e.g. valves, ascending aorta, valvular/vascular stenosis). Effective in-vivo hemodynamic-based diagnostics in these sites require both high-resolution velocity measurements (especially in the near-vessel wall regions) and accurate evaluation of blood flow turbulence level (e.g. in terms of TKE). In addition to phase contrast (PC), appropriately designed PC-MRI sequences provide intravoxel incoherent motion encoding, a unique tool for simultaneous, non-invasive evaluation of velocity 3D vector fields and Reynolds stresses in cardiovascular flows in vivo. However, limited spatial and temporal resolution of PC-MRI result in inaccuracies in the estimation of hemodynamics (e.g. WSS) and of flow turbulence characteristics. This study aims to assess whether SNR gains at higher magnetic field could overcome these limits, providing more accurate velocity and turbulence characterization at higher spatial resolution. Experiments are conducted on MR Scanners at 3 and 7 Tesla with a U-bent pipe flow shaped phantom. 3D velocity fields, Reynolds stresses and TKE are analyzed and compared to a reference PIV experiments.
Histone Code Modulation by Oncogenic PWWP-Domain Protein in Breast Cancers
2010-06-01
athanogene 4 * DDHD2 DDHD domain containing 2 * PPAPDC1B phosphatidic acid phosphatase type 2 domain containing 1B * WHSC1L1 Wolf-Hirschhorn syndrome...from alternative splicing of exon 10. The WHSC1L1 long isoform encodes a 1437 amino acid protein containing 2 PWWP domains, 2 PHD-type zinc finger...motifs, a TANG2 domain, an AWS domain and a SET domain. The short isoform encodes a 645 amino acid protein containing a PWWP domain only. Our western
A Novel Connectionist Network for Solving Long Time-Lag Prediction Tasks
NASA Astrophysics Data System (ADS)
Johnson, Keith; MacNish, Cara
Traditional Recurrent Neural Networks (RNNs) perform poorly on learning tasks involving long time-lag dependencies. More recent approaches such as LSTM and its variants significantly improve on RNNs ability to learn this type of problem. We present an alternative approach to encoding temporal dependencies that associates temporal features with nodes rather than state values, where the nodes explicitly encode dependencies over variable time delays. We show promising results comparing the network's performance to LSTM variants on an extended Reber grammar task.
A Vision-Based Motion Sensor for Undergraduate Laboratories.
ERIC Educational Resources Information Center
Salumbides, Edcel John; Maristela, Joyce; Uy, Alfredson; Karremans, Kees
2002-01-01
Introduces an alternative method to determine the mechanics of a moving object that uses computer vision algorithms with a charge-coupled device (CCD) camera as a recording device. Presents two experiments, pendulum motion and terminal velocity, to compare results of the alternative and conventional methods. (YDS)
Preparation of translationally cold neutral molecules.
Di Domenicantonio, Giulia; Bertsche, Benjamin; Osterwalder, Andreas
2011-01-01
Efforts at EPFL to obtain translationally cold neutral molecules are described. Active deceleration of polar molecules is performed by confining the molecules in moving three-dimensional electrostatic traps, and by appropriately choosing the velocity of those traps. Alternatively, cold molecules can be obtained by velocity filtering. Here, the velocity of the molecules is not changed, but instead the cold molecules are extracted from a thermal sample by using the competition between the electrostatic force and the centrifugal force inside a bent electrostatic guide for polar molecules.
Evaluation of the Perforation Capability of a Rod Projectile as a Function of Impact Velocity
1974-10-01
target. Thia analysis permits conclusions to be drawn regarding the terminal ballistics advantages obtained by increased impact velocity. 4 ýj Fk ii... advantages , if any, to be derived from rod pro- jectile impact velocities above conventional values of 2000 to 3000 ft/sec. In particular this section is...continues beyond those points but i* the additional benefit becomes marginal. Figures 17 and 18 show alternative presentations of the same date T!nI
Super-resolved Parallel MRI by Spatiotemporal Encoding
Schmidt, Rita; Baishya, Bikash; Ben-Eliezer, Noam; Seginer, Amir; Frydman, Lucio
2016-01-01
Recent studies described an alternative “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive acquisition alternative entails exploiting parallel imaging algorithms, without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view; together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. The ensuing approach enables one to reduce both the excitation and acquisition times of ultrafast SPEN acquisitions by the customary acceleration factor R, without compromises in either the ensuing spatial resolution, SAR deposition, or the capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces. PMID:24120293
Software manual for operating particle displacement tracking data acquisition and reduction system
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
The software manual is presented. The necessary steps required to record, analyze, and reduce Particle Image Velocimetry (PIV) data using the Particle Displacement Tracking (PDT) technique are described. The new PDT system is an all electronic technique employing a CCD video camera and a large memory buffer frame-grabber board to record low velocity (less than or equal to 20 cm/s) flows. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine 2-D velocity vectors. All the PDT data acquisition, analysis, and data reduction software is written to run on an 80386 PC.
Shen, Yingfang; Wu, Xiaopei; Liu, Demei; Song, Shengjing; Liu, Dengcai; Wang, Haiqing
2016-05-27
Histone methylation is an epigenetic modification mechanism that regulates gene expression in eukaryotic cells. Jumonji C domain-containing demethylases are involved in removal of methyl groups at lysine or arginine residues. The JmjC domain-only member, JMJ30/JMJD5 of Arabidopsis, is a component of the plant circadian clock. Although some plant circadian clock genes undergo alternative splicing in response to external cues, there is no evidence that JMJ30/JMJD5 is regulated by alternative splicing. In this study, the expression of an Arabidopsis JMJ30/JMJD5 ortholog in Medicago truncatula, MtJMJC5, in response to circadian clock and abiotic stresses were characterized. The results showed that MtJMJC5 oscillates with a circadian rhythm, and undergoes cold specifically induced alternative splicing. The cold-induced alternative splicing could be reversed after ambient temperature returning to the normal. Sequencing results revealed four alternative splicing RNA isoforms including a full-length authentic protein encoding variant, and three premature termination condon-containing variants due to alternative 3' splice sites at the first and second intron. Under cold treatment, the variants that share a common 3' alternative splicing site at the second intron were intensively up-regulated while the authentic protein encoding variant and the premature termination condon-containing variant only undergoing a 3' alternative splicing at the first intron were down regulated. Although all the premature termination condon-harboring alternative splicing variants were sensitive to nonsense-mediated decay, the premature termination codon-harboring alternative splicing variants sharing the 3' alternative splicing site at the second intron showed less sensitivity than the one only containing the 3' alternative slicing site at the first intron under cold treatment. These results suggest that the cold-dependent alternative splicing of MtJMJC5 is likely a species or genus-specific mechanism of gene expression regulation on RNA levels, and might play a role in epigenetic regulation of the link between the circadian clock and ambient temperature fluctuation in Medicago. Copyright © 2016 Elsevier Inc. All rights reserved.
Seabra, Ana R; Vieira, Cristina P; Cullimore, Julie V; Carvalho, Helena G
2010-08-19
Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.
Neuronal representation of individual heroin choices in the orbitofrontal cortex.
Guillem, Karine; Brenot, Viridiana; Durand, Audrey; Ahmed, Serge H
2018-05-01
Drug addiction is a harmful preference for drug use over and at the expense of other non-drug-related activities. We previously identified in the rat orbitofrontal cortex (OFC) a mechanism that influences individual preferences between cocaine use and an alternative action rewarded by a non-drug reward (i.e. sweet water). Here, we sought to test the generality of this mechanism to a different addictive drug, heroin. OFC neuronal activity was recorded while rats responded for heroin or the alternative non-drug reward separately or while they chose between the two. First, we found that heroin-rewarded and sweet water-rewarded actions were encoded by two non-overlapping OFC neuronal populations and that the relative size of the heroin population represented individual drug choices. Second, OFC neurons encoding the preferred action-which was the non-drug action in the large majority of individuals-progressively fired more than non-preferred action-coding neurons 1 second after the onset of choice trials and around 1 second before the preferred action was actually chosen, suggesting a pre-choice neuronal competition for action selection. Together with a previous study on cocaine choice, the present study on heroin choice reveals important commonalities in how OFC neurons encode individual drug choices and preferences across different classes of drugs. It also reveals some drug-specific differences in OFC encoding activity. Notably, the proportion of neurons that non-selectively encode both the drug and the non-drug reward was higher when the drug was heroin (present study) than when it was cocaine (previous study). We will discuss the potential functional significance of these commonalities and differences in OFC neuronal activity across different drugs for understanding drug choice. © 2017 Society for the Study of Addiction.
Oscillatory Reinstatement Enhances Declarative Memory.
Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J
2017-10-11
Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval. Copyright © 2017 Javadi et al.
Lee, Hyunyeol; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Park, Jaeseok
2016-05-01
To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz ) and conductivity distribution. In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz . A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging. © 2015 Wiley Periodicals, Inc.
Modeling of the Mode S tracking system in support of aircraft safety research
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1982-01-01
This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks
2018-01-01
Much of the information the brain processes and stores is temporal in nature—a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds—we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. PMID:29537963
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.
Goudar, Vishwa; Buonomano, Dean V
2018-03-14
Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.
Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms
Helms, Lucas; Clune, Jeff
2017-01-01
Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding. PMID:28334002
Koen, Joshua D.; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P.
2013-01-01
A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test three competing theories for why this occurs - the encoding variability, attention failure, and recollection accounts. Distinguishing amongst these theories is critical because each provides a fundamentally different account of the processes underlying recognition memory. The encoding variability and attention failure accounts propose that old item variance will be unaffected by retrieval manipulations because the processes producing this effect are ascribed to encoding. The recollection account predicts that both encoding and retrieval manipulations that preferentially affect recollection will affect memory variability. These contrasting predictions were tested by examining the effect of response speeding (Experiment 1), dividing attention at retrieval (Experiment 2), context reinstatement (Experiment 3), and increased test delay (Experiment 4) on recognition performance. The results of all four experiments confirmed the predictions of the recollection account, and were inconsistent with the encoding variability account. The evidence supporting the attention failure account was mixed, with two of the four experiments confirming the account and two disconfirming the account. These results indicate that encoding variability and attention failure are insufficient accounts of memory variance, and provide support for the recollection account. Several alternative theoretical accounts of the results are also considered. PMID:23834057
Nonlinear, nonbinary cyclic group codes
NASA Technical Reports Server (NTRS)
Solomon, G.
1992-01-01
New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.
DNA-Compatible Nitro Reduction and Synthesis of Benzimidazoles.
Du, Huang-Chi; Huang, Hongbing
2017-10-18
DNA-encoded chemical libraries have emerged as a cost-effective alternative to high-throughput screening (HTS) for hit identification in drug discovery. A key factor for productive DNA-encoded libraries is the chemical diversity of the small molecule moiety attached to an encoding DNA oligomer. The library structure diversity is often limited to DNA-compatible chemical reactions in aqueous media. Herein, we describe a facile process for reducing aryl nitro groups to aryl amines. The new protocol offers simple operation and circumvents the pyrophoric potential of the conventional method (Raney nickel). The reaction is performed in aqueous solution and does not compromise DNA structural integrity. The utility of this method is demonstrated by the versatile synthesis of benzimidazoles on DNA.
Function of alternative splicing
Kelemen, Olga; Convertini, Paolo; Zhang, Zhaiyi; Wen, Yuan; Shen, Manli; Falaleeva, Marina; Stamm, Stefan
2017-01-01
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in ‘splicing programs’, which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed. PMID:22909801
Force encoding in muscle spindles during stretch of passive muscle
Blum, Kyle P.; Zytnicki, Daniel
2017-01-01
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position. PMID:28945740
Force encoding in muscle spindles during stretch of passive muscle.
Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H
2017-09-01
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.
Sex determination in insects: a binary decision based on alternative splicing.
Salz, Helen K
2011-08-01
The gene regulatory networks that control sex determination vary between species. Despite these differences, comparative studies in insects have found that alternative splicing is reiteratively used in evolution to control expression of the key sex-determining genes. Sex determination is best understood in Drosophila where activation of the RNA binding protein-encoding gene Sex-lethal is the central female-determining event. Sex-lethal serves as a genetic switch because once activated it controls its own expression by a positive feedback splicing mechanism. Sex fate choice in is also maintained by self-sustaining positive feedback splicing mechanisms in other dipteran and hymenopteran insects, although different RNA binding protein-encoding genes function as the binary switch. Studies exploring the mechanisms of sex-specific splicing have revealed the extent to which sex determination is integrated with other developmental regulatory networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Najafi Khaboshan, Hasan; Nazif, Hamid Reza
2018-04-01
Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.
Nougairede, Antoine; De Fabritus, Lauriane; Aubry, Fabien; Gould, Ernest A; Holmes, Edward C; de Lamballerie, Xavier
2013-02-01
Large-scale codon re-encoding represents a powerful method of attenuating viruses to generate safe and cost-effective vaccines. In contrast to specific approaches of codon re-encoding which modify genome-scale properties, we evaluated the effects of random codon re-encoding on the re-emerging human pathogen Chikungunya virus (CHIKV), and assessed the stability of the resultant viruses during serial in cellulo passage. Using different combinations of three 1.4 kb randomly re-encoded regions located throughout the CHIKV genome six codon re-encoded viruses were obtained. Introducing a large number of slightly deleterious synonymous mutations reduced the replicative fitness of CHIKV in both primate and arthropod cells, demonstrating the impact of synonymous mutations on fitness. Decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. The wild-type and two re-encoded viruses were passaged 50 times either in primate or insect cells, or in each cell line alternately. These viruses were analyzed using detailed fitness assays, complete genome sequences and the analysis of intra-population genetic diversity. The response to codon re-encoding and adaptation to culture conditions occurred simultaneously, resulting in significant replicative fitness increases for both re-encoded and wild type viruses. Importantly, however, the most re-encoded virus failed to recover its replicative fitness. Evolution of these viruses in response to codon re-encoding was largely characterized by the emergence of both synonymous and non-synonymous mutations, sometimes located in genomic regions other than those involving re-encoding, and multiple convergent and compensatory mutations. However, there was a striking absence of codon reversion (<0.4%). Finally, multiple mutations were rapidly fixed in primate cells, whereas mosquito cells acted as a brake on evolution. In conclusion, random codon re-encoding provides important information on the evolution and genetic stability of CHIKV viruses and could be exploited to develop a safe, live attenuated CHIKV vaccine.
Nájera, Victoria A; González, María Cruz; Pérez-Ruiz, Juan Manuel; Cejudo, Francisco Javier
2017-05-01
The NTRC gene encodes a NADPH-dependent thioredoxin reductase with a joint thioredoxin domain, exclusive of photosynthetic organisms. An updated search shows that although most species harbor a single copy of the NTRC gene, two copies were identified in different species of the genus Solanum, Glycine max and the moss Physcomitrella patens. The phylogenetic analysis of NTRCs from different sources produced a tree with the major groups of photosynthetic organisms: cyanobacteria, algae and land plants, indicating the evolutionary success of the NTRC gene among photosynthetic eukaryotes. An event of alternative splicing affecting the expression of the NTRC gene was identified, which is conserved in seed plants but not in algae, bryophytes and lycophytes. The alternative splicing event results in a transcript with premature stop codon, which would produce a truncated form of the enzyme. The standard splicing/alternative splicing (SS/AS) transcripts ratio was higher in photosynthetic tissues from Arabidopsis, Brachypodium and tomato, in line with the higher content of the NTRC polypeptide in these tissues. Moreover, environmental stresses such as cold or high salt affected the SS/AS ratio of the NTRC gene transcripts in Brachypodium seedlings. These results suggest that the alternative splicing of the NTRC gene might be an additional mechanism for modulating the content of NTRC in photosynthetic and non-photosynthetic tissues of seed plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L
2016-08-02
Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.
NASA Astrophysics Data System (ADS)
Fritsch, A. R.; Tavares, P. E. S.; Vivanco, F. A. J.; Telles, G. D.; Bagnato, V. S.; Henn, E. A. L.
2018-05-01
We present an alternative method for determining the sound velocity in atomic Bose–Einstein condensates, based on thermodynamic global variables. The total number of trapped atoms was as a function of temperature carefully studied across the phase transition, at constant volume. It allowed us to evaluate the sound velocity resulting in consistent values from the quantum to classical regime, in good agreement with previous results found in literature. We also provide some insight about the dominant sound mode (thermal or superfluid) across a wide temperature range.
Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids
Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James
2015-01-01
Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223
Effective group index of refraction in non-thermal plasma photonic crystals
NASA Astrophysics Data System (ADS)
Mousavi, A.; Sadegzadeh, S.
2015-11-01
Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum).
Cardiovascular magnetic resonance physics for clinicians: part II
2012-01-01
This is the second of two reviews that is intended to cover the essential aspects of cardiovascular magnetic resonance (CMR) physics in a way that is understandable and relevant to clinicians using CMR in their daily practice. Starting with the basic pulse sequences and contrast mechanisms described in part I, it briefly discusses further approaches to accelerate image acquisition. It then continues by showing in detail how the contrast behaviour of black blood fast spin echo and bright blood cine gradient echo techniques can be modified by adding rf preparation pulses to derive a number of more specialised pulse sequences. The simplest examples described include T2-weighted oedema imaging, fat suppression and myocardial tagging cine pulse sequences. Two further important derivatives of the gradient echo pulse sequence, obtained by adding preparation pulses, are used in combination with the administration of a gadolinium-based contrast agent for myocardial perfusion imaging and the assessment of myocardial tissue viability using a late gadolinium enhancement (LGE) technique. These two imaging techniques are discussed in more detail, outlining the basic principles of each pulse sequence, the practical steps required to achieve the best results in a clinical setting and, in the case of perfusion, explaining some of the factors that influence current approaches to perfusion image analysis. The key principles of contrast-enhanced magnetic resonance angiography (CE-MRA) are also explained in detail, especially focusing on timing of the acquisition following contrast agent bolus administration, and current approaches to achieving time resolved MRA. Alternative MRA techniques that do not require the use of an endogenous contrast agent are summarised, and the specialised pulse sequence used to image the coronary arteries, using respiratory navigator gating, is described in detail. The article concludes by explaining the principle behind phase contrast imaging techniques which create images that represent the phase of the MR signal rather than the magnitude. It is shown how this principle can be used to generate velocity maps by designing gradient waveforms that give rise to a relative phase change that is proportional to velocity. Choice of velocity encoding range and key pitfalls in the use of this technique are discussed. PMID:22995744
Dipolar recoupling in solid state NMR by phase alternating pulse sequences
Lin, J.; Bayro, M.; Griffin, R. G.; Khaneja, N.
2009-01-01
We describe some new developments in the methodology of making heteronuclear and homonuclear recoupling experiments in solid state NMR insensitive to rf-inhomogeneity by phase alternating the irradiation on the spin system every rotor period. By incorporating delays of half rotor periods in the pulse sequences, these phase alternating experiments can be made γ encoded. The proposed methodology is conceptually different from the standard methods of making recoupling experiments robust by the use of ramps and adiabatic pulses in the recoupling periods. We show how the concept of phase alternation can be incorporated in the design of homonuclear recoupling experiments that are both insensitive to chemical-shift dispersion and rf-inhomogeneity. PMID:19157931
Helton, Kathleen J.; Adams, Robert J.; Kesler, Karen L.; Lockhart, Alex; Aygun, Banu; Driscoll, Catherine; Heeney, Matthew M.; Jackson, Sherron M.; Krishnamurti, Lakshmanan; Miller, Scott T.; Sarnaik, Sharada A.; Schultz, William H.
2014-01-01
The Stroke With Transfusions Changing to Hydroxyurea (SWiTCH) trial compared standard (transfusions/chelation) to alternative (hydroxyurea/phlebotomy) treatment to prevent recurrent stroke and manage iron overload in children chronically transfused over 7 years before enrollment. Standardized brain magnetic resonance imaging/magnetic resonance angiography (MRA) and transcranial Doppler (TCD) exams were performed at entry and exit, with a central blinded review. A novel MRA vasculopathy grading scale demonstrated frequent severe baseline left/right vessel stenosis (53%/41% ≥Grade 4); 31% had no vessel stenosis on either side. Baseline parenchymal injury was prevalent (85%/79% subcortical, 53%/37% cortical, 50%/35% subcortical and cortical). Most children had low or uninterpretable baseline middle cerebral artery TCD velocities, which were associated with worse stenoses (incidence risk ratio [IRR] = 5.1, P ≤ .0001 and IRR = 4.1, P < .0001) than normal velocities; only 2% to 12% had any conditional/abnormal velocity. Patients with adjudicated stroke (7) and transient ischemic attacks (19 in 11 standard/8 alternative arm subjects) had substantial parenchymal injury/vessel stenosis. At exit, 1 child (alternative arm) had a new silent infarct, and another had worse stenosis. SWiTCH neuroimaging data document severe parenchymal and vascular abnormalities in children with SCA and stroke and support concerns about chronic transfusions lacking effectiveness for preventing progressive cerebrovascular injury. The novel SWiTCH vasculopathy grading scale warrants validation testing and consideration for use in future clinical trials. This trial was registered at www.clinicaltrials.gov as #NCT00122980. PMID:24914136
Switch-Independent Task Representations in Frontal and Parietal Cortex.
Loose, Lasse S; Wisniewski, David; Rusconi, Marco; Goschke, Thomas; Haynes, John-Dylan
2017-08-16
Alternating between two tasks is effortful and impairs performance. Previous fMRI studies have found increased activity in frontoparietal cortex when task switching is required. One possibility is that the additional control demands for switch trials are met by strengthening task representations in the human brain. Alternatively, on switch trials, the residual representation of the previous task might impede the buildup of a neural task representation. This would predict weaker task representations on switch trials, thus also explaining the performance costs. To test this, male and female participants were cued to perform one of two similar tasks, with the task being repeated or switched between successive trials. Multivoxel pattern analysis was used to test which regions encode the tasks and whether this encoding differs between switch and repeat trials. As expected, we found information about task representations in frontal and parietal cortex, but there was no difference in the decoding accuracy of task-related information between switch and repeat trials. Using cross-classification, we found that the frontoparietal cortex encodes tasks using a generalizable spatial pattern in switch and repeat trials. Therefore, task representations in frontal and parietal cortex are largely switch independent. We found no evidence that neural information about task representations in these regions can explain behavioral costs usually associated with task switching. SIGNIFICANCE STATEMENT Alternating between two tasks is effortful and slows down performance. One possible explanation is that the representations in the human brain need time to build up and are thus weaker on switch trials, explaining performance costs. Alternatively, task representations might even be enhanced to overcome the previous task. Here, we used a combination of fMRI and a brain classifier to test whether the additional control demands under switching conditions lead to an increased or decreased strength of task representations in frontoparietal brain regions. We found that task representations are not modulated significantly by switching processes and generalize across switching conditions. Therefore, task representations in the human brain cannot account for the performance costs associated with alternating between tasks. Copyright © 2017 the authors 0270-6474/17/378033-10$15.00/0.
Gurskaya, N G; Staroverov, D B; Lukyanov, K A
2016-01-01
Alternative splicing is an important mechanism of regulation of gene expression and expansion of proteome complexity. Recently we developed a new fluorescence reporter for quantitative analysis of alternative splicing of a target cassette exon in live cells (Gurskaya et al., 2012). It consists of a specially designed minigene encoding red and green fluorescent proteins (Katushka and TagGFP2) and a fragment of the target gene between them. Skipping or inclusion of the alternative exon induces a frameshift; ie, alternative exon length must not be a multiple of 3. Finally, red and green fluorescence intensities of cells expressing this reporter are used to estimate the percentage of alternative (exon-skipped) and normal (exon-retained) transcripts. Here, we provide a detailed description of design and application of the fluorescence reporter of a target alternative exon splicing in mammalian cell lines. © 2016 Elsevier Inc. All rights reserved.
Unsteady motion: escape jumps in planktonic copepods, their kinematics and energetics
Kiørboe, Thomas; Andersen, Anders; Langlois, Vincent J.; Jakobsen, Hans H.
2010-01-01
We describe the kinematics of escape jumps in three species of 0.3–3.0 mm-sized planktonic copepods. We find similar kinematics between species with periodically alternating power strokes and passive coasting and a resulting highly fluctuating escape velocity. By direct numerical simulations, we estimate the force and power output needed to accelerate and overcome drag. Both are very high compared with those of other organisms, as are the escape velocities in comparison to startle velocities of other aquatic animals. Thus, the maximum weight-specific force, which for muscle motors of other animals has been found to be near constant at 57 N (kg muscle)−1, is more than an order of magnitude higher for the escaping copepods. We argue that this is feasible because most copepods have different systems for steady propulsion (feeding appendages) and intensive escapes (swimming legs), with the muscular arrangement of the latter probably adapted for high force production during short-lasting bursts. The resulting escape velocities scale with body length to power 0.65, different from the size-scaling of both similar sized and larger animals moving at constant velocity, but similar to that found for startle velocities in other aquatic organisms. The relative duration of the pauses between power strokes was observed to increase with organism size. We demonstrate that this is an inherent property of swimming by alternating power strokes and pauses. We finally show that the Strouhal number is in the range of peak propulsion efficiency, again suggesting that copepods are optimally designed for rapid escape jumps. PMID:20462876
Chee, Gab-Joo; Takami, Hideto
2011-01-01
Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.
Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function
NASA Astrophysics Data System (ADS)
Malis, Vadim
Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on aging, strain rate during isometric contraction was significantly reduced in the seniors; presumably from decrease in muscle slack and increase in stiffness with age. Other parameters of interest from this study that allow inferences on the ECM and lateral transmission are the asymmetry of deformation in the fiber cross section as well as the angle between the SR and muscle fiber. The last part of thesis, which is a 'work-in-progress', is the extension to 3D SR tensor mapping using a 3D spatial, 3D velocity encoded imaging sequence. This is combined with Diffusion Tensor Imaging to obtain the lead eigenvector (muscle fiber direction) at each voxel. The 3D SR is then rotated to the basis of the DTI to obtain a 'Fiber Aligned Strain rate: FASR'. The off diagonal elements of FASR are shear strain terms. Detailed analysis of the shear strain will provide a unique non-invasive method to probe lateral transmission.
[Variational structure and function of products from IGF-1 gene].
Zhang, Bing-Bing; Wang, Yuan-Liang; Fan, Kai
2008-07-01
The IGF-1 gene, containing six exons, is characterized by the generation of multiple heterogeneous mRNA transcripts and translations. The IGF-1 isoforms being produced arise from the combination of multiple transcription initiation sites, alternate splicing, and different polyadenylation signals. These different mRNAs are translated to distinct circulating and local isoforms. The circulating mature IGF-1 is encoded by exons 3 and 4, and its biological function in growth and development has been intensively studied. The local isoforms of IGF-1 contains the part encoded by exons 3 and 4, and moreover the alternate extension peptide at carboxy-terminal, encoded by exons 5 and 6, is also included in the isoforms. And the functions of local IGF-1 isoforms and E-peptides have been overlooked until recently. Recently investigation shows that cell discrepant response to the overexpression of different IGF-1 isoforms and the E-peptides, and more interestingly, IGF-1Ea, IGF-1Eb (MGF) and MGF E-peptide have potential to promote skeletal muscle regeneration, to prevent cardiac muscle loss and neural damage. The acting mechanism of IGF-1 isoforms differ from the IGF-1, and the isoforms functioned probably by binding to specific E-peptide receptor, instead of binding to the IGF-1R.
Koen, Joshua D; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P
2013-11-01
A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test 3 competing theories for why this occurs-the encoding variability, attention failure, and recollection accounts. Distinguishing among these theories is critical because each provides a fundamentally different account of the processes underlying recognition memory. The encoding variability and attention failure accounts propose that old item variance will be unaffected by retrieval manipulations because the processes producing this effect are ascribed to encoding. The recollection account predicts that both encoding and retrieval manipulations that preferentially affect recollection will affect memory variability. These contrasting predictions were tested by examining the effect of response speeding (Experiment 1), dividing attention at retrieval (Experiment 2), context reinstatement (Experiment 3), and increased test delay (Experiment 4) on recognition performance. The results of all 4 experiments confirm the predictions of the recollection account and are inconsistent with the encoding variability account. The evidence supporting the attention failure account is mixed, with 2 of the 4 experiments confirming the account and 2 disconfirming the account. These results indicate that encoding variability and attention failure are insufficient accounts of memory variance and provide support for the recollection account. Several alternative theoretical accounts of the results are also considered. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Dynamics of laser-guided alternating current high voltage discharges
NASA Astrophysics Data System (ADS)
Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.
2013-10-01
The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.
A pitfall in shallow shear-wave refraction surveying
Xia, J.; Miller, R.D.; Park, C.B.; Wightman, E.; Nigbor, R.
2002-01-01
The shallow shear-wave refraction method works successfully in an area with a series of horizontal layers. However, complex near-surface geology may not fit into the assumption of a series of horizontal layers. That a plane SH-wave undergoes wave-type conversion along an interface in an area of nonhorizontal layers is theoretically inevitable. One real example shows that the shallow shear-wave refraction method provides velocities of a converted wave rather than an SH- wave. Moreover, it is impossible to identify the converted wave by refraction data itself. As most geophysical engineering firms have limited resources, an additional P-wave refraction survey is necessary to verify if velocities calculated from a shear-wave refraction survey are velocities of converted waves. The alternative at this time may be the surface wave method, which can provide reliable S-wave velocities, even in an area of velocity inversion (a higher velocity layer underlain by a lower velocity layer). ?? 2002 Elsevier Science B.V. All rights reserved.
Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.
Robertson, Hugh M; Warr, Coral G; Carlson, John R
2003-11-25
The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.
Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster
Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.
2003-01-01
The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037
Guimond, Synthia; Lepage, Martin
2016-01-01
Available cognitive remediation interventions have a significant but relatively small to moderate impact on episodic memory in schizophrenia. The present study aimed to evaluate the efficacy and feasibility of a brief novel episodic memory training targeting the self-initiation of semantic encoding strategies. To select patients with such deficits, 28 participants with schizophrenia performed our Semantic Encoding Memory Task (SEMT) that provides a measure of self-initiated semantic encoding strategies. This task identified a deficit in 13 participants who were then offered two 60-minute training sessions one week apart. After the training, patients performed an alternate version of the SEMT. The CVLT-II (a standardised measure of semantic encoding strategies) and the BVMT-R (a control spatial memory task) were used to quantify memory pre- and post-training. After the training, participants were significantly better at self-initiating semantic encoding strategies in the SEMT (p = .004) and in the CVLT-II (p = .002). No significant differences were found in the BVMT-R. The current study demonstrates that a brief and specific training in memory strategies can help patients to improve a deficient memory process in schizophrenia. Future studies will need to test this intervention further using a randomised controlled trial, and to explore its functional impact.
Detecting weak position fluctuations from encoder signal using singular spectrum analysis.
Xu, Xiaoqiang; Zhao, Ming; Lin, Jing
2017-11-01
Mechanical fault or defect will cause some weak fluctuations to the position signal. Detection of such fluctuations via encoders can help determine the health condition and performance of the machine, and offer a promising alternative to the vibration-based monitoring scheme. However, besides the interested fluctuations, encoder signal also contains a large trend and some measurement noise. In applications, the trend is normally several orders larger than the concerned fluctuations in magnitude, which makes it difficult to detect the weak fluctuations without signal distortion. In addition, the fluctuations can be complicated and amplitude modulated under non-stationary working condition. To overcome this issue, singular spectrum analysis (SSA) is proposed for detecting weak position fluctuations from encoder signal in this paper. It enables complicated encode signal to be reduced into several interpretable components including a trend, a set of periodic fluctuations and noise. A numerical simulation is given to demonstrate the performance of the method, it shows that SSA outperforms empirical mode decomposition (EMD) in terms of capability and accuracy. Moreover, linear encoder signals from a CNC machine tool are analyzed to determine the magnitudes and sources of fluctuations during feed motion. The proposed method is proven to be feasible and reliable for machinery condition monitoring. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Rapid determination of particle velocity from space-time images using the Radon transform
Drew, Patrick J.; Blinder, Pablo; Cauwenberghs, Gert; Shih, Andy Y.; Kleinfeld, David
2016-01-01
Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods made use of shearing or rotation of the images and a Singular Value Decomposition (SVD) to automatically estimate the average velocity in a temporal window of data. Here we present an alternative method that makes use of the Radon transform to calculate the velocity of streaming particles. We show that this method is over an order of magnitude faster than the SVD-based algorithm and is more robust to noise. PMID:19459038
NASA Technical Reports Server (NTRS)
Roth, Don J.; Hendricks, J. Lynne; Whalen, Mike F.; Bodis, James R.; Martin, Katherine
1996-01-01
This article describes the commercial implementation of ultrasonic velocity imaging methods developed and refined at NASA Lewis Research Center on the Sonix c-scan inspection system. Two velocity imaging methods were implemented: thickness-based and non-thickness-based reflector plate methods. The article demonstrates capabilities of the commercial implementation and gives the detailed operating procedures required for Sonix customers to achieve optimum velocity imaging results. This commercial implementation of velocity imaging provides a 100x speed increase in scanning and processing over the lab-based methods developed at LeRC. The significance of this cooperative effort is that the aerospace and other materials development-intensive industries which use extensive ultrasonic inspection for process control and failure analysis will now have an alternative, highly accurate imaging method commercially available.
