Sample records for alternative binders additives

  1. The evaluation and specification development of alternate modified asphalt binders in South Carolina : final report.

    DOT National Transportation Integrated Search

    2014-11-01

    In this research project, asphalt binders containing various polymer modifiers were investigated through : examining both binder and mixture properties.Two additional topics were also investigated, including: a) the : effects of liquid antistr...

  2. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    NASA Astrophysics Data System (ADS)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  3. New agent to treat elevated phosphate levels: magnesium carbonate/calcium carbonate tablets.

    PubMed

    Meyer, Caitlin; Cameron, Karen; Battistella, Marisa

    2012-01-01

    In summary, Binaphos CM, a magnesium carbonate/calcium carbonate combination phosphate binder, is marketed for treating elevated phosphate levels in dialysis patients. Although studies using magnesium/calcium carbonate as a phosphate binder are short term with small numbers of patients, this phosphate binder has shown some promising results and may provide clinicians with an alternative for phosphate binding. Using a combination phosphate binder may reduce pill burden and encourage patient compliance. In addition to calcium and phosphate, it is imperative to diligently monitor magnesium levels in patients started on this medication, as magnesium levels may increase with longer duration of use. Additional randomized controlled trials are necessary to evaluate long-term efficacy and safety of this combination phosphate binder.

  4. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    NASA Astrophysics Data System (ADS)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-08-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  5. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives

    NASA Astrophysics Data System (ADS)

    Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.

    2017-10-01

    The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.

  6. Control of the rheological properties of clay nanosheet hydrogels with a guanidinium-attached calix[4]arene binder.

    PubMed

    Lee, Ji Ha; Kim, Chaelin; Jung, Jong Hwa

    2015-10-21

    A 1,3-alternate calix[4]arene derivative 1 possessing four guanidinium moieties was synthesized as a molecular binder. The clay nanosheet (CNS) hydrogels were prepared upon addition of 1 and sodium polyacrylate (ASSP), and their mechanical properties were measured by rheometry. CNS hydrogels prepared by combining calix[4]arene 1 with dispersed CNSs surrounded by ASSPs showed an enhancement of mechanical properties such as viscosity and elasticity.

  7. Clean, agile alternative binders, additives and plasticizers for propellant and explosive formulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D.M.; Hawkins, T.W.; Lindsay, G.A.

    1994-12-01

    As part of the Strategic Environmental Research and Development Program (SERDP) a clean, agile manufacturing of explosives, propellants and pyrotechniques (CANPEP) effort set about to identify new approaches to materials and processes for producing propellants, explosives and pyrotechniques (PEP). The RDX based explosive PBXN-109 and gun propellant M-43 were identified as candidates for which waste minimization and recycling modifications might be implemented in a short time frame. The binders, additives and plasticizers subgroup identified cast non-curable thermoplastic elastomer (TPE) formulations as possible replacement candidates for these formulations. Paste extrudable explosives were also suggested as viable alternatives to PBXN-109. Commercial inertmore » and energetic TPEs are reviewed. Biodegradable and hydrolyzable binders are discussed. The applicability of various types of explosive formulations are reviewed and some issues associated with implementation of recyclable formulations are identified. It is clear that some processing and weaponization modifications will need to be made if any of these approaches are to be implemented. The major advantages of formulations suggested here over PBXN-109 and M-43 is their reuse/recyclability. Formulations using TPE or Paste could by recovered from a generic bomb or propellant and reused if they met specification or easily reprocessed and sold to the mining industry.« less

  8. Analysis of the usage of rubberized asphalt in hot mix asphalt using Reclaimed Asphalt Pavement (RAP)

    NASA Astrophysics Data System (ADS)

    Dwidarma Nataadmadja, Adelia; Prahara, Eduardi; Sumbung, Pierre Christian

    2017-12-01

    There has been an increasing demand in using more environmentally friendly materials in pavement construction. One of the alternative materials that have been widely used is the Reclaimed Asphalt Pavement (RAP) aggregates. The RAP aggregates are derived from the crushed and screened pavement materials that contain asphalt and aggregates. This material is usually combined with natural aggregates and virgin asphalt binder to construct a new pavement. There have been numerous positive feedbacks in using this material although RAP aggregates also have certain weaknesses, such as questionable interaction between virgin and recycled materials and increased stiffness of RAP binder. Moreover, there has been a push on using rubber as an additive to asphalt binder to improve the welfare of rubber farmers. This research combines the usage of both latex and RAP as the ingredients to design hot mix asphalt (HMA) as latex could help in improving the flexibility of HMA and the interaction between the virgin and recycled materials. The main objective of this research is to find a suitable percentage of RAP aggregates to be used in HMA with certain percentage of latex as the binder additive.

  9. Installation and laboratory evaluation of alternatives to conventional polymer modification for asphalt.

    DOT National Transportation Integrated Search

    2015-01-01

    The Virginia Department of Transportation (VDOT) specifies polymer-modified asphalt binders for certain asphalt : mixtures used on high-volume, high-priority routes. These binders must meet performance grade (PG) requirements for a PG : 76-22 binder ...

  10. Quality-by-design case study: investigation of the role of poloxamer in immediate-release tablets by experimental design and multivariate data analysis.

    PubMed

    Kaul, Goldi; Huang, Jun; Chatlapalli, Ramarao; Ghosh, Krishnendu; Nagi, Arwinder

    2011-12-01

    The role of poloxamer 188, water and binder addition rate, on retarding dissolution in immediate-release tablets of a model drug from BCS class II was investigated by means of multivariate data analysis (MVDA) combined with design of experiments (DOE). While the DOE analysis yielded important clues into the cause-and-effect relationship between the responses and design factors, multivariate data analysis of the 40+ variables provided additional information on slowdown in tablet dissolution. A steep dependence of both tablet dissolution and disintegration on the poloxamer and less so on other design variables was observed. Poloxamer was found to increase dissolution rates in granules as expected of surfactants in general but retard dissolution in tablets. The unexpected effect of poloxamer in tablets was accompanied by an increase in tablet-disintegration-time-mediated slowdown of tablet dissolution and by a surrogate binding effect of poloxamer at higher concentrations. It was additionally realized through MVDA that poloxamer in tablets either acts as a binder by itself or promotes binder action of the binder povidone resulting in increased intragranular cohesion. Additionally, poloxamer was found to mediate tablet dissolution on stability as well. In contrast to tablet dissolution at release (time zero), poloxamer appeared to increase tablet dissolution in a concentration-dependent manner on accelerated open-dish stability. Substituting polysorbate 80 as an alternate surfactant in place of poloxamer in the formulation was found to stabilize tablet dissolution.

  11. Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less

  12. Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mill

    DOE PAGES

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-06-15

    Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less

  13. The cost-effectiveness of drug therapies to treat secondary hyperparathyroidism in renal failure: a focus on evidence regarding paricalcitol and cinacalcet.

    PubMed

    Lorenzoni, Valentina; Trieste, Leopoldo; Turchetti, Giuseppe

    2015-01-01

    The present review aims to assess the state-of-the-art regarding cost-effectiveness of therapy for secondary hyperparathyroidism in order to identify the best treatment and review methodological issues. PubMed and the Cochrane Library were searched to identify papers performing comparative analysis of costs and effects of treatment for secondary hyperparathyroidism in adult patients. Among the 66 papers identified, only 10 were included in the analysis. Treatment strategies evaluated in the selected papers were: cinacalcet in addition to vitamin D and phosphate binders versus vitamin D and phosphate binders only (seven papers), paricalcitol versus non-selective vitamin D (two papers), early and late introduction of cinacalcet in addition to vitamin D and phosphate binders (one paper) and paricalcitol versus cinacalcet (one paper). The high degree of heterogeneity among alternative treatments and methodological limits related to cost items considered, resource valuation methods and so on, make it unfeasible to reach a definite conclusion regarding cost-effectiveness but allow for future research opportunities.

