NASA Astrophysics Data System (ADS)
Ma, Song-Shan; Xu, Hui; Wang, Huan-You; Guo, Rui
2009-08-01
This paper presents a model to describe alternating current (AC) conductivity of DNA sequences, in which DNA is considered as a one-dimensional (1D) disordered system, and electrons transport via hopping between localized states. It finds that AC conductivity in DNA sequences increases as the frequency of the external electric field rises, and it takes the form of øac(ω) ~ ω2 ln2(1/ω). Also AC conductivity of DNA sequences increases with the increase of temperature, this phenomenon presents characteristics of weak temperature-dependence. Meanwhile, the AC conductivity in an off-diagonally correlated case is much larger than that in the uncorrelated case of the Anderson limit in low temperatures, which indicates that the off-diagonal correlations in DNA sequences have a great effect on the AC conductivity, while at high temperature the off-diagonal correlations no longer play a vital role in electric transport. In addition, the proportion of nucleotide pairs p also plays an important role in AC electron transport of DNA sequences. For p < 0.5, the conductivity of DNA sequence decreases with the increase of p, while for p >= 0.5, the conductivity increases with the increase of p.
Printing of highly conductive solution by alternating current electrohydrodynamic direct-write
NASA Astrophysics Data System (ADS)
Jiang, Jiaxin; Zheng, Gaofeng; Wang, Xiang; Zheng, Jianyi; Liu, Juan; Liu, Yifang; Li, Wenwang; Guo, Shumin
2018-03-01
Electrohydrodynamic Direct-Write (EDW) is a novel technology for the printing of micro/nano structures. In this paper, Alternating Current (AC) electrical field was introduced to improve the ejection stability of jet with highly conductive solution. By alternating the electrical field, the polarity of free charges on the surface of jet was changed and the average density of charge, as well as the repulsive force, was reduced to stabilize the jet. When the frequency of AC electrical field increased, the EDW process became more stable and the shape of deposited droplets became more regular. The diameter of printed droplets decreased and the deposition frequency increased with the increase of voltage frequency. The phenomenon of corona discharge was overcome effectively as well. To further evaluate the performance of AC EDW for highly conductive solution, more NaCl was added to the solution and the conductivity was increased to 2810μs/cm. With such high conductivity, the problem of serious corona discharge could still be prevented by AC EDW, and the diameter of printed droplets decreased significantly. This work provides an effective way to accelerate industrial applications of EDW.
NASA Astrophysics Data System (ADS)
M, Dongol; M, M. El-Nahass; A, El-Denglawey; A, A. Abuelwafa; T, Soga
2016-06-01
Alternating current (AC) conductivity and dielectric properties of thermally evaporated Au/PtOEP/Au thin films are investigated each as a function of temperature (303 K-473 K) and frequency (50 Hz-5 MHz). The frequency dependence of AC conductivity follows the Jonscher universal dynamic law. The AC-activation energies are determined at different frequencies. It is found that the correlated barrier hopping (CBH) model is the dominant conduction mechanism. The variation of the frequency exponent s with temperature is analyzed in terms of the CBH model. Coulombic barrier height W m , hopping distance R ω , and the density of localized states N(E F) are valued at different frequencies. Dielectric constant ɛ 1(ω,T) and dielectric loss ɛ 2(ω,T) are discussed in terms of the dielectric polarization process. The dielectric modulus shows the non-Debye relaxation in the material. The extracted relaxation time by using the imaginary part of modulus (M″) is found to follow the Arrhenius law.
NASA Astrophysics Data System (ADS)
Nikam, Pravin N.; Deshpande, Vineeta D.
2016-05-01
Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.
NASA Astrophysics Data System (ADS)
Das, Shirsendu; Bhunia, Ritamay; Hussain, Shamima; Bhar, Radhaballabh; Kumar Pal, Arun
2017-04-01
This study is focused on the measurement of alternate current (a.c.) electrical conductivity of BSb films, deposited on fluorine-doped tin oxide (FTO)-coated glass substrates at 673K by the pulsed laser deposition (PLD) technique. The frequency-dependent a.c. conductivity is measured as a function of temperature (10-275K) and frequency (100Hz-100kHz). The transport processes governing the electrical conduction processes in this material are analyzed critically. It is observed from FESEM micrograph that the film is composed of small discrete grain with sizes varying in the range 6-12nm. It is interesting to notice from \\lnσ_ac versus 1000/T plot that there are three distinct zones: i) Semiconductor zone at high temperature from 275 to 150K, ii) Insulator zone at low temperature from 70 to 10K and iii) an abrupt change of the \\lnσ_ac versus 1000/T plot at ˜ 75 indicating MIS transition occurring in this BSb film. We found that the activation energy for the BSb films in the lower-temperature range was quite low ˜ 6 to 41neV, while that in the higher-temperature range was 20 to 50meV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaldi, O.; Kassmi, M.; El Manar University, LMOP, 2092 Tunis
2014-08-28
Capacitance nonlinearities were studied in atomic layer deposited HfO{sub 2} films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearitiesmore » are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikam, Pravin N., E-mail: pravinya26@gmail.com; Deshpande, Vineeta D., E-mail: drdeshpandevd@gmail.com
Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al{sub 2}O{sub 3}) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observedmore » at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ{sub AC}) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ{sub AC} of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ{sub DC}), critical frequency (ω{sub c}), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ{sub DC}) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.« less
In vitro and in vivo comparisons of constant resistance AC iontophoresis and DC iontophoresis.
Li, S Kevin; Higuchi, William I; Zhu, Honggang; Kern, Steven E; Miller, David J; Hastings, Matthew S
2003-09-04
A previous in vitro constant electrical resistance alternating current (AC) iontophoresis study with human epidermal membrane (HEM) and a model neutral permeant has shown less inter- and intra-sample variability in iontophoretic transport relative to conventional constant direct current (DC) iontophoresis. The objectives of the present study were to address the following questions. (1) Can the skin electrical resistance be maintained at a constant level by AC in humans in vivo? (2) Are the in vitro data with HEM representative of those in vivo? (3) Does constant skin resistance AC iontophoresis have less inter- and intra-sample variability than conventional constant current DC iontophoresis in vivo? (4) What are the electrical and the barrier properties of skin during iontophoresis in vivo? In the present study, in vitro HEM experiments were carried out with the constant resistance AC and the conventional constant current DC methods using mannitol and glucose as the neutral model permeants. In vivo human experiments were performed using glucose as the permeant with a constant skin resistance AC only protocol and two conventional constant current DC methods (continuous constant current DC and constant current DC with its polarity alternated every 10 min with a 3:7 on:off duty cycle). Constant current DC iontophoresis was conducted with commercial constant current DC devices, and constant resistance AC iontophoresis was carried out by reducing and maintaining the skin resistance at a constant target value with AC supplied from a function generator. This study shows that (1) skin electrical resistance can be maintained at a constant level during AC iontophoresis in vivo; (2) HEM in vitro and human skin in vivo demonstrate similar electrical and barrier properties, and these properties are consistent with our previous findings; (3) there is general qualitative and semi-quantitative agreement between the HEM data in vitro and human skin data in vivo; and (4) constant skin resistance AC iontophoresis generally provides less inter- and intra-subject variability than conventional constant current DC.
AC Conductivity and Dielectric Properties of Borotellurite Glass
NASA Astrophysics Data System (ADS)
Taha, T. A.; Azab, A. A.
2016-10-01
Borotellurite glasses with formula 60B2O3-10ZnO-(30 - x)NaF- xTeO2 ( x = 0 mol.%, 5 mol.%, 10 mol.%, and 15 mol.%) have been synthesized by thermal melting. X-ray diffraction (XRD) analysis confirmed that the glasses were amorphous. The glass density ( ρ) was determined by the Archimedes method at room temperature. The density ( ρ) and molar volume ( V m) were found to increase with increasing TeO2 content. The direct-current (DC) conductivity was measured in the temperature range from 473 K to 623 K, in which the electrical activation energy of ionic conduction increased from 0.27 eV to 0.48 eV with increasing TeO2 content from 0 mol.% to 15 mol.%. The dielectric parameters and alternating-current (AC) conductivity ( σ ac) were investigated in the frequency range from 1 kHz to 1 MHz and temperature range from 300 K to 633 K. The AC conductivity and dielectric constant decreased with increasing TeO2 content from 0 mol.% to 15 mol.%.
A Comparison of Alternating Current and Direct Current Electrospray Ionization for Mass Spectrometry
Sarver, Scott A.; Gartner, Carlos A.; Chetwani, Nishant; Go, David B.; Dovichi, Norman J.
2014-01-01
A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS has been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were 1 - 2 orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50%, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating improvements in spectral quality may benefit certain compounds, or classes of compounds, on an individual basis. PMID:24464359
Alternating current long range alpha particle detector
MacArthur, Duncan W.; McAtee, James L.
1993-01-01
An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.
Alternating current long range alpha particle detector
MacArthur, D.W.; McAtee, J.L.
1993-02-16
An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.
Evaluation of constant current alternating current iontophoresis for transdermal drug delivery.
Yan, Guang; Li, S Kevin; Higuchi, William I
2005-12-10
Previous studies in our laboratory have demonstrated that alternating current (AC) iontophoresis can significantly decrease skin electric resistance and enhance the transport of charged permeants across skin. Flux variability of neutral permeants during AC iontophoresis was also found to be less than that of conventional direct current (DC) iontophoresis. The objectives of the present study were to evaluate flux enhancement of constant current AC transdermal iontophoresis and compare the AC flux with that of constant current DC iontophoresis. Iontophoresis studies of AC amplitude of 1, 2, and 5 mA were conducted in side-by-side diffusion cells with donor solution of 0.015, 0.15, and 1.0 M tetraethylammonium (TEA) chloride and receiver solution of phosphate buffered saline (PBS) using human epidermal membrane (HEM). Conventional constant current DC iontophoresis of 0.2 mA was also performed under similar conditions. TEA and mannitol were the model permeants. The following are the major findings in the present study. The flux of TEA increased proportionally with the AC current for all three TEA chloride concentrations and at the AC frequency used in the present study. When the permeant and its counter ion were the only ionic species in the donor chamber, the fluxes during DC iontophoresis were weakly dependent of its donor concentration. The fluxes of TEA during constant current AC iontophoresis were moderately related to the donor concentration with the highest TEA flux observed under the 1.0 M TEA chloride condition although the relationship between flux and donor concentration was not linear. A trend of decreasing electroosmotic transport with increasing donor TEA chloride concentration was observed with significant sample-to-sample variability during DC iontophoresis. Mannitol permeability was also observed to decrease with increasing TEA chloride concentration in the donor under the AC conditions, but data variability under AC was significantly smaller than that under DC. The results in the present study indicate that constant current AC iontophoresis under conditions tolerable to human (2 and 5 mA) can provide predictable fluxes that were lower than but of comparable magnitude as those of conventional constant current DC iontophoresis (0.2 mA).
Use of alternating and pulsed direct current electrified fields for zebra mussel control
Luoma, James A.; Dean, Jan C.; Severson, Todd J.; Wise, Jeremy K.; Barbour, Matthew
2017-01-01
Alternatives to chemicals for controlling dreissenid mussels are desirable for environmental compatibility, but few alternatives exist. Previous studies have evaluated the use of electrified fields for stunning and/or killing planktonic life stages of dreissenid mussels, however, the available literature on the use of electrified fields to control adult dreissenid mussels is limited. We evaluated the effects of sinusoidal alternating current (AC) and 20% duty cycle square-wave pulsed direct current (PDC) exposure on the survival of adult zebra mussels at water temperatures of 10, 15, and 22 °C. Peak voltage gradients of ~ 17 and 30 Vp/cm in the AC and PDC exposures, respectively, were continuously applied for 24, 48, or 72 h. Peak power densities ranged from 77,999 to 107,199 µW/cm3 in the AC exposures and 245,320 to 313,945 µW/cm3 in the PDC exposures. The peak dose ranged from 6,739 to 27,298 Joules/cm3 and 21,306 to 80,941 Joules/cm3 in the AC and PDC exposures, respectively. The applied power ranged from 16.6 to 68.9 kWh in the AC exposures and from 22.2 to 86.4 kWh in the PDC exposures. Mortality ranged from 2.7 to 92.7% in the AC exposed groups and from 24.0 to 98.7% in PDC exposed groups. Mortality increased with corresponding increases in water temperature and exposure duration, and we observed more zebra mussel mortality in the PDC exposures. Exposures conducted with AC required less of a peak dose (Joules/cm3) but more applied power (kWh) to achieve the same level of adult zebra mussel mortality as corresponding PDC exposures. The results demonstrate that 20% duty cycle square-wave PDC requires less energy than sinusoidal AC to inducing the same level of adult zebra mussel mortality.
Effect of polyvinylpyrrolidone content on alternating current conductivity of polyaniline
NASA Astrophysics Data System (ADS)
Megha, R.; Kumar, T. G. Naveen; Ravikiran, Y. T.; Prakash, H. G. Raj; Revanasiddappa, M.; Kumari, S. C. Vijaya
2018-05-01
In the present work, Polyaniline (PANI) and Polyaniline-polyvinylpyrrolidone (PANI-PVP) composites of two different weight percentages of PVP were synthesized separately by simple chemical polymerization method. The interaction between PANI and PVP in each of the composite was confirmed by Attenuated total reflection infrared spectroscopic (AT-IR) technique. The alternate current (AC) response characteristics at room temperature of PANI and the composites in the frequency range 50 Hz-1 MHz were comparatively studied. Both the composites have shown decreased conductivity as compared to that of PANI.
Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, D. A.; Yee, S. M. M.; Savinov, M.; Nuzhnyy, D.; Petzelt, J.; Kamba, S.; Prokeš, J.
2016-04-01
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and alternating current (ac) conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness, and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four-contact van der Pauw direct current conductivity measurements and bulk conductivity values extracted from two-contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature.
Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
Islam, Nazmul; Reyna, Jairo
2012-04-01
This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.
2014-03-01
The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.
Thermal and ac electrical properties of N-methylanthranilic acid below room temperature
NASA Astrophysics Data System (ADS)
Abdel-Kader, M. M.; Basha, M. A. F.; Ramzy, G. H.; Aboud, A. I.
2018-06-01
In this study, we investigated the thermal and alternating current (ac) electrical properties of N-methylanthranilic acid. Based on data obtained by differential scanning calorimetry, we detected two endothermic transitions at ≈ 213 K and ≈265.41 K. The weakening of hydrogen bonds as the temperature increased appeared to be the main cause of these phase transitions. We also recorded the melting point at about 475.5 K. Both the ac conductivity (σac) and complex dielectric constant (ε∗ = ε ' - jε ' ') were studied as functions of temperature over the frequency range from 1 kHz to 100 kHz. We observed significant variations in the thermal and electrical properties before and after the transition temperature at 265.41 K. The conduction mechanism responsible for the ac electrical properties before this transition was due to overlapping large polarons. These novel results are expected to have impacts on the application of organic semiconductors and dielectrics.
NASA Astrophysics Data System (ADS)
Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Belhadj Mohamed, Abdellatif
2007-08-01
We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-106 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T0, density of states at the Fermi level (N(EF)), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σac(ω,T) = A(T)ωs(T,ω), which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems.
Electromigration analysis of solder joints under ac load: A mean time to failure model
NASA Astrophysics Data System (ADS)
Yao, Wei; Basaran, Cemal
2012-03-01
In this study, alternating current (ac) electromigration (EM) degradation simulations were carried out for Sn95.5%Ag4.0%Cu0.5 (SAC405- by weight) solder joints. Mass transport analysis was conducted with viscoplastic material properties for quantifying damage mechanism in solder joints. Square, sine, and triangle current wave forms ac were used as input signals. dc and pulsed dc (PDC) electromigration analysis were conducted for comparison purposes. The maximum current density ranged from 2.2×106A/cm2 to 5.0×106A/cm2, frequency ranged from 0.05 Hz to 5 Hz with ambient temperature varying from 350 K to 450 K. Because the room temperature is nearly two-thirds of SAC solder joint's melting point on absolute temperature scale (494.15 K), viscoplastic material model is essential. Entropy based damage evolution model was used to investigate mean time to failure (MTF) behavior of solder joints subjected to ac stressing. It was observed that MTF was inversely proportional to ambient temperature T1.1 in Celsius and also inversely proportional to current density j0.27 in A/cm2. Higher frequency will lead to a shorter lifetime with in the frequency range we studied, and a relationship is proposed as MTF∝f-0.41. Lifetime of a solder joint subjected to ac is longer compared with dc and PDC loading conditions. By introducing frequency, ambient temperature and current density dependency terms, a modified MTTF equation was proposed for solder joints subjected to ac current stressing.
Alternating current conduction studies on polypyrrole-iron nanocomposite at room temperature
NASA Astrophysics Data System (ADS)
Kumar, T. G. Naveen; Megha, R.; Revanasiddappa, M.; Ravikiran, Y. T.; Kumari, S. C. Vijaya
2018-05-01
In the present work, Polypyrrole (PPy) and Polypyrrole-Iron (PPy-Fe) nanocomposite were synthesized separately by chemical polymerisation method and then they were structurally characterised by Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM) techniques. The alternate current (AC) response characteristics at room temperature of PPy and the composite were comparatively studied in the frequency range 100Hz-1MHz. The real part of conductivities of both PPy and the composite were interpreted as power law of frequency and the frequency exponent s was found to lie in the range 0< s<1 in both the cases. The nanocomposite has shown significant improvement in conductivity as compared to PPy.
Alternating current transport and dielectric relaxation of nanocrystalline graphene oxide
NASA Astrophysics Data System (ADS)
Zedan, I. T.; El-Menyawy, E. M.
2018-07-01
Graphene oxide (GO) has been synthesized from natural graphite using modified Hummer's method and is subjected to sonication for 1 h. X-ray diffraction (XRD) showed that the prepared GO has nanocrystalline structure with particle size of about 5 nm and high-resolution transmission electron microscope showed that it had a layered structure. The nanocrystalline GO powder was pressed as a disk and the alternating current (AC) electrical conductivity, σAC, and dielectric properties have been investigated in the frequency range 50Hz-5 MHz and temperature range 298-523K using parallel plate spectroscopic technique. Analysis of σ AC as a function of frequency shows that the relation follows Jonscher's universal law with frequency exponent decreases with increasing temperature in which the correlated barrier hopping model is applicable to describe the behavior. The dielectric constant and dielectric loss are studied as functions of frequency and temperature. The dielectric modulus formalism is used for describing the relaxation process in which the relaxation time and its activation energy were evaluated.
Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel.
Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De
2017-07-25
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m². In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.
Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique
NASA Astrophysics Data System (ADS)
Kishore Babu, N.; Cross, C. E.
2012-11-01
The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.
Zaghi, Soroush; de Freitas Rezende, Larissa; de Oliveira, Laís Machado; El-Nazer, Rasheda; Menning, Sanne; Tadini, Laura; Fregni, Felipe
2010-08-02
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5min with current density=0.16-0.25A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80A/m(2)) for a considerably longer duration (20min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qashou, Saleem I.; Darwish, A. A. A.; Rashad, M.; Khattari, Z.
2017-11-01
Both Alternating current (AC) conductivity and dielectric behavior of n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC) have been investigated. Fourier transformation infrared (FTIR) spectroscopy is used for identifying both powder and film bonds which confirm that there are no observed changes in the bonds between the DMPDC powder and evaporated films. The dependence of AC conductivity on the temperature for DMPDC evaporated films was explained by the correlated barrier hopping (CBH) model. The calculated barrier height using CBH model shows a decreasing behavior with increasing temperature. The mechanism of dielectric relaxation was interpreted on the basis of the modulus of the complex dielectric. The calculated activation energy of the relaxation process was found to be 0.055 eV.
NASA Astrophysics Data System (ADS)
Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.
2010-11-01
AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.
Transport conductivity of graphene at RF and microwave frequencies
NASA Astrophysics Data System (ADS)
Awan, S. A.; Lombardo, A.; Colli, A.; Privitera, G.; Kulmala, T. S.; Kivioja, J. M.; Koshino, M.; Ferrari, A. C.
2016-03-01
We measure graphene coplanar waveguides from direct current (DC) to a frequency f = 13.5 GHz and show that the apparent resistance (in the presence of parasitic impedances) has an {ω }2 dependence (where ω =2π f), but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current (AC) conductivity is the same as the DC value and the imaginary part is ˜0. The graphene channel is modeled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time ˜2.1 ps, highlighting the influence of AC electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analog field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.
Qualifications and Assignments of Alternatively Certified Teachers: Testing Core Assumptions
ERIC Educational Resources Information Center
Cohen-Vogel, Lora; Smith, Thomas M.
2007-01-01
By analyzing data from the Schools and Staffing Survey, the authors empirically test four of the core assumptions embedded in current arguments for expanding alternative teacher certification (AC): AC attracts experienced candidates from fields outside of education; AC attracts top-quality, well-trained teachers; AC disproportionately trains…
NASA Astrophysics Data System (ADS)
Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.
2018-05-01
Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.
75 FR 27414 - Airworthiness Directives; Airbus A318, A319, A320, A321 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... occurrences of loss of the AC [alternating current] BUS 1 have been reported which led in some instances to the loss of the AC ESS [essential] BUS and DC [direct current] ESS BUS and connected systems. The... condition for the specified products. The MCAI states: Several occurrences of loss of the AC [alternating...
75 FR 8003 - Airworthiness Directives; Airbus A318, A319, A320, A321 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... aviation product. The MCAI describes the unsafe condition as: Several occurrences of loss of the AC [alternating current] BUS 1 have been reported which led in some instances to the loss of the AC ESS [essential... MCAI states: Several occurrences of loss of the AC [alternating current] BUS 1 have been reported which...
Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel
Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De
2017-01-01
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m2. In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described. PMID:28773211
Spatially variant red blood cell crenation in alternating current non-uniform fields.
An, Ran; Wipf, David O; Minerick, Adrienne R
2014-03-01
Alternating-current (AC) electrokinetics involve the movement and behaviors of particles or cells. Many applications, including dielectrophoretic manipulations, are dependent upon charge interactions between the cell or particle and the surrounding medium. Medium concentrations are traditionally treated as spatially uniform in both theoretical models and experiments. Human red blood cells (RBCs) are observed to crenate, or shrink due to changing osmotic pressure, over 10 min experiments in non-uniform AC electric fields. Cell crenation magnitude is examined as functions of frequency from 250 kHz to 1 MHz and potential from 10 Vpp to 17.5 Vpp over a 100 μm perpendicular electrode gap. Experimental results show higher peak to peak potential and lower frequency lead to greater cell volume crenation up to a maximum volume loss of 20%. A series of experiments are conducted to elucidate the physical mechanisms behind the red blood cell crenation. Non-uniform and uniform electrode systems as well as high and low ion concentration experiments are compared and illustrate that AC electroporation, system temperature, rapid temperature changes, medium pH, electrode reactions, and convection do not account for the crenation behaviors observed. AC electroosmotic was found to be negligible at these conditions and AC electrothermal fluid flows were found to reduce RBC crenation behaviors. These cell deformations were attributed to medium hypertonicity induced by ion concentration gradients in the spatially nonuniform AC electric fields.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-06-05
A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.
An AC-electromagnetic bearing for flywheel energy storage in space
NASA Technical Reports Server (NTRS)
Nikolajsen, Jorgen L.
1993-01-01
A repulsive type AC-electromagnetic bearing was developed and tested. It was conceived on the basis of the so-called Magnetic River suspension for high-speed trains. The appearance of the bearing is similar to the traditional DC-type electromagnetic bearing but the operating principle is different. The magnets are fed with alternating current instead of direct current and the rotor is fitted with a conducting sleeve (e.g. aluminum) instead of a ferromagnetic sleeve. The repulsion is due to induction of eddy-currents in the conducting sleeve. The bearing is inherently stable and requires no feedback control. It provides support in five degrees of freedom such that a short rotor may be fully supported by a single bearing. These capabilities were demonstrated experimentally. On the down side, the load carrying capacity and the damping obtained so far were quite low compared to the DC-type bearing. Also, significant heating of the conducting sleeve was experienced. The AC-bearing is essentially a modified induction motor and there are strong indications that it can be run both as a motor and as a generator with no commutator requirements. It is therefore considered to be a good candidate for support of energy storage flywheels in space.
A critical comparison of electrical methods for measuring spin-orbit torques
NASA Astrophysics Data System (ADS)
Zhang, Xuanzi; Hung, Yu-Ming; Rehm, Laura; Kent, Andrew D.
Direct (DC) and alternating current (AC) transport measurements of spin-orbit torques (SOTs) in heavy metal-ferromagnet heterostructure with perpendicular magnetic anisotropy have been proposed and demonstrated. A DC method measures the change of perpendicular magnetization component while an AC method probes the first and second harmonic magnetization oscillation in responses to an AC current (~1 kHz). Here we conduct both types of measurements on β-Ta/CoFeB/MgO in the form of patterned Hall bars (20 μm linewidth) and compare the results. Experiments results are qualitatively in agreement with a macro spin model including Slonzewski-like and a field-like SOTs. However, the effective field from the ac method is larger than that obtained from the DC method. We discuss the possible origins of the discrepancy and its implications for quantitatively determining SOTs. Research supported by the SRC-INDEX program, NSF-DMR-1309202 and NYU-DURF award.
Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols
Tavakoli, Amir V.; Yun, Kyongsik
2017-01-01
Perception, cognition and consciousness can be modulated as a function of oscillating neural activity, while ongoing neuronal dynamics are influenced by synaptic activity and membrane potential. Consequently, transcranial alternating current stimulation (tACS) may be used for neurological intervention. The advantageous features of tACS include the biphasic and sinusoidal tACS currents, the ability to entrain large neuronal populations, and subtle control over somatic effects. Through neuromodulation of phasic, neural activity, tACS is a powerful tool to investigate the neural correlates of cognition. The rapid development in this area requires clarity about best practices. Here we briefly introduce tACS and review the most compelling findings in the literature to provide a starting point for using tACS. We suggest that tACS protocols be based on functional brain mechanisms and appropriate control experiments, including active sham and condition blinding. PMID:28928634
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND THE SERVICING AND TESTING PROCEDURES FOR ALTERNATING CURRENT (AC) GENERATORS AND REGULATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE REVIEW OF ALTERNATOR PRINCIPLES, ALTERNATOR SERVICING AND TESTING, ALTERNATOR REGULATOR OPERATING…
Alternating current corona discharge/atmospheric pressure chemical ionization for mass spectrometry.
Habib, Ahsan; Usmanov, Dilshadbek; Ninomiya, Satoshi; Chen, Lee Chuin; Hiraoka, Kenzo
2013-12-30
Although alternating current (ac) corona discharge has been widely used in the fields of material science and technology, no reports have been published on its application to an atmospheric pressure chemical ionization (APCI) ion source. In this work, ac corona discharge for an APCI ion source has been examined for the first time. The ambient atmospheric pressure ac corona discharge (15 kHz, 2.6 kVptp ) was generated by using a stainless steel acupuncture needle. The generated ions were measured using an ion trap mass spectrometer. A comparative study on ac and direct current (dc) corona APCI ion sources was carried out using triacetone triperoxide and trinitrotoluene as test samples. The ac corona discharge gave ion signals as strong as dc corona discharge for both positive and negative ion modes. In addition, softer ionization was obtained with ac corona discharge than with dc corona discharge. The erosion of the needle tip induced by ac corona was less than that obtained with positive mode dc corona. A good 'yardstick' for assessing ac corona is that it can be used for both positive and negative ion modes without changing the polarity of the high-voltage power supply. Thus, ac corona can be an alternative to conventional dc corona for APCI ion sources. Copyright © 2013 John Wiley & Sons, Ltd.
Gagnon, Zachary; Chang, Hsueh-Chia
2005-10-01
Tailor-designed alternating current electroosmotic (AC-EO) stagnation flows are used to convect bioparticles globally from a bulk solution to localized dielectrophoretic (DEP) traps that are aligned at the flow stagnation points. The multiscale trap, with a typical trapping time of seconds for a dilute 70 microL volume of 10(3) particles per cc sample, is several orders of magnitude faster than conventional DEP traps and earlier AC-EO traps with parallel, castellated, or finger electrodes. A novel serpentine wire capable of sustaining a high voltage, up to 2500 V(RMS), without causing excessive heat dissipation or Faradaic reaction in strong electrolytes is fabricated to produce the strong AC-EO flow with two separated stagnation lines, one aligned with the field minimum and one with the field maximum. The continuous wire design allows a large applied voltage without inducing Faradaic electrode reactions. Particles are trapped within seconds at one of the traps depending on whether they suffer negative or positive DEP. The particles can also be rapidly released from their respective traps by varying the frequency of the applied AC field below particle-distinct cross-over frequencies. Zwitterion addition to the buffer allows further geometric and frequency alignments of the AC-EO and DEP motions. The same device hence allows fast trapping, detection, sorting, and characterization on a sample with realistic conductivity, volume, and bacteria count.
Wang, Liwei; Cheng, Lianjun; Li, Junru; Zhu, Zhifu; Bai, Shuowei; Cui, Zhongyu
2018-03-22
Influence of alternating current (AC) on pitting corrosion and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP) was investigated. Both corrosion and SCC are inhibited by -0.775 V SCE CP without AC interference. With the superimposition of AC current (1-10 mA/cm²), the direct current (DC) potential shifts negatively under the CP of -0.775 V SCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of -0.95 V SCE and -1.2 V SCE , the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6-2 μm in diameter). AC enhances the SCC susceptibility of X70 steel under -0.775 V SCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm² can enhance the SCC susceptibility.
NASA Astrophysics Data System (ADS)
El-Shabaan, M. M.
2018-05-01
Thermal, structural, alternating-current (AC) conductivity (σ AC), and dielectric properties of ethyl-2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate (HPQC) thin films have been studied. Thermogravimetry analysis and differential scanning calorimetry confirmed the thermal stability of HPQC over a wide temperature range. Fourier-transform infrared spectroscopy and x-ray diffraction analysis were carried out on HPQC in powder form and as-deposited thin film. The crystal system and space group type were determined for HPQC in powder form. The AC conductivity and dielectric properties were determined in the frequency range from 0.5 kHz to 5 MHz and temperature range from 296 K to 443 K. The AC electrical conduction of HPQC thin film was found to be governed by the small-polaron tunneling mechanism. The polaron hopping energy (W H), tunneling distance (R), and density of states (N) near the Fermi level were determined as functions of temperature and frequency. The dielectric properties of HPQC thin film were studied by analysis of Nyquist diagrams, the dissipation factor (tan δ), and real (ɛ') and imaginary (ɛ″) parts of the dielectric constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, S.S.Y.; Ananthakrishnan, P.; Hangari, V.U.
1995-12-31
A brushless alternator with damper windings in the main alternator and with combined ac and thyristor fed dc loads has been handled ab initio as a total modeling and simulation problem for which a complete steady state performance prediction algorithm has been developed through proper application of Park`s equivalent circuit approach individually to the main and exciter alternator units of the brushless alternator. Details of the problems faced during implementation of this algorithm through PSPICE for the case of a specific 125 kVA brushless alternator as well as methods adopted for successfully overcoming the same have then been presented. Finallymore » a comparison of the predicted performance with those obtained experimentally for this 125 kVA unit has also been provided for the cases of both thyristor fed dc load alone as well as combined ac and thyristor fed dc loads. To enable proper calculation of derating factors to be used in the design of such brushless alternators, the simulation results then include harmonic analysis of the alternator output voltage and current waveforms at the point of common connection of the ac and thyristor fed dc load, damper winding currents, main alternator field winding current, exciter alternator armature voltage and the alternator developed torque and torque angle pulsations.« less
Dielectric Measurements on Sol-Gel Derived Titania Films
NASA Astrophysics Data System (ADS)
Capan, Rifat; Ray, Asim K.
2017-11-01
Alternating current (AC) impedance measurements were performed on 37 nm thick nanostructured sol-gel derived anatase titania films on ultrasonically cleaned (100) p-silicon substrates at temperatures T ranging from 100 K to 300 K over a frequency range between 20 Hz and 1 MHz. The frequency-dependent behavior of the AC conductivity σ ac( f, T) obeys the universal power law, and the values of the effective hopping barrier and hopping distance were found to be 0.79 eV and 6.7 × 10-11 m from an analysis due to the correlated barrier-hopping model. The dielectric relaxation was identified as a thermally activated non-Debye process involving an activation energy of 41.5 meV.
Yan, Guang; Xu, Qingfang; Anissimov, Yuri G; Hao, Jinsong; Higuchi, William I; Li, S Kevin
2008-03-01
As a continuing effort to understand the mechanisms of alternating current (AC) transdermal iontophoresis and the iontophoretic transport pathways in the stratum corneum (SC), the objectives of the present study were to determine the interplay of AC frequency, AC voltage, and iontophoretic transport of ionic and neutral permeants across human epidermal membrane (HEM) and use AC as a means to characterize the transport pathways. Constant AC voltage iontophoresis experiments were conducted with HEM in 0.10 M tetraethyl ammonium pivalate (TEAP). AC frequencies ranging from 0.0001 to 25 Hz and AC applied voltages of 0.5 and 2.5 V were investigated. Tetraethyl ammonium (TEA) and arabinose (ARA) were the ionic and neutral model permeants, respectively. In data analysis, the logarithm of the permeability coefficients of HEM for the model permeants was plotted against the logarithm of the HEM electrical resistance for each AC condition. As expected, linear correlations between the logarithms of permeability coefficients and the logarithms of resistances of HEM were observed, and the permeability data were first normalized and then compared at the same HEM electrical resistance using these correlations. Transport enhancement of the ionic permeant was significantly larger than that of the neutral permeant during AC iontophoresis. The fluxes of the ionic permeant during AC iontophoresis of 2.5 V in the frequency range from 5 to 1,000 Hz were relatively constant and were approximately 4 times over those of passive transport. When the AC frequency decreased from 5 to 0.001 Hz at 2.5 V, flux enhancement increased to around 50 times over passive transport. While the AC frequency for achieving the full effect of iontophoretic enhancement at low AC frequency was lower than anticipated, the frequency for approaching passive diffusion transport at high frequency was higher than expected from the HEM morphology. These observations are consistent with a transport model of multiple barriers in series and the previous hypothesis that the iontophoresis pathways across HEM under AC behave like a series of reservoirs interconnected by short pore pathways.
Free piston variable-stroke linear-alternator generator
Haaland, Carsten M.
1998-01-01
A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... operator experienced a multi-power system loss in-flight of 1, 2, and 3 alternating current (AC) electrical... an operator experienced a multi-power system loss in-flight of 1, 2, and 3 AC electrical power... alternating current electrical power systems located in the main equipment center (MEC). The Federal Aviation...
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF ALTERNATING CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE REVIEWING ELECTRICAL FUNDAMENTALS, AND OPERATING PRINCIPLES OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "AC GENERATORS…
Preparation of scanning tunneling microscopy tips using pulsed alternating current etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan
An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE.more » The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)« less
40 CFR 86.1773-99 - Test sequence; general requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... test simulation procedures, AC1 and AC2, for the 2001 to 2003 model years only. If a manufacturer desires to conduct an alternative SC03 test simulation other than AC1 and AC2, or the AC1 and AC2 simulations for the 2004 and subsequent model years, the simulation test procedure must be approved in advance...
40 CFR 86.1773-99 - Test sequence; general requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... test simulation procedures, AC1 and AC2, for the 2001 to 2003 model years only. If a manufacturer desires to conduct an alternative SC03 test simulation other than AC1 and AC2, or the AC1 and AC2 simulations for the 2004 and subsequent model years, the simulation test procedure must be approved in advance...
40 CFR 86.1773-99 - Test sequence; general requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... test simulation procedures, AC1 and AC2, for the 2001 to 2003 model years only. If a manufacturer desires to conduct an alternative SC03 test simulation other than AC1 and AC2, or the AC1 and AC2 simulations for the 2004 and subsequent model years, the simulation test procedure must be approved in advance...
A new infusion pathway monitoring system utilizing electrostatic induced potential.
Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Alien W; Caldwell, W Morton
2006-01-01
We have developed a new infusion pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer. The system is available for hospital and home use and it constantly monitors the intactness of the pathway. The sensor is an electro-conductive polymer electrode wrapped around the infusion polyvinyl chloride infusion tube. This records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltage and alerts the nursing station, via the nurse call system or PHS (personal handy phone System).
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.
1996-01-01
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, L.H.; Hance, R.D.; Kristalinski, A.L.; Visser, A.T.
1996-11-19
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer. 23 figs.
Free piston variable-stroke linear-alternator generator
Haaland, C.M.
1998-12-15
A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.
Non-oxidized porous silicon-based power AC switch peripheries.
Menard, Samuel; Fèvre, Angélique; Valente, Damien; Billoué, Jérôme; Gautier, Gaël
2012-10-11
We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries.
The Effects of Theta and Gamma tACS on Working Memory and Electrophysiology
Pahor, Anja; Jaušovec, Norbert
2018-01-01
A single blind sham-controlled study was conducted to explore the effects of theta and gamma transcranial alternating current stimulation (tACS) on offline performance on working memory tasks. In order to systematically investigate how specific parameters of tACS affect working memory, we manipulated the frequency of stimulation (theta frequency vs. gamma frequency), the type of task (n-back vs. change detection task) and the content of the tasks (verbal vs. figural stimuli). A repeated measures design was used that consisted of three sessions: theta tACS, gamma tACS and sham tACS. In total, four experiments were conducted which differed only with respect to placement of tACS electrodes (bilateral frontal, bilateral parietal, left fronto-parietal and right-fronto parietal). Healthy female students (N = 72) were randomly assigned to one of these groups, hence we were able to assess the efficacy of theta and gamma tACS applied over different brain areas, contrasted against sham stimulation. The pre-post/sham resting electroencephalogram (EEG) analysis showed that theta tACS significantly affected theta amplitude, whereas gamma tACS had no significant effect on EEG amplitude in any of the frequency bands of interest. Gamma tACS did not significantly affect working memory performance compared to sham, and theta tACS led to inconsistent changes in performance on the n-back tasks. Active theta tACS significantly affected P3 amplitude and latency during performance on the n-back tasks in the bilateral parietal and right-fronto parietal protocols. PMID:29375347
NASA Astrophysics Data System (ADS)
Aziz, Nor Diyana Abdul; Kamarulzaman, Norlida; Subban, Ri Hanum Yahaya; Hamzah, Ahmad Sazali; Ahmed, Azni Zain; Osman, Zurina; Rusdi, Roshidah; Kamarudin, Norashikin; Mohalid, Norhanim; Romli, Ahmad Zafir; Shaameri, Zurina
2017-09-01
Polymer electrolytes have been an essential area of research for many decades. One of the reasons was the need to find new electrolyte materials suitable for device applications like solid-state batteries, supercapacitors, fuel cells, etc. with enhanced characteristics. For more than 40 years, polyimide has been known as a super-engineering plastic due to its excellent thermal stability (Tg > 250 °C) and mechanical properties. Therefore, in an effort to develop new polymer electrolytes, polyimide as a polymer matrix was chosen. Composite films of the polymer doped with lithium salt, LiCF3SO3 was prepared. These PI based polymer electrolyte films were investigated by the alternating current (a.c.) impedance spectroscopy method in the temperature range from 300 K to 373 K. It was observed that conductivity increased with the increase of temperature and amount of doping salt. Alternatively, the activation energy (Ea) of the composite films decreased with the increase of the doping salt, LiCF3SO3.