Vestibulospinal control of reflex and voluntary head movement
NASA Technical Reports Server (NTRS)
Boyle, R.; Peterson, B. W. (Principal Investigator)
2001-01-01
Secondary canal-related vestibulospinal neurons respond to an externally applied movement of the head in the form of a firing rate modulation that encodes the angular velocity of the movement, and reflects in large part the input "head velocity in space" signal carried by the semicircular canal afferents. In addition to the head velocity signal, the vestibulospinal neurons can carry a more processed signal that includes eye position or eye velocity, or both (see Boyle on ref. list). To understand the control signals used by the central vestibular pathways in the generation of reflex head stabilization, such as the vestibulocollic reflex (VCR), and the maintenance of head posture, it is essential to record directly from identified vestibulospinal neurons projecting to the cervical spinal segments in the alert animal. The present report discusses two key features of the primate vestibulospinal system. First, the termination morphology of vestibulospinal axons in the cervical segments of the spinal cord is described to lay the structural basis of vestibulospinal control of head/neck posture and movement. And second, the head movement signal content carried by the same class of secondary vestibulospinal neurons during the actual execution of the VCR and during self-generated, or active, rapid head movements is presented.
New hydrologic instrumentation in the U.S. Geological Survey
Latkovich, V.J.; Shope, W.G.; ,
1991-01-01
New water-level sensing and recording instrumentation is being used by the U.S. Geological Survey for monitoring water levels, stream velocities, and water-quality characteristics. Several of these instruments are briefly described. The Basic Data Recorder (BDR) is an electronic data logger, that interfaces to sensor systems through a serial-digital interface standard (SDI-12), which was proposed by the data-logger industry; the Incremental Shaft Encoder is an intelligent water-level sensor, which interfaces to the BDR through the SDI-12; the Pressure Sensor is an intelligent, nonsubmersible pressure sensor, which interfaces to the BDR through the SDI-12 and monitors water levels from 0 to 50 feet; the Ultrasonic Velocity Meter is an intelligent, water-velocity sensor, which interfaces to the BDR through the SDI-12 and measures the velocity across a stream up to 500 feet in width; the Collapsible Hand Sampler can be collapsed for insertion through holes in the ice and opened under the ice to collect a water sample; the Lighweight Ice Auger, weighing only 32 pounds, can auger 6- and 8-inch holes through approximately 3.5 feet of ice; and the Ice Chisel has a specially hardened steel blade and 6-foot long, hickory D-handle.
Expression of a bioactive bacteriophage endolysin in Nicotiana benthamiana plants
USDA-ARS?s Scientific Manuscript database
The emergence and spread of antibiotic-resistant pathogens has led to an increased interest in alternative antimicrobial treatments, such as bacteriophage, bacteriophage-encoded peptidoglycan hydrolases (endolysins) and antimicrobial peptides. In our study, the antimicrobial activity of the CP933 en...
SGML Authoring Tools for Technical Communication.
ERIC Educational Resources Information Center
Davidson, W. J.
1993-01-01
Explains that structured authoring systems designed for the creation of generically encoded reusable information have context-sensitive application of markup, markup suppression, queing and automated formatting, structural navigation, and self-validation features. Maintains that they are a real alternative to conventional publishing systems. (SR)
Murdison, T Scott; Paré-Bingley, Chanel A; Blohm, Gunnar
2013-08-01
To compute spatially correct smooth pursuit eye movements, the brain uses both retinal motion and extraretinal signals about the eyes and head in space (Blohm and Lefèvre 2010). However, when smooth eye movements rely solely on memorized target velocity, such as during anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal information, such as head roll and ocular torsion. To answer this question, we used a novel behavioral updating paradigm in which participants pursued a repetitive, spatially constant fixation-gap-ramp stimulus in series of five trials. During the first four trials, participants' heads were rolled toward one shoulder, inducing ocular counterroll (OCR). With each repetition, participants increased their anticipatory pursuit gain, indicating a robust encoding of velocity memory. On the fifth trial, they rolled their heads to the opposite shoulder before pursuit, also inducing changes in ocular torsion. Consequently, for spatially accurate anticipatory pursuit, the velocity memory had to be updated across changes in head roll and ocular torsion. We tested how the velocity memory accounted for head roll and OCR by observing the effects of changes to these signals on anticipatory trajectories of the memory decoding (fifth) trials. We found that anticipatory pursuit was updated for changes in head roll; however, we observed no evidence of compensation for OCR, representing the absence of ocular torsion signals within the velocity memory. This indicated that the directional component of the memory must be coded retinally and updated to account for changes in head roll, but not OCR.
Do Doppler color flow algorithms for mapping disturbed flow make sense?
Gardin, J M; Lobodzinski, S M
1990-01-01
It has been suggested that a major advantage of Doppler color flow mapping is its ability to visualize areas of disturbed ("turbulent") flow, for example, in valvular stenosis or regurgitation and in shunts. To investigate how various color flow mapping instruments display disturbed flow information, color image processing was used to evaluate the most common velocity-variance color encoding algorithms of seven commercially available ultrasound machines. In six of seven machines, green was reportedly added by the variance display algorithms to map areas of disturbed flow. The amount of green intensity added to each pixel along the red and blue portions of the velocity reference color bar was calculated for each machine. In this study, velocities displayed on the reference color bar ranged from +/- 46 to +/- 64 cm/sec, depending on the Nyquist limit. Of note, changing the Nyquist limits depicted on the color reference bars did not change the distribution of the intensities of red, blue, or green within the contour of the reference map, but merely assigned different velocities to the pixels. Most color flow mapping algorithms in our study added increasing intensities of green to increasing positive (red) or negative (blue) velocities along their color reference bars. Most of these machines also added increasing green to red and blue color intensities horizontally across their reference bars as a marker of increased variance (spectral broadening). However, at any given velocity, marked variations were noted between different color flow mapping instruments in the amount of green added to their color velocity reference bars.(ABSTRACT TRUNCATED AT 250 WORDS)
Effects of the oceans on polar motion: Extended investigations
NASA Technical Reports Server (NTRS)
Dickman, Steven R.
1987-01-01
Matrix formulation of the tide equations (pole tide in nonglobal oceans); matrix formulation of the associated boundary conditions (constraints on the tide velocity at coastlines); and FORTRAN encoding of the tide equations excluding boundary conditions were completed. The need for supercomputer facilities was evident. Large versions of the programs were successfully run on the CYBER, submitting the jobs from SUNY through the BITNET network. The code was also restructured to include boundary constraints.
Hecker, Laura A.; Edwards, Albert O.; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H.; Brown, William L.; Issa, Peter Charbel; Scholl, Hendrik P.; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E.; Bailey, Kent R.; Oppermann, Martin
2010-01-01
Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues. PMID:19825847
Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli
Napolitano, Michael G.; Landon, Matthieu; Gregg, Christopher J.; Lajoie, Marc J.; Govindarajan, Lakshmi; Mosberg, Joshua A.; Kuznetsov, Gleb; Goodman, Daniel B.; Vargas-Rodriguez, Oscar; Isaacs, Farren J.; Söll, Dieter; Church, George M.
2016-01-01
The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 “recalcitrant” AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional “safe replacement zone” (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes. PMID:27601680
Acoustic nonreciprocity in Coriolis mean flow systems.
Naghdi, Masoud; Farzbod, Farhad
2018-01-01
One way to break acoustic reciprocity is to have a moving wave propagation medium. If the acoustic wave vector and the moving fluid velocity are collinear, the wave vector shift caused by the fluid flow can be used to break. In this paper, an alternative approach is investigated in which the fluid velocity enters the differential equation of the system as a cross product term with the wave vector. A circular field where the fluid velocity increases radially has a Coriolis acceleration term. In such a system, the acoustic wave enters from the central wall and exits from the perimeter wall. In this paper, the differential equation is solved numerically and the effect of fluid velocity on the nonreciprocity factor is examined.
Modelling of the combustion velocity in UIT-85 on sustainable alternative gas fuel
NASA Astrophysics Data System (ADS)
Smolenskaya, N. M.; Korneev, N. V.
2017-05-01
The flame propagation velocity is one of the determining parameters characterizing the intensity of combustion process in the cylinder of an engine with spark ignition. Strengthening of requirements for toxicity and efficiency of the ICE contributes to gradual transition to sustainable alternative fuels, which include the mixture of natural gas with hydrogen. Currently, studies of conditions and regularities of combustion of this fuel to improve efficiency of its application are carried out in many countries. Therefore, the work is devoted to modeling the average propagation velocities of natural gas flame front laced with hydrogen to 15% by weight of the fuel, and determining the possibility of assessing the heat release characteristics on the average velocities of the flame front propagation in the primary and secondary phases of combustion. Experimental studies, conducted the on single cylinder universal installation UIT-85, showed the presence of relationship of the heat release characteristics with the parameters of the flame front propagation. Based on the analysis of experimental data, the empirical dependences for determination of average velocities of flame front propagation in the first and main phases of combustion, taking into account the change in various parameters of engine operation with spark ignition, were obtained. The obtained results allow to determine the characteristics of heat dissipation and to assess the impact of addition of hydrogen to the natural gas combustion process, that is needed to identify ways of improvement of the combustion process efficiency, including when you change the throttling parameters.
Effective group index of refraction in non-thermal plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousavi, A.; Sadegzadeh, S., E-mail: sadegzadeh@azaruniv.edu
Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity v{sub g}, and effective group index of refraction n{sub eff}(g)more » of such NPPC structure with TeO{sub 2} as the material of dielectric layers have been studied. The concept of negative group velocity and negative n{sub eff}(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, n{sub eff}(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 10{sup 3}c (c is the speed of light in vacuum)« less
Iodate Reduction by Shewanella oneidensis Does Not Involve Nitrate Reductase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mok, Jung Kee; Toporek, Yael J.; Shin, Hyun-Dong
Microbial iodate (IO 3 -) reduction is a major component of the iodine biogeochemical reaction network and is the basis of alternative strategies for remediation of iodine-contaminated environments. The molecular mechanism of microbial IO 3 - reduction, however, is not well understood. In microorganisms displaying IO 3 - and nitrate (NO 3 -) reduction activities, NO 3 - reductase is postulated to reduce IO 3 - as alternate electron acceptor. In the present study, whole genome analyses of 25 NO 3 --reducing Shewanella strains identified various combinations of genes encoding one assimilatory (cytoplasmic Nas) and three dissimilatory (membrane-associated Nar andmore » periplasmic Napα and Napβ) NO 3 - reductases. S. oneidensis was the only Shewanella strain whose genome encoded a single NO 3 - reductase (Napβ). Terminal electron acceptor competition experiments in S. oneidensis batch cultures amended with both NO 3 - and IO 3 - demonstrated that neither NO 3 - nor IO 3 - reduction activities were competitively inhibited by the presence of the competing electron acceptor. The lack of involvement of S. oneidensis Napβ in IO 3 - reduction was confirmed via phenotypic analysis of an in-frame gene deletion mutant lacking napβΑ (encoding the NO 3 --reducing NapβA catalytic subunit). S. oneidensis ΔnapβA was unable to reduce NO 3 -, yet reduced IO 3 - at rates higher than the wild-type strain. Thus, NapβA is required for dissimilatory NO 3 - reduction by S. oneidensis, while neither the assimilatory (Nas) nor dissimilatory (Napα, Napβ, and Nar) NO 3 - reductases are required for IO 3 - reduction. These findings oppose the traditional view that NO 3 - reductase reduces IO 3 - as alternate electron acceptor and indicate that S. oneidensis reduces IO 3 - via an as yet undiscovered enzymatic mechanism.« less
Arakane, Yasuyuki; Hogenkamp, David G; Zhu, Yu Cheng; Kramer, Karl J; Specht, Charles A; Beeman, Richard W; Kanost, Michael R; Muthukrishnan, Subbaratnam
2004-03-01
Two chitin synthase (CHS) genes of the red flour beetle, Tribolium castaneum, were sequenced and their transcription patterns during development examined. By screening a BAC library of genomic DNA from T. castaneum (Tc) with a DNA probe encoding the catalytic domain of a putative Tribolium CHS, several clones that contained CHS genes were identified. Two distinct PCR products were amplified from these BAC clones and confirmed to be highly similar to CHS genes from other insects, nematodes and fungi. The DNA sequences of these genes, TcCHS1 and TcCHS2, were determined by amplification of overlapping PCR fragments from two of the BAC DNAs and mapped to different linkage groups. Each ORF was identified and full-length cDNAs were also amplified, cloned and sequenced. TcCHS1 and TcCHS2 encode transmembrane proteins of 1558 and 1464 amino acids, respectively. The TcCHS1 gene was found to use alternate exons, each encoding 59 amino acids, a feature not found in the TcCHS2 gene. During development, Tribolium expressed TcCHS1 predominantly in the embryonic and pupal stages, whereas TcCHS2 was prevalent in the late larval and adult stages. The alternate exon 8a of TcCHS1 was utilized over a much broader range of development than exon 8b. We propose that the two isoforms of the TcCHS1 enzyme are used predominantly for the formation of chitin in embryonic and pupal cuticles, whereas TcCHS2 is utilized primarily for the synthesis of peritrophic membrane-associated chitin in the midgut.
Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.
Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie
2016-12-07
A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.
Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.
Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst
2008-04-23
If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.
Methodology in subliminal psychodynamic activation: the next step in the debate.
Birgegård, A; Sohlberg, S
2001-04-01
Subliminal psychdynamic activation methodology has recently been the subject of an exchange of views between Birgegård and Sohlberg (1999) and Fudin (2000). The agreements and some remaining points of contention are summarized here. The main difference of opinion appears to concern unconscious verbal encoding in relation to subjective experience in subliminal stimulation and whether subliminal psychodynamic activation results are unreliable until a full explanation of how verbal encoding works is at hand. We conclude that clarifying perspectives is important and that those suggesting alternative explanations of results on subliminal psychodynamic activation must now empirically investigate their claims.
A new phase encoding approach for a compact head-up display
NASA Astrophysics Data System (ADS)
Suszek, Jaroslaw; Makowski, Michal; Sypek, Maciej; Siemion, Andrzej; Kolodziejczyk, Andrzej; Bartosz, Andrzej
2008-12-01
The possibility of encoding multiple asymmetric symbols into a single thin binary Fourier hologram would have a practical application in the design of simple translucent holographic head-up displays. A Fourier hologram displays the encoded images at the infinity so this enables an observation without a time-consuming eye accommodation. Presenting a set of the most crucial signs for a driver in this way is desired, especially by older people with various eyesight disabilities. In this paper a method of holographic design is presented that assumes a combination of a spatial segmentation and carrier frequencies. It allows to achieve multiple reconstructed images selectable by the angle of the incident laser beam. In order to encode several binary symbols into a single Fourier hologram, the chessboard shaped segmentation function is used. An optimized sequence of phase encoding steps and a final direct phase binarization enables recording of asymmetric symbols into a binary hologram. The theoretical analysis is presented, verified numerically and confirmed in the optical experiment. We suggest and describe a practical and highly useful application of such holograms in an inexpensive HUD device for the use of the automotive industry. We present two alternative propositions of car viewing setups.
Decision making in high-velocity environments: implications for healthcare.
Stepanovich, P L; Uhrig, J D
1999-01-01
Healthcare can be considered a high-velocity environment and, as such, can benefit from research conducted in other industries regarding strategic decision making. Strategic planning is not only relevant to firms in high-velocity environments, but is also important for high performance and survival. Specifically, decision-making speed seems to be instrumental in differentiating between high and low performers; fast decision makers outperform slow decision makers. This article outlines the differences between fast and slow decision makers, identifies five paralyses that can slow decision making in healthcare, and outlines the role of a planning department in circumventing these paralyses. Executives can use the proposed planning structure to improve both the speed and quality of strategic decisions. The structure uses planning facilitators to avoid the following five paralyses: 1. Analysis. Decision makers can no longer afford the luxury of lengthy, detailed analysis but must develop real-time systems that provide appropriate, timely information. 2. Alternatives. Many alternatives (beyond the traditional two or three) need to be considered and the alternatives must be evaluated simultaneously. 3. Group Think. Decision makers must avoid limited mind-sets and autocratic leadership styles by seeking out independent, knowledgeable counselors. 4. Process. Decision makers need to resolve conflicts through "consensus with qualification," as opposed to waiting for everyone to come on board. 5. Separation. Successful implementation requires a structured process that cuts across disciplines and levels.
Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core
NASA Astrophysics Data System (ADS)
Blacklock, Natalie Erin
During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of Young's modulus. This indicated that the test procedure will require modifications to improve coupling of the transducers to the core surface. In order to assess whether laboratory testing can be an alternative to borehole surveys, laboratory velocity testing must be directly assessed with results from acoustic borehole logging. There is also potential for the laboratory velocity program to be used to assess small scale stiffness changes, differences in mineral composition and the degree of fracturing of drill core.
Solar oscillations: time analysis of the GOLF p-mode signal
NASA Astrophysics Data System (ADS)
Renaud, C.; Grec, G.; Boumier, P.; Gabriel, A. H.; Robillot, J. M.; Cortés, T. Roca; Turck-Chièze, S.; Ulrich, R. K.
1999-05-01
We determine the intrinsic phase lag of the GOLF data for the solar p-mode velocity deduced either from one of the narrow band photometers working alternatively on blue and red wing of the sodium lines. The timing of the ``blue wing'' velocity coming from the current GOLF data is given in respect to the ground-based observations. The phase lag for the ``blue'' velocity is 6 s in advance relatively to a velocity coming from a differential device. For individual p modes, the phase lag from the ``blue'' velocity to the ``red'' velocity are not in opposition of phase, as expected in a very simple solar model, but differs from 8(o) to 18(o) from the opposition, depending on the degree and the radial order of the acoustic mode. The measurement of the differential lag between the blue and red wings of the D lines may open a new way to monitor the temperature oscillations with the optical depth.
Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system.
Kalb, Julia; Egelhaaf, Martin; Kurtz, Rafael
2008-09-10
Although many adaptation-induced effects on neuronal response properties have been described, it is often unknown at what processing stages in the nervous system they are generated. We focused on fly visual motion-sensitive neurons to identify changes in response characteristics during prolonged visual motion stimulation. By simultaneous recordings of synaptically coupled neurons, we were able to directly compare adaptation-induced effects at two consecutive processing stages in the fly visual motion pathway. This allowed us to narrow the potential sites of adaptation effects within the visual system and to relate them to the properties of signal transfer between neurons. Motion adaptation was accompanied by a response reduction, which was somewhat stronger in postsynaptic than in presynaptic cells. We found that the linear representation of motion velocity degrades during adaptation to a white-noise velocity-modulated stimulus. This effect is caused by an increasingly nonlinear velocity representation rather than by an increase of noise and is similarly strong in presynaptic and postsynaptic neurons. In accordance with this similarity, the dynamics and the reliability of interneuronal signal transfer remained nearly constant. Thus, adaptation is mainly based on processes located in the presynaptic neuron or in more peripheral processing stages. In contrast, changes of transfer properties at the analyzed synapse or in postsynaptic spike generation contribute little to changes in velocity coding during motion adaptation.
Pilot-in-the-Loop CFD Method Development
2015-02-01
expensive alternatives [1]. ALM represents the blades as a set of segments along with each blade axis and the ADM represents the entire rotor as...fine grid, Δx = 1.00 m Figure 4 – Time-averaged vertical velocity distributions on downwash and rotor disk plane for hybrid and loose coupling...cases with fine and coarse grid refinement levels. Figure 4 shows the time-averaged distributions of vertical velocities on both downwash and rotor disk
Kęsik-Szeloch, Agata; Drulis-Kawa, Zuzanna; Weber-Dąbrowska, Beata; Kassner, Jerzy; Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lusiak-Szelachowska, Marzanna; Zaczek, Maciej; Górski, Andrzej; Kropinski, Andrew M
2013-03-28
Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment. Bacteriophage therapy forms one of these alternate strategies. Electron microscopy, burst size, host range, sensitivity of phage particles to temperature, chloroform, pH, and restriction digestion of phage DNA were used to characterize Klebsiella phages. Of the 32 isolated phages eight belonged to the family Myoviridae, eight to the Siphoviridae whilst the remaining 16 belonged to the Podoviridae. The host range of these phages was characterised against 254 clinical Enterobacteriaceae strains including multidrug resistant Klebsiella isolates producing extended-spectrum beta-lactamases (ESBLs). Based on their lytic potential, six of the phages were further characterised for burst size, physicochemical properties and sensitivity to restriction endonuclease digestion. In addition, five were fully sequenced. Multiple phage-encoded host resistance mechanisms were identified. The Siphoviridae phage genomes (KP16 and KP36) contained low numbers of host restriction sites similar to the strategy found in T7-like phages (KP32). In addition, phage KP36 encoded its own DNA adenine methyltransferase. The φKMV-like KP34 phage was sensitive to all endonucleases used in this study. Dam methylation of KP34 DNA was detected although this was in the absence of an identifiable phage encoded methyltransferase. The Myoviridae phages KP15 and KP27 both carried Dam and Dcm methyltransferase genes and other anti-restriction mechanisms elucidated in previous studies. No other anti-restriction mechanisms were found, e.g. atypical nucleotides (hmC or glucosyl hmC), although Myoviridae phage KP27 encodes an unknown anti-restriction mechanism that needs further investigation.
Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard
2009-01-01
Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.
Alternation blindness in the representation of binary sequences.
Yu, Ru Qi; Osherson, Daniel; Zhao, Jiaying
2018-03-01
Binary information is prevalent in the environment and contains 2 distinct outcomes. Binary sequences consist of a mixture of alternation and repetition. Understanding how people perceive such sequences would contribute to a general theory of information processing. In this study, we examined how people process alternation and repetition in binary sequences. Across 4 paradigms involving estimation, working memory, change detection, and visual search, we found that the number of alternations is underestimated compared with repetitions (Experiment 1). Moreover, recall for binary sequences deteriorates as the sequence alternates more (Experiment 2). Changes in bits are also harder to detect as the sequence alternates more (Experiment 3). Finally, visual targets superimposed on bits of a binary sequence take longer to process as alternation increases (Experiment 4). Overall, our results indicate that compared with repetition, alternation in a binary sequence is less salient in the sense of requiring more attention for successful encoding. The current study thus reveals the cognitive constraints in the representation of alternation and provides a new explanation for the overalternation bias in randomness perception. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bracco, Laura; Bessi, Valentina; Alari, Fabiana; Sforza, Angela; Barilaro, Alessandro; Marinoni, Marinella
2011-06-01
Previous neuropsychological, lesional and functional imaging studies deal with the lateralization of memory processes, suggesting that they could be determined by the stage of processing (encoding vs retrieval) or by content (verbal vs non-verbal stimuli). The aims of the present study were: 1) to investigate if tasks that can be carried out using different strategies depending on the verbalizability of the material induce a lateralization of the mean cerebral blood flow velocity (mCBFV) in the middle cerebral arteries (MCAs), as monitored by a functional transcranial Doppler (fTCD); 2) to evaluate if these patterns of cerebral activation differ in relation to age, gender and task performance. Using TCD bilateral monitoring, we recorded mCBFV variations in 35 male and 35 female healthy, right-handed volunteers, classified as "young" (age range 21-40 years, n=35) or "old"(age range 41-60 years, n=35), performing four different cognitive tasks: encoding and recognition of Geometric Figures (GF), encoding and recall of Object Localization (OL) on a picture, encoding of a verbal Room Description (RD) and Arithmetic Skill (AS). We found a significant right lateralization for the OL recall phase, and a significant left lateralization for RD and AS. When we took into consideration gender, age and performance, there was a strong effect of age on both OL encoding and recall phase, with significant right lateralization in young volunteers not seen in the older ones. No difference in gender was detected. We found a gender×performance interaction for RD, with poor performance females showing significant left lateralization. According to our findings, hemispheric lateralization during memory encoding is material specific in both men and women, depending on the verbalizability of the material. mCBFV right lateralization during scene encoding and recall appears lost in older people, suggesting that healthy elderly could take advantage of mixed verbal and non-verbal strategies. Copyright © 2010 Elsevier Srl. All rights reserved.
Tests of Relativity Using a Cryogenic Optical Resonator
NASA Astrophysics Data System (ADS)
Braxmaier, C.; Müller, H.; Pradl, O.; Mlynek, J.; Peters, A.; Schiller, S.
2002-01-01
A 190-day comparison of the optical frequencies defined by an optical cavity and a molecular electronic transition is analyzed for the velocity independence of the speed of light (Kennedy-Thorndike test) and the universality of the gravitational redshift. The modulation of the laboratory velocity and the gravitational potential were provided by Earth's orbital motion around the Sun. We find a velocity-dependence coefficient of (1.9+/-2.1)×10-5, 3 times lower compared to the best previous test. Alternatively, the data confirm the gravitational redshift for an electronic transition at the 4% level. Prospects for significant improvements of the tests are discussed.
Shear velocity criterion for incipient motion of sediment
Simoes, Francisco J.
2014-01-01
The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle’s settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion.
Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard
2016-01-01
The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.
NASA Astrophysics Data System (ADS)
Wu, Zhe; Taylor, Lawrence S.; Rubens, Deborah J.; Parker, Kevin J.
2004-03-01
The shear wave velocity is one of a few important parameters that characterize the mechanical properties of bio-materials. In this paper, two noninvasive methods are proposed to measure the shear velocity by inspecting the shear wave interference patterns. In one method, two shear wave sources are placed on the opposite two sides of a sample, driven by the identical sinusoidal signals. The shear waves from the two sources interact to create interference patterns, which are visualized by the vibration sonoelastography technique. The spacing between the pattern bands equals half of the shear wavelength. The shear velocity can be obtained by taking the product of the wavelength and the frequency. An alternative method is to drive the two vibration sources at slightly different frequencies. In this case, the interference patterns no longer remain stationary. It is proved that the apparent velocity of the moving patterns is proportional to the shear velocity in the medium. Since the apparent velocity of the patterns can be measured by analysing the video sequence, the shear velocity can be obtained thereafter. These approaches are validated by a conventional shear wave time-of-flight approach, and they are accurate within 4% on various homogeneous tissue-mimicking phantoms.
Galactic googly: the rotation-metallicity bias in the inner stellar halo of the Milky Way
NASA Astrophysics Data System (ADS)
Kafle, Prajwal R.; Sharma, Sanjib; Robotham, Aaron S. G.; Pradhan, Raj K.; Guglielmo, Magda; Davies, Luke J. M.; Driver, Simon P.
2017-09-01
The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained 'known unknowns'. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galactocentric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the hierarchical Bayesian scheme, which allows easy marginalization over the missing data (the proper motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy (β) and streaming motion (vrot) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r ≲ 15 kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H] > -1.4) and the metal-poor ([Fe/H] ≤ -1.4) MSTO samples show a clear systematic difference in vrot ˜ 20-40 km s - 1, depending on how restrictive the spatial cuts to cull the disc contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased I.e. σr > σθ or σϕ and β ≃ 0.5. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, I.e. in situ versus accretion.
Forterre, Patrick; Prangishvili, David
2009-10-01
Our conceptions on the origin, nature, and role of viruses have been shaken recently by several independent lines of research. There are many reasons to believe now that viruses are more ancient than modern cells and have always been more abundant and diverse than their cellular targets. Viruses can be defined as capsid-encoding organisms that transform their "host" cell into a viral factory. If capsid-encoding organisms (viruses) and ribosome-encoding organisms (cells) are the major types of living entities on our planet, it seems logical to conclude that their conflict has been a major engine of biological evolution (in the framework of natural selection). In particular, many novelties first selected in the viral world might have been transferred to cells as a consequence of the continuous flow of viral genes into cellular genomes. We discuss recent observations and hypotheses suggesting that viruses have played a major role at different stages of biological evolution, such as the RNA to DNA transition, the origin of the eukaryotic nucleus, or, alternatively, the origin of unique features in multicellular macrobes.
Genetically Encoded Catalytic Hairpin Assembly for Sensitive RNA Imaging in Live Cells.
Mudiyanselage, Aruni P K K Karunanayake; Yu, Qikun; Leon-Duque, Mark A; Zhao, Bin; Wu, Rigumula; You, Mingxu
2018-06-26
DNA and RNA nanotechnology has been used for the development of dynamic molecular devices. In particular, programmable enzyme-free nucleic acid circuits, such as catalytic hairpin assembly, have been demonstrated as useful tools for bioanalysis and to scale up system complexity to an extent beyond current cellular genetic circuits. However, the intracellular functions of most synthetic nucleic acid circuits have been hindered by challenges in the biological delivery and degradation. On the other hand, genetically encoded and transcribed RNA circuits emerge as alternative powerful tools for long-term embedded cellular analysis and regulation. Herein, we reported a genetically encoded RNA-based catalytic hairpin assembly circuit for sensitive RNA imaging inside living cells. The split version of Broccoli, a fluorogenic RNA aptamer, was used as the reporter. One target RNA can catalytically trigger the fluorescence from tens-to-hundreds of Broccoli. As a result, target RNAs can be sensitively detected. We have further engineered our circuit to allow easy programming to image various target RNA sequences. This design principle opens the arena for developing a large variety of genetically encoded RNA circuits for cellular applications.
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.
2014-01-01
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082
Dai, Gucan; Sherpa, Tshering; Varnum, Michael D
2014-05-09
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.
Silicon Graphics' IRIS InSight: An SGML Success Story.
ERIC Educational Resources Information Center
Glushko, Robert J.; Kershner, Ken
1993-01-01
Offers a case history of the development of the Silicon Graphics "IRIS InSight" system, a system for viewing on-line documentation using Standard Generalized Markup Language. Notes that SGML's explicit encoding of structure and separation of structure and presentation make possible structure-based search, alternative structural views of…
Murawski, Carsten; Harris, Philip G; Bode, Stefan; Domínguez D, Juan F; Egan, Gary F
2012-01-01
Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI) study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness.
Quantum key distribution using basis encoding of Gaussian-modulated coherent states
NASA Astrophysics Data System (ADS)
Huang, Peng; Huang, Jingzheng; Zhang, Zheshen; Zeng, Guihua
2018-04-01
The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate much higher excess noise and enables us to reach a much longer secure transmission distance even at lower reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography with continuous variables.
Led into Temptation? Rewarding Brand Logos Bias the Neural Encoding of Incidental Economic Decisions
Murawski, Carsten; Harris, Philip G.; Bode, Stefan; Domínguez D., Juan F.; Egan, Gary F.
2012-01-01
Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI) study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness. PMID:22479547
Design of Waste Heat Boiler for Scranton Army Ammunition Plant
1980-08-01
order to calculate velocity measurements, the flow (stagnation pressure) was measured with a pitot tube and a slant manometer. The 1.245 m (4...p where V = velocity (ft/sec) Referring to Figure A-l and letting the subscript 1 indicate conditions at the inlet to the pitot tube where...Mexico, Mo. 65265 Frisch Dampers* Octapus Equipment Co. Buffalo, N.Y. 14221 Alternate source (s) of supply Henry Vogt Machine Co. 1000 W
NASA Astrophysics Data System (ADS)
Zechmeister, M.; Reiners, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Guenther, E. W.; Hagen, H.-J.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Launhardt, R.; Montes, D.; Morales, J. C.; Quirrenbach, A.; Reffert, S.; Ribas, I.; Seifert, W.; Tal-Or, L.; Wolthoff, V.