  14. Influence of solidification accelerators on structure formation of anhydrite-containing binders

    NASA Astrophysics Data System (ADS)

    Anikanova, L.; Volkova, O.; Kudyakov, A.; Sarkisov, Y.; Tolstov, D.

    2016-01-01

    The article presents results of scientific analysis of chemical additives influence on acid fluoride binder. It was found that the influence of sulfate nature additives on the process of hydration and solidification of the binder is similar to influence of additives on indissoluble anhydrite. Additives with SO42- anion NO- are more efficient. The mentioned additives according to accelerating effect belong to the following succession: K2SO4 > Na2SO4 > FeSO4 > MgSO4. Facilitation of the process of hydration and solidification of the binder, increase in density and durability of the binder (32 MPa) is to the greatest extent achieved with the introduction of 2% sodium sulfate additive of the binder's mass into the composition of the binder along with the ultrasonic treatment of water solution. Directed crystal formation process with healing of porous structure by new growths presented as calcium sulfate dehydrate and hydroglauberite provides positive effect.

  15. Experimental and Numerical Study of Ammonium Perchlorate Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Smooke, M. D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.

    1999-01-01

    Many solid rocket propellants are based on a composite mixture of ammonium perchlorate (AP) oxidizer and polymeric binder fuels. In these propellants, complex three-dimensional diffusion flame structures between the AP and binder decomposition products, dependent upon the length scales of the heterogeneous mixture, drive the combustion via heat transfer back to the surface. Changing the AP crystal size changes the burn rate of such propellants. Large AP crystals are governed by the cooler AP self-deflagration flame and burn slowly, while small AP crystals are governed more by the hot diffusion flame with the binder and burn faster. This allows control of composite propellant ballistic properties via particle size variation. Previous measurements on these diffusion flames in the planar two-dimensional sandwich configuration yielded insight into controlling flame structure, but there are several drawbacks that make comparison with modeling difficult. First, the flames are two-dimensional and this makes modeling much more complex computationally than with one-dimensional problems, such as RDX self- and laser-supported deflagration. In addition, little is known about the nature, concentration, and evolution rates of the gaseous chemical species produced by the various binders as they decompose. This makes comparison with models quite difficult. Alternatively, counterflow flames provide an excellent geometric configuration within which AP/binder diffusion flames can be studied both experimentally and computationally.

  16. Phosphate binder usage in kidney failure patients.

    PubMed

    Bleyer, Anthony J

    2003-06-01

    Phosphorus binders are used in patients with kidney failure because of the incomplete removal of phosphorus with dialysis and the inability to exclude phosphorus from the diet. Aluminium was the initial phosphorus binder used, but was replaced by calcium-containing binders because of the development of aluminium toxicity. Calcium-based binders have been the mainstay of therapy for many years, but recent investigations have pointed to increased rates of vascular calcification in patients taking calcium-containing binders. For this reason, alternative agents have been developed. Sevelamer (Renagel), GelTex Pharmaceuticals Inc.) is a polymer which has been found to effectively bind phosphorus. It has resulted in a decreased rate of vascular calcification compared to calcium-containing binders. Other agents under development include lanthanum carbonate and iron-complex preparations. Further research will likely concentrate on identifying binders that bind phosphate more efficiently, have minimal gastrointestinal side effects and provide other benefits to dialysis patients.

  17. Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.

    PubMed

    Yeung, Yik A; Wittrup, K Dane

    2002-01-01

    Magnetic bead capture is demonstrated here to be a feasible alternative for quantitative screening of favorable mutants from a cell-displayed polypeptide library. Flow cytometric sorting with fluorescent probes has been employed previously for high throughput screening for either novel binders or improved mutants. However, many laboratories do not have ready access to this technology as a result of the limited availability and high cost of cytometers, restricting the use of cell-displayed libraries. Using streptavidin-coated magnetic beads and biotinylated ligands, an alternative approach to cell-based library screening for improved mutants was developed. Magnetic bead capture probability of labeled cells is shown to be closely correlated with the surface ligand density. A single-pass enrichment ratio of 9400 +/- 1800-fold, at the expense of 85 +/- 6% binder losses, is achieved from screening a library that contains one antibody-displaying cell (binder) in 1.1 x 10(5) nondisplaying cells. Additionally, kinetic screening for an initial high affinity to low affinity (7.7-fold lower) mutant ratio of 1:95,000, the magnetic bead capture method attains a single-pass enrichment ratio of 600 +/- 200-fold with a 75 +/- 24% probability of loss for the higher affinity mutant. The observed high loss probabilities can be straightforwardly compensated for by library oversampling, given the inherently parallel nature of the screen. Overall, these results demonstrate that magnetic beads are capable of quantitatively screening for novel binders and improved mutants. The described methods are directly analogous to procedures in common use for phage display and should lower the barriers to entry for use of cell surface display libraries.

  18. Detection of polymer modifiers in asphalt binder.

    DOT National Transportation Integrated Search

    2006-01-01

    This study addressed the evaluation of alternative test methods to identify the presence of polymer modifiers in performance-graded binders for the purpose of quality assurance. A method of identification is presented in AASHTO T302, Polymer Content ...

  19. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    NASA Astrophysics Data System (ADS)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  20. Additive manufacturing of near-net-shape bonded magnets: Prospects and challenges

    DOE PAGES

    Li, Ling; Post, Brian; Kunc, Vlastimil; ...

    2017-01-03

    Additive manufacturing (AM) or 3D printing is well known for producing arbitrary shaped parts without any tooling required, offering a promising alternative to the conventional injection molding method to fabricate near-net-shaped magnets. In order to determine their applicability in the fabrication of Nd-Fe-B bondedmagnets, we compare two 3D printing technologies, namely binder jetting and material extrusion. Some prospects and challenges of these state-of-the-art technologies for large-scale industrial applications will be discussed.

  1. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  2. Influence of solidification accelerators on structure formation of anhydrite-containing binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anikanova, L., E-mail: alasmit@mail.ru; Volkova, O., E-mail: v.olga.nikitina@gmail.com; Kudyakov, A.

    2016-01-15

    The article presents results of scientific analysis of chemical additives influence on acid fluoride binder. It was found that the influence of sulfate nature additives on the process of hydration and solidification of the binder is similar to influence of additives on indissoluble anhydrite. Additives with SO{sub 4}{sup 2−} anion NO{sup −} are more efficient. The mentioned additives according to accelerating effect belong to the following succession: K{sub 2}SO{sub 4} > Na{sub 2}SO{sub 4} > FeSO{sub 4} > MgSO{sub 4}. Facilitation of the process of hydration and solidification of the binder, increase in density and durability of the binder (32 MPa)more » is to the greatest extent achieved with the introduction of 2% sodium sulfate additive of the binder’s mass into the composition of the binder along with the ultrasonic treatment of water solution. Directed crystal formation process with healing of porous structure by new growths presented as calcium sulfate dehydrate and hydroglauberite provides positive effect.« less

  3. Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder.

    PubMed

    Kim, Si-Jun; Yang, Keun-Hyeok; Moon, Gyu-Don

    2015-09-01

    This study proposed a new binder as an alternative to conventional cement to reduce the heat of hydration in mass concrete elements. As a main cementitious material, low-heat cement (LHC) was considered, and then fly ash (FA), modified FA (MFA) by vibrator mill, and limestone powder (LP) were used as a partial replacement of LHC. The addition of FA delayed the induction period at the hydration heat curve and the maximum heat flow value ( q max ) increased compared with the LHC based binder. As the proportion and fineness of the FA increased, the induction period of the hydration heat curve was extended, and the q max increased. The hydration production of Ca(OH)₂ was independent of the addition of FA or MFA up to an age of 7 days, beyond which the amount of Ca(OH)₂ gradually decreased owing to their pozzolanic reaction. In the case of LP being used as a supplementary cementitious material, the induction period of the hydration heat curve was reduced by comparison with the case of LHC based binder, and monocarboaluminate was observed as a hydration product. The average pore size measured at an age of 28 days was smaller for LHC with FA or MFA than for 100% LHC.