Alternating current response studies on nickel ferrite-niobium composite at room temperature
NASA Astrophysics Data System (ADS)
Reddy, L. P. Babu; Rajprakash, H. G.; Chethan, B.; Vijayakumari, S. C.; Ravikiran, Y. T.
2018-05-01
In the present research NDNF -Niobium Pentaxide doped Nickel Ferrite [NiFe2O4-Nb2O5-50%] composite was prepared by Mechano-Chemical mixing of NiFe2O4 [NF] with Nb2O5. NF and the NDNF were structurally characterized by four transform infrared spectroscopy [FTIR] and X-ray diffraction [XRD] techniques. The presence of characteristic absorption bands of NF and Nb2O5 in the FTIR spectrum of NDNF with small shift confirmed interfacial interaction of NF with Nb2O5. XRD studies also confirm interfacial interaction between NF and Nb2O5 in the composite and crystalline nature with an average crystallite size of 30nm. The Alternating Current (AC) response parameters of NF and the NDNF were comparatively studied in the frequency range 100Hz-1MHz at room temperature. Increase in AC conductivity of the NDNF has compared to NF was observed and discussed based on the electron hole exchange mechanism.
Graphene-coated coupling coil for AC resistance reduction
Miller, John M
2014-03-04
At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.
Operation of AC Adapters Visualized Using Light-Emitting Diodes
ERIC Educational Resources Information Center
Regester, Jeffrey
2016-01-01
A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…
Zanto, Theodore P.; van Schouwenburg, Martine R.; Gazzaley, Adam
2017-01-01
Multitasking is associated with the generation of stimulus-locked theta (4–7 Hz) oscillations arising from prefrontal cortex (PFC). Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that influences endogenous brain oscillations. Here, we investigate whether applying alternating current stimulation within the theta frequency band would affect multitasking performance, and explore tACS effects on neurophysiological measures. Brief runs of bilateral PFC theta-tACS were applied while participants were engaged in a multitasking paradigm accompanied by electroencephalography (EEG) data collection. Unlike an active control group, a tACS stimulation group showed enhancement of multitasking performance after a 90-minute session (F1,35 = 6.63, p = 0.01, ηp2 = 0.16; effect size = 0.96), coupled with significant modulation of posterior beta (13–30 Hz) activities (F1,32 = 7.66, p = 0.009, ηp2 = 0.19; effect size = 0.96). Across participant regression analyses indicated that those participants with greater increases in frontal theta, alpha and beta oscillations exhibited greater multitasking performance improvements. These results indicate frontal theta-tACS generates benefits on multitasking performance accompanied by widespread neuronal oscillatory changes, and suggests that future tACS studies with extended treatments are worth exploring as promising tools for cognitive enhancement. PMID:28562642
Hsu, Wan-Yu; Zanto, Theodore P; van Schouwenburg, Martine R; Gazzaley, Adam
2017-01-01
Multitasking is associated with the generation of stimulus-locked theta (4-7 Hz) oscillations arising from prefrontal cortex (PFC). Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that influences endogenous brain oscillations. Here, we investigate whether applying alternating current stimulation within the theta frequency band would affect multitasking performance, and explore tACS effects on neurophysiological measures. Brief runs of bilateral PFC theta-tACS were applied while participants were engaged in a multitasking paradigm accompanied by electroencephalography (EEG) data collection. Unlike an active control group, a tACS stimulation group showed enhancement of multitasking performance after a 90-minute session (F1,35 = 6.63, p = 0.01, ηp2 = 0.16; effect size = 0.96), coupled with significant modulation of posterior beta (13-30 Hz) activities (F1,32 = 7.66, p = 0.009, ηp2 = 0.19; effect size = 0.96). Across participant regression analyses indicated that those participants with greater increases in frontal theta, alpha and beta oscillations exhibited greater multitasking performance improvements. These results indicate frontal theta-tACS generates benefits on multitasking performance accompanied by widespread neuronal oscillatory changes, and suggests that future tACS studies with extended treatments are worth exploring as promising tools for cognitive enhancement.
A new venous infusion pathway monitoring system.
Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sata, Koji; Hamada, Shingo; Caldwell, W Morton
2007-01-01
A new infusion catheter pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer has been developed for hospital and home use. The sensor consists of coaxial three-layer conductive tapes wrapped around the polyvinyl chloride infusion tube. The inner tape is the main electrode, which records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. The outside tape layer is a reference electrode to monitor the AC voltage around the main electrode. The center tape layer is connected to system ground and functions as a shield. The microcomputer calculates the ratio of the induced AC voltages recorded by the main and reference electrodes and if the ratio indicates a detached infusion, alerts the nursing station, via the nurse call system or low transmitting power mobile phone.
Liu, Xueqing; Peng, Sha; Gao, Shuyu; Cao, Yuancheng; You, Qingliang; Zhou, Liyong; Jin, Yongcheng; Liu, Zhihong; Liu, Jiyan
2018-05-09
It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.
NASA Astrophysics Data System (ADS)
El-Shabaan, M. M.
2018-02-01
Impedance spectroscopy and alternating-current (AC) conductivity (σ AC) studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride (neutral red, NR) have been carried out over the temperature (T) range from 303 K to 383 K and frequency (f) range from 0.5 kHz to 5 MHz. Dielectric data were analyzed using the complex impedance (Z *) and complex electric modulus (M *) for bulk NR at various temperatures. The impedance loss peaks were found to shift towards high frequencies, indicating an increase in the relaxation time (τ 0) and loss in the material, with increasing temperature. For each temperature, a single depressed semicircle was observed at high frequencies, originating from the bulk transport, and a spike in the low-frequency region, resulting from the electrode effect. Fitting of these curves yielded an equivalent circuit containing a parallel combination of a resistance R and constant-phase element (CPE) Q. The carrier transport in bulk NR is governed by the correlated barrier hopping (CBH) mechanism, some parameters of which, such as the maximum barrier height (W M), charge density (N), and hopping distance (r), were determined as functions of both temperature and frequency. The frequency dependence of σ AC at different temperatures indicated that the conduction in bulk NR is a thermally activated process. The σ AC value at different frequencies increased linearly with temperature.
Simultaneous distribution of AC and DC power
Polese, Luigi Gentile
2015-09-15
A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.
Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei
2018-05-15
Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.
Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei
2018-01-01
Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528
Yan, Guang; Li, S Kevin; Peck, Kendall D; Zhu, Honggang; Higuchi, William I
2004-12-01
One of the primary safety and tolerability limitations of direct current iontophoresis is the potential for electrochemical burns associated with the necessary current densities and/or application times required for effective treatment. Alternating current (AC) transdermal iontophoresis has the potential to eliminate electrochemical burns that are frequently observed during direct current transdermal iontophoresis. Although it has been demonstrated that the intrinsic permeability of skin can be increased by applying low-to-moderate AC voltages, transdermal transport phenomena and enhancement under AC conditions have not been systematically studied and are not well understood. The aim of the present work was to study the fundamental transport mechanisms of square-wave AC iontophoresis using a synthetic membrane system. The model synthetic membrane used was a composite Nuclepore membrane. AC frequencies ranging from 20 to 1000 Hz and AC fields ranging from 0.25 to 0.5 V/membrane were investigated. A charged permeant, tetraethyl ammonium, and a neutral permeant, arabinose, were used. The transport studies showed that flux was enhanced by increasing the AC voltage and decreasing AC frequency. Two theoretical transport models were developed: one is a homogeneous membrane model; the other is a heterogeneous membrane model. Experimental transport data were compared with computer simulations based on these models. Excellent agreement between model predictions and experimental data was observed when the data were compared with the simulations from the heterogeneous membrane model. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association
Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices.
Pan, Yufeng; Xia, Yingdong; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei
2017-11-01
Organic light-emitting devices (OLEDs), typically operated with constant-voltage or direct-current (DC) power sources, are candidates for next-generation solid-state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC-driven OLEDs by directly driving devices using time-dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC-driven OLEDs, for example, double-insulation, single-insulation, double-injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high-performance AC-driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC-driven OLEDs is then discussed, especially as they relate to device physics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shen, Boyang; Li, Chao; Geng, Jianzhao; Zhang, Xiuchang; Gawith, James; Ma, Jun; Liu, Yingzhen; Grilli, Francesco; Coombs, T. A.
2018-07-01
This paper presents a comprehensive alternating current (AC) loss study of a circular high temperature superconductor (HTS) coated conductor coil. The AC losses from a circular double pancake coil were measured using the electrical method. A 2D axisymmetric H -formulation model using the FEM package in COMSOL Multiphysics has been established to match the circular geometry of the coil used in the experiment. Three scenarios have been analysed: Scenario 1 with AC transport current and DC magnetic field (experiment and simulation); Scenario 2 with DC transport current and AC magnetic field (simulation); and Scenario 3 with AC transport current and AC magnetic field (simulation and experimental data support). The angular dependence analysis on the coil under a magnetic field with different orientation angle θ has been carried out for all three scenarios. For Scenario 3, the effect of the relative phase difference Δφ between the AC current and the AC field on the total AC loss of the coil has been investigated. In summary, a current/field/angle/phase dependent AC loss ( I , B , θ, Δφ) study of a circular HTS coil has been carried out. The obtained results provide useful indications for the future design and research of HTS AC systems.
Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers
Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I
2014-01-01
We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436
She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di
2017-08-29
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
Influence of Ag, Cd or Pb Addition on Electrical and Dielectric Properties of Bulk Glassy Se-Ge
NASA Astrophysics Data System (ADS)
El-Metwally, E. G.; Shakra, A. M.
2018-05-01
Bulk glassy samples of Se0.7Ge0.3 and Se0.7Ge0.25 X 0.05 (X = Ag, Cd or Pb) chalcogenide glass have been prepared by melt-quenching method. The studied compositions were examined in powder form by x-ray diffraction analysis. The direct-current (dc) conductivity σ_{{dc}} was measured for bulk samples in the temperature range from 303 K to 433 K, revealing enhancement with temperature for all samples. The results indicate two values of activation energy ( Δ E_{{σ1 }} and Δ E_{{σ2 }} ) due to two conduction mechanisms. Measurements of the alternating-current (ac) conductivity σ_{{ac}} ( ω ) and dielectric properties for bulk samples were carried out in the temperature range from 303 K to 433 K and frequency range from 1 kHz to 1 MHz. The ac conductivity σ_{{ac}} ( ω ) was temperature dependent and proportional to ωS , where S is the frequency exponent, which reduced with rising temperature, and ω is the angular frequency. These results are discussed based on a correlated barrier hopping model. The calculated values of the maximum height of the barrier W_{{M}} for each composition are consistent with carrier hopping over a potential barrier. The density of localized states N( {E_{{F}} } ) at the Fermi level lay in the range from 1019 eV-1 cm-3 to 1020 eV-1 cm-3, and increased with temperature. The dielectric constant ɛ1 ( ω ) and loss ɛ2 ( ω ) increased with temperature but decreased with frequency. The values of σ_{{dc}} , σ_{{ac}} ( ω ) , ɛ1 ( ω ) , and ɛ2 ( ω ) increased with temperature and with addition of Ag, Cd or Pb. The observed increase was greater for Se0.7Ge0.25Pb0.05 than for Se0.7Ge0.25Cd0.05, which was greater than for Se0.7Ge0.25Ag0.05.
Popular Science Recognizes Innovative Solar Technologies
photovoltaic (solar electric) modules to produce standard household current are listed among the magazine's photovoltaic module that produces standard household, or alternating current (AC). Ascension Technology's SunSineTM 300 AC photovoltaic module has a built-in microinverter that eliminates the need for direct
NASA Astrophysics Data System (ADS)
Todorov, Evgueni Iordanov
2017-04-01
The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.
77 FR 43176 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... alternating current (AC) generator failures in-service due to incomplete fusion in the weld joint of the rotor band assembly. This proposed AD would require inspecting the AC generator to determine the part number, and replacing the AC generator if necessary. We are proposing this AD to prevent rotor windings from...
Effect of an alternating current electric field on Co(OH)2 periodic precipitation
NASA Astrophysics Data System (ADS)
Karam, Tony; Sultan, Rabih
2013-02-01
The present paper studies the effect of an alternating current (AC) electric field on Co(OH)2 Liesegang patterns. In the presence of an AC electric field, the band spacing increases with spacing number, but reaches a plateau at large spacing (or band) numbers. The band spacing increases with applied AC voltage, but to a much lesser extent than the effect of a DC electric field under the same applied voltage [see R. Sultan, R. Halabieh, Chem. Phys. Lett. 332 (2000) 331][1]. At low enough applied voltage, the band spacing increases with frequency. At higher voltages, the band spacing becomes independent of the field frequency. The effect of concentration of the inner electrolyte (Co2+), exactly opposes that observed under DC electric field; i.e., the band spacing decreases with increasing concentration. The dynamics were shown to be governed by a competitive scenario between the diffusion gradient and the alternating current electric field factor.
Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.
Cappon, Davide; D'Ostilio, Kevin; Garraux, Gaëtan; Rothwell, John; Bisiacchi, Patrizia
2016-01-01
In a masked prime choice reaction task, presentation of a compatible prime increases the reaction time to the following imperative stimulus if the interval between mask and prime is around 80-250 ms. This is thought to be due to automatic suppression of the motor plan evoked by the prime, which delays reaction to the imperative stimulus. Oscillatory activity in motor networks around the beta frequency range of 20 Hz is important in suppression of movement. Transcranial alternating current at 20 Hz may be able to drive oscillations in the beta range. To investigate whether transcranial alternating current stimulation (tACS) at 20 Hz would increase automatic inhibition in a masked prime task. As a control we used 10 Hz tACS. Stimulation was delivered at alpha (10 Hz) and beta (20 Hz) frequency over the supplementary motor area and the primary motor cortex (simultaneous tACS of SMA-M1), which are part of the BG-cortical motor loop, during the execution of the subliminal masked prime left/right choice reaction task. We measured the effects on reaction times. Corticospinal excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) evoked in the first dorsal interosseous muscle by transcranial magnetic stimulation (TMS) over M1. The 10 and 20-Hz tACS over SMA-M1 had different effects on automatic inhibition. The 20 Hz tACS increased the duration of automatic inhibition whereas it was decreased by 10 Hz tACS. Neurophysiologically, 20 Hz tACS reduced the amplitude of MEPs evoked from M1, whereas there was no change after 10 Hz tACS. Automatic mechanisms of motor inhibition can be modulated by tACS over motor areas of cortex. tACS may be a useful additional tool to investigate the causal links between endogenous brain oscillations and specific cognitive processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen
2018-03-01
Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC field with moderate voltage was the optimal supplementary technique for phytoremediation. Copyright © 2017 Elsevier Inc. All rights reserved.
Koch, Jason A; Baur, Melinda B; Woodall, Erica L; Baur, John E
2012-11-06
Fast-scan cyclic voltammetry (FSCV) is combined with alternating current scanning electrochemical microscopy (AC-SECM) for simultaneous measurements of impedance and faradaic current. Scan rates of 10-1000 V s(-1) were used for voltammetry, while a high-frequency (100 kHz), low-amplitude (10 mV rms) sine wave was added to the voltammetric waveform for the ac measurement. Both a lock-in amplifier and an analog circuit were used to measure the amplitude of the resultant ac signal. The effect of the added sine wave on the voltammetry at a carbon fiber electrode was investigated and found to have negligible effect. The combined FSCV and ac measurements were used to provide simultaneous chemical and topographical information about a substrate using a single carbon fiber probe. The technique is demonstrated in living cell culture, where cellular respiration and topography were simultaneously imaged without the addition of a redox mediator. This approach promises to be useful for the topographical and multidimensional chemical imaging of substrates.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…
Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY; Jacobs, Stephen D [Pittsford, NY
2006-05-09
Optical devices utilizing flakes (also called platelets) suspended in a host fluid have optical characteristics, such as reflective properties, which are angular dependent in response to an AC field. The reflectivity may be Bragg-like, and the characteristics are obtained through the use of flakes of liquid crystal material, such as polymer liquid crystal (PLC) materials including polymer cholesteric liquid crystal (PCLC) and polymer nematic liquid crystal (PNLC) material or birefringent polymers (BP). The host fluid may be propylene carbonate, poly(ethylene glycol) or other fluids or fluid mixtures having fluid conductivity to support conductivity in the flake/host system. AC field dependent rotation of 90.degree. can be obtained at rates and field intensities dependent upon the frequency and magnitude of the AC field. The devices are useful in providing displays, polarizers, filters, spatial light modulators and wherever switchable polarizing, reflecting, and transmission properties are desired.
Fröhlich, Flavio; Sellers, Kristin K.; Cordle, Asa L.
2015-01-01
Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack (1) demonstration of causal relationships between specific network activity patterns and cognitive capabilities and (2) treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. We here propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition (all performed in healthy participants) according to the Research Domain Criteria (RDoC) of the National Institute of Mental Health. PMID:25547149
Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf
2016-01-01
We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Matsumoto, Taisuke; Ohishi, Yuya
A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.
Kasten, Florian H.; Herrmann, Christoph S.
2017-01-01
Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084
Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Saini, Subhash (Technical Monitor)
1998-01-01
There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.
Ikeda, Hideharu; Suda, Hideaki
2013-04-01
The objectives of the present study were to quantitatively evaluate chemical permeability through human enamel/dentine using conductometry and to clarify if alternating current (AC) iontophoresis facilitates such permeability. Electrical impedance of different concentrations of lidocaine hydrochloride was measured using a bipolar platinum impedance probe. A quadratic curve closely fitted to the response functions between conductance and lidocaine hydrochloride. For analysis of the passage of lidocaine hydrochloride through human enamel/dentine, eight premolars that were extracted for orthodontic treatment were sectioned at the cemento-enamel junction. The tooth crowns were held between two chambers with a double O-ring. The enamel-side chamber was filled with lidocaine hydrochloride, and the pulp-side chamber was filled with extrapure water. Two platinum plate electrodes were set at the end of each chamber to pass alternating current. A simulated interstitial pulp pressure was applied to the pulp-side chamber. The change in the concentration of lidocaine hydrochloride in the pulp-side chamber was measured every 2min using a platinum recording probe positioned at the centre of the pulp-side chamber. Passive entry without iontophoresis was used as a control. The level of lidocaine hydrochloride that passed through enamel/dentine against the dentinal fluid flow increased with time. Electrical conductance (G, mho) correlated closely to the concentration (x, mmol/L) of lidocaine hydrochloride (G=2.16x(2)+0.0289x+0.000376, r(2)=0.999). Lidocaine hydrochloride can pass through enamel/dentine. Conductometry showed that the level of lidocaine hydrochloride that passed through enamel/dentine was increased by AC iontophoresis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Direct current power delivery system and method
Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin
2016-09-06
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Pan, Linjie; Cirillo, John; Borgens, Richard Ben
2012-08-01
The remarkable polarity-dependent growth and anatomical organization of neurons in vitro produced by imposed direct current (DC) voltage gradients (electrical fields; Ef) can be mimicked by another type of electrical cue. This is a properly structured asymmetrical alternating current (AC) electrical field (A-ACEf). Here we provide details on the construction of an AC signal generator in which all components of an AC waveform can be individually controlled. We show that 1) conventional symmetrical AC voltage gradients will not induce growth, guidance, or architectural changes in sympathetic neurons. We also provide the first qualitative and quantitative data showing that an asymmetric AC application can indeed mimic the DC response in chick sympathetic neurons and their growing neurites. This shift in orientation and neuronal anatomy requires dieback of some neurites and the extension of others to produce a preferred orientation perpendicular to the gradient of voltage. Our new results may lead to a noninvasive means to modify nerve growth and organization by magnetic inductive coupling at distance. These data also indicate the possibility of a means to mimic DC-dependent release of drugs or other biologically active molecules from electrically sensitive that can be loaded with these chemical cargos. Copyright © 2012 Wiley Periodicals, Inc.
78 FR 79338 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
...We propose to adopt a new airworthiness directive (AD) for certain Bombardier, Inc. Model DHC-8-400 series airplanes. This proposed AD was prompted by reports of missing clamps that are required to provide positive separation between the alternating current (AC) feeder cables and the hydraulic line of the landing gear alternate extension. This proposed AD would require inspecting for missing clamps, and related investigative and corrective actions if necessary. We are proposing this AD to detect and correct chafing of the AC feeder cable. A chafed and arcing AC feeder cable could puncture the adjacent hydraulic line, which, in combination with the use of the alternate extension system, could result in an in-flight fire.
Guerra, Andrea; Suppa, Antonio; Bologna, Matteo; D'Onofrio, Valentina; Bianchini, Edoardo; Brown, Peter; Di Lazzaro, Vincenzo; Berardelli, Alfredo
2018-03-24
Transcranial Alternating Current Stimulation (tACS) consists in delivering electric current to the brain using an oscillatory pattern that may entrain the rhythmic activity of cortical neurons. When delivered at gamma frequency, tACS modulates motor performance and GABA-A-ergic interneuron activity. Since interneuronal discharges play a crucial role in brain plasticity phenomena, here we co-stimulated the primary motor cortex (M1) in healthy subjects by means of tACS during intermittent theta-burst stimulation (iTBS), a transcranial magnetic stimulation paradigm known to induce long-term potentiation (LTP)-like plasticity. We measured and compared motor evoked potentials before and after gamma, beta and sham tACS-iTBS. While we delivered gamma-tACS, we also measured short-interval intracortical inhibition (SICI) to detect any changes in GABA-A-ergic neurotransmission. Gamma, but not beta and sham tACS, significantly boosted and prolonged the iTBS-induced after-effects. Interestingly, the extent of the gamma tACS-iTBS after-effects correlated directly with SICI changes. Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting. Copyright © 2018 Elsevier Inc. All rights reserved.
Module Two: Voltage; Basic Electricity and Electronics Individualized Learning System.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
In this module the student will study and learn what voltage is, how it is generated, what AC (alternating current) and DC (direct current) are and why both kinds are needed, and how to measure voltages. The module is divided into six lessons: EMF (electromotive force) from chemical action, magnetism, electromagnetic induction, AC voltage, the…
Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant
Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru
2016-01-01
A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8) isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC) impedance spectroscopy. PMID:27347926
Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S; Weisz, Nathan
2015-09-01
Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. Copyright © 2015. Published by Elsevier Inc.
Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S.; Weisz, Nathan
2015-01-01
Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. PMID:26080310
Naro, Antonino; Milardi, Demetrio; Cacciola, Alberto; Russo, Margherita; Sciarrone, Francesca; La Rosa, Gianluca; Bramanti, Alessia; Bramanti, Placido; Calabrò, Rocco Salvatore
2017-08-01
Several cerebellar functions related to upper limb motor control have been studied using non-invasive brain stimulation paradigms. We have recently shown that transcranial alternating current stimulation (tACS) may be a promising approach in shaping the plasticity of cerebellum-brain pathways in a safe and effective manner. This study aimed to assess whether cerebellar tACS at different frequencies may tune M1-leg excitability and modify gait control in healthy human subjects. To this end, we tested the effects of different cerebellar tACS frequencies over the right cerebellar hemisphere (at 10, 50, and 300 Hz, besides a sham-tACS) on M1-leg excitability, cerebellum-brain inhibition (CBI), and gait parameters in a sample of 25 healthy volunteers. Fifty and 300 Hz tACS differently modified M1-leg excitability and CBI from both lower limbs, without significant gait perturbations. We hypothesize that tACS aftereffect may depend on a selective entrainment of distinct cerebellar networks related to lower limb motor functions. Therefore, cerebellar tACS might represent a useful tool to modulate walking training in people with cerebellum-related gait impairment, given that tACS may potentially reset abnormal cerebellar circuitries.
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Zhang, Bo; He, Jinliang
2014-06-01
Corona discharge is one of the major design factors for extra-high voltage and ultra-high voltage DC/AC transmission lines. Under different voltages, corona discharge reveals different characteristics. This paper aims at investigating DC and AC coronas on the microscopic scale. To obtain the specific characteristics of DC and AC coronas, a new measurement approach that utilizes a coaxial wire-cylinder corona cage is designed in this paper, and wires of different diameters are used in the experiment. Based on the measurements, the respective microscopic characteristics of DC and AC coronas are analyzed and compared. With differences in characteristics between DC and AC coronas proposed, this study provides useful insights into DC/AC corona discharges on transmission line applications.
1995-09-22
Modules 345-800 Amperes/400-3000 Votts - Current and Thermal Ratings of Module * Circuit Currents Element Data Model* Current Thermal Units...IGBTs modules (Powerex) 56 Main components for rectifiers, Diode Bridge modules (Powerex) 65 Heat Sinks (Aavid Engineering) 85 Westinghouse...exciter circuit , are not reliable enough for military applications, and they were replaced by brushless alternators. The brushless AC alternator
Electrodeformation of multi-bilayer spherical concentric membranes by AC electric fields
NASA Astrophysics Data System (ADS)
Lira-Escobedo, J.; Arauz-Lara, J.; Aranda-Espinoza, H.; Adlerz, K.; Viveros-Mendez, P. X.; Aranda-Espinoza, S.
2017-09-01
It is now well established that external stresses alter the behaviour of cells, where such alterations can be as profound as changes in gene expression. A type of stresses of particular interest are those due to alternating-current (AC) electric fields. The effect of AC fields on cells is still not well understood, in particular it is not clear how these fields affect the cell nucleus and other organelles. Here, we propose that one possible mechanism is through the deformation of the membranes. In order to investigate the effect of AC fields on the morphological changes of the cell organelles, we modelled the cell as two concentric bilayer membranes. This model allows us to obtain the deformations induced by the AC field by balancing the elastic energy and the work done by the Maxwell stresses. Morphological phase diagrams are obtained as a function of the frequency and the electrical properties of the media and membranes. We demonstrate that the organelle shapes can be changed without modifying the shape of the external cell membrane and that the organelle deformation transitions can be used to measure, for example, the conductivity of the nucleus.
Transition to Low-GWP Alternatives in Passenger Vehicle Air Conditioners
This fact sheet provides current information on low global warming potential (GWP) alternatives in newly manufactured passenger vehicle air conditioners (ACs), in lieu of high-GWP hydrofluorocarbons (HFCs).
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2017-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.
NASA Astrophysics Data System (ADS)
Nguyen, Doan Ngoc
Alternating current (AC) loss and current carrying capacity are two of the most crucial considerations in large-scale power applications of high temperature superconducting (HTS) conductors. AC losses result in an increased thermal load for cooling machines, and thus increased operating costs. Furthermore, AC losses can stimulate quenching phenomena or at least decrease the stability margin for superconducting devices. Thus, understanding AC losses is essential for the development of HTS AC applications. The main focus of this dissertation is to make reliable total AC loss measurements and interpret the experimental results in a theoretical framework. With a specially designed magnet, advanced total AC loss measurement system in liquid nitrogen (77 K) has been successfully built. Both calorimetric and electromagnetic methods were employed to confirm the validity of the measured results and to have a more thorough understanding of AC loss in HTS conductors. The measurement is capable of measuring total AC loss in HTS tapes over a wide range of frequency and amplitude of transport current and magnetic field. An accurate phase control technique allows measurement of total AC loss with any phase difference between the transport current and magnetic field by calorimetric method. In addition, a novel total AC loss measurement system with variable temperatures from 30 K to 100 K was successfully built and tested. Understanding the dependence of AC losses on temperature will enable optimization of the operating temperature and design of HTS devices. As a part of the dissertation, numerical calculations using Brandt's model were developed to study electrodynamics and total AC loss in HTS conductors. In the calculations, the superconducting electrical behavior is assumed to follow a power-law model. In general, the practical properties of conductors, including field-dependence of critical current density Jc, n-value and non-uniform distribution of Jc, can be accounted for in the numerical calculations. The numerical calculations are also capable of investigating eddy current loss in the stabilizer and ferromagnetic loss in the substrate of YBa2Cu3O 7-delta (YBCO) coated conductor. AC loss characteristics and electrodynamics in several (Bi,Pb)2 Sr2Ca2Cu3Ox (Bi-2223) and YBCO tapes were studied experimentally and numerically. It was found that AC loss behavior Ax in HTS tapes is strongly affected by the sample parameters such as cross-section, structure, dimensions, critical current distribution as well as by operation parameters including temperature, frequency, the phase difference between transport current and magnetic field, the orientation of magnetic field. The Ni-5%W substrate in YBCO conductors generates some ferromagnetic loss but this loss component is significantly reduced by a small parallel DC magnetic field. At a given AC magnetic field B0, there is a temperature Tmax at which the magnetization loss is maximum. The design of HTS devices needs to be optimized to avoid operating at that temperature. In general, the total AC loss in HTS tapes is still high for many power device applications, especially for those that present a rather high AC applied magnetic field. The development of low loss conductors is therefore crucial for HTS large-scale applications.
Ren, Qinlong
2018-02-10
Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro-osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non-Newtonian blood flow using ACET forces is investigated in detail by modeling its multi-physics process with hybrid boundary element method (BEM) and immersed boundary-lattice Boltzmann method (IB-LBM). The Carreau-Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency-dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transitioning to Low-GWP Alternatives in Residential and Light Commercial Air Conditioning
This fact sheet provides current information on low global warming potential (GWP) alternatives for new equipment in residential and light commercial air conditioning (AC), in lieu of high-GWP hydrofluorocarbons (HFCs).
NASA Astrophysics Data System (ADS)
Anjali; Patial, Balbir Singh; Bhardwaj, Suresh; Awasthi, A. M.; Thakur, Nagesh
2017-10-01
In-depth analysis of complex AC-conductivity for nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10 at wt%) alloys is made in the temperature range 308-423 K and over the frequency range 10-1-107 Hz, to understand the conduction mechanism. The investigated nano-crystalline alloys were prepared by melt-quench technique. Sharp structural peaks in X-ray diffraction pattern indicate the nano-crystalline nature, which is also confirmed by FESEM. The AC conductivity shows universal characteristics and at higher frequency a transition from dc to dispersive behavior occurs. Moreover, it is confirmed that ac conductivity (σac) obeys the Jonscher power law as ωs (s< 1). The obtained results are analyzed in the light of various theoretical models. The correlated barrier hopping (CBH) model associated with non-intimate valence alternation pairs (NVAP's) is found most appropriate to describe the conduction mechanisms in these alloys. In addition, the CBH model description reveals that the bipolaron (single polaron) transport dominates at lower (higher) temperature. The density of localized states has also been deduced.
Driver circuit for solid state light sources
Palmer, Fred; Denvir, Kerry; Allen, Steven
2016-02-16
A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.
High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion
NASA Astrophysics Data System (ADS)
Sommerer, Timothy J.
2014-05-01
We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
Kasten, Florian H; Negahbani, Ehsan; Fröhlich, Flavio; Herrmann, Christoph S
2018-05-31
Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6 th -degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuai, E-mail: zhangshuai94@gmail.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn
Corona discharge is one of the major design factors for extra-high voltage and ultra-high voltage DC/AC transmission lines. Under different voltages, corona discharge reveals different characteristics. This paper aims at investigating DC and AC coronas on the microscopic scale. To obtain the specific characteristics of DC and AC coronas, a new measurement approach that utilizes a coaxial wire-cylinder corona cage is designed in this paper, and wires of different diameters are used in the experiment. Based on the measurements, the respective microscopic characteristics of DC and AC coronas are analyzed and compared. With differences in characteristics between DC and ACmore » coronas proposed, this study provides useful insights into DC/AC corona discharges on transmission line applications.« less
Laboratory investigation of a fluid-dynamic actuator designed for CubeSats
NASA Astrophysics Data System (ADS)
Noack, Daniel; Brieß, Klaus
2014-03-01
In general, the attitude control systems (ACS) for precise spacecraft operations rely on reaction wheel technology for angular momentum exchange. In this paper, an alternative ACS concept using fluid rings for this task is presented. This novel actuator—based on Lorentz body force—uses a direct-current conduction pump to accelerate liquid metal within a circular channel structure. As working fluid for the fluid-dynamic actuator (FDA) serves the eutectic alloy Galinstan. Along with a microcontroller that runs the FDA, a MEMS gyroscope is implemented on the device for closed loop operation. Several models of FDAs for small satellites were tested successfully for various attitude control maneuvers on an air bearing platform. Thus advantageous performance has been achieved in terms of torque and power consumption in comparison to similarly dimensioned reaction wheels. Further considerable advantages are wear-free operations and higher reliability as well as expected passive damping properties. A next generation FDA prototype for nano-satellites is currently in development for in-orbit testing.
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
ERIC Educational Resources Information Center
Calhoun, Michael J.
1994-01-01
Describes an activity that allows students to use a rectifier circuit to convert alternating current into direct current. Also informs teachers of how to obtain most of the equipment needed for free. (ZWH)
Transverse Mode Dynamics of VCSELs Undergoing Current Modulation
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind
2000-01-01
Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling
Systems and methods for deactivating a matrix converter
Ransom, Ray M.
2013-04-02
Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.
Hong, Jun; Chen, Dongchu; Peng, Zhiqiang; Li, Zulin; Liu, Haibo; Guo, Jian
2018-05-01
A new method for measuring the alternating current (AC) half-wave voltage of a Mach-Zehnder modulator is proposed and verified by experiment in this paper. Based on the opto-electronic self-oscillation technology, the physical relationship between the saturation output power of the oscillating signal and the AC half-wave voltage is revealed, and the value of the AC half-wave voltage is solved by measuring the saturation output power of the oscillating signal. The experimental results show that the measured data of this new method involved are in agreement with a traditional method, and not only an external microwave signal source but also the calibration for different frequency measurements is not needed in our new method. The measuring process is simplified with this new method on the premise of ensuring the accuracy of measurement, and it owns good practical value.
Wu, Zhenkun; Li, Liyi; Lin, Ziyin; Song, Bo; Li, Zhuo; Moon, Kyoung-Sik; Wong, Ching-Ping; Bai, Shu-Lin
2015-06-17
Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The as-fabricated device shows a phase angle of -75.4° at 120 Hz with a specific capacitance of 316 µF/cm(2) and a RC time constant of 0.35 ms. In addition, it retains 97.2% of the initial capacitance after 10000 charge/discharge cycles. These outstanding performance characteristics of our device demonstrate its promising to replace the conventional AECs for ac line filtering.
Hussain, Sara J; Thirugnanasambandam, Nivethida
2017-06-01
Paired-pulse transcranial magnetic stimulation (TMS) and peripheral stimulation combined with TMS can be used to study cortical interneuronal circuitry. By combining these procedures with concurrent transcranial alternating current stimulation (tACS), Guerra and colleagues recently showed that different cortical interneuronal populations are differentially modulated by the phase and frequency of tACS-imposed oscillations (Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Cerebral Cortex 26: 3977-2990, 2016). This work suggests that different cortical interneuronal populations can be characterized by their phase and frequency dependency. Here we discuss how combining TMS and tACS can reveal the frequency at which cortical interneuronal populations oscillate, the neuronal origins of behaviorally relevant cortical oscillations, and how entraining cortical oscillations could potentially treat brain disorders. Copyright © 2017 the American Physiological Society.
Vossen, Alexandra; Gross, Joachim; Thut, Gregor
2015-01-01
Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377
Vossen, Alexandra; Gross, Joachim; Thut, Gregor
2015-01-01
Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8-12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment "echoes." To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. 12 healthy participants were stimulated at around individual α-frequency for 11-15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Current Regulator For Sodium-Vapor Lamps
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1989-01-01
Regulating circuit maintains nearly-constant alternating current in sodium-vapor lamp. Regulator part of dc-to-ac inverter circuit used to supply power to street lamp from battery charged by solar-cell array.
NASA Astrophysics Data System (ADS)
Gao, Jiangshan; He, Yan; Gong, Xiubin
2018-06-01
The original equipment and method for orienting multi-walled carbon nanotubes (MWCNTs) in natural rubber (NR) by alternating current (AC) electric field were reported in the present study. MWCNTs with various volume fractions were dispersed in the mixture latex which composed of natural rubber, additives and methylbenzene. The application of AC electric field during nanocomposites curing process was used to induce the formation of aligned conductive nanotube networks between the electrodes. The aligned MWCNTs in the composites have a better orientation performance and dispersion quality than these of random MWCNTs by analyzing TEM and SEM images. The effects of MWCNTs anisotropy on thermal conductivity, dielectric properties, and dynamic mechanical properties of NR were studied. The mean value of thermal conductivity of composites loading with aligned MWCNTs was 8.67% higher than that of composites with random MWCNTs due to the anisotropy of aligned MWCNTs. The compounds with aligned MWCNTs possessed low dielectric constant, loss tangents and conductivity, namely a good insulativity. The compounds loading with aligned MWCNTs had lower loss modulus and better dynamic mechanical properties than those with random MWCNTs. This method can make full use of the high thermal conductivity of MWCNTs axis, and expand the application areas of natural rubber like conducting heat in a certain direction with a high efficiency.
SR 85 and 77th Special Forces Way West McWhorter Rd Overpass Environmental Assessment
2010-06-04
Evaluation criteria were developed and used to evaluate the potential impacts of the interchange alternatives. The evaluation matrix is in a chart...Land Use 6.8 ac taken 17.25 ac taken 34.80 ac taken 27.87 ac taken 35.25 ac taken Safety Stoplight has increased the potential for high speed...change in land use in the easement. The Air Force would conduct further analysis for potential land use impacts – Environmental Baseline Study or
NASA Astrophysics Data System (ADS)
Belitz, Kenneth; Phillips, Steven P.
1995-08-01
The occurrence of selenium in agricultural drainage water derived from the central part of the western San Joaquin Valley has focused concern on alternatives to agricultural drains for managing shallow, poor-quality groundwater. A transient, three-dimensional simulation model was developed to evaluate the response of the water table to alternatives that affect recharge to or discharge from the groundwater flow system. The modeled area is 551 mi2 (1 mi2 = 2.59 km2) and includes both the semiconfined and confined zones above and below the Corcoran Clay Member of the Tulare Formation of Pleistocene age. The simulation model was calibrated using hydrologic data from 1972 to 1988, and was extended to the year 2040 to forecast for various management alternatives, including maintenance of present practices, land retirement, reduced recharge, increased groundwater pumping, and combinations of these alternatives. Maintenance of present practices results in a worsening of the situation: the total area subject to bare-soil evaporation increases from 224 mi2 in 1990 to 344 mi2 in 2040, and drain flow increases from 25,000 ac ft/yr (1 ac ft = 1234 m3) to 28,000 ac ft/yr. Although land retirement results in elimination of bare-soil evaporation and drain flow in the areas retired, it has little to no effect in adjacent areas. In contrast, regional-scale changes in recharge and pumping are effective for regional management. The area subject to bare-soil evaporation can be reduced to 78 mi2, and drain flow to 8000 ac ft/yr if (1) recharge is reduced by 15% (26,000 ac ft/yr) in areas that currently use surface and groundwater (362 mi2); (2) recharge is reduced by 40% (28,000 ac ft/yr) in areas that currently use only surface water (137 mi2); and (3) pumping rates are uniformly incremented by 0.5 ft/yr (160,000 ac ft/yr) in both areas. If these water budget changes were to be implemented in the study area, and in adjacent areas with similiar Hydrogeologic characteristics, then approximately 400,000 ac ft/yr of surface water would be made available. Thus a shift in the hydrologic budget in the central part of the western San Joaquin Valley improves the prospects for sustaining agriculture in the area, and could provide substantial water resources for other uses.
A pre-heating method based on sinusoidal alternating current for lithium-ion battery
NASA Astrophysics Data System (ADS)
Fan, Wentao; Sun, Fengchun; Guo, Shanshan
2018-04-01
In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.