2018-01-01
Context. The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity AnaLyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star. We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1 m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700-900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.
Berenbrock, Charles; Tranmer, Andrew W.
2008-01-01
A one-dimensional sediment-transport model and a multi-dimensional hydraulic and bed shear stress model were developed to investigate the hydraulic, sediment transport, and sediment mobility characteristics of the lower Coeur d?Alene River in northern Idaho. This report documents the development and calibration of those models, as well as the results of model simulations. The one-dimensional sediment-transport model (HEC-6) was developed, calibrated, and used to simulate flow hydraulics and erosion, deposition, and transport of sediment in the lower Coeur d?Alene River. The HEC-6 modeled reach, comprised of 234 cross sections, extends from Enaville, Idaho, on the North Fork of the Coeur d?Alene River and near Pinehurst, Idaho, on the South Fork of the river to near Harrison, Idaho, on the main stem of the river. Bed-sediment samples collected by previous investigators and samples collected for this study in 2005 were used in the model. Sediment discharge curves from a previous study were updated using suspended-sediment samples collected at three sites since April 2000. The HEC-6 was calibrated using river discharge and water-surface elevations measured at five U.S. Geological Survey gaging stations. The calibrated HEC-6 model allowed simulation of management alternatives to assess erosion and deposition from proposed dredging of contaminated streambed sediments in the Dudley reach. Four management alternatives were simulated with HEC-6. Before the start of simulation for these alternatives, seven cross sections in the reach near Dudley, Idaho, were deepened 20 feet?removing about 296,000 cubic yards of sediments?to simulate dredging. Management alternative 1 simulated stage-discharge conditions from 2000, and alternative 2 simulated conditions from 1997. Results from alternatives 1 and 2 indicated that about 6,500 and 12,300 cubic yards, respectively, were deposited in the dredged reach. These figures represent 2 and 4 percent, respectively, of the total volume of dredged sediments removed before the start of simulation. In alternatives 3 and 4, the incoming total sediment discharges from the South Fork of the river were decreased by one-half. Management alternative 3 simulated stage-discharge conditions from 2000, and alternative 4 simulated conditions from 1997. Reducing incoming sediment discharge from the South Fork did not affect the streambed and deposition in the Dudley and downstream reaches, probably because the distance between the South Fork and the Dudley reach is long enough for sediment supply, transport capacity, and channel geometry to be balanced before reaching the Dudley and downstream reaches. Development and calibration of a multi-dimensional hydraulic and bed shear stress model (FASTMECH) allowed simulation of water-surface elevation, depth, velocity, bed shear stress, and sediment mobility in the Dudley reach (5.3 miles). The computational grid incorporated bathymetric and Light Detection and Ranging (LIDAR) data, with a node spacing of about 2.5 meters. With the exception of the fourth FASTMECH calibration simulation, results from the FASTMECH calibration simulations indicated that flow depths, flow velocities, and bed shear stresses increased as river discharge increased. Water-surface elevations in the fourth calibration simulation were about 2 feet higher than those in the other simulations because high lake levels in Coeur d?Alene Lake caused backwater conditions. Average simulated velocities along the thalweg ranged from about 3 to 5.3 feet per second, and maximum simulated velocities ranged from 3.9 to 7 feet per second. In the dredged reach, average simulated velocity along the thalweg ranged from 3.5 to 6 feet per second. The model also simulated several back-eddies (flow reversal); the largest eddy encompassed about one-third of the river width. Average bed shear stresses increased more than 200 percent from the first to the last simulation. Simulated sediment mobility, asses
NASA Astrophysics Data System (ADS)
Nagai, S.; Hirata, N.; Sato, H.
2008-12-01
The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EUP). Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. However, their details have not been known enough, especially under the Central Range. We suggest a new orogenic model for Taiwan orogeny, named 'Upper Crustal Stacking Model', inferred from our tomographic images using three temporary seismic networks with the Central Weather Bureau Seismic Network. These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense array observations across central and southern Taiwan, respectively. Tomographic images by the double-difference tomography [Zhang and Thurber, 2003] show a lateral alternate variation of high- and low-velocity, which are well correlated to surface geology and separated by east-dipping boundaries. These images have reliable high-resolution by dense arrays to be able to discuss this alternate variation. We found three high-velocity zones (> 6.0km/s). The westernmost zone corresponds to the subducting EUP. Other two zones are located beneath the Hsuehshan Range and the Eastern Central Range with trends of eastward dipping, respectively. And, we could image low-velocity zone located beneath Backbone Range between the two high-velocity zones clearly. We interpret that these east-dipping high- and low-velocity zones can be divided into two layered blocks and the subducting EUP, each of which consists of a high-velocity body under low-velocity one. Layered blocks can be interpreted as stacked thrust sheets between the subducting EUP and the Northern Luzon Arc, a part of PSP. These thrust sheets are parts of upper- and mid-crust detached from the subducting EUP. The model of continental subduction followed by buoyancy-driven exhumation can explain the existence of stacked thrust sheets. Thus we propose a new orogenic model, as referred to as the 'Upper Crustal Stacking Model'.
Alternative splicing of natriuretic peptide A and B receptor transcripts in the rat brain.
Francoeur, F; Gossard, F; Hamet, P; Tremblay, J
1995-12-01
1. In the present study we searched for variants of alternative splicing of guanylyl cyclase A and B mRNA in rats in vivo. 2. Guanylyl cyclase A2 and guanylyl cyclase B2 isoforms of guanylyl cyclase produced by alternative splicing leading to the deletion of exon 9 of both transcripts were quantified in several rat organs. 3. Only one alternative splicing was found in the regulatory domain, encoded by exons 8-15. 4. Quantification of the guanylyl cyclase B2 isoform in different rat organs and in cultured aortic smooth muscle cells showed that this alternative splicing was tissue-specific and occurred predominantly in the central nervous system where the alternatively spliced variant represented more than 50% of the guanylyl cyclase B mRNA. 5. The same alternative splicing existed for guanylyl cyclase A mRNA but at very low levels in the organs studied. 6. Alternative splicing of guanylyl cyclase B exon 9 in the brain may play an important role in signal transduction, since the expressed protein possesses a constitutionally active guanylyl cyclase acting independently of C-type natriuretic peptide regulation.
Method for fabricating an ignitable heterogeneous stratified metal structure
Barbee, T.W. Jr.; Weihs, T.
1996-08-20
A multilayer structure has a selectable: (1) propagating reaction front velocity V; (2) reaction initiation temperature attained by application of external energy; and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.
Method for fabricating an ignitable heterogeneous stratified metal structure
Barbee, Jr., Troy W.; Weihs, Timothy
1996-01-01
A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)]and n is about 0.8 to 1.2.
Periodic alternating nystagmus during caloric stimulation.
Taki, Masakatsu; Hasegawa, Tatsuhisa; Adachi, Naoko; Fujita, Tomoki; Sakaguchi, Hirofumi; Hisa, Yasuo
2014-04-01
Periodic alternating nystagmus (PAN) is a form of horizontal jerk nystagmus characterized by periodic reversals in direction. We report a case who exhibited transient PAN induced by caloric stimulation. The patient was a 75-year-old male. He had experienced floating sensation in January 2010. Eight months later, he was referred to our university hospital. Gaze nystagmus and positional tests revealed no nystagmus. Only weak right-beating horizontal nystagmus was observed during left Dix-Hallpike maneuver. Electronystagmography showed normal saccadic and smooth pursuit eye movements. The optokinetic nystagmus pattern test was also bilaterally normal. However, during the caloric stimulation to the right ear, at 166 s from the start of irrigation, the direction of nystagmus alternated from leftward to rightward, and thereafter this reversal of direction repeated 15 times. Magnetic resonance imaging showed no significant lesion except for chronic ischemia in the brain. The patient probably had some kind of latent lesion of impaired velocity storage and exhibited transient PAN induced by caloric stimulation. Caloric stimulation is useful and simple examination to disclose latent eye movement disorders of which velocity storage mechanism is impaired. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharat L. Bhatt
1997-05-01
A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of themore » velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.« less
Tick, David; Satici, Aykut C; Shen, Jinglin; Gans, Nicholas
2013-08-01
This paper presents a novel navigation and control system for autonomous mobile robots that includes path planning, localization, and control. A unique vision-based pose and velocity estimation scheme utilizing both the continuous and discrete forms of the Euclidean homography matrix is fused with inertial and optical encoder measurements to estimate the pose, orientation, and velocity of the robot and ensure accurate localization and control signals. A depth estimation system is integrated in order to overcome the loss of scale inherent in vision-based estimation. A path following control system is introduced that is capable of guiding the robot along a designated curve. Stability analysis is provided for the control system and experimental results are presented that prove the combined localization and control system performs with high accuracy.
Petersson, Sven; Dyverfeldt, Petter; Sigfridsson, Andreas; Lantz, Jonas; Carlhäll, Carl-Johan; Ebbers, Tino
2016-03-01
Evaluate spiral three-dimensional (3D) phase contrast MRI for the assessment of turbulence and velocity in stenotic flow. A-stack-of-spirals 3D phase contrast MRI sequence was evaluated in vitro against a conventional Cartesian sequence. Measurements were made in a flow phantom with a 75% stenosis. Both spiral and Cartesian imaging were performed using different scan orientations and flow rates. Volume flow rate, maximum velocity and turbulent kinetic energy (TKE) were computed for both methods. Moreover, the estimated TKE was compared with computational fluid dynamics (CFD) data. There was good agreement between the turbulent kinetic energy from the spiral, Cartesian and CFD data. Flow rate and maximum velocity from the spiral data agreed well with Cartesian data. As expected, the short echo time of the spiral sequence resulted in less prominent displacement artifacts compared with the Cartesian sequence. However, both spiral and Cartesian flow rate estimates were sensitive to displacement when the flow was oblique to the encoding directions. Spiral 3D phase contrast MRI appears favorable for the assessment of stenotic flow. The spiral sequence was more than three times faster and less sensitive to displacement artifacts when compared with a conventional Cartesian sequence. © 2015 Wiley Periodicals, Inc.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1994-01-01
The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.
Carlson, Jonathan; Yan, Jiyu; Akinsiku, Olusimidele T.; Schaefer, Malinda; Sabbaj, Steffanie; Bet, Anne; Levy, David N.; Heath, Sonya; Tang, Jianming; Kaslow, Richard A.; Walker, Bruce D.; Ndung’u, Thumbi; Goulder, Philip J.; Heckerman, David; Hunter, Eric; Goepfert, Paul A.
2010-01-01
Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity. PMID:20065064
High-quality animation of 2D steady vector fields.
Lefer, Wilfrid; Jobard, Bruno; Leduc, Claire
2004-01-01
Simulators for dynamic systems are now widely used in various application areas and raise the need for effective and accurate flow visualization techniques. Animation allows us to depict direction, orientation, and velocity of a vector field accurately. This paper extends a former proposal for a new approach to produce perfectly cyclic and variable-speed animations for 2D steady vector fields (see [1] and [2]). A complete animation of an arbitrary number of frames is encoded in a single image. The animation can be played using the color table animation technique, which is very effective even on low-end workstations. A cyclic set of textures can be produced as well and then encoded in a common animation format or used for texture mapping on 3D objects. As compared to other approaches, the method presented in this paper produces smoother animations and is more effective, both in memory requirements to store the animation, and in computation time.
Karimi, Ashkan; Milewicz, Dianna M
2016-01-01
The medial layer of the aorta confers elasticity and strength to the aortic wall and is composed of alternating layers of smooth muscle cells (SMCs) and elastic fibres. The SMC elastin-contractile unit is a structural unit that links the elastin fibres to the SMCs and is characterized by the following: (1) layers of elastin fibres that are surrounded by microfibrils; (2) microfibrils that bind to the integrin receptors in focal adhesions on the cell surface of the SMCs; and (3) SMC contractile filaments that are linked to the focal adhesions on the inner side of the membrane. The genes that are altered to cause thoracic aortic aneurysms and aortic dissections encode proteins involved in the structure or function of the SMC elastin-contractile unit. Included in this gene list are the genes encoding protein that are structural components of elastin fibres and microfibrils, FBN1, MFAP5, ELN, and FBLN4. Also included are genes that encode structural proteins in the SMC contractile unit, including ACTA2, which encodes SMC-specific α-actin and MYH11, which encodes SMC-specific myosin heavy chain, along with MYLK and PRKG1, which encode kinases that control SMC contraction. Finally, mutations in the gene encoding the protein linking integrin receptors to the contractile filaments, FLNA, also predispose to thoracic aortic disease. Thus, these data suggest that functional SMC elastin-contractile units are important for maintaining the structural integrity of the aorta. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Not all order memory is equal: Test demands reveal dissociations in memory for sequence information.
Jonker, Tanya R; MacLeod, Colin M
2017-02-01
Remembering the order of a sequence of events is a fundamental feature of episodic memory. Indeed, a number of formal models represent temporal context as part of the memory system, and memory for order has been researched extensively. Yet, the nature of the code(s) underlying sequence memory is still relatively unknown. Across 4 experiments that manipulated encoding task, we found evidence for 3 dissociable facets of order memory. Experiment 1 introduced a test requiring a judgment of which of 2 alternatives had immediately followed a word during encoding. This measure revealed better retention of interitem associations following relational encoding (silent reading) than relatively item-specific encoding (judging referent size), a pattern consistent with that observed in previous research using order reconstruction tests. In sharp contrast, Experiment 2 demonstrated the reverse pattern: Memory for the studied order of 2 sequentially presented items was actually better following item-specific encoding than following relational encoding. Experiment 3 reproduced this dissociation in a single experiment using both tests. Experiment 4 extended these findings by further dissociating the roles of relational encoding and item strength in the 2 tests. Taken together, these results indicate that memory for event sequence is influenced by (a) interitem associations, (b) the emphasized directionality of an association, and (c) an item's strength independent of other items. Memory for order is more complicated than has been portrayed in theories of memory and its nuances should be carefully considered when designing tests and models of temporal and relational memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection
NASA Astrophysics Data System (ADS)
Shikha, Swati; Zheng, Xiang; Zhang, Yong
2018-06-01
Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon
2016-06-28
An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.
2009-11-01
investigating intermediate bal- listics, and can alternatively be used as a general compressible flow solver. Casbar supports user- customised types of...gas density in kg/m3 • u: is x-velocity of the gas in m/s • v: is y-velocity of the gas in m/s • mf: is a list of component mass fractions. The values...condition for each grain type even if that condition is None. When the program receives None it will put zero mass of that grain type in the flow condition
NASA Astrophysics Data System (ADS)
Lee, Kang Il
2012-08-01
The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
Sound-velocity measurements for HFC-134a and HFC-152a with a spherical resonator
NASA Astrophysics Data System (ADS)
Hozumi, T.; Koga, T.; Sato, H.; Watanabe, K.
1993-07-01
A spherical acoustic resonator was developed for measuring sound velocities in the gaseous phase and ideal-gas specific heats for new refrigerants. The radius of the spherical resonator, being about 5 cm, was determined by measuring sound velocities in gaseous argon at temperatures from 273 to 348 K and pressures up to 240 kPa. The measurements of 23 sound velocities in gaseous HFC-134a (1,1,1,2-tetrafluoroethane) at temperatures of 273 and 298 K and pressures from 10 to 250 kPa agree well with the measurements of Goodwin and Moldover. In addition, 92 sound velocities in gaseous HFC-152a (1,1-difluoroethane) with an accuracy of ±0.01% were measured at temperatures from 273 to 348 K and pressures up to 250 kPa. The ideal-gas specific heats as well as the second acoustic virial coefficients have been obtained for both these important alternative refrigerants. The second virial coefficients for HFC-152a derived from the present sound velocity measurements agree extremely well with the reported second virial coefficient values obtained with a Burnett apparatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2015-10-10
The dynamical state of the solar and stellar atmospheres depends on the macroscopic velocity fields prevailing within them. The presence of such velocity fields in the line formation regions strongly affects the polarized radiation field emerging from these atmospheres. Thus it becomes necessary to solve the radiative transfer equation for polarized lines in moving atmospheres. Solutions based on the “observer’s frame method” are computationally expensive to obtain, especially when partial frequency redistribution (PRD) in line scattering and large-amplitude velocity fields are taken into account. In this paper we present an efficient alternative method of solution, namely, the comoving frame technique,more » to solve the polarized PRD line formation problems in the presence of velocity fields. We consider one-dimensional planar isothermal atmospheres with vertical velocity fields. We present a study of the effect of velocity fields on the emergent linear polarization profiles formed in optically thick moving atmospheres. We show that the comoving frame method is far superior when compared to the observer’s frame method in terms of the computational speed and memory requirements.« less
NASA Astrophysics Data System (ADS)
Ireland, Peter J.; Collins, Lance R.
2012-11-01
Turbulence-induced collision of inertial particles may contribute to the rapid onset of precipitation in warm cumulus clouds. The particle collision frequency is determined from two parameters: the radial distribution function g (r) and the mean inward radial relative velocity
Kennerley, Steven W.; Wallis, Jonathan D.
2009-01-01
Damage to the frontal lobe can cause severe decision-making impairments. A mechanism that may underlie this is that neurons in the frontal cortex encode many variables that contribute to the valuation of a choice, such as its costs, benefits and probability of success. However, optimal decision-making requires that one considers these variables, not only when faced with the choice, but also when evaluating the outcome of the choice, in order to adapt future behaviour appropriately. To examine the role of the frontal cortex in encoding the value of different choice outcomes, we simultaneously recorded the activity of multiple single neurons in the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) while subjects evaluated the outcome of choices involving manipulations of probability, payoff and cost. Frontal neurons encoded many of the parameters that enabled the calculation of the value of these variables, including the onset and offset of reward and the amount of work performed, and often encoded the value of outcomes across multiple decision variables. In addition, many neurons encoded both the predicted outcome during the choice phase of the task as well as the experienced outcome in the outcome phase of the task. These patterns of selectivity were more prevalent in ACC relative to OFC and LPFC. These results support a role for the frontal cortex, principally ACC, in selecting between choice alternatives and evaluating the outcome of that selection thereby ensuring that choices are optimal and adaptive. PMID:19453638
NASA Technical Reports Server (NTRS)
Davidson, A. C.; Grant, M. M. (Inventor)
1973-01-01
A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners.
Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David
2012-01-01
Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970
Shape Shifting: Local Landmarks Interfere with Navigation By, and Recognition Of, Global Shape
ERIC Educational Resources Information Center
Buckley, Matthew G.; Smith, Alastair D.; Haselgrove, Mark
2014-01-01
An influential theory of spatial navigation states that the boundary shape of an environment is preferentially encoded over and above other spatial cues, such that it is impervious to interference from alternative sources of information. We explored this claim with 3 intradimensional--extradimensional shift experiments, designed to examine the…
Plant Breeding Goes Microbial.
Wei, Zhong; Jousset, Alexandre
2017-07-01
Plant breeding has traditionally improved traits encoded in the plant genome. Here we propose an alternative framework reaching novel phenotypes by modifying together genomic information and plant-associated microbiota. This concept is made possible by a novel technology that enables the transmission of endophytic microbiota to the next plant generation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recognition without Awareness: Encoding and Retrieval Factors
ERIC Educational Resources Information Center
Craik, Fergus I. M.; Rose, Nathan S.; Gopie, Nigel
2015-01-01
The article reports 4 experiments that explore the notion of recognition without awareness using words as the material. Previous work by Voss and associates has shown that complex visual patterns were correctly selected as targets in a 2-alternative forced-choice (2-AFC) recognition test although participants reported that they were guessing. The…
Analysis and interpretation of satellite fragmentation data
NASA Technical Reports Server (NTRS)
Tan, Arjun
1987-01-01
The velocity perturbations of the fragments of a satellite can shed valuable information regarding the nature and intensity of the fragmentation. A feasibility study on calculating the velocity perturbations from existing equations was carried out by analyzing 23 major documented fragmentation events. It was found that whereas the calculated values of the radial components of the velocity change were often unusually high, those in the two other orthogonal directions were mostly reasonable. Since the uncertainties in the radial component necessarily translate into uncertainties in the total velocity change, it is suggested that alternative expressions for the radial component of velocity be sought for the purpose of determining the cause of the fragmentation from the total velocity change. The calculated variances in the velocity perturbations in the two directions orthogonal to the radial vector indicate that they have the smallest values for collision induced breakups and the largest values for low-intensity explosion induced breakups. The corresponding variances for high-intensity explosion induced breakups generally have values intermediate between those of the two extreme categories. A three-dimensional plot of the variances in the two orthogonal velocity perturbations and the plane change angle shows a clear separation between the three major types of breakups. This information is used to reclassify a number of satellite fragmentation events of unknown category.
Carvalho, Carla; Costa, Ana Rita; Silva, Filipe; Oliveira, Ana
2017-09-01
Nowadays, the world is facing an increasing emergence of antibiotic resistant bacteria. Simultaneously, the banning of some existing antibiotics and the lack of development of new antimicrobials have created an urgent need to find new alternatives against animal infections. Bacteriophages (phages) are naturally occurring predators of bacteria, ubiquitous in the environment, with high host specificity and harmless to animals. For these reasons, phages and their derivatives are being considered valuable antimicrobial alternatives and an opportunity to reduce the current use of antibiotics in agri-food production, increasing animal productivity and providing environmental protection. Furthermore, the possibility of combining phage genetic material with foreign genes encoding peptides of interest has enabled their use as vaccine delivery tools. In this case, besides bacterial infections, they might be used to prevent viral infections. This review explores current data regarding advances on the use of phages and phage-encoded proteins, such as endolysins, exolysins and depolymerases, either for therapeutic or prophylactic applications, in animal husbandry. The use of recombinant phage-derived particles or genetically modified phages, including phage vaccines, will also be reviewed.
Effects of PTCs on nonsense-mediated mRNA decay are dependent on PTC location.
Moon, Heegyum; Zheng, Xuexiu; Loh, Tiing Jen; Jang, Ha Na; Liu, Yongchao; Jung, Da-Woon; Williams, Darren R; Shen, Haihong
2017-03-01
The récepteur d'origine nantais (RON) gene is a proto-oncogene that is responsible for encoding the human macrophage-stimulating protein (MSP) 1 receptor. MSP activation induces RON-mediated cell dissociation, migration and matrix invasion. Isoforms of RON that exclude exons 5 and 6 encode the RONΔ160 protein, which promotes cell transformation in vitro and tumor metastasis in vivo . Premature termination codons (PTCs) in exons activate the nonsense-mediated mRNA decay (NMD) signaling pathway. The present study demonstrated that PTCs at various locations in the alternative exons 5 and 6 could induce NMD of the majority of the spliced, or partially spliced, isoforms. However, the isoforms that excluded exon 6 or exons 5 and 6 were markedly increased when produced from mutated minigenes with inserted PTCs. Furthermore, the unspliced isoform of intron 5 was not observed to be decreased by the presence of PTCs. Notably, these effects may be dependent on the location of the PTCs. The current study demonstrated a novel mechanism underlying the regulation of NMD in alternative splicing.
The Deterministic Information Bottleneck
NASA Astrophysics Data System (ADS)
Strouse, D. J.; Schwab, David
2015-03-01
A fundamental and ubiquitous task that all organisms face is prediction of the future based on past sensory experience. Since an individual's memory resources are limited and costly, however, there is a tradeoff between memory cost and predictive payoff. The information bottleneck (IB) method (Tishby, Pereira, & Bialek 2000) formulates this tradeoff as a mathematical optimization problem using an information theoretic cost function. IB encourages storing as few bits of past sensory input as possible while selectively preserving the bits that are most predictive of the future. Here we introduce an alternative formulation of the IB method, which we call the deterministic information bottleneck (DIB). First, we argue for an alternative cost function, which better represents the biologically-motivated goal of minimizing required memory resources. Then, we show that this seemingly minor change has the dramatic effect of converting the optimal memory encoder from stochastic to deterministic. Next, we propose an iterative algorithm for solving the DIB problem. Additionally, we compare the IB and DIB methods on a variety of synthetic datasets, and examine the performance of retinal ganglion cell populations relative to the optimal encoding strategy for each problem.
Bacrot, Séverine; Doyard, Mathilde; Huber, Céline; Alibeu, Olivier; Feldhahn, Niklas; Lehalle, Daphné; Lacombe, Didier; Marlin, Sandrine; Nitschke, Patrick; Petit, Florence; Vazquez, Marie-Paule; Munnich, Arnold; Cormier-Daire, Valérie
2015-02-01
Cerebro-costo-mandibular syndrome (CCMS) is a developmental disorder characterized by the association of Pierre Robin sequence and posterior rib defects. Exome sequencing and Sanger sequencing in five unrelated CCMS patients revealed five heterozygous variants in the small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) gene. This gene includes three transcripts, namely transcripts 1 and 2, encoding components of the core spliceosomal machinery (SmB' and SmB) and transcript 3 undergoing nonsense-mediated mRNA decay. All variants were located in the premature termination codon (PTC)-introducing alternative exon of transcript 3. Quantitative RT-PCR analysis revealed a significant increase in transcript 3 levels in leukocytes of CCMS individuals compared to controls. We conclude that CCMS is due to heterozygous mutations in SNRPB, enhancing inclusion of a SNRPB PTC-introducing alternative exon, and show that this developmental disease is caused by defects in the splicing machinery. Our finding confirms the report of SNRPB mutations in CCMS patients by Lynch et al. (2014) and further extends the clinical and molecular observations. © 2014 WILEY PERIODICALS, INC.
Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard
2015-11-15
The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase. Copyright © 2015 Elsevier Inc. All rights reserved.
Photoelectric radar servo control system based on ARM+FPGA
NASA Astrophysics Data System (ADS)
Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun
2016-01-01
In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a large number of experiments verify the reliability of embedded servo control system's functions, the stability of the program and the stability of the hardware circuit. Meanwhile, the system can also achieve the satisfactory of user experience, to achieve a multi-mode motion, real-time motion status monitoring, online system parameter changes and other convenient features.
Misra, Ashish; Green, Michael R
2017-01-01
Alternative splicing is a regulated process that leads to inclusion or exclusion of particular exons in a pre-mRNA transcript, resulting in multiple protein isoforms being encoded by a single gene. With more than 90 % of human genes known to undergo alternative splicing, it represents a major source for biological diversity inside cells. Although in vitro splicing assays have revealed insights into the mechanisms regulating individual alternative splicing events, our global understanding of alternative splicing regulation is still evolving. In recent years, genome-wide RNA interference (RNAi) screening has transformed biological research by enabling genome-scale loss-of-function screens in cultured cells and model organisms. In addition to resulting in the identification of new cellular pathways and potential drug targets, these screens have also uncovered many previously unknown mechanisms regulating alternative splicing. Here, we describe a method for the identification of alternative splicing regulators using genome-wide RNAi screening, as well as assays for further validation of the identified candidates. With modifications, this method can also be adapted to study the splicing regulation of pre-mRNAs that contain two or more splice isoforms.
Alternative splicing of inner-ear-expressed genes.
Wang, Yanfei; Liu, Yueyue; Nie, Hongyun; Ma, Xin; Xu, Zhigang
2016-09-01
Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca(2+)-activated K(+) channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.
NASA Astrophysics Data System (ADS)
Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.
2016-10-01
The gains from implementing high-resolution versus less costly low-resolution models to describe coastal circulation are not always clear, often lacking statistical evaluation. Here we construct a hierarchy of ocean-atmosphere models operating at multiple scales within a 1 × 1° domain of the Belizean Barrier Reef (BBR). The various components of the atmosphere-ocean models are evaluated with in situ observations of surface drifters, wind and sea surface temperature. First, we compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h) and atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. Next, in trying to understand why the high-resolution models improve prediction, we find that resolving both the diurnal sea-breeze and semi-diurnal tides is key to improving the Lagrangian statistics and transport predictions along the BBR. Notably, the model with the highest ocean-atmosphere resolution and with tidal forcing generates a higher number of looping trajectories and sub-mesoscale coherent structures that are otherwise unresolved. Finally, simulations conducted with this model from June to August of 2013 show an intensification of the velocity fields throughout the summer and reveal a mesoscale anticyclonic circulation around Glovers Reef, and sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to assess the best surface transport prediction from alternative ocean-atmosphere models using metrics derived from high frequency drifters' data and meteorological stations.
NASA Astrophysics Data System (ADS)
Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.
2016-02-01
Determining the appropriate resolution of circulation models often lacks statistical evaluation. Thus, the gains from implementing high-resolution versus less-costly low-resolution models are not always clear. Here we construct a hierarchy of ocean-atmosphere models operating at multiple-scales within a 1×1° domain of the Belizean Barrier Reef (BBR). We compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h), the resolution of the atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. We also investigate the effect of semi-diurnal tides on the local circulation. The model with highest resolution and with tidal forcing resolves higher number of looping trajectories and sub-mesoscale coherent structures. This may be a key factor in reducing discrepancy between simulated and observed velocities and dispersion. Simulations conducted with the highest resolution ocean-atmosphere model and tidal forcing highlight an intensification of the velocity fields throughout the summer and reveal several processes: mesoscale anticyclonic circulation around Glovers Reef, and recurrent sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to estimate the best surface transport prediction from different ocean-atmosphere models using metrics derived from high frequency drifters' data. Also, this study provides an evaluated high-resolution ocean-atmosphere model that resolves tides for the Belizean Barrier Reef.
Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli
2017-11-01
As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects
Ma, Zheng; Watamaniuk, Scott N. J.; Heinen, Stephen J.
2017-01-01
When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets. PMID:29090315
van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna
2012-03-01
Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.
Suzuki, David A; Yamada, Tetsuto; Yee, Robert D
2003-04-01
Neuronal responses that were observed during smooth-pursuit eye movements were recorded from cells in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP). The responses were categorized as smooth-pursuit eye velocity (78%) or eye acceleration (22%). A separate population of rNRTP cells encoded static eye position. The sensitivity to pursuit eye velocity averaged 0.81 spikes/s per degrees /s, whereas the average sensitivity to pursuit eye acceleration was 0.20 spikes/s per degrees /s(2). Of the eye-velocity cells with horizontal preferences for pursuit responses, 56% were optimally responsive to contraversive smooth-pursuit eye movements and 44% preferred ipsiversive pursuit. For cells with vertical pursuit preferences, 61% preferred upward pursuit and 39% preferred downward pursuit. The direction selectivity was broad with 50% of the maximal response amplitude observed for directions of smooth pursuit up to +/-85 degrees away from the optimal direction. The activities of some rNRTP cells were linearly related to eye position with an average sensitivity of 2.1 spikes/s per deg. In some cells, the magnitude of the response during smooth-pursuit eye movements was affected by the position of the eyes even though these cells did not encode eye position. On average, pursuit centered to one side of screen center elicited a response that was 73% of the response amplitude obtained with tracking centered at screen center. For pursuit centered on the opposite side, the average response was 127% of the response obtained at screen center. The results provide a neuronal rationale for the slow, pursuit-like eye movements evoked with rNRTP microstimulation and for the deficits in smooth-pursuit eye movements observed with ibotenic acid injection into rNRTP. More globally, the results support the notion of a frontal and supplementary eye field-rNRTP-cerebellum pathway involved with controlling smooth-pursuit eye movements.
ERIC Educational Resources Information Center
School Science Review, 1986
1986-01-01
Describes 26 different activities, experiments, demonstrations, and computer simulations in various topics in science. Includes instructional activities dealing with mural ecology, surface area/volume ratios, energy transfer in ecosystems, electrochemical simulations, alternating and direct current, terminal velocity, measuring the size of the…
Alternative splicing and the evolution of phenotypic novelty.
Bush, Stephen J; Chen, Lu; Tovar-Corona, Jaime M; Urrutia, Araxi O
2017-02-05
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).
Alternative splicing and the evolution of phenotypic novelty
Bush, Stephen J.; Chen, Lu; Tovar-Corona, Jaime M.