  4. Charcoal as an alternative energy source. sub-project: briquetting of charcoal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enstad, G.G.

    1982-02-02

    Charcoal briquettes have been studied both theoretically and experimentally. It appears most realistic to use binders in solution. Binders of this kind have been examined and the briquettes' mechanical properties measured. Most promising are borresperse, gum arabic, dynolex, and wood tar.

  5. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...

  6. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...

  7. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...

  8. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Kun; Marcus, Kyle; Yang, Zhenzhong

    In this work, a freestanding NiFe oxyfluoride (NiFeOF) holey film was prepared by electrochemical deposition and anodic treatments. With the combination of good electrical conductivity and holey structure, the NiFeOF holey film offers superior electrochemical performance, due to the following reasons: (i) The residual metal alloy framework can be used as the current collector to improve electrode conductivity. Moreover, the as-prepared freestanding NiFeOF holey film can be used as a supercapacitor electrode without reliance on binders and other additives. The residual metal alloy framework and binder-free electrode effectively reduces electrode resistance, thus improving electron transport. (ii) The highly interconnected holeymore » structure and hierarchical pore distribution provides a high specific surface area to improve electron transport, enhancing rapid ion transport and mitigating diffusion limitations throughout the holey film. (iii) The excellent mechanical characteristics facilitate flexibility and cyclability related performance. Additionally, the NiFeOF holey film presents exceptional electrochemical performance, showing that it is a promising alternative for small/micro-size electronic devices.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ling; Post, Brian; Kunc, Vlastimil

    Additive manufacturing (AM) or 3D printing is well known for producing arbitrary shaped parts without any tooling required, offering a promising alternative to the conventional injection molding method to fabricate near-net-shaped magnets. In order to determine their applicability in the fabrication of Nd-Fe-B bondedmagnets, we compare two 3D printing technologies, namely binder jetting and material extrusion. Some prospects and challenges of these state-of-the-art technologies for large-scale industrial applications will be discussed.

  11. Effect of Warm Asphalt Additive on the Creep and Recovery Behaviour of Aged Binder Containing Waste Engine Oil

    NASA Astrophysics Data System (ADS)

    Hassan, Norhidayah Abdul; Kamaruddin, Nurul Hidayah Mohd; Rosli Hainin, Mohd; Ezree Abdullah, Mohd

    2017-08-01

    The use of waste engine oil as an additive in asphalt mixture has been reported to be able to offset the stiffening effect caused by the recycled asphalt mixture. Additionally, the fumes and odor of the waste engine oil has caused an uncomfortable condition for the workers during road construction particularly at higher production temperature. Therefore, this problem was addressed by integrating chemical warm asphalt additive into the mixture which functions to reduce the mixing and compaction temperature. This study was initiated by blending the additive in the asphalt binder of bitumen penetration grade 80/100 prior to the addition of pavement mixture. The effect of chemical warm asphalt additive, Rediset WMX was investigated by modifying the aged binder containing waste engine oil with 0%, 1%, 2% and 3% by weight of the binder. The samples were then tested for determining the rutting behaviour under different loading stress levels of 3Pa (low), 10Pa (medium) and 50Pa (high) using Dynamic Shear Rheometer (DSR). A reference temperature of 60 °C was fixed to reflect the maximum temperature of the pavement. The results found that the addition of Rediset did not affect the creep and recovery behavior of the modified binder under different loading. On the other hand, 2% Rediset resulted a slight decrease in its rutting resistance as shown by the reduction of non-recoverable compliance under high load stress. However, overall, the inclusion of chemical warm asphalt additive to the modified binder did not adversely affect the rutting resistance which could be beneficial in lowering the temperature of asphalt production and simultaneously not compromising the binder properties.

  12. Effects of additives on solidification of API separator sludge.

    PubMed

    Faschan, A; Tittlebaum, M; Cartledge, F; Eaton, H

    1991-08-01

    API separator sludge was solidified with various combinations of binders and absorbent soil additives. The binders utilized were Type I Portland Cement, Type C Flyash, and a 1:1 combination of the two. The soil additives used were bentonite, diatomite, Fuller's earth, and two brands of chemically altered bentonites, or organoclays. The effectiveness of the solidification materials was based on their effect on the physical and leaching characteristics of the sludge.It was determined the Portland cement and combination binders provided the sludge with adequate physical and strength characteristics. It was also determined the affinity of each additive for water had an important influence on the physical characteristics of the solidified sludge. The results of the leaching procedure indicated the binders alone reduced the leachability of organic constituents from the sludge by 1/5 to 1/10. It appeared the use of the additives with the binders may have further reduced the leachability of constituents from sludge, with the incorporation of the organoclay additives further reducing leachability by up to 1/2. Also, it appeared the absorbing capacity of the additives was directly related to their ability to reduce the leachability of organic constituents from the sludge.

  13. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    PubMed

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  14. 78 FR 73503 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...: 7510-01-462-1383--Binder, Loose-leaf, View Framed, Navy Blue, 1/2''. NSN: 7510-01-462-1385--Binder, Loose-leaf, Frame View, Navy Blue, 1-1/2''. NSN: 7510-01-462-1386--Binder, Loose-leaf, View Framed...

  15. Masked Selection: A Straightforward and Flexible Approach for the Selection of Binders Against Specific Epitopes and Differentially Expressed Proteins by Phage Display*

    PubMed Central

    Even-Desrumeaux, Klervi; Nevoltris, Damien; Lavaut, Marie Noelle; Alim, Karima; Borg, Jean-Paul; Audebert, Stéphane; Kerfelec, Brigitte; Baty, Daniel; Chames, Patrick

    2014-01-01

    Phage display is a well-established procedure to isolate binders against a wide variety of antigens that can be performed on purified antigens, but also on intact cells. As selection steps are performed in vitro, it is possible to focus the outcome of the selection on relevant epitopes by performing some additional steps, such as depletion or competitive elutions. However in practice, the efficiency of these steps is often limited and can lead to inconsistent results. We have designed a new selection method named masked selection, based on the blockade of unwanted epitopes to favor the targeting of relevant ones. We demonstrate the efficiency and flexibility of this method by selecting single-domain antibodies against a specific portion of a fusion protein, by selecting binders against several members of the seven transmembrane receptor family using transfected HEK cells, or by selecting binders against unknown breast cancer markers not expressed on normal samples. The relevance of this approach for antibody-based therapies was further validated by the identification of four of these markers, Epithelial cell adhesion molecule, Transferrin receptor 1, Metastasis cell adhesion molecule, and Sushi containing domain 2, using immunoprecipitation and mass spectrometry. This new phage display strategy can be applied to any type of antibody fragments or alternative scaffolds, and is especially suited for the rapid discovery and identification of cell surface markers. PMID:24361863

  16. [Study of the strength of compacts of mixed dry binders consisting of powdered cellulose and directly compressible lactose].

    PubMed

    Muzíková, J; Hájková, P; Vinklarová, S

    2004-07-01

    The paper studied the strength of compacts of dry binders consisting of powdered cellulose and directly compressible lactose. The powdered cellulose employed was Arbocel A300, the directly compressible lactose, Pharmatosa DCL 21. The first step of the evaluation comprised the tensile strength of compacts and sensitivity of dry binders alone to an addition of magnesium stearate. The same method of evaluation was then used for mixed dry binders from Arbocel A300 and Pharmatosa DCL 21 in ratios of 3:1, 1:1 and 1:3. The tested concentrations of magnesium stearate were 0.4 and 0.8%. Sensitivity of dry binders to an addition of the lubricant was evaluated by means of lubricant sensitivity ratio (LSR) values. The compacts with the highest strength and at the same time the lowest sensitivity to an addition of magnesium stearate were produced using a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3. The evaluation also included the commercially produced mixed dry binder Cellactosa 80, in which higher sensitivity to an addition of stearate than in a mixture of Arbocel A300 and Pharmatosa DCL 21 in a ratio of 1:3 was found.

  17. Microstructure of the combustion zone: Thin-binder AP-polymer sandwiches

    NASA Technical Reports Server (NTRS)

    Price, E. W.; Panyam, R. R.; Sigman, R. K.