Sun, Yajie; Zhang, Huiming; Meng, Yuanzhu
2018-01-01
This paper experimentally analyzes the critical current degradation and AC (alternating current) losses of second-generation (2G) high-temperature superconductor (HTS) tape during the impregnation process. Two impregnation materials were utilized: Gallium-Indium-Tin (GaInSn), and an epoxy resin, Araldite. The critical current of the impregnation materials was measured after different thermal cycles and compared with the tape with no impregnation process. The experimental results show that the critical current of Yttrium Barium Copper Oxide (YBCO) short samples varies between differently impregnated materials. The resin, Araldite, degraded the critical current; however, the GaInSn showed no degradation. Two degradation patterns with Araldite were identified due to the impregnation process, and the corresponding causes were analyzed. We further measured the AC losses of tapes impregnated with liquid metal at different frequencies, up to 600 Hz. Based on the experimental results, GaInSn liquid metal should be the most suitable impregnation material in terms of critical current degradation. PMID:29642490
Cortical inhibition and excitation by bilateral transcranial alternating current stimulation.
Cancelli, Andrea; Cottone, Carlo; Zito, Giancarlo; Di Giorgio, Marina; Pasqualetti, Patrizio; Tecchio, Franca
2015-01-01
Transcranial electric stimulations (tES) with amplitude-modulated currents are promising tools to enhance neuromodulation effects. It is essential to select the correct cortical targets and inhibitory/excitatory protocols to reverse changes in specific networks. We aimed at assessing the dependence of cortical excitability changes on the current amplitude of 20 Hz transcranial alternating current stimulation (tACS) over the bilateral primary motor cortex. We chose two amplitude ranges of the stimulations, around 25 μA/cm2 and 63 μA/cm2 from peak to peak, with three values (at steps of about 2.5%) around each, to generate, respectively, inhibitory and excitatory effects of the primary motor cortex. We checked such changes online through transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). Cortical excitability changes depended upon current density (p = 0.001). Low current densities decreased MEP amplitudes (inhibition) while high current densities increased them (excitation). tACS targeting bilateral homologous cortical areas can induce online inhibition or excitation as a function of the current density.
Yu, Dongmin; Sun, Yajie; Zhang, Huiming; Meng, Yuanzhu; Liu, Huanan
2018-04-08
This paper experimentally analyzes the critical current degradation and AC (alternating current) losses of second-generation (2G) high-temperature superconductor (HTS) tape during the impregnation process. Two impregnation materials were utilized: Gallium-Indium-Tin (GaInSn), and an epoxy resin, Araldite. The critical current of the impregnation materials was measured after different thermal cycles and compared with the tape with no impregnation process. The experimental results show that the critical current of Yttrium Barium Copper Oxide (YBCO) short samples varies between differently impregnated materials. The resin, Araldite, degraded the critical current; however, the GaInSn showed no degradation. Two degradation patterns with Araldite were identified due to the impregnation process, and the corresponding causes were analyzed. We further measured the AC losses of tapes impregnated with liquid metal at different frequencies, up to 600 Hz. Based on the experimental results, GaInSn liquid metal should be the most suitable impregnation material in terms of critical current degradation.
Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R.
2014-01-01
Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822
Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations.
Vosskuhl, Johannes; Strüber, Daniel; Herrmann, Christoph S
2018-01-01
Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo . These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.
Local Network-Level Integration Mediates Effects of Transcranial Alternating Current Stimulation.
Fuscà, Marco; Ruhnau, Philipp; Neuling, Toralf; Weisz, Nathan
2018-05-01
Transcranial alternating current stimulation (tACS) has been proposed as a tool to draw causal inferences on the role of oscillatory activity in cognitive functioning and has the potential to induce long-term changes in cerebral networks. However, effectiveness of tACS underlies high variability and dependencies, which, as previous modeling works have suggested, may be mediated by local and network-level brain states. We used magnetoencephalography to record brain activity from 17 healthy participants at rest as they kept their eyes open (EO) or eyes closed (EC) while being stimulated with sham, weak, or strong alpha-tACS using a montage commonly assumed to target occipital areas. We reconstructed the activity of sources in all stimulation conditions by means of beamforming. The analysis of resting-state brain activity revealed an interaction of the external stimulation with the endogenous alpha power increase from EO to EC. This interaction was localized to the posterior cingulate, a region remote from occipital cortex. This suggests state-dependent (EO vs. EC) long-range effects of tACS. In a follow-up analysis of this online-tACS effect, we find evidence that this state-dependency effect is mediated by functional network changes: connection strength from the precuneus was significantly correlated with the state-dependency effect in the posterior cingulate during tACS. No analogous correlation could be found for alpha power modulations in occipital cortex. Altogether, this is the first strong evidence to illustrate how functional network architectures can shape tACS effects.
Fanari, Zaher; Weiss, Sandra; Weintraub, William S
2015-01-01
Acute Coronary Syndromes are associated with high rates of morbidity and mortality. The advances of antiplatelet and anticoagulation therapy over several years time have result in in improved in cardiac outcomes, but with increased health care costs. Multiple cost effectiveness studies have been performed to evaluate the use of available antiplatelet agents and anticoagulation in the setting of both ST Elevation myocardial infarction (STEMI) and Non–ST Elevation Acute Coronary Syndrome (NSTE-ACS). Early on the use of GPI prove to be economically attractive in the management of ACS, however the introduction of P2Y12 receptor antagonist limited their use to a bail out agents in complex interventions. Generic clopidogrel is probably still an economically attractive P2Y12 receptor antagonist choice especially in low risk ACS, while both ticagrelor and prasugrel present an economically attractive alternative option especially in high risk ACS and patients at risk for stent thrombosis. While enoxaparin presents an economically dominant alternative to heparin in NSTE-ACS, its role in STEMI in the contemporary era is unclear. During PCI, bivalirudin monotherapy was shown to be an economically dominant alternative to the combination of heparin and GPI in ACS. However, new studies may suggest that using heparin monotherapy may offer an attractive alternative. The comparative and cost effectiveness of different combinations of antiplatelet and antithrombotic therapy will be the focus of future expected clinical and economic assessments. PMID:26068886
Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air
NASA Astrophysics Data System (ADS)
Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro
2014-12-01
Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.
Hiromitsu, Shirasawa; Jin, Kumagai; Emiko, Sato; Katsuya, Kabashima; Yukiyo, Kumazawa; Wataru, Sato; Hiroshi, Miura; Ryuta, Nakamura; Hiroshi, Nanjo; Yoshihiro, Minamiya; Yoichi, Akagami; Yukihiro, Terada
2015-01-01
Recently, a new technique was developed for non-catalytically mixing microdroplets. In this method, an alternating-current (AC) electric field is used to promote the antigen–antibody reaction within the microdroplet. Previously, this technique has only been applied to histological examinations of flat structures, such as surgical specimens. In this study, we applied this technique for the first time to immunofluorescence staining of three-dimensional structures, specifically, mammalian eggs. We diluted an antibody against microtubules from 1:1,000 to 1:16,000, and compared the chromatic degree and extent of fading across dilutions. In addition, we varied the frequency of AC electric-field mixing from 5 Hz to 46 Hz and evaluated the effect on microtubule staining. Microtubules were more strongly stained after AC electric-field mixing for only 5 minutes, even when the concentration of primary antibody was 10 times lower than in conventional methods. AC electric-field mixing also alleviated microtubule fading. At all frequencies tested, AC electric-field mixing resulted in stronger microtubule staining than in controls. There was no clear difference in a microtubule staining between frequencies. These results suggest that the novel method could reduce antibody consumption and shorten immunofluorescence staining time. PMID:26477850
Hybrid inverter for HVDC/weak AC system interconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tam, K.S.
1985-01-01
The concept of the hybrid converter is introduced. By independently controlling a naturally commutated converter (NCC) and an artificially commutated converter (ACC), real power and reactive power can be controlled independently. Alternatively, the ac bus voltage can be regulated without affecting the real power transfer. Independent control is feasible only within certain operating boundaries. Twelve pulse operation, sequential control, and complementary circuits may be viewed as variations of the hybrid converter. The concept of the hybrid converter is demonstrated by digital simulation. At the current state of technology, the NCC is best implemented by a 6-pulse bridge using thyristors asmore » the switching elements. A survey of power electronics applicable to HVDC applications reveals that the capacitively commutated current-sourced converters are either technically or economically better than the other alternatives for the implementation of the ACC. The digital simulation results show that the problems of operating an HVDC system into a weak ac system can be solved by using a hybrid inverter. A new control scheme, the zero Q control, is developed. With no reactive power interaction between the dc system and the ac system, the stability of the HVDC/weak ac system operation is significantly improved. System start-up and fault recovery is fast and stable.« less
NASA Astrophysics Data System (ADS)
El-Ghazzawy, E. H.
2017-10-01
Nanocrystalline NiCr x Fe2- x O4 spinel samples with x = 0.1 and 0.2 have been synthesized by coprecipitation method and annealed at 620°C and 1175°C for 4 h. Their electrical properties were investigated as functions of frequency in the range of 100 Hz to 100 kHz and temperature in the range of 308 K to 358 K. The dielectric constant ( ɛ^' } ) and dielectric loss factor ( {tan} δ ) appeared to decrease with increasing frequency, while the alternating-current (AC) conductivity ( σ^' } ) increased. These dielectric parameters increased with increasing temperature. On the other hand, impedance spectroscopy gave Cole-Cole plots with only one semicircular arc for all the samples, indicating that the grain-boundary contribution was dominant in the conduction mechanism.
NASA Astrophysics Data System (ADS)
Luo, X. M.; Zhang, B.; Zhang, G. P.
2014-09-01
Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.
Test plan for performance testing of the Eaton AC-3 electric vehicle
NASA Astrophysics Data System (ADS)
Crumley, R.; Heiselmann, H. W.
1985-04-01
An alternating current (ac) propulsion system for an electric vehicle was developed and tested. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan was prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the testing done on the Eaton AC-3 includes coastdown and dynamometer tests but does not include environmental, on-road, or track testing. Coastdown testing is performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).
Microfabricated AC impedance sensor
Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo
2002-01-01
A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.
Photovoltaic system with improved DC connections and method of making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott
A micro-inverter assembly includes a housing having an opening formed in a bottom surface thereof, and a direct current (DC)-to-alternating current (AC) micro-inverter disposed within the housing at a position adjacent to the opening. The micro-inverter assembly further includes a micro-inverter DC connector electrically coupled to the DC-to-AC micro-inverter and positioned within the opening of the housing, the micro-inverter DC connector having a plurality of exposed electrical contacts.
Electrical and Biological Effects of Transmission Lines: A Review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jack M.
1989-06-01
This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).
Garcia Quiroga, Manuela; Hamilton-Giachritsis, Catherine; Ibañez Fanés, Margarita
2017-08-01
Attachment has been assessed in children living in alternative care (AC) settings, such as Residential Homes (RC) and Foster Care (FC). However, no study has been conducted to compare attachment styles in residential, foster and parental care conducted as usual in the same country at the same point in time. There is also a lack of studies conducted in less developed countries. Therefore, the aim of this study was to compare outcomes for children living in three different types of care in Chile. Three groups of children (N=77), living in (RC), (FC) and with biological parents (PC) were compared. Attachment styles, Indiscriminate Friendliness (IF) and socio-emotional/behavioral difficulties were assessed. Higher rates of secure attachment were observed in the RC group (36.1%) when compared to studies in RC in other countries (mean 18%). However, children in both types of AC were significantly more likely to have insecure and/or disorganized attachment styles than PC children. Higher rates of socio-emotional and behavioral problems were observed in RC (55.6%) and FC (50%) compared to PC (10%). Within type of AC, no significant differences were found, for attachment styles or for socio-emotional/behavioral difficulties, the only difference were the levels of IF, with children in RC having higher levels. As a conclusion, impact of placement in AC can vary between different countries, other factors, rather than only type of AC could better explain differences in attachment security for children. Implications for research and practices are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anomalous satellite inductive peaks in alternating current response of defective carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Daisuke; Watanabe, Satoshi; Yamamoto, Takahiro
2014-05-07
AC response of defective metallic carbon nanotubes is investigated from first principles. We found that capacitive peaks appear at electron scattering states. Moreover, we show that satellite inductive peaks are seen adjacent to a main capacitive peak, which is in contrast to the conductance spectra having no satellite features. The appearance of satellite inductive peaks seems to depend on the scattering states. Our analysis with a simple resonant scattering model reveals that the origin of the satellite inductive peaks can be understood by just one parameter, i.e., the lifetime of electrons at a defect state.
Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field
NASA Astrophysics Data System (ADS)
Liu, Juan; Lin, Yihuang; Jiang, Jiaxin; Liu, Haiyan; Zhao, Yang; Zheng, Gaofeng
2016-09-01
Electrohydrodynamic printing (EHDP) under alternating current (AC) electric field provides a novel way for the precise micro-/nano-droplet printing. The AC electric field induces the free charge to reciprocate along the EHDP jet and changes the electric field force on the jet periodically. The stability of jet can be enhanced by increasing the voltage frequency, and the regular bead-on-string structure is direct-written along the trajectory of collector. The deposition frequency of bead structure increases with the increasing of voltage frequency, due to the short period of AC electric field. As the voltage frequency is increased from 10 to 60 Hz, the diameter of bead structure decreases from 200 to 110 µm. As the duty ration increased from 10 to 60 %, the diameter of bead structure increased from 100 to 140 µm. This work would accelerate the development and the application of micro-/nano-printing technology in the fields of flexible electronic and micro-/nano-system.
Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M
2016-01-21
The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm.
Ambrus, Géza Gergely; Pisoni, Alberto; Primaßin, Annika; Turi, Zsolt; Paulus, Walter; Antal, Andrea
2015-01-01
High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.
NASA Astrophysics Data System (ADS)
Iwao, Toru; Naito, Yuto; Shimizu, Yuta; Yamamoto, Shinji
2016-10-01
The problem of an emergency large-scale lighting with the high-intensity discharge (HID) lamp is the lack of radiation intensity because of inappropriate energy balance. Some researchers have researched that the radiation power depended on the arc temperature increases with increasing the current. However, the heat loss and the erosion of the electrode as well as the radiation power increases with increasing the current excessively. AC current replaces alternately the cathode and the anode. Thus, it is possible to avoid the concentration of the heat transfer to the anode. Moreover, the lamp efficiency decreases with increasing the current excessively because of ultra violet rays increment. It is necessary to control the temperature distribution with controlling the current and radius. In this paper, the radiation power as a function of the current in the wall-stabilized AC arc of water-cooled vortex type with small caliber was measured. As a result, the radiation power increased with increasing the current and appropriate wall radius. The radiation of AC arc is smaller than it of DC arc. And, the erosion of electrode decreases.
NASA Astrophysics Data System (ADS)
Wang, Xinhua; Liu, Qiang; Chun, Yingchun; Li, Yingchao; Wang, Zuquan
2018-04-01
The delamination of epoxy coating on X80 pipeline steel was evaluated under various stray alternating current (AC) interferences (0-300 A/m2). Qualitative and quantitative analyses were carried out using scanning electrochemical microscopy (SECM), electrochemical impedance spectroscopy (EIS), and three-dimensional digital microscopy. The results show that the SECM current is directly proportional to the soaking time and applied current density. The variation in SECM current curve shape indicates the delamination distance of epoxy coatings at the defect area. The depths of corrosion pits at 50, 100, and 300 A/m2 stray currents were 140, 160, and 240 μm, respectively. The corrosion pits also became wider with increasing current densities. With increasing stray AC densities, both the coating delamination and pit depth became more severe at the same soaking time. The EIS results show that the change in impedance was not significant without stray current, whereas the impedance first decreased and then increased when stray current was applied. These results are consistent with the SECM measurements.
Novel dielectric reduces corona breakdown in ac capacitors
NASA Technical Reports Server (NTRS)
Loehner, J. L.
1972-01-01
Dielectric system was developed which consists of two layers of 25-gage paper separated by one layer of 50-gage polypropylene to reduce corona breakdown in ac capacitors. System can be used in any alternating current application where constant voltage does not exceed 400 V rms. With a little research it could probably be increased to 700 to 800 V rms.
Superconducting Magnetic Energy Storage (SMES) Program
NASA Astrophysics Data System (ADS)
Rogers, J. D.
1985-05-01
The 30 MJ, 10 MW superconducting magnetic energy storage (SMES) system was devised to interact in the Western US Power System as an alternate means to damp unstable oscillations at 0.35 Hz on the Pacific HVAC Interites. The operating limits of the 30 MJ SMES unit were established, and different means of controlling real and reactive power were tested. The unit can follow a sinusoidal power demand signal with an amplitude of up to 8.6 MW with the converter working in a 12 pulse mode. When the converter operates in the constant VAR mode, a time varying real power demand signal of up to 5 MW can be met. It was shown that the Pacific ac Interite has current and reactive power variations of the same frequency as the modulating frequency of the SMES device. The reliability of the SMES subsystems with a narrow band noise input was assessed. Parameters of the ac power system were determined. Converter short circuit tests, load tests under various control conditions, dc breaker tests for coil current interruption, and converter failure mode tests were conducted. The experimental operation of the SMES system is concluded.
Oddy, M H; Santiago, J G
2004-01-01
We have developed a method for measuring the electrophoretic mobility of submicrometer, fluorescently labeled particles and the electroosmotic mobility of a microchannel. We derive explicit expressions for the unknown electrophoretic and the electroosmotic mobilities as a function of particle displacements resulting from alternating current (AC) and direct current (DC) applied electric fields. Images of particle displacements are captured using an epifluorescent microscope and a CCD camera. A custom image-processing code was developed to determine image streak lengths associated with AC measurements, and a custom particle tracking velocimetry (PTV) code was devised to determine DC particle displacements. Statistical analysis was applied to relate mobility estimates to measured particle displacement distributions.
Zhu, Anna; Liu, Harris K; Long, Feng; Su, Erzheng; Klibanov, Alexander M
2015-01-01
Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution.
NASA Astrophysics Data System (ADS)
Tan, Ting; Yan, Zhimiao; Lei, Hong
2017-07-01
Galloping-based piezoelectric energy harvesters scavenge small-scale wind energy and convert it into electrical energy. For piezoelectric energy harvesting with the same vibrational source (galloping) but different (alternating-current (AC) and direct-current (DC)) interfaces, general analytical solutions of the electromechanical coupled distributed parameter model are proposed. Galloping is theoretically proven to appear when the linear aerodynamic negative damping overcomes the electrical damping and mechanical damping. The harvested power is demonstrated as being done by the electrical damping force. Via tuning the load resistance to its optimal value for optimal or maximal electrical damping, the harvested power of the given structure with the AC/DC interface is maximized. The optimal load resistances and the corresponding performances of such two systems are compared. The optimal electrical damping are the same but with different optimal load resistances for the systems with the AC and DC interfaces. At small wind speeds where the optimal electrical damping can be realized by only tuning the load resistance, the performances of such two energy harvesting systems, including the minimal onset speeds to galloping, maximal harvested powers and corresponding tip displacements are almost the same. Smaller maximal electrical damping with larger optimal load resistance is found for the harvester with the DC interface when compared to those for the harvester with the AC interface. At large wind speeds when the maximal electrical damping rather than the optimal electrical damping can be reached by tuning the load resistance alone, the harvester with the AC interface circuit is recommended for a higher maximal harvested power with a smaller tip displacement. This study provides a method using the general electrical damping to connect and compare the performances of piezoelectric energy harvesters with same excitation source but different interfaces.
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes
Wu, Xiaojian
2017-01-01
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed. PMID:29240676
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes.
Experton, Juliette; Wu, Xiaojian; Martin, Charles R
2017-12-14
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed.
System and method for motor speed estimation of an electric motor
Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN
2012-06-19
A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.
An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.
Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R
2016-04-26
Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2016-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.
System for automatically switching transformer coupled lines
NASA Technical Reports Server (NTRS)
Dwinell, W. S. (Inventor)
1979-01-01
A system is presented for automatically controlling transformer coupled alternating current electric lines. The secondary winding of each transformer is provided with a center tap. A switching circuit is connected to the center taps of a pair of secondary windings and includes a switch controller. An impedance is connected between the center taps of the opposite pair of secondary windings. The switching circuit has continuity when the AC lines are continuous and discontinuity with any disconnect of the AC lines. Normally open switching means are provided in at least one AC line. The switch controller automatically opens the switching means when the AC lines become separated.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; El-Zaidia, E. F. M.; Darwish, A. A. A.; Salem, G. F.
2017-02-01
Dielectric relaxation and alternative current conductivity of a new organic compound 2-(1,2-dihydro-7-methyl-2-oxoquinoline-5-yl) malononitrile (DMOQMN) have been investigated. X-ray diffraction (XRD) at room temperature reveals that DMOQMN samples have a polycrystalline structure of the triclinic system. The analysis of the dielectric constant and dielectric loss index suggested the dominant polarization is performed and the Maxwell-Wagner-Sillar type polarization is dominating at low frequency and high temperature. These results have been confirmed by the XRD and dielectric modulus. The estimated relaxation time and the activation energy are 9 × 10-13 s and 0.43 eV, respectively. Our results indicated that the conduction mechanism of DMOQMN is controlled by the correlation barrier hopping (CBH) model.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Fluorescent Lamp Ballasts Q1 Appendix Q1 to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY... of Fluorescent Lamp Ballasts 1. Definitions 1.1. AC control signal means an alternating current (AC... functions. 1.3. Cathode heating refers to power delivered to the lamp by the ballast for the purpose of...
NASA Astrophysics Data System (ADS)
Zhu, Jiangong; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng; Gu, Weijun
2017-11-01
Effect of the AC (alternating current) pulse heating method on battery SoH (state of health) for large laminated power lithium-ion batteries at low temperature is investigated experimentally. Firstly, excitation current frequencies, amplitudes, and voltage limitations on cell temperature evolution are studied. High current amplitudes facilitate the heat accumulation and temperature rise. Low frequency region serves as a good innovation to heat the battery because of the large impedance. Wide voltage limitations also enjoy better temperature evolution owing to the less current modulation, but the temperature difference originated from various voltage limitations attenuates due to the decrement of impedance resulting from the temperature rise. Experiments with the thermocouple-embedded cell manifest good temperature homogeneity between the battery surface and interior during the AC heating process. Secondly, the cell capacity, Direct Current resistance and Electrochemical Impedance Spectroscopy are all calibrated to assess the battery SoH after the hundreds of AC pulse heating cycles. Also, all cells are disassembled to investigate the battery internal morphology with the employment of Scanning Electron Microscope and Energy-Dispersive x-ray Spectroscopy techniques. The results indicate that the AC heating method does not aggravate the cell degradation even in the low frequency range (0.5 Hz) under the normal voltage protection limitation.
A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications.
Salari, A; Navi, M; Dalton, C
2015-01-01
The AC electrothermal technique is very promising for biofluid micropumping, due to its ability to pump high conductivity fluids. However, compared to electroosmotic micropumps, a lack of high fluid flow is a disadvantage. In this paper, a novel AC multiple array electrothermal (MAET) micropump, utilizing multiple microelectrode arrays placed on the side-walls of the fluidic channel of the micropump, is introduced. Asymmetric coplanar microelectrodes are placed on all sides of the microfluidic channel, and are actuated in different phases: one, two opposing, two adjacent, three, or all sides at the same time. Micropumps with different combinations of side electrodes and cross sections are numerically investigated in this paper. The effect of the governing parameters with respect to thermal, fluidic, and electrical properties are studied and discussed. To verify the simulations, the AC MAET concept was then fabricated and experimentally tested. The resulted fluid flow achieved by the experiments showed good agreement with the corresponding simulations. The number of side electrode arrays and the actuation patterns were also found to greatly influence the micropump performance. This study shows that the new multiple array electrothermal micropump design can be used in a wide range of applications such as drug delivery and lab-on-a-chip, where high flow rate and high precision micropumping devices for high conductivity fluids are needed.
Anatomy of the chiral magnetic effect in and out of equilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharzeev, Dmitri; Stephanov, Mikhail; Yee, Ho-Ung
Here, we identify a new contribution to the chiral magnetic conductivity at finite frequencies—the magnetization current. This allows us to quantitatively reproduce the known field-theoretic time-dependent (AC) chiral magnetic response in terms of kinetic theory. We also evaluate the corresponding AC chiral magnetic conductivity in two-flavor QCD plasma at weak coupling. The magnetization current results from the spin response of chiral quasiparticles to magnetic field, and is thus proportional to the quasiparticle’s g -factor. Furthemrore, in condensed matter systems, where the chiral quasiparticles are emergent and the g -factor can significantly differ from 2, this opens up the possibility ofmore » tuning the AC chiral magnetic response.« less
Anatomy of the chiral magnetic effect in and out of equilibrium
Kharzeev, Dmitri; Stephanov, Mikhail; Yee, Ho-Ung
2017-03-28
Here, we identify a new contribution to the chiral magnetic conductivity at finite frequencies—the magnetization current. This allows us to quantitatively reproduce the known field-theoretic time-dependent (AC) chiral magnetic response in terms of kinetic theory. We also evaluate the corresponding AC chiral magnetic conductivity in two-flavor QCD plasma at weak coupling. The magnetization current results from the spin response of chiral quasiparticles to magnetic field, and is thus proportional to the quasiparticle’s g -factor. Furthemrore, in condensed matter systems, where the chiral quasiparticles are emergent and the g -factor can significantly differ from 2, this opens up the possibility ofmore » tuning the AC chiral magnetic response.« less
Chen, Chiao-Chen; Baker, Lane A
2011-01-07
Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karl; Vossos, Vagelis; Kloss, Margarita
2016-09-01
Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for anmore » ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.« less
Positioning activated carbon amendment technologies in a novel framework for sediment management.
Kupryianchyk, Darya; Rakowska, Magdalena I; Reible, Danny; Harmsen, Joop; Cornelissen, Gerard; van Veggel, Marc; Hale, Sarah E; Grotenhuis, Tim; Koelmans, Albert A
2015-04-01
Contaminated sediments can pose serious threats to human health and the environment by acting as a source of toxic chemicals. The amendment of contaminated sediments with strong sorbents like activated C (AC) is a rapidly developing strategy to manage contaminated sediments. To date, a great deal of attention has been paid to the technical and ecological features and implications of sediment remediation with AC, although science in this field still is rapidly evolving. This article aims to provide an update on the recent literature on these features, and provides a comparison of sediment remediation with AC to other sediment management options, emphasizing their full-scale application. First, a qualitative overview of advantages of current alternatives to remediate contaminated sediments is presented. Subsequently, AC treatment technology is critically reviewed, including current understanding of the effectiveness and ecological safety for the use of AC in natural systems. Finally, this information is used to provide a novel framework for supporting decisions concerning sediment remediation and beneficial reuse. © 2015 SETAC.
Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho
2013-08-01
An alternating current (AC) voltage modulation was applied to ion-selective observations with plasticized poly(vinyl chloride) membranes in glass nanopipettes. The liquid confronting the membranes in the nanopipettes, the conditioning process, and AC voltage modulation play important roles in the ion-selective detection. In the AC detection system developed by us, where distilled water was used as the liquid within the nanopipettes, potassium ions were selectively detected in the sample solution of sodium and potassium ions because sodium ions were captured at the membrane containing bis(12-crown-4) ionophores, before the saturation of the ionophores. The membrane lost the selectivity after the saturation. On using sodium chloride as the liquid within the nanopipette, the membrane selectively detected potassium and sodium ions before and after the saturation of ionophores, respectively. The ion-selective detection of our system can be explained by the ion extraction-diffusion-dissolution mechanism through the bis(12-crown-4) ionophores with AC voltage modulation.
Onboard power line conditioning system for an electric or hybrid vehicle
Kajouke, Lateef A.; Perisic, Milun
2016-06-14
A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fregosi, Daniel; Ravula, Sharmila; Brhlik, Dusan
2015-06-07
Bosch has developed and demonstrated a novel direct current (DC) microgrid system that maximizes the efficiency of locally generated photovoltaic energy while offering high reliability, safety, redundancy, and reduced cost compared to equivalent alternating current (AC) systems. Several demonstration projects validating the system feasibility and expected efficiency gains have been completed and additional ones are in progress. This paper gives an overview of the Bosch DC microgrid system and presents key results from a large simulation study done to estimate the energy savings of the Bosch DC microgrid over conventional AC systems. The study examined the system performance in locationsmore » across the United States for several commercial building types and operating profiles. It found that the Bosch DC microgrid uses generated PV energy 6%-8% more efficiently than traditional AC systems.« less
Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina
2015-11-01
Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.
Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong
2018-05-01
Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.
Mohamed, Hend Omar; Obaid, M; Sayed, Enas Taha; Liu, Yang; Lee, Jinpyo; Park, Mira; Barakat, Nasser A M; Kim, Hak Yong
2017-08-01
This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm -2 , which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.
Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes
NASA Astrophysics Data System (ADS)
Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito
An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.
Gomes, Ana L.; Kinchesh, Paul; Kersemans, Veerle; Allen, Philip D.; Smart, Sean C.
2016-01-01
Purpose To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. Materials and Methods An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10–100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. Results Images and spectra acquired in the presence and absence of 50–100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse’s temperature approached the set target. Conclusion The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality. PMID:27806062
Electric discharge during electrosurgery
Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I.; Keidar, Michael
2015-01-01
Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 103 A/cm2. The plasma electron density and electrical conductivities in the channel were found be 1016 cm−3 and (1-2) Ohm−1cm−1, respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold. PMID:25880721
Electric discharge during electrosurgery.
Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael
2015-04-16
Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.
Alternating-Current Motor Drive for Electric Vehicles
NASA Technical Reports Server (NTRS)
Krauthamer, S.; Rippel, W. E.
1982-01-01
New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arul, K. Thanigai; Kolanthai, Elayaraja; Manikandan, E.
Highlights: • Rapid technique to synthesize nanorods of magnesium ion incorporated hydroxyapatite. • Enhanced electrical and mechanical properties. • Improved photoluminescence and wettability on magnesium incorporation. • Increased in vitro bioactivity. - Abstract: Nanocrystalline hydroxyapatite (HAp-Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2,} 35 nm) and magnesium (Mg{sup 2+}) ion incorporated HAp were synthesized by microwave technique. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), FE-HRTEM (Field emission high resolution transmission electron microscopy), DLS (dynamic light scattering), EDXRF (energy dispersive X-ray fluorescence spectrometry), microhardness, permittivity and alternating current (ac) conductivity, besides the PL (photoluminescence), wettability and in vitro bioactivity of the samples weremore » analysed. EDXRF revealed the Mg{sup 2+} ion incorporation in HAp. The Mg{sup 2+} ion incorporation did not alter the phase but drastically reduced the crystallite size and particle size respectively by 48% and 32%. There was enhanced microhardness (24%) at low level (<13%) and decreased zeta potential of Mg{sup 2+} ion incorporation. The permittivity, ac conductivity, PL, wettability and in vitro bioactivity were enhanced on Mg{sup 2+} ion incorporation. These properties enable them to be a promising candidate for wound healing, bone replacement applications and also as a biosensor.« less
Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels.
Yalçın, O; Coşkun, R; Okutan, M; Öztürk, M
2013-08-01
The dielectric properties of methylene blue (MB)-doped hydrogels were investigated by impedance spectroscopy. The real part (ε') and the imaginary part (ε") of the complex dielectric constant and the energy loss tangent/dissipation factor (tan δ) were measured in the frequency range of 10 Hz to 100 MHz at room temperature for pH 5.5 value. Frequency variations of the resistance, the reactance, and the impedance of the samples have also been investigated. The dielectric permittivity of the MB-doped hydrogels is sensitive to ionic conduction and electrode polarization in low frequency. Furthermore, the dielectric behavior in high-frequency parts was attributed to the Brownian motion of the hydrogen bonds. The ionic conduction for MB-doped samples was prevented for Cole-Cole plots, while the Cole-Cole plots for pure sample show equivalent electrical circuit. The alternative current (ac) conductivity increases with the increasing MB concentration and the frequency.
Surface charge mapping with a nanopipette.
McKelvey, Kim; Kinnear, Sophie L; Perry, David; Momotenko, Dmitry; Unwin, Patrick R
2014-10-01
Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.
Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas
2009-03-01
Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.
Building Integrated Photovoltaic (BIPV) Roofs for Sustainability and Energy Efficiency
2014-04-01
ACRONYMS A/C Air Conditioning a-Si Amorphous Silicon AC Alternating Current AFB Air Force Base AHU Air Handing Unit APS Arizona Public...Service ASTM American Society for Testing and Materials AZ Arizona BIPV Building Integrated Photovoltaic BTU British Thermal Units C Celsius CA...AFB) in Arizona (AZ). This site was chosen based on the ESTCP review board’s recommendation, the large size of the BIPV roof, and the age. Site I
NASA Astrophysics Data System (ADS)
Ta, Wurui; Shao, Tianchong; Gao, Yuanwen
2018-04-01
High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.
Electromagnetic augmentation for casting of thin metal sheets
Hull, J.R.
1987-10-28
Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.
Testing of a 1.25-m HTS Cable Made from YBCO Tapes
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Lue, J. W.; Demko, J. A.; Duckworth, R. C.; Fisher, P. W.; Daumling, M.; Lindsay, D. T.; Roden, M. L.; Tolbert, J. C.
2004-06-01
Ultera and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested a 1.25-m-long, prototype high-temperature superconducting (HTS) power cable made from 1-cm-wide, second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in boiling liquid nitrogen at 77 K. DC testing of the 1.25-m cable included determination of the V-I curve, with a critical current of 4200 A. This was consistent with the properties of the 24 individual YBCO tapes. AC testing of the cable was conducted at currents up to 2500 Arms. The ac losses were measured calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. AC losses of about 2 W/m were measured at a cable ac current of 2000 Arms. Overcurrent testing was conducted at peak current values up to 12 kA for pulse lengths of 0.1-0.2 s. The cable temperature increased to 105 K for a 12 kA, 0.2 s overcurrent pulse, and the cable showed no degradation after the sequence of overcurrent testing. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.
NASA Astrophysics Data System (ADS)
Leman, A. M.; Zakaria, S.; Salleh, M. N. M.; Sunar, N. M.; Feriyanto, D.; Nazri, A. A.
2017-09-01
Activated carbon (AC) has one of the promising alternative technology for filtration and adsorption process. It inexpensive material because the sources is abundant especially in Malaysia. Main purpose of this project is to develop AC by chemical activation process to improve adsorption capacity by improving porosity of AC. AC developed via carbonization using designed burner at temperature of 650°C to 850 °C and activated by Potassium Hydroxide (KOH) in 12 hour and then dried at temperature of 300°C. Characterization and analysis is conducted by Scanning Electron Microscopy (SEM) for surface morphology analysis, Energy Dispersive Spectroscopy (EDS) for composition analysis, density and porosity analysis. Results shows that uneven surface has been observed both of AC and non-AC and also AC shows higher porosity as compared to non-AC materials. Density value of raw material has lower than AC up to 11.67% and 47.54% and porosity of raw material has higher than AC up to 31.45% and 45.69% for palm shell and coconut shell AC. It can be concluded that lower density represent higher porosity of material and higher porosity indicated higher adsorption capacity as well.
San-Juan, Daniel; Sarmiento, Carlos Ignacio; Hernandez-Ruiz, Axel; Elizondo-Zepeda, Ernesto; Santos-Vázquez, Gabriel; Reyes-Acevedo, Gerardo; Zúñiga-Gazcón, Héctor; Zamora-Jarquín, Carol Marina
2016-01-01
Transcranial alternating current stimulation (tACS) is a re-emergent neuromodulation technique that consists in the external application of oscillating electrical currents that induces changes in cortical excitability. We present the case of a 16-year-old female with pharmaco-resistant juvenile myoclonic epilepsy to 3 antiepileptic’s drugs characterized by 4 myoclonic and 20 absence seizures monthly. She received tACS at 1 mA at 3 Hz pulse train during 60 min over Fp1–Fp2 (10–20 EEG international system position) during 4 consecutive days using an Endeavor™ IOM Systems device® (Natus Medical Incorporated, Middleton, WI, USA). At the 1-month follow-up, she reported a 75% increase in seizures frequency (only myoclonic and tonic–clonic events) and developed a 24-h myoclonic status epilepticus that resolved with oral clonazepam and intravenous valproate. At the 2-month follow-up, the patient reported a 15-day seizure-free period. PMID:27965623
Fine-Filament MgB2 Superconductor Wire
NASA Technical Reports Server (NTRS)
Cantu, Sherrie
2015-01-01
Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.
Skyrmion dynamics in a chiral magnet driven by periodically varying spin currents*
NASA Astrophysics Data System (ADS)
Zhu, Rui; Zhang, Yin-Yan
2016-12-01
In this work, we investigated the spin dynamics in a slab of chiral magnets induced by an alternating (ac) spin current. Periodic trajectories of the skyrmion in real space are discovered under the ac current as a result of the Magnus and viscous forces, which originate from the Gilbert damping, the spin transfer torque, and the β-nonadiabatic torque effects. The results are obtained by numerically solving the Landau-Lifshitz-Gilbert equation and can be explained by the Thiele equation characterizing the skyrmion core motion. Supplementary material in the form of one avi file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2016-70467-9
Inverter communications using output signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Patrick L.
Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.
Preliminary investigation of the effects of γ-tACS on working memory in schizophrenia.
Hoy, Kate E; Whitty, Dean; Bailey, Neil; Fitzgerald, Paul B
2016-10-01
Working memory impairment in schizophrenia has been strongly associated with abnormalities in gamma oscillations within the dorsolateral prefrontal cortex (DLFPC). We recently published the first ever study showing that anodal transcranial direct current stimulation (tDCS) to the left DLPFC was able to significantly improve working memory in schizophrenia and did so seemingly via restoring normal gamma oscillatory function. Transcranial alternating current stimulation (tACS) is a form of electrical brain stimulation that delivers stimulation at a specific frequency and has been shown to entrain endogenous cortical oscillations. Therefore, gamma (γ) tACS may be even more effective than tDCS in improving working memory in schizophrenia. In a randomized repeated-measures study we compared the effects of γ-tACS, tDCS and sham stimulation on the performance of the two back working memory tasks in ten patients with schizophrenia. There was a significant time by stimulation interaction, with tDCS and sham showing trend-level improvements in working memory, while γ-tACS, contrary to our hypothesis, showed no change. The results are discussed in light of posited divergent effects of tACS and tDCS on the pathophysiology of working memory impairment in schizophrenia.
NASA Astrophysics Data System (ADS)
Chen, Lei; Zhang, Yao; Xue, Shaochan; Deng, Xiaorong; Anqi; Luo; Liu, Fayong; Jiang, Yang; Chen, Shifu; Bahader, Ali
2013-07-01
The aim of the present investigation was to develop a phosphor to solve the flickering luminescence of alternating current (AC) light-emitting diodes (LED) by compensating the dark duration with appropriately persistent luminescence. The phosphor SrAl2O4:Eu2+ co-doped with Y3+ or Dy3+ was synthesized via solid-state reaction with H3BO3 as flux. The crystal structure and morphology were characterized by using X-ray diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. The photoluminescence spectra were collected with a fluorescence spectrometer. The results demonstrated that appropriate amount of Y3+ or DY3+ doped was beneficial to suppress the by-product of Sr4Al14O25 which easily co-existed with the SrAl2O4 phase brought by the flux of H3BO3. However, too much Y3+ or DY3+ doped resulted in the formation of another impurity phase, i.e., the yttrium aluminum garnet of Y3Al5O12 and Dy3Al5O12. Comparatively, the doped DY3+ was more helpful in prolonging the persistent luminescence, while Y3+ was more efficient in enhancing luminescence intensity. To demonstrate the feasibility of the phosphor applied in AC LEDs, a nearly white AC LED was fabricated by coating the phosphor on a blue AC LED chip. The persistent luminescence was radiated from the AC LED device after turning power off. Moreover, the effect of the phosphor on compensating the AC LED dark duration through persistent luminescence was revealed by using the Keyence VW-9000 High-speed Microscope for the first time.
Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S
2015-01-01
Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.
Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.
This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…
Power Conditioning for MEMS-Based Waste Vibrational Energy Harvester
2015-06-01
circuits ...........................................................................................18 Figure 18. Full-wave passive MOSFET rectifier...ABBREVIATIONS AC Alternative Current AlN Aluminum Nitride DC Direct Current LIA Lock-In Amplifier MEMS Microelectromechanical Systems MOSFET ...efficiency is achieved when input voltage is over 2–3 V [14]. Using metal-oxide-semiconductor field-effect transistors ( MOSFETs ) in a rectifier instead of
Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.
Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M
2011-09-01
We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes.
Sadaf, S M; Ra, Y-H; Nguyen, H P T; Djavid, M; Mi, Z
2015-10-14
The current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop. Moreover, through the monolithic integration of p-GaN up and p-GaN down nanowire LED structures on the same substrate, we have demonstrated, for the first time, AC operated LEDs on a Si platform, which can operate efficiently in both polarities (positive and negative) of applied voltage.
NASA Technical Reports Server (NTRS)
Pionke, L. J.; Garland, K. C.
1973-01-01
Candidate alloys for the Shuttle Solid Rocket Booster (SRB) case were tested under simulated service conditions to define subcritical flaw growth behavior under both sustained and cyclic loading conditions. The materials evaluated were D6AC and 18 Ni maraging steel, both heat treated to a nominal yield strength of 1380 MN/sq m (200 ksi). The sustained load tests were conducted by exposing precracked, stressed specimens of both alloys to alternate immersion in synthetic sea water. It was found that the corrosion and stress corrosion resistance of the 18 Ni maraging steel were superior to that of the D6AC steel under these test conditions. It was also found that austenitizing temperature had little influence on the threshold stress intensity of the D6AC. The cyclic tests were conducted by subjecting precracked surface-flawed specimens of both alloys to repeated load/thermal/environmental profiles which were selected to simulate the SRB missions. It was found that linear removal operations that involve heating to 589 K (600 F) cause a decrease in cyclic life of D6AC steel relative to those tests conducted with no thermal cycling.
A new infusion pathway intactness monitoring system.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Ninomiya, Ishio; Sata, Koji; Hamada, Shingo; Caldwell, W Morton
2006-01-01
A new infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. An AC (alternating current) voltage is induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. The induced AC voltage can be recorded by a main electrode wrapped around the infusion polyvinyl chloride tube. A reference electrode is wrapped on the electrode to monitor the AC voltage around the main electrode. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).
Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field
NASA Astrophysics Data System (ADS)
Tokman, I. D.; Vugalter, G. A.
2002-07-01
An interaction of a high-spin molecule with a bifrequency ac magnetic field, occurring at times much shorter than the molecule relaxation times, has been considered. The molecule is subjected to a dc magnetic field perpendicular to the easy anisotropy axis of the molecule. The bifrequency ac field is a superposition of two ac fields, one of which is perpendicular to the easy anisotropy axis and causes resonant transitions between the lower states of the fundamental and first excited doublets. The other ac field is parallel to the easy anisotropy axis and has a frequency much smaller than the frequency of the first ac field. It has been shown that, first, the molecule can absorb or emit energy, depending on the frequency of the low-frequency ac field, second, the bifrequency ac magnetic field induces tunneling of the molecule magnetization with the Rabi frequency. The conditions of observation of the effects predicted are discussed.
A technical guide to tDCS, and related non-invasive brain stimulation tools
Woods, AJ; Antal, A; Bikson, M; Boggio, PS; Brunoni, AR; Celnik, P; Cohen, LG; Fregni, F; Herrmann, CS; Kappenman, ES; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, PC; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, MA
2015-01-01
Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115
Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone
2013-10-30
Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.
Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires
NASA Astrophysics Data System (ADS)
Ainslie, Mark D.; Bumby, Chris W.; Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki
2018-07-01
The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as ‘dynamic resistance.’ Dynamic resistance is relevant to many potential high-temperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H -formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary DC transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, I c( B ), of the wire. It is shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until J c is exceeded and flux-flow resistance occurs.
Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential
NASA Astrophysics Data System (ADS)
Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.
2008-02-01
Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.
Szymanski, Caroline; Müller, Viktor; Brick, Timothy R.; von Oertzen, Timo; Lindenberger, Ulman
2017-01-01
We walk together, we watch together, we win together: Interpersonally coordinated actions are omnipresent in everyday life, yet the associated neural mechanisms are not well understood. Available evidence suggests that the synchronization of oscillatory activity across brains may provide a mechanism for the temporal alignment of actions between two or more individuals. In an attempt to provide a direct test of this hypothesis, we applied transcranial alternating current stimulation simultaneously to two individuals (hyper-tACS) who were asked to drum in synchrony at a set pace. Thirty-eight female-female dyads performed the dyadic drumming in the course of 3 weeks under three different hyper-tACS stimulation conditions: same-phase-same-frequency; different-phase-different-frequency; sham. Based on available evidence and theoretical considerations, stimulation was applied over right frontal and parietal sites in the theta frequency range. We predicted that same-phase-same-frequency stimulation would improve interpersonal action coordination, expressed as the degree of synchrony in dyadic drumming, relative to the other two conditions. Contrary to expectations, both the same-phase-same-frequency and the different-phase-different-frequency conditions were associated with greater dyadic drumming asynchrony relative to the sham condition. No influence of hyper-tACS on behavioral performance was seen when participants were asked to drum separately in synchrony to a metronome. Individual and dyad preferred drumming tempo was also unaffected by hyper-tACS. We discuss limitations of the present version of the hyper-tACS paradigm, and suggest avenues for future research. PMID:29167638
NASA Astrophysics Data System (ADS)
Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration
2015-11-01
Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.
Power Delivery from an Actual Thermoelectric Generation System
NASA Astrophysics Data System (ADS)
Kaibe, Hiromasa; Kajihara, Takeshi; Nagano, Kouji; Makino, Kazuya; Hachiuma, Hirokuni; Natsuume, Daisuke
2014-06-01
Similar to photovoltaic (PV) and fuel cells, thermoelectric generators (TEGs) supply direct-current (DC) power, essentially requiring DC/alternating current (AC) conversion for delivery as electricity into the grid network. Use of PVs is already well established through power conditioning systems (PCSs) that enable DC/AC conversion with maximum-power-point tracking, which enables commercial use by customers. From the economic, legal, and regulatory perspectives, a commercial PCS for PVs should also be available for TEGs, preferably as is or with just simple adjustment. Herein, we report use of a PV PCS with an actual TEG. The results are analyzed, and proper application for TEGs is proposed.
Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers
NASA Astrophysics Data System (ADS)
Liu, Jun; Goswami, Ankur; Jiang, Keren; Khan, Faheem; Kim, Seokbeom; McGee, Ryan; Li, Zhi; Hu, Zhiyu; Lee, Jungchul; Thundat, Thomas
2018-02-01
The direct conversion of mechanical energy into electricity by nanomaterial-based devices offers potential for green energy harvesting1-3. A conventional triboelectric nanogenerator converts frictional energy into electricity by producing alternating current (a.c.) triboelectricity. However, this approach is limited by low current density and the need for rectification2. Here, we show that continuous direct-current (d.c.) with a maximum density of 106 A m-2 can be directly generated by a sliding Schottky nanocontact without the application of an external voltage. We demonstrate this by sliding a conductive-atomic force microscope tip on a thin film of molybdenum disulfide (MoS2). Finite element simulation reveals that the anomalously high current density can be attributed to the non-equilibrium carrier transport phenomenon enhanced by the strong local electrical field (105-106 V m-2) at the conductive nanoscale tip4. We hypothesize that the charge transport may be induced by electronic excitation under friction, and the nanoscale current-voltage spectra analysis indicates that the rectifying Schottky barrier at the tip-sample interface plays a critical role in efficient d.c. energy harvesting. This concept is scalable when combined with microfabricated or contact surface modified electrodes, which makes it promising for efficient d.c. triboelectricity generation.
Photovoltaic system with improved AC connections and method of making same
Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony
2018-02-13
An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.
Study of 1 MW PV array at the Kennedy Space Center
NASA Astrophysics Data System (ADS)
Dhere, Neelkanth G.; Schneller, Eric; Martin, Wayne R.; Dhere, Ramesh G.
2016-09-01
FP and L has deployed a 1 MW c-Si in a fenced compound at the Kennedy Space Center. Two 500 kW inverters located in an elevated and air-conditioned enclosure convert direct current (DC) to alternating current (AC). The generated power, DC and AC voltages and currents are measured and recorded. Charts of variation of PV parameters are generated for analyses. The generated power is also tabulated and reported on periodic basis. Infrared and visual images of the array, sections of the array, and of individual modules from the front and back are recorded periodically. Any interruption of power generation are recorded. The dust and corrosion on screws and frame were observed in a few modules. The temperature of active area of module is higher than that of metallic support and frame probably because of conduction of the heat by the heavy metallic structure. The 1-MW PV array is operating normally without signs of excessive degradation except for collection of dust towards the bottom of a few modules. Since these modules were not washed periodically and any cleaning was by rain. Thus the collection of dust towards the bottom of modules can be understood and does not pose a serious problem. Corrosion on screws and frame were observed in a few modules. This study if continued over a long time, will serve to follow the behavior of this reasonable size PV Plant.
Biasing and fast degaussing circuit for magnetic materials
Dress, Jr., William B.; McNeilly, David R.
1984-01-01
A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a d.c. current and alternately apply a selectively damped a.c. current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.
Biasing and fast degaussing circuit for magnetic materials
Dress, W.B. Jr.; McNeilly, D.R.
1983-10-04
A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a dc current and alternately apply a selectively damped ac current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.
Application field and ways to control alternating-current plasma torch with rail electrodes
NASA Astrophysics Data System (ADS)
Kuznetsov, V. E.; Safronov, A. A.; Vasilieva, O. B.; Shiryaev, V. N.; Dudnik, Yu D.; Pavlov, A. V.; Kuchina, Yu A.
2018-01-01
The paper deals with the investigation of parameters of the high voltage alternating-current plasma torch with rail electrodes. Usage of the injector and its variation allows controlling of operation of the ac plasma torch with rail electrodes. Also the possibility to protect the electric arc chamber without protective gas has been studied. It was found that increasing in the injector power causes the repeated breakdown at lower voltage and hence the arc dimensions decreases. The results of experiments are presented in the paper.
The Design of Operational Amplifier for Low Voltage and Low Current Sound Energy Harvesting System
NASA Astrophysics Data System (ADS)
Fang, Liew Hui; Rahim, Rosemizi Bin Abd; Isa, Muzamir; Idris Syed Hassan, Syed; Ismail, Baharuddin Bin
2018-03-01
The objective of this paper is to design a combination of an operational amplifier (op-amp) with a rectifier used in an alternate current (ac) to direct current (dc) power conversion. The op-amp was designed to specifically work at low voltage and low current for a sound energy harvesting system. The goal of the op-amp design with adjustable gain was to control output voltage based on the objectives of the experiment conducted. The op-amp was designed for minimum power dissipation performance, with the means of increasing the output current when receiving a large amount of load. The harvesting circuits which designed further improved the power output efficiency by shortening the fully charged time needed by a supercapacitor bank. It can fulfil the long-time power demands for low power device. Typically, a small amount of energy sources were converted to electricity and stored in the supercapacitor bank, which was built by 10 pieces of capacitors with 0.22 F each, arranged in parallel connection. The highest capacitance was chosen based on the characteristic that have the longest discharging time to support the applications of a supercapacitor bank. Testing results show that the op-amp can boost the low input ac voltage (∼3.89 V) to high output dc voltage (5.0 V) with output current of 30 mA and stored the electrical energy in a big supercapacitor bank having a total of 2.2 F, effectively. The measured results agree well with the calculated results.
NASA Astrophysics Data System (ADS)
Lan, Chunbo; Tang, Lihua; Harne, Ryan L.
2018-05-01
Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.
Experimental quantification of the true efficiency of carbon nanotube thin-film thermophones.
Bouman, Troy M; Barnard, Andrew R; Asgarisabet, Mahsa
2016-03-01
Carbon nanotube thermophones can create acoustic waves from 1 Hz to 100 kHz. The thermoacoustic effect that allows for this non-vibrating sound source is naturally inefficient. Prior efforts have not explored their true efficiency (i.e., the ratio of the total acoustic power to the electrical input power). All previous works have used the ratio of sound pressure to input electrical power. A method for true power efficiency measurement is shown using a fully anechoic technique. True efficiency data are presented for three different drive signal processing techniques: standard alternating current (AC), direct current added to alternating current (DCAC), and amplitude modulation of an alternating current (AMAC) signal. These signal processing techniques are needed to limit the frequency doubling non-linear effects inherent to carbon nanotube thermophones. Each type of processing affects the true efficiency differently. Using a 72 W(rms) input signal, the measured efficiency ranges were 4.3 × 10(-6) - 319 × 10(-6), 1.7 × 10(-6) - 308 × 10(-6), and 1.2 × 10(-6) - 228 × 10(-6)% for AC, DCAC, and AMAC, respectively. These data were measured in the frequency range of 100 Hz to 10 kHz. In addition, the effects of these processing techniques relative to sound quality are presented in terms of total harmonic distortion.
Analytical theory and possible detection of the ac quantum spin Hall effect
Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...
2017-07-11
Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.
Brankack, J; Stewart, M; Fox, S E
1993-07-02
Single-electrode depth profiles of the hippocampal EEG were made in urethane-anesthetized rats and rats trained in an alternating running/drinking task. Current source density (CSD) was computed from the voltage as a function of depth. A problem inherent to AC-coupled profiles was eliminated by incorporating sustained potential components of the EEG. 'AC' profiles force phasic current sinks to alternate with current sources at each lamina, changing the magnitude and even the sign of the computed membrane current. It was possible to include DC potentials in the profiles from anesthetized rats by using glass micropipettes for recording. A method of 'subtracting' profiles of the non-theta EEG from theta profiles was developed as an approach to including sustained potentials in recordings from freely-moving animals implanted with platinum electrodes. 'DC' profiles are superior to 'AC' profiles for analysis of EEG activity because 'DC'-CSD values can be considered correct in sign and more closely represent the actual membrane current magnitudes. Since hippocampal inputs are laminated, CSD analysis leads to straightforward predictions of the afferents involved. Theta-related activity in afferents from entorhinal neurons, hippocampal interneurons and ipsi- and contralateral hippocampal pyramids all appear to contribute to sources and sinks in CA1 and the dentate area. The largest theta-related generator was a sink at the fissure, having both phasic and tonic components. This sink may reflect activity in afferents from the lateral entorhinal cortex. The phase of the dentate mid-molecular sink suggests that medial entorhinal afferents drive the theta-related granule and pyramidal cell firing. The sustained components may be simply due to different average rates of firing during theta rhythm than during non-theta EEG in afferents whose firing rates are also phasically modulated.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1995-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1997-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Simultaneous measurement of skin potential and conductance in electrodermal response monitoring
NASA Astrophysics Data System (ADS)
Jabbari, A.; Johnsen, B.; Grimnes, S.; Martinsen, Ø. G.
2010-04-01
Measurement of electrodermal activity (EDA) has been an important tool in psychophysiological research. The emotional sweat activity is very sensitive to psychological stimuli or conditions. The changes are easily detected by means of electrical measurements and since the sweat ducts are predominantly resistive, a low-frequency conductance measurement is appropriate for measurement of skin conductance in electrodermal response. The main purpose of this study was to develop a measuring system where DC current was replaced by a small AC current in a system so the DC potential and AC conductance could be measured simultaneously at the same skin site. A small, battery operated, PDA based instrument has been developed. The preliminary results of this ongoing study show that there is additional information in the DC potential channel and that different stimuli seem to produce slightly different response patterns.
Design and evaluation of 66 kV-class HTS power cable using REBCO wires
NASA Astrophysics Data System (ADS)
Ohya, M.; Yumura, H.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Ohkuma, T.
2011-11-01
Sumitomo Electric (SEI) has been involved in the development of 66 kV-class HTS cables using REBCO wires. One of the technical targets in this project is to reduce the AC loss to less than 2 W/m/phase at 5 kA. SEI has developed a clad-type of textured metal substrate with lower magnetization loss compared with a conventional NiW substrate. In addition, 30 mm-wide REBCO tapes were slit into 4 mm-wide strips, and these strips were wound spirally on a former with small gaps. The AC loss of a manufactured 4-layer cable conductor was 1.5 W/m at 5 kA at 64 K. Given that the AC loss in a shield layer is supposed to be one-fourth of a whole cable core loss, our cables are expected to achieve the AC loss target of less than 2 W/m/phase at 5 kA. Another important target is to manage a fault current. A cable core was designed and fabricated based on the simulation findings, and over-current tests (max. 31.5 kA, 2 s) were conducted to check its performance. The critical current value of the cable cores were measured before and after the over-current tests and verified its soundness. A 5 kA-class current lead for the cable terminations was also developed. The current loading tests were conducted for the developed current leads. The temperature distribution of the current leads reached to the steady-state within less than 12 h, and it was confirmed that the developed current lead has enough capacity of 5 kA loading.
Hybrid-secondary uncluttered induction machine
Hsu, John S.
2001-01-01
An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.
Scaling laws for AC gas breakdown and implications for universality
NASA Astrophysics Data System (ADS)
Loveless, Amanda M.; Garner, Allen L.
2017-10-01
The reduced dependence on secondary electron emission and electrode surface properties makes radiofrequency (RF) and microwave (MW) plasmas advantageous over direct current (DC) plasmas for various applications, such as microthrusters. Theoretical models relating molecular constants to alternating current (AC) breakdown often fail due to incomplete understanding of both the constants and the mechanisms involved. This work derives simple analytic expressions for RF and MW breakdown, demonstrating the transition between these regimes at their high and low frequency limits, respectively. We further show that the limiting expressions for DC, RF, and MW breakdown voltage all have the same universal scaling dependence on pressure and gap distance at high pressure, agreeing with experiment.
Mahdi, Parvane; Amali, Amin; Pourbakht, Akram; Karimi Yazdi, Alireza; Bassam, Ali
2013-06-01
Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants. In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05). However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025). In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87%) of the 32 ears using the AC method, whereas all (100%) displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS), 2 (50.00%) had neither AC-VEMP nor BC-VEMP. Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss.
Mahdi, Parvane; Amali, Amin; Pourbakht, Akram; Karimi Yazdi, Alireza; Bassam, Ali
2013-01-01
Introduction: Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. Materials and Methods: We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants. Results: In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05). However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025). In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87%) of the 32 ears using the AC method, whereas all (100%) displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS), 2 (50.00%) had neither AC-VEMP nor BC-VEMP. Conclusion: Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss. PMID:24303434
A technical guide to tDCS, and related non-invasive brain stimulation tools.
Woods, A J; Antal, A; Bikson, M; Boggio, P S; Brunoni, A R; Celnik, P; Cohen, L G; Fregni, F; Herrmann, C S; Kappenman, E S; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, P C; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, M A
2016-02-01
Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.
2013-01-01
The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.
Awasthi, Bhuvanesh
2017-01-01
Abstract In this study, we investigated the effect of transcranial alternating current stimulation (tACS) on voluntary risky decision making and executive control in humans. Stimulation was delivered online at 5 Hz (θ), 10 Hz (α), 20 Hz (β), and 40 Hz (γ) on the left and right frontal area while participants performed a modified risky decision-making task. This task allowed participants to voluntarily select between risky and certain decisions associated with potential gains or losses, while simultaneously measuring the cognitive control component (voluntary switching) of decision making. The purpose of this experimental design was to test whether voluntary risky decision making and executive control can be modulated with tACS in a frequency-specific manner. Our results revealed a robust effect of a 20-Hz stimulation over the left prefrontal area that significantly increased voluntary risky decision making, which may suggest a possible link between risky decision making and reward processing, underlined by β-oscillatory activity. PMID:29379865
Yaple, Zachary; Martinez-Saito, Mario; Feurra, Matteo; Shestakova, Anna; Klucharev, Vasily
2017-01-01
In this study, we investigated the effect of transcranial alternating current stimulation (tACS) on voluntary risky decision making and executive control in humans. Stimulation was delivered online at 5 Hz (θ), 10 Hz (α), 20 Hz (β), and 40 Hz (γ) on the left and right frontal area while participants performed a modified risky decision-making task. This task allowed participants to voluntarily select between risky and certain decisions associated with potential gains or losses, while simultaneously measuring the cognitive control component (voluntary switching) of decision making. The purpose of this experimental design was to test whether voluntary risky decision making and executive control can be modulated with tACS in a frequency-specific manner. Our results revealed a robust effect of a 20-Hz stimulation over the left prefrontal area that significantly increased voluntary risky decision making, which may suggest a possible link between risky decision making and reward processing, underlined by β-oscillatory activity.
Moriya, Jun; Tanino, Mishie Ann; Takenami, Tomoko; Endoh, Tomoko; Urushido, Masana; Kato, Yasutaka; Wang, Lei; Kimura, Taichi; Tsuda, Masumi; Nishihara, Hiroshi; Tanaka, Shinya
2016-01-01
The role of intraoperative pathological diagnosis for central nervous system (CNS) tumors is crucial for neurosurgery when determining the surgical procedure. Especially, treatment of carmustine (BCNU) wafers requires a conclusive diagnosis of high-grade glioma proven by intraoperative diagnosis. Recently, we demonstrated the usefulness of rapid immunohistochemistry (R-IHC) that facilitates antigen-antibody reaction under alternative current (AC) electric field in the intraoperative diagnosis of CNS tumors; however, a higher proportion of water and lipid in the brain parenchyma sometimes leads to freezing artifacts, resulting in poor quality of frozen sections. On the other hand, squash smear preparation of CNS tumors for cytology does not affect the frozen artifacts, and the importance of smear preparation is now being re-recognized as being better than that of the tissue sections. In this study, we established the rapid immunocytochemistry (R-ICC) protocol for squash smears of CNS tumors using AC electric field that takes only 22 min, and demonstrated its usefulness for semi-quantitative Ki-67/MIB-1 labeling index and CD 20 by R-ICC for intraoperative diagnosis. R-ICC by AC electric field may become a substantial tool for compensating R-IHC and will be applied for broad antibodies in the future.
Simulation of the AC corona phenomenon with experimental validation
NASA Astrophysics Data System (ADS)
Villa, Andrea; Barbieri, Luca; Marco, Gondola; Malgesini, Roberto; Leon-Garzon, Andres R.
2017-11-01
The corona effect, and in particular the Trichel phenomenon, is an important aspect of plasma physics with many technical applications, such as pollution reduction, surface and medical treatments. This phenomenon is also associated with components used in the power industry where it is, in many cases, the source of electro-magnetic disturbance, noise and production of undesired chemically active species. Despite the power industry to date using mainly alternating current (AC) transmission, most of the studies related to the corona effect have been carried out with direct current (DC) sources. Therefore, there is technical interest in validating numerical codes capable of simulating the AC phenomenon. In this work we describe a set of partial differential equations that are comprehensive enough to reproduce the distinctive features of the corona in an AC regime. The model embeds some selectable chemical databases, comprising tens of chemical species and hundreds of reactions, the thermal dynamics of neutral species and photoionization. A large set of parameters—deduced from experiments and numerical estimations—are compared, to assess the effectiveness of the proposed approach.
Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L
2018-01-01
We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.
Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.
2018-01-01
Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391
Challenges of using air conditioning in an increasingly hot climate
NASA Astrophysics Data System (ADS)
Lundgren-Kownacki, Karin; Hornyanszky, Elisabeth Dalholm; Chu, Tuan Anh; Olsson, Johanna Alkan; Becker, Per
2018-03-01
At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.
Wu, Jun-Fa; Wang, Hai-Jue; Wu, Yi; Li, Fang; Bai, Yu-Long; Zhang, Peng-Yu; Chan, Chetwyn C H
2016-12-01
Transcranial alternating current stimulation (tACS) offers another method of non-invasive brain stimulation in post-stroke rehabilitation. Because it is not known if tACS over bilateral mastoids (tACS bm ) can promote the functional recovery in subacute post-stroke patients, we wish to learn the effect of tACS bm on improving neurological function and intracranial hemodynamics of subacute post-stroke patients. Sixty subacute post-stroke patients (mean age: 65.4 ± 9.8 years), 15 to 60 days after the onset, were randomly assigned to receiving 15 sessions of usual rehabilitation program without (n = 30) or with tACS bm (20 Hz and < 400 μA for 30-min; n = 30). The outcome measures included the NIH Stroke Scale (NIHSS) and measures of intracranial hemodynamics before and after treatment. At the fifteenth session, when compared with the baseline, the mean NIHSS scores of the patients in the tACS bm group had significantly a larger decrease [18.3 ± 2.6 vs. 10.8 ± 2.7; p < 0.001] than that of the control group [19.1 ± 2.7 vs. 13.0 ± 2.4] [F(1,54) = 4.29, p = 0.043]. After both the first and fifteenth sessions, compared with the control group, the mean blood flow velocity (MFVs) of the tACS bm group had significantly larger increase in the MCA, ACA, and PCA (p < 0.001), the Gosling pulsatility index (PI) of the tACS bm group had also significantly larger decline in the MCA, ACA, and PCA than that of the control group (p < 0.001). The best predictor of the changes in the NIHSS scores was the decline in the pulsatility index in the vascular territory of both lesional and non-lesional MCA measured by the end of the last treatment session. tACS bm appeared to be effective for enhancing patients' functional recovery and cerebral hemodynamics in the subacute phase. The extent of recovery seems to be associated with the decline of the resistance in vascular bed of the main cerebral arteries. The mechanisms behind this effect should be explored further through research.
Insights into Fourier Synthesis and Analysis: Part 2--A Simplified Mathematics.
ERIC Educational Resources Information Center
Moore, Guy S. M.
1988-01-01
Introduced is an analysis of a waveform into its Fourier components. Topics included are simplified analysis of a square waveform, a triangular waveform, half-wave rectified alternating current (AC), and impulses. Provides the mathematical expression and simplified analysis diagram of each waveform. (YP)
NASA Astrophysics Data System (ADS)
Kim, Jihoon; Jang, Yonghee; Byun, Doyoung; Hyung Kim, Dal; Jun Kim, Min
2013-09-01
Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. In this study, we investigated biologically induced convection flow with living microorganism using galvanotaxis. We fabricated and evaluated our micro-mixer with motile cells. For the cell based active micro-mixers, two miscible fluids were used to measure the mixing index. Under alternating current (AC) electric fields with varying frequency, a group of motile Tetrahymena pyriformis cells generated reciprocal motion with circulating flows around their pathline, enhancing the mixing ratio.
NASA Astrophysics Data System (ADS)
Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf
2015-01-01
We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions. This exercise provides the motivation for life science and pre-health majors to learn concepts such as voltage, resistance, alternating and direct current, RLC circuits, as well as signal and noise, in an introductory undergraduate physics lab.
NASA Astrophysics Data System (ADS)
Takashima, Keisuke; Kaneko, Toshiro
2017-06-01
The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.
Geng, Xin; Li, Lixiang; Zhang, Meiling; An, Baigang; Zhu, Xiaoming
2013-12-01
Coconut shell-based activated carbon (AC) were prepared by CO2 activation, and then the ACs with higher mesopore ratio were obtained by steam activation and by impregnating iron catalyst followed by steam activation, respectively. The AC with the highest mesopore ratio (AChmr) shows superior capacitive behavior, power output and high-frequency performance in supercapacitors. The results should attribute to the connection of its wide micropores and mesopores larger than 3 nm, which is more favorable for fast ionic transportation. The pore size distribution exhibits that the mesopore ratios of the ACs are significantly increased by reactivation of steam or catalyst up to 75% and 78%, respectively. As evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic measurements, the AChmr shows superior capacitive behaviors, conductivity and performance of electrolytic ionic transportation. The response current densities are evidently enhanced through the cyclic voltammery test at 50 mV/sec scan rate. The electrochemical impedance spectroscopy demonstrates that the conductivity and ion transport performance of the ACs are improved. The specific capacitances of the ACs were increased from 140 to 240 F/g at 500 mA/g current density. The AChmr can provide much higher power density while still maintaining good energy density, and demonstrate excellent high-frequency performances. The pore structure and conductivity of the AChmr also improve the cycleability and self-discharge of supercapacitors. Such AChmr exhibits a great potential in supercapacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Measuring skin conductance over clothes.
Hong, Ki Hwan; Lee, Seung Min; Lim, Yong Gyu; Park, Kwang Suk
2012-11-01
We propose a new method that measures skin conductance over clothes to nonintrusively monitor the changes in physiological conditions affecting skin conductance during daily activities. We selected the thigh-to-thigh current path and used an indirectly coupled 5-kHz AC current for the measurement. While varying the skin conductance by the Valsalva maneuver method, the results were compared with the traditional galvanic skin response (GSR) measured directly from the fingers. Skin conductance measured using a 5-kHz current displayed a highly negative correlation with the traditional GSR and the current measured over clothes reflected the rate of change of the conductance of the skin beneath.
AC Loss Measurements on a 2G YBCO Coil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W
2011-01-01
The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype highmore » voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.« less
Eddy Current Probe for Surface and Sub-Surface Inspection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2014-01-01
An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.
Results of the harmonics measurement program at the John F. Long photovoltaic house
NASA Astrophysics Data System (ADS)
Campen, G. L.
1982-03-01
Photovoltaic (PV) systems used in single-family dwellings require an inverter to act as an interface between the direct-current (dc) power output of the PV unit and the alternating-current (ac) power needed by house loads. A type of inverter known as line commutated injects harmonic currents on the ac side and requires large amounts of reactive power. Large numbers of such PV installations could lead to unacceptable levels of harmonic voltages on the utility system, and the need to increase the utility's deliver of reactive power could result in significant cost increases. The harmonics and power-factor effects are examined for a single PV installation using a line-commutated inverter. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system.
NASA Astrophysics Data System (ADS)
Pryadun, Vladimir
2005-03-01
Rectification of AC current has been observed in plain superconducting Nb films and in Nb/Ni films with symmetric periodic pinning centers. The rectified DC voltage appears for various sample geometries (cross or strip) both along and transverse to the alternating current direction, is nearly anti-symmetric with perpendicular magnetic field and strongly dependent on temperature below Tc. Analyses of the data at different temperatures, drive frequencies from 100kHz to 150MHz and at the different sample sides [1] shows that not far below Tc the rectification phenomena can be understood in terms of generation of electric fields due to local excess of critical current. Further below Tc anisotropic pinning effects could also contribute to the rectification. [1] F.G.Aliev, et al., Cond. Mat.405656. Supported by Comunidad Autonoma de Madrid -CAM/07N/0050/2002
AC power generation from microbial fuel cells
NASA Astrophysics Data System (ADS)
Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason
2015-11-01
Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.
Making Brains run Faster: are they Becoming Smarter?
Pahor, Anja; Jaušovec, Norbert
2016-12-05
A brief overview of structural and functional brain characteristics related to g is presented in the light of major neurobiological theories of intelligence: Neural Efficiency, P-FIT and Multiple-Demand system. These theories provide a framework to discuss the main objective of the paper: what is the relationship between individual alpha frequency (IAF) and g? Three studies were conducted in order to investigate this relationship: two correlational studies and a third study in which we experimentally induced changes in IAF by means of transcranial alternating current stimulation (tACS). (1) In a large scale study (n = 417), no significant correlations between IAF and IQ were observed. However, in males IAF positively correlated with mental rotation and shape manipulation and with an attentional focus on detail. (2) The second study showed sex-specific correlations between IAF (obtained during task performance) and scope of attention in males and between IAF and reaction time in females. (3) In the third study, individuals' IAF was increased with tACS. The induced changes in IAF had a disrupting effect on male performance on Raven's matrices, whereas a mild positive effect was observed for females. Neuro-electric activity after verum tACS showed increased desynchronization in the upper alpha band and dissociation between fronto-parietal and right temporal brain areas during performance on Raven's matrices. The results are discussed in the light of gender differences in brain structure and activity.
The paper gives results of a study to develop baseline engineering data to demonstrate the feasibility of application of plasma reactors to the destruction of various volatile organic compounds at ppm levels. Two laboratory-scale reactors, an alternating current energized ferroel...
Han, Lanzhi; Liu, Peilei; Wu, Kongming; Peng, Yufa; Wang, Feng
2008-10-01
Genetically modified insect-resistant rice lines containing the cry1Ac gene from Bacillus thuringiensis (Bt) or the CpTI (cowpea trypsin inhibitor) gene developed for the management of lepidopterous pests are highly resistant to the major target pests, Chilo suppressalis (Walker), Cnaphalocrocis medinalis (Guenée), and Scirpophaga incertulas (Walker), in the main rice-growing areas of China. However, the effects of these transgenic lines on Sesamia inferens (Walker), an important lepidopterous rice pest, are currently unknown. Because different insect species have varying susceptibility to Bt insecticidal proteins that may affect population dynamics, research into the effects of these transgenic rice lines on the population dynamics of S. inferens was conducted in Fuzhou, southern China, in 2005 and 2006. The results of laboratory, field cage, and field plot experiments show that S. inferens has comparatively high susceptibility to the transgenic line during the early growing season, with significant differences observed in larval density and infestation levels between transgenic and control lines. Because of a decrease in Cry1Ac levels in the plant as it ages, the transgenic line provided only a low potential for population suppression late in the growing season. There is a correlation between the changing expression of Cry1Ac and the impact of transgenic rice on the population dynamics of S. inferens during the season. These results indicate that S. inferens may become a major pest in fields of prospective commercially released transgenic rice, and more attention should be paid to developing an effective alternative management strategy.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-02-14
A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.
Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM
NASA Astrophysics Data System (ADS)
Liang, Zijun; Lin, Shunjiang; Liu, Mingbo
2017-05-01
Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.
Deformation analysis of vesicles in an alternating-current electric field.
Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao
2014-08-01
In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.
Generalization of the Child-Langmuir law to the alternate extraction of positive and negative ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr; ONERA-The French Aerospace Lab, 91120 Palaiseau; Aanesland, A.
Using a combined analytical and simulation approach, we investigate positive and negative ion extraction between two electrodes from an ion-ion plasma source. With a square voltage waveform applied to the electrodes, we obtain approximate analytical solutions for the time-averaged extracted current densities, which are given simply by: J{sub p}{sup ac}=[α−fL√((M{sub p})/(q{sub p}V{sub 0}) )]J{sub p}{sup dc}, and J{sub n}{sup ac}=[(1−α)−fL√((M{sub n})/(q{sub n}V{sub 0}) )]J{sub n}{sup dc}, where J{sup ac} is the time-averaged current density, α is the square waveform duty cycle, f is the frequency, L is the electrode gap length, M is the ion mass, q is the ionmore » charge, V{sub 0} is the applied voltage amplitude, J{sup dc} is the dc extracted current density, and the subscripts p and n refer to positive and negative ions, respectively. In particular, if J{sup dc} is the dc space-charge limited current density, then these equations describe the square waveform generalization of the Child-Langmuir law.« less
NASA Astrophysics Data System (ADS)
Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan
2018-01-01
This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.
Development of a solar charged laboratory bench power supply
NASA Astrophysics Data System (ADS)
Ayara, W. A.; Omotosho, T. V.; Usikalu, M. R.; Singh, M. S. J.; Suparta, W.
2017-05-01
This product is an improvement on available DC laboratory bench power supply. It is capable of delivering low voltage Alternating Current (AC) and Direct Current (DC) to carry out basic laboratory experiment for both secondary schools and also at higher education institutions. The power supply is capable of delivering fixed DC voltages of 5V, 9V, 12V, variable voltage of between 1.25-30V and a 12V AC voltage. Also Incorporated is a USB port that allows for charging cell phones and other mobile devices, and a dedicated 12V DC output to power 5-7 Watt LED bulb to provide illumination in the laboratory for the instructor who may need to work at night in the absence of utility power.
Heat-coping strategies and bedroom thermal satisfaction in New York City.
Lee, W Victoria; Shaman, Jeffrey
2017-01-01
There has been little research into the thermal condition of the sleeping environment. Even less well documented and understood is how the sleeping thermal environment is affected by occupant behaviors such as the use of air-conditioning (AC) and electric fans, or window operations. In this paper we present results from a questionnaire survey administered to assess summertime bedroom thermal satisfaction and heat-coping strategies among New York City (NYC) residents. Specifically, we investigated current AC usage in bedrooms and examined alternate cooling strategies, cooling appliance usage patterns, and the motivations that drove these patterns during the 2015 summer. Among survey respondents (n=706), AC was the preferred heat-coping strategy, and for 30% of respondents was the only strategy used. Electric fan use and window opening were deemed ineffective for cooling by many respondents. Indeed, less than a quarter of all respondents ever opened windows to alleviate heat in their bedrooms. In general, people utilized strategies that modify the environment more than the individual person. Unsurprisingly, the frequency and overall use of AC were significantly associated with greater bedroom thermal satisfaction; however, setting AC to a lower temperature provided no additional benefit. In contrast, more frequent use of electric fans was associated with lower thermal satisfaction. In addition, 14.7% of all respondents did not have AC in their sleeping environment and 5.8% were without any AC at home. Despite the high penetration of AC ownership, usage cost was still a major concern for most. This work contributes to a better understanding of bedtime heat-coping strategies, cooling appliance usage patterns, and associated thermal satisfaction in NYC. The findings of this study suggest resident AC usage patterns may not be optimized for thermal satisfaction. Potential alternative cooling approaches could be explored to better balance maximizing thermal comfort while reducing energy consumption and environmental impact. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-09
GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred—such as a downed power line or a transformer explosion—from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics’ high-voltagemore » DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.« less
Influence of thermal aging on AC leakage current in XLPE insulation
NASA Astrophysics Data System (ADS)
Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun
2018-02-01
Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.
The Theory and Practice of Alternative Certification: Implications for the Improvement of Teaching.
ERIC Educational Resources Information Center
Hawley, Willis D.
1990-01-01
Identifies questions related to the processes and consequences of alternative teacher certification (AC), answers questions with research-based facts, proposes key elements of a model AC program, and draws conclusions about the directions AC may take and its probable effects on educational reform and on the professionalization of teaching. (SM)
Luczak, Susan E; Hawkins, Ashley L; Dai, Zheng; Wichmann, Raphael; Wang, Chunming; Rosen, I Gary
2018-08-01
Biosensors have been developed to measure transdermal alcohol concentration (TAC), but converting TAC into interpretable indices of blood/breath alcohol concentration (BAC/BrAC) is difficult because of variations that occur in TAC across individuals, drinking episodes, and devices. We have developed mathematical models and the BrAC Estimator software for calibrating and inverting TAC into quantifiable BrAC estimates (eBrAC). The calibration protocol to determine the individualized parameters for a specific individual wearing a specific device requires a drinking session in which BrAC and TAC measurements are obtained simultaneously. This calibration protocol was originally conducted in the laboratory with breath analyzers used to produce the BrAC data. Here we develop and test an alternative calibration protocol using drinking diary data collected in the field with the smartphone app Intellidrink to produce the BrAC calibration data. We compared BrAC Estimator software results for 11 drinking episodes collected by an expert user when using Intellidrink versus breath analyzer measurements as BrAC calibration data. Inversion phase results indicated the Intellidrink calibration protocol produced similar eBrAC curves and captured peak eBrAC to within 0.0003%, time of peak eBrAC to within 18min, and area under the eBrAC curve to within 0.025% alcohol-hours as the breath analyzer calibration protocol. This study provides evidence that drinking diary data can be used in place of breath analyzer data in the BrAC Estimator software calibration procedure, which can reduce participant and researcher burden and expand the potential software user pool beyond researchers studying participants who can drink in the laboratory. Copyright © 2017. Published by Elsevier Ltd.