2017-01-01
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994117
On The Origin Of Hyper-Fast Pulsars
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-08-01
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 gave the highest (transverse) velocity (~1100 km/s) ever measured for a neutron star (Chatterjee et al. 2005). The spin-down characteristics of PSR B1508+55 (typical of non-recycled pulsars) imply that the high velocity of this pulsar cannot be solely due to disruption of a tight massive binary system. A possible way to account for the high velocity of PSR B1508+55 is to assume that at least a part of this velocity is due to a natal or post-natal kick (Chatterjee et al. 2005). We propose an alternative explanation for the origin of hyper-fast pulsars. We suggest that PSR B1508+55 could be the remnant of a (symmetric) supernova explosion of the helium core of a massive star expelled at high velocity from the dense core of a young massive stellar cluster by an intermediate-mass (binary) black hole. The maximum peculiar velocity of the helium core is limited by the parabolic velocity on its surface and could be as large as ~2000 km/s. Thus, one can account not only for the high velocity measured for PSR B1508+55, but also for the even higher velocity of ~1600 km/s inferred for the pulsar PSR B2224+65 (Guitar; Chatterjee & Cordes 2004) on the basis of its proper motion and the dispersion measure distance estimate.
NASA Technical Reports Server (NTRS)
Ziegler, H.; Woller, P. T.
1973-01-01
Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles.
Dametto, Lettee; Shavrukov, Yuri; Jenkins, Colin L. D.
2018-01-01
Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2. PMID:29558397
Shin, Sangsu; Song, Yan; Ahn, Jinsoo; Kim, Eunsoo; Chen, Paula; Yang, Shujin; Suh, Yeunsu; Lee, Kichoon
2015-11-15
Myostatin (MSTN) is a key negative regulator of muscle growth and development, and an increase of muscle mass is achieved by inhibiting MSTN signaling. In the current study, five alternative splicing isoforms of MSTN mRNAs in avian species were identified in various tissues. Among these five, three truncated forms of myostatin, MSTN-B, -C, and -E created premature stop codons and produced partial MSTN prodomains encoded from exon 1. MSTN-B is the second dominant isoform following full-length MSTN-A, and their expression was dynamically regulated during muscle development of chicken, turkey, and quail in vivo and in vitro. To clarify the function of MSTN-B, two stable cell lines of quail myoblasts (QM7) were generated to overexpress MSTN-A or MSTN-B. Interestingly, MSTN-B promoted both cell proliferation and differentiation similar to the function of the MSTN prodomain to counteract the negative role of MSTN on myogenesis. The coimmunoprecipitation assay revealed that MSTN-B binds to MSTN-A and reduces the generation of mature MSTN. Furthermore, the current study demonstrated that the partial prodomain encoded from exon 1 is critical for binding of MSTN-B to MSTN-A. Altogether, these data imply that alternative splicing isoforms of MSTN could negatively regulate pro-myostatin processing in muscle cells and prevent MSTN-mediated inhibition of myogenesis in avian species. Copyright © 2015 the American Physiological Society.
Mitrovich, Quinn M.; Anderson, Philip
2000-01-01
Messenger RNA surveillance, the selective and rapid degradation of mRNAs containing premature stop codons, occurs in all eukaryotes tested. The biological role of this decay pathway, however, is not well understood. To identify natural substrates of mRNA surveillance, we used a cDNA-based representational difference analysis to identify mRNAs whose abundance increases in Caenorhabditis elegans smg(−) mutants, which are deficient for mRNA surveillance. Alternatively spliced mRNAs of genes encoding ribosomal proteins L3, L7a, L10a, and L12 are abundant natural targets of mRNA surveillance. Each of these genes expresses two distinct mRNAs. A productively spliced mRNA, whose abundance does not change in smg(−) mutants, encodes a normal, full-length, ribosomal protein. An unproductively spliced mRNA, whose abundance increases dramatically in smg(−) mutants, contains premature stop codons because of incomplete removal of an alternatively spliced intron. In transgenic animals expressing elevated quantities of RPL-12, a greater proportion of endogenous rpl-12 transcript is spliced unproductively. Thus, RPL-12 appears to autoregulate its own splicing, with unproductively spliced mRNAs being degraded by mRNA surveillance. We demonstrate further that alternative splicing of rpl introns is conserved among widely diverged nematodes. Our results suggest that one important role of mRNA surveillance is to eliminate unproductive by-products of gene regulation. PMID:10970881
NASA Astrophysics Data System (ADS)
Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin
2018-01-01
We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.
Haraldsson, Henrik; Kefayati, Sarah; Ahn, Sinyeob; Dyverfeldt, Petter; Lantz, Jonas; Karlsson, Matts; Laub, Gerhard; Ebbers, Tino; Saloner, David
2018-04-01
To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P < 0.001) and experimental (eg, 306 ± 11 vs 203 ± 6 Pa; P < 0.001) data. A 54% greater pressure loss is seen at the highest experimental flow rate when accounting for Reynolds stress (P < 0.001). 4D flow MRI with extended motion-encoding enables quantification of both the velocity and the Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Visual coding with a population of direction-selective neurons.
Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; da Silveira, Rava Azeredo; Hierlemann, Andreas
2015-10-01
The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. Copyright © 2015 the American Physiological Society.
Visual coding with a population of direction-selective neurons
Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas
2015-01-01
The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471
A and F stars as probes of outer Galactic disc kinematics
NASA Astrophysics Data System (ADS)
Harris, A.; Drew, J. E.; Farnhill, H. J.; Monguió, M.; Gebran, M.; Wright, N. J.; Drake, J. J.; Sale, S. E.
2018-04-01
Previous studies of the rotation law in the outer Galactic disc have mainly used gas tracers or clump giants. Here, we explore A and F stars as alternatives: these provide a much denser sampling in the outer disc than gas tracers and have experienced significantly less velocity scattering than older clump giants. This first investigation confirms the suitability of A stars in this role. Our work is based on spectroscopy of ˜1300 photometrically selected stars in the red calcium-triplet region, chosen to mitigate against the effects of interstellar extinction. The stars are located in two low Galactic latitude sightlines, at longitudes ℓ = 118°, sampling strong Galactic rotation shear, and ℓ = 178°, near the anticentre. With the use of Markov Chain Monte Carlo parameter fitting, stellar parameters and radial velocities are measured, and distances computed. The obtained trend of radial velocity with distance is inconsistent with existing flat or slowly rising rotation laws from gas tracers (Brand & Blitz 1993; Reid et al. 2014). Instead, our results fit in with those obtained by Huang et al. (2016) from disc clump giants that favoured rising circular speeds. An alternative interpretation in terms of spiral arm perturbation is not straight forward. We assess the role that undetected binaries in the sample and distance error may have in introducing bias, and show that the former is a minor factor. The random errors in our trend of circular velocity are within ±5 km s-1.
Angular velocity integration in a fly heading circuit.
Turner-Evans, Daniel; Wegener, Stephanie; Rouault, Hervé; Franconville, Romain; Wolff, Tanya; Seelig, Johannes D; Druckmann, Shaul; Jayaraman, Vivek
2017-05-22
Many animals maintain an internal representation of their heading as they move through their surroundings. Such a compass representation was recently discovered in a neural population in the Drosophila melanogaster central complex, a brain region implicated in spatial navigation. Here, we use two-photon calcium imaging and electrophysiology in head-fixed walking flies to identify a different neural population that conjunctively encodes heading and angular velocity, and is excited selectively by turns in either the clockwise or counterclockwise direction. We show how these mirror-symmetric turn responses combine with the neurons' connectivity to the compass neurons to create an elegant mechanism for updating the fly's heading representation when the animal turns in darkness. This mechanism, which employs recurrent loops with an angular shift, bears a resemblance to those proposed in theoretical models for rodent head direction cells. Our results provide a striking example of structure matching function for a broadly relevant computation.
Ultrasonic inspection and deployment apparatus
Michaels, Jennifer E.; Michaels, Thomas E.; Mech, Jr., Stephen J.
1984-01-01
An ultrasonic inspection apparatus for the inspection of metal structures, especially installed pipes. The apparatus combines a specimen inspection element, an acoustical velocity sensing element, and a surface profiling element, all in one scanning head. A scanning head bellows contains a volume of oil above the pipe surface, serving as acoustical couplant between the scanning head and the pipe. The scanning head is mounted on a scanning truck which is mobile around a circular track surrounding the pipe. The scanning truck has sufficient motors, gears, and position encoders to allow the scanning head six degrees of motion freedom. A computer system continually monitors acoustical velocity, and uses that parameter to process surface profiling and inspection data. The profiling data is used to automatically control scanning head position and alignment and to define a coordinate system used to identify and interpret inspection data. The apparatus is suitable for highly automated, remote application in hostile environments, particularly high temperature and radiation areas.
Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
Kohl, Anna M; Kelasidi, Eleni; Mohammadi, Alireza; Maggiore, Manfredi; Pettersen, Kristin Y
2016-11-24
This paper investigates the problem of planar maneuvering control for bio-inspired underwater snake robots that are exposed to unknown ocean currents. The control objective is to make a neutrally buoyant snake robot which is subject to hydrodynamic forces and ocean currents converge to a desired planar path and traverse the path with a desired velocity. The proposed feedback control strategy enforces virtual constraints which encode biologically inspired gaits on the snake robot configuration. The virtual constraints, parametrized by states of dynamic compensators, are used to regulate the orientation and forward speed of the snake robot. A two-state ocean current observer based on relative velocity sensors is proposed. It enables the robot to follow the path in the presence of unknown constant ocean currents. The efficacy of the proposed control algorithm for several biologically inspired gaits is verified both in simulations for different path geometries and in experiments.
High accuracy wavelength calibration for a scanning visible spectrometer.
Scotti, Filippo; Bell, Ronald E
2010-10-01
Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤0.2 Å. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of ∼0.25 Å has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision (∼0.005 Å) is possible, allowing absolute velocity measurements within ∼0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.
Deep Gaze Velocity Analysis During Mammographic Reading for Biometric Identification of Radiologists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hong-Jun; Alamudun, Folami T.; Hudson, Kathy
Several studies have confirmed that the gaze velocity of the human eye can be utilized as a behavioral biometric or personalized biomarker. In this study, we leverage the local feature representation capacity of convolutional neural networks (CNNs) for eye gaze velocity analysis as the basis for biometric identification of radiologists performing breast cancer screening. Using gaze data collected from 10 radiologists reading 100 mammograms of various diagnoses, we compared the performance of a CNN-based classification algorithm with two deep learning classifiers, deep neural network and deep belief network, and a previously presented hidden Markov model classifier. The study showed thatmore » the CNN classifier is superior compared to alternative classification methods based on macro F1-scores derived from 10-fold cross-validation experiments. Our results further support the efficacy of eye gaze velocity as a biometric identifier of medical imaging experts.« less
Estimating discharge measurement uncertainty using the interpolated variance estimator
Cohn, T.; Kiang, J.; Mason, R.
2012-01-01
Methods for quantifying the uncertainty in discharge measurements typically identify various sources of uncertainty and then estimate the uncertainty from each of these sources by applying the results of empirical or laboratory studies. If actual measurement conditions are not consistent with those encountered in the empirical or laboratory studies, these methods may give poor estimates of discharge uncertainty. This paper presents an alternative method for estimating discharge measurement uncertainty that uses statistical techniques and at-site observations. This Interpolated Variance Estimator (IVE) estimates uncertainty based on the data collected during the streamflow measurement and therefore reflects the conditions encountered at the site. The IVE has the additional advantage of capturing all sources of random uncertainty in the velocity and depth measurements. It can be applied to velocity-area discharge measurements that use a velocity meter to measure point velocities at multiple vertical sections in a channel cross section.
Fluidic angular velocity sensor
NASA Technical Reports Server (NTRS)
Berdahl, C. M. (Inventor)
1986-01-01
A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.
Deep Gaze Velocity Analysis During Mammographic Reading for Biometric Identification of Radiologists
Yoon, Hong-Jun; Alamudun, Folami T.; Hudson, Kathy; ...
2018-01-24
Several studies have confirmed that the gaze velocity of the human eye can be utilized as a behavioral biometric or personalized biomarker. In this study, we leverage the local feature representation capacity of convolutional neural networks (CNNs) for eye gaze velocity analysis as the basis for biometric identification of radiologists performing breast cancer screening. Using gaze data collected from 10 radiologists reading 100 mammograms of various diagnoses, we compared the performance of a CNN-based classification algorithm with two deep learning classifiers, deep neural network and deep belief network, and a previously presented hidden Markov model classifier. The study showed thatmore » the CNN classifier is superior compared to alternative classification methods based on macro F1-scores derived from 10-fold cross-validation experiments. Our results further support the efficacy of eye gaze velocity as a biometric identifier of medical imaging experts.« less
Poth, Christian H.; Schneider, Werner X.
2016-01-01
Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM. PMID:27713722
Poth, Christian H; Schneider, Werner X
2016-01-01
Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.
Burton, Rachel A.; Johnson, Philip E.; Beckles, Diane M.; Fincher, Geoffrey B.; Jenner, Helen L.; Naldrett, Mike J.; Denyer, Kay
2002-01-01
In most species, the synthesis of ADP-glucose (Glc) by the enzyme ADP-Glc pyrophosphorylase (AGPase) occurs entirely within the plastids in all tissues so far examined. However, in the endosperm of many, if not all grasses, a second form of AGPase synthesizes ADP-Glc outside the plastid, presumably in the cytosol. In this paper, we show that in the endosperm of wheat (Triticum aestivum), the cytosolic form accounts for most of the AGPase activity. Using a combination of molecular and biochemical approaches to identify the cytosolic and plastidial protein components of wheat endosperm AGPase we show that the large and small subunits of the cytosolic enzyme are encoded by genes previously thought to encode plastidial subunits, and that a gene, Ta.AGP.S.1, which encodes the small subunit of the cytosolic form of AGPase, also gives rise to a second transcript by the use of an alternate first exon. This second transcript encodes an AGPase small subunit with a transit peptide. However, we could not find a plastidial small subunit protein corresponding to this transcript. The protein sequence of the purified plastidial small subunit does not match precisely to that encoded by Ta.AGP.S.1 or to the predicted sequences of any other known gene from wheat or barley (Hordeum vulgare). Instead, the protein sequence is most similar to those of the plastidial small subunits from chickpea (Cicer arietinum) and maize (Zea mays) and rice (Oryza sativa) seeds. These data suggest that the gene encoding the major plastidial small subunit of AGPase in wheat endosperm has yet to be identified. PMID:12428011
Field assessment of alternative bed-load transport estimators
Gaeuman, G.; Jacobson, R.B.
2007-01-01
Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.
Staying Cool when Things Get Hot: Emotion Regulation Modulates Neural Mechanisms of Memory Encoding
Hayes, Jasmeet Pannu; Morey, Rajendra A.; Petty, Christopher M.; Seth, Srishti; Smoski, Moria J.; McCarthy, Gregory; LaBar, Kevin S.
2010-01-01
During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala, and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes. PMID:21212840
Cloning and characterization of cDNAs encoding human gastrin-releasing peptide.
Spindel, E R; Chin, W W; Price, J; Rees, L H; Besser, G M; Habener, J F
1984-01-01
We have prepared and cloned cDNAs derived from poly(A)+ RNA from a human pulmonary carcinoid tumor rich in immunoreactivity to gastrin-releasing peptide, a peptide closely related in structure to amphibian bombesin. Mixtures of synthetic oligodeoxyribonucleotides corresponding to amphibian bombesin were used as hybridization probes to screen a cDNA library prepared from the tumor RNA. Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide. hGRP is flanked at its carboxyl terminus by two basic amino acids, following a glycine used for amidation of the carboxyl-terminal methionine. RNA blot analyses of tumor RNA show a major mRNA of 900 bases and a minor mRNA of 850 bases. Blot hybridization analyses using human genomic DNA are consistent with a single hGRP-encoding gene. The presence of two mRNAs encoding the hGRP precursor protein in the face of a single hGRP gene raises the possibility of alternative processing of the single RNA transcript. Images PMID:6207529
Cross-Cultural Differences in the Neural Correlates of Specific and General Recognition
Paige, Laura E.; Ksander, John C.; Johndro, Hunter A.; Gutchess, Angela H.
2017-01-01
Research suggests that culture influences how people perceive the world, which extends to memory specificity, or how much perceptual detail is remembered. The present study investigated cross-cultural differences (Americans vs. East Asians) at the time of encoding in the neural correlates of specific vs. general memory formation. Participants encoded photos of everyday items in the scanner and 48 hours later completed a surprise recognition test. The recognition test consisted of same (i.e., previously seen in scanner), similar (i.e., same name, different features), or new photos (i.e., items not previously seen in scanner). For Americans compared to East Asians, we predicted greater activation in the hippocampus and right fusiform for specific memory at recognition, as these regions were implicated previously in encoding perceptual details. Results revealed that East Asians activated the left fusiform and left hippocampus more than Americans for specific vs. general memory. Follow-up analyses ruled out alternative explanations of retrieval difficulty and familiarity for this pattern of cross-cultural differences at encoding. Results overall suggest that culture should be considered as another individual difference that affects memory specificity and modulates neural regions underlying these processes. PMID:28256199
Cross-cultural differences in the neural correlates of specific and general recognition.
Paige, Laura E; Ksander, John C; Johndro, Hunter A; Gutchess, Angela H
2017-06-01
Research suggests that culture influences how people perceive the world, which extends to memory specificity, or how much perceptual detail is remembered. The present study investigated cross-cultural differences (Americans vs East Asians) at the time of encoding in the neural correlates of specific versus general memory formation. Participants encoded photos of everyday items in the scanner and 48 h later completed a surprise recognition test. The recognition test consisted of same (i.e., previously seen in scanner), similar (i.e., same name, different features), or new photos (i.e., items not previously seen in scanner). For Americans compared to East Asians, we predicted greater activation in the hippocampus and right fusiform for specific memory at recognition, as these regions were implicated previously in encoding perceptual details. Results revealed that East Asians activated the left fusiform and left hippocampus more than Americans for specific versus general memory. Follow-up analyses ruled out alternative explanations of retrieval difficulty and familiarity for this pattern of cross-cultural differences at encoding. Results overall suggest that culture should be considered as another individual difference that affects memory specificity and modulates neural regions underlying these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Large protein as a potential target for use in rabies diagnostics.
Santos Katz, I S; Dias, M H; Lima, I F; Chaves, L B; Ribeiro, O G; Scheffer, K C; Iwai, L K
Rabies is a zoonotic viral disease that remains a serious threat to public health worldwide. The rabies lyssavirus (RABV) genome encodes five structural proteins, multifunctional and significant for pathogenicity. The large protein (L) presents well-conserved genomic regions, which may be a good alternative to generate informative datasets for development of new methods for rabies diagnosis. This paper describes the development of a technique for the identification of L protein in several RABV strains from different hosts, demonstrating that MS-based proteomics is a potential method for antigen identification and a good alternative for rabies diagnosis.
Estimation of Traffic Variables Using Point Processing Techniques
DOT National Transportation Integrated Search
1978-05-01
An alternative approach to estimating aggregate traffic variables on freeways--spatial mean velocity and density--is presented. Vehicle arrival times at a given location on a roadway, typically a presence detector, are regarded as a point or counting...
Ba, Xiaoliang; Lovering, Andrew L.; Gleadall, Nicholas; Zadoks, Ruth; Peacock, Sharon J.; Holden, Matthew T. G.; Paterson, Gavin K.; Holmes, Mark A.
2015-01-01
β-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA, known as mecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate that mecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum β-lactam resistance in MRSA strains carrying mecC (mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct β-lactamase encoded by the blaZ gene of strain LGA251 (blaZLGA251), which is part of mecC-encoding staphylococcal cassette chromosome mec (SCCmec) type XI. We further demonstrate that mecC-MRSA strains are susceptible to the combination of penicillin and the β-lactam inhibitor clavulanic acid in vitro and that the same combination is effective in vivo for the treatment of experimental mecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences between mecA- and mecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment of mecC-MRSA infections. PMID:26392513
Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells.
Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A; Khoder, Mamdouh I; Shamy, Magdy; Muñoz, Manuel J; Kornblihtt, Alberto R
2015-07-01
Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5' untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Deparis, Olivier; Lambin, Philippe
2018-01-01
In periodic optical media, the group velocity is defined as the gradient with respect to wave-vector of the corresponding Bloch mode frequency dispersion curve, forming the photonic band structure. Instead of deducing it from the numerically computed photonic crystal band structure, the group velocity can be calculated directly from the integral of the Poynting vector over the crystal unit cell, the physical meaning of which is immediately perceivable. The related formula, which can be regarded as the application of Hellmann-Feynman theorem to electromagnetism, has been reported previously though without proof. We provide hereafter a full derivation of that formula starting from Maxwell's equations and we discuss its usefulness in photonics.
Barbee, T.W. Jr.; Weihs, T.
1996-07-23
A multilayer structure has a selectable, (1) propagating reaction front velocity V, (2) reaction initiation temperature attained by application of external energy, and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.
Barbee, Jr., Troy W.; Weihs, Timothy
1996-01-01
A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)] and n is about 0.8 to 1.2.
Recognition Memory for Hue: Prototypical Bias and the Role of Labeling
ERIC Educational Resources Information Center
Kelly, Laura Jane; Heit, Evan
2017-01-01
How does the concurrent use of language affect perception and memory for exemplars? Labels cue more general category information than a specific exemplar. Applying labels can affect the resulting memory for an exemplar. Here 3 alternative hypotheses are proposed for the role of labeling an exemplar at encoding: (a) labels distort memory toward the…
ERIC Educational Resources Information Center
Nieuwenhuis, Sander; Elzinga, Bernet M.; Ras, Priscilla H.; Berends, Floris; Duijs, Peter; Samara, Zoe; Slagter, Heleen A.
2013-01-01
Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres…
ERIC Educational Resources Information Center
Schneider, Darryl W.; Logan, Gordon D.
2005-01-01
Switch costs in task switching are commonly attributed to an executive control process of task-set reconfiguration, particularly in studies involving the explicit task-cuing procedure. The authors propose an alternative account of explicitly cued performance that is based on 2 mechanisms: priming of cue encoding from residual activation of cues in…
Gene Concepts in Higher Education Cell and Molecular Biology Textbooks
ERIC Educational Resources Information Center
Albuquerque, Pitombo Maiana; de Almeida, Ana Maria Rocha; El-Hani, Nino Charbel
2008-01-01
Despite being a landmark of 20th century biology, the "classical molecular gene concept," according to which a gene is a stretch of DNA encoding a functional product, which may be a single polypeptide or RNA molecule, has been recently challenged by a series of findings (e.g., split genes, alternative splicing, overlapping and nested…
Ha, Hojin; Hwang, Dongha; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Baek, Jehyun; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun
2016-07-01
Quantifying turbulence velocity fluctuation is important because it indicates the fluid energy dissipation of the blood flow, which is closely related to the pressure drop along the blood vessel. This study aims to evaluate the effects of scan parameters and the target vessel size of 4D phase-contrast (PC)-MRI on quantification of turbulent kinetic energy (TKE). Comprehensive 4D PC-MRI measurements with various velocity-encoding (VENC), echo time (TE), and voxel size values were carried out to estimate TKE distribution in stenotic flow. The total TKE (TKEsum), maximum TKE (TKEmax), and background noise level (TKEnoise) were compared for each scan parameter. The feasibility of TKE estimation in small vessels was also investigated. Results show that the optimum VENC for stenotic flow with a peak velocity of 125cm/s was 70cm/s. Higher VENC values overestimated the TKEsum by up to six-fold due to increased TKEnoise, whereas lower VENC values (30cm/s) underestimated it by 57.1%. TE and voxel size did not significantly influence the TKEsum and TKEnoise, although the TKEmax significantly increased as the voxel size increased. TKE quantification in small-sized vessels (3-5-mm diameter) was feasible unless high-velocity turbulence caused severe phase dispersion in the reference image. Copyright © 2016 Elsevier Inc. All rights reserved.
Representation of Letter Position in Spelling: Evidence from Acquired Dysgraphia
Fischer-Baum, Simon; McCloskey, Michael; Rapp, Brenda
2010-01-01
The graphemic representations that underlie spelling performance must encode not only the identities of the letters in a word, but also the positions of the letters. This study investigates how letter position information is represented. We present evidence from two dysgraphic individuals, CM and LSS, who perseverate letters when spelling: that is, letters from previous spelling responses intrude into subsequent responses. The perseverated letters appear more often than expected by chance in the same position in the previous and subsequent responses. We used these errors to address the question of how letter position is represented in spelling. In a series of analyses we determined how often the perseveration errors produced maintain position as defined by a number of alternative theories of letter position encoding proposed in the literature. The analyses provide strong evidence that the grapheme representations used in spelling encode letter position such that position is represented in a graded manner based on distance from both edges of the word. PMID:20378104
Three reasons protein disorder analysis makes more sense in the light of collagen
Oates, Matt E.; Tompa, Peter; Gough, Julian
2016-01-01
Abstract We have identified that the collagen helix has the potential to be disruptive to analyses of intrinsically disordered proteins. The collagen helix is an extended fibrous structure that is both promiscuous and repetitive. Whilst its sequence is predicted to be disordered, this type of protein structure is not typically considered as intrinsic disorder. Here, we show that collagen‐encoding proteins skew the distribution of exon lengths in genes. We find that previous results, demonstrating that exons encoding disordered regions are more likely to be symmetric, are due to the abundance of the collagen helix. Other related results, showing increased levels of alternative splicing in disorder‐encoding exons, still hold after considering collagen‐containing proteins. Aside from analyses of exons, we find that the set of proteins that contain collagen significantly alters the amino acid composition of regions predicted as disordered. We conclude that research in this area should be conducted in the light of the collagen helix. PMID:26941008
Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors
NASA Astrophysics Data System (ADS)
Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.
1986-11-01
Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.
NASA Astrophysics Data System (ADS)
Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo
1998-07-01
Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.
An automated method for depth-dependent crustal anisotropy detection with receiver function
NASA Astrophysics Data System (ADS)
Licciardi, Andrea; Piana Agostinetti, Nicola
2015-04-01
Crustal seismic anisotropy can be generated by a variety of geological factors (e.g. alignment of minerals/cracks, presence of fluids etc...). In the case of transversely isotropic media approximation, information about strength and orientation of the anisotropic symmetry axis (including dip) can be extracted from the analysis of P-to-S conversions by means of teleseismic receiver functions (RF). Classically this has been achieved through probabilistic inversion encoding a forward solver for anisotropic media. This approach strongly relies on apriori choices regarding Earth's crust parameterization and velocity structure, requires an extensive knowledge of the RF method and involves time consuming trial and error steps. We present an automated method for reducing the non-uniqueness in this kind of inversions and for retrieving depth-dependent seismic anisotropy parameters in the crust with a resolution of some hundreds of meters. The method involves a multi-frequency approach (for better absolute Vs determination) and the decomposition of the RF data-set in its azimuthal harmonics (to separate the effects of isotropic and anisotropic component). A first inversion of the isotropic component (Zero-order harmonics) by means of a Reversible jump Markov Chain Monte Carlo (RjMCMC) provides the posterior probability distribution for the position of the velocity jumps at depth, from which information on the number of layers and the S-wave velocity structure below a broadband seismic station can be extracted. This information together with that encoded in the first order harmonic is jointly used in an automated way to: (1) determine the number of anisotropic layers and their approximate position at depth, and (2) narrow the search boundaries for layer thickness and S-wave velocity. Finaly, an inversion is carried out with a Neighbourhood Algorithm (NA), where the free parameters are represented by the anisotropic structure beneath the seismic station. We tested the method against synthetic RF with correlated Gaussian noise to investigate the resolution power for multiple and thin (1-5 km) anisotropic layers in the crust. The algorithm correctly retrieves the true models for the number and the position of the anisotropic layers, their strength and orientation of the anisotropic symmetry axis, although the trend direction is better constrained than the dip angle. The method is then applied to a real data-set and the results compared with previous RF studies.
Progress in understanding heavy-ion stopping
NASA Astrophysics Data System (ADS)
Sigmund, P.; Schinner, A.
2016-09-01
We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul's data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.
Staggered Multiple-PRF Ultrafast Color Doppler.
Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien
2016-06-01
Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.
The influence of mass configurations on velocity amplified vibrational energy harvesters
NASA Astrophysics Data System (ADS)
O'Donoghue, D.; Frizzell, R.; Kelly, G.; Nolan, K.; Punch, J.
2016-05-01
Vibrational energy harvesters scavenge ambient vibrational energy, offering an alternative to batteries for the autonomous operation of low power electronics. Velocity amplified electromagnetic generators (VAEGs) utilize the velocity amplification effect to increase power output and operational bandwidth, compared to linear resonators. A detailed experimental analysis of the influence of mass ratio and number of degrees-of-freedom (dofs) on the dynamic behaviour and power output of a macro-scale VAEG is presented. Various mass configurations are tested under drop-test and sinusoidal forced excitation, and the system performances are compared. For the drop-test, increasing mass ratio and number of dofs increases velocity amplification. Under forced excitation, the impacts between the masses are more complex, inducing greater energy losses. This results in the 2-dof systems achieving the highest velocities and, hence, highest output voltages. With fixed transducer size, higher mass ratios achieve higher voltage output due to the superior velocity amplification. Changing the magnet size to a fixed percentage of the final mass showed the increase in velocity of the systems with higher mass ratios is not significant enough to overcome the reduction in transducer size. Consequently, the 3:1 mass ratio systems achieved the highest output voltage. These findings are significant for the design of future reduced-scale VAEGs.
Tsujimoto, Satoshi; Genovesio, Aldo; Wise, Steven P.
2012-01-01
We compared neuronal activity in the dorsolateral (PFdl), orbital (PFo) and polar (PFp) prefrontal cortex as monkeys performed three tasks. In two tasks, a cue instructed one of two strategies: stay with the previous response or shift to the alternative. Visual stimuli served as cues in one of these tasks; in the other, fluid rewards did so. In the third task, visuospatial cues instructed each response. A delay period followed each cue. As reported previously, PFdl encoded strategies (stay or shift) and responses (left or right) during the cue and delay periods, while PFo encoded strategies and PFp encoded neither strategies nor responses; during the feedback period, all three areas encoded responses, not strategies. Four novel findings emerged from the present analysis. (1) The strategy encoded by PFdl and PFo cells during the cue and delay periods was modality specific. (2) The response encoded by PFdl cells was task- and modality specific during the cue period, but during the delay and feedback periods it became task- and modality general. (3) Although some PFdl and PFo cells responded to or anticipated rewards, we could rule out reward effects for most strategy-and response-related activity. (4) Immediately before feedback, only PFp signaled responses that were correct according to the cued strategy; after feedback, only PFo signaled the response that had been made, whether correct or incorrect. These signals support a role in generating responses by PFdl, assigning outcomes to choices by PFo, and assigning outcomes to cognitive processes by PFp. PMID:22875935
Phase contrast MR angiography techniques.
Dumoulin, C L
1995-08-01
Phase contrast MR methods encode information from macroscopic motion into the phase of the MR signal. Phase contrast methods can be applied with small and large fields-of-view, can give quantitative measures of velocity, and provide excellent suppression of signals from stationary tissue. Unlike time-of-flight methods, phase contrast methods directly measure flow and thus are not hindered by the artifactual appearance of tissue having short T1. Phase contrast angiograms can be two-dimensional (thin slice or projectile), three-dimensional, and/or time resolved and have applications throughout the body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex
2016-04-01
Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.
It is all about Phase and it is not Star Trek
NASA Astrophysics Data System (ADS)
Field, Robert W.; Grimes, David; Barnum, Timothy J.; Coy, Stephen; Zhou, Yan
2016-06-01
The marriage of chirped pulse millimeter-wave spectroscopy with a buffer gas cooled molecular beam source has yielded an increase in spectral velocity (number of resolution elements per unit time) of a factor of one million! But it gets even better. Essential information is encoded not just in the frequencies of the transitions, but also in the relative intensities and especially phases of the transitions. Transitions between Rydberg states of atoms and molecules are an ideal test ground for techniques that fully exploit these newly accessible observables.