    1980-01-01

    Experimental results are summarized for systematic quench-burning tests on ammonium perchlorate-HC binder sandwiches with binder thicknesses in the range 10 - 150 microns. Tests included three binders (polysulfide, polybutadiene-acrylonitrile, and hydroxy terminated polybutadiene), and pressures from 1.4 to 14 MPa. In addition, deflagration limits were determined in terms of binder thickness and pressure. Results are discussed in terms of a qualitative theory of sandwich burning consolidated from various sources. Some aspects of the observed results are explained only speculatively.

  18. Evaluation of new binders using newly developed fracture energy test.

    DOT National Transportation Integrated Search

    2013-07-01

    This study evaluated a total of seven asphalt binders with various additives : using the newly developed binder fracture energy test. The researchers prepared and : tested PAV-aged and RTFO-plus-PAV-aged specimens. This study confirmed previous : res...

  19. An alternative method for the treatment of waste produced at a dye and a metal-plating industry using natural and/or waste materials.

    PubMed

    Fatta, Despo; Papadopoulos, Achilleas; Stefanakis, Nikos; Loizidou, Maria; Savvides, Chrysanthos

    2004-08-01

    The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.

  20. Self-healing composites and applications thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tee, Chee Keong; Wang, Chao; Cui, Yi

    A battery electrode includes an electrochemically active material and a binder covering the electrochemically active material. The binder includes a self-healing polymer and conductive additives dispersed in the self-healing polymer to provide an electrical pathway across at least a portion of the binder.

  1. DEVELOPMENT OF A METHOD TO CONVERT GREEN AND ANIMAL WASTES TO A USEFUL AGRICULTURAL PRODUCT WITH POSSIBLE ALTERNATIVE FUEL USE

    EPA Science Inventory

    Initially, we thought that we would shred the green waste to use as a binder for the animal manure to produce a material useful as a fuel or soil amendment. Our first experiments in mixing the materials revealed that manure was, instead, better used as a binder for the green w...

  2. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less

  3. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    DOE PAGES

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-10-05

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less

  4. Anisotropic fibrous thermal insulator of relatively thick cross section and method for making same

    DOEpatents

    Reynolds, Carl D.; Ardary, Zane L.

    1979-01-01

    The present invention is directed to an anisotropic thermal insulator formed of carbon-bonded organic or inorganic fibers and having a thickness or cross section greater than about 3 centimeters. Delaminations and deleterious internal stresses generated during binder curing and carbonizing operations employed in the fabrication of thick fibrous insulation of thicknesses greater than 3 centimeters are essentially obviated by the method of the present invention. A slurry of fibers, thermosetting resin binder and water is vacuum molded into the selected insulator configuration with the total thickness of the molded slurry being less than about 3 centimeters, the binder is thermoset to join the fibers together at their nexaes, and then the binder is carbonized to form the carbon bond. A second slurry of the fibers, binder and water is then applied over the carbonized body with the vacuum molding, binder thermosetting and carbonizing steps being repeated to form a layered insulator with the binder providing a carbon bond between the layers. The molding, thermosetting and carbonizing steps may be repeated with additional slurries until the thermal insulator is of the desired final thickness. An additional feature of the present invention is provided by incorporating opacifying materials in any of the desired layers so as to provide different insulating properties at various temperatures. Concentration and/or type of additive can be varied from layer-to-layer.

  5. Composite Gypsum Binders with Silica-containing Additives

    NASA Astrophysics Data System (ADS)

    Chernysheva, N. V.; Lesovik, V. S.; Drebezgova, M. Yu; Shatalova, S. V.; Alaskhanov, A. H.

    2018-03-01

    New types of fine mineral additives are proposed for designing water-resistant Composite Gypsum Binders (CGB); these additives significantly differ from traditional quartz feed: wastes from wet magnetic separation of Banded Iron Formation (BIF WMS waste), nanodispersed silica powder (NSP), chalk. Possibility of their combined use has been studied as well.

  6. Azidated Ether-Butadiene-Ether Block Copolymers as Binders for Solid Propellants

    NASA Astrophysics Data System (ADS)

    Cappello, Miriam; Lamia, Pietro; Mura, Claudio; Polacco, Giovanni; Filippi, Sara

    2016-07-01

    Polymeric binders for solid propellants are usually based on hydroxyl-terminated polybutadiene (HTPB), which does not contribute to the overall energy output. Azidic polyethers represent an interesting alternative but may have poorer mechanical properties. Polybutadiene-polyether copolymers may combine the advantages of both. Four different ether-butadiene-ether triblock copolymers were prepared and azidated starting from halogenated and/or tosylated monomers using HTPB as initiator. The presence of the butadiene block complicates the azidation step and reduces the storage stability of the azidic polymer. Nevertheless, the procedure allows modifying the binder properties by varying the type and lengths of the energetic blocks.

  7. A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Jiao, Yu; Chen, Wei; Lei, Tianyu; Dai, Liping; Chen, Bo; Wu, Chunyang; Xiong, Jie

    2017-03-01

    High energy density, low cost and environmental friendliness are the advantages of lithium-sulfur (Li-S) battery which is regarded as a promising device for electrochemical energy storage systems. As one of the important ingredients in Li-S battery, the binder greatly affects the battery performance. However, the conventional binder has some drawbacks such as poor capability of absorbing hydrophilic lithium polysulfides, resulting in severe capacity decay. In this work, we reported a multi-functional polar binder (AHP) by polymerization of hexamethylene diisocyanate (HDI) with ethylenediamine (EDA) bearing a large amount of amino groups, which were successfully used in electrode preparation with commercial sulfur powder cathodes. The abundant amide groups of the binder endow the cathode with multidimensional chemical bonding interaction with sulfur species within the cathode to inhibit the shuttling effect of polysulfides, while the suitable ductility to buffer volume change. Utilizing these advantageous features, composite C/S cathodes based the binder displayed excellent capacity retention at 0.5 C, 1 C, 1.5 C, and 3 C over 200 cycles. Accompany with commercial binder, AHP may act as an alternative feedstock to open a promising approach for sulfur cathodes in rechargeable lithium battery to achieve commercial application.

  8. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures

    PubMed Central

    Salem, Talal; Hamadna, Sameer; Darsanasiri, A. G. N. D.; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan

    2018-01-01

    Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm3 with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated. PMID:29649163

  9. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures.

    PubMed

    Almalkawi, Areej T; Salem, Talal; Hamadna, Sameer; Darsanasiri, A G N D; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan

    2018-04-12

    Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm³ with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated.

  10. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete.

    PubMed

    Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do

    2015-10-30

    Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO₂) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO₂ emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO₂ intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO₂ emissions reduction and resources and energy conservation in the concrete industry.

  11. Evaluation of moisture-induced damage of dense graded and gap graded asphalt mixture with nanopolymer modified binder

    NASA Astrophysics Data System (ADS)

    Shaffie, E.; Arshad, A. K.; Ahmad, J.; Hashim, W.

    2018-04-01

    The purpose of this research is to study the moisture induce damage performance of dense graded (AC14) and stone mastic asphalt (SMA14) asphalt pavement using Nanolyacrylate polymer modified asphalt binder. The physical properties of aggregate, volumetric and performance of asphalt mixes were assessed and evaluated with the laboratory tests. The study investigates fourteenth different asphalt mixtures consisting of NP modified asphalt binder formulations at 2%, 4% and 6%. Two types of asphalt binder, penetration grade PEN 80-100 and performance grade PG 76 were added with Nanopolyacrylate as asphalt modifier. The modified asphalt binder was prepared by adding 6 percent of Nanopolyacrylate (NP) to the asphalt binder. Both AC14 and SMA14 mixtures passed the Marshall requirements which indicate that these mixtures were good with respect to durability and flexibility. In terms of moisture induce damage, it was observed that the strength of the asphalt mixes increased with the addition of NP polymer modified asphalt binder. Similar trend could also be seen for SMA14 mixes, where the ITS value of SMA14 showed a significant difference compared to AC14 and all the mixtures exceeded the minimum requirement value as specified in the specification. Thus, addition of nanopolyacrylate polymer to the asphalt binder has significantly improved the cohesion as well as adhesion properties of the asphalt binder, and hence the stripping performance. Therefore, it can be concluded that the nanopolyacylate is suitable to be used as a modifier to the modified asphalt binder in order to enhance the properties of the asphalt binder and thus improving the performance of asphalt in both AC14 and SMA14 mixes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tate, John G.; Richardson, Bradley S.; Love, Lonnie J.