Implementation and Evaluation of Microcomputer Systems for the Republic of Turkey’s Naval Ships.
1986-03-01
important database design tool for both logical and physical database design, such as flowcharts or pseudocodes are used for program design. Logical...string manipulation in FORTRAN is difficult but not impossible. BASIC ( Beginners All-Purpose Symbolic Instruction Code): Basic is currently the most...63 APPENDIX B GLOSSARY/ACRONYM LIST AC Alternating Current AP Application Program BASIC Beginners All-purpose Symbolic Instruction Code CCP
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-01-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.
NASA Astrophysics Data System (ADS)
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-02-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-01-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of −84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering. PMID:22355759
Two omega method for active thermocouple microscopy.
Thiery, Laurent; Gavignet, Eric; Cretin, Bernard
2009-03-01
We present a contribution to a new mode of scanning thermal microscopy (SThM) based on the use of thermoelectric junction operating in ac active mode. This is the first alternative to 3omega operating mode of a resistive SThM probe for measuring thermophysical parameters of materials at micro- and nanoscale. Whereas a current at omega frequency generates by Joule effect a 2omega thermal oscillation along the wires, the junction thermoelectric voltage can be measured by means of a differential bridge scheme associated to a lock-in amplifier. A thermal model is presented that confirms measurements performed in different situations with different wire probes. Values of thermal contact conductance of different materials have been extracted and a comparison has been performed between this technique and the resistive 3omega mode.
Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion.
Ayari, Anthony; Vincent, Pascal; Perisanu, Sorin; Choueib, May; Gouttenoire, Vincent; Bechelany, Mikhael; Cornu, David; Purcell, Stephen T
2007-08-01
We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.
Method for making glass nonfogging
Lord, David E.; Carter, Gary W.; Petrini, Richard R.
1979-01-01
A method for rendering glass nonfogging (to condensation fog) by sandwiching the glass between two electrodes such that the glass functions as the dielectric of a capacitor, a large alternating current (AC) voltage is applied across the electrodes for a selected time period causing the glass to absorb a charge, and the electrodes are removed. The glass absorbs a charge from the electrodes rendering it nonfogging. The glass surface is undamaged by application of the AC voltage, and normal optical properties are unaffected. This method can be applied to optical surfaces such as lenses, auto windshields, mirrors, etc., wherever condensation fog on glass is a problem.
A novel micromixer based on the alternating current-flow field effect transistor.
Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Hu, Qingming; Jiang, Hongyuan
2016-12-20
Induced-charge electroosmosis (ICEO) phenomena have been attracting considerable attention as a means for pumping and mixing in microfluidic systems with the advantage of simple structures and low-energy consumption. We propose the first effort to exploit a fixed-potential ICEO flow around a floating electrode for microfluidic mixing. In analogy with the field effect transistor (FET) in microelectronics, the floating electrode act as a "gate" electrode for generating asymmetric ICEO flow and thus the device is called an AC-flow FET (AC-FFET). We take advantage of a tandem electrode configuration containing two biased center metal strips arranged in sequence at the bottom of the channel to generate asymmetric vortexes. The current device is manufactured on low-cost glass substrates via an easy and reliable process. Mixing experiments were conducted in the proposed device and the comparison between simulation and experimental results was also carried out, which indicates that the micromixer permits an efficient mixing effect. The mixing performance can be further enhanced by the application of a suitable phase difference between the driving electrode and the gate electrode or a square wave signal. Finally, we performed a critical analysis of the proposed micromixer in comparison with different mixer designs using a comparative mixing index (CMI). The novel methods put forward here offer a simple solution to mixing issues in microfluidic systems.
NASA Technical Reports Server (NTRS)
Santiago, Walter; Birchenough, Arthur G.
2006-01-01
Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.
ERIC Educational Resources Information Center
Jeffery, Rondo N.; Farhang, Amiri
2016-01-01
The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…
Mountain Plains Learning Experience Guide: Radio and T.V. Repair. Course: A.C. Circuits.
ERIC Educational Resources Information Center
Hoggatt, P.; And Others
One of four individualized courses included in a radio and television repair curriculum, this course focuses on alternating current relationships and computations, transformers, power supplies, series and parallel resistive-reactive circuits, and series and parallel resonance. The course is comprised of eight units: (1) Introduction to Alternating…
ERIC Educational Resources Information Center
SUTTON, MACK C.
THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…
46 CFR 129.120 - Alternative standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or less may meet the following requirements of the American Yacht and Boat Council Projects, where applicable, instead of § 129.340 of this part: (1) E-1, Bonding of Direct Current Systems. (2) E-8, AC Electrical Systems on Boats. (3) E-9, DC Electrical Systems on Boats. (b) An OSV with an electrical...
Slow magnetic relaxation in a cobalt magnetic chain.
Yang, Chen-I; Chuang, Po-Hsiang; Lu, Kuang-Lieh
2011-04-21
A homospin ladder-like chain, [Co(Hdhq)(OAc)](n) (1; H(2)dhq = 2,3-dihydroxyquinoxaline), shows a single-chain-magnet-like (SCM-like) behavior with the characteristics of frequency dependence of the out-of-phase component in alternating current (ac) magnetic susceptibilities and hysteresis loops. © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koizumi, H.; Uda, S.; Fujiwara, K.
X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.
Introducing high performance distributed logging service for ACS
NASA Astrophysics Data System (ADS)
Avarias, Jorge A.; López, Joao S.; Maureira, Cristián; Sommer, Heiko; Chiozzi, Gianluca
2010-07-01
The ALMA Common Software (ACS) is a software framework that provides the infrastructure for the Atacama Large Millimeter Array and other projects. ACS, based on CORBA, offers basic services and common design patterns for distributed software. Every properly built system needs to be able to log status and error information. Logging in a single computer scenario can be as easy as using fprintf statements. However, in a distributed system, it must provide a way to centralize all logging data in a single place without overloading the network nor complicating the applications. ACS provides a complete logging service infrastructure in which every log has an associated priority and timestamp, allowing filtering at different levels of the system (application, service and clients). Currently the ACS logging service uses an implementation of the CORBA Telecom Log Service in a customized way, using only a minimal subset of the features provided by the standard. The most relevant feature used by ACS is the ability to treat the logs as event data that gets distributed over the network in a publisher-subscriber paradigm. For this purpose the CORBA Notification Service, which is resource intensive, is used. On the other hand, the Data Distribution Service (DDS) provides an alternative standard for publisher-subscriber communication for real-time systems, offering better performance and featuring decentralized message processing. The current document describes how the new high performance logging service of ACS has been modeled and developed using DDS, replacing the Telecom Log Service. Benefits and drawbacks are analyzed. A benchmark is presented comparing the differences between the implementations.
Hopfinger, Joseph B; Parsons, Jonathan; Fröhlich, Flavio
2017-04-01
Previous electrophysiological studies implicate both alpha (8-12 Hz) and gamma (>30 Hz) neural oscillations in the mechanisms of selective attention. Here, participants preformed two separate visual attention tasks, one endogenous and one exogenous, while transcranial alternating current stimulation (tACS), at 10 Hz, 40 Hz, or sham, was applied to the right parietal lobe. Our results provide new evidence for the roles of gamma and alpha oscillations in voluntary versus involuntary shifts of attention. Gamma (40 Hz) stimulation resulted in improved disengagement from invalidly cued targets in the endogenous attention task, whereas alpha stimulation (10 Hz) had no effect on endogenous attention, but increased the exogenous cuing effect. These findings agree with previous studies suggesting that right inferior parietal regions may be especially important for the disengagement of attention, and go further to provide details about the specific type of oscillatory neural activity within that brain region that is differentially involved in endogenous versus exogenous attention. Our results also have potential implications for the plasticity and training of attention systems.
Alternating current breakdown voltage of ice electret
NASA Astrophysics Data System (ADS)
Oshika, Y.; Tsuchiya, Y.; Okumura, T.; Muramoto, Y.
2017-09-01
Ice has low environmental impact. Our research objectives are to study the availability of ice as a dielectric insulating material at cryogenic temperatures. We focus on ferroelectric ice (iceXI) at cryogenic temperatures. The properties of iceXI, including its formation, are not clear. We attempted to obtain the polarized ice that was similar to iceXI under the applied voltage and cooling to 77 K. The polarized ice have a wide range of engineering applications as electronic materials at cryogenic temperatures. This polarized ice is called ice electret. The structural difference between ice electret and normal ice is only the positions of protons. The effects of the proton arrangement on the breakdown voltage of ice electret were shown because electrical properties are influenced by the structure of ice. We observed an alternating current (ac) breakdown voltage of ice electret and normal ice at 77 K. The mean and minimum ac breakdown voltage values of ice electret were higher than those of normal ice. We considered that the electrically weak part of the normal ice was improved by applied a direct electric field.
Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Masaki, Mitsuhiro; Otsuru, Naofumi; Onishi, Hideaki
2016-01-01
Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals, but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS ( p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS ( p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS ( p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.
NASA Astrophysics Data System (ADS)
Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; Garcia, Javier; Zalevsky, Zeev
2016-06-01
We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept. When a glucose substance is inserted into a solenoid generating an ac magnetic field, it exhibits Faraday rotation, which affects the temporal changes of the secondary speckle pattern distributions. The temporal frequency resulting from the ac magnetic field was found to have a lock-in amplification role, which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.
Study of switching transients in high frequency converters
NASA Technical Reports Server (NTRS)
Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony
1993-01-01
As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is evaluated.
AC Electroosmotic Pumping in Nanofluidic Funnels.
Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C
2016-06-21
We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip.
Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels
NASA Astrophysics Data System (ADS)
Ma, Guang; Cheng, Ling; Lu, Licheng; Yang, Fuyao; Chen, Xin; Zhu, Chengzhi
2017-03-01
When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P1.7=0.70-1.05 W/kg, B8>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched.
Study of complete interconnect reliability for a GaAs MMIC power amplifier
NASA Astrophysics Data System (ADS)
Lin, Qian; Wu, Haifeng; Chen, Shan-ji; Jia, Guoqing; Jiang, Wei; Chen, Chao
2018-05-01
By combining the finite element analysis (FEA) and artificial neural network (ANN) technique, the complete prediction of interconnect reliability for a monolithic microwave integrated circuit (MMIC) power amplifier (PA) at the both of direct current (DC) and alternating current (AC) operation conditions is achieved effectively in this article. As a example, a MMIC PA is modelled to study the electromigration failure of interconnect. This is the first time to study the interconnect reliability for an MMIC PA at the conditions of DC and AC operation simultaneously. By training the data from FEA, a high accuracy ANN model for PA reliability is constructed. Then, basing on the reliability database which is obtained from the ANN model, it can give important guidance for improving the reliability design for IC.
Design of a high-current downlink using Bi-based superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, B.L.; Lanagan, M.T.; Balachandran, U.
1996-08-01
Recent processing developments in Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}0{sub x} (BSCCO-2223) bars have produced bulk BSCCO-2223 bars with properties advantageous for power applications. Cold isostatically pressed (CIP) and sinter-forged BSCCO-2223 both have low AC loss, which make them desirable for use in power devices. Thermal conductivity of the CIP bars is lower than that of the previously used sinter-forged samples by a factor of 2. CIP bars with cross-sectional areas of =0.75 cm{sup 2} and carrying 250 A RMS transport current have AC loss values of 30 pJ/cycle-cm at 50 Hz and 77 K. A pair of prototype downlinksmore » were designed and built with sinter forged bars to deliver a continuous AC current of 1500 A over a temperature gradient of 77 to 4.2 K while delivering about -200 MW of heat to the liquid-helium-cooled end. This paper will discuss the design considerations and modeling of downlinks, which supply high AC currents over the 77 to 4.2 K temperature gradient with low thermal losses.« less
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Fei; Xue, Feng; Gou, Xiao-Fan
2018-04-01
The microstructure of Bi2Sr2CaCu2Ox (Bi2212) filamentary composite round wires (RWs) changes to be extremely complicated after heat treatment, with the interface between Bi2212 filaments and Ag matrix being meandering and a lot of bridge connections (BCs) generating between filaments. The influence of such the unique microstructure on the electromagnetic behavior and especially the AC loss has not been far from completely understanding. In this paper, according to the H formulation and on the nonlinear E-J relationship, we developed a finite element model, and further on this model evaluated the current and AC loss of a Bi2212 multifilamentary wire with the rough Bi2212/Ag interface and several BCs between filaments under the alternating magnetic field (Hex(t) = H0sin2πft). Through the comparative study, we found that the penetration magnetic field Hp is a critical turning point and on this base the influences of such the complex microstructure are quite different when the amplitude of applied magnetic field H0 < Hp and when H0 > Hp. The rough interface impacts the current distribution and causes the local heat concentrated at the concave locations. For BCs between Bi2212 filaments, it is most significant that they can share the current and make the current redistribute between filaments. Further for the wire with various types of BCs, the current distribution and the AC loss relative to the wire without BCs (Q / QmagnoBCs) were comprehensively investigated.
Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field
NASA Astrophysics Data System (ADS)
Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.
2016-07-01
The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ⪡ v or ωτ ⪡ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ⪡ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.
The AC-120: The advanced commercial transport
NASA Technical Reports Server (NTRS)
Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm
1993-01-01
The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.
Choi, Yongju; Thompson, Jay M; Lin, Diana; Cho, Yeo-Myoung; Ismail, Niveen S; Hsieh, Ching-Hong; Luthy, Richard G
2016-03-05
This study evaluates secondary environmental impacts of various remedial alternatives for sediment contaminated with hydrophobic organic contaminants using life cycle assessment (LCA). Three alternatives including two conventional methods, dredge-and-fill and capping, and an innovative sediment treatment technique, in-situ activated carbon (AC) amendment, are compared for secondary environmental impacts by a case study for a site at Hunters Point Shipyard, San Francisco, CA. The LCA results show that capping generates substantially smaller impacts than dredge-and-fill and in-situ amendment using coal-based virgin AC. The secondary impacts from in-situ AC amendment can be reduced effectively by using recycled or wood-based virgin AC as production of these materials causes much smaller impacts than coal-based virgin AC. The secondary environmental impacts are highly sensitive to the dredged amount and the distance to a disposal site for dredging, the capping thickness and the distance to the cap materials for capping, and the AC dose for in-situ AC amendment. Based on the analysis, this study identifies strategies to minimize secondary impacts caused by different remediation activities: optimize the dredged amount, the capping thickness, or the AC dose by extensive site assessments, obtain source materials from local sites, and use recycled or bio-based AC. Copyright © 2015 Elsevier B.V. All rights reserved.
Alternating currents and shear waves in viscous electronics
NASA Astrophysics Data System (ADS)
Semenyakin, M.; Falkovich, G.
2018-02-01
Strong interaction among charge carriers can make them move like viscous fluid. Here we explore alternating current (ac) effects in viscous electronics. In the Ohmic case, incompressible current distribution in a sample adjusts fast to a time-dependent voltage on the electrodes, while in the viscous case, momentum diffusion makes for retardation and for the possibility of propagating slow shear waves. We focus on specific geometries that showcase interesting aspects of such waves: current parallel to a one-dimensional defect and current applied across a long strip. We find that the phase velocity of the wave propagating along the strip respectively increases/decreases with the frequency for no-slip/no-stress boundary conditions. This is so because when the frequency or strip width goes to zero (alternatively, viscosity go to infinity), the wavelength of the current pattern tends to infinity in the no-stress case and to a finite value in a general case. We also show that for dc current across a strip with a no-stress boundary, there are only one pair of vortices, while there is an infinite vortex chain for all other types of boundary conditions.
NASA Astrophysics Data System (ADS)
Sinha, Kumari Priti; Thaokar, Rochish M.
2018-03-01
Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.
Alpha Oscillations Are Causally Linked to Inhibitory Abilities in Ageing.
Borghini, Giulia; Candini, Michela; Filannino, Cristina; Hussain, Masud; Walsh, Vincent; Romei, Vincenzo; Zokaei, Nahid; Cappelletti, Marinella
2018-05-02
Aging adults typically show reduced ability to ignore task-irrelevant information, an essential skill for optimal performance in many cognitive operations, including those requiring working memory (WM) resources. In a first experiment, young and elderly human participants of both genders performed an established WM paradigm probing inhibitory abilities by means of valid, invalid, and neutral retro-cues. Elderly participants showed an overall cost, especially in performing invalid trials, whereas younger participants' general performance was comparatively higher, as expected.Inhibitory abilities have been linked to alpha brain oscillations but it is yet unknown whether in aging these oscillations (also typically impoverished) and inhibitory abilities are causally linked. To probe this possible causal link in aging, we compared in a second experiment parietal alpha-transcranial alternating current stimulation (tACS) with either no stimulation (Sham) or with two control stimulation frequencies (theta- and gamma-tACS) in the elderly group while performing the same WM paradigm. Alpha- (but not theta- or gamma-) tACS selectively and significantly improved performance (now comparable to younger adults' performance in the first experiment), particularly for invalid cues where initially elderly showed the highest costs. Alpha oscillations are therefore causally linked to inhibitory abilities and frequency-tuned alpha-tACS interventions can selectively change these abilities in the elderly. SIGNIFICANCE STATEMENT Ignoring task-irrelevant information, an ability associated to rhythmic brain activity in the alpha frequency band, is fundamental for optimal performance. Indeed, impoverished inhibitory abilities contribute to age-related decline in cognitive functions like working memory (WM), the capacity to briefly hold information in mind. Whether in aging adults alpha oscillations and inhibitory abilities are causally linked is yet unknown. We experimentally manipulated frequency-tuned brain activity using transcranial alternating current stimulation (tACS), combined with a retro-cue paradigm assessing WM and inhibition. We found that alpha-tACS induced a significant improvement in target responses and misbinding errors, two indexes of inhibition. We concluded that in aging alpha oscillations are causally linked to inhibitory abilities, and that despite being impoverished, these abilities are still malleable. Copyright © 2018 the authors 0270-6474/18/384419-12$15.00/0.
Electroporation of cells using EM induction of ac fields by a magnetic stimulator
NASA Astrophysics Data System (ADS)
Chen, C.; Evans, J. A.; Robinson, M. P.; Smye, S. W.; O'Toole, P.
2010-02-01
This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m-1. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.
Lee, Ji-Yun; Komatsu, Kensei; Lee, Byung-Cheol; Miyata, Masanori; O’Neill Bohn, Ashley; Xu, Haidong
2015-01-01
Mucin overproduction is a hallmark of otitis media (OM). Streptococcus pneumoniae is one of the most common bacterial pathogens causing OM. Mucin MUC5AC plays an important role in mucociliary clearance of bacterial pathogens. However, if uncontrolled, excessive mucus contributes significantly to conductive hearing loss. Currently, there is a lack of effective therapeutic agents that suppress mucus overproduction. In this study, we show that a currently existing antistroke drug, vinpocetine, a derivative of the alkaloid vincamine, inhibited S. pneumoniae–induced mucin MUC5AC upregulation in cultured middle ear epithelial cells and in the middle ear of mice. Moreover, vinpocetine inhibited MUC5AC upregulation by inhibiting the MAPK ERK pathway in an MKP-1–dependent manner. Importantly, ototopical administration of vinpocetine postinfection inhibited MUC5AC expression and middle ear inflammation induced by S. pneumoniae and reduced hearing loss and pneumococcal loads in a well-established mouse model of OM. Thus, these studies identified vinpocetine as a potential therapeutic agent for inhibiting mucus production in the pathogenesis of OM. PMID:25972475
Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao
2015-01-01
A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Power converter for raindrop energy harvesting application: Half-wave rectifier
NASA Astrophysics Data System (ADS)
Izrin, Izhab Muhammad; Dahari, Zuraini
2017-10-01
Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.
History of the U.S. Navy Body Composition program.
Peterson, David D
2015-01-01
The Navy currently employs maximum weight-for-height tables and body fat prediction equations based on circumference measurements to assess body composition. However, many Sailors believe the current method fails to accurately predict body fat percentage. As a result, the Naval Health Research Center (NHRC) conducted numerous studies in an attempt to improve the accuracy and reliability of the Navy's Body Composition Analysis program. In 2012, NHRC conducted a study that researched the feasibility of using a single abdominal circumference (AC) measurement in lieu of circumference measurements. The Air Force and National Institutes of Health (NIH) employ a single AC measurement taken at the superior border of the iliac crest to assess body composition and all-cause mortality risk. Although the Air Force and NIH use the iliac crest, NHRC is proposing the Navy use the umbilicus as the AC site since it is less invasive and easier to identify. If implemented, the Navy would use cutoff values of 40 in. and 36 in. for males and females, respectively. The purpose of this article is to provide a brief history of the Navy's Body Composition Analysis program as well as propose the transition from circumference measurements to a single AC measurement. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Sood, Amit; Narayanan, Sujata; Wahner-Roedler, Dietlind L.; Knudsen, Kayla; Sood, Richa; Loehrer, Laura L.; Hanson, Andrew C.; Kuzniar, Tomasz J.; Olson, Eric J.
2007-01-01
Study Objectives: To assess the proportion of patients with obstructive sleep apnea hypopnea syndrome (OSAHS) reporting previous or current use and interest in future use of complementary and alternative medicine (CAM) therapies. Design: Cross-sectional, point-of-care, anonymous survey. Setting: Sleep disorders center at a Midwest tertiary care center. Participants: Six hundred forty-six consecutive patients undergoing polysomnography. Measurements: The survey instrument comprised 45 items specifically related to CAM therapies, in addition to obtaining baseline data. Results: Response rate was 81% (522/646). A total of 406/522 (78%) patients were diagnosed with OSAHS. Mean age ± SD was 57 ± 14 years, and 267 participants (66%) were men. Overall, 237 (58%) participants reported ever using CAM. Ever and current CAM use specifically for improving sleep was reported by 20% and 7% of the participants, respectively. Twenty-six percent of participants reported ever using biologic products, and 52% reported ever using nonbiologic CAM treatments. A high proportion (58%) of the participants showed interest in future CAM use for improving sleep. Conclusion: A high proportion of patients with OSAHS report previous or current use, and interest in future use, of CAM treatments. This underscores the need to conduct further research in this field. Citation: Sood A; Narayanan S; Wahner-Roedler DL; Knudsen K; Sood R; Loehrer LL; Hanson AC; Kuzniar TJ; Olson EJ. Use of complementary and alternative medicine treatments by patients with obstructive sleep apnea hypopnea syndrome. J Clin Sleep Med 2007;3(6):575-579. PMID:17993037
Electrical Experiments. VT-214-12-2. Part II. A-C Across the Line Control.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.
Designed for high school electronics students, this second document in a series of six electrical learning activity packages focuses on alternating current across-the-line control. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the activity book is comprised of…
Konrad, C.E.; Boothe, R.W.
1994-02-15
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.
Konrad, C.E.; Boothe, R.W.
1996-01-23
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.
Konrad, Charles E.; Boothe, Richard W.
1996-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
Konrad, Charles E.; Boothe, Richard W.
1994-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
The mechanism of detection of air pollution by an ionization chamber.
Novković, D; Vukanac; Milosević, Z
2000-01-01
The mechanism of detection of chemical vapors in air by an ionization chamber supplied by DC and AC voltage has been described. The theoretical explanation is based on numerical solutions of the differential equations of the cylindrical ionization chamber. The current of the ionization chamber operating in the AC regime has two components: a conductive component, caused by the ions drifts, and a capacitive component, caused by the distortion of the electric field. The ionization chamber operating in the DC regime has only the first component; hence the AC supplied chamber has larger response than the DC supplied chamber.
Electroconvection in one-dimensional liquid crystal cells
NASA Astrophysics Data System (ADS)
Huh, Jong-Hoon
2018-04-01
We investigate the alternating current (ac) -driven electroconvection (EC) in one-dimensional cells (1DCs) under the in-plane switching mode. In 1DCs, defect-free EC can be realized. In the presence and absence of external multiplicative noise, the features of traveling waves (TWs), such as their Hopf frequency fH and velocity, are examined in comparison with those of conventional two-dimensional cells (2DCs) accompanying defects of EC rolls. In particular, we show that the defects significantly contribute to the features of the TWs. Additionally, owing to the defect-free EC in the 1DCs, the effects of the ac and noise fields on the TW are clarified. The ac field linearly increases fH, independent of the ac frequency f . The noise increases fH monotonically, but fH does not vary below a characteristic noise intensity VN*. In addition, soliton-like waves and unfamiliar oscillation of EC vortices in 1DCs are observed, in contrast to the localized EC (called worms) and the oscillation of EC rolls in 2DCs.
2013-01-01
Cobalt-nickel (Co-Ni) binary alloy nanowires of different compositions were co-deposited in the nanopores of highly ordered anodic aluminum oxide (AAO) templates from a single sulfate bath using alternating current (AC) electrodeposition. AC electrodeposition was accomplished without modifying or removing the barrier layer. Field emission scanning electron microscope was used to study the morphology of templates and alloy nanowires. Energy-dispersive X-ray analysis confirmed the deposition of Co-Ni alloy nanowires in the AAO templates. Average diameter of the alloy nanowires was approximately 40 nm which is equal to the diameter of nanopore. X-ray diffraction analysis showed that the alloy nanowires consisted of both hexagonal close-packed and face-centered cubic phases. Magnetic measurements showed that the easy x-axis of magnetization is parallel to the nanowires with coercivity of approximately 706 Oe. AC electrodeposition is very simple, fast, and is useful for the homogenous deposition of various secondary nanostuctured materials into the nanopores of AAO. PMID:23941234
NASA Astrophysics Data System (ADS)
Osazuwa, Osayuki
The objective of this thesis is to prepare thermoplastic/multi-wall carbon nanotubes (MWCNTs) and to apply external alternating current (AC) electric fields to achieve enhanced conductivity and dielectric properties. The first part of the thesis focuses on preparing polyolefin-based composites containing welldispersed MWCNTs. MWCNTs are functionalized with a hyperbranched polyethylene (HBPE) using a non-covalent, non-specific functionalization approach and melt compounded with an ethylene-octene copolymer (EOC) matrix. The improved filler dispersion in the functionalized EOC/MWCNT composite results in higher elongation at break compared to the non-functionalized composite. However, the electrical percolation threshold and the ultimate conductivity of the composites are not affected considerably, suggesting that this functionalization approach leaves the inherent properties of the nanotubes intact. EOC/HBPE-functionalized MWCNT composites are further subjected to external AC electric fields (35 -- 212 kV/m), which induce the formation of aligned columnar structures, as evidenced by Scanning Electron Microscopy. Experimentally acquired resistivity data are used to derive correlations between the characteristic insulator-to-conductor transition times of the composites and the electric field strength (E), polymer viscosity (eta) and MWCNT volume fraction (φ). A criterion for the selection of (eta, E, φ) conditions that enable MWCNT assembly under an electric field controlled regime (minimal Brownian motion-driven aggregation effects) is developed. The dielectric properties of the solidified aligned EOC/MWCNT composites are further studied using dielectric spectroscopy. Annealing of the composites at 160 °C results in the formation of interconnected structures, whereas electrification, using AC field of 71 and 212 kV/m induces the formation of aligned columnar structures. The electrified and annealed composites have increased real and imaginary permittivity compared to the as-compounded composite, resulting in improved conductivity and storage capacity. An equivalent circuit model is fitted to the experimentally obtained impedance data in order to correlate the effects of electric field and processing time to the dielectric characteristics of the treated composites. Finally poly(ethylene succinate) (PESu) composites containing well-dispersed MWCNT were prepared by an in-situ polymerization method. Composite electrification results in improvements in the electrical conductivity by up to 12 orders of magnitude, and a retention of high conductivity in the solidified state.
AC electric field induced dipole-based on-chip 3D cell rotation.
Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui
2014-08-07
The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.
NASA Astrophysics Data System (ADS)
Yang, C. C.; Yang, S. Y.; Chen, H. H.; Weng, W. L.; Horng, H. E.; Chieh, J. J.; Hong, C. Y.; Yang, H. C.
2012-07-01
By specifically bio-functionalizing magnetic nanoparticles, magnetic nanoparticles are able to label target bio-molecules. This property can be applied to quantitatively detect molecules invitro by measuring the related magnetic signals of nanoparticles bound with target molecules. One of the magnetic signals is the reduction in the mixed-frequency ac magnetic susceptibility of suspended magnetic nanoparticles due to the molecule-particle association. Many experimental results show empirically that the molecular-concentration dependent reduction in ac magnetic susceptibility follows the logistic function. In this study, it has been demonstrated that the logistic behavior is originated from the growth of particle sizes due to the molecule-particle association. The analytic relationship between the growth of particle sizes and the reduction in ac magnetic susceptibility is developed.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-03-01
Sr(1-x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-07-01
Sr(1- x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
Nikola Tesla: the man behind the magnetic field unit.
Roguin, Ariel
2004-03-01
The magnetic field strength of both the magnet and gradient coils used in MR imaging equipment is measured in Tesla units, which are named for Nikola Tesla. This article presents the life and achievements of this Serbian-American inventor and researcher who discovered the rotating magnetic field, the basis of most alternating-current machinery. Nikola Tesla had 700 patents in the United States and Europe that covered every aspect of science and technology. Tesla's discoveries include the Tesla coil, AC electrical conduction, improved lighting, newer forms of turbine engines, robotics, fluorescent light, wireless transmission of electrical energy, radio, remote control, discovery of cosmic radio waves, and the use of the ionosphere for scientific purposes. He was a genius whose discoveries had a pivotal role in advancing us into the modern era. Copyright 2004 Wiley-Liss, Inc.
Yi, Peiyun; Zhang, Weixin; Bi, Feifei; Peng, Linfa; Lai, Xinmin
2018-06-06
Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x /amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x /a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp 2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x /a-C coatings would provide new opportunities for commercial bipolar plates.
Improvement of immunoassay detection system by using alternating current magnetic susceptibility
NASA Astrophysics Data System (ADS)
Kawabata, R.; Mizoguchi, T.; Kandori, A.
2016-03-01
A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.
Improvement of immunoassay detection system by using alternating current magnetic susceptibility.
Kawabata, R; Mizoguchi, T; Kandori, A
2016-03-01
A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.
McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G
2010-12-01
Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.
Chang, Kuo-Tsai
2007-01-01
This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.
Characteristics of long-gap AC streamer discharges under low pressure conditions
NASA Astrophysics Data System (ADS)
Yang, Yaqi; Li, Weiguo; Xia, Yu; Yuan, Chuangye
2017-10-01
The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current (AC) voltage in a low pressure test platform for a 60 cm rod-plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.
Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells
Schweiger, Hans-Georg; Obeidi, Ossama; Komesker, Oliver; Raschke, André; Schiemann, Michael; Zehner, Christian; Gehnen, Markus; Keller, Michael; Birke, Peter
2010-01-01
The internal resistance is the key parameter for determining power, energy efficiency and lost heat of a lithium ion cell. Precise knowledge of this value is vital for designing battery systems for automotive applications. Internal resistance of a cell was determined by current step methods, AC (alternating current) methods, electrochemical impedance spectroscopy and thermal loss methods. The outcomes of these measurements have been compared with each other. If charge or discharge of the cell is limited, current step methods provide the same results as energy loss methods. PMID:22219678
Xuan, Xiangchun; Li, Dongqing
2005-09-01
General solutions are developed for direct current (DC) and alternating current (AC) electroosmotic flows in microfluidic channels with arbitrary cross-sectional geometry and arbitrary distribution of wall charge (zeta potential). The applied AC electric field can also be of arbitrary waveform. By proposing a nondimensional time scale varpi defined as the ratio of the diffusion time of momentum across the electric double-layer thickness to the period of the applied electric field, we demonstrate analytically that the Helmholtz-Smoluchowski electroosmotic velocity is an appropriate slip condition for AC electroosmotic flows in typical microfluidic applications. With this slip condition approach, electroosmotic flows in rectangular and asymmetric trapezoidal microchannels with nonuniform wall charge, as examples, are investigated. The unknown constants in the proposed general solutions are numerically determined with a least-squares method through matching the boundary conditions. We find that the wall charge affects significantly the electroosmotic flow while the channel geometry does not. Moreover, the flow feature is characterized by another nondimensional time scale Omega defined as the ratio of the diffusion time of momentum across the channel hydraulic radius to the period of the applied electric field. The onset of phase shift between AC electroosmotic velocity and applied electric field is also examined analytically.
Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors.
Zhou, Qinqin; Zhang, Miao; Chen, Ji; Hong, Jong-Dal; Shi, Gaoquan
2016-08-17
The commercialized aluminum electrolytic capacitors (AECs) currently used for alternating current (AC) line-filtering are usually the largest components in the electronic circuits because of their low specific capacitances and bulky sizes. Herein, nitrogen-doped holey graphene (NHG) films were prepared by thermal annealing the composite films of polyvinylpyrrolidone (PVP), graphene oxide (GO), and ferric oxide (Fe2O3) nanorods followed by chemical etching with hydrochloride acid. The typical electrochemical capacitor with NHG electrodes exhibited high areal and volumetric specific capacitances of 478 μF cm(-2) and 1.2 F cm(-3) at 120 Hz, ultrafast frequency response with a phase angle of -81.2° and a resistor-capacitor time constant of 203 μs at 120 Hz, as well as excellent cycling stability. Thus, it is promising to replace conventional AEC for AC line-filtering in miniaturized electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, K.
2011-03-15
Optical interferometry techniques were used for the first time to measure the volume resistivity/conductivity of carbon steel samples in seawater with different concentrations of a corrosion inhibitor. In this investigation, the real-time holographic interferometry was carried out to measure the thickness of anodic dissolved layer or the total thickness, U{sub total}, of formed oxide layer of carbon steel samples during the alternating current (ac) impedance of the samples in blank seawater and in 5-20 ppm TROS C-70 inhibited seawater, respectively. In addition, a mathematical model was derived in order to correlate between the ac impedance (resistance) and the surface (orthogonal)more » displacement of the surface of the samples in solutions. In other words, a proportionality constant [resistivity ({rho}) or conductivity ({sigma})= 1/{rho}] between the determined ac impedance [by electrochemical impedance spectroscopy (EIS) technique] and the orthogonal displacement (by the optical interferometry techniques) was obtained. The value of the resistivity of the carbon steel sample in the blank seawater was found similar to the value of the resistivity of the carbon steel sample air, around 1 x 10{sup -5}{Omega} cm. On the contrary, the measured values of the resistivity of the carbon steel samples were 1.85 x 10{sup 7}, 3.35 x 10{sup 7}, and 1.7 x 10{sup 7}{Omega} cm in 5, 10, and 20 ppm TROS C-70 inhibited seawater solutions, respectively. Furthermore, the determined value range of {rho} of the formed oxide layers, from 1.7 x 10{sup 7} to 3.35 x 10{sup 7}{Omega} cm, is found in a reasonable agreement with the one found in literature for the Fe oxide-hydroxides, i.e., goethite ({alpha}-FeOOH) and for the lepidocrocite ({gamma}-FeOOH), 1 x 10{sup 9}{Omega} cm. The {rho} value of the Fe oxide-hydroxides, 1 x 10{sup 9}{Omega} cm, was found slightly higher than the {rho} value range of the formed oxide layer of the present study. This is because the former value was determined by a dc method rather than by an electromagnetic method, i.e., holographic interferometry with applications of EIS, i.e., ac method. As a result, erroneous measurements were recorded due to the introduction of heat to Fe oxide-hydroxides.« less
NASA Astrophysics Data System (ADS)
Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG
2018-03-01
A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.
AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System
NASA Astrophysics Data System (ADS)
Salman, Fathy
2004-01-01
The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.
Lee, Hyunyeol; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Park, Jaeseok
2016-05-01
To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz ) and conductivity distribution. In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz . A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging. © 2015 Wiley Periodicals, Inc.
HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.
2015-06-20
Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) andmore » the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.« less
ERIC Educational Resources Information Center
Dunlap, Justin C.; Kutschera, Ellynne; Van Ness, Grace R.; Widenhorn, Ralf
2015-01-01
We present a general physics laboratory exercise that centres around the use of the electrocardiogram sensor as an application of circuits and electronic signal filtering. Although these topics are commonly taught in the general physics classroom, many students consider topics such as alternating current as unrelated to their future professions.…
Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel.
Li, Fengqin; Jian, Yongjun; Chang, Long; Zhao, Guangpu; Yang, Liangui
2016-11-01
In this work, we investigate the time periodic electroosmotic flow (EOF) of an electrolyte solution through a slit polyelectrolyte-grafted (PE-grafted) nanochannel under applied alternating current (AC) electrical field. The PE-grafted nanochannel is represented by a rigid surface covered by a polyelectrolyte layer (PEL) in a brush-like configuration. Under Debye-Hückel approximation, we obtain analytical solutions of electrical potential in decoupled regime of PE-grafted nanochannel, where the thickness of PEL is independent of the electrostatic effects triggered by polyelectrolyte charges. Based upon the electrical potential obtained above, we calculate EOF velocities with uniform and non-uniform drag coefficients for PE-grafted nanochannel and compare their results. The effects of pertinent dimensionless parameters on EOF velocity amplitude are discussed in detail. Moreover, the amplitude of EOF velocity in a PE-grafted nanochannel is compared with that in a rigid one. It is shown that larger EOF velocity and volume flow rate are found for a PE-grafted nanochannel. In addition, AC EOF velocity is further investigated. The oscillation of velocity reduces and is restricted within the region near the PEL-electrolyte interface for higher oscillating Reynolds number Re. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Xiaoyu; Liu, Xinwei; Chiang, Spencer; Cao, Wenbo; Li, Ming; Ouyang, Zheng
2018-05-01
Ion trap is an excellent platform to perform tandem mass spectrometry (MS/MS), but has an intrinsic drawback in resolving power. Using ion resonant ejection as an example, the resolution degradation can be largely attributed to the broadening of the resonant frequency band (RFB) between ion motion and driving alternative-current (AC). To solve this problem, stimulated motion suppression (STMS) was developed. The key idea of STMS is the use of two suppression alternative-current (SAC) signals, which both have reversed initial phases to the main AC. The SACs can block the unexpected sideband ion resonances (or ejections), therefore playing a key role in sharpening the RFB. The proof-of-concept has been demonstrated through ion trajectory simulations and validated experimentally. STMS provides a new and versatile means for the improvement of the ion trap resolution, which for a long time has reached the bottleneck through conventional methods, e.g., increasing the radio-frequency (RF) voltage and decreasing the mass scan rate. At the end, it is worth noting that the idea of STMS is very general and principally can be applied in any RF device for the purposes of high-resolution mass analysis and ion isolation.
Quality Assurance Framework for Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterly, Sean; Baring-Gould, Ian; Booth, Samuel
To address the root challenges of providing quality power to remote consumers through financially viable mini-grids, the Global Lighting and Energy Access Partnership (Global LEAP) initiative of the Clean Energy Ministerial and the U.S. Department of Energy teamed with the National Renewable Energy Laboratory (NREL) and Power Africa to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The framework addresses both alternating current (AC) and direct current (DC) mini-grids, and is applicable to renewable, fossil-fuel, and hybrid systems.