Design of airborne wind turbine and computational fluid dynamics analysis
NASA Astrophysics Data System (ADS)
Anbreen, Faiqa
Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.
Keegan, Jennifer; Raphael, Claire E; Parker, Kim; Simpson, Robin M; Strain, Stephen; de Silva, Ranil; Di Mario, Carlo; Collinson, Julian; Stables, Rod H; Wage, Ricardo; Drivas, Peter; Sugathapala, Malindie; Prasad, Sanjay K; Firmin, David N
2015-10-02
Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning. A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data. When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R(2): 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13). High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.
Rouvière, Olivier; Souchon, Rémi; Pagnoux, Gaële; Ménager, Jean-Michel; Chapelon, Jean-Yves
2011-10-01
To evaluate the feasibility and reproducibility of renal magnetic resonance elastography (MRE) in young healthy volunteers. Ten volunteers underwent renal MRE twice at a 4-5 week interval. The vibrations (45 and 76 Hz) were generated by a speaker positioned beneath the volunteers' back and centered on their left kidney. For each frequency, three sagittal slices were acquired (eight phase offsets per cycle, motion-encoding gradients successively positioned along the three directions of space). Shear velocity images were reconstructed using the curl operator combined with the local frequency estimation (LFE) algorithm. The mean shear velocities measured in the renal parenchyma during the two examinations were not significantly different and exhibited a mean variation of 6% at 45 Hz and 76 Hz. The mean shear velocities in renal parenchyma were 2.21 ± 0.14 m/s at 45 Hz (shear modulus of 4.9 ± 0.5 kPa) and 3.07 ± 0.17 m/s at 76 Hz (9.4 ± 0.8 kPa, P < 0.01). The mean shear velocities in the renal cortex and medulla were respectively 2.19 ± 0.13 m/s and 2.32 ± 0.16 m/s at 45 Hz (P = 0.002) and 3.06 ± 0.16 m/s and 3.10 ± 0.22 m/s at 76 Hz (P = 0.13). Renal MRE was feasible and reproducible. Two independent measurements of shear velocities in the renal parenchyma of the same subjects showed an average variability of 6%. Copyright © 2011 Wiley-Liss, Inc.
Haehnel-Taguchi, Melanie; Akanyeti, Otar
2014-01-01
The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish (Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 μm/ms. However, spike rate did not change when the cupula was deflected below 8 μm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior. PMID:24966296
Premraj, Avinash; Nautiyal, Binita; Aleyas, Abi G; Rasool, Thaha Jamal
2015-10-01
Interleukin-26 (IL-26) is a member of the IL-10 family of cytokines. Though conserved across vertebrates, the IL-26 gene is functionally inactivated in a few mammals like rat, mouse and horse. We report here the identification, isolation and cloning of the cDNA of IL-26 from the dromedary camel. The camel cDNA contains a 516 bp open reading frame encoding a 171 amino acid precursor protein, including a 21 amino acid signal peptide. Sequence analysis revealed high similarity with other mammalian IL-26 homologs and the conservation of IL-10 cytokine family domain structure including key amino acid residues. We also report the identification and cloning of four novel transcript variants produced by alternative splicing at the Exon 3-Exon 4 regions of the gene. Three of the alternative splice variants had premature termination codons and are predicted to code for truncated proteins. The transcript variant 4 (Tv4) having an insertion of an extra 120 bp nucleotides in the ORF was predicted to encode a full length protein product with 40 extra amino acid residues. The mRNA transcripts of all the variants were identified in lymph node, where as fewer variants were observed in other tissues like blood, liver and kidney. The expression of Tv2 and Tv3 were found to be up regulated in mitogen induced camel peripheral blood mononuclear cells. IL-26-Tv2 expression was also induced in camel fibroblast cells infected with Camel pox virus in-vitro. The identification of the transcript variants of IL-26 from the dromedary camel is the first report of alternative splicing for IL-26 in a species in which the gene has not been inactivated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Di; Wang, Qian; Chen, Zhi; Li, Jilun; Wen, Ying
2017-01-01
Alternative σ factors in bacteria redirect RNA polymerase to recognize alternative promoters, thereby facilitating coordinated gene expression necessary for adaptive responses. The gene sig8 ( sav_741 ) in Streptomyces avermitilis encodes an alternative σ factor, σ 8 , highly homologous to σ B in Streptomyces coelicolor . Studies reported here demonstrate that σ 8 is an important regulator of both avermectin production and stress responses in S. avermitilis . σ 8 inhibited avermectin production by indirectly repressing expression of cluster-situated activator gene aveR , and by directly initiating transcription of its downstream gene sav_742 , which encodes a direct repressor of ave structural genes. σ 8 had no effect on cell growth or morphological differentiation under normal growth conditions. Growth of a sig8- deletion mutant was less than that of wild-type strain on YMS plates following treatment with heat, H 2 O 2 , diamide, NaCl, or KCl. sig8 transcription was strongly induced by these environmental stresses, indicating response by σ 8 itself. A series of σ 8 -dependent genes responsive to heat, oxidative and osmotic stress were identified by EMSAs, qRT-PCR and in vitro transcription experiments. These findings indicate that σ 8 plays an important role in mediating protective responses to various stress conditions by activating transcription of its target genes. Six σ 8 -binding promoter sequences were determined and consensus binding sequence BGVNVH-N 15 -GSNNHH (B: C, T or G, V: A, C or G, S: C or G, H: A, C or T, N: any nucleotide) was identified, leading to prediction of the σ 8 regulon. The list consists of 940 putative σ 8 target genes, assignable to 17 functional groups, suggesting the wide range of cellular functions controlled by σ 8 in S. avermitilis .
Nakabayashi, Kazumi; Bartsch, Melanie; Ding, Jia; Soppe, Wim J J
2015-12-01
The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1) is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.
Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Merritt, David; Schnittman, Jeremy D.; Komossa, S.
2009-07-01
A supermassive black hole ejected from the center of a galaxy by gravitational-wave recoil carries a retinue of bound stars—a "hypercompact stellar system" (HCSS). The numbers and properties of HCSSs contain information about the merger histories of galaxies, the late evolution of binary black holes, and the distribution of gravitational-wave kicks. We relate the structural properties (size, mass, density profile) of HCSSs to the properties of their host galaxies and to the size of the kick in two regimes: collisional (M BH lsim 107 M sun), i.e., short nuclear relaxation times, and collisionless (M BH gsim 107 M sun), i.e., long nuclear relaxation times. HCSSs are expected to be similar in size and luminosity to globular clusters, but in extreme cases (large galaxies, kicks just above escape velocity) their stellar mass can approach that of ultracompact dwarf galaxies. However, they differ from all other classes of compact stellar system in having very high internal velocities. We show that the kick velocity is encoded in the velocity dispersion of the bound stars. Given a large enough sample of HCSSs, the distribution of gravitational-wave kicks can therefore be empirically determined. We combine a hierarchical merger algorithm with stellar population models to compute the rate of production of HCSSs over time and the probability of observing HCSSs in the local universe as a function of their apparent magnitude, color, size, and velocity dispersion, under two different assumptions about the star formation history prior to the kick. We predict that ~102 HCSSs should be detectable within 2 Mpc of the center of the Virgo cluster, and that many of these should be bright enough that their kick velocities (i.e., velocity dispersions) could be measured with reasonable exposure times. We discuss other strategies for detecting HCSSs and speculate on some exotic manifestations.
Measuring the Power Spectrum with Peculiar Velocities
NASA Astrophysics Data System (ADS)
Macaulay, Edward; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.
2012-01-01
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 sigma uncertainty which includes the LCDM model. We find that the uncertainty in the excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and nonlinear clustering in simulated peculiar velocity catalogues, and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.
Power spectrum estimation from peculiar velocity catalogues
NASA Astrophysics Data System (ADS)
Macaulay, E.; Feldman, H. A.; Ferreira, P. G.; Jaffe, A. H.; Agarwal, S.; Hudson, M. J.; Watkins, R.
2012-09-01
The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large-scale excess in the matter power spectrum and can appear to be in some tension with the Λ cold dark matter (ΛCDM) model. We use a composite catalogue of 4537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results by Macaulay et al., studying minimum variance moments of the velocity field, as calculated by Feldman, Watkins & Hudson. We find good agreement with the ΛCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1 with a 1σ uncertainty which includes the ΛCDM model. We find that the uncertainty in excess at these scales is larger than an alternative result studying only moments of the velocity field, which is due to the minimum variance weights used to calculate the moments. At small scales, we are able to clearly discriminate between linear and non-linear clustering in simulated peculiar velocity catalogues and find some evidence (although less clear) for linear clustering in the real peculiar velocity data.
Kalyna, Maria; Lopato, Sergiy; Voronin, Viktor; Barta, Andrea
2006-01-01
Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins. PMID:16936312
NASA Astrophysics Data System (ADS)
Fulton, J. W.; Bjerklie, D. M.; Jones, J. W.; Minear, J. T.
2015-12-01
Measuring streamflow, developing, and maintaining rating curves at new streamgaging stations is both time-consuming and problematic. Hydro 21 was an initiative by the U.S. Geological Survey to provide vision and leadership to identify and evaluate new technologies and methods that had the potential to change the way in which streamgaging is conducted. Since 2014, additional trials have been conducted to evaluate some of the methods promoted by the Hydro 21 Committee. Emerging technologies such as continuous-wave radars and computationally-efficient methods such as the Probability Concept require significantly less field time, promote real-time velocity and streamflow measurements, and apply to unsteady flow conditions such as looped ratings and unsteady-flood flows. Portable and fixed-mount radars have advanced beyond the development phase, are cost effective, and readily available in the marketplace. The Probability Concept is based on an alternative velocity-distribution equation developed by C.-L. Chiu, who pioneered the concept. By measuring the surface-water velocity and correcting for environmental influences such as wind drift, radars offer a reliable alternative for measuring and computing real-time streamflow for a variety of hydraulic conditions. If successful, these tools may allow us to establish ratings more efficiently, assess unsteady flow conditions, and report real-time streamflow at new streamgaging stations.
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
Disturbed expression of type 1 iodothyronine deiodinase splice variants in human renal cancer.
Piekielko-Witkowska, Agnieszka; Master, Adam; Wojcicka, Anna; Boguslawska, Joanna; Brozda, Izabela; Tanski, Zbigniew; Nauman, Alicja
2009-10-01
Alternative splicing, one of the sources of protein diversity, is often disturbed in cancer. Type 1 iodothyronine deiodinase (DIO1) catalyzes deiodination of thyroxine generating triiodothyronine, an important regulator of cell proliferation and differentiation. The expression of DIO1 is disturbed in different types of cancer. The aim of the study was to analyze the alternative splicing of DIO1 and its possible disturbance in renal cancer. Using real-time PCR, we analyzed 19 tissue samples (T) of renal cancer and 19 matched control samples (C) of the opposite pole of the kidney, not infiltrated by tumor, and 6 control samples (N) (nonneoplastic kidney abnormalities). Cloning of DIO1 mRNA isoforms revealed 11 different transcripts, among them 7 new splice variants, not previously reported. The expression of all variants of DIO1 was dramatically (>90%) and significantly (p < or = 0.0003) lowered in samples T compared to control samples C. The ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center was lowered in samples T compared with control samples C, suggesting disturbed alternative splicing of DIO1. The expression of mRNA of splicing factors SF2/ASF (splicing factor-2/alternative-splicing factor) and hnRNPA1 (heterogeneous ribonucleoprotein A1), regulating 5'-splice site selection, was significantly but not proportionally lowered in samples T compared to samples C. The mRNA ratio of splicing factors SF2/ASF and hnRNPA1 correlated with the ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center in controls C but not in samples T. Our results show that the expression and alternative splicing of DIO1 mRNA is disturbed in renal cancer, possibly due to changes in expression of splicing factors SF2/ASF and hnRNPA1.
Alternative dipole magnets for ISABELLE
NASA Astrophysics Data System (ADS)
Taylor, C.; Althaus, R.; Caspi, S.; Gilbert, W.; Hassenzahl, W. V.; Meuser, R.; Rechen, J.; Warren, R.
1982-05-01
A dipole magnet, intended as a possible alternative for the ISABELLE main ring magnet, was designed. Three layers of FNAL Doubler/Saver conductor were used. Two 1.3-m-long models were built and tested, both with and without an iron core, and in both helium I and helium II. The training behavior, cyclic energy loss, point of quench initiation, and quench velocity were determined. A central field of 6.5 tesla was obtained in He I (4.4 K), and 7.6 tesla in He II (1.8K).
Xu, Ting; Wang, Ya-Ting; Liang, Wu-Sheng; Yao, Fei; Li, Yong-Hong; Li, Dian-Rong; Wang, Hao; Wang, Zheng-Yi
2013-06-01
Sclerotinia sclerotiorum is a filamentous fungal pathogen that can infect many economically important crops and vegetables. Alternative oxidase is the terminal oxidase of the alternative respiratory pathway in fungal mitochondria. The function of alternative oxidase was investigated in the regulation of sensitivity of S. sclerotiorum to two commercial fungicides, azoxystrobin and procymidone which have different fungitoxic mechanisms. Two isolates of S. sclerotiorum were sensitive to both fungicides. Application of salicylhydroxamic acid, a specific inhibitor of alternative oxidase, significantly increased the values of effective concentration causing 50% mycelial growth inhibition (EC50) of azoxystrobin to both S. sclerotiorum isolates, whereas notably decreased the EC50 values of procymidone. In mycelial respiration assay azoxystrobin displayed immediate inhibitory effect on cytochrome pathway capacity, but had no immediate effect on alternative pathway capacity. In contrast, procymidone showed no immediate impact on capacities of both cytochrome and alternative pathways in the mycelia. However, alternative oxidase encoding gene (aox) transcript and protein levels, alternative respiration pathway capacity of the mycelia were obviously increased by pre-treatment for 24 h with both azoxystrobin and procymidone. These results indicate that alternative oxidase was involved in the regulation of sensitivity of S. sclerotiorum to the fungicides azoxystrobin and procymidone, and that both fungicides could affect aox gene expression and the alternative respiration pathway capacity development in mycelia of this fungal pathogen.
Shabalina, Svetlana A.; Ogurtsov, Aleksey Y.; Spiridonov, Nikolay A.; Koonin, Eugene V.
2014-01-01
Alternative splicing (AS), alternative transcription initiation (ATI) and alternative transcription termination (ATT) create the extraordinary complexity of transcriptomes and make key contributions to the structural and functional diversity of mammalian proteomes. Analysis of mammalian genomic and transcriptomic data shows that contrary to the traditional view, the joint contribution of ATI and ATT to the transcriptome and proteome diversity is quantitatively greater than the contribution of AS. Although the mean numbers of protein-coding constitutive and alternative nucleotides in gene loci are nearly identical, their distribution along the transcripts is highly non-uniform. On average, coding exons in the variable 5′ and 3′ transcript ends that are created by ATI and ATT contain approximately four times more alternative nucleotides than core protein-coding regions that diversify exclusively via AS. Short upstream exons that encompass alternative 5′-untranslated regions and N-termini of proteins evolve under strong nucleotide-level selection whereas in 3′-terminal exons that encode protein C-termini, protein-level selection is significantly stronger. The groups of genes that are subject to ATI and ATT show major differences in biological roles, expression and selection patterns. PMID:24792168
Memory processes during sleep: beyond the standard consolidation theory.
Axmacher, Nikolai; Draguhn, Andreas; Elger, Christian E; Fell, Juergen
2009-07-01
Two-step theories of memory formation suggest that an initial encoding stage, during which transient neural assemblies are formed in the hippocampus, is followed by a second step called consolidation, which involves re-processing of activity patterns and is associated with an increasing involvement of the neocortex. Several studies in human subjects as well as in animals suggest that memory consolidation occurs predominantly during sleep (standard consolidation model). Alternatively, it has been suggested that consolidation may occur during waking state as well and that the role of sleep is rather to restore encoding capabilities of synaptic connections (synaptic downscaling theory). Here, we review the experimental evidence favoring and challenging these two views and suggest an integrative model of memory consolidation.
Tissue-Specific 5′ Heterogeneity of PPARα Transcripts and Their Differential Regulation by Leptin
Garratt, Emma S.; Vickers, Mark H.; Gluckman, Peter D.; Hanson, Mark A.
2013-01-01
The genes encoding nuclear receptors comprise multiple 5′untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors. PMID:23825665
Kim, Sabrina Y; Renihan, Maia K; Boulianne, Gabrielle L
2006-06-01
PDZ (PSD-95, Discs-large, ZO-1) domain proteins often function as scaffolding proteins and have been shown to play important roles in diverse cellular processes such as the establishment and maintenance of cell polarity, and signal transduction. Here, we report the identification and cloning of a novel Drosophila melanogaster gene that is predicted to produce several different PDZ domain-containing proteins through alternative promoter usage and alternative splicing. This gene, that we have named big bang (bbg), was first identified as C96-GAL4, a GAL4 enhancer trap line that was generated in our lab. To further characterize bbg, its expression pattern was examined in ovaries, embryos, and late third instar larvae using UAS reporter gene constructs, in situ hybridization, or immunocytochemistry. In addition, the expression of alternatively spliced transcripts was examined in more detail using in situ hybridization. We find that during embryogenesis bbg is predominantly expressed in the developing gut, but it is also expressed in external sensory organs found in the epidermis. In the late third instar larva, bbg is expressed along the presumptive wing margin in the wing disc, broadly in the eye disc, and in other imaginal discs as well as in the brain. The expression patterns observed are dynamic and specific during development, suggesting that like other genes that encode for several different PDZ domain protein isoforms, bbg likely plays important roles in multiple developmental processes.
Switching of actin-myosin motors by voltage-induced pH bias in vitro.
Hatori, Kuniyuki; Iwase, Takahiro; Wada, Reito
2016-08-01
ATP-driven motor proteins, which function in cell motility and organelle transport, have potential applications as bio-inspired micro-devices; however, their control remains unsatisfactory. Here, we show rapid-velocity control of actin filaments interacting with myosin motors using voltage applied to Pt electrodes in an in vitro motility system, by which immediate increases and decreases in velocity were induced beside the cathode and anode, respectively. Indicator dye revealed pH changes after voltage application, and alternate voltage switching allowed actin filaments to cyclically alter their velocity in response to these changes. This principle provides a basis for on-demand control of not only motor proteins but also pH-sensitive events at a microscopic level. Copyright © 2016 Elsevier Inc. All rights reserved.
Improved lower bound on superluminal quantum communication
NASA Astrophysics Data System (ADS)
Cocciaro, Bruno; Faetti, Sandro; Fronzoni, Leone
2018-05-01
As shown by Einstein, Podolsky, and Rosen (the EPR paradox) [A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935), 10.1103/PhysRev.47.777], quantum mechanics is a nonlocal theory contrarily to what happens for any other modern physical theory. Alternative local theories based on superluminal communications have been also proposed in the literature. So far, no evidence for these superluminal communications has been obtained and only lower bounds for the superluminal velocities have been established. In this paper we describe an improved experiment that increases by about two orders of magnitude the maximum detectable superluminal velocities. The locality, the freedom of choice, and the detection loopholes are not addressed here. No evidence for superluminal communications has been found and a higher lower bound for their velocities has been established.
Turning Simple Span into Complex Span: Time for Decay or Interference from Distractors?
ERIC Educational Resources Information Center
Lewandowsky, Stephan; Geiger, Sonja M.; Morrell, Daniel B.; Oberauer, Klaus
2010-01-01
We investigated the effects of the duration and type of to-be-articulated distractors during encoding of a verbal list into short-term memory (STM). Distractors and to-be-remembered items alternated during list presentation, as in the complex-span task that underlies much of working-memory research. According to an interference model of STM, known…
Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis
Blaby-Haas, Crysten E.; Padilla-Benavides, Teresita; Stübe, Roland; ...
2014-12-02
Metallochaperones traffic copper (Cu +) from its point of entry at the plasma membrane to its destination. In plants, one destination is the chloroplast, which houses plastocyanin, a Cu-dependent electron transfer protein involved in photosynthesis. In this paper, we present a previously unidentified Cu + chaperone that evolved early in the plant lineage by an alternative-splicing event of the pre-mRNA encoding the chloroplast P-type ATPase in Arabidopsis 1 (PAA1). In several land plants, recent duplication events created a separate chaperone-encoding gene coincident with loss of alternative splicing. The plant-specific Cu + chaperone delivers Cu + with specificity for PAA1, whichmore » is flipped in the envelope relative to prototypical bacterial ATPases, compatible with a role in Cu + import into the stroma and consistent with the canonical catalytic mechanism of these enzymes. The ubiquity of the chaperone suggests conservation of this Cu +-delivery mechanism and provides a unique snapshot into the evolution of a Cu + distribution pathway. Finally, we also provide evidence for an interaction between PAA2, the Cu +-ATPase in thylakoids, and the Cu +-chaperone for Cu/Zn superoxide dismutase (CCS), uncovering a Cu + network that has evolved to fine-tune Cu + distribution.« less
The impact of emotion on perception: bias or enhanced processing?
Zeelenberg, René; Wagenmakers, Eric-Jan; Rotteveel, Mark
2006-04-01
Recent studies have shown that emotionally significant stimuli are often better identified than neutral stimuli. It is not clear, however, whether these results are due to enhanced perceptual processing or to a bias favoring the identification of emotionally significant stimuli over neutral stimuli. The present study used a two-alternative forced-choice perceptual identification task to disentangle the effects of bias and enhanced processing. We found that emotionally significant targets were better identified than neutral targets. In contrast, the emotional significance of the foil alternative had no effect on performance. The present results support the hypothesis that perceptual encoding of emotionally significant stimuli is enhanced.
Alternative Line Coding Scheme with Fixed Dimming for Visible Light Communication
NASA Astrophysics Data System (ADS)
Niaz, M. T.; Imdad, F.; Kim, H. S.
2017-01-01
An alternative line coding scheme called fixed-dimming on/off keying (FD-OOK) is proposed for visible-light communication (VLC). FD-OOK reduces the flickering caused by a VLC transmitter and can maintain a 50% dimming level. Simple encoder and decoder are proposed which generates codes where the number of bits representing one is same as the number of bits representing zero. By keeping the number of ones and zeros equal the change in the brightness of lighting may be minimized and kept constant at 50%, thereby reducing the flickering in VLC. The performance of FD-OOK is analysed with two parameters: the spectral efficiency and power requirement.
Dilution and Mixing in transient velocity fields: a first-order analysis
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; de Barros, Felipe, P. J.; Fiori, Aldo; Bellin, Alberto
2017-04-01
An appealing remediation technique is in situ oxidation, which effectiveness is hampered by difficulties in obtaining good mixing of the injected oxidant with the contaminant, particularly when the contaminant plume is contained and therefore its deformation is physically constrained. Under such conditions (i.e. containment), mixing may be augmented by inducing temporal fluctuations of the velocity field. The temporal variability of the flow field may increase the deformation of the plume such that diffusive mass flux becomes more effective. A transient periodic velocity field can be obtained by an engineered sequence of injections and extractions from wells, which may serve also as a hydraulic barrier to confine the plume. Assessing the effectiveness of periodic flows to maximize solute mixing is a difficult task given the need to use a 3D setup and the large number of possible flow configurations that should be analyzed in order to identify the optimal one. This is the typical situation in which analytical solutions, though approximated, may assist modelers in screening possible alternative flow configurations such that solute dilution is maximized. To quantify dilution (i.e. a precondition that enables reactive mixing) we utilize the concept of the dilution index [1]. In this presentation, the periodic flow takes place in an aquifer with spatially variable hydraulic conductivity field which is modeled as a Stationary Spatial Random Function. We developed a novel first-order analytical solution of the dilution index under the hypothesis that the flow can be approximated as a sequence of steady state configurations with the mean velocity changing with time in intensity and direction. This is equivalent to assume that the characteristic time of the transient behavior is small compared to the period characterizing the change in time of the mean velocity. A few closed paths have been analyzed quantifying their effectiveness in enhancing dilution and thereby mixing between the resident contaminant and an oxidant. In particular, we considered three different flow configurations: (1) a "circular" pattern, in which the vector of the mean velocity rotates at a constant celerity; (2) a "shake" pattern, in which the velocity has a constant magnitude and changes direction alternatively leading to a "back and forth" type of movement and finally (3) a more general "shake and rotate" pattern, which combines the previous two configurations. The new analytical solution shows that dilution is affected by the configuration of the periodic mean flow. Results show that the dilution index increases when the rotation-shake configuration is adopted. In addition, the dilution index is augmented with the oscillation amplitude of the shake component. This analysis is useful to identify optimal flow configurations that may be approximately reproduced in the field and which efficiency may be checked more accurately by numerical simulations, thereby alleviating the computational burden by efficiently screening among alternative configurations. References [1] Kitanidis, P. K. (1994), The concept of the Dilution Index, Water Resour. Res., 30(7), 2011-2026, doi:10.1029/94WR00762.
Acute ethanol effects on neural encoding of reward size and delay in the nucleus accumbens
Gutman, Andrea L.
2016-01-01
Acute ethanol administration can cause impulsivity, resulting in increased preference for immediately available rewards over delayed but more valuable alternatives. The manner in which reward size and delay are represented in neural firing is not fully understood, and very little is known about ethanol effects on this encoding. To address this issue, we used in vivo electrophysiology to characterize neural firing in the core of the nucleus accumbens (NAcc) in rats responding for rewards that varied in size or delay after vehicle or ethanol administration. The NAcc is a central element in the circuit that governs decision-making and importantly, promotes choice of delayed rewards. We found that NAcc firing in response to reward-predictive cues encoded anticipated reward value after vehicle administration, but ethanol administration disrupted this encoding, resulting in a loss of discrimination between immediate and delayed rewards in cue-evoked neural responses. In addition, NAcc firing occurring at the time of the operant response (lever pressing) was inversely correlated with behavioral response latency, such that increased firing rates were associated with decreased latencies to lever press. Ethanol administration selectively attenuated this lever press-evoked firing when delayed but not immediate rewards were expected. These effects on neural firing were accompanied by increased behavioral latencies to respond for delayed rewards. Our results suggest that ethanol effects on NAcc cue- and lever press-evoked encoding may contribute to ethanol-induced impulsivity. PMID:27169507
Ba, Xiaoliang; Harrison, Ewan M; Lovering, Andrew L; Gleadall, Nicholas; Zadoks, Ruth; Parkhill, Julian; Peacock, Sharon J; Holden, Matthew T G; Paterson, Gavin K; Holmes, Mark A
2015-12-01
β-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA, known as mecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate that mecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum β-lactam resistance in MRSA strains carrying mecC (mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct β-lactamase encoded by the blaZ gene of strain LGA251 (blaZLGA251), which is part of mecC-encoding staphylococcal cassette chromosome mec (SCCmec) type XI. We further demonstrate that mecC-MRSA strains are susceptible to the combination of penicillin and the β-lactam inhibitor clavulanic acid in vitro and that the same combination is effective in vivo for the treatment of experimental mecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences between mecA- and mecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment of mecC-MRSA infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Bumiller-Bini, Valéria; Cipolla, Gabriel Adelman; de Almeida, Rodrigo Coutinho; Petzl-Erler, Maria Luiza; Augusto, Danillo Gardenal; Boldt, Angelica Beate Winter
2018-01-01
Skin blisters of pemphigus foliaceus (PF) present concomitant deposition of autoantibodies and components of the complement system (CS), whose gene polymorphisms are associated with susceptibility to different autoimmune diseases. To investigate these in PF, we evaluated 992 single-nucleotide polymorphisms (SNPs) of 44 CS genes, genotyped through microarray hybridization in 229 PF patients and 194 controls. After excluding SNPs with minor allele frequency <1%, out of Hardy–Weinberg equilibrium in controls or in strong linkage disequilibrium (r2 ≥ 0.8), 201 SNPs remained for logistic regression. Polymorphisms of 11 genes were associated with PF. MASP1 encodes a crucial serine protease of the lectin pathway (rs13094773: OR = 0.5, p = 0.0316; rs850309: OR = 0.23, p = 0.03; rs3864098: OR = 1.53, p = 0.0383; rs698104: OR = 1.52, p = 0.0424; rs72549154: OR = 0.55, p = 0.0453). C9 (rs187875: OR = 1.46, p = 0.0189; rs700218: OR = 0.12, p = 0.0471) and C8A (rs11206934: OR = 4.02, p = 0.0323) encode proteins of the membrane attack complex (MAC) and C5AR1 (rs10404456: OR = 1.43, p = 0.0155), a potent anaphylatoxin-receptor. Two encode complement regulators: MAC-blocking CD59 (rs1047581: OR = 0.62, p = 0.0152) and alternative pathway-blocking CFH (rs34388368: OR = 2.57, p = 0.0195). One encodes opsonin: C3 (rs4807895: OR = 2.52, p = 0.0239), whereas four encode receptors for C3 fragments: CR1 (haplotype with rs6656401: OR = 1.37, p = 0.0382), CR2 (rs2182911: OR = 0.23, p = 0.0263), ITGAM (CR3, rs12928810: OR = 0.66, p = 0.0435), and ITGAX (CR4, rs11574637: OR = 0.63, p = 0.0056). Associations reinforced former findings, regarding differential gene expression, serum levels, C3, and MAC deposition on lesions. Deregulation of previously barely noticed processes, e.g., the lectin and alternative pathways and opsonization-mediated phagocytosis, also modulate PF susceptibility. The results open new crucial avenues for understanding disease etiology and may improve PF treatment through additional therapeutic targets. PMID:29686679
The drawing effect: Evidence for reliable and robust memory benefits in free recall.
Wammes, Jeffrey D; Meade, Melissa E; Fernandes, Myra A
2016-01-01
In 7 free-recall experiments, the benefit of creating drawings of to-be-remembered information relative to writing was examined as a mnemonic strategy. In Experiments 1 and 2, participants were presented with a list of words and were asked to either draw or write out each. Drawn words were better recalled than written. Experiments 3-5 showed that the memory boost provided by drawing could not be explained by elaborative encoding (deep level of processing, LoP), visual imagery, or picture superiority, respectively. In Experiment 6, we explored potential limitations of the drawing effect, by reducing encoding time and increasing list length. Drawing, relative to writing, still benefited memory despite these constraints. In Experiment 7, the drawing effect was significant even when encoding trial types were compared in pure lists between participants, inconsistent with a distinctiveness account. Together these experiments indicate that drawing enhances memory relative to writing, across settings, instructions, and alternate encoding strategies, both within- and between-participants, and that a deep LoP, visual imagery, or picture superiority, alone or collectively, are not sufficient to explain the observed effect. We propose that drawing improves memory by encouraging a seamless integration of semantic, visual, and motor aspects of a memory trace.
Yap, Hui-Yeng Y.; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong
2015-01-01
Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications. PMID:26606395
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.
1984-01-01
A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.
Cavitation onset caused by acceleration
Pan, Zhao; Kiyama, Akihito; Tagawa, Yoshiyuki; Daily, David J.; Thomson, Scott L.; Hurd, Randy
2017-01-01
Striking the top of a liquid-filled bottle can shatter the bottom. An intuitive interpretation of this event might label an impulsive force as the culprit in this fracturing phenomenon. However, high-speed photography reveals the formation and collapse of tiny bubbles near the bottom before fracture. This observation indicates that the damaging phenomenon of cavitation is at fault. Cavitation is well known for causing damage in various applications including pipes and ship propellers, making accurate prediction of cavitation onset vital in several industries. However, the conventional cavitation number as a function of velocity incorrectly predicts the cavitation onset caused by acceleration. This unexplained discrepancy leads to the derivation of an alternative dimensionless term from the equation of motion, predicting cavitation as a function of acceleration and fluid depth rather than velocity. Two independent research groups in different countries have tested this theory; separate series of experiments confirm that an alternative cavitation number, presented in this paper, defines the universal criteria for the onset of acceleration-induced cavitation. PMID:28739956
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, O.; Biblot, J.; Janssen, P. A. E. M.
2016-02-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. I will show some results from the coupled atmosphere-wave-ocean ensemble forecast system of ECMWF where these wave effects are now included in the ocean model component.
Cavitation onset caused by acceleration.