    ORNL worked with the Schaeffler Group USA to explore additive manufacturing techniques that might be appropriate for prototyping of bearing cages. Multiple additive manufacturing techniques were investigated, including e-beam, binder jet and multiple laser based processes. The binder jet process worked best for the thin, detailed cages printed.

  13. Process development for green part printing using binder jetting additive manufacturing

    NASA Astrophysics Data System (ADS)

    Miyanaji, Hadi; Orth, Morgan; Akbar, Junaid Muhammad; Yang, Li

    2018-05-01

    Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.

  14. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The influence of metakaolin substitution by slag in alkali-activated inorganic binders for civil engineering

    NASA Astrophysics Data System (ADS)

    Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.

    2017-02-01

    In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.

  16. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    NASA Astrophysics Data System (ADS)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  17. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review

    PubMed Central

    Campbell, K.; Rawn, D.F.K.; Niedzwiadek, B.; Elliott, C.T.

    2011-01-01

    This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area. PMID:21623494

  18. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review.

    PubMed

    Campbell, K; Rawn, D F K; Niedzwiadek, B; Elliott, C T

    2011-06-01

    This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.

  19. Reuse potential of low-calcium bottom ash as aggregate through pelletization.

    PubMed

    Geetha, S; Ramamurthy, K

    2010-01-01

    Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.

  20. One Binder to Bind Them All.

    PubMed

    Hayden, Oliver

    2016-10-10

    High quality binders, such as antibodies, are of critical importance for chemical sensing applications. With synthetic alternatives, such as molecularly imprinted polymers (MIPs), less sensor development time and higher stability of the binder can be achieved. In this feature paper, I will discuss the impact of synthetic binders from an industrial perspective and I will challenge the molecular imprinting community on the next step to leapfrog the current status quo of MIPs for (bio)sensing. Equally important, but often neglected as an effective chemical sensor, is a good match of transducer and MIP coating for a respective application. To demonstrate an application-driven development, a biosensing use case with surface-imprinted layers on piezoacoustic sensors is reported. Depending on the electrode pattern for the transducer, the strong mechanical coupling of the analyte with the MIP layer coated device allows the adoption of the sensitivity from cell mass to cell viability with complete reversibility.

  1. Possibilities of using aluminate cements in high-rise construction

    NASA Astrophysics Data System (ADS)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  2. Effects of various asphalt binder additives/modifiers on moisture susceptible asphaltic mixtures.

    DOT National Transportation Integrated Search

    2014-01-01

    Moisture damage of asphalt concrete is defined as the loss of strength and stability caused by the active presence of : moisture. The most common technique to mitigate moisture damage is using additives or modifiers with the asphalt binder or : the a...

  3. Freestanding NiFe Oxyfluoride Holey Film with Ultrahigh Volumetric Capacitance for Flexible Asymmetric Supercapacitors.

    PubMed

    Liang, Kun; Marcus, Kyle; Yang, Zhenzhong; Zhou, Le; Pan, Hao; Bai, Yuanli; Du, Yingge; Engelhard, Mark H; Yang, Yang

    2018-01-01

    In this work, a freestanding NiFe oxyfluoride (NiFeOF) holey film is prepared by electrochemical deposition and anodic treatments. With the combination of good electrical conductivity and holey structure, the NiFeOF holey film offers superior electrochemical performance with maximum specific capacitance of 670 F cm -3 (134 mF cm -2 ), due to the following reasons: (i) The residual metal alloy framework can be used as the current collector to improve electrode conductivity. Moreover, the as-prepared freestanding NiFeOF holey film can be used as a supercapacitor electrode without reliance on binders and other additives. The residual metal alloy framework and binder-free electrode effectively reduce electrode resistance, thus improving electron transport. (ii) The highly interconnected holey structure and hierarchical pore distribution provide a high specific surface area to improve electron transport, enhancing rapid ion transport, and mitigating diffusion limitations throughout the holey film. (iii) The excellent mechanical characteristics facilitate flexibility and cyclability related performance. Additionally, the NiFeOF holey film presents exceptional electrochemical performance, showing that it is a promising alternative for small/microsize electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  5. Effect of Binder on Combustion Quality on EFB Bio-briquettes

    NASA Astrophysics Data System (ADS)

    Handra, Nofriady; Hafni

    2017-12-01

    Energy demand in various sectors in Indonesia has increased in line with the rate of population growth and the national economy. Fulfillment of energy needs can be obtained from various energy sources such as fuel oil, solar, biomass, wind, water and others. So far, energy sources used in Indonesia are still using many non-renewable energy sources, such as fuel oil. The utilization of waste from empty palm oil bunches into bio-briquettes has helped the government in overcoming the problem of EFB waste. The availability of biomass has prompted researchers to utilize biomass waste that includes Agricultural and Forestry waste, to be processed into briquettes as an alternative energy substitute for fuel oil. This research aims to improve the utilization of waste of Palm Oil Bunches through the manufacture of bio-briquette as alternative fuel and determine the appropriate binder material for briquette making so as to produce optimal combustion value. The binders used for the manufacture of briquettes are pine sap and starch flour. The test result showed that the highest value of calorific was found in the mixture of 50% EFB composition with fibre size ± 1-5 mm with 50% pine resin which is 6331,7 cal/g. Meanwhile, lowest value on EFB ± with fibre size 5-10 mm composition EFB 60% and 40% starch flour binder that is 2295,7 cal/g. The results of a flame test study of several points that are known to turn on until it emits a flame for ± 30 seconds, it takes 22,2 minutes for the burnt-out briquette (to ashes). Based on visual observations that the fire colour of bio-briquette with finer fibre on the EFB composition 50% pine gum binder produces a bluish red fire colour. It is generally assumed that pine resin glues produce better fuel value compared to starch binder. Besides that, fibre particles size also affects the combustion quality produced.

  6. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges

    DOE PAGES

    Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek; ...

    2017-01-03

    Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less

  7. Finite-Size Scaling for the Baxter-Wu Model Using Block Distribution Functions

    NASA Astrophysics Data System (ADS)

    Velonakis, Ioannis N.; Hadjiagapiou, Ioannis A.

    2018-05-01

    In the present work, we present an alternative way of applying the well-known finite-size scaling (FSS) theory in the case of a Baxter-Wu model using Binder-like blocks. Binder's ideas are extended to estimate phase transition points and the corresponding scaling exponents not only for magnetic but also for energy properties, saving computational time and effort. The vast majority of our conclusions can be easily generalized to other models.

  8. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete

    PubMed Central

    Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do

    2015-01-01

    Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO2 emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO2 intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO2 emissions reduction and resources and energy conservation in the concrete industry. PMID:28793639

  9. Influence of Mycotoxin Binders on the Oral Bioavailability of Doxycycline in Pigs.

    PubMed

    De Mil, Thomas; Devreese, Mathias; De Saeger, Sarah; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska

    2016-03-16

    Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the gastrointestinal tract of animals, making them unavailable for systemic absorption. The antimicrobial drug doxycycline (DOX) is often used in pigs and is administered through feed or drinking water; hence, DOX can come in contact with mycotoxin binders in the gastrointestinal tract. This paper describes the effect of four mycotoxin binders on the absorption of orally administered DOX in pigs. Two experiments were conducted: The first used a setup with bolus administration to fasted pigs at two different dosages of mycotoxin binder. In the second experiment, DOX and the binders were mixed in the feed at dosages recommended by the manufacturers (= field conditions). Interactions are possible between some of the mycotoxin binders dosed at 10 g/kg feed but not at 2 g/kg feed. When applying field conditions, no influences were seen on the plasma concentrations of DOX.