2010-06-01
essential to fostering the loyalty , dedication and pride that enables the diverse student population within your department to be the very best systems...that I have enjoyed in my short time with you. Without you in my life, to share my success, I could not have ever achieved the level of satisfaction ...used. A typical wall mounted light switch is a single pole single throw switch. A common industrial motor start switch is a three pole single throw
2010-06-01
perfect example on how to lead, manage and strive for excellence in every aspect of your life. Your leadership is essential to fostering the loyalty ...share my success, I could not have ever achieved the level of satisfaction and enjoyment that I have. You will never understand how helpful the...A typical wall mounted light switch is a single pole single throw switch. A common industrial motor start switch is a three pole single throw switch
NASA Astrophysics Data System (ADS)
Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser
2018-03-01
This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.
Lee, Ji-Yun; Komatsu, Kensei; Lee, Byung-Cheol; Miyata, Masanori; O'Neill Bohn, Ashley; Xu, Haidong; Yan, Chen; Li, Jian-Dong
2015-06-15
Mucin overproduction is a hallmark of otitis media (OM). Streptococcus pneumoniae is one of the most common bacterial pathogens causing OM. Mucin MUC5AC plays an important role in mucociliary clearance of bacterial pathogens. However, if uncontrolled, excessive mucus contributes significantly to conductive hearing loss. Currently, there is a lack of effective therapeutic agents that suppress mucus overproduction. In this study, we show that a currently existing antistroke drug, vinpocetine, a derivative of the alkaloid vincamine, inhibited S. pneumoniae-induced mucin MUC5AC upregulation in cultured middle ear epithelial cells and in the middle ear of mice. Moreover, vinpocetine inhibited MUC5AC upregulation by inhibiting the MAPK ERK pathway in an MKP-1-dependent manner. Importantly, ototopical administration of vinpocetine postinfection inhibited MUC5AC expression and middle ear inflammation induced by S. pneumoniae and reduced hearing loss and pneumococcal loads in a well-established mouse model of OM. Thus, these studies identified vinpocetine as a potential therapeutic agent for inhibiting mucus production in the pathogenesis of OM. Copyright © 2015 by The American Association of Immunologists, Inc.
The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation
NASA Astrophysics Data System (ADS)
Zheng, Dianfeng
2016-11-01
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)
Rongeat, Carine; Reddy, M Anji; Witter, Raiker; Fichtner, Maximilian
2014-02-12
Batteries based on a fluoride shuttle (fluoride ion battery, FIB) can theoretically provide high energy densities and can thus be considered as an interesting alternative to Li-ion batteries. Large improvements are still needed regarding their actual performance, in particular for the ionic conductivity of the solid electrolyte. At the current state of the art, two types of fluoride families can be considered for electrolyte applications: alkaline-earth fluorides having a fluorite-type structure and rare-earth fluorides having a tysonite-type structure. As regard to the latter, high ionic conductivities have been reported for doped LaF3 single crystals. However, polycrystalline materials would be easier to implement in a FIB due to practical reasons in the cell manufacturing. Hence, we have analyzed in detail the ionic conductivity of La(1-y)Ba(y)F(3-y) (0 ≤ y ≤ 0.15) solid solutions prepared by ball milling. The combination of DC and AC conductivity analyses provides a better understanding of the conduction mechanism in tysonite-type fluorides with a blocking effect of the grain boundaries. Heat treatment of the electrolyte material was performed and leads to an improvement of the ionic conductivity. This confirms the detrimental effect of grain boundaries and opens new route for the development of solid electrolytes for FIB with high ionic conductivities.
Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma
NASA Astrophysics Data System (ADS)
Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma
2018-06-01
When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.
A new bed-exiting alarm system for welfare facility residents.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W
2009-01-01
A newly developed alarm system detects welfare facility residents leaving their beds, and does not respond to the care staff, who wear shoes or slippers. It employs a stainless steel tape electrode, several linear integrated circuits and a low-power 8-bit single chip microcomputer. The electrode, which is used as a bed-exiting detection sensor, is attached to the floor mat to record changes in the always-present AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the standard 100 volt, 60 Hz AC utility power wiring in the room walls and ceiling. The resident's body movements, before trying to get out of bed and after leaving the bed, are detected by the microcomputer from changes in the induced AC voltage. The microcomputer alerts the care staff station, via a power line communication system or PHS (personal handy phone System).
NASA Astrophysics Data System (ADS)
Xia, Yingdong; Chen, Yonghua; Smith, Gregory M.; Li, Yuan; Huang, Wenxiao; Carroll, David L.
2013-06-01
In this work, the effects of electrode modification by calcium (Ca) on the performance of AC field induced polymer electroluminescence (FIPEL) devices are studied. The FIPEL device with Ca/Al electrode exhibits 550 cd m-2, which is 27.5 times higher than that of the device with only an Al electrode (20 cd m-2). Both holes and electrons are injected from one electrode in our FIPEL device. We found that the electron injection can be significantly enhanced by a Ca modification on the Al electrode without greatly affecting the hole injection. Therefore, the electrons and holes can be effectively recombined in the emissive layer to form more excitons under the AC voltage, leading to effective light emission. The device emitted much brighter light than other AC-based organic EL devices. This result provides an easy and effective way to improve FIPEL performance.
Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando
2017-07-01
The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.
2014-11-01
Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.
AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.
2012-06-01
AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.
Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi
2017-09-01
Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.
A hybrid air conditioner driven by a hybrid solar collector
NASA Astrophysics Data System (ADS)
Al-Alili, Ali
The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an electricity price of 0.12 $/kW-hr, the hybrid solar A/C's cumulative total cost will be less than that of a standard VCC after 17.5 years of operation.
Controlling of dielectric parameters of insulating hydroxyapatite by simulated body fluid.
Kaygili, Omer; Keser, Serhat; Ates, Tankut; Tatar, Cengiz; Yakuphanoglu, Fahrettin
2015-01-01
Hydroxyapatite (HAp) samples were synthesized under various amounts of citric acid using the sol-gel method. Before and after immersion in simulated body fluid (SBF) for 14 and 28 days, the structural properties of HAp samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray (EDX) spectroscopy and dielectric measurements. The crystallite size (D) was found to be in the range of 25.17-33.06 nm with the crystallinity percent (XC%) of 69.53-86.09. The lattice parameters of a and c were calculated to be in the ranges of 9.373-9.434 Å and 6.828-6.896 Å, respectively. The morphology of the as-synthesized samples was changed with the amount of citric acid and soaking period in SBF. The Ca/P molar ratios indicated a decrease with increasing immersion time, and Ca-deficiency was observed. The relative permittivity (ε') and dielectric loss (ε″) were significantly affected by citric acid content and soaking period in SBF. It was seen that the alternating current conductivity (σac) increased with increasing frequency and the σac values changed with increasing soaking period and amount of citric acid. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuan, Nguyen Anh; Anh, Nguyen Tuan; Nga, Nguyen Tuyet; Tue, Nguyen Anh; Van Cuong, Giap
2016-06-01
The alternating-current (ac) electrical properties of granular-type-barrier magnetic tunnel junctions (GBMTJs) based on Co/Co x (Al2O3)1- x ( t)/Co trilayer structures have been studied using complex impedance spectroscopy (CIS). Their CIS characteristics were investigated in external magnetic fields varying from 0 kOe to 3 kOe as a function of Co composition x at 10 at.%, 25 at.%, and 35 at.%, with barrier layer thickness t of 20 nm to 90 nm. The influence of these factors on the behaviors of the ac impedance response of the GBMTJs was deeply investigated and attributed to the dielectric or conducting nature of the Co-Al2O3 barrier layer. The most remarkable typical phenomena observed in these behaviors, even appearing paradoxical, include lower impedance for thicker t for each given x, a declining trend of Z with increasing x, a clear decrease of Z with H, and especially a partition of Z into zones according to the H value. All these effects are analyzed and discussed to demonstrate that diffusion-type and mass-transfer-type phenomena can be inferred from processes such as spin tunneling and Coulomb or spin blockade in the Co-Al2O3 barrier layer.
El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G
2015-05-15
A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of Alternative Refrigerants for Mini-Split Air Conditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Shrestha, Som S
The phase-out of hydrochlorofluorocarbons (HCFC) refrigerants in developing countries is currently underway according to the Montreal Protocol. R-22 is one of the most commonly used HCFCs in the developing nations. It is extremely well suited for air conditioning and refrigeration (AC&R) in high ambient temperature environments. Non-Article 5 countries have already gone through the phase-out of HCFCs and settled on using R-410A as the refrigerant of choice for AC applications. Previous studies have shown that R-410A results in significant capacity and performance degradation at higher ambient temperature conditions. As such, there is a growing concern on finding alternative refrigerants tomore » R-22 that would have zero ODP, lower GWP, and at the same time maintain acceptable performance at higher ambient temperatures. Furthermore, the developed world s transition through higher global warming potential (GWP) refrigerants like HFC and HFC blends resulted in significant direct CO2 equivalent emissions. It is imperative to develop a bridge for developing nations to avoid the transition from HCFC to HFC and then from HFC to alternative lower GWP refrigerants. This paper summarizes data from an experimental campaign on alternative refrigerant evaluation for R-22 and R-410A substitutes for mini-split air conditioners designed for high ambient environments. The experimental evaluation was performed according to ANSI/ASHRAE Standard 37 and the performance was rated at test conditions specified by ANSI/AHRI 210-240 and ISO 5151. Additional tests were conducted at outdoor ambient temperatures of 52 C (125.6 F) and 55 C (131 F) to evaluate their performance at high ambient conditions. Alternative refrigerants, some of which are proprietary, included R-444B, DR-3, N-20b, ARM-20b, R-290, and DR-93 as alternatives to R-22 and R-32, DR-55, L41-2, ARM-71A, and HPR-2A as alternatives to R-410A. The units performances were first verified using the baseline refrigerant and then drop-in refrigerant evaluation followed including soft optimization to ensure refrigerant performance is adequately represented. The soft optimization included: 1) charge optimization, 2) lubricant change, and 3) flow control. The paper presents the relative performances (efficiency and capacity) of the alternative refrigerants compared to the baseline refrigerants at the different operating conditions. Paper concludes with remarks about the suitability of alternative refrigerants for R-22 and R-410A applications in high ambient temperature regions.« less
Development of a dual-field heteropoplar power converter
NASA Technical Reports Server (NTRS)
Eisenhaure, D. B.; Johnson, B.; Bliamptis, T.; St. George, E.
1981-01-01
The design and testing of a 400 watt, dual phase, dual rotor, field modulated inductor alternator is described. The system is designed for use as a flywheel to ac utility line or flywheel to dc bus (electric vehicle) power converter. The machine is unique in that it uses dual rotors and separately controlled fields to produce output current and voltage which are in phase with each other. Having the voltage and current in phase allows the power electronics to be made of simple low cost components. Based on analytical predictions and experimental results, development of a complete 22 kilowatt (30 Hp) power conversion system is recommended. This system would include power electronics and controls and would replace the inductor alternator with an improved electromagnetic conversion system.
High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana
2017-09-01
Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.
NASA Astrophysics Data System (ADS)
Jeffery, Rondo N.; Amiri, Farhang
2016-02-01
The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1976-01-01
An analysis of magnetic fields in the Orbiter Payload Bay resulting from the present grounding configuration (structure return) was presented and the amount of improvement that would result from installing wire returns for the three dc power buses was determined. Ac and dc magnetic fields at five points in a cross-section of the bay are calculated for both grounding configurations. Y and Z components of the field at each point are derived in terms of a constant coefficient and the current amplitude of each bus. The dc loads assumed are 100 Amperes for each bus. The ac noise current used is a spectrum 6 db higher than the Orbiter equipment limit for narrowband conducted emissions. It was concluded that installing return wiring to provide a single point ground for the dc Buses in the Payload Bay would reduce the ac and dc magnetic field intensity by approximately 30 db.
Time varying voltage combustion control and diagnostics sensor
Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV
2011-04-19
A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.
Study of dielectric relaxation and AC conductivity of InP:S single crystal
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.
2012-07-01
The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.
Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids
NASA Astrophysics Data System (ADS)
Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ
2017-02-01
This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the complex permittivity (ɛ ^*) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.
Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen
2011-04-01
The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cartilage conduction is characterized by vibrations of the cartilaginous portion of the ear canal.
Nishimura, Tadashi; Hosoi, Hiroshi; Saito, Osamu; Miyamae, Ryosuke; Shimokura, Ryota; Yamanaka, Toshiaki; Kitahara, Tadashi; Levitt, Harry
2015-01-01
Cartilage conduction (CC) is a new form of sound transmission which is induced by a transducer being placed on the aural cartilage. Although the conventional forms of sound transmission to the cochlea are classified into air or bone conduction (AC or BC), previous study demonstrates that CC is not classified into AC or BC (Laryngoscope 124: 1214-1219). Next interesting issue is whether CC is a hybrid of AC and BC. Seven volunteers with normal hearing participated in this experiment. The threshold-shifts by water injection in the ear canal were measured. AC, BC, and CC thresholds at 0.5-4 kHz were measured in the 0%-, 40%-, and 80%-water injection conditions. In addition, CC thresholds were also measured for the 20%-, 60%-, 100%-, and overflowing-water injection conditions. The contributions of the vibrations of the cartilaginous portion were evaluated by the threshold-shifts. For AC and BC, the threshold-shifts by the water injection were 22.6-53.3 dB and within 14.9 dB at the frequency of 0.5-4 kHz, respectively. For CC, when the water was filled within the bony portion, the thresholds were elevated to the same degree as AC. When the water was additionally injected to reach the cartilaginous portion, the thresholds at 0.5 and 1 kHz dramatically decreased by 27.4 and 27.5 dB, respectively. In addition, despite blocking AC by the injected water, the CC thresholds in force level were remarkably lower than those for BC. The vibration of the cartilaginous portion contributes to the sound transmission, particularly in the low frequency range. Although the airborne sound is radiated into the ear canal in both BC and CC, the mechanism underlying its generation is different between them. CC generates airborne sound in the canal more efficiently than BC. The current findings suggest that CC is not a hybrid of AC and BC.
Cartilage Conduction Is Characterized by Vibrations of the Cartilaginous Portion of the Ear Canal
Nishimura, Tadashi; Hosoi, Hiroshi; Saito, Osamu; Miyamae, Ryosuke; Shimokura, Ryota; Yamanaka, Toshiaki; Kitahara, Tadashi; Levitt, Harry
2015-01-01
Cartilage conduction (CC) is a new form of sound transmission which is induced by a transducer being placed on the aural cartilage. Although the conventional forms of sound transmission to the cochlea are classified into air or bone conduction (AC or BC), previous study demonstrates that CC is not classified into AC or BC (Laryngoscope 124: 1214–1219). Next interesting issue is whether CC is a hybrid of AC and BC. Seven volunteers with normal hearing participated in this experiment. The threshold-shifts by water injection in the ear canal were measured. AC, BC, and CC thresholds at 0.5–4 kHz were measured in the 0%-, 40%-, and 80%-water injection conditions. In addition, CC thresholds were also measured for the 20%-, 60%-, 100%-, and overflowing-water injection conditions. The contributions of the vibrations of the cartilaginous portion were evaluated by the threshold-shifts. For AC and BC, the threshold-shifts by the water injection were 22.6–53.3 dB and within 14.9 dB at the frequency of 0.5–4 kHz, respectively. For CC, when the water was filled within the bony portion, the thresholds were elevated to the same degree as AC. When the water was additionally injected to reach the cartilaginous portion, the thresholds at 0.5 and 1 kHz dramatically decreased by 27.4 and 27.5 dB, respectively. In addition, despite blocking AC by the injected water, the CC thresholds in force level were remarkably lower than those for BC. The vibration of the cartilaginous portion contributes to the sound transmission, particularly in the low frequency range. Although the airborne sound is radiated into the ear canal in both BC and CC, the mechanism underlying its generation is different between them. CC generates airborne sound in the canal more efficiently than BC. The current findings suggest that CC is not a hybrid of AC and BC. PMID:25768088
Electromagnetic augmentation for casting of thin metal sheets
Hull, John R.
1989-01-01
Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.
NASA Astrophysics Data System (ADS)
LeBlanc, M. A. R.; Cameron, Daniel S. M.; LeBlanc, David; Meng, Jinglei
1996-01-01
Hysteresis losses, Wac, in the core of a monolithic coaxial cable carrying an alternating current of fixed amplitude Iac are predicted to trace a valley as a steady bias current Ibias is superimposed on Iac, when (a) the critical current density jc diminishes with increasing magnetic field H, and/or (b) a Meissner current IM or a surface barrier current ISB opposing flux entry play a role. The predicted Ibias,min where the valley minimum occurs and the value of Wac at the minima are displayed for various IM≥0 and ISB≥0 when jc=α (Bean) and jc=α/H (Kim approximation).
Ac-loss measurement of a DyBCO-Roebel assembled coated conductor cable (RACC)
NASA Astrophysics Data System (ADS)
Schuller, S.; Goldacker, W.; Kling, A.; Krempasky, L.; Schmidt, C.
2007-10-01
Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature around 50-77 K, which is a crucial precondition for economical cooling costs. We prepared a short length of a Roebel bar cable made of industrial DyBCO coated conductor (Theva Company, Germany). Meander shaped tapes of 4 mm width with a twist pitch of 122 mm were cut from 10 mm wide CC tapes using a specially designed tool. Eleven of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac field were measured as a function of frequency and field amplitude in transverse and parallel field orientations. In addition, the coupling current time constant of the sample was directly measured.
Development of a glottal area index that integrates glottal gap size and open quotient
Chen, Gang; Kreiman, Jody; Gerratt, Bruce R.; Neubauer, Juergen; Shue, Yen-Liang; Alwan, Abeer
2013-01-01
Because voice signals result from vocal fold vibration, perceptually meaningful vibratory measures should quantify those aspects of vibration that correspond to differences in voice quality. In this study, glottal area waveforms were extracted from high-speed videoendoscopy of the vocal folds. Principal component analysis was applied to these waveforms to investigate the factors that vary with voice quality. Results showed that the first principal component derived from tokens without glottal gaps was significantly (p < 0.01) associated with the open quotient (OQ). The alternating-current (AC) measure had a significant effect (p < 0.01) on the first principal component among tokens exhibiting glottal gaps. A measure AC/OQ, defined as the ratio of AC to OQ, was proposed to combine both amplitude and temporal characteristics of the glottal area waveform for both complete and incomplete glottal closures. Analyses of “glide” phonations in which quality varied continuously from breathy to pressed showed that the AC/OQ measure was able to characterize the corresponding continuum of glottal area waveform variation, regardless of the presence or absence of glottal gaps. PMID:23464035
2013-01-01
In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424
NASA Astrophysics Data System (ADS)
Ahmad, Iqbal; Shah, Syed Mujtaba; Ashiq, Muhammad Naeem; Nawaz, Faisal; Shah, Afzal; Siddiq, Muhammad; Fahim, Iqra; Khan, Samiullah
2016-10-01
Microemulsion method has been used for the synthesis of high resistive spinal nanoferrites with nominal composition Sr1- x Nd x Fe2- y Mn y O4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0) for high frequency device applications. It has been confirmed by x-ray diffraction (XRD) results that these ferrites have a cubic spinal structure with a mean crystallite size ranging from 34 mm to 47 nm. The co-substitution of Nd3+ and Mn2+ ions was performed, and its effect on electrical, dielectric and impedance properties was analyzed employing direct current (DC) resistivity measurements, dielectric measurements and electrochemical impedance spectroscopy (EIS). The DC resistivity ( ρ) value was the highest for the composition Sr0.90Nd0.1FeMnO4, but for the same composition, dielectric parameters and alternating current (AC) conductivity showed their minimum values. In the lower frequency range, the magnitudes of dielectric parameters decrease with increasing frequency and show an almost independent frequency response at higher frequencies. Dielectric polarization has been employed to explain these results. It was inferred from the results of EIS that the conduction process in the studied ferrite materials is predominantly governed by grain boundary volume.
Hakoda, Masaru; Hirota, Yusuke
2013-09-01
The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.
Krewski, Daniel; Burnett, Richard; Jerrett, Michael; Pope, C Arden; Rainham, Daniel; Calle, Eugenia; Thurston, George; Thun, Michael
This article provides an overview of previous analysis and reanalysis of the American Cancer Society (ACS) cohort, along with an indication of current ongoing analyses of the cohort with additional follow-up information through to 2000. Results of the first analysis conducted by Pope et al. (1995) showed that higher average sulfate levels were associated with increased mortality, particularly from cardiopulmonary disease. A reanalysis of the ACS cohort, undertaken by Krewski et al. (2000), found the original risk estimates for fine-particle and sulfate air pollution to be highly robust against alternative statistical techniques and spatial modeling approaches. A detailed investigation of covariate effects found a significant modifying effect of education with risk of mortality associated with fine particles declining with increasing educational attainment. Pope et al. (2002) subsequently reported results of a subsequent study using an additional 10 yr of follow-up of the ACS cohort. This updated analysis included gaseous copollutant and new fine-particle measurements, more comprehensive information on occupational exposures, dietary variables, and the most recent developments in statistical modeling integrating random effects and nonparametric spatial smoothing into the Cox proportional hazards model. Robust associations between ambient fine particulate air pollution and elevated risks of cardiopulmonary and lung cancer mortality were clearly evident, providing the strongest evidence to date that long-term exposure to fine particles is an important health risk. Current ongoing analysis using the extended follow-up information will explore the role of ecologic, economic, and, demographic covariates in the particulate air pollution and mortality association. This analysis will also provide insight into the role of spatial autocorrelation at multiple geographic scales, and whether critical instances in time of exposure to fine particles influence the risk of mortality from cardiopulmonary and lung cancer. Information on the influence of covariates at multiple scales and of critical exposure time windows can assist policymakers in establishing timelines for regulatory interventions that maximize population health benefits.
Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming
2012-01-01
Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, P.; Putkovich, R.P.
1981-07-01
A study was conducted of the requirements for and technologies applicable to power conditioning equipment in residential solar photovoltaic systems. A survey of companies known or thought to manufacture power conditioning equipment was conducted to asses the technology. Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, andmore » the three best candidate technologies--the current-sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible. (LEW)« less
NASA Astrophysics Data System (ADS)
Lima, L. S.
2017-02-01
We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.
Frequency-specific insight into short-term memory capacity.
Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone
2016-07-01
The digit span is one of the most widely used memory tests in clinical and experimental neuropsychology for reliably measuring short-term memory capacity. In the forward version, sequences of digits of increasing length have to be reproduced in the order in which they are presented, whereas in the backward version items must be reproduced in the reversed order. Here, we assessed whether transcranial alternating current stimulation (tACS) increases the memory span for digits of young and midlife adults. Imperceptibly weak electrical currents in the alpha (10 Hz), beta (20 Hz), theta (5 Hz), and gamma (40 Hz) range, as well as a sham stimulation, were delivered over the left posterior parietal cortex, a cortical region thought to sustain maintenance processes in short-term memory through oscillatory brain activity in the beta range. We showed a frequency-specific effect of beta-tACS that robustly increased the forward memory span of young, but not middle-aged, healthy individuals. The effect correlated with age: the younger the subjects, the greater the benefit arising from parietal beta stimulation. Our results provide evidence of a short-term memory capacity improvement in young adults by online frequency-specific tACS application. Copyright © 2016 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Dugala, Gina M.
2010-01-01
The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.
NASA Astrophysics Data System (ADS)
Goldacker, Wilfried; Grilli, Francesco; Pardo, Enric; Kario, Anna; Schlachter, Sonja I.; Vojenčiak, Michal
2014-09-01
Energy applications employing high-temperature superconductors (HTS), such as motors/generators, transformers, transmission lines and fault current limiters, are usually operated in the alternate current (ac) regime. In order to be efficient, the HTS devices need to have a sufficiently low value of ac loss, in addition to the necessary current-carrying capacity. Most applications are operated with currents beyond the current capacity of single conductors and consequently require cabled conductor solutions with much higher current carrying capacity, from a few kA up to 20-30 kA for large hydro-generators. A century ago, in 1914, Ludwig Roebel invented a low-loss cable design for copper cables, which was successively named after him. The main idea behind Roebel cables is to separate the current in different strands and to provide a full transposition of the strands along the cable direction. Nowadays, these cables are commonly used in the stator of large generators. Based on the same design concept of their conventional material counterparts, HTS Roebel cables from REBCO coated conductors were first manufactured at the Karlsruhe Institute of Technology and have been successively developed in a number of varieties that provide all the required technical features such as fully transposed strands, high transport currents and low ac losses, yet retaining enough flexibility for a specific cable design. In the past few years a large number of scientific papers have been published on the concept, manufacturing and characterization of such cables. Therefore it is timely for a review of those results. The goal is to provide an overview and a succinct and easy-to-consult guide for users, developers, and manufacturers of this kind of HTS cable.
Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage
NASA Astrophysics Data System (ADS)
Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.
2017-08-01
This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction
NASA Astrophysics Data System (ADS)
Dudnik, Yu D.; Borovskoy, A. M.; Shiryaev, V. N.; Safronov, A. A.; Kuznetsov, V. E.; Vasilieva, O. B.; Pavlov, A. V.; Ivanov, D. V.
2018-01-01
Plasma injector made on the basis of the alternating-current plasma torch designed for the three-phase ac plasma torch with 100-500 kWrail electrodes is studied. The construction of the plasma injector is examined. Different materials for manufacture of injector electrodes are investigated. Current-voltage characteristics of the injector are obtained. Investigations of the plasma jet are carried out, and the jet temperature dependence versus the gas flow rate and electric power of the injector is measured.
Jobbins, Matthew M; Raigoza, Annette F; Kandel, S Alex
2012-03-01
We present control circuits designed for electrochemically etching, reproducibly sharp STM probes. The design uses an Arduino UNO microcontroller to allow for both ac and dc operation, as well as a comparator driven shut-off that allows for etching to be stopped in 0.5-1 μs. The Arduino allows the instrument to be customized to suit a wide variety of potential applications without significant changes to hardware. Data is presented for coarse chemical etching of 80:20 platinum-iridium, tungsten, and nickel tips.
Cartledge, Susie; Finn, Judith; Straney, Lahn; Ngu, Phillip; Stub, Dion; Patsamanis, Harry; Shaw, James; Bray, Janet
2017-07-01
Emergency medical services (EMS) transport to hospital is recommended in acute coronary syndrome (ACS) guidelines, but only half of patients with ACS currently use EMS. The recent Australian Warning Signs campaign conducted by the Heart Foundation addressed some of the known barriers against using EMS. Our aim was to examine the influence of awareness of the campaign on these barriers in patients with ACS. Interviews were conducted with patients admitted to an Australian tertiary hospital between July 2013 and April 2014 with a diagnosis of ACS. Patient selection criteria included: aged 35-75 years, competent to provide consent, English speaking, not in residential care and medically stable. Multivariable logistic regression was used to examine factors associated with EMS use. Only 54% of the 199 patients with ACS interviewed used EMS for transport to hospital. Overall 64% of patients recalled seeing the campaign advertising, but this was not associated with increased EMS use (52.0%vs56.9%, p=0.49) or in the barriers against using EMS. A large proportion of patients (43%) using other transport thought it would be faster. Factors associated with EMS use for ACS were: age >65 years, ST-elevation myocardial infarction, a sudden onset of pain and experiencing vomiting. In medically stable patients with ACS, awareness of the Australian Warning Signs campaign was not associated with increased use of EMS or a change in the barriers for EMS use. Future education strategies could emphasise the clinical role that EMS provide in ACS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Lim, Ji-Hey; McCullen, Seth D; Piedrahita, Jorge A; Loboa, Elizabeth G; Olby, Natasha J
2013-10-01
Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.
van Berkum, Susanne; Erné, Ben H.
2013-01-01
The magnetic remanence of silica microspheres with a low concentration of embedded cobalt ferrite nanoparticles is studied after demagnetization and remagnetization treatments. When the microspheres are dispersed in a liquid, alternating current (AC) magnetic susceptibility spectra reveal a constant characteristic frequency, corresponding to the rotational diffusion of the microparticles; this depends only on particle size and liquid viscosity, making the particles suitable as a rheological probe and indicating that interactions between the microspheres are weak. On the macroscopic scale, a sample with the dry microparticles is magnetically remanent after treatment in a saturating field, and after a demagnetization treatment, the remanence goes down to zero. The AC susceptibility of a liquid dispersion, however, characterizes the remanence on the scale of the individual microparticles, which does not become zero after demagnetization. The reason is that an individual microparticle contains only a relatively small number of magnetic units, so that even if they can be reoriented magnetically at random, the average vector sum of the nanoparticle dipoles is not negligible on the scale of the microparticle. In contrast, on the macroscopic scale, the demagnetization procedure randomizes the orientations of a macroscopic number of magnetic units, resulting in a remanent magnetization that is negligible compared to the saturation magnetization of the entire sample. PMID:24009021
NASA Technical Reports Server (NTRS)
Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.
1985-01-01
The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.
NASA Astrophysics Data System (ADS)
Tang, Xi; Li, Baikui; Chen, Kevin J.; Wang, Jiannong
2018-05-01
The photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes were investigated. When the photon energy of incident light was larger than the bandgap of GaN but smaller than that of AlGaN, the alternating-current (ac) photocurrent measured using lock-in techniques increased with the chopper frequency. Analyzing the generation and flow processes of photocarriers revealed that the photocurrent induced by GaN interband excitation featured a transient behavior, and its direction reversed when the light excitation was removed. The abnormal dependence of the measured ac photocurrent magnitude on the chopper frequency was explained considering the detection principles of a lock-in amplifier.
NASA Astrophysics Data System (ADS)
Ammam, Malika; Fransaer, Jan
2013-11-01
We describe how bi-metal PtCu connected wires, immersed in a solution of benzene sulfonic acid (BSA)-phenol (P) or 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-phenol (P), then subjected to simultaneous alternating current (AC) and direct current (DC) electric fields generate power. We discovered that PtCu substrate covered by the deposit containing (BSA-PP-Pt-Cu), abbreviated as PtCu(BSA-PP-Pt-Cu) electrode, plays the role of a substantial anode and cathode. The latter was related to the formation of micro-batteries in the deposited film (BSA-PP-Pt-Cu) that are able to take or deliver electrons from the deposited Pt and Cu, respectively. PP-BSA plays probably the role of bridge for proton conduction in the formed micro-batteries. The power density of the fuel cell (FC)-based PtCu(BSA-PP-Pt-Cu) anode and PtCu(BSA-PP-Pt-Cu) cathode in phosphate buffer solution pH 7.4 at room temperature reaches ˜10.8 μW mm-2. Addition of enzymes, glucose oxidase at the anode and laccase at the cathode and, replacement of BSA by ABTS at the cathode in the deposited films increases the power density to 13.3 μW mm-2. This new procedure might be of great relevance for construction of a new generation of FCs operating at mild conditions or boost the power outputs of BFCs and make them suitable for diverse applications.
Oxide-free aC/Zr0.65Al0.075Cu0.275/aC phase plates for transmission electron microscopy.
Dries, M; Obermair, M; Hettler, S; Hermann, P; Seemann, K; Seifried, F; Ulrich, S; Fischer, R; Gerthsen, D
2018-06-01
Thin-film phase plates (PP) have become a valuable tool for the imaging of organic objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon (aC), which undergoes rapid aging under intense illumination with high-energy electrons. The limited lifetime of aC film PPs calls for alternative PP materials with improved material stability. This work presents thin-film PPs fabricated from the metallic glass alloy Zr 0.65 Al 0.075 Cu 0.275 (ZAC), which was identified as a promising PP material with beneficial properties, such as a large inelastic mean free path. An adverse effect of the ZAC alloy is the formation of a surface oxide layer in ambient air, which reduces the electrical conductivity and causes electrostatic charging in the electron beam. To avoid surface oxidation, the ZAC alloy is enclosed by thin aC layers. The resulting aC/ZAC/aC layer system is used to fabricate Zernike and Hilbert PPs. Phase-contrast TEM imaging is demonstrated for a sample of carbon nanotubes, which show strong contrast enhancement in PP TEM images. Copyright © 2018 Elsevier B.V. All rights reserved.
External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Geng, Steven M.
2013-01-01
Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.
NASA Technical Reports Server (NTRS)
Brown, G. V.; Dirusso, E.; Provenza, A. J.
1995-01-01
A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.
Hayashi, Koichiro; Nakamura, Michihiro; Sakamoto, Wataru; Yogo, Toshinobu; Miki, Hirokazu; Ozaki, Shuji; Abe, Masahiro; Matsumoto, Toshio; Ishimura, Kazunori
2013-01-01
Superparamagnetic nanoparticles (SPIONs) could enable cancer theranostics if magnetic resonance imaging (MRI) and magnetic hyperthermia treatment (MHT) were combined. However, the particle size of SPIONs is smaller than the pores of fenestrated capillaries in normal tissues because superparamagnetism is expressed only at a particle size <10 nm. Therefore, SPIONs leak from the capillaries of normal tissues, resulting in low accumulation in tumors. Furthermore, MHT studies have been conducted in an impractical way: direct injection of magnetic materials into tumor and application of hazardous alternating current (AC) magnetic fields. To accomplish effective enhancement of MRI contrast agents in tumors and inhibition of tumor growth by MHT with intravenous injection and a safe AC magnetic field, we clustered SPIONs not only to prevent their leakage from fenestrated capillaries in normal tissues, but also for increasing their relaxivity and the specific absorption rate. We modified the clusters with folic acid (FA) and polyethylene glycol (PEG) to promote their accumulation in tumors. SPION clustering and cluster modification with FA and PEG were achieved simultaneously via the thiol-ene click reaction. Twenty-four hours after intravenous injection of FA- and PEG-modified SPION nanoclusters (FA-PEG-SPION NCs), they accumulated locally in cancer (not necrotic) tissues within the tumor and enhanced the MRI contrast. Furthermore, 24 h after intravenous injection of the NCs, the mice were placed in an AC magnetic field with H = 8 kA/m and f = 230 kHz (Hf = 1.8×10(9) A/m∙s) for 20 min. The tumors of the mice underwent local heating by application of an AC magnetic field. The temperature of the tumor was higher than the surrounding tissues by ≈6°C at 20 min after treatment. Thirty-five days after treatment, the tumor volume of treated mice was one-tenth that of the control mice. Furthermore, the treated mice were alive after 12 weeks; control mice died up to 8 weeks after treatment.
The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vereb, F.; Winters, J.; Schulz, T.
2012-07-01
Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation inmore » the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)« less
NASA Astrophysics Data System (ADS)
Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik
2018-02-01
We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.
Glassman, Alexander H; Bigger, J Thomas; Gaffney, Michael; Shapiro, Peter A; Swenson, J Robert
2006-03-01
Depression observed following acute coronary syndrome (ACS) is common and associated with an increased risk of death. The Sertraline Antidepressant Heart Attack Trial (SADHART) tested the safety and efficacy of a selective serotonin reuptake inhibitor in this population. No evidence of harm was seen, and sertraline hydrochloride had an overall beneficial effect on mood that occurred primarily in patients with a history of episodes of major depressive disorder (MDD). To determine how frequently the MDD began before ACS and whether onset of the current MDD episode before or after the ACS event influenced response to sertraline. A randomized, double-blind, placebo-controlled treatment of 369 patients with ACS and MDD was conducted in 40 outpatient clinics in 10 countries between April 1, 1997, and April 30, 2001. Diagnosis of MDD, number of previous episodes of depression, and episode onset before or after hospitalization were established using the Diagnostic Interview Schedule. Treatment response was measured with the Clinical Global Impression-Improvement scale. Fifty-three percent of MDD episodes began before hospitalization for the index episode of ACS (for 197 of 369 patients), and 94% of the MDD episodes began more than 30 days before the index ACS episode. Episodes of MDD that began prior to ACS responded more frequently to sertraline than to placebo (63% vs 46%, respectively; odds ratio, 2.0; 95% confidence interval, 1.13-3.55) whereas depression with onset beginning after hospitalization showed a high placebo response rate (69% vs 60%, respectively) and low sertraline-placebo response ratio (1.15). Multivariate analysis indicated that time of onset of the current episode, history of MDD, and baseline severity independently predicted the sertraline-placebo response ratio. Half of the episodes of major depression associated with ACS began long before ACS and therefore were not caused by ACS. Patients whose current episodes of MDD begin before ACS, those with a history of MDD, and those whose episodes are severe should be treated because they will benefit considerably from sertraline. Since these 3 predictors of sertraline response are independent, having more than 1 of them substantially increases the benefit of sertraline while reducing the chance of spontaneous recovery.
Inhibition of thrombus formation on intravascular sensors by electrical polarization.
Schmitt, J M; Baer, M; Meindl, J D; Anderson, M F; Mihm, F G
1984-09-01
Implantable biomedical sensors built on a silicon substrate capped with glass are currently being developed for intravascular applications. Electrical techniques for inhibiting thrombus formation on the surface of a proposed optical sensor in direct contact with blood have been investigated. Glass-on-silicon specimens (4 X 1.2 X 0.4 mm3) were coated with indium-tin oxide, a transparent conductor, and implanted in the vena cava and iliac veins of three dogs for 10, 20, or 33 days. The equilibrium surface-blood interface potentials of the specimens were modified by implanted current sources which supplied either direct current (8-15 microA) or 100 KHz alternating current (5 microA, root mean square). Light-microscopic and scanning electron-microscopic analyses showed each of the DC-polarized specimens to be free of thrombus, in contrast to nonpolarized (control) specimens on which varying amounts of adsorbed protein and thrombus deposits were found. Like the control specimens, the AC-polarized specimens formed thrombus, but the appearance of the deposits differed. These findings support the view that the polarity, magnitude and time dependence of the potential across conducting surface-blood interface significantly influence thrombogenicity. Further work is necessary to determine the roles of electrochemical and electrostatic factors in preventing thrombus formation on foreign materials.
Optimization of spin-torque switching using AC and DC pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Tom; Kamenev, Alex; Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455
2014-06-21
We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.
Toroidal-Core Microinductors Biased by Permanent Magnets
NASA Technical Reports Server (NTRS)
Lieneweg, Udo; Blaes, Brent
2003-01-01
The designs of microscopic toroidal-core inductors in integrated circuits of DC-to-DC voltage converters would be modified, according to a proposal, by filling the gaps in the cores with permanent magnets that would apply bias fluxes (see figure). The magnitudes and polarities of the bias fluxes would be tailored to counteract the DC fluxes generated by the DC components of the currents in the inductor windings, such that it would be possible to either reduce the sizes of the cores or increase the AC components of the currents in the cores without incurring adverse effects. Reducing the sizes of the cores could save significant amounts of space on integrated circuits because relative to other integrated-circuit components, microinductors occupy large areas - of the order of a square millimeter each. An important consideration in the design of such an inductor is preventing magnetic saturation of the core at current levels up to the maximum anticipated operating current. The requirement to prevent saturation, as well as other requirements and constraints upon the design of the core are expressed by several equations based on the traditional magnetic-circuit approximation. The equations involve the core and gap dimensions and the magnetic-property parameters of the core and magnet materials. The equations show that, other things remaining equal, as the maximum current is increased, one must increase the size of the core to prevent the flux density from rising to the saturation level. By using a permanent bias flux to oppose the flux generated by the DC component of the current, one would reduce the net DC component of flux in the core, making it possible to reduce the core size needed to prevent the total flux density (sum of DC and AC components) from rising to the saturation level. Alternatively, one could take advantage of the reduction of the net DC component of flux by increasing the allowable AC component of flux and the corresponding AC component of current. In either case, permanent-magnet material and the slant (if any) and thickness of the gap must be chosen according to the equations to obtain the required bias flux. In modifying the design of the inductor, one must ensure that the inductance is not altered. The simplest way to preserve the original value of inductance would be to leave the gap dimensions unchanged and fill the gap with a permanent- magnet material that, fortuitously, would produce just the required bias flux. A more generally applicable alternative would be to partly fill either the original gap or a slightly enlarged gap with a suitable permanent-magnet material (thereby leaving a small residual gap) so that the reluctance of the resulting magnetic circuit would yield the desired inductance.
Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y. J.; Chu, K. R., E-mail: krchu@yahoo.com.tw; Thumm, M.
The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at opticalmore » frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.« less
An Examination of Workplace Influences on Active Commuting in a Sample of University Employees.
Bopp, Melissa; Sims, Dangaia; Colgan, Joanna; Rovniak, Liza; Matthews, Stephen A; Poole, Erika
2016-01-01
Active commuting (AC; walking or biking) to work is associated with many benefits, though rates remain low. Employers can benefit from greater employee AC, through improved employee physical activity, though how the workplace is related to AC is unclear. The current study sought to examine how the workplace environment is related to AC participation. This was a cross-sectional, online survey conducted in April-May 2014. A volunteer sample of university employees (n = 551) was recruited. A large university in the northeastern United States. The online survey addressed travel habits, demographics, and workplace social and physical environment for AC. Pearson correlations and t tests were used to examine relationships between the percentage of all trips as AC and workplace influences and a multivariate regression analysis predicted AC participation. Participants reported 0.86 ± 2.6 AC trips per week. Percentage of trips as AC trips associated with perceived coworker AC (P < .001), parking availability (r = -0.22, P < .001), and bike parking availability (r = 0.24, P < .001). Individuals reporting greater walking time from their parking spot to their workplace reported a higher percentage of trips as AC compared with those with closer parking (P < .001). Individuals with a parking pass were less likely to AC than those with no permit (P < .001). The full multivariate model explained 42.5% of the variance in percentage of trips per week via AC (P < .001), having a parking pass (B = 0.23, P < .001), parking availability (B = -0.17, P < .001), perceived coworkers AC (B = 0.08, P = .02), and greater perceived walk time to campus (B = -0.43, P < .001) as significant predictors. This study provided insight into institutional influences on AC, indicating that policy, infrastructure, and programmatic initiatives could be used to promote workplace AC.
PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisacikoglu, Mithat C; Bedir, Abdulkadir; Ozpineci, Burak
2012-03-01
More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their chargingmore » and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This decision document, a Record of Decision (ROD), presents the selected remedial action for the AC W Site, Installation Restoration Program (IRP) Site 12, at Mather Air Force Base (AFB), Sacramento County, California. Reports indicate that from 1958 to 1966 waste solvents and transformer oils were disposed in a waste disposal pipe in the AC W area. Investigations conducted as part of the Air Force Installation Restoration Program (IRP) failed to locate the waste disposal pipe but did find trichloroethylene (TCE) contamination in the shallow water bearing zone (SWBZ) in the AC W area. The SWBZ is classified as amore » potential source of drinking water by the State of California, although it is not currently used in the AC W area. The selected remedy will address the potential threat to human health posed by TCE contamination in groundwater (primarily in the SWBZ).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Tang, Yao; Song, Junhua
A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high- performance supercapacitor. The AC/CNT/RGO film is prepared by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promisingmore » electrode for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. The AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g-1 at the current density of 0.2 A g-1, offering a maximum energy density of 30.0 W h kg-1 in organic electrolyte at the cut-off voltage range of 0.001~3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less
“Beating speckles” via electrically-induced vibrations of Au nanorods embedded in sol-gel
Ritenberg, Margarita; Beilis, Edith; Ilovitsh, Asaf; Barkai, Zehava; Shahmoon, Asaf; Richter, Shachar; Zalevsky, Zeev; Jelinek, Raz
2014-01-01
Generation of macroscopic phenomena through manipulating nano-scale properties of materials is among the most fundamental goals of nanotechnology research. We demonstrate cooperative “speckle beats” induced through electric-field modulation of gold (Au) nanorods embedded in a transparent sol-gel host. Specifically, we show that placing the Au nanorod/sol-gel matrix in an alternating current (AC) field gives rise to dramatic modulation of incident light scattered from the material. The speckle light patterns take form of “beats”, for which the amplitude and frequency are directly correlated with the voltage and frequency, respectively, of the applied AC field. The data indicate that the speckle beats arise from localized vibrations of the gel-embedded Au nanorods, induced through the interactions between the AC field and the electrostatically-charged nanorods. This phenomenon opens the way for new means of investigating nanoparticles in constrained environments. Applications in electro-optical devices, such as optical modulators, movable lenses, and others are also envisaged. PMID:24413086
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-03-14
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.
Kaushik, Ajeet; Nikkhah-Moshaie, Roozbeh; Sinha, Raju; Bhardwaj, Vinay; Atluri, Venkata; Jayant, Rahul Dev; Yndart, Adriana; Kateb, Babak; Pala, Nezih; Nair, Madhavan
2017-04-04
In this research, we demonstrate cell uptake of magneto-electric nanoparticles (MENPs) through nanoelectroporation (NEP) using alternating current (ac)-magnetic field stimulation. Uptake of MENPs was confirmed using focused-ion-beam assisted transmission electron microscopy (FIB-TEM) and validated by a numerical simulation model. The NEP was performed in microglial (MG) brain cells, which are highly sensitive for neuro-viral infection and were selected as target for nano-neuro-therapeutics. When the ac-magnetic field optimized (60 Oe at 1 kHz), MENPs were taken up by MG cells without affecting cell health (viability > 92%). FIB-TEM analysis of porated MG cells confirmed the non-agglomerated distribution of MENPs inside the cell and no loss of their elemental and crystalline characteristics. The presented NEP method can be adopted as a part of future nanotherapeutics and nanoneurosurgery strategies where a high uptake of a nanomedicine is required for effective and timely treatment of brain diseases.
ACS sampling system: design, implementation, and performance evaluation
NASA Astrophysics Data System (ADS)
Di Marcantonio, Paolo; Cirami, Roberto; Chiozzi, Gianluca
2004-09-01
By means of ACS (ALMA Common Software) framework we designed and implemented a sampling system which allows sampling of every Characteristic Component Property with a specific, user-defined, sustained frequency limited only by the hardware. Collected data are sent to various clients (one or more Java plotting widgets, a dedicated GUI or a COTS application) using the ACS/CORBA Notification Channel. The data transport is optimized: samples are cached locally and sent in packets with a lower and user-defined frequency to keep network load under control. Simultaneous sampling of the Properties of different Components is also possible. Together with the design and implementation issues we present the performance of the sampling system evaluated on two different platforms: on a VME based system using VxWorks RTOS (currently adopted by ALMA) and on a PC/104+ embedded platform using Red Hat 9 Linux operating system. The PC/104+ solution offers, as an alternative, a low cost PC compatible hardware environment with free and open operating system.
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-01-01
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization. DOI: http://dx.doi.org/10.7554/eLife.22001.001 PMID:28288700
NASA Astrophysics Data System (ADS)
Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan
2013-03-01
A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.
Kaushik, Ajeet; Nikkhah-Moshaie, Roozbeh; Sinha, Raju; Bhardwaj, Vinay; Atluri, Venkata; Jayant, Rahul Dev; Yndart, Adriana; Kateb, Babak; Pala, Nezih; Nair, Madhavan
2017-01-01
In this research, we demonstrate cell uptake of magneto-electric nanoparticles (MENPs) through nanoelectroporation (NEP) using alternating current (ac)-magnetic field stimulation. Uptake of MENPs was confirmed using focused-ion-beam assisted transmission electron microscopy (FIB-TEM) and validated by a numerical simulation model. The NEP was performed in microglial (MG) brain cells, which are highly sensitive for neuro-viral infection and were selected as target for nano-neuro-therapeutics. When the ac-magnetic field optimized (60 Oe at 1 kHz), MENPs were taken up by MG cells without affecting cell health (viability > 92%). FIB-TEM analysis of porated MG cells confirmed the non-agglomerated distribution of MENPs inside the cell and no loss of their elemental and crystalline characteristics. The presented NEP method can be adopted as a part of future nanotherapeutics and nanoneurosurgery strategies where a high uptake of a nanomedicine is required for effective and timely treatment of brain diseases. PMID:28374799
Sohn, Ki Min; Jeong, Kwan Ho; Kim, Jung Eun; Park, Young Min; Kang, Hoon
2015-12-01
Electrical stimulation is being used in variable skin therapeutic conditions. There have been clinical studies demonstrating the positive effect of electrical stimuli on hair regrowth. However, the underlying exact mechanism and optimal parameter settings are not clarified yet. To investigate the effects of different parameter settings of electrical stimuli on hair growth by examining changes in human dermal papilla cells (hDPCs) in vitro and by observing molecular changes in animal tissue. In vitro, cultured hDPCs were electrically stimulated with different parameter settings at alternating current (AC). Cell proliferation was measured by MTT assay. The Ki67 expression was measured by immunofluorescence. Hair growth-related gene expressions were measured by RT-PCR. In animal model, different parameter settings of AC were applied to the shaved dorsal skin of rabbit for 8 weeks. Expression of hair-related genes in the skin of rabbit was examined by RT-PCR. At low voltage power (3.5 V) and low frequency (1 or 2 MHz) with AC, in vitro proliferation of hDPCs was successfully induced. A significant increase in Wnt/β-catenin, Ki67, p-ERK and p-AKT expressions was observed under the aforementioned settings. In animal model, hair regrowth was observed in the entire stimulated areas under individual conditions. Expression of hair-related genes in the skin significantly increased on the 6th week of treatment. There are optimal conditions for electrical stimulated hair growth, and they might be different in the cells, animals and human tissues. Electrical stimuli induce mechanisms such as the activation of Wnt/β-catenin and MAPK pathway in hair follicles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Oscillatory Reinstatement Enhances Declarative Memory.
Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J
2017-10-11
Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval. Copyright © 2017 Javadi et al.
Sulfurized activated carbon for high energy density supercapacitors
NASA Astrophysics Data System (ADS)
Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong
2014-04-01
Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.
NASA Astrophysics Data System (ADS)
Bahadur, Birendra
The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES
Dissanayaka, Thusharika D; Zoghi, Maryam; Farrell, Michael; Egan, Gary F; Jaberzadeh, Shapour
2018-02-23
Sham stimulation is used in randomized controlled trials (RCTs) to assess the efficacy of active stimulation and placebo effects. It should mimic the characteristics of active stimulation to achieve blinding integrity. The present study was a systematic review and meta-analysis of the published literature to identify the effects of sham transcranial electrical stimulation (tES) - including anodal and cathodal transcranial direct current stimulation (a-tDCS, c-tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS) and transcranial pulsed current stimulation (tPCS) - on corticospinal excitability (CSE), compared to baseline in healthy individuals. Electronic databases - PubMed, CINAHL, Scopus, Science Direct and MEDLINE (Ovid) - were searched for RCTs of tES from 1990 to March 2017. Thirty RCTs were identified. Using a random-effects model, meta-analysis of a-tDCS, c-tDCS, tACS, tRNS and tPCS studies showed statistically non-significant pre-post effects of sham interventions on CSE. This review found evidence for statically non-significant effects of sham tES on CSE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.Y.; Turner, B.R.; Schowalter, L.J.
1993-07-01
Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottkymore » barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.« less
A free-piston Stirling engine/linear alternator controls and load interaction test facility
NASA Technical Reports Server (NTRS)
Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.
1992-01-01
A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.
NASA Astrophysics Data System (ADS)
Suda, Yoshiyuki; Mizutani, Akitaka; Harigai, Toru; Takikawa, Hirofumi; Ue, Hitoshi; Umeda, Yoshito
2017-01-01
We fabricated electric double layer capacitors (EDLCs) using particulate and fibrous types of carbon nanomaterials with a wide range of specific surface areas and resistivity as an active material. The carbon nanomaterials used in this study are carbon nanoballoons (CNBs), onion-like carbon (OLC), and carbon nanocoils (CNCs). A commercially used activated carbon (AC) combined with a conductive agent was used as a comparison. We compared the EDLC performance using cyclic voltammetry (CV), galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS). OLC showed a poor EDLC performance, although it has the lowest resistivity among the carbon nanomaterials. CNB, which has a 1/16 lower specific surface area than AC but higher specific surface area than CNC and OLC, had a higher specific capacitance than CNC and OLC. Moreover, at current densities of 1.5 Ag-1 and larger, the specific capacitance of the EDLC using CNB was almost the same as that using AC. Electrochemical impedance spectroscopy of the EDLCs revealed that the CNB and CNC electrodes had a much lower internal resistance than the AC electrode, which correlated with a low capacitance maintenance factor as the current density increased.
Production of Thorium-229 at the ORNL High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boll, Rose Ann; Garland, Marc A; Mirzadeh, Saed
The investigation of targeted cancer therapy using -emitters has developed considerably in recent years and clinical trials have generated promising results. In particular, the initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the -emitter 213Bi in killing cancer cells [1]. Pre-clinical studies have also shown the potential application of both 213Bi and its 225Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy [2]. Bismuth-213 is obtained from a radionuclide generator system from decay of the 10-d 225Ac parent, a member of the 7340-y 229Th chain. Currently, 233U is the only viablemore » source for high purity 229Th; however, due to increasing difficulties associated with 233U safeguards, processing additional 233U is presently unfeasible. The recent decision to downblend and dispose of enriched 233U further diminished the prospects for extracting 229Th from 233U stock. Nevertheless, the anticipated growth in demand for 225Ac may soon exceed the levels of 229Th (~40 g or ~8 Ci; ~80 times the current ORNL 229Th stock) present in the aged 233U stockpile. The alternative routes for the production of 229Th, 225Ra and 225Ac include both reactor and accelerator approaches [3]. Here, we describe production of 229Th via neutron transmutation of 226Ra targets in the ORNL High Flux Isotope Reactor (HFIR).« less
NASA Astrophysics Data System (ADS)
Kanti Bera, Tushar
2018-03-01
Biological tissues are developed with biological cells which exhibit complex electrical impedance called electrical bioimpedance. Under an alternating electrical excitation the bioimpedance varies with the tissue anatomy, composition and the signal frequency. The current penetration and conduction paths vary with frequency of the applied signal. Bioimpedance spectroscopy is used to study the frequency response of the electrical impedance of biological materials noninvasively. In bioimpedance spectroscopy, a low amplitude electrical signal is injected to the tissue sample or body parts to characterization the sample in terms of its bioimpedance. The electrical current conduction phenomena, which is highly influenced by the tissue impedance and the signal frequency, is an important phenomena which should be studied to understand the bioimpedance techniques like bioelectrical impedance analysis (BIA), EIS, or else. In this paper the origin of bioelectrical impedance and current conduction phenomena has been reviewed to present a brief summary of bioelectrical impedance and the frequency dependent current conduction through biological tissues. Simulation studies are conducted with alternation current injection through a two dimensional model of biological tissues containing finite number of biological cells suspended in extracellular fluid. The paper demonstrates the simulation of alternating current conduction through biological tissues conducted by COMSOL Multiphysics. Simulation studies also show the frequency response of the tissue impedance for different tissue compositions.
Mechanical Pre-Stressing a Transducer through a Negative DC Biasing Field
2017-04-21
13 ii LIST OF ABBREVIATIONS AND ACRONYMS AC Alternating Current DC Direct Currant FEA Finite Element Analysis NUWC Naval...at resonance into tension is shown in figure 3; it was estimated from finite element analysis (FEA) that the tensional stresses exceeded 2000 psi...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Stephen C. Butler 5.d PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION
Zilberberg, Marya D; Kothari, Smita; Shorr, Andrew F
2009-01-01
Introduction Recent epidemiologic literature indicates that candidal species resistant to azoles are becoming more prevalent in the face of increasing incidence of hospitalizations with candidemia. Echinocandins, a new class of antifungal agents, are effective against resistant candidal species. As delaying appropriate antifungal coverage leads to increased mortality, we evaluated the cost-effectiveness of 100 mg daily empiric micafungin (MIC) vs. 400 mg daily fluconazole (FLU) for suspected intensive care unit-acquired candidemia (ICU-AC) among septic patients. Methods We designed a decision model with inputs from the literature in a hypothetical 1000-patient cohort with suspected ICU-AC treated empirically with either MIC or FLU or no treatment accompanied by a watchful waiting strategy. We examined the differences in the number of survivors, acquisition costs of antifungals, and lifetime costs among survivors in the cohort under each scenario, and calculated cost per quality adjusted life year (QALY). We conducted Monte Carlo simulations and sensitivity analyses to determine the stability of our estimates. Results In the base case analysis, assuming ICU-AC attributable mortality of 0.40 and a 52% relative risk reduction in mortality with appropriate timely therapy, compared with FLU (total deaths 31), treatment with MIC (total deaths 27) would result in four fewer deaths at an incremental cost/death averted of $61,446. Similarly, in reference case, incremental cost-effectiveness of MIC over FLU was $34,734 (95% confidence interval $26,312 to $49,209) per QALY. The estimates were most sensitive to the QALY adjustment factor and the risk of candidemia among septic patients. Conclusions Given the increasing likelihood of azole resistance among candidal isolates, empiric treatment of ICU-AC with 100 mg daily MIC is a cost-effective alternative to FLU. PMID:19545361
Short-term complementary and alternative medicine on quality of life in women with fibromyalgia.
Dias, Paulo Araujo; Guimarães, André Brito Bastos; Albuquerque, Andrea de Oliveira; de Oliveira, Karoline Lucas; Cavalcante, Maria Luzete Costa; Guimarães, Sergio Botelho
2016-01-01
Fibromyalgia (FMS) is a syndrome characterized by chronic widespread musculoskeletal pain, whose etiology is not completely understood. Different therapeutic approaches have been used with inconsistent results. This observation does not invalidate the continued search for alternative treatments aimed at improving quality of life (QoL) in FMS. This study compared three classical traditional Chinese medicine (TCM) therapies: acupuncture (AC), electroacupuncture (EAC) and moxibustion (MX) in the management of pain and promotion of QoL in FMS patients. A preliminary, group-assigned, comparative study enrolled 30 women, mean age (46.90±9.24) years (range 20-60 years), who met the 1990 American College of Rheumatology criteria for FMS diagnosis and a pain-pressure threshold (PPT) < 4 kg/cm(2). The study was conducted in a teaching tertiary-care medical institution from May 2010 through April 2012. AC, EAC and MX were delivered for 30 min, once a week, for 8 weeks, bilaterally at Neiguan (PC6), Hegu (LI4), Yanglingquan (GB34), Sanyinjiao (SP6) and Taichong (LR3) acupoints. Each week, immediately before treatment and after treatment, subjects were tested for PPTs, Wong-Baker Faces Pain Scale (WBFPS; for pain intensity) and Medical Outcomes Study 36-item Short Form Health Survey (SF-36: for QoL). There was no significant improvement in pain or reduction of tender points in any of the groups studied, at the end of the 8th session. Significant improvement of QoL was perceived in vitality (after AC treatment) and in mental health (after EAC and MX treatments). TCM therapies (AC, EAC and MX) promoted an improvement in the QoL in two areas (vitality and mental health) in FMS women. Further large-scale clinical trials are required to confirm this effect.
Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, Vladmir; Backhaus, Scott N.; Chertkov, Michael
Aiming to relieve transmission grid congestion and improve or extend feasibility domain of the operations, we build optimization heuristics, generalizing standard AC Optimal Power Flow (OPF), for placement and sizing of Flexible Alternating Current Transmission System (FACTS) devices of the Series Compensation (SC) and Static VAR Compensation (SVC) type. One use of these devices is in resolving the case when the AC OPF solution does not exist because of congestion. Another application is developing a long-term investment strategy for placement and sizing of the SC and SVC devices to reduce operational cost and improve power system operation. SC and SVCmore » devices are represented by modification of the transmission line inductances and reactive power nodal corrections respectively. We find one placement and sizing of FACTs devices for multiple scenarios and optimal settings for each scenario simultaneously. Our solution of the nonlinear and nonconvex generalized AC-OPF consists of building a convergent sequence of convex optimizations containing only linear constraints and shows good computational scaling to larger systems. The approach is illustrated on single- and multi-scenario examples of the Matpower case-30 model.« less
Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields
Obermayer, Klaus
2018-01-01
The rise of transcranial current stimulation (tCS) techniques have sparked an increasing interest in the effects of weak extracellular electric fields on neural activity. These fields modulate ongoing neural activity through polarization of the neuronal membrane. While the somatic polarization has been investigated experimentally, the frequency-dependent polarization of the dendritic trees in the presence of alternating (AC) fields has received little attention yet. Using a biophysically detailed model with experimentally constrained active conductances, we analyze the subthreshold response of cortical pyramidal cells to weak AC fields, as induced during tCS. We observe a strong frequency resonance around 10-20 Hz in the apical dendrites sensitivity to polarize in response to electric fields but not in the basal dendrites nor the soma. To disentangle the relative roles of the cell morphology and active and passive membrane properties in this resonance, we perform a thorough analysis using simplified models, e.g. a passive pyramidal neuron model, simple passive cables and reconstructed cell model with simplified ion channels. We attribute the origin of the resonance in the apical dendrites to (i) a locally increased sensitivity due to the morphology and to (ii) the high density of h-type channels. Our systematic study provides an improved understanding of the subthreshold response of cortical cells to weak electric fields and, importantly, allows for an improved design of tCS stimuli. PMID:29727454
Development of mix design procedures for gap-graded asphalt-rubber asphalt concrete
DOT National Transportation Integrated Search
2007-11-01
A research project was conducted to identify and document current modifications to ARIZONA 815c (75-blow Marshall method) used to develop gap-graded asphalt rubber asphalt concrete (GG AR AC) mix designs, and to develop and test improvements to provi...
Gencoglu, Aytug; Olney, David; LaLonde, Alexandra; Koppula, Karuna S; Lapizco-Encinas, Blanca H
2014-02-01
In this study, the potential of low-frequency AC insulator-based DEP (iDEP) was explored for the separation of polystyrene microparticles and yeast cells. An EOF gradient was generated by employing an asymmetrical, 20 Hz AC electrical signal in an iDEP device consisting of a microchannel with diamond-shaped insulating posts. Two types of samples were analyzed, the first sample contained three types of polystyrene particles with different diameters (0.5, 1.0, and 2.0 μm) and the second sample contained two types of polystyrene particles (1.0 and 2 μm) and yeast cells (6.3 μm). This particular scheme uses a tapered AC signal that allows for all particles to be trapped and concentrated at the insulating post array, as the signal becomes asymmetrical (more positive), particles are selectively released. The smallest particles in each sample were released first, since they require greater dielectrophoretic forces to remain trapped. The largest particles in each sample were released last, when the applied signal became cyclical. A dielectropherogram, which is analogous to a chromatogram, was obtained for each sample, demonstrating successful separation of the particles by showing "peaks" of the released particles. These separations were achieved at lower applied potentials than those reported in previous studies that used solely direct current electrical voltages. Additionally, mathematical modeling with COMSOL Multiphysics was carried out to estimate the magnitude of the dielectrophoretic and EOF forces acting on the particles considering the low-frequency, asymmetrical AC signal used in the experiments. The results demonstrated the potential of low-frequency AC-iDEP systems for handling and separating complex mixtures of microparticles and biological cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-contact current and voltage sensor
Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A
2014-03-25
A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.
Low-frequency flicker noise in a MSM device made with single Si nanowire (diameter ≈ 50 nm).
Samanta, Sudeshna; Das, Kaustuv; Raychaudhuri, Arup Kumar
2013-04-10
: Low-frequency flicker noise has been measured in a metal-semiconductor-metal (MSM) device made from a single strand of a single crystalline Si nanowire (diameter approximately 50 nm). Measurement was done with an alternating current (ac) excitation for the noise measurement superimposed with direct current (dc) bias that can be controlled independently. The observed noise has a spectral power density ∝1/fα. Application of the superimposed dc bias (retaining the ac bias unchanged) with a value more than the Schottky barrier height at the junction leads to a large suppression of the noise amplitude along with a change of α from 2 to ≈ 1. The dc bias-dependent part of the noise has been interpreted as arising from the interface region. The residual dc bias-independent flicker noise is suggested to arise from the single strand of Si nanowire, which has the conventional 1/f spectral power density.
Low-frequency flicker noise in a MSM device made with single Si nanowire (diameter ≈ 50 nm)
2013-01-01
Low-frequency flicker noise has been measured in a metal-semiconductor-metal (MSM) device made from a single strand of a single crystalline Si nanowire (diameter approximately 50 nm). Measurement was done with an alternating current (ac) excitation for the noise measurement superimposed with direct current (dc) bias that can be controlled independently. The observed noise has a spectral power density ∝1/fα. Application of the superimposed dc bias (retaining the ac bias unchanged) with a value more than the Schottky barrier height at the junction leads to a large suppression of the noise amplitude along with a change of α from 2 to ≈ 1. The dc bias-dependent part of the noise has been interpreted as arising from the interface region. The residual dc bias-independent flicker noise is suggested to arise from the single strand of Si nanowire, which has the conventional 1/f spectral power density. PMID:23574820
Electrical voltages and resistances measured to inspect metallic cased wells and pipelines
Vail, III, William Banning; Momii, Steven Thomas
2001-01-01
A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.
Electrical voltages and resistances measured to inspect metallic cased wells and pipelines
Vail III, William Banning; Momii, Steven Thomas
2003-06-10
A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.
Transient analysis for alternating over-current characteristics of HTSC power transmission cable
NASA Astrophysics Data System (ADS)
Lim, S. H.; Hwang, S. D.
2006-10-01
In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.
Hatz, Maximilian H M; Leidl, Reiner; Yates, Nichola A; Stollenwerk, Björn
2014-04-01
Thrombosis inhibitors can be used to treat acute coronary syndromes (ACS). However, there are various alternative treatment strategies, of which some have been compared using health economic decision models. To assess the quality of health economic decision models comparing thrombosis inhibitors in patients with ACS undergoing percutaneous coronary intervention, and to identify areas for quality improvement. The literature databases MEDLINE, EMBASE, EconLit, National Health Service Economic Evaluation Database (NHS EED), Database of Abstracts of Reviews of Effects (DARE) and Health Technology Assessment (HTA). A review of the quality of health economic decision models was conducted by two independent reviewers, using the Philips checklist. Twenty-one relevant studies were identified. Differences were apparent regarding the model type (six decision trees, four Markov models, eight combinations, three undefined models), the model structure (types of events, Markov states) and the incorporation of data (efficacy, cost and utility data). Critical issues were the absence of particular events (e.g. thrombocytopenia, stroke) and questionable usage of utility values within some studies. As we restricted our search to health economic decision models comparing thrombosis inhibitors, interesting aspects related to the quality of studies of adjacent medical areas that compared stents or procedures could have been missed. This review identified areas where recommendations are indicated regarding the quality of future ACS decision models. For example, all critical events and relevant treatment options should be included. Models also need to allow for changing event probabilities to correctly reflect ACS and to incorporate appropriate, age-specific utility values and decrements when conducting cost-utility analyses.
Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy
NASA Astrophysics Data System (ADS)
Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.
2009-03-01
We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP)2SbF6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF)2X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d like superconducting pair is formed in this system as the case of κ-(BEDT-TTF)2X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet.
A magnetic bearing based on eddy-current repulsion
NASA Technical Reports Server (NTRS)
Nikolajsen, J. L.
1987-01-01
This paper describes a new type of electromagnetic bearing, called the Eddy-Current Bearing, which works by repulsion between fixed AC-electromagnets and a conducting rotor. The following advantages are expected: inherent stability, higher load carrying capacity than DC-electromagnetic bearings, simultaneous radial, angular and thrust support, motoring and generating capability, and backup mode of operation in case of primary power failure. A prototype is under construction.
ERIC Educational Resources Information Center
Hoe, Kai Yee; Subramaniam, R.
2016-01-01
This study presents an analysis of alternative conceptions (ACs) on acid--base chemistry harbored by grade 9 students in Singapore. The ACs were obtained by the development and validation of a 4-tier diagnostic instrument. It is among the very few studies in the science education literature that have focused on examining results based also on…
ERIC Educational Resources Information Center
Chang, Chew-Hung; Pascua, Liberty
2015-01-01
This study identified secondary school students' alternative conceptions (ACs) of climate change and their resistance to instruction. Using a case-based approach, a diagnostic test was administered to Secondary 3 male students in a pre-test and post-test. The ACs identified in the pre-test were on the causes of climate change, the natural…
Unexpected resonant response in [Fe(001)/Cr(001)]10/MgO(001) multilayers in a magnetic field.
Aliev, F G; Pryadun, V V; Snoeck, E
2009-01-23
We observed unexpected resonant response in [Fe/Cr]10 multilayers epitaxially grown on MgO(100) substrates which exists only when both ac current and dc magnetic field are simultaneously applied. The magnitude of the resonances is determined by the multilayer magnetization proving their intrinsic character. The reduction of interface epitaxy leads to nonlinear dependence of the magnitude of resonances on the alternating current density. We speculate that the existence of the interface transition zone could facilitate the subatomic vibrations in thin metallic films and multilayers grown on bulk insulating substrates.
A scanning tunneling microscope break junction method with continuous bias modulation.
Beall, Edward; Yin, Xing; Waldeck, David H; Wierzbinski, Emil
2015-09-28
Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule.
Dielectric and conductivity studies of Co-Cu mixed ferrite
NASA Astrophysics Data System (ADS)
Parveez, Asiya; Shekhawat, M. S.; Nayeem, Firdous; Mohd. Shariff, S.; Sinha, R. R.; Khader, S. Abdul
2018-05-01
Nanoparticles of Co-Cu mixed ferrite having the basic composition Co1-xCuxFe2O4(x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized using nitrate-citrate combustion method. Structural, dielectric and a.c conductivity of nanopowders, which are sintered at 900°C were studied. Powder X-ray diffraction studies confirmed phase and their nanocrystalline nature. The peaks observed in the XRD spectrum indicated single phase spinel cubic structure for the synthesized samples. Surface morphology of the samples has been investigated using High ResolutionScanning Electron Microscope. The dielectric constant (ɛ') and dielectric loss factor (ɛ″) of nanocrystalline Co-Cu mixed ferrites were investigated as a function of frequency and Cu+2 concentration at room temperature over the frequency range 100 Hz to 1 MHz using Hioki make LCR Hi-Tester 3250. Synthesized mixed ferrites exhibited usual dielectric dispersion, dependence of ɛ' and ɛ″ with the frequency of the alternating applied electric field is in accordance with the Maxwell-Wagner type interfacial polarization. The electrical conductivity (σac) deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in Co1-xCuxFe2O4 mixed nanoferrites are in conformity with the electron hopping model.
AC electrothermal mixing for high conductive biofluids by arc-electrodes
NASA Astrophysics Data System (ADS)
Meng, Jiyu; Li, Shanshan; Li, Junwei; Yu, Chengzhuang; Wei, Chunyang; Dai, Shijie
2018-06-01
As a platform to mix the bioagents (i.e. serum, urine), we take advantage of the alternating current electrothermal (ACET) effect which is quite suitable for rapid pumping/mixing of high conductive biomicrofluids. Here we demonstrate the concept of a high-efficient mixing microfluidic chip as a basic unit to provide rapid mixing for lab-on-a-chip applications. As an active mixer, two streams are introduced into a ring-shape microchamber by a passive flow rate regulator, and then the microfluids in the chamber are actuated by a nonuniform electric field with a phase shift of 180°. It shows perfect mixing performance by arranging four arc-electrodes around the ring-shape microchamber subsequently. Taking the Joule heating and conductivity/permittivity changes into consideration, a temperature dependent fully coupled numerical model is presented. Then, the effects of applied voltages on mixing performance and temperature rise are provided to get an optimized design for ACET mixer. Moreover, the arrangement of the electrode array is analyzed to show the effects of electrode patterns on the swirls and mixing efficiencies. Since all the electrodes here are located along a ring-shape central microchamber, the ring-shape micromixer is quite suitable to function as a compact element modular for integrated microfluidic chips.
Aboughalma, Hanssan; Bi, Ran; Schlaak, Michael
2008-07-01
The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.
An alternative parameter to characterize biogas materials: Available carbon-nitrogen ratio.
Wang, Ming; Li, Wenzhe; Li, Pengfei; Yan, Shuiping; Zhang, Yanlin
2017-04-01
Available carbon-nitrogen ratio (AC/N) was proposed as an alternative parameter for evaluating the potential of biogas materials in this paper. In the calculation of AC/N ratio, only the carbon that could be effectively utilized in anaerobic digestion (AD) process is included. Compared with total C/N, AC/N is particularly more suitable for the characterization of biogas materials rich in recalcitrant components. Nine common biogas materials were selected and a series of semi-continuous tests for up to 110days were carried out to investigate the source of available carbon and the relationship between AC/N and the stability of AD process. The results showed that only the carbon existing in proteins, sugars, fat and hemicelluose should be considered as available carbon for anaerobic microbes. Besides, the optimal AC/N for semi-continuous AD process was preliminarily determined to be 11-15. Taken together, our results demonstrate that AC/N is more effective than total C/N in the evaluation of the potential performance of AD process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Daraghmeh, Allan; Hussain, Shahzad; Saadeddin, Iyad; Servera, Llorenç; Xuriguera, Elena; Cornet, Albert; Cirera, Albert
2017-12-01
Symmetric supercapacitors are fabricated by carbon nanofibers (CNF) and activated carbon (AC) using similar proportions of 7 wt% polyvinylidene fluoride (PVDF) polymer binder in an aqueous electrolyte. In this study, a comparison of porous texture and electrochemical performances between CNFs and AC based supercapacitors was carried out. Electrodes were assembled in the cell without a current collector. The prepared electrodes of CNFs and AC present Brunauer-Emmett-Teller (BET) surface area of 83 and 1042 m2/g, respectively. The dominant pore structure for CNFs is mesoporous while for AC is micropore. The results showed that AC provided higher specific capacitance retention up to very fast scan rate of 500 mV/s. AC carbon had a specific capacitance of 334 F/g, and CNFs had 52 F/g at scan rate 5 mV/s in aqueous solution. Also, the results indicate the superior conductivity of CNFs in contrast to AC counterparts. The measured equivalent series resistance (ESR) showed a very small value for CNFs (0.28 Ω) in comparison to AC that has an ESR resistance of (3.72 Ω). Moreover, CNF delivered higher specific power (1860 W/kg) than that for AC (450 W/kg). On the other hand, AC gave higher specific energy (18.1 Wh/kg) than that for CNFs (2 Wh/kg).This indicates that the AC is good for energy applications. Whereas, CNF is good for power application. Indeed, the higher surface area will lead to higher specific capacitance and hence higher energy density for AC. For CNF, lower ESR is responsible for having higher power density. Both CNF and AC supercapacitor exhibit an excellent charge-discharge stability up to 2500 cycles.
Taillefer, R; Douesnard, J M; Beauchamp, G; Guimond, J
1987-08-01
A Tc-99m albumin colloid (Tc-AC) kit has been introduced as an alternative to Tc-99m sulfur colloid (Tc-SC) for liver-spleen imaging. Since there is no need for boiling, the use of Tc-AC reduces preparation time and manipulation. Tc-SC is one of the most commonly used radiopharmaceuticals for the labeling of solid-phase markers in gastric emptying studies. In vitro studies were performed to evaluate the labeling efficiency and stability in hydrochloric acid and in human gastric juice of intracellularly labeled chicken liver and scrambled eggs labeled with Tc-SC and Tc-AC. Gastric emptying studies also were performed on 20 healthy volunteers with both Tc-SC and Tc-AC labeled scrambled egg sandwiches. There was no significant difference between Tc-SC and Tc-AC in the labeling efficiency of chicken liver (98% +/- 1% for Tc-SC, 96% +/- 2% for Tc-AC) and scrambled eggs (92% +/- 2% for Tc-SC, 91% +/- 3% for Tc-AC). However, both Tc-SC and Tc-AC labeled scrambled eggs showed a lower stability than chicken liver, particularly in human gastric juice. Gastric emptying curves from both meals in 20 normal subjects were also similar, with a mean half-emptying time of 85 +/- 13 minutes and 87 +/- 16 minutes for the meals containing Tc-SC and Tc-AC respectively. Tc-AC is a reliable alternative to Tc-SC as a radiotracer for solid-phase gastric emptying studies.
NASA Technical Reports Server (NTRS)
Wester, Gene W. (Inventor)
1980-01-01
A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.
Structural phase transition and multiferroic properties of Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr)
NASA Astrophysics Data System (ADS)
Rout, Jyoshna; Choudhary, R. N. P.
2018-05-01
The multiferroic BiFeO3 and Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr) have been synthesized using direct mechanosynthesis. Detailed investigations were made on the influence of Ca-Mn and Sr-Mn co-substitutions on the structure change, electric and magnetic properties of the BFO. Rietveld refinement on the XRD pattern of the modified samples clarifies the structural transition from R3c:H (parent BiFeO3) to the biphasic structure (R3c: H + Pnma). Scanning electron micrographs confirmed the polycrystalline nature of the materials and each of the microstructure comprised of uniformly distributed grains with less porosity. The dielectric measurements reveal that enhancement in dielectric properties due to the reduction of oxygen vacancies by substitutional ions. Studies of frequency-dependence of impedance and related parameters exhibit that the electrical properties of the materials are strongly dependent on temperature, and bear a good correlation with its microstructure. The bulk resistance (evaluated from impedance studies) is found to decrease with increasing temperature for all the samples. The alternating current (ac) conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher's universal power law. Preliminary studies of magnetic characteristics of the samples reveal enhanced magnetization for Ca-Mn co-substituted sample. The magnetoelectric coefficient as the function of applied dc magnetizing field under fixed ac magnetic field 15.368 Oe is measured and this ME coefficient αME corresponds to induction of polarization by a magnetic field.
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng
2016-01-01
By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure. PMID:27190570
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng
2016-05-01
By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure.
Santarnecchi, E; Muller, T; Rossi, S; Sarkar, A; Polizzotto, N R; Rossi, A; Cohen Kadosh, R
2016-02-01
Emerging evidence suggests that transcranial alternating current stimulation (tACS) is an effective, frequency-specific modulator of endogenous brain oscillations, with the potential to alter cognitive performance. Here, we show that reduction in response latencies to solve complex logic problem indexing fluid intelligence is obtained through 40 Hz-tACS (gamma band) applied to the prefrontal cortex. This improvement in human performance depends on individual ability, with slower performers at baseline receiving greater benefits. The effect could have not being explained by regression to the mean, and showed task and frequency specificity: it was not observed for trials not involving logical reasoning, as well as with the application of low frequency 5 Hz-tACS (theta band) or non-periodic high frequency random noise stimulation (101-640 Hz). Moreover, performance in a spatial working memory task was not affected by brain stimulation, excluding possible effects on fluid intelligence enhancement through an increase in memory performance. We suggest that such high-level cognitive functions are dissociable by frequency-specific neuromodulatory effects, possibly related to entrainment of specific brain rhythms. We conclude that individual differences in cognitive abilities, due to acquired or developmental origins, could be reduced during frequency-specific tACS, a finding that should be taken into account for future individual cognitive rehabilitation studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Clinical efficacy of alternating chemo-radiotherapy for locally advanced nasopharyngeal carcinoma].