Pan, Zhao; Kiyama, Akihito; Tagawa, Yoshiyuki; Daily, David J; Thomson, Scott L; Hurd, Randy; Truscott, Tadd T
2017-07-24
Striking the top of a liquid-filled bottle can shatter the bottom. An intuitive interpretation of this event might label an impulsive force as the culprit in this fracturing phenomenon. However, high-speed photography reveals the formation and collapse of tiny bubbles near the bottom before fracture. This observation indicates that the damaging phenomenon of cavitation is at fault. Cavitation is well known for causing damage in various applications including pipes and ship propellers, making accurate prediction of cavitation onset vital in several industries. However, the conventional cavitation number as a function of velocity incorrectly predicts the cavitation onset caused by acceleration. This unexplained discrepancy leads to the derivation of an alternative dimensionless term from the equation of motion, predicting cavitation as a function of acceleration and fluid depth rather than velocity. Two independent research groups in different countries have tested this theory; separate series of experiments confirm that an alternative cavitation number, presented in this paper, defines the universal criteria for the onset of acceleration-induced cavitation.
Application of acoustic doppler velocimeters for streamflow measurements
Rehmel, M.
2007-01-01
The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.
Cavitation onset caused by acceleration
NASA Astrophysics Data System (ADS)
Pan, Zhao; Kiyama, Akihito; Tagawa, Yoshiyuki; Daily, David J.; Thomson, Scott L.; Hurd, Randy; Truscott, Tadd T.
2017-08-01
Striking the top of a liquid-filled bottle can shatter the bottom. An intuitive interpretation of this event might label an impulsive force as the culprit in this fracturing phenomenon. However, high-speed photography reveals the formation and collapse of tiny bubbles near the bottom before fracture. This observation indicates that the damaging phenomenon of cavitation is at fault. Cavitation is well known for causing damage in various applications including pipes and ship propellers, making accurate prediction of cavitation onset vital in several industries. However, the conventional cavitation number as a function of velocity incorrectly predicts the cavitation onset caused by acceleration. This unexplained discrepancy leads to the derivation of an alternative dimensionless term from the equation of motion, predicting cavitation as a function of acceleration and fluid depth rather than velocity. Two independent research groups in different countries have tested this theory; separate series of experiments confirm that an alternative cavitation number, presented in this paper, defines the universal criteria for the onset of acceleration-induced cavitation.
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altube, Patricia; Bech, Joan; Argemí, Oriol
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Newly velocity field of Sulawesi Island from GPS observation
NASA Astrophysics Data System (ADS)
Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.
2017-07-01
Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
Altube, Patricia; Bech, Joan; Argemí, Oriol; ...
2017-07-18
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
NASA Astrophysics Data System (ADS)
Bocin, A.; Stephenson, R.; Mocanu, V.
2007-12-01
The DACIA PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the proposed objective of obtaining new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basin developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion and a 2D ray tracing forward modelling of the DACIA PLAN first arrival data. Peculiar shallow high velocities indicate that pre-Tertiary basement in the Vrancea Zone (characterised by velocities greater than 5.6 km/s) is involved in Carpathian thrusting while rapid alternance, vertically or horizontally, of velocity together with narrowingly contemporary crustal events suggests uplifting. Further to the east, at the foreland basin-thrust belt transition zone (well defined within velocity values), the velocity model suggests a nose of the Miocene Subcarpathians nappe being underlain by Focsani Basin units. A Miocene and younger Focsani Basin sedimentary succession of ~10 km thickness is ascertained by a gradual increase of velocities and strongly defined velocity boundaries.
NASA Astrophysics Data System (ADS)
Emami Niri, Mohammad; Amiri Kolajoobi, Rasool; Khodaiy Arbat, Mohammad; Shahbazi Raz, Mahdi
2018-06-01
Seismic wave velocities, along with petrophysical data, provide valuable information during the exploration and development stages of oil and gas fields. The compressional-wave velocity (VP ) is acquired using conventional acoustic logging tools in many drilled wells. But the shear-wave velocity (VS ) is recorded using advanced logging tools only in a limited number of wells, mainly because of the high operational costs. In addition, laboratory measurements of seismic velocities on core samples are expensive and time consuming. So, alternative methods are often used to estimate VS . Heretofore, several empirical correlations that predict VS by using well logging measurements and petrophysical data such as VP , porosity and density are proposed. However, these empirical relations can only be used in limited cases. The use of intelligent systems and optimization algorithms are inexpensive, fast and efficient approaches for predicting VS. In this study, in addition to the widely used Greenberg–Castagna empirical method, we implement three relatively recently developed metaheuristic algorithms to construct linear and nonlinear models for predicting VS : teaching–learning based optimization, imperialist competitive and artificial bee colony algorithms. We demonstrate the applicability and performance of these algorithms to predict Vs using conventional well logs in two field data examples, a sandstone formation from an offshore oil field and a carbonate formation from an onshore oil field. We compared the estimated VS using each of the employed metaheuristic approaches with observed VS and also with those predicted by Greenberg–Castagna relations. The results indicate that, for both sandstone and carbonate case studies, all three implemented metaheuristic algorithms are more efficient and reliable than the empirical correlation to predict VS . The results also demonstrate that in both sandstone and carbonate case studies, the performance of an artificial bee colony algorithm in VS prediction is slightly higher than two other alternative employed approaches.
Distinct Inter-Joint Coordination during Fast Alternate Keystrokes in Pianists with Superior Skill.
Furuya, Shinichi; Goda, Tatsushi; Katayose, Haruhiro; Miwa, Hiroyoshi; Nagata, Noriko
2011-01-01
Musical performance requires motor skills to coordinate the movements of multiple joints in the hand and arm over a wide range of tempi. However, it is unclear whether the coordination of movement across joints would differ for musicians with different skill levels and how inter-joint coordination would vary in relation to music tempo. The present study addresses these issues by examining the kinematics and muscular activity of the hand and arm movements of professional and amateur pianists who strike two keys alternately with the thumb and little finger at various tempi. The professionals produced a smaller flexion velocity at the thumb and little finger and greater elbow pronation and supination velocity than did the amateurs. The experts also showed smaller extension angles at the metacarpo-phalangeal joint of the index and middle fingers, which were not being used to strike the keys. Furthermore, muscular activity in the extrinsic finger muscles was smaller for the experts than for the amateurs. These findings indicate that pianists with superior skill reduce the finger muscle load during keystrokes by taking advantage of differences in proximal joint motion and hand postural configuration. With an increase in tempo, the experts showed larger and smaller increases in elbow velocity and finger muscle co-activation, respectively, compared to the amateurs, highlighting skill level-dependent differences in movement strategies for tempo adjustment. Finally, when striking as fast as possible, individual differences in the striking tempo among players were explained by their elbow velocities but not by their digit velocities. These findings suggest that pianists who are capable of faster keystrokes benefit more from proximal joint motion than do pianists who are not capable of faster keystrokes. The distinct movement strategy for tempo adjustment in pianists with superior skill would therefore ensure a wider range of musical expression.
Distinct Inter-Joint Coordination during Fast Alternate Keystrokes in Pianists with Superior Skill
Furuya, Shinichi; Goda, Tatsushi; Katayose, Haruhiro; Miwa, Hiroyoshi; Nagata, Noriko
2011-01-01
Musical performance requires motor skills to coordinate the movements of multiple joints in the hand and arm over a wide range of tempi. However, it is unclear whether the coordination of movement across joints would differ for musicians with different skill levels and how inter-joint coordination would vary in relation to music tempo. The present study addresses these issues by examining the kinematics and muscular activity of the hand and arm movements of professional and amateur pianists who strike two keys alternately with the thumb and little finger at various tempi. The professionals produced a smaller flexion velocity at the thumb and little finger and greater elbow pronation and supination velocity than did the amateurs. The experts also showed smaller extension angles at the metacarpo-phalangeal joint of the index and middle fingers, which were not being used to strike the keys. Furthermore, muscular activity in the extrinsic finger muscles was smaller for the experts than for the amateurs. These findings indicate that pianists with superior skill reduce the finger muscle load during keystrokes by taking advantage of differences in proximal joint motion and hand postural configuration. With an increase in tempo, the experts showed larger and smaller increases in elbow velocity and finger muscle co-activation, respectively, compared to the amateurs, highlighting skill level-dependent differences in movement strategies for tempo adjustment. Finally, when striking as fast as possible, individual differences in the striking tempo among players were explained by their elbow velocities but not by their digit velocities. These findings suggest that pianists who are capable of faster keystrokes benefit more from proximal joint motion than do pianists who are not capable of faster keystrokes. The distinct movement strategy for tempo adjustment in pianists with superior skill would therefore ensure a wider range of musical expression. PMID:21660290
IRAS 18113-2503: THE WATER FOUNTAIN WITH THE FASTEST JET?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Jose F.; Guerrero, MartIn A.; Ricardo Rizzo, J.
2011-09-20
We present Expanded Very Large Array water maser observations at 22 GHz toward the source IRAS 18113-2503. Maser components span over a very high velocity range of {approx_equal} 500 km s{sup -1}, the second largest found in a Galactic maser, only surpassed by the high-mass star-forming region W49N. Maser components are grouped into a blueshifted and a redshifted cluster, separated by 0.''12. Further mid-IR and radio data suggest that IRAS 18113-2503 is a post-asymptotic giant branch star, thus a new bona fide member of the rare class of 'water fountains' (WFs). It is the evolved object with the largest totalmore » velocity spread in its water masers and with the highest velocity dispersion within its redshifted and blueshifted lobes ({approx_equal} 170 km s{sup -1}). The large total velocity range of emission probably indicates that IRAS 18113-2503 has the fastest jet among the known WF stars. On the other hand, the remarkably high velocity dispersion within each lobe may be interpreted in terms of shocks produced by an episode of mass ejection whose velocity increased up to very high values or, alternatively, by projection effects in a jet with a large opening angle and/or precessing motions.« less
Sugie, Atsushi; Murai, Koji; Takumi, Shigeo
2007-06-01
Mitochondrial alternative oxidase (AOX) is the terminal oxidase responsible for cyanide-insensitive and salicylhydroxamic acid-sensitive respiration in plants. AOX is a key enzyme of the alternative respiration pathway. To study the effects of necrotic cell death on the mitochondrial function, production of reactive oxygen species (ROS), respiration capacities and accumulation patterns of mitochondria-targeted protein-encoding gene transcripts were compared between wild-type, lesion-mimic mutant and hybrid necrosis wheat plants. Around cells with the necrosis symptom, ROS accumulated abundantly in the intercellular spaces. The ratio of the alternative pathway to the cytochrome pathway was markedly enhanced in the necrotic leaves. Transcripts of a wheat AOX gene, Waox1a, were more abundant in a novel lesion-mimic mutant of common wheat than in the wild-type plants. An increased level of the Waox1a transcripts was also observed in hybrid plants containing Ne1 and Ne2 genes. These results indicated that an increase of the wheat AOX transcript level resulted in enhancement of respiration capacity of the alternative pathway in the necrotic cells.
Papagianni, Maria; Avramidis, Nicholaos
2012-01-05
Lactococcus lactis is a widely used food bacterium mainly known for its fermentation metabolism. An important, and for long time overlooked, trait of this species is its ability to perform respiratory metabolism in the presence of heme and under aerobic conditions. There is no evidence however for the presence of an alternative respiration pathway and AOX activity. In this study, a cDNA fragment encoding the mitochondrial alternative oxidase, the enzyme responsible for alternative respiration, from a citric acid producing Aspergillus niger strain was cloned and expressed in L. lactis as a host strain. Expression of aox1 conferred on this organism cyanide-resistant and salicylhydroxamate-sensitive growth. Bioreactor cultures under fully aerobic conditions of the transformed L. lactis showed that the alternative respiratory pathway operates and improves significantly the microorganism's response to oxidizing stress conditions as it enhances biomass production, suppresses lactate formation, and leads to accumulation of large amounts of nisin. Copyright © 2011 Elsevier Inc. All rights reserved.
Wiche, Gregg J.; Gilbert, J.J.; Froehlich, David C.; Lee, Jonathan K.
1988-01-01
In April 1979 and April 1980, major flooding along the lower Pearl River caused extensive damage to homes located on the flood plain in the Slidell, Louisiana, area. In response to questions about causes of these floods and means of mitigating future floods, the U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Highways, and the U.S. Department of Transportation, Federal Highway Administration, used a two-dimensional finite-element surface-water flow-modeling system to study the effect of four alternative modifications for improving the hydraulic characteristics of the Interstate Highway 10 crossing of the flood plain near Slidell. The analysis used the model's capability to simulate changes in flood-plain topography, flood-plain vegetative cover, and highway-embankment geometry. Compared with the existing highway crossing, the four alternative modifications reduce backwater and average velocities through bridge openings for a flood of the magnitude of the 1980 flood. The four alternatives also eliminate roadway overtopping during such a flood. For the four modifications, maximum backwater on the west side of the flood plain ranges from 0.3 to 1.1 feet and on the east side from 0.3 to 0.7 foot. Results of the alternative-model simulations show that backwater is greater on the west side of the flood plain than on the east side, but upstream from Interstate Highway 10 backwater decreases more rapidly in the upstream direction on the west side of the flood plain than on the east side. Downstream from Interstate Highway 10, modeling of the four alternatives indicates that backwater and drawdown still occur on the east and west sides of the flood plain, respectively, but are less than the values computed for the April 1980 flood with Interstate Highway 10 in place. In addition to other highway-crossing modifications, alternatives 2 and 3 include simulation of a new 2,000-foot bridge opening, and ,alternative 4 includes simulation of a 1,000-foot bridge opening. The new bridge conveys 25, 23, and 21 percent of the total computed discharge in alternatives 2, 3, and 4, respectively. The average velocity through the new bridge is 2.0, 1.9, and 3.4 feet per second for alternatives 2, 3, and 4, respectively.
Magnetic Field Topology in Jets
NASA Technical Reports Server (NTRS)
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.
The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.
Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W
2013-01-01
The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.
Short, Stephen; Peterkin, Tessa; Guille, Matthew; Patient, Roger; Sharpe, Colin
2015-01-01
Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment. PMID:26289800
McVey, Mitch
2010-01-01
DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. PMID:20617203
Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes
Bender, Tom; Pena, Gabrielle; Martinou, Jean-Claude
2015-01-01
At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPCFERM and MPCOX. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPCOX has a higher transport activity than MPCFERM, which is dependent on the C-terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability. PMID:25672363
USDA-ARS?s Scientific Manuscript database
Rubisco activase (RCA) is essential for the activation of Rubisco, the carboxylating enzyme of photosynthesis. In Arabidopsis, RCA is encoded by a single gene (At2g39730) that is alternatively spliced to form a large alpha-RCA and small beta-RCA isoform. The activity of Rubisco is controlled in res...
SeaQuaKE: Sea-optimized Quantum Key Exchange
2015-01-01
of photon pairs in both polarization [3] and time-bin [4] degrees of freedom simultaneously. Entanglement analysis components in both the...greater throughput per entangled photon pair compared to alternative sources that encode in only a Photon -pair source Time-bin entanglement ...Polarization Entanglement & Pair Generation Hyperentangled Photon Pair Source •Wavelength availability • Power • Pulse rate Time-bin Mux • Waveguide vs
Universal quantum computation using all-optical hybrid encoding
NASA Astrophysics Data System (ADS)
Guo, Qi; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou
2015-04-01
By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing. Project supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, and 11264042).
Frex and FrexH: Indicators of metabolic states in living cells.
Zhao, Yuzheng; Yang, Yi
2012-01-01
Reduced nicotinamide adenine dinucleotide (NADH) and its oxidized form play central roles in energy and redox metabolisms. For many years, researchers have relied on the weak NADH endogenous fluorescence signal to determine the NADH level in living cells. We recently reported a series of genetically encoded fluorescent sensors highly specific for NADH. These sensors allow real-time, quantitative measurement of this significant molecule in different subcellular compartments. In this study, we provide a more detailed discussion of the benefits and limitations of these genetically encoded fluorescent sensors. These sensors are utilized in most laboratories without the need for sophisticated instruments because of their superior sensitivity and specificity. They are also viable alternatives to existing techniques for measuring the endogenous fluorescence of intracellular NAD(P)H.
Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
Monticello, D J; Bakker, D; Schell, M; Finnerty, W R
1985-01-01
Plasmid-borne Tn5 insertion mutants of a Pseudomonas species which accumulated 2,5-dihydroxybenzoate (gentisate) following growth on 2-hydroxybenzoate (salicylate) were obtained from a pool of mutants that were unable to grow on naphthalene. One such mutant was characterized further. The ability of this mutant to oxidize gentisate was 100-fold less than the ability of a Nah+ Sal+ strain harboring the unmutagenized plasmid, although both strains oxidized and grew on salicylate. These bacteria were presumably able to metabolize salicylate via catechol, since they possessed an inducible, plasmid-encoded catechol 2,3-dioxygenase. Our results suggest that there is an alternate, plasmid-encoded route of salicylate degradation via gentisate and that some plasmid-associated relationship between this pathway and naphthalene oxidation exists. PMID:2988437
Angular velocity integration in a fly heading circuit
Turner-Evans, Daniel; Wegener, Stephanie; Rouault, Hervé; Franconville, Romain; Wolff, Tanya; Seelig, Johannes D; Druckmann, Shaul; Jayaraman, Vivek
2017-01-01
Many animals maintain an internal representation of their heading as they move through their surroundings. Such a compass representation was recently discovered in a neural population in the Drosophila melanogaster central complex, a brain region implicated in spatial navigation. Here, we use two-photon calcium imaging and electrophysiology in head-fixed walking flies to identify a different neural population that conjunctively encodes heading and angular velocity, and is excited selectively by turns in either the clockwise or counterclockwise direction. We show how these mirror-symmetric turn responses combine with the neurons’ connectivity to the compass neurons to create an elegant mechanism for updating the fly’s heading representation when the animal turns in darkness. This mechanism, which employs recurrent loops with an angular shift, bears a resemblance to those proposed in theoretical models for rodent head direction cells. Our results provide a striking example of structure matching function for a broadly relevant computation. DOI: http://dx.doi.org/10.7554/eLife.23496.001 PMID:28530551
On the effective operators for Dark Matter annihilations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simone, Andrea De; Thamm, Andrea; Monin, Alexander
2013-02-01
We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.
Application of metamaterial concepts to sensors and chipless RFID
NASA Astrophysics Data System (ADS)
Martín, F.; Herrojo, C.; Vélez, P.; Su, L.; Mata-Contreras, J.; Paredes, F.
2018-02-01
Several strategies for the implementation of microwave sensors based on the use of metamaterial-inspired resonators are pointed out, and examples of applications, including sensors for dielectric characterization and sensors for the measurement of spatial variables, are provided. It will be also shown that novel microwave encoders for chipless RFID systems with very high data capacity can be implemented. The fields of applications of the devices discussed in this talk include dielectric characterization of solids and liquids, angular velocity sensors for space applications, and near-field chipless RFID systems for secure paper applications, among others.
Ultrasonic liquid-level detector for varying temperature and pressure environments
Anderson, R.L.; Miller, G.N.
1981-10-26
An ultrasonic liquid level detector for use in varying temperature and pressure environments, such as a pressurized water nuclear reactor vessel, is provided. The detector employs ultrasonic extensional and torsional waves launched in a multiplexed alternating sequence into a common sensor. The sensor is a rectangular cross section stainless steel rod which extends into the liquid medium whose level is to be detected. The sensor temperature derived from the extensional wave velocity measurements is used to compensate for the temperature dependence of the torsional wave velocity measurements which are also level dependent. The torsional wave velocity measurements of a multiple reflection sensor then provide a measurement of liquid level over a range of several meters with a small uncertainty over a temperature range of 20 to 250/sup 0/C and pressures up to 15 MPa.
A measurement of perpendicular current density in an aurora
NASA Technical Reports Server (NTRS)
Bering, E. A.; Mozer, F. S.
1975-01-01
A Nike Tomahawk sounding rocket was launched into a 400-gamma auroral substorm from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir-probe plasma-velocity detector and a double-probe electric-field detector. Above 140-km altitude, the electric field deduced from the ion-flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral-wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth angle of 276 deg. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward.
Another face of the Treacher Collins syndrome (TCOF1) gene: identification of additional exons.
So, Rolando B; Gonzales, Bianca; Henning, Dale; Dixon, Jill; Dixon, Michael J; Valdez, Benigno C
2004-03-17
Treacher Collins syndrome (TCS) is characterized by an abnormality in craniofacial development during early embryogenesis. TCS is caused by mutations in the gene TCOF1, which encodes the nucleolar phosphoprotein treacle. Genetic and proteomic characterizations of TCS/treacle are based on the previously reported 26 exons of TCOF1. Here, we report the identification of 231-nucleotide (nt) exon 6A (between exons 6 and 7) and 108-nt exon 16A (between exons 16 and 17). Isoforms with exon 6A are up to 3.7-fold more abundant than alternatively spliced variants without exon 6A, but only minor isoforms contain exon 16A. Exon 6A encodes a peptide sequence containing basic and acidic domains similar to 10 other exons of TCOF1. Unlike the other exons, exon 6A encodes a nuclear localization signal (NLS) which does not, however, alter the nucleolar localization of full-length treacle. The discovery of exons 6A and 16A is relevant to mutational analysis of the TCOF1 gene in TCS patients, and to functional analysis of its gene product.
Foley, Mary Ann; Bays, Rebecca Brooke; Foy, Jeffrey; Woodfield, Mila
2015-01-01
In three experiments, we examine the extent to which participants' memory errors are affected by the perceptual features of an encoding series and imagery generation processes. Perceptual features were examined by manipulating the features associated with individual items as well as the relationships among items. An encoding instruction manipulation was included to examine the effects of explicit requests to generate images. In all three experiments, participants falsely claimed to have seen pictures of items presented as words, committing picture misattribution errors. These misattribution errors were exaggerated when the perceptual resemblance between pictures and images was relatively high (Experiment 1) and when explicit requests to generate images were omitted from encoding instructions (Experiments 1 and 2). When perceptual cues made the thematic relationships among items salient, the level and pattern of misattribution errors were also affected (Experiments 2 and 3). Results address alternative views about the nature of internal representations resulting in misattribution errors and refute the idea that these errors reflect only participants' general impressions or beliefs about what was seen.
Development of schemas revealed by prior experience and NMDA receptor knock-out
Dragoi, George; Tonegawa, Susumu
2013-01-01
Prior experience accelerates acquisition of novel, related information through processes like assimilation into mental schemas, but the underlying neuronal mechanisms are poorly understood. We investigated the roles that prior experience and hippocampal CA3 N-Methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity play in CA1 place cell sequence encoding and learning during novel spatial experiences. We found that specific representations of de novo experiences on linear environments were formed on a framework of pre configured network activity expressed in the preceding sleep and were rapidly, flexibly adjusted via NMDAR-dependent activity. This prior experience accelerated encoding of subsequent experiences on contiguous or isolated novel tracks, significantly decreasing their NMDAR-dependence. Similarly, de novo learning of an alternation task was facilitated by CA3 NMDARs; this experience accelerated subsequent learning of related tasks, independent of CA3 NMDARs, consistent with a schema-based learning. These results reveal the existence of distinct neuronal encoding schemes which could explain why hippocampal dysfunction results in anterograde amnesia while sparing recollection of old, schema-based memories. DOI: http://dx.doi.org/10.7554/eLife.01326.001 PMID:24327561
Working memory load eliminates the survival processing effect.
Kroneisen, Meike; Rummel, Jan; Erdfelder, Edgar
2014-01-01
In a series of experiments, Nairne, Thompson, and Pandeirada (2007) demonstrated that words judged for their relevance to a survival scenario are remembered better than words judged for a scenario not relevant on a survival dimension. They explained this survival-processing effect by arguing that nature "tuned" our memory systems to process and remember fitness-relevant information. Kroneisen and Erdfelder (2011) proposed that it may not be survival processing per se that facilitates recall but the richness and distinctiveness with which information is encoded. To further test this account, we investigated how the survival processing effect is affected by cognitive load. If the survival processing effect is due to automatic processes or, alternatively, if survival processing is routinely prioritized in dual-task contexts, we would expect this effect to persist under cognitive load conditions. If the effect relies on cognitively demanding processes like richness and distinctiveness of encoding, however, the survival processing benefit should be hampered by increased cognitive load during encoding. Results were in line with the latter prediction, that is, the survival processing effect vanished under dual-task conditions.
Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables
Kennerley, Steven W.; Dahmubed, Aspandiar F.; Lara, Antonio H.; Wallis, Jonathan D.
2009-01-01
A central question in behavioral science is how we select among choice alternatives to obtain consistently the most beneficial outcomes. Three variables are particularly important when making a decision: the potential payoff, the probability of success, and the cost in terms of time and effort. A key brain region in decision making is the frontal cortex as damage here impairs the ability to make optimal choices across a range of decision types. We simultaneously recorded the activity of multiple single neurons in the frontal cortex while subjects made choices involving the three aforementioned decision variables. This enabled us to contrast the relative contribution of the anterior cingulate cortex (ACC), the orbito-frontal cortex, and the lateral prefrontal cortex to the decision-making process. Neurons in all three areas encoded value relating to choices involving probability, payoff, or cost manipulations. However, the most significant signals were in the ACC, where neurons encoded multiplexed representations of the three different decision variables. This supports the notion that the ACC is an important component of the neural circuitry underlying optimal decision making. PMID:18752411
Izquierdo, M; González-Badillo, J J; Häkkinen, K; Ibáñez, J; Kraemer, W J; Altadill, A; Eslava, J; Gorostiaga, E M
2006-09-01
The purpose of this study was to examine the effect of different loads on repetition speed during single sets of repetitions to failure in bench press and parallel squat. Thirty-six physical active men performed 1-repetition maximum in a bench press (1 RM (BP)) and half squat position (1 RM (HS)), and performed maximal power-output continuous repetition sets randomly every 10 days until failure with a submaximal load (60 %, 65 %, 70 %, and 75 % of 1RM, respectively) during bench press and parallel squat. Average velocity of each repetition was recorded by linking a rotary encoder to the end part of the bar. The values of 1 RM (BP) and 1 RM (HS) were 91 +/- 17 and 200 +/- 20 kg, respectively. The number of repetitions performed for a given percentage of 1RM was significantly higher (p < 0.001) in half squat than in bench press performance. Average repetition velocity decreased at a greater rate in bench press than in parallel squat. The significant reductions observed in the average repetition velocity (expressed as a percentage of the average velocity achieved during the initial repetition) were observed at higher percentage of the total number of repetitions performed in parallel squat (48 - 69 %) than in bench press (34 - 40 %) actions. The major finding in this study was that, for a given muscle action (bench press or parallel squat), the pattern of reduction in the relative average velocity achieved during each repetition and the relative number of repetitions performed was the same for all percentages of 1RM tested. However, relative average velocity decreased at a greater rate in bench press than in parallel squat performance. This would indicate that in bench press the significant reductions observed in the average repetition velocity occurred when the number of repetitions was over one third (34 %) of the total number of repetitions performed, whereas in parallel squat it was nearly one half (48 %). Conceptually, this would indicate that for a given exercise (bench press or squat) and percentage of maximal dynamic strength (1RM), the pattern of velocity decrease can be predicted over a set of repetitions, so that a minimum repetition threshold to ensure maximal speed performance is determined.
Conceptual definition of porosity function for coarse granular porous media with fixed texture
NASA Astrophysics Data System (ADS)
Shokri, Morteza
2018-06-01
Porous media's porosity value is commonly taken as a constant for a given granular texture free from any type of imposed loads. Although such definition holds for those media at hydrostatic equilibrium, it might not be hydrodynamically true for media subjected to the flow of fluids. This article casts light on an alternative vision describing porosity as a function of fluid velocity, though the media's solid skeleton does not undergo any changes and remain essentially intact. Carefully planned laboratory experiments support such as hypothesis and may help reducing reported disagreements between observed and actual behaviors of nonlinear flow regimes. Findings indicate that the so-called Stephenson relationship that enables estimating actual flow velocity is a case that holds true only for the Darcian conditions. In order to investigate the relationship, an accurate permeability should be measured. An alternative relationship, therefore, has been proposed to estimate actual pore flow velocity. On the other hand, with introducing the novel concept of effective porosity, that should be determined not only based on geotechnical parameters, but also it has to be regarded as a function of the flow regime. Such a porosity may be affected by the flow regime through variations in the effective pore volume and effective shape factor. In a numerical justification of findings, it is shown that unsatisfactory results, obtained from nonlinear mathematical models of unsteady flow, may be due to unreliable porosity estimates.
Marsan, Nina Ajmone; Westenberg, Jos J M; Ypenburg, Claudia; Delgado, Victoria; van Bommel, Rutger J; Roes, Stijntje D; Nucifora, Gaetano; van der Geest, Rob J; de Roos, Albert; Reiber, Johan C; Schalij, Martin J; Bax, Jeroen J
2009-11-01
The aim of this study was to evaluate feasibility and accuracy of real-time 3-dimensional (3D) echocardiography for quantification of mitral regurgitation (MR), in a head-to-head comparison with velocity-encoded cardiac magnetic resonance (VE-CMR). Accurate grading of MR severity is crucial for appropriate patient management but remains challenging. VE-CMR with 3D three-directional acquisition has been recently proposed as the reference method. A total of 64 patients with functional MR were included. A VE-CMR acquisition was applied to quantify mitral regurgitant volume (Rvol). Color Doppler 3D echocardiography was applied for direct measurement, in "en face" view, of mitral effective regurgitant orifice area (EROA); Rvol was subsequently calculated as EROA multiplied by the velocity-time integral of the regurgitant jet on the continuous-wave Doppler. To assess the relative potential error of the conventional approach, color Doppler 2-dimensional (2D) echocardiography was performed: vena contracta width was measured in the 4-chamber view and EROA calculated as circular (EROA-4CH); EROA was also calculated as elliptical (EROA-elliptical), measuring vena contracta also in the 2-chamber view. From these 2D measurements of EROA, the Rvols were also calculated. The EROA measured by 3D echocardiography was significantly higher than EROA-4CH (p < 0.001) and EROA-elliptical (p < 0.001), with a significant bias between these measurements (0.10 cm(2) and 0.06 cm(2), respectively). Rvol measured by 3D echocardiography showed excellent correlation with Rvol measured by CMR (r = 0.94), without a significant difference between these techniques (mean difference = -0.08 ml/beat). Conversely, 2D echocardiographic approach from the 4-chamber view significantly underestimated Rvol (p = 0.006) as compared with CMR (mean difference = 2.9 ml/beat). The 2D elliptical approach demonstrated a better agreement with CMR (mean difference = -1.6 ml/beat, p = 0.04). Quantification of EROA and Rvol of functional MR with 3D echocardiography is feasible and accurate as compared with VE-CMR; the currently recommended 2D echocardiographic approach significantly underestimates both EROA and Rvol.
THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perets, Hagai B.; Subr, Ladislav
2012-06-01
Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less
Non-Gurney Scaling of Explosives Heavily Loaded with Dense Inert Additives
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Higgins, Andrew; Frost, David
2017-06-01
For most high explosives, the ability to accelerate material to some terminal velocity scales with the ratio of material-mass to charge-mass (M/C) according to the Gurney equations. Generally, the Gurney equation for planar geometry accurately predicts the terminal velocity of the driven material until the M/C ratio is reduced to roughly 0.15 or lower; at which point gasdynamic departures from the assumptions in the model result in systematic underpredictions of the material velocity. The authors conducted a series of open-face sandwich flyer plate experiments to measure the scaling of flyer terminal velocity with M/C for a heterogeneous explosive composed of a packed bed of 280 μm steel particles saturated with amine-sensitized nitromethane (90% NM, 10% diethylenetriamine). The propulsive capability of this explosive did not scale according to a modified form of the Gurney equation. Rather, propulsive efficiency increased as the flyer plate became relatively thicker. In the present study the authors have conducted further experiments using this explosive in symmetric sandwiches as well as for normally-incident detonations initiated via a slapping foil to examine how flyer terminal velocity scales with M/C for alternative geometries and loading conditions.
Evidence for Spiral Magnetic Structures at the Magnetopause: A Case for Multiple Reconnections
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.