  10. Observation of asphalt binder microstructure with ESEM.

    PubMed

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  11. The value of 'binder-off' imaging to identify occult and unexpected pelvic ring injuries.

    PubMed

    Fagg, James A C; Acharya, Mehool R; Chesser, Tim J S; Ward, Anthony J

    2018-02-01

    To determine the effectiveness of 'binder-off' plain pelvic radiographs in the assessment of pelvic ring injuries. All patients requiring operative intervention at our tertiary referral pelvic unit/major trauma centre for high-energy pelvic injuries between April 2012 and December 2014 were retrospectively identified. Pre-operative pelvic imaging with and without pelvic binder was reviewed with respect to fracture pattern and pelvic stability. The frequency with which the imaging without pelvic binder changed the opinion of the pelvic stability and need for operative intervention, when compared with the computed tomography (CT) scans and anteroposterior (AP) radiographs with the binder on, was assessed. Seventy-three percent (71 of 97) of patients had initial imaging with a pelvic binder in situ. Of these, 76% (54 of 71) went on to have 'binder-off' imaging. Seven percent (4 of 54) of patients had unexpected unstable pelvic ring injuries identified on 'binder-off' imaging that were not identified on CT imaging in binder. Trauma CT imaging of the pelvis with a pelvic binder in place is inadequate at excluding unstable pelvic ring injuries, and, based on the original findings in this paper, we recommend additional plain film 'binder-off' radiographs, when there is any clinical concern. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Efficacy of colestilan in the treatment of hyperphosphataemia in renal disease patients.

    PubMed

    Locatelli, Francesco; Dimkovic, Nada; Spasovski, Goce

    2014-07-01

    Hyperphosphataemia is common in chronic kidney disease (CKD), particularly in the late stages and is associated with secondary hyperparathyroidism, abnormal bone mineralisation and increased cardiovascular morbidity/mortality. At present, there is a range of phosphate binders designed to keep serum phosphate at normal or near normal levels. Colestilan is a new binder that offers additional actions that may afford further benefits over simply lowering phosphate. This paper reviews the pharmacology and clinical data currently available in the use of colestilan to treat hyperphosphataemia in CKD stage 5 patients on dialysis. Available phosphate binders lower serum phosphorus levels to a clinically relevant extent. The balance between the risks and the potential benefits associated with each agent must be considered when choosing a binder. Calcium-based binders can lead to hypercalcaemia and/or positive calcium balance and cardiovascular calcification. Like sevelamer, colestilan is not absorbed and there is no evidence of any risk of hypercalcaemia. In addition, a significant lowering of low-density lipoprotein-cholesterol, similar to simvastatin, a reduction in plasma uric acid and a reduction in high glycosylated haemoglobin values suggest additional beneficial actions that may convert to reductions in mortality.

  13. High solid loading aqueous base metal/ceramic feedstock for injection molding

    NASA Astrophysics Data System (ADS)

    Behi, Mohammad

    2001-07-01

    Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.

  14. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    PubMed

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication bone scaffolds and understanding the interaction mechanism between binder and HA bioceramics power. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode.

    PubMed

    Sun, Fu; Huang, Kai; Qi, Xiang; Gao, Tian; Liu, Yuping; Zou, Xianghua; Wei, Xiaolin; Zhong, Jianxin

    2013-09-21

    We have successfully fabricated a free-standing Si-re-G (reduced graphene) alternating stratum structure composite through a repeated process of filtering liquid exfoliated graphene oxide and uniformly dispersed Si solution, followed by the reduction of graphene oxide. The as-prepared free-standing flexible alternating stratum structure composite was directly evaluated as the anode for rechargeable lithium half-cells without adding any polymer binder, conductive additives or using current collectors. The half cells based on this new alternating structure composite exhibit an unexpected capacity of 1500 mA h g(-1) after 100 cycles at 1.35 A g(-1). Our rationally proposed strategy has incorporated the long cycle life of carbon and the high lithium-storage capacity of Si into one entity using the feasible and scalable vacuum filtration technique, rendering this new protocol as a readily applicable means of addressing the practical application challenges associated with the next generation of rechargeable lithium-ion batteries.

  16. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    NASA Astrophysics Data System (ADS)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  17. Preliminary report of the discovery of a new pharmaceutical granulation process using foamed aqueous binders.

    PubMed

    Keary, Colin M; Sheskey, Paul J

    2004-09-01

    Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.

  18. Effects of binders on the electrochemical performance of rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Wang, Nan; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, Jiulin

    2017-02-01

    A comparative study on the effects of different binders on the electrochemical performance of rechargeable magnesium batteries with Mo6S8 cathode is conducted for the first time. The selected binders are commercial organic-soluble polyvinylidene fluoride (PVDF), water-soluble poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), gelatin, sodium alginate (SA) and Beta-cyclodextrin (β-CD). The binders significantly affect the physical properties, thus the electrochemical performance of Mo6S8 cathode. Compared with those using traditional PVDF binder, Mo6S8 electrodes with PAA and PVA exhibit enhanced cycling stabilities and rate capabilities, which are attributed to the improved cohesion among the electrode constituents and adhesion between the electrode laminate and the current collector. In addition, the anodic stability of these binders is not only related to the chemical structure of binders, but also to the uniformity of electrode surface. SA binder shows low anodic stability duo to containing easily oxidized groups. Non-uniform electrode surface decreases the anodic stability of PVDF based Mo6S8 electrode. Gelatin can be used as a binder in the formulation of high voltage cathodes for rechargeable magnesium batteries.

  19. Three-dimensional core-shell Fe2O3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-12-01

    A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe2O3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe2O3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe2O3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe2O3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  20. Formulation design for optimal high-shear wet granulation using on-line torque measurements.

    PubMed

    Cavinato, Mauro; Bresciani, Massimo; Machin, Marianna; Bellazzi, Guido; Canu, Paolo; Santomaso, Andrea C

    2010-03-15

    An alternative procedure for achieving formulation design in a high-shear wet granulation process has been developed. Particularly, a new formulation map has been proposed which describes the onset of a significant granule growth as a function of the formulation variables (diluent, dry and liquid binder). Granule growth has been monitored using on-line impeller torque and evaluated as changes in granule particle size distribution with respect to the dry formulation. It is shown how the onset of granule growth is denoted by an abrupt increase in the torque value requires the amount of binder liquid added to be greater than a certain threshold that is identified here as 'minimum liquid volume'. This minimum liquid volume is determined as a function of dry binder type, amount, hygroscopicity and particle size distribution of diluent. It is also demonstrated how this formulation map can be constructed from independent measurements of binder glass transition temperatures using a static humidity conditioning system. 2009 Elsevier B.V. All rights reserved.

  1. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes

    DOE PAGES

    Li, Longjun; Pascal, Tod A.; Connell, Justin G.; ...

    2017-12-22

    Polymer binders in battery electrodes may be either active or passive. This distinction depends on whether the polymer influences charge or mass transport in the electrode. Though it is desirable to understand how to tailor the macromolecular design of a polymer to play a passive or active role, design rules are still lacking, as is a framework to assess the divergence in such behaviors. We reveal the molecular-level underpinnings that distinguish an active polyelectrolyte binder designed for lithium-sulfur batteries from a passive alternative. The binder, a cationic polyelectrolyte, is shown to both facilitate lithium-ion transport through its reconfigurable network ofmore » mobile anions and restrict polysulfide diffusion from mesoporous carbon hosts by anion metathesis, which we show is selective for higher oligomers. These attributes then allow cells to be operated for > 100 cycles with excellent rate capability using cathodes with areal sulfur loadings up to 8.1 mg cm -2 .« less

  2. Comparison of influence of ageing on low-temperature characteristics of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Vacková, Pavla; Valentin, Jan; Benešová, Lucie

    2017-09-01

    Ability of relaxation of asphalt mixtures and thus its resilience to climate change and traffic load is decreasing by influence of aging - in this case aging of bituminous binder. Binder exposed to climate and UV ages and becomes more fragile and susceptible to damage. The results of the research presented in this paper are aimed to finding a correlation between low-temperature properties of referential and aged asphalt mixture specimens and characteristics (not low-temperature) of bituminous binders. In this research there were used conventional road binders, commonly used modified binders and binders additionally modified in the laboratory. The low-temperature characteristics were determined by strength flexural test, commonly used in the Czech Republic for High Modulus Asphalt Mixtures (TP 151), and semi-cylindrical bending test (EN 12697-44). Both of the tests were extended by specimens exposed to artificial long-term aging (EN 12697-52) - storing at 85° C for 5 days. The results were compared with characteristics of binders for finding a suitable correlation between characteristics of binders and asphalt mixtures.