You, Xi; Yang, Yucheng
2014-03-01
The purpose of this study is to investigate the effective of alternating Chemo-radiotherapy for locally Advanced Nasopharyngeal Carcinoma. Retrospective analysis 106 cases of patients with locally advanced nasopharyngeal carcinoma between November 2005 and March 2007. All patients received cisplatin-based chemotherapy but 15 patients received radiotherapy(RT) alone. Inducing chemotherapy (IC) + RT + adju-vant chemotherapy (AC) regimen in 36 patients, IC+RT regimen was delivered in 25 patients and AC + RT regimen in 30 patients. 61 patients received 1 to 2 cycles of inducing chemotherapy and 66 patients received 3 to 6 cycles of adjuvant chemotherapy after radiotherapy. Chemotherapy started on the first day after the end of the induction chemotherapy, adjuvant chemotherapy begun after radiotherapy for a week. All patients were treated by radiotherapy using 60 Co r-ray, the nasophyarynx primary site was given a total does of 68 -74 Gy. The lymph nodes of the neck was given 60 to 70 Gy. The prophylactic irradiation does of the neck was 48-50 Gy. RESCULT: The median follow up time was 51 months. A total of 58 patients died, the overall survival rate was 45% in whole groups. The 5-year overall survival rates were 33%, 63%, 60% and 50% in RT, IC + RT + AC, IC + RT and RT+AC group, respectively. The 5-year disease-free survival rates were 13%, 56%, 48% and 40% in RT, IC + RT + AC, IC + RT and RT + AC group, respectively. The 5-year relapse-free survival rates were 13%, 53%, 48% and 50% in RT, IC + RT + AC, IC + RT and RT + AC group, respectively. The 5-year metastasis-free survival rates were 6%, 50%, 44% and 47% in RT, IC + RT + AC, IC+ RT and RT + AC group, respectively. There was significant difference in all groups (P < 0.05). The median time to relapses were 22 months, 29 months, 28 months and 25 months in RT, IC + RT + AC, IC + RT and RT + AC group, respectively. The median time to first distant metastasis were 10 months, 19 months, 15 months and 12 months in RT, IC + RT + AC, IC + RT and RT + AC group, respectively. There was no significant difference in all groups (P > 0.05). IC + RT + AC group had heavier acute toxicity effects than other groups, but it did not affect the treatment process, all patients could be tolerated. This retrospective study has demonstrated that alternating Chemo-radiotherapy and early radiotherapy not only can improve the survival rate for locally Advanced Nasopharyngeal Carcinoma, but also have slight toxicities and side reaction, all patients may tolerated.
DC and AC conductivity properties of bovine dentine hydroxyapatite (BDHA)
NASA Astrophysics Data System (ADS)
Dumludag, F.; Gunduz, O.; Kılıc, O.; Ekren, N.; Kalkandelen, C.; Ozbek, B.; Oktar, F. N.
2017-12-01
Bovine dentine bio-waste may be used as a potential natural source of hydroxyapatite (BDHA), thus extraction of bovine dentin hydroxyapatite (BDHA) from bio-waste is significantly important to fabricate in a simple, economically and environmentally preferable. DC and AC conductivity properties of BDHA were investigated depending on sintering temperature (1000ºC - 1300°C) in air and vacuum (<10-2 mbar) ambient at room temperature. DC conductivity measurements performed between -1 and 1 V. AC conductivity measurements performed in the frequency range of 40 Hz - 100 kHz. DC conductivity results showed that dc conductivity values of the BDHA decrease with increasing sintering temperature in air ambient. It is not observed remarkable/systematic behavior for ac conductivity depending on sintering temperature.
Issues and Potential Program on Denatured Fuel Utilization.
1978-12-01
HTGR fuel develop - ment program ; 4. coated particles of (U,Th)02 have been extensively tested as potential HTGR fuels . A detailed summary of the...current scrap and waste treatment requirements. dBase case for all HTGR (Prismatic Fuel Element) cases based on data in "Summary Program Plan...Alternate Program for HTGR Fuel Recycle," April 11, 1975, Draft. 19 a --- AC8NCi09 The principal factors that result in a nominally-higher cost for
2017-08-17
sources: solar panels, two wind turbines , JP8/diesel genset, and alternating current (AC) shore power. The system can be towed by a High Mobility...energy. The project office shipped two REDUCE units to the demonstration, one with wind turbines and one without. For the demonstration, the team...operated and collected data from the system without wind turbines due to the greater reliability of its integrated genset. The system with wind
2017-09-01
12. xii THIS PAGE INTENTIONALLY LEFT BLANK xiii LIST OF ACRONYMS AND ABBREVIATIONS AC alternating current ATG auxiliary turbine generator...invariant MTG main turbine generator MVDC medium voltage DC NAVSEA U.S. Naval Sea Systems Command PGM power generation module RC resistor-capacitor RL...arrangement because the gas turbines used for prime movers are more efficient when they are fully loaded. By amalgamating loads onto fewer machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Tang, Yao; Song, Junhua
A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. We prepared the AC/CNT/RGO film by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrodemore » for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. Furthermore, the AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g -1 at the current density of 0.2 A g -1 offering a maximum energy density of 30.0 W h kg -1 in organic electrolyte at the cut-off voltage range of 0.001–3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less
Li, Xing; Tang, Yao; Song, Junhua; ...
2017-12-06
A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high-performance supercapacitor. We prepared the AC/CNT/RGO film by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrodemore » for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. Furthermore, the AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g -1 at the current density of 0.2 A g -1 offering a maximum energy density of 30.0 W h kg -1 in organic electrolyte at the cut-off voltage range of 0.001–3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.« less
Zhang, Guochen; Zhao, Xin; Ning, Ping; Yang, Danni; Jiang, Xia; Jiang, Wenju
2018-04-18
In this study, MnO 2 and pyrolusite were used as the catalysts to prepare modified activated carbon, i.e., AC-Mn and AC-P, respectively, from coals by blending method and steam activation. The BET results indicated that the AC-P had higher surface areas and micropore volumes than the AC-Mn with the same blending ratio. The relative contents of basic functional groups (i.e. C = O, π-π*) on AC-P were slightly lower than those on AC-Mn, while both contained the same main metal species, i.e. MnO. The desulfurization results showed that with 3 wt% of blending ratio, AC-Mn3 and AC-P3 had higher sulfur capacities at 220 and 205 mg/g, respectively, which were much higher than blank one (149.6 mg/g). Moreover, the AC-P had relatively higher sulfur capacity than the AC-Mn with the same contents of Mn, which might be attributed to the existence of other metals in pyrolusite. After desulfurization process, MnO were gradually transferred into MnSO 4 , and the relative contents of basic functional groups decreased evidently for both AC-Mn3 and AC-P3. The results demonstrated that pyrolusite could be one good alternative of MnO 2 to prepare modified activated carbon for desulfurization. Implication statement MnO 2 and pyrolusite were used as the additives to prepare the modified activated carbon from coals by blending method and steam activation, i.e., AC-Mn and AC-P, respectively. The AC-P had higher surface areas and micropore volumes than the AC-Mn with the same blending ratio. The AC-Mn and AC-P had higher sulfur capacities than blank one. Moreover, the AC-P had relatively higher sulfur capacity than the AC-Mn with the same contents of Mn. The results demonstrated that pyrolusite could be one good alternative of MnO 2 to prepare modified activated carbon for desulfurization.
Connock, M; Stevens, C; Fry-Smith, A; Jowett, S; Fitzmaurice, D; Moore, D; Song, F
2007-10-01
To examine the clinical effectiveness and cost-effectiveness of self-testing and self-management of oral anticoagulation treatment compared with clinic-based monitoring. Major electronic databases were searched up to September 2005. A systematic review was undertaken of relevant data from selected studies. Results about complication events and deaths were pooled in meta-analyses using risk difference (RD) as the outcome statistic. Heterogeneity across trials and possible publication bias were statistically measured. Subgroup analyses (post hoc) were conducted to compare results of self-testing versus self-management, low versus high trial quality, trials conducted in the UK versus trials in other countries and industry versus other sponsors. A Markov-type, state-transition model was developed. Stochastic simulations using the model were conducted to investigate uncertainty in estimated model parameters. In the 16 randomised and eight non-randomised trials selected, patient self-monitoring of oral anticoagulation therapy was found to be more effective than poor-quality usual care provided by family doctors and as effective as good-quality specialised anticoagulation clinics in maintaining the quality of anticoagulation therapy. There was no significant RD of major bleeding events between patient self-monitoring and usual care controls and pooled analyses found that compared with primary care or anticoagulation control (AC) clinics, self-monitoring was statistically significantly associated with fewer thromboembolic events. However, the reduction in complication events and deaths was not consistently associated with the improvement of AC; in some trials this may be due to alternative explanations, including patient education and patient empowerment. Also, the improved AC and the reduction of major complications and deaths by patient self-monitoring were mainly observed in trials conducted outside the UK. According to UK-specific data, for every 100 eligible patients, 24% would agree to conduct self-monitoring, 17 of the 24 patients (70%) could be successfully trained and able to carry out self-monitoring and only 14 of these (80%) would conduct long-term self-monitoring. Seven cost-effectiveness studies were identified and the study that provided the most relevant UK data found that patient self-management was more expensive than current routine care (417 pounds versus 122 pounds per patient-year) and concluded that using a cost-effectiveness threshold of 30,000 pounds per quality-adjusted life-year (QALY) gained, patient self-management does not appear to be cost-effective. De novo modelling for this report found that the incremental cost per QALY gained by patient self-monitoring is 122,365 pounds over 5 years and 63,655 pounds over 10 years. The estimated probability that patient self-monitoring is cost-effective (up to 30,000 pounds/QALY) is 44% over a 10-year period. Wide adoption of patient self-monitoring of anticoagulation therapy would cost the NHS an estimated additional 8-14 million pounds per year. For selected and successfully trained patients, self-monitoring is effective and safe for long-term oral anticoagulation therapy. In general, patient self-management (PSM) is unlikely to be more cost-effective than the current specialised anticoagulation clinics in the UK; self-monitoring may enhance the quality of life for some patients who are frequently away from home, who are in employment or education, or those who find it difficult to travel to clinics. Further research is needed into alternative dosing regimes, the clinical effectiveness and cost-effectiveness of patient education and training in long-term oral anticoagulation therapy, UK-relevant cost-effectiveness, the effectiveness of PSM in children, and the potential future developments of near-patient testing devices.
NASA Astrophysics Data System (ADS)
Pham, Thao Thi-Hien; Sim, Sang Jun
2010-01-01
An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.
The role of optoelectronic feedback on Franz-Keldysh voltage modulation of transistor lasers
NASA Astrophysics Data System (ADS)
Chang, Chi-Hsiang; Chang, Shu-Wei; Wu, Chao-Hsin
2016-03-01
Possessing both the high-speed characteristics of heterojunction bipolar transistors (HBTs) and enhanced radiative recombination of quantum wells (QWs), the light-emitting transistor (LET) which operates in the regime of spontaneous emissions has achieved up to 4.3 GHz modulation bandwidth. A 40 Gbit/s transmission rate can be even achieved using transistor laser (TL). The transistor laser provides not only the current modulation but also direct voltage-controlled modulation scheme of optical signals via Franz-Keldysh (FK) photon-assisted tunneling effect. In this work, the effect of FK absorption on the voltage modulation of TLs is investigated. In order to analyze the dynamics and optical responses of voltage modulation in TLs, the conventional rate equations relevant to diode lasers (DLs) are first modified to include the FK effect intuitively. The theoretical results of direct-current (DC) and small-signal alternating-current (AC) characteristics of optical responses are both investigated. While the DC characteristics look physical, the intrinsic optical response of TLs under the FK voltage modulation shows an AC enhancement with a 20 dB peak, which however is not observed in experiment. A complete model composed of the intrinsic optical transfer function and an electrical transfer function fed back by optical responses is proposed to explain the behaviors of voltage modulation in TLs. The abnormal AC peak disappears through this optoelectronic feedback. With the electrical response along with FK-included photon-carrier rate equations taken into account, the complete voltage-controlled optical modulation response of TLs is demonstrated.
Uh, Kyungchan; Yoon, Bora; Lee, Chan Woo; Kim, Jong-Man
2016-01-20
Electroactive materials that change shape in response to electrical stimulation can serve as actuators. Electroactive actuators of this type have great utility in a variety of technologies, including biomimetic artificial muscles, robotics, and sensors. Electroactive actuators developed to date often suffer from problems associated with the need to use electrolytes, slow response times, high driving voltages, and short cycle lifetimes. Herein, we report an electrolyte-free, single component, polymer electroactive actuator, which has a fast response time, high durability, and requires a low driving voltage (<5 V). The process employed for production of this material involves wet-spinning of a preorganized camphorsulfonic acid (CSA)-doped polyaniline (PANI) gel, which generates long, flexible, and conductive (∼270 S/cm) microfibers. Reversible bending motions take place upon application of an alternating current (AC) to the PANI polymer. This motion, promoted by a significantly low driving voltage (<0.5 V) in the presence of an external magnetic field, has a very large swinging speed (9000 swings/min) that lies in the range of those of flies and bees (1000-15000 swings/min) and is fatigue-resistant (>1000000 cycles).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruck, Andrea M.; Gannett, Cara N.; Bock, David C.
In two series of magnetite (Fe 3O4) composite electrodes, one group with and one group without added carbon, containing varying quantities of polypyrrole (PPy), and a non-conductive polyvinylidene difluoride (PVDF) binder were constructed and then analyzed using electrochemical and spectroscopic techniques. Galvanostatic cycling and alternating current (AC) impedance measurements were used in tandem to measure delivered capacity, capacity retention, and the related impedance at various stages of discharge and charge. Further, the reversibility of Fe 3O 4 to iron metal (Fe0) conversion observed during discharge was quantitatively assessed ex-situ using X-ray Absorption Spectroscopy (XAS). The Fe 3O 4 composite containingmore » the largest weight fraction of PPy (20 wt%) with added carbon demonstrated reduced irreversible capacity on initial cycles and improved cycling stability over 50 cycles, attributed to decreased reaction with the electrolyte in the presence of PPy. Our study illustrated the beneficial role of PPy addition to Fe 3O 4 based electrodes was not strongly related to improved electrical conductivity, but rather to improved ion transport related to the formation of a more favorable surface electrolyte interphase (SEI).« less
Bruck, Andrea M.; Gannett, Cara N.; Bock, David C.; ...
2016-12-15
In two series of magnetite (Fe 3O4) composite electrodes, one group with and one group without added carbon, containing varying quantities of polypyrrole (PPy), and a non-conductive polyvinylidene difluoride (PVDF) binder were constructed and then analyzed using electrochemical and spectroscopic techniques. Galvanostatic cycling and alternating current (AC) impedance measurements were used in tandem to measure delivered capacity, capacity retention, and the related impedance at various stages of discharge and charge. Further, the reversibility of Fe 3O 4 to iron metal (Fe0) conversion observed during discharge was quantitatively assessed ex-situ using X-ray Absorption Spectroscopy (XAS). The Fe 3O 4 composite containingmore » the largest weight fraction of PPy (20 wt%) with added carbon demonstrated reduced irreversible capacity on initial cycles and improved cycling stability over 50 cycles, attributed to decreased reaction with the electrolyte in the presence of PPy. Our study illustrated the beneficial role of PPy addition to Fe 3O 4 based electrodes was not strongly related to improved electrical conductivity, but rather to improved ion transport related to the formation of a more favorable surface electrolyte interphase (SEI).« less
Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste.
Sewu, Divine D; Boakye, Patrick; Woo, Seung H
2017-01-01
Biochar was produced from Korean cabbage (KC), rice straw (RS) and wood chip (WC) and the use as alternative adsorbents to activated carbon (AC) in wastewater treatment was investigated. Congo red (CR) and crystal violet (CV) were used as a model anionic and cationic dye, respectively. Initial solution pH had little effect on CR and CV adsorption onto all biochars except for AC on CR. The isotherm models and kinetic data showed that adsorption of CR and CV onto all biochars were dominantly by chemisorption. All biochars had lower adsorption capacity for CR than AC. KC showed higher Langmuir maximum adsorption capacity (1304mg/g) than AC (271.0mg/g), RS (620.3mg/g) and WC (195.6mg/g) for CV. KC may be a good alternative to conventional AC as cheap, superb and industrially viable adsorbent for removal of cationic dyes in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Honke, Michael L.; Bidinosti, Christopher P.
2018-06-01
We describe a very simple experiment that utilizes standard laboratory equipment to measure the electromagnetic response of a metallic sphere exposed to a uniform ac magnetic field. Measurements were made for a variety of non-magnetic and magnetic metals, and in all cases the results fit very well with theory over the four orders of frequency (25 Hz to 102 kHz) explored here. Precise values of magnetic permeability and electrical conductivity can be extracted from fits to the data given the sphere radius only. The same apparatus is also used to explore the effects of geometry on eddy current generation as well as to demonstrate non-destructive testing through measurements on coins of different composition.
Displacement Current in Domain Walls of Bismuth Ferrite
NASA Astrophysics Data System (ADS)
Prosandeev, Sergey; Yang, Yurong; Paillard, Charles; Bellaiche, L.
2018-03-01
In 1861, Maxwell conceived the idea of the displacement current, which then made laws of electrodynamics more complete and also resulted in the realization of devices exploiting such displacement current. Interestingly, it is presently unknown if such displacement current can result in large intrinsic ac current in ferroic systems possessing domains, despite the flurry of recent activities that have been devoted to domains and their corresponding conductivity in these compounds. Here, we report first-principles-based atomistic simulations that predict that the transverse (polarization-related) displacement currents of 71° and 109° domains in the prototypical BiFeO3 multiferroic material are significant at the walls of such domains and in the GHz regime, and, in fact, result in currents that are at least of the same order of magnitude than previously reported dc currents (that are likely extrinsic in nature and due to electrons). Such large, localized and intrinsic ac currents are found to originate from low-frequency vibrations at the domain walls, and may open the door to the design of novel devices functioning in the GHz or THz range and in which currents would be confined within the domain wall.
Bikson, Marom; Brunoni, Andre R; Charvet, Leigh E; Clark, Vincent P; Cohen, Leonardo G; Deng, Zhi-De; Dmochowski, Jacek; Edwards, Dylan J; Frohlich, Flavio; Kappenman, Emily S; Lim, Kelvin O; Loo, Colleen; Mantovani, Antonio; McMullen, David P; Parra, Lucas C; Pearson, Michele; Richardson, Jessica D; Rumsey, Judith M; Sehatpour, Pejman; Sommers, David; Unal, Gozde; Wassermann, Eric M; Woods, Adam J; Lisanby, Sarah H
Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders. Published by Elsevier Inc.
Bikson, Marom; Brunoni, Andre R.; Charvet, Leigh E.; Clark, Vincent P.; Cohen, Leonardo G.; Deng, Zhi-De; Dmochowski, Jacek; Edwards, Dylan J.; Frohlich, Flavio; Kappenman, Emily S.; Lim, Kelvin O.; Loo, Colleen; Mantovani, Antonio; McMullen, David P.; Parra, Lucas C.; Pearson, Michele; Richardson, Jessica D.; Rumsey, Judith M.; Sehatpour, Pejman; Sommers, David; Unal, Gozde; Wassermann, Eric M.; Woods, Adam J.; Lisanby, Sarah H.
2018-01-01
Background Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. Objective This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. Methods The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. Results Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. Conclusions These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders. PMID:29398575
Rangom, Yverick; Tang, Xiaowu Shirley; Nazar, Linda F
2015-07-28
We report the fabrication of high-performance, self-standing composite sp(2)-carbon supercapacitor electrodes using single-walled carbon nanotubes (CNTs) as conductive binder. The 3-D mesoporous mesh architecture of CNT-based composite electrodes grants unimpaired ionic transport throughout relatively thick films and allows superior performance compared to graphene-based devices at an ac line frequency of 120 Hz. Metrics of 601 μF/cm(2) with a -81° phase angle and a rate capability (RC) time constant of 199 μs are obtained for thin carbon films. The free-standing carbon films were obtained from a chlorosulfonic acid dispersion and interfaced to stainless steel current collectors with various surface treatments. CNT electrodes were able to cycle at 200 V/s and beyond, still showing a characteristic parallelepipedic cyclic votammetry shape at 1 kV/s. Current densities are measured in excess of 6400 A/g, and the electrodes retain more than 98% capacity after 1 million cycles. These promising results are attributed to a reduction of series resistance in the film through the CNT conductive network and especially to the surface treatment of the stainless steel current collector.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.
2018-02-01
The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.
van Ede, Freek
2017-01-01
Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced by tACS and the magnitude of GABAA inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool. PMID:28348136
Andrikopoulos, G; Terentes-Printzios, D; Tzeis, S; Vlachopoulos, C; Varounis, C; Nikas, N; Lekakis, J; Stakos, D; Lymperi, S; Symeonidis, D; Chrissos, D; Kyrpizidis, C; Alexopoulos, D; Zombolos, S; Foussas, S; Κranidis, Α; Oikonomou, Κ; Vasilikos, V; Andronikos, P; Dermitzakis, Α; Richter, D; Fragakis, N; Styliadis, I; Mavridis, S; Stefanadis, C; Vardas, P
In view of recent therapeutic breakthroughs in acute coronary syndromes (ACS) and essential demographic and socioeconomic changes in Greece, we conducted the prospective, multi-center, nationwide PHAETHON study (An Epidemiological Cohort Study of Acute Coronary Syndromes in the Greek Population) that aimed to recruit a representative cohort of ACS patients and examine current management practices and patient prognosis. The PHAETHON study was conducted from May 2012 to February 2014. We enrolled 800 consecutive ACS patients from 37 hospitals with a proportional representation of all types of hospitals and geographical areas. Patients were followed for a median period of 189 days. Outcome was assessed with a composite endpoint of death, myocardial infarction, stroke, urgent revascularization and urgent hospitalization for cardiovascular causes. The mean age of patients was 62.7 years (78% males). The majority of patients (n=411, 51%) presented with ST-elevation myocardial infarction (STEMI), whereas 389 patients presented with NSTEMI (n=303, 38%) or UA (n=86, 11%). Overall, 58.8% of the patients had hypertension, 26.5% were diabetic, 52.5% had dyslipidemia, 71.1% had a smoking history (current or past), 25.8% had a family history of coronary artery disease (CAD) and 24.1% had a prior history of CAD. In STEMI patients, 44.5% of patients were treated with thrombolysis, 38.9% underwent a coronary angiogram (34.1% were treated with primary percutaneous coronary intervention) and 16.5% did not receive urgent treatment. The pain-to-door time was 169 minutes. During hospitalization, 301 (38%) patients presented one or more complications, and 13 died (1.6%). During follow-up, 99 (12.6%) patients experienced the composite endpoint, and 21 died (2.7%). The PHAETHON study provided valuable insights into the epidemiology, management and outcome of ACS patients in Greece. Management of ACS resembles the management observed in other European countries. However, several issues still to be addressed by public authorities for the timely and proper management of ACS. Copyright © 2016 Hellenic Cardiological Society. Published by Elsevier B.V. All rights reserved.
Theory and design of electrical rotating machinery
NASA Astrophysics Data System (ADS)
Carr, W. J., Jr.
1980-04-01
The objective of this program was to contribute toward new and improved rotating machines for Naval applications, with emphasis on superconducting machinery. Work has been performed on the theory of ac losses in multifilament superconductors and experiments were made to check the theory. A list of publications and abstracts of scientific papers published under the contract is given, and a review is given of the theory of losses. A macroscopic theory for superconductivity in multifilament superconductors was developed, and the theory was used to calculate the hysteresis and eddy current losses which occur in the presence of changing magnetic fields. Both the transverse field and the longitudinal field cases were considered, and also the self-field loss of an alternating transport current, along with some examples of the combined loss due to alternating applied field and transport current. The results are useful for the design of superconducting devices, such as superconducting motors and generators. A small amount of additional work was done on studies of novel homo- and heteropolar motors.
Palma, Eleonora; Fucile, Sergio; Barabino, Benedetta; Miledi, Ricardo; Eusebi, Fabrizio
1999-01-01
Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors. PMID:10557336
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
...-AC46 Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating Methods: Public Meeting AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... regulations authorizing the use of alternative methods of determining energy efficiency or energy consumption...
Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor
2015-01-01
A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834
Integration of regenerative shock absorber into vehicle electric system
NASA Astrophysics Data System (ADS)
Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-03-01
Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.
Procedure for Automated Eddy Current Crack Detection in Thin Titanium Plates
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.
2012-01-01
This procedure provides the detailed instructions for conducting Eddy Current (EC) inspections of thin (5-30 mils) titanium membranes with thickness and material properties typical of the development of Ultra-Lightweight diaphragm Tanks Technology (ULTT). The inspection focuses on the detection of part-through, surface breaking fatigue cracks with depths between approximately 0.002" and 0.007" and aspect ratios (a/c) of 0.2-1.0 using an automated eddy current scanning and image processing technique.
Use of emergency medical services in the second gulf registry of acute coronary events.
AlHabib, Khalid F; Alfaleh, Hussam; Hersi, Ahmad; Kashour, Tarek; Alsheikh-Ali, Alawi A; Suwaidi, Jassim Al; Sulaiman, Kadhim; Saif, Shukri Al; Almahmeed, Wael; Asaad, Nidal; Amin, Haitham; Al-Motarreb, Ahmed; Thalib, Lukman
2014-09-01
Data are scarce regarding emergency medical service (EMS) usage by patients with acute coronary syndrome (ACS) in the Arabian Gulf region. This 9-month in-hospital prospective ACS registry was conducted in Arabian Gulf countries, with 30-day and 1-year follow-up mortality rates. Of 5184 patients with ACS, 1293 (25%) arrived at the hospital by EMS. The EMS group (vs non-EMS) was more likely to be male, have cardiac arrest on presentation, be current or exsmokers, and have moderate or severe left ventricular dysfunction and ST-segment elevation myocardial infarction (STEMI). The EMS group had higher crude mortality rates during hospitalization and after hospital discharge but not after adjustment for clinical factors and treatments. The EMSs are underused in the Arabian Gulf region. Short- and long-term mortality rates in patients with ACS are similar between those who used and did not use EMS. Quality improvement in the EMS infrastructure and establishment of integrated STEMI networks are urgently needed. © The Author(s) 2013.
Electrical properties of praseodymium oxide doped Boro-Tellurite glasses
NASA Astrophysics Data System (ADS)
Jagadeesha Gowda G., V.; Devaraja, C.; Eraiah, B.
2016-05-01
Glasses of the composition xPr6O11- (35-x)TeO2-65B2O3 (x=0, 0.1 to 0.5 mol %) have been prepared using the melt quenching method. The ac and dc conductivity of glass have been measured over a wide range of frequencies and temperatures. Experimental results indicate that the ac conductivity depend on temperature, frequency and Praseodymium content. The conductivity as a function of frequency exhibited two components: dc conductivity (σdc), and ac conductivity (σac). The activation energies are estimated and found to be decreases with composition. The impedance plot at each temperature appeared as a semicircle passes through the origin.
Li, Zhong; Li, Caiyu; Qian, Hongchang; Li, Jun; Huang, Liang; Du, Cuiwei
2017-01-01
The corrosion behavior of X80 steel in the presence of coupled coating defects was simulated and studied under the interference of alternating current (AC) in an alkaline environment. The results from electrochemical measurements showed that the electrode potential of the coating defect with the smaller exposed area was lower than that with the larger area, which indicated that the steel with the smaller coating defect was more prone to corrosion. The result of weight loss tests also showed that the smaller coating defect had induced a higher corrosion rate. However, the corrosion rate of X80 steel at the larger coating defect decreased gradually with the increase of the larger defect area at a constant smaller defect area. The corrosion morphology images showed that the coating defects with smaller areas suffered from more severe pitting corrosion. PMID:28773078
[Biotechnological therapies for the treatment of back pain: alternatives to corticosteroids].
Moser, C; Thiel, H-J; Grönemeyer, D
2013-12-01
In recent years, it is increasingly clear that back pain is not only caused by biomechanical problems. Currently, biologically-based local therapy concepts for the treatment of affected spinal regions as an alternative to the standard treatment with steroids are in development or in early stages of clinical application. The common features of these new therapies are to intervene in the regulation of homeostasis at various key points at the affected region and specifically to suppress or block catabolic influences as well as to provide with anti-inflammatory substances and growth factors. These include on one hand the genetically produced Biologicals such as TNF-α inhibitors and cytokine antagonists and on the other hand therapies with autologous blood preparations (Autologous Conditioned Serum [ACS], and Platelet Rich Plasma formulations [PRP]). This article presents the individual methods, gives an overview of developments and results of various studies and discusses current recommendations.
The role of prasugrel in the management of acute coronary syndromes: a systematic review.
Spartalis, M; Tzatzaki, E; Spartalis, E; Damaskos, C; Athanasiou, A; Moris, D; Politou, M
2017-10-01
Dual antiplatelet therapy (DAPT) is the treatment of choice in the medical management of patients with acute coronary syndrome (ACS). The combination of aspirin and a P2Y12 inhibitor in patients who receive a coronary stent reduces the rate of stent thrombosis and the rates of major adverse cardiovascular events. However, patients with acute coronary syndrome remain at risk of recurrent cardiovascular events despite the advance of medical therapy. The limitations of clopidogrel with variable antiplatelet effects and delayed onset of action are well established and lead to the development of newer P2Y12 inhibitors. Prasugrel is a selective adenosine diphosphate (ADP) receptor antagonist indicated for use in patients with ACS. Prasugrel provides greater inhibition of platelet aggregation than clopidogrel and has a rapid onset of action. We have conducted a systematic review to retrieve current evidence regarding the role of prasugrel in the management of ACS. Evidence comparing prasugrel, clopidogrel, and ticagrelor remain scant. A complete literature survey was performed using PubMed database search to gather available information regarding management of acute coronary syndromes and prasugrel. An explorative comparison of the safety and efficacy of prasugrel, clopidogrel, and ticagrelor was also conducted. Prasugrel and ticagrelor are more efficacious than clopidogrel in reducing the occurrence of non-fatal myocardial infarction, stroke, or cardiovascular (CV) death but they have also an increased risk of major bleeding in comparison to clopidogrel. Prasugrel and ticagrelor are today the recommended first-line agents in patients with ACS. The estimation of which drug is superior over the other cannot be reliably established from the current trials.
On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids
Palade, PT; Barchi, RL
1977-01-01
25 aromatic carboxylic acids which are analogs of benzoic acid were tested in the rat diaphragm preparation for effects on chloride conductance (G(Cl)). Of the 25, 19 were shown to reduce membrane G(Cl) with little effect on other membrane parameters, although their apparent K(i) varied widely. This inhibition was reversible if exposure times were not prolonged. The most effective analog studied was anthracene-9-COOH (9-AC; K(i) = 1.1 x 10(-5) M). Active analogs produced concentration-dependent inhibition of a type consistent with interaction at a single site or group of sites having similar binding affinities, although a correlation could also be shown between lipophilicity and K(i). Structure-activity analysis indicated that hydrophobic ring substitution usually increased inhibitory activity while para polar substitutions reduced effectiveness. These compounds do not appear to inhibit G(Cl) by altering membrane surface charge and the inhibition produced is not voltage dependent. Qualitative characteristics of the I-V relationship for Cl(-) current are not altered. Conductance to all anions is not uniformly altered by these acids as would be expected from steric occlusion of a common channel. Concentrations of 9-AC reducing G(Cl) by more than 90 percent resulted in slight augmentation of G(I). The complete conductance sequence obtained at high levels of 9-AC was the reverse of that obtained under control conditions. Permeability sequences underwent progressive changes with increasing 9-AC concentration and ultimately inverted at high levels of the analog. Aromatic carboxylic acids appear to inhibit G(Cl) by binding to a specific intramembrane site and altering the selectivity sequence of the membrane anion channel. PMID:894246
NASA Astrophysics Data System (ADS)
Awan, M. S.; Maqsood, M.; Mirza, S. A.; Yousaf, M.; Maqsood, A.
1995-02-01
(Bi1-xPbx:)2Sr2Ca2Cu3Oy ( x = 0.3) high critical transition temperature ( T c) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a high T c phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the high T c phase were determined as a = 0.537(1) nm, b = 0.539(1) nm, and c = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.
LDRD report: Smoke effects on electrical equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
TANAKA,TINA J.; BAYNES JR.,EDWARD E.; NOWLEN,STEVEN P.
2000-03-01
Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and weremore » monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke.« less
Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M
2017-12-01
Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a detailed comparison of production yields reached by injection vs oral infections for different recombinant proteins. In conclusion, these results open the possibility of future industrial scaling-up production of recombinant proteins in insect larvae by reducing manual operations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, H. A. M.
2016-03-01
The structure for the powder of N,N', N"-tris(4-methylphenyl)phosphoric triamide, TMP-TA, was characterized using X-ray diffraction (XRD) and differential thermal analysis (DTA) techniques. The ac conductivity and dielectric properties were measured in the frequency range of 42-105 Hz for the bulk TMP-TA in a pellet form at different temperatures. The frequency dependence of ac conductivity was expressed by a Jonscher's universal power law. The frequency exponent (s) was determined from the fitting of experimental data of ac conductivity. The correlated barrier hopping (CBH) model was found to be responsible for the ac conduction mechanism in TMP-TA. The activation energy was calculated from the temperature dependence of ac conductivity. The values of the density of states at the Fermi level were determined for different frequencies. The components of the electric modulus (M' and M") were calculated and used to estimate the relaxation time.
NASA Astrophysics Data System (ADS)
Kmail, Renal R. N.; Qasrawi, A. F.
2015-11-01
In this work, the design and optical and electrical properties of MgO/GaSe heterojunction devices are reported and discussed. The device was designed using 0.4- μm-thick n-type GaSe as substrate for a 1.6- μm-thick p-type MgO optoelectronic window. The device was characterized by means of ultraviolet-visible optical spectrophotometry in the wavelength region from 200 nm to 1100 nm, current-voltage ( I- V) characteristics, impedance spectroscopy in the range from 1.0 MHz to 1.8 GHz, and microwave amplitude spectroscopy in the frequency range from 1.0 MHz to 3.0 GHz. Optical analysis of the MgO/GaSe heterojunction revealed enhanced absorbing ability of the GaSe below 2.90 eV with an energy bandgap shift from 2.10 eV for the GaSe substrate to 1.90 eV for the heterojunction design. On the other hand, analysis of I- V characteristics revealed a tunneling-type device conducting current by electric field-assisted tunneling of charged particles through a barrier with height of 0.81 eV and depletion region width of 670 nm and 116 nm when forward and reverse biased, respectively. Very interesting features of the device are observed when subjected to alternating current (ac) signal analysis. In particular, the device exhibited resonance-antiresonance behavior and negative capacitance characteristics near 1.0 GHz. The device quality factor was ˜102. In addition, when a small ac signal of Bluetooth amplitude (0.0 dBm) was imposed between the device terminals, the power spectra of the device displayed tunable band-stop filter characteristics with maximum notch frequency of 1.6 GHz. The energy bandgap discontinuity, the resonance-antiresonance behavior, the negative capacitance features, and the tunability of the electromagnetic power spectra at microwave frequencies nominate the Ag/MgO/GaSe/Al device as a promising optoelectronic device for use in multipurpose operations at microwave frequencies.
Purification of Carbon Nanotubes: Alternative Methods
NASA Technical Reports Server (NTRS)
Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram
2000-01-01
Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.
AC/DC current ratio in a current superimposition variable flux reluctance machine
NASA Astrophysics Data System (ADS)
Kohara, Akira; Hirata, Katsuhiro; Niguchi, Noboru; Takahara, Kazuaki
2018-05-01
We have proposed a current superimposition variable flux reluctance machine for traction motors. The torque-speed characteristics of this machine can be controlled by increasing or decreasing the DC current. In this paper, we discuss an AC/DC current ratio in the current superimposition variable flux reluctance machine. The structure and control method are described, and the characteristics are computed using FEA in several AC/DC ratios.
[Air conducted ocular VEMP: I. Determination of a method and application in normal patients].
Walther, L E; Schaaf, H; Sommer, D; Hörmann, K
2011-07-01
Air conducted (AC) cervical vestibular evoked myogenic potentials (AC cVEMP) and air conducted ocular VEMP (AC oVEMP) may be used for measurement of otolith function. However AC oVEMP are few examined till now. The aim of this pilot study was to apply a method for use of AC oVEMP in clinical practice. AC oVEMP were recorded in healthy voluntary people (n=20) using intense AC-sound stimulation (500 Hz tone bursts, 100 dB nHL). Thermal irrigation and AC cVEMP were normal as including criteria. Values were evaluated statistically. AC oVEMP were recorded in all healthy patients. Mean and standard deviation for the first negative peak was 11.35±1.00 ms and for the first negative peak 16.30±1.10 ms. The mean amplitudes were 7.70±4.50 μV. The stability of n10 and p15 component was the same. AC oVEMP can be easy and fast obtained. N10 and p15 latencies may used as parameter for clinical interpretation. Amplitude fluctuations are relatively large. Results can be used in further clinical investigation of AC oVEMP. © Georg Thieme Verlag KG Stuttgart · New York.
New Technique of AC drive in Tokamak using Permanent Magnets
NASA Astrophysics Data System (ADS)
Matteucci, Jackson; Zolfaghari, Ali
2013-10-01
This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.
Safe Direct Current Stimulation to Expand Capabilities of Neural Prostheses
Fridman, Gene Y.; Della Santina, Charles C.
2014-01-01
While effective in treating some neurological disorders, neuroelectric prostheses are fundamentally limited because they must employ charge-balanced stimuli to avoid evolution of irreversible electrochemical reactions and their byproducts at the interface between metal electrodes and body fluids. Charge-balancing is typically achieved by using brief biphasic alternating current (AC) pulses, which typically excite nearby neural tissues but cannot efficiently inhibit them. In contrast, direct current (DC) applied via a metal electrode in contact with body fluids can excite, inhibit and modulate sensitivity of neurons; however, DC stimulation is biologically unsafe because it violates “safe charge injection” limits that have long been considered unavoidable constraints. In this report, we describe the design and fabrication of a safe DC stimulator (SDCS) that overcomes this constraint. The SCDS drives DC ionic current into target tissue via salt-bridge micropipette electrodes by switching valves in phase with AC square waves applied to metal electrodes contained within the device. This approach achieves DC ionic flow through tissue while still adhering to charge-balancing constraints at each electrode-saline interface. We show the SDCS’s ability to both inhibit and excite neural activity to achieve improved dynamic range during prosthetic stimulation of the vestibular part of the inner ear in chinchillas. PMID:23476007
NASA Astrophysics Data System (ADS)
Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio
2015-02-01
Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.
Vail, W.B. III.
1991-12-24
Methods of operation are described for an apparatus having at least two pairs of voltage measurement electrodes vertically disposed in a cased well to measure the resistivity of adjacent geological formations from inside the cased well. During stationary measurements with the apparatus at a fixed vertical depth within the cased well, the invention herein discloses methods of operation which include a measurement step and subsequent first and second compensation steps respectively resulting in improved accuracy of measurement. The invention also discloses multiple frequency methods of operation resulting in improved accuracy of measurement while the apparatus is simultaneously moved vertically in the cased well. The multiple frequency methods of operation disclose a first A.C. current having a first frequency that is conducted from the casing into formation and a second A.C. current having a second frequency that is conducted along the casing. The multiple frequency methods of operation simultaneously provide the measurement step and two compensation steps necessary to acquire accurate results while the apparatus is moved vertically in the cased well. 6 figures.