2003-01-01
We analyze plasma structures within the low latitude boundary layer (LLBL) observed by the lnterball Tail spacecraft under southward interplanetary magnetic field. Ion velocity distributions observed in the LLBL under these conditions fall into three categories: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counterstreaming magnetosheath-type, and (c) distributions with three components where one of them has nearly zero velocity parallel to magnetic field (VlI), while the other two are counter-streaming components. D-shaped ion velocity distributions (a) correspond to magnetosheath plasma injections into reconnected flux tubes, as influenced by spacecraft location relative to the reconnection site. Simultaneous counter-streaming injections (b) suggest multiple reconnections. Three-component ion velocity distributions (c) and theii evolution with decreasing number density in the LLBL are consistent v behavior expected on long spiral flux tube islands at the magnetopaus as has been proposed and found to occur in magnetopause simulatior We interpret these distributions as a natural consequence of the formation of spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and magnetospheric plasmas. We suggest that multiple reconnections pla! an important role in the formation of the LLBL.
Wave Measurements Using GPS Velocity Signals
Doong, Dong-Jiing; Lee, Beng-Chun; Kao, Chia Chuen
2011-01-01
This study presents the idea of using GPS-output velocity signals to obtain wave measurement data. The application of the transformation from a velocity spectrum to a displacement spectrum in conjunction with the directional wave spectral theory are the core concepts in this study. Laboratory experiments were conducted to verify the accuracy of the inversed displacement of the surface of the sea. A GPS device was installed on a moored accelerometer buoy to verify the GPS-derived wave parameters. It was determined that loss or drifting of the GPS signal, as well as energy spikes occurring in the low frequency band led to erroneous measurements. Through the application of moving average skill and a process of frequency cut-off to the GPS output velocity, correlations between GPS-derived, and accelerometer buoy-measured significant wave heights and periods were both improved to 0.95. The GPS-derived one-dimensional and directional wave spectra were in agreement with the measurements. Despite the direction verification showing a 10° bias, this exercise still provided useful information with sufficient accuracy for a number of specific purposes. The results presented in this study indicate that using GPS output velocity is a reasonable alternative for the measurement of ocean waves. PMID:22346618
Bovier, Elodie; Sellem, Carole H.; Humbert, Adeline
2014-01-01
In Podospora anserina, the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase (aox) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase (pck) and fructose-1,6-biphosphatase (fbp). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3. Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3. It showed that in addition to aox, fbp, and pck, RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn2Cys6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and α-ketoglutarate pools. PMID:24186951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampaio, S.O.; Mei, C.; Butcher, E.C.
The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less
Lehnert, S J; Butts, I A E; Flannery, E W; Peters, K M; Heath, D D; Pitcher, T E
2017-06-01
In many species, sperm velocity affects variation in the outcome of male competitive fertilization success. In fishes, ovarian fluid (OF) released with the eggs can increase male sperm velocity and potentially facilitate cryptic female choice for males of specific phenotypes and/or genotypes. Therefore, to investigate the effect of OF on fertilization success, we measured sperm velocity and conducted in vitro competitive fertilizations with paired Chinook salmon (Oncorhynchus tshawytscha) males representing two alternative reproductive tactics, jacks (small sneaker males) and hooknoses (large guarding males), in the presence of river water alone and OF mixed with river water. To determine the effect of genetic differences on fertilization success, we genotyped fish at neutral (microsatellites) and functional [major histocompatibility complex (MHC) II ß1] markers. We found that when sperm were competed in river water, jacks sired significantly more offspring than hooknoses; however, in OF, there was no difference in paternity between the tactics. Sperm velocity was significantly correlated with paternity success in river water, but not in ovarian fluid. Paternity success in OF, but not in river water alone, was correlated with genetic relatedness between male and female, where males that were less related to the female attained greater paternity. We found no relationship between MHC II ß1 divergence between mates and paternity success in water or OF. Our results indicate that OF can influence the outcome of sperm competition in Chinook salmon, where OF provides both male tactics with fertilization opportunities, which may in part explain what maintains both tactics in nature. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Broadband laser ranging development at the DOE Labs
NASA Astrophysics Data System (ADS)
Bennett, Corey V.; La Lone, Brandon M.; Younk, Patrick W.; Daykin, Ed P.; Rhodes, Michelle A.
2017-02-01
Broadband Laser Ranging (BLR) is a new diagnostic being developed in collaboration across multiple USA Dept. of Energy (DOE) facilities. Its purpose is to measure the precise position of surfaces and particle clouds moving at speeds of a few kilometers per second. The diagnostic uses spectral interferometry to encode distance into a modulation in the spectrum of pulses from a mode-locked fiber laser and uses a dispersive Fourier transformation to map the spectral modulation into time. This combination enables recording of range information in the time domain on a fast oscilloscope every 25-80 ns. Discussed here are some of the hardware design issues, system tradeoffs, calibration issues, and experimental results. BLR is being developed as an add-on to conventional Photonic Doppler Velocimetry (PDV) systems because PDV often yields incomplete information when lateral velocity components are present, or when there are drop-outs in the signal amplitude. In these cases, integration of the velocity from PDV can give incorrect displacement results. Experiments are now regularly fielded with over 100 channels of PDV, and BLR is being developed in a modular way to enable high channel counts of BLR and PDV recorded from the same probes pointed at the same target location. In this way instruments, will independently record surface velocity and distance information along the exact same path.
Tensor-based tracking of the aorta in phase-contrast MR images
NASA Astrophysics Data System (ADS)
Azad, Yoo-Jin; Malsam, Anton; Ley, Sebastian; Rengier, Fabian; Dillmann, Rüdiger; Unterhinninghofen, Roland
2014-03-01
The velocity-encoded magnetic resonance imaging (PC-MRI) is a valuable technique to measure the blood flow velocity in terms of time-resolved 3D vector fields. For diagnosis, presurgical planning and therapy control monitoring the patient's hemodynamic situation is crucial. Hence, an accurate and robust segmentation of the diseased vessel is the basis for further methods like the computation of the blood pressure. In the literature, there exist some approaches to transfer the methods of processing DT-MR images to PC-MR data, but the potential of this approach is not fully exploited yet. In this paper, we present a method to extract the centerline of the aorta in PC-MR images by applying methods from the DT-MRI. On account of this, in the first step the velocity vector fields are converted into tensor fields. In the next step tensor-based features are derived and by applying a modified tensorline algorithm the tracking of the vessel course is accomplished. The method only uses features derived from the tensor imaging without the use of additional morphology information. For evaluation purposes we applied our method to 4 volunteer as well as 26 clinical patient datasets with good results. In 29 of 30 cases our algorithm accomplished to extract the vessel centerline.
Depth encoded three-beam swept source Doppler optical coherence tomography
NASA Astrophysics Data System (ADS)
Wartak, Andreas; Haindl, Richard; Trasischker, Wolfgang; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.
2016-03-01
A novel approach for investigation of human retinal and choroidal blood flow by the means of multi-channel swept source Doppler optical coherence tomography (SS-D-OCT) system is being developed. We present preliminary in vitro measurement results for quantification of the 3D velocity vector of scatterers in a flow phantom. The absolute flow velocity of moving scatterers can be obtained without prior knowledge of flow orientation. In contrast to previous spectral domain (SD-) D-OCT investigations, that already proved the three-channel D-OCT approach to be suitable for in vivo retinal blood flow evaluation, this current work aims for a similar functional approach by means of a differing technique. To the best of our knowledge, this is the first three-channel D-OCT setup featuring a wavelength tunable laser source. Furthermore, we present a modification of our setup allowing a reduction of the former three active illumination channels to one active illumination channel and two passive channels, which only probe the illuminated sample. This joint aperture (JA) approach provides the advantage of not having to divide beam power among three beams to meet corresponding laser safety limits. The in vitro measurement results regarding the flow phantom show good agreement between theoretically calculated and experimentally obtained flow velocity values.
SEMG signal compression based on two-dimensional techniques.
de Melo, Wheidima Carneiro; de Lima Filho, Eddie Batista; da Silva Júnior, Waldir Sabino
2016-04-18
Recently, two-dimensional techniques have been successfully employed for compressing surface electromyographic (SEMG) records as images, through the use of image and video encoders. Such schemes usually provide specific compressors, which are tuned for SEMG data, or employ preprocessing techniques, before the two-dimensional encoding procedure, in order to provide a suitable data organization, whose correlations can be better exploited by off-the-shelf encoders. Besides preprocessing input matrices, one may also depart from those approaches and employ an adaptive framework, which is able to directly tackle SEMG signals reassembled as images. This paper proposes a new two-dimensional approach for SEMG signal compression, which is based on a recurrent pattern matching algorithm called multidimensional multiscale parser (MMP). The mentioned encoder was modified, in order to efficiently work with SEMG signals and exploit their inherent redundancies. Moreover, a new preprocessing technique, named as segmentation by similarity (SbS), which has the potential to enhance the exploitation of intra- and intersegment correlations, is introduced, the percentage difference sorting (PDS) algorithm is employed, with different image compressors, and results with the high efficiency video coding (HEVC), H.264/AVC, and JPEG2000 encoders are presented. Experiments were carried out with real isometric and dynamic records, acquired in laboratory. Dynamic signals compressed with H.264/AVC and HEVC, when combined with preprocessing techniques, resulted in good percent root-mean-square difference [Formula: see text] compression factor figures, for low and high compression factors, respectively. Besides, regarding isometric signals, the modified two-dimensional MMP algorithm outperformed state-of-the-art schemes, for low compression factors, the combination between SbS and HEVC proved to be competitive, for high compression factors, and JPEG2000, combined with PDS, provided good performance allied to low computational complexity, all in terms of percent root-mean-square difference [Formula: see text] compression factor. The proposed schemes are effective and, specifically, the modified MMP algorithm can be considered as an interesting alternative for isometric signals, regarding traditional SEMG encoders. Besides, the approach based on off-the-shelf image encoders has the potential of fast implementation and dissemination, given that many embedded systems may already have such encoders available, in the underlying hardware/software architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laporte, J.; Hu, Ling-Jia; Kretz, C.
1997-05-01
We have identified a novel human gene that is entirely deleted in two boys with abnormal genital development and myotubular myopathy (MTM1). The gene, F18, is located in proximal Xq28, approximately 80 kb centromeric to the recently isolated MTM1 gene. Northern analysis of mRNA showed a ubiquitous pattern and suggested high levels of expression in skeletal muscle, brain, and heart. A transcript of 4.6 kb was detected in a range of tissues, and additional alternate forms of 3.8 and 2.6 kb were present in placenta and pancreas, respectively. The gene extends over 100 kb and is composed of at leastmore » seven exons, of which two are non-coding. Sequence analysis of a 4.6-kb cDNA contig revealed two overlapping open reading frames (ORFs) that encode putative proteins of 701 and 424 amino acids, respectively. Two alternative spliced transcripts affecting the large open reading frame were identified that, together with the Northern blot results, suggest that distinct proteins are derived from the gene. No significant homology to other known proteins was detected, but segments of the first ORF encode polyglutamine tracts and proline-rich domains, which are frequently observed in DNA-binding proteins. The F18 gene is a strong candidate for being implicated in the intersexual genitalia present in the two MTM1-deleted patients. The gene also serves as a candidate for other disorders that map to proximal Xq28. 15 refs., 3 figs., 1 tab.« less
Multiple Scenarios of Transition to Chaos in the Alternative Splicing Model
NASA Astrophysics Data System (ADS)
Kogai, Vladislav V.; Likhoshvai, Vitaly A.; Fadeev, Stanislav I.; Khlebodarova, Tamara M.
We have investigated the scenarios of transition to chaos in the mathematical model of a genetic system constituted by a single transcription factor-encoding gene, the expression of which is self-regulated by a feedback loop that involves protein isoforms. Alternative splicing results in the synthesis of protein isoforms providing opposite regulatory outcomes — activation or repression. The model is represented by a differential equation with two delayed arguments. The possibility of transition to chaos dynamics via all classical scenarios: a cascade of period-doubling bifurcations, quasiperiodicity and type-I, type-II and type-III intermittencies, has been numerically demonstrated. The parametric features of each type of transition to chaos have been described.
The Effect of Orthography on the Lexical Encoding of Palatalized Consonants in L2 Russian.
Simonchyk, Ala; Darcy, Isabelle
2018-03-01
The current study investigated the potential facilitative or inhibiting effects of orthography on the lexical encoding of palatalized consonants in L2 Russian. We hypothesized that learners with stable knowledge of orthographic and metalinguistic representations of palatalized consonants would display more accurate lexical encoding of the plain/palatalized contrast. The participants of the study were 40 American learners of Russian. Ten Russian native speakers served as a control group. The materials of the study comprised 20 real words, familiar to the participants, with target coronal consonants alternating in word-final and intervocalic positions. The participants performed three tasks: written picture naming, metalinguistic, and auditory word-picture matching. Results showed that learners were not entirely familiar with the grapheme-phoneme correspondences in L2 Russian. Even though they spelled almost all of these familiar Russian words accurately, they were able to identify the plain/palatalized status of the target consonants in these words with about 80% accuracy on a metalinguistic task. The effect of orthography on the lexical encoding was found to be dependent on the syllable position of the target consonants. In intervocalic position, learners erroneously relied on vowels following the target consonants rather than the consonants themselves to encode words with plain/palatalized consonants. In word-final position, although learners possessed the orthographic and metalinguistic knowledge of the difference in the palatalization status of the target consonants-and hence had established some aspects of the lexical representations for the words-those representations appeared to lack in phonological granularity and detail, perhaps due to the lack of perceptual salience.
Mark, Linda; Spiller, O Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A; Wong, Scott W; Damania, Blossom; Blom, Anna M; Blackbourn, David J
2007-04-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.
Sheshukova, Ekaterina V.; Komarova, Tatiana V.; Ershova, Natalia M.; Shindyapina, Anastasia V.; Dorokhov, Yuri L.
2017-01-01
Although plants as sessile organisms are affected by a variety of stressors in the field, the stress factors for the above-ground and underground parts of the plant and their gene expression profiles are not the same. Here, we investigated NbKPILP, a gene encoding a new member of the ubiquitous, pathogenesis-related Kunitz peptidase inhibitor (KPI)-like protein family, that we discovered in the genome of Nicotiana benthamiana and other representatives of the Solanaceae family. The NbKPILP gene encodes a protein that has all the structural elements characteristic of KPI but in contrast to the proven A. thaliana KPI (AtKPI), it does not inhibit serine peptidases. Unlike roots, NbKPILP mRNA and its corresponding protein were not detected in intact leaves, but abiotic and biotic stressors drastically affected NbKPILP mRNA accumulation. In search of the causes of suppressed NbKPILP mRNA accumulation in leaves, we found that the NbKPILP gene is “matryoshka,” containing an alternative nested reading frame (ANRF) encoding a 53-amino acid (aa) polypeptide (53aa-ANRF) which has an amphipathic helix (AH). We confirmed ANRF expression experimentally. A vector containing a GFP-encoding sequence was inserted into the NbKPILP gene in frame with 53aa-ANRF, resulting in a 53aa-GFP fused protein that localized in the membrane fraction of cells. Using the 5′-RACE approach, we have shown that the expression of ANRF was not explained by the existence of a cryptic promoter within the NbKPILP gene but was controlled by the maternal NbKPILP mRNA. We found that insertion of mutations destroying the 53aa-ANRF AH resulted in more than a two-fold increase of the NbKPILP mRNA level. The NbKPILP gene represents the first example of ANRF functioning as a repressor of a maternal gene in an intact plant. We proposed a model where the stress influencing the translation initiation promotes the accumulation of NbKPILP and its mRNA in leaves. PMID:29312392
Sheshukova, Ekaterina V; Komarova, Tatiana V; Ershova, Natalia M; Shindyapina, Anastasia V; Dorokhov, Yuri L
2017-01-01
Although plants as sessile organisms are affected by a variety of stressors in the field, the stress factors for the above-ground and underground parts of the plant and their gene expression profiles are not the same. Here, we investigated NbKPILP , a gene encoding a new member of the ubiquitous, pathogenesis-related Kunitz peptidase inhibitor (KPI)-like protein family, that we discovered in the genome of Nicotiana benthamiana and other representatives of the Solanaceae family. The NbKPILP gene encodes a protein that has all the structural elements characteristic of KPI but in contrast to the proven A. thaliana KPI (AtKPI), it does not inhibit serine peptidases. Unlike roots, NbKPILP mRNA and its corresponding protein were not detected in intact leaves, but abiotic and biotic stressors drastically affected NbKPILP mRNA accumulation. In search of the causes of suppressed NbKPILP mRNA accumulation in leaves, we found that the NbKPILP gene is "matryoshka," containing an alternative nested reading frame (ANRF) encoding a 53-amino acid (aa) polypeptide (53aa-ANRF) which has an amphipathic helix (AH). We confirmed ANRF expression experimentally. A vector containing a GFP-encoding sequence was inserted into the NbKPILP gene in frame with 53aa-ANRF, resulting in a 53aa-GFP fused protein that localized in the membrane fraction of cells. Using the 5'-RACE approach, we have shown that the expression of ANRF was not explained by the existence of a cryptic promoter within the NbKPILP gene but was controlled by the maternal NbKPILP mRNA. We found that insertion of mutations destroying the 53aa-ANRF AH resulted in more than a two-fold increase of the NbKPILP mRNA level. The NbKPILP gene represents the first example of ANRF functioning as a repressor of a maternal gene in an intact plant. We proposed a model where the stress influencing the translation initiation promotes the accumulation of NbKPILP and its mRNA in leaves.
Gunshot-induced fractures of the extremities: a review of antibiotic and debridement practices.
Sathiyakumar, Vasanth; Thakore, Rachel V; Stinner, Daniel J; Obremskey, William T; Ficke, James R; Sethi, Manish K
2015-09-01
The use of antibiotic prophylaxis and debridement is controversial when treating low- and high-velocity gunshot-induced fractures, and established treatment guidelines are currently unavailable. The purpose of this review was to evaluate the literature for the prophylactic antibiotic and debridement policies for (1) low-velocity gunshot fractures of the extremities, joints, and pelvis and (2) high-velocity gunshot fractures of the extremities. Low-velocity gunshot fractures of the extremities were subcategorized into operative and non-operative cases, whereas low-velocity gunshot fractures of the joints and pelvis were evaluated based on the presence or absence of concomitant bowel injury. In the absence of surgical necessity for fracture care such as concomitant absence of gross wound contamination, vascular injury, large soft-tissue defect, or associated compartment syndrome, the literature suggests that superficial debridement for low-velocity ballistic fractures with administration of antibiotics is a satisfactory alternative to extensive operative irrigation and debridement. In operative cases or those involving bowel injuries secondary to pelvic fractures, the literature provides support for and against extensive debridement but does suggest the use of intravenous antibiotics. For high-velocity ballistic injuries, the literature points towards the practice of extensive immediate debridement with prophylactic intravenous antibiotics. Our systematic review demonstrates weak evidence for superficial debridement of low-velocity ballistic fractures, extensive debridement for high-velocity ballistic injuries, and antibiotic use for both types of injury. Intra-articular fractures seem to warrant debridement, while pelvic fractures with bowel injury have conflicting evidence for debridement but stronger evidence for antibiotic use. Given a relatively low number of studies on this subject, we recommend that further high-quality research on the debridement and antibiotic use for gunshot-induced fractures of the extremities should be conducted before definitive recommendations and guidelines are developed.
Attenuation and velocity dispersion in the exploration seismic frequency band
NASA Astrophysics Data System (ADS)
Sun, Langqiu
In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to the well logs; the models' parameters are adjusted by fitting the synthetic data to the observed data. In this way, seismic attenuation and velocity dispersion provide new insight into petrophysics properties at the Mallik and McArthur River sites. Potentially, observations of attenuation and velocity dispersion in the exploration seismic frequency band can improve the deconvolution process for vibrator data, Q-compensation, near-surface analysis, and first break picking for seismic data.
Regulation of alternative splicing in Drosophila by 56 RNA binding proteins
Brooks, Angela N.; Duff, Michael O.; May, Gemma; ...
2015-08-20
Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less
Depth, Spread, and Congruence of Encoding in Memory
1980-08-01
Alternatively, Craik and Lockhart proposed a more parsimonious frame- work for research based on a levels -of- processing approach. They assumed that the...44. Craik , F. I. M., & Lockhart , R. S. Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11...the basic concepts of the depth-of- processing or domains-of- processing ( Lockhart , Craik , & Jacoby, 1976) framework, suggesting that qualitative
Genesis: A Framework for Achieving Software Component Diversity
2007-01-01
correctly—the initial filters develop to fix the Hotmail vulnerability could be circumvented by using alternate character encodings4. Hence, we focus on...Remotely Exploitable Cross-Site Scripting in Hotmail and Yahoo, (March 2004); http://www.greymagic.com/security/advisories/gm005-mc/. 4...EyeonSecurity, Microsoft Passport Account Hijack Attack: Hacking Hotmail and More, Hacker’s Digest. 5. Y.-W. Huang et al., Web Application Security Assessment by
Integrating Webtop Components with Thin-Client Web Applicators using WDK Tickets
NASA Technical Reports Server (NTRS)
Duley, Jason
2004-01-01
Contents include the folloving: Issues surrounding encryption/decryption of password strings when deploying on different machines and platforms. Security concerns when exposing docbases to internet users. Docbase Session management in Java Servlets. Customization of Webtop components. WDK Tickets as a silent login alternative. Encoding Tickets and Ticket syntax. Invoking Webtop components via an Action URL. Issues with accessing Webtop components on Mac OS X through SSL.
Analysis of protocadherin alpha gene enhancer polymorphism in bipolar disorder and schizophrenia
Pedrosa, Erika; Stefanescu, Radu; Margolis, Benjamin; Petruolo, Oriana; Lo, Yungtai; Nolan, Karen; Novak, Tomas; Stopkova, Pavla; Lachman, Herbert M.
2008-01-01
Cadherins and protocadherins are cell adhesion proteins that play an important role in neuronal migration, differentiation and synaptogenesis, properties that make them targets to consider in schizophrenia (SZ) and bipolar disorder (BD) pathogenesis. Consequently, allelic variation occurring in protocadherin and cadherin encoding genes that map to regions of the genome mapped in SZ and BD linkage studies are particularly strong candidates to consider. One such set of candidate genes is the 5q31-linked PCDH family, which consists of more than 50 exons encoding three related, though distinct family members – α, β, and γ – which can generate thousands of different protocadherin proteins through alternative promoter usage and cis-alternative splicing. In this study, we focused on a SNP, rs31745, which is located in a putative PCDHα enhancer mapped by ChIP-chip using antibodies to covalently modified histone H3. A striking increase in homozygotes for the minor allele at this locus was detected in patients with BD. Molecular analysis revealed that the SNP causes allele-specific changes in binding to a brain protein. The findings suggest that the 5q31-linked PCDH locus should be more thoroughly considered as a disease-susceptibility locus in psychiatric disorders. PMID:18508241
Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy
NASA Astrophysics Data System (ADS)
Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.
2015-09-01
Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.
Massot, Corentin; Chacron, Maurice J.
2011-01-01
Understanding how sensory neurons transmit information about relevant stimuli remains a major goal in neuroscience. Of particular relevance are the roles of neural variability and spike timing in neural coding. Peripheral vestibular afferents display differential variability that is correlated with the importance of spike timing; regular afferents display little variability and use a timing code to transmit information about sensory input. Irregular afferents, conversely, display greater variability and instead use a rate code. We studied how central neurons within the vestibular nuclei integrate information from both afferent classes by recording from a group of neurons termed vestibular only (VO) that are known to make contributions to vestibulospinal reflexes and project to higher-order centers. We found that, although individual central neurons had sensitivities that were greater than or equal to those of individual afferents, they transmitted less information. In addition, their velocity detection thresholds were significantly greater than those of individual afferents. This is because VO neurons display greater variability, which is detrimental to information transmission and signal detection. Combining activities from multiple VO neurons increased information transmission. However, the information rates were still much lower than those of equivalent afferent populations. Furthermore, combining responses from multiple VO neurons led to lower velocity detection threshold values approaching those measured from behavior (∼2.5 vs. 0.5–1°/s). Our results suggest that the detailed time course of vestibular stimuli encoded by afferents is not transmitted by VO neurons. Instead, they suggest that higher vestibular pathways must integrate information from central vestibular neuron populations to give rise to behaviorally observed detection thresholds. PMID:21307329
Csapo, Robert; Malis, Vadim; Sinha, Usha
2015-01-01
The aim of this study was to assess the correlation between contraction-associated muscle kinematics as measured by velocity-encoded phase-contrast (VE-PC) magnetic resonance imaging (MRI) and activity recorded via electromyography (EMG), and to construct a detailed three-dimensional (3-D) map of the contractile behavior of the triceps surae complex from the MRI data. Ten axial-plane VE-PC MRI slices of the triceps surae and EMG data were acquired during submaximal isometric contractions in 10 subjects. MRI images were analyzed to yield the degree of contraction-associated muscle displacement on a voxel-by-voxel basis and determine the heterogeneity of muscle movement within and between slices. Correlational analyses were performed to determine the agreement between EMG data and displacements. Pearson's coefficients demonstrated good agreement (0.84 < r < 0.88) between EMG data and displacements. Comparison between different slices in the gastrocnemius muscle revealed significant heterogeneity in displacement values both in-plane and along the cranio-caudal axis, with highest values in the mid-muscle regions. By contrast, no significant differences between muscle regions were found in the soleus muscle. Substantial differences among displacements were also observed within slices, with those in static areas being only 17–39% (maximum) of those in the most mobile muscle regions. The good agreement between EMG data and displacements suggests that VE-PC MRI may be used as a noninvasive, high-resolution technique for quantifying and modeling muscle activity over the entire 3-D volume of muscle groups. Application to the triceps surae complex revealed substantial heterogeneity of contraction-associated muscle motion both within slices and between different cranio-caudal positions. PMID:26112239
A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2018-01-01
A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.
Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter
2016-08-05
We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α'-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α' → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α'N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.
Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyong; Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian 361005; Smith, Pieter E. S.
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. Bymore » porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.« less
Decoding sound level in the marmoset primary auditory cortex.
Sun, Wensheng; Marongelli, Ellisha N; Watkins, Paul V; Barbour, Dennis L
2017-10-01
Neurons that respond favorably to a particular sound level have been observed throughout the central auditory system, becoming steadily more common at higher processing areas. One theory about the role of these level-tuned or nonmonotonic neurons is the level-invariant encoding of sounds. To investigate this theory, we simulated various subpopulations of neurons by drawing from real primary auditory cortex (A1) neuron responses and surveyed their performance in forming different sound level representations. Pure nonmonotonic subpopulations did not provide the best level-invariant decoding; instead, mixtures of monotonic and nonmonotonic neurons provided the most accurate decoding. For level-fidelity decoding, the inclusion of nonmonotonic neurons slightly improved or did not change decoding accuracy until they constituted a high proportion. These results indicate that nonmonotonic neurons fill an encoding role complementary to, rather than alternate to, monotonic neurons. NEW & NOTEWORTHY Neurons with nonmonotonic rate-level functions are unique to the central auditory system. These level-tuned neurons have been proposed to account for invariant sound perception across sound levels. Through systematic simulations based on real neuron responses, this study shows that neuron populations perform sound encoding optimally when containing both monotonic and nonmonotonic neurons. The results indicate that instead of working independently, nonmonotonic neurons complement the function of monotonic neurons in different sound-encoding contexts. Copyright © 2017 the American Physiological Society.
Long-distance quantum communication over noisy networks without long-time quantum memory
NASA Astrophysics Data System (ADS)
Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Łodyga, Justyna; Pankowski, Łukasz; PrzysieŻna, Anna
2014-12-01
The problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008), 10.1103/PhysRevA.78.062324] the authors put forward an important isomorphism between storing quantum information in a dimension D and transmission of quantum information in a D +1 -dimensional network. We show that it is possible to obtain long-distance entanglement in a noisy two-dimensional (2D) network, even when taking into account that encoding and decoding of a state is exposed to an error. For 3D networks we propose a simple encoding and decoding scheme based solely on syndrome measurements on 2D Kitaev topological quantum memory. Our procedure constitutes an alternative scheme of state injection that can be used for universal quantum computation on 2D Kitaev code. It is shown that the encoding scheme is equivalent to teleporting the state, from a specific node into a whole two-dimensional network, through some virtual EPR pair existing within the rest of network qubits. We present an analytic lower bound on fidelity of the encoding and decoding procedure, using as our main tool a modified metric on space-time lattice, deviating from a taxicab metric at the first and the last time slices.
Sagara, N; Kirikoshi, H; Terasaki, H; Yasuhiko, Y; Toda, G; Shiokawa, K; Katoh, M
2001-04-06
Frizzled-1 (FZD1)-FZD10 are seven-transmembrane-type WNT receptors, and SFRP1-SFRP5 are soluble-type WNT antagonists. These molecules are encoded by mutually distinct genes. We have previously isolated and characterized the 7.7-kb FZD4 mRNA, encoding a seven-transmembrane receptor with the extracellular cysteine-rich domain (CRD). Here, we have cloned and characterized FZD4S, a splicing variant of the FZD4 gene. FZD4S, corresponding to the 10.0-kb FZD4 mRNA, consisted of exon 1, intron 1, and exon 2 of the FZD4 gene. FZD4S encoded a soluble-type polypeptide with the N-terminal part of CRD, and was expressed in human fetal kidney. Injection of synthetic FZD4S mRNA into the ventral marginal zone of Xenopus embryos at the 4-cell stage did not induce axis duplication by itself, but augmented the axis duplication potential of coinjected Xwnt-8 mRNA. These results indicate that the FZD4 gene gives rise to soluble-type FZD4S as well as seven-transmembrane-type FZD4 due to alternative splicing, and strongly suggest that FZD4S plays a role as a positive regulator of the WNT signaling pathway. Copyright 2001 Academic Press.
Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter
2016-01-01
We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α′-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α′ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α′N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862
Gordos, Matthew A; Franklin, Craig E; Limpus, Colin J
2004-08-01
This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth.
NASA Astrophysics Data System (ADS)
Lee, H.; Bezada, M.
2017-12-01
Teleseismic P-wave tomography models often show low-velocity anomalies behind subducted slabs (i.e. opposite the direction of subduction). One such anomaly, behind the Alboran slab in the westernmost Mediterranean, requires partial melt in the mantle if taken at face-value. However, mantle anisotropy can cause low-velocity anomalies in tomographic models that assume isotropy. In fact, results from SKS splitting suggest rollback-induced anisotropy within the low-velocity region, and we investigate if this anisotropy can explain the sub-slab anomaly. We include anisotropy as an a priori constraint on the inversion and test different magnitudes, azimuths, and dips within the low-velocity region. We find that a range of anisotropic models can fit the travel time data as well as the isotropic models while significantly reducing or eliminating the low-velocity anomaly behind the slab. We conclude that this alternative interpretation (delays are caused by anisotropic structure) is as consistent with the travel time data as an isotropic low-velocity anomaly, and more consistent with SKS splitting observations and the known history of rollback. In addition, we find that models that include anisotropy with steeply dipping fast axes, meant to simulate the effect of downgoing entrained mantle, provide a poorer fit to the travel times than all the other models. This suggests that the slab may no longer be actively subducting.
MarsSedEx I: feasibility test for sediment settling experiments under Martian gravity
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2013-04-01
Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles in the Martian atmosphere or water bodies. In principle, the effect of gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of analogues simulating the lower gravity on Mars on Earth is difficult because the properties and interaction of the liquids and materials differ from those of water and sediment, .i.e. the viscosity of the liquid or the interaction between charges surfaces and liquid molecules. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report on the feasibility of such a test based on an experiment conducted during a reduced gravity flight in November 2012.