  3. Evaluation of Thermal Oxidative Aging Effect on the Rheological Performance of Modified Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng

    Modified asphalt binder, which is combined by base binder and additive modifier, has been implemented in pavement industry for more than 30 years. Recently, the oxidative aging mechanism of asphalt binder has been studied for several decades, and appreciable finding results of asphalt binder aging mechanism were achieved from the chemistry and rheological performance aspects. However, most of these studies were conducted with neat binders, the research of aging mechanism of modified asphalt binder was limited. Nowadays, it is still highly necessary to clarify how the asphalt binder aging happens with the modified asphalt binder, what is the effect of the different modifiers (additives) on the binder aging process, how the rheological performance changes under the thermal oxidative aging conditions and so on. The objective of this study was to investigate the effect of isothermal oxidative aging conditions on the rheological performance change of the modified and controlled asphalt binders. There were totally 14 different sorts of asphalt binders had been aged in the PAV pans in the air-force drafted ovens at 50°C, 60°C and 85°C for 0.5 day to 240 days. The Fourier-Transform Infrared Spectroscopy (FT-IR) and Dynamic Shear Rheometer (DSR) were used to perform the experiments. The analysis of rheological indices (Low shear viscosity-LSV, Crossover modulus-G*c, Glover-Rowe Parameter-G-R, DSR function-DSR Fn) as a function of carbonyl area (CA) was conducted. With the SBS modification, both of the hardening susceptibility of the rheological index-LSV and G-R decreases compared with the corresponding base binder. The TR increased the hardening susceptibility of all the rheological indexes. While for the G*c, SBS increases the slope of the most modified asphalt binders except A and B_TR_X series binders. The multiple linear regression statistical analysis results indicate that the oxidative aging conditions play an important role on the CA, and rheological performance indexes. The modifiers-SBS and TR have different directional effect on these parameters. The field asphalt binder carbonyl area prediction was conducted. The pavement temperatures which were calculated by TEMP software were input into MATLAB(TM) as a parameter with other factors, e.g the asphalt binder oxidative aging parameters, the binder film thickness, the air void radius, etc., to calculate the field asphalt CA value as a function of time out to 20 years. It was found that the different rheological index method resulted different conclusion with the asphalt binder. The SBS modified asphalt binders of A, C version and B version had close average increasing rate of LSV, higher average decreasing rate of G*c, lower average increasing rate of DSR Fn compared with the corresponding base binders. D_HPM had lower average increasing rate of LSV, G*c and DSR Fn than base binder Base D. The tire rubber modified binder B_TR had higher average increasing rate of LSV, DSR Fn, and higher average decreasing rate of G*c than base binder Base B. The main finding of this study was that the modifier SBS and tire rubber can reduce the thermal oxidation aging rate (kf and kc) compared with the corresponding base binder, the activation energy was asphalt binder source dependent. For the hardening susceptibility, the modifiers-SBS, X, Y, Z reduced the HS of LSV and G-R. The tire rubber slightly increased the HS of LSV and G-R. A_PM, B_TR_X_PM reduced the HS of G*c and other modified binders increased the HS of G*c.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek

    Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less

  5. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

    PubMed

    Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis

    2018-04-19

    The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Nagasubramanian, Ganesan (Inventor)

    1997-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  7. Method for forming thin composite solid electrolyte film for lithium batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)

    1994-01-01

    A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.

  8. Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm

    NASA Astrophysics Data System (ADS)

    Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek

    2017-10-01

    Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.

  9. Improvements in Fabrication of Sand/Binder Cores for Casting

    NASA Technical Reports Server (NTRS)

    Bakhitiyarov, Sayavur I.; Overfelt, Ruel A.; Adanur, Sabit

    2005-01-01

    Three improvements have been devised for the cold-box process, which is a special molding process used to make sand/binder cores for casting hollow metal parts. These improvements are: The use of fiber-reinforced composite binder materials (in contradistinction to the non-fiber-reinforced binders used heretofore), The substitution of a directed-vortex core-blowing subprocess for a prior core-blowing process that involved a movable gassing plate, and The use of filters made from filtration-grade fabrics to prevent clogging of vents. For reasons that exceed the scope of this article, most foundries have adopted the cold-box process for making cores for casting metals. However, this process is not widely known outside the metal-casting industry; therefore, a description of pertinent aspects of the cold-box process is prerequisite to a meaningful description of the aforementioned improvements. In the cold-box process as practiced heretofore, sand is first mixed with a phenolic resin (considered to be part 1 of a three-part binder) and an isocyanate resin (part 2 of the binder). Then by use of compressed air, the mixture is blown into a core box, which is a mold for forming the core. Next, an amine gas (part 3 of the binder) that acts as a catalyst for polymerization of parts 1 and 2 is blown through the core box. Alternatively, a liquid amine that vaporizes during polymerization can be incorporated into the sand/resin mixture. Once polymerization is complete, the amine gas is purged from the core box by use of compressed air. The finished core is then removed from the core box.

  10. Effects of POE-g-MAH on properties of PP-based binder in metal injection molding

    NASA Astrophysics Data System (ADS)

    Li, Duxin; Zhang, Chenming; Ding, Chuxiong; Pan, Donghua; Lu, Renwei; Yang, Zhongchen

    2018-06-01

    The objective of this study is to explore the effects of maleic anhydride-grafted polyolefin elastomer (POE-g-MAH) on properties of polypropylene (PP)-based binder. The viscosity of feedstocks as well as properties of green parts, brown parts and sintered parts were investigated. Through the analysis of viscosity, the feedstock containing 8 vol% POE-g-MAH in binder was supposed to be more suitable for the injection molding. The impact absorbed energy at break increased with increasing POE-g-MAH content in binder while the bending strength decreased first and then increased. The introduction of POE-g-MAH improve the density distribution and increased the density of green parts. After debinding, most binder components were removed regardless of the POE-g-MAH content in binder. As for the parts after sintering, the carbon content decreased with an increase in POE-g-MAH content. The results suggest that POE-g-MAH act as a toughening agent as well as compatibilizer for PP-based binder/metal powder system. The mechanical properties of the green parts could be enhanced even after multiple injection and in addition the powder-binder separation trend could be decreased.

  11. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration

    PubMed Central

    De Mil, Thomas; Devreese, Mathias; De Baere, Siegrid; Van Ranst, Eric; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska

    2015-01-01

    The aim of this study was to characterize 27 feed additives marketed as mycotoxin binders and to screen them for their in vitro zearalenone (ZEN) adsorption. Firstly, 27 mycotoxin binders, commercially available in Belgium and The Netherlands, were selected and characterized. Characterization was comprised of X-ray diffraction (XRD) profiling of the mineral content and d-spacing, determination of the cation exchange capacity (CEC) and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH) and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at the three pH levels. A low free concentration of ZEN was demonstrated using binders containing mixed-layered smectites and binders containing humic acids. PMID:25568976

  12. Theoretical Solution for Temperature Profile in Multi-layered Pavement Systems Subjected to Transient Thermal Loads

    DTIC Science & Technology

    2011-01-01

    kcal/mm s ◦C) Geopolymer paste 2.0x10−7 PCC slab 5.1x10−7 Thermal diffusivity, α (mm2/s) Geopolymer 0.2 PCC slab 1.3 for the surface layer of airfield...concrete pavements. Geopolymer materials have desirable properties for serving as an alternative binder to traditional Portland cement in producing...high thermal stability. Thus it is possible to construct paving concrete made from a geopolymer binder on top of the ordinary concrete slab to limit

  13. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  14. An Alternative Publication

    ERIC Educational Resources Information Center

    Wiseman, Molly J.