NASA Astrophysics Data System (ADS)
Thomas, Siti A.; Empaling, Shirly; Darlis, Nofrizalidris; Osman, Kahar; Dillon, Jeswant; Taib, Ishkrizat; Khudzari, Ahmad Zahran Md
2017-09-01
Aortic cannulation has been the gold standard for maintaining cardiovascular function during open heart surgery while being connected onto the heart lung machine. These cannulation produces high velocity outflow which may lead to adverse effect on patient condition, especially sandblasting effect on aorta wall and blood cells damage. This paper reports a novel design that was able to decrease high velocity outflow. There were three design factors of that was investigated. The design factors consist of the cannula type, the flow rate, and the cannula tip design which result in 12 variations. The cannulae type used were the spiral flow inducing cannula and the standard cannula. The flow rates are varied from three to five litres per minute (lpm). Parameters for each cannula variation included maximum velocity within the aorta, pressure drop, wall shear stress (WSS) area exceeding 15 Pa, and impinging velocity on the aorta wall were evaluated. Based on the result, spiral flow inducing cannulae is proposed as a better alternatives due to its ability to reduce outflow velocity. Meanwhile, the pressure drop of all variations are less than the limit of 100 mmHg, although standard cannulae yielded better result. All cannulae show low reading of wall shear stress which decrease the possibilities for atherogenesis formation. In conclusion, as far as velocity is concerned, spiral flow is better compared to standard flow across all cannulae variations.
NASA Astrophysics Data System (ADS)
Aizin, G. R.; Mikalopas, J.; Shur, M.
2016-05-01
An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.
The effect of glossopexy on weight velocity in infants with Pierre Robin syndrome.
Cozzi, Francesco; Totonelli, Giorgia; Frediani, Simone; Zani, Augusto; Spagnol, Lorna; Cozzi, Denis A
2008-02-01
In infants with Pierre Robin syndrome (PRS), mandibular distraction may be more advantageous than glossopexy as it not only relieves oropharyngeal airway obstruction but also reverses body growth retardation. Because no data are available on body weight velocity after glossopexy, we assessed longitudinally the body weight velocity in a cohort of children undergoing glossopexy. The records of 48 infants with PRS undergoing glossopexy after unsuccessful nonoperative treatment between 1981 and 2005 were reviewed. Weight measurements were analyzed at 4 time-points: at birth, on admission for glossopexy, on admission for lysis of lip-tongue adhesion (TLA), and at follow-up. Weight velocity was assessed using Tanner's tables. Adhesion dehiscence occurred in 9 patients (18.7%). Lip-tongue adhesion resolved airway compromise in 36 infants (75%). Release of TLA was accomplished in 34 patients. Data on weight velocity from birth to follow-up (mean, 5.57 +/- 0.59 years) were available for 31 patients. After glossopexy, mean body weight increased from the 9.7 +/- 2.6th to the 17.5 +/- 4.6th percentile (P > .05), whereas mean weight velocity increased from the 19.1 +/- 4.9th to the 74.2 +/- 4.7th percentile (P < .001). No temporal correlation was found between glossopexy and oropharyngeal dysphagia. In infants with PRS, glossopexy is a valid alternative to mandibular distraction because it does not cause decline in body growth.
Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma
NASA Astrophysics Data System (ADS)
Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma
2018-06-01
When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.
Reverse Electrorheological Effect:. a Suspension of Colloidal Motors
NASA Astrophysics Data System (ADS)
Lemaire, E.; Lobry, L.
We present an experimental evidence of a "colloidal motor" behavior of a suspension. Previous attempts to observe such a phenomenon with ferrofluids under alternating magnetic fields have failed. Here, negative viscosity is obtained by making use of Quincke rotation: the spontaneous rotation of insulating particles suspended in a weakly conducting liquid when the system is submitted to a DC electric field. In such a case, particles rotate around any axis perpendicular to the applied field, nevertheless, when a velocity gradient (simple shear rate) is applied along the E field direction, the particles rotation axes will be favored in the vorticity direction (the direction perpendicular to the suspension velocity and the velocity gradient). The collective movement of particles drives the surrounding liquid and then leads to a reduction of the apparent viscosity of the suspension. The decrease in viscosity is sufficiently important for the liquid to flow while no submitted to any mechanical stress.
On the Use of a Range Trigger for the Mars Science Laboratory Entry Descent and Landing
NASA Technical Reports Server (NTRS)
Way, David W.
2011-01-01
In 2012, during the Entry, Descent, and Landing (EDL) of the Mars Science Laboratory (MSL) entry vehicle, a 21.5 m Viking-heritage, Disk-Gap-Band, supersonic parachute will be deployed at approximately Mach 2. The baseline algorithm for commanding this parachute deployment is a navigated planet-relative velocity trigger. This paper compares the performance of an alternative range-to-go trigger (sometimes referred to as Smart Chute ), which can significantly reduce the landing footprint size. Numerical Monte Carlo results, predicted by the POST2 MSL POST End-to-End EDL simulation, are corroborated and explained by applying propagation of uncertainty methods to develop an analytic estimate for the standard deviation of Mach number. A negative correlation is shown to exist between the standard deviations of wind velocity and the planet-relative velocity at parachute deploy, which mitigates the Mach number rise in the case of the range trigger.
NASA Astrophysics Data System (ADS)
Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.
2016-06-01
Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.
Ateşalp, A Sabri; Kömürcü, Mahmut; Demiralp, Bahtiyar; Bek, Dogan; Oğuz, Erbil; Yanmiş, Ibrahim
2004-01-01
Lower extremity injuries secondary to close-range, low-velocity gunshot wounds are frequently seen in both civilian and military populations. A close-range, low-velocity injury produces high energy and often results in comminuted and complicated fractures with significant morbidity. In this study, four femoral, four tibial, and three combined tibia and fibular comminuted diaphyseal fractures secondary to close-range, low-velocity gunshot wounds in 11 military personnel were treated with debridement followed by compression-distraction lengthening using a circular external fixator frame. Fracture union was obtained in all without significant major complications. Fracture consolidation occurred at a mean of 3.5 months. At follow-up of 46.8 months, there were no delayed unions, nonunions, or malunions. Minor complications included four pin-tract infections and knee flexion limitation in two femur fractures. Osteomyelitis and deep soft tissue infection were not observed. This technique provided an alternative to casting, open reduction internal fixation, or intermedullary fixation with an acceptable complication rate.
NASA Astrophysics Data System (ADS)
Potter, Jennifer L.
2011-12-01
Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green's Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1992-01-01
The forward position and velocity kinematics for the redundant eight-degree-of-freedom Advanced Research Manipulator 2 (ARM2) are presented. Inverse position and velocity kinematic solutions are also presented. The approach in this paper is to specify two of the unknowns and solve for the remaining six unknowns. Two unknowns can be specified with two restrictions. First, the elbow joint angle and rate cannot be specified because they are known from the end-effector position and velocity. Second, one unknown must be specified from the four-jointed wrist, and the second from joints that translate the wrist, elbow joint excluded. There are eight solutions to the inverse position problem. The inverse velocity solution is unique, assuming the Jacobian matrix is not singular. A discussion of singularities is based on specifying two joint rates and analyzing the reduced Jacobian matrix. When this matrix is singular, the generalized inverse may be used as an alternate solution. Computer simulations were developed to verify the equations. Examples demonstrate agreement between forward and inverse solutions.
Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.
Rohmann, Kevin N; Deitcher, David L; Bass, Andrew H
2009-07-01
Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via gene duplication, rather than increased alternative splicing as witnessed for the tetrapod and invertebrate orthologue.
Calcium-Activated Potassium (BK) Channels Are Encoded by Duplicate slo1 Genes in Teleost Fishes
Deitcher, David L.; Bass, Andrew H.
2009-01-01
Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via gene duplication, rather than increased alternative splicing as witnessed for the tetrapod and invertebrate orthologue. PMID:19321796
NASA Astrophysics Data System (ADS)
Eslami, Parastou; Seo, Jung-Hee; Rahsepar, Amirali; George, Richard; Lardo, Albert; Mittal, Rajat
2014-11-01
Coronary computed tomography angiography (CTA) is a promising tool for assessment of coronary stenosis and plaque burden. Recent studies have shown the presence of axial contrast concentration gradients in obstructed arteries, but the mechanism responsible for this phenomenon is not well understood. We use computational fluid dynamics to study intracoronary contrast dispersion and the correlation of concentration gradients with intracoronary blood flow and stenotic severity. Data from our CFD patient-specific simulations reveals that contrast dispersions are generated by intracoronary advection effects, and therefore, encode the coronary flow velocity. This novel method- Transluminal Attenuation Flow Encoding (TAFE) - is used to estimate the flowrate in phantom studies as well as preclinical experiments. Our results indicate a strong correlation between the values estimated from TAFE and the values measured in these experiments. The flow physics of contrast dispersion associated with TAFE will be discussed. This work is funded by grants from Coulter Foundation and Maryland Innovation Initiative. The authors have pending patents in this technology and RM and ACL have other financial interests associated with TAFE.
Tomographic Aperture-Encoded Particle Tracking Velocimetry: A New Approach to Volumetric PIV
NASA Astrophysics Data System (ADS)
Troolin, Dan; Boomsma, Aaron; Lai, Wing; Pothos, Stamatios; Fluid Mechanics Research Instruments Team
2016-11-01
Volumetric velocity fields are useful in a wide variety of fluid mechanics applications. Several types of three-dimensional imaging methods have been used in the past to varying degrees of success, for example, 3D PTV (Maas et al., 1993), DDPIV (Peireira et al., 2006), Tomographic PIV (Elsinga, 2006), and V3V (Troolin and Longmire, 2009), among others. Each of these techniques has shown advantages and disadvantages in different areas. With the advent of higher resolution and lower noise cameras with higher stability levels, new techniques are emerging that combine the advantages of the existing techniques. This talk describes a new technique called Tomographic Aperture-Encoded Particle Tracking Velocimetry (TAPTV), in which segmented triangulation and diameter tolerance are used to achieve three-dimensional particle tracking with extremely high particle densities (on the order of ppp = 0.2 or higher) without the drawbacks normally associated with ghost particles (for example in TomoPIV). The results are highly spatially-resolved data with very fast processing times. A detailed explanation of the technique as well as plots, movies, and experimental considerations will be discussed.
Optical image encryption using multilevel Arnold transform and noninterferometric imaging
NASA Astrophysics Data System (ADS)
Chen, Wen; Chen, Xudong
2011-11-01
Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.
Ageing and the self-reference effect in memory.
Gutchess, Angela H; Kensinger, Elizabeth A; Yoon, Carolyn; Schacter, Daniel L
2007-11-01
The present study investigates potential age differences in the self-reference effect. Young and older adults incidentally encoded adjectives by deciding whether the adjective described them, described another person (Experiments 1 & 2), was a trait they found desirable (Experiment 3), or was presented in upper case. Like young adults, older adults exhibited superior recognition for self-referenced items relative to the items encoded with the alternate orienting tasks, but self-referencing did not restore their memory to the level of young adults. Furthermore, the self-reference effect was more limited for older adults. Amount of cognitive resource influenced how much older adults benefit from self-referencing, and older adults appeared to extend the strategy less flexibly than young adults. Self-referencing improves older adults' memory, but its benefits are circumscribed despite the social and personally relevant nature of the task.
Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster.
Gustafsson, Robert; Berntsson, Ronnie P-A; Martínez-Carranza, Markel; El Tekle, Geniver; Odegrip, Richard; Johnson, Eric A; Stenmark, Pål
2017-11-01
Botulinum neurotoxins are highly toxic substances and are all encoded together with one of two alternative gene clusters, the HA or the OrfX gene cluster. Very little is known about the function and structure of the proteins encoded in the OrfX gene cluster, which in addition to the toxin contains five proteins (OrfX1, OrfX2, OrfX3, P47, and NTNH). We here present the structures of OrfX2 and P47, solved to 2.1 and 1.8 Å, respectively. We show that they belong to the TULIP protein superfamily, which are often involved in lipid binding. OrfX1 and OrfX2 were both found to bind phosphatidylinositol lipids. © 2017 Federation of European Biochemical Societies.
Evaluation of 2D shallow-water model for spillway flow with a complex geometry
USDA-ARS?s Scientific Manuscript database
Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...
Secondary School Students' Conceptions Relating to Motion under Gravity
ERIC Educational Resources Information Center
Apostolides, Themos; Valanides, Nikos
2008-01-01
The study investigated tenth-, eleventh-, and twelfth-grade students' alternative ideas relating to the motion of a body travelling in the field of gravity with an initial horizontal velocity. The sample of the study consisted of 40 tenth-grade students, and 33 and 40 eleventh-grade students that attended different sections of upper secondary…
Peripheral neuropathy is a classical symptom of arsenic poisoning. Nerve conduction velocity (NCV) is the preferred measure for clinical assessment of peripheral neuropathy, but this method is not practical for field studies. Alternative methods available for assessing functi...
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2016-04-01
We introduce a new class of stochastic processes in
Makeyev, Eugene V; Zhang, Jiangwen; Carrasco, Monica A; Maniatis, Tom
2007-08-03
Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.
The 2d-LCA as an alternative to x-wires
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2015-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
2d-LCA - an alternative to x-wires
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois
2015-12-18
Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Age-Related Changes in Accommodative Dynamics from Preschool to Adulthood
Glasser, Adrian; Manny, Ruth E.; Stuebing, Karla K.
2010-01-01
Purpose. To study variations in dynamic measures of accommodation and disaccommodation with age in subjects ranging from preschool to adulthood. Methods. Accommodative responses to a step stimulus cartoon movie alternating from distance to near were recorded with a dynamic infrared photorefractor. Subjects viewed at least three stimulus cycles of far and near for four near stimulus demands (2, 3, 4, and 5 D). Latencies, peak velocities, and the magnitude of accommodative microfluctuations were calculated from the responses and compared in 41 subjects from 3 to 38 years of age. Results. Mean accommodative and disaccommodative latencies decreased linearly with age. The magnitude of accommodative microfluctuations during sustained near accommodation had a significant quadratic relationship to age, with subjects in the first decade of life having the largest fluctuations and subjects in the third decade of life having the smallest for all stimulus demands. Accommodative peak velocities were fastest in subjects in the first two decades of life, compared with subjects in the third and fourth decades; however, disaccommodative peak velocities showed no significant age differences. Conclusions. Age-related changes in dynamics occur in accommodative and disaccommodative latencies, accommodative peak velocities, and accommodative microfluctuations, all of which decrease with increasing age from preschool to adulthood. Disaccommodative peak velocities showed no change with age. PMID:19684002
Barrera-Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn
2009-10-01
Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel function. This assumption is probably valid at frequencies below the resonance frequency. However, at higher frequencies the movement of the membrane is heavily coupled with the damping of the air film between membrane and backplate and with resonances in the back chamber of the microphone. A solution to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses and other parameters. The agreement with experimental data is generally good. The method can be used as an alternative for validating the parameters of the microphones determined by classical calibration techniques.
Janson, Natalia B; Marsden, Christopher J
2017-12-05
It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.
Effect of gravity on terminal particle settling velocity on Moon, Mars and Earth
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2013-04-01
Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on Mars. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks on Mars. Wrong interpretations may occur, for example, when the texture of sedimentary rocks is linked to the amount and hydraulics of runoff and thus ultimately the environmental conditions on Mars at the time of their formation. A good understanding of particle behaviour in liquids on Mars is therefore essential. In principle, the effect of lower gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of such analogues simulating the lower gravity on Mars on Earth is creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report the results of such a test conducted during a reduced gravity flight in November 2012. The results explore the strength of the non-linearity in the gravity-settling velocity relationship for terrestrial, lunar and Martian gravity.
Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow.
Adair, Alexander; Mastikhin, Igor V; Newling, Benedict
2018-06-01
The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation). Due to the nature of the bubble cloud, it is ideally measured through the use of non-optical and non-invasive techniques; therefore, it is well-suited for study by magnetic resonance imaging. This paper demonstrates the use of Conical SPRITE (a 3D, centric-scan, pure phase-encoding pulse sequence) to acquire time-averaged void fraction and velocity information about hydrodynamic cavitation for water flowing through a pipe constriction. Copyright © 2018 Elsevier Inc. All rights reserved.
Music and the brain - design of an MEG compatible piano.
Chacon-Castano, Julian; Rathbone, Daniel R; Hoffman, Rachel; Heng Yang; Pantazis, Dimitrios; Yang, Jason; Hornberger, Erik; Hanumara, Nevan C
2017-07-01
Magnetoencephalography (MEG) neuroimaging has been used to study subjects' responses when listening to music, but research into the effects of playing music has been limited by the lack of MEG compatible instruments that can operate in a magnetically shielded environment without creating electromagnetic interference. This paper describes the design and preliminary testing of an MEG compatible piano keyboard with 25 full size keys that employs a novel 3-state optical encoder design and electronics to provide realistic velocity-controlled volume modulation. This instrument will allow researchers to study musical performance on a finer timescale than fMRI and enable a range of MEG studies.
Salicylic Acid Regulation of Respiration in Higher Plants: Alternative Oxidase Expression.
Rhoads, DM; McIntosh, L
1992-01-01
Alternative respiratory pathway capacity increases during the development of the thermogenic appendix of a voodoo lily inflorescence. The levels of the alternative oxidase proteins increased dramatically between D-4 (4 days prior to the day of anthesis) and D-3 and continued to increase until the day of anthesis (D-day). The level of salicylic acid (SA) in the appendix is very low early on D-1, but increases to a high level in the evening of D-1. Thermogenesis occurs after a few hours of light on D-day. Therefore, the initial accumulation of the alternative oxidase proteins precedes the increase in SA by 3 days, indicating that other regulators may be involved. A 1.6-kb transcript encoding the alternative oxidase precursor protein accumulated to a high level in the appendix tissue by D-1. Application of SA to immature appendix tissue caused an increase in alternative pathway capacity and a dramatic accumulation of the alternative oxidase proteins and the 1.6-kb transcript. Time course experiments showed that the increase in capacity, protein levels, and transcript level corresponded precisely. The response to SA was blocked by cycloheximide or actinomycin D, indicating that de novo transcription and translation are required. However, nuclear, in vitro transcription assays indicated that the accumulation of the 1.6-kb transcript did not result from a simple increase in the rate of transcription of aox1. PMID:12297672
A new method for detecting velocity shifts and distortions between optical spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Tyler M.; Murphy, Michael T., E-mail: tevans@astro.swin.edu.au
2013-12-01
Recent quasar spectroscopy from the Very Large Telescope (VLT) and Keck suggests that fundamental constants may not actually be constant. To better confirm or refute this result, systematic errors between telescopes must be minimized. We present a new method to directly compare spectra of the same object and measure any velocity shifts between them. This method allows for the discovery of wavelength-dependent velocity shifts between spectra, i.e., velocity distortions, that could produce spurious detections of cosmological variations in fundamental constants. This 'direct comparison' method has several advantages over alternative techniques: it is model-independent (cf. line-fitting approaches), blind, in that spectralmore » features do not need to be identified beforehand, and it produces meaningful uncertainty estimates for the velocity shift measurements. In particular, we demonstrate that, when comparing echelle-resolution spectra with unresolved absorption features, the uncertainty estimates are reliable for signal-to-noise ratios ≳7 per pixel. We apply this method to spectra of quasar J2123–0050 observed with Keck and the VLT and find no significant distortions over long wavelength ranges (∼1050 Å) greater than ≈180 m s{sup –1}. We also find no evidence for systematic velocity distortions within echelle orders greater than 500 m s{sup –1}. Moreover, previous constraints on cosmological variations in the proton-electron mass ratio should not have been affected by velocity distortions in these spectra by more than 4.0 ± 4.2 parts per million. This technique may also find application in measuring stellar radial velocities in search of extra-solar planets and attempts to directly observe the expansion history of the universe using quasar absorption spectra.« less
Petersen, S R; Bagnall, K M; Wenger, H A; Reid, D C; Castor, W R; Quinney, H A
1989-01-01
This work was supported by Sport Canada end Hydra-Fitness Industries. In order to investigate the effects of velocity-specific resistance training, 30 healthy, male varsity athletes were assigned to either high (HVR) or low (LVR) velocity training or control (CG) groups. Subjects completed two 20-sec sets of maximal exercise at each of six hydraulic resistance stations for the lower limb. Resistances were adjusted as necessary to maintain consistent average angular velocities of approximately 1.05 and 3.14 rad/sec for the LVR and HVR groups, respectively. Subjects trained on alternate days for 6 weeks, completing either two (weeks 1 and 2) or three (weeks 3-6) circuits of the six stations each session. Peak knee extension torques were improved (p < 0.05) for the LVR group at all of seven angular velocities tested between 1.05 and 4.19 rad/sec. Improvements (p < 0.05) were also observed for the HVR group, but only at angular velocities of 2.62, 3.14, 3.66, and 4.19 rad/sec. Cross-sectional area of the quadriceps femoris muscle group obtained from serial computer tomography (CT) scans was increased (p < 0.05) for both training groups. No significant changes in either strength or cross-sectional area were observed for control subjects. These results indicate that while both of the training programs resulted in increased cross-sectional area of the knee extensors, the observed changes in strength performance are likely due to other factors which may be mediated by the different training velocities. J Orthop Sports Phys Ther 1989;10(11):456-462.
Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.
2009-01-01
We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Poppeliers, C.; Preston, L. A.
2017-12-01
Measurements of seismic surface wave dispersion can be used to infer the structure of the Earth's subsurface. Typically, to identify group- and phase-velocity, a series of narrow-band filters are applied to surface wave seismograms. Frequency dependent arrival times of surface waves can then be identified from the resulting suite of narrow band seismograms. The frequency-dependent velocity estimates are then inverted for subsurface velocity structure. However, this technique has no method to estimate the uncertainty of the measured surface wave velocities, and subsequently there is no estimate of uncertainty on, for example, tomographic results. For the work here, we explore using the multiwavelet transform (MWT) as an alternate method to estimate surface wave speeds. The MWT decomposes a signal similarly to the conventional filter bank technique, but with two primary advantages: 1) the time-frequency localization is optimized in regard to the time-frequency tradeoff, and 2) we can use the MWT to estimate the uncertainty of the resulting surface wave group- and phase-velocities. The uncertainties of the surface wave speed measurements can then be propagated into tomographic inversions to provide uncertainties of resolved Earth structure. As proof-of-concept, we apply our technique to four seismic ambient noise correlograms that were collected from the University of Nevada Reno seismic network near the Nevada National Security Site. We invert the estimated group- and phase-velocities, as well the uncertainties, for 1-D Earth structure for each station pair. These preliminary results generally agree with 1-D velocities that are obtained from inverting dispersion curves estimated from a conventional Gaussian filter bank.
A family of splice variants of CstF-64 expressed in vertebrate nervous systems
Shankarling, Ganesh S; Coates, Penelope W; Dass, Brinda; MacDonald, Clinton C
2009-01-01
Background Alternative splicing and polyadenylation are important mechanisms for creating the proteomic diversity necessary for the nervous system to fulfill its specialized functions. The contribution of alternative splicing to proteomic diversity in the nervous system has been well documented, whereas the role of alternative polyadenylation in this process is less well understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of tissue-specific polyadenylation, we examined its expression in brain and other organs. Results We discovered several closely related splice variants of CstF-64 – collectively called βCstF-64 – that could potentially contribute to proteomic diversity in the nervous system. The βCstF-64 splice variants are found predominantly in the brains of several vertebrate species including mice and humans. The major βCstF-64 variant mRNA is generated by inclusion of two alternate exons (that we call exons 8.1 and 8.2) found between exons 8 and 9 of the CstF-64 gene, and contains an additional 147 nucleotides, encoding 49 additional amino acids. Some variants of βCstF-64 contain only the first alternate exon (exon 8.1) while other variants contain both alternate exons (8.1 and 8.2). In mice, the predominant form of βCstF-64 also contains a deletion of 78 nucleotides from exon 9, although that variant is not seen in any other species examined, including rats. Immunoblot and 2D-PAGE analyses of mouse nuclear extracts indicate that a protein corresponding to βCstF-64 is expressed in brain at approximately equal levels to CstF-64. Since βCstF-64 splice variant family members were found in the brains of all vertebrate species examined (including turtles and fish), this suggests that βCstF-64 has an evolutionarily conserved function in these animals. βCstF-64 was present in both pre- and post-natal mice and in different regions of the nervous system, suggesting an important role for βCstF-64 in neural gene expression throughout development. Finally, experiments in representative cell lines suggest that βCstF-64 is expressed in neurons but not glia. Conclusion This is the first report of a family of splice variants encoding a key polyadenylation protein that is expressed in a nervous system-specific manner. We propose that βCstF-64 contributes to proteomic diversity by regulating alternative polyadenylation of neural mRNAs. PMID:19284619
Reversing Anoikis Resistance in Triple-Negative Breast Cancer
2015-10-01
impaired function and therefore is not as efficient at inducing apoptosis. Supervillin is a protein involved in focal adhesions, and the shorter...splice variant archvillin is normally only expressed in muscle cells. GOLGA4 encodes a golgi protein involved in vesicle transport. It shuttles GPI...when miR-200c is induced and another more 3’ exon is retained, so we are still investigating the function of these regions. Figure 4. Alternative
Procedurally Mediated Social Inferences: The Case of Category Accessibility Effects.
1984-12-01
New York: Academic. Craik , F. I. M., & Lockhart , R. S. (1972). Levels of processing : A framework for memory research. Journal of Verbal Learning...more "deeply" encoded semantic features (cf. Craik 8 Lockhart , 1972). (A few theorists assume that visual images may also be used as an alternative...semantically rather than phonemically or graphemically ( Craik & Lockhart , 1972). It is this familiar type of declarative memory of which we are usually
2015-03-01
fall in the lossy category (Gonzalez, Woods , & Eddins, 2009, p. 420). For the textual or numeric data in XML, however, lossy compression is...7/1,337 > Professional Notes Being Efficient with Bandwidth By Lieutenant Commander Steve Debich, Lieutenant Bruce Hill, Captain Scot Miller (Retired...2005). XML Binary Characterization. Retrieved from http://www.w3.org/TR/xbc-characterization/ Gonzalez, R., Woods , R., & Eddins, S. (2009
Correcting low-frequency noise with continuous measurement.
Tian, L
2007-04-13
Low-frequency noise presents a serious source of decoherence in solid-state qubits. When combined with a continuous weak measurement of the eigenstates, low-frequency noise induces a second-order relaxation between the qubit states. Here, we show that the relaxation provides a unique approach to calibrate the low-frequency noise in the time domain. By encoding one qubit with two physical qubits that are alternatively calibrated, quantum-logic gates with high fidelity can be performed.
NOVA2-mediated RNA regulation is required for axonal pathfinding during development.
Saito, Yuhki; Miranda-Rottmann, Soledad; Ruggiu, Matteo; Park, Christopher Y; Fak, John J; Zhong, Ru; Duncan, Jeremy S; Fabella, Brian A; Junge, Harald J; Chen, Zhe; Araya, Roberto; Fritzsch, Bernd; Hudspeth, A J; Darnell, Robert B
2016-05-25
The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo.
Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance
Heinrich, Melina; Wiegrebe, Lutz
2013-01-01
Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed “size constancy”. It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the ‘sonar aperture’, i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats. PMID:23630598
Size constancy in bat biosonar? Perceptual interaction of object aperture and distance.
Heinrich, Melina; Wiegrebe, Lutz
2013-01-01
Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats.
[ENCODE apophenia or a panglossian analysis of the human genome].
Casane, Didier; Fumey, Julien; Laurenti, Patrick
2015-01-01
In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world. © 2015 médecine/sciences – Inserm.
Escera, Carles; Leung, Sumie; Grimm, Sabine
2014-07-01
Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100-200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20-30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding-rather than on refractoriness-occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.
Avendaño, A; Deluna, A; Olivera, H; Valenzuela, L; Gonzalez, A
1997-01-01
It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to synthesize glutamate through an alternative pathway. A computer search for similarities between the GDH1 nucleotide sequence and the complete yeast genome was carried out. In addition to identifying its cognate sequence at chromosome XIV, the search found that GDH1 showed high identity with a previously recognized open reading frame (GDH3) of chromosome I. Triple mutants impaired in GDH1, GLT1, and GDH3 were obtained. These were strict glutamate auxotrophs. Our results indicate that GDH3 plays a significant physiological role, providing glutamate when GDH1 and GLT1 are impaired. This is the first example of a microorganism possessing three pathways for glutamate biosynthesis. PMID:9287019
NASA Astrophysics Data System (ADS)
Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.
2017-08-01
The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.
DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse.
Corcoran, Martin M; Hammarsund, Marianne; Zhu, Chaoyong; Lerner, Mikael; Kapanadze, Bagrat; Wilson, Bill; Larsson, Catharina; Forsberg, Lars; Ibbotson, Rachel E; Einhorn, Stefan; Oscier, David G; Grandér, Dan; Sangfelt, Olle
2004-08-01
Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved. Here, we present data showing that the DLEU2 gene encodes a putative noncoding antisense RNA, with one exon directly overlapping the first exon of the RFP2/LEU5 gene in the opposite orientation. In addition, the RFP2/LEU5 transcript can be alternatively spliced to produce either several monocistronic transcripts or a putative bicistronic transcript encoding two separate open-reading frames, adding to the complexity of the locus. The finding that these gene structures are conserved in the mouse, including the putative bicistronic RFP2/LEU5 transcript as well as the antisense relationship with DLEU2, further underlines the significance of this unusual organization and suggests a biological function for DLEU2 in the regulation of RFP2/LEU5. Copyright 2004 Wiley-Liss, Inc.
Uncapher, Melina R; Rugg, Michael D
2008-02-01
Considerable evidence suggests that attentional resources are necessary for the encoding of episodic memories, but the nature of the relationship between attention and neural correlates of encoding is unclear. Here we address this question using functional magnetic resonance imaging and a divided-attention paradigm in which competition for different types of attentional resources was manipulated. Fifteen volunteers were scanned while making animacy judgments to visually presented words and concurrently performing one of three tasks on auditorily presented words: male/female voice discrimination (control task), 1-back voice comparison (1-back task), or indoor/outdoor judgment (semantic task). The 1-back and semantic tasks were designed to compete for task-generic and task-specific attentional resources, respectively. Using the "remember/know" procedure, memory for the study words was assessed after 15 min. In the control condition, subsequent memory effects associated with later recollection were identified in the left dorsal inferior frontal gyrus and in the left hippocampus. These effects were differentially attenuated in the two more difficult divided-attention conditions. The effects of divided attention seem, therefore, to reflect impairments due to limitations at both task-generic and task-specific levels. Additionally, each of the two more difficult divided-attention conditions was associated with subsequent memory effects in regions distinct from those showing effects in the control condition. These findings suggest the engagement of alternative encoding processes to those engaged in the control task. The overall pattern of findings suggests that divided attention can impact later memory in different ways, and accordingly, that different attentional resources, including task-generic and task-specific resources, make distinct contributions to successful episodic encoding.
Polychromatic plots: graphical display of multidimensional data.
Roederer, Mario; Moody, M Anthony
2008-09-01
Limitations of graphical displays as well as human perception make the presentation and analysis of multidimensional data challenging. Graphical display of information on paper or by current projectors is perforce limited to two dimensions; the encoding of information from other dimensions must be overloaded into the two physical dimensions. A number of alternative means of encoding this information have been implemented, such as offsetting data points at an angle (e.g., three-dimensional projections onto a two-dimensional surface) or generating derived parameters that are combinations of other variables (e.g., principal components). Here, we explore the use of color to encode additional dimensions of data. PolyChromatic Plots are standard dot plots, where the color of each event is defined by the values of one, two, or three of the measurements for that event. The measurements for these parameters are mapped onto an intensity value for each primary color (red, green, or blue) based on different functions. In addition, differential weighting of the priority with which overlapping events are displayed can be defined by these same measurements. PolyChromatic Plots can encode up to five independent dimensions of data in a single display. By altering the color mapping function and the priority function, very different displays that highlight or de-emphasize populations of events can be generated. As for standard black-and-white dot plots, frequency information can be significantly biased by this display; care must be taken to ensure appropriate interpretation of the displays. PolyChromatic Plots are a powerful display type that enables rapid data exploration. By virtue of encoding as many as five dimensions of data independently, an enormous amount of information can be gleaned from the displays. In many ways, the display performs somewhat like an unsupervised cluster algorithm, by highlighting events of similar distributions in multivariate space.
NASA Astrophysics Data System (ADS)
Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun
2016-05-01
The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.