    1975-01-01

    Suggests combining the yearbook and newspaper staffs as a solution to the economic problems facing student publications, and producing a publication which can be entered into a binder at the end of a school-year. (RB)

  15. Rutting resistance of asphalt mixture with cup lumps modified binder

    NASA Astrophysics Data System (ADS)

    Shaffie, E.; Hanif, W. M. M. Wan; Arshad, A. K.; Hashim, W.

    2017-11-01

    Rutting is the most common pavement distress in pavement structures which occurs mainly due to several factors such as increasing of traffic volume, climatic conditions and also due to construction design errors. This failure reduced the service life of the pavement, reduced driver safety and increase cost of maintenance. Polymer Modified Binder has been observed for a long time in improving asphalt pavement performance. Research shows that the use of polymer in bituminous mix not only improve the resistance to rutting but also increase the life span of the pavement. This research evaluates the physical properties and rutting performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified binder mix (UMB) and cup lumps rubber (liquid form) modified binder mix (CLMB). Natural rubber polymer modified binder was prepared from addition of 8 percent of cup lumps into binder. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore, rutting results from APA rutting test was determined to evaluate the performance of these mixtures. The rutting result of CLMB demonstrates better resistance to rutting than those prepared using UMB mix. Addition of cup lumps rubber in asphalt mixture was found to be significant, where the cup lumps rubber has certainly improves the binder properties and enhanced its rutting resistance due to greater elasticity offered by the cup lumps rubber particles. It shows that the use of cup lumps rubber can significantly reduce the rut depth of asphalt mixture by 41% compared to the minimum rut depth obtained for the UMB mix. Therefore, it can be concluded that the cup lumps rubber is suitable to be used as a modifier to modified binder in order to enhance the properties of the binder and thus improves the performance of asphalt mixes.

  16. Laboratory study of test methods for polymer modified asphalt in hot mix pavement.

    DOT National Transportation Integrated Search

    1989-11-01

    Increasing use of asphalt binders modified with elastomeric or plastic modifiers makes the specification of binders a difficult task. Ideally, a generic specification would allow various suppliers and additives to compete based on expected performanc...

  17. Designing of interferon-gamma inducing MHC class-II binders

    PubMed Central

    2013-01-01

    Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/raghava/ifnepitope/). Reviewers This article was reviewed by Prof Kurt Blaser, Prof Laurence Eisenlohr and Dr Manabu Sugai. PMID:24304645

  18. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    PubMed

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill

    PubMed Central

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875

  20. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill.

    PubMed

    Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N

    2016-06-15

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.

  1. The chemistry of dimethacrylate-styrene networks, and, Development of flame retardant, halogen-free fiber reinforced vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Rosario, Astrid Christa

    One of the major classes of polymer matrix resins under consideration for structural composite applications in the infrastructure and construction industries is vinyl ester resin. Vinyl ester resin is comprised of low molecular weight poly(hydroxyether) oligomers with methacrylate endgroups diluted with styrene monomer. The methacrylate endgroups cure with styrene via free radical copolymerization to yield thermoset networks. The copolymerization behavior of these networks was monitored by Fourier Transform Infrared Spectroscopy (FTIR) at various cure conditions. Reactions of the carbon-carbon double bonds of the methacrylate (943 cm-1) and styrene (910 cm-1 ) were followed independently. Oligomers possessing number average molecular weights of 700 g/mole were studied with systematically increasing levels of styrene. The Mortimer-Tidwell reactivity ratios indicated that at low conversion more styrene was incorporated into the network at lower cure temperatures. The experimental vinyl ester-styrene network compositions deviated significantly from those predicted by the Meyer-Lowry integrated copolymer equation at higher conversion, implying that the reactivity ratios for these networks may change with conversion. The kinetic data were used to provide additional insight into the physical and mechanical properties of these materials. In addition to establishing the copolymerization kinetics of these materials, the development of halogen free fiber reinforced vinyl ester composites exhibiting good flame properties was of interest. Flame retardant vinyl ester resins are used by many industries for applications requiring good thermal resistance. The current flame-retardant technology is dependent on brominated vinyl esters, which generate high levels of smoke and carbon monoxide. A series of halogen free binder systems has been developed and dispersed in the vinyl ester to improve flame retardance. The binder approach enables the vinyl ester resin to maintain its low temperature viscosity so that fabrication of composites via Vacuum Assisted Resin Transfer Molding (VARTM) is possible. The first binder system investigated was a polycaprolactone layered silicate nanocomposite, which was prepared via intercalative polymerization. Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) data indicated a mixed morphology of exfoliated and intercalated structures. The mechanical properties and the normalized peak heat release rates were comparable to the neat vinyl ester resin. Alternative binder systems possessing inherent flame retardance were also investigated. A series of binders comprised of novolac, bisphenol A diphosphate, and montmorillonite clay were developed and dispersed into the vinyl ester matrix. Cone calorimetry showed reductions in the peak heat release rate comparable to the brominated resin. Keywords: dimethacrylate; vinyl ester; network; reactivity ratios; nanocomposites; layered silicates; exfoliated; thermoset matrix resin; flame retardant

  2. Performance analysis of flexible DSSC with binder addition

    NASA Astrophysics Data System (ADS)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur

    2016-04-01

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  3. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives.

    PubMed

    Qu, Xin; Liu, Quan; Wang, Chao; Wang, Dawei; Oeser, Markus

    2018-02-06

    Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.

  4. Changes of Properties of Bitumen Binders by Additives Application

    NASA Astrophysics Data System (ADS)

    Remišová, Eva; Holý, Michal

    2017-10-01

    Requirements for properties of bituminous binders are determined in the European standards. The physico-chemical behaviour of bitumen depends on its colloidal structure (asphaltenes dispersed into an oily matrix constituted by saturates, aromatics and resins) that depends primarily on its crude source and processing. Bitumen properties are evaluated by group composition, elementary analysis, but more often conventional or functional tests. Bitumen for road uses is assessed according to the physical characteristics. For the purpose of improving the qualitative properties of bitumen and asphalts the additives are applied e.g. to increase elasticity, improving the heat stability, improving adhesion to aggregate, to decrease viscosity, increasing the resistance to aging, to prevent binder drainage from the aggregate surface, etc. The objective of presented paper is to assess and compare effect of additives on properties of bitumen binders. In paper, the results of bitumen properties, penetration, softening point, and dynamic viscosity of two paving grade bitumen 35/50, 50/70 and polymer modified bitumen PmB 45/80-75 are analyzed and also the changes of these properties by the application of selected additives (Sasobit, Licomont BS100, Wetfix BE and CWM) to improve adhesion to aggregate and improve workability. Measurements of properties have been performed according to the relevant European standards. The laboratory tests showed significantly increasing the softening point of paving grade bitumen 50/70 and 35/50 by 13 to 45°C. The effect of various additives on bitumen softening point is different. Penetration varies according to type of bitumen and type of used additive. The penetration values of modified bitumen PmB 45/80-75 with additives Sasobit and Licomont BS100 show increase of bitumen stiffness of 16 0.1mm and a shift in the gradation. The changes in penetration and in softening point significantly shown when calculating on Penetration index as a parameter of temperature susceptibility. The additives changed the viscosity of bitumen to lower values mostly with modified bitumen. In case of the additive Wetfix BE mix in 35/50caused the viscosity increase. The additive changes the properties of original bituminous binders, and that can affect the properties of asphalt mixtures and asphalt layers.

  5. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: application to model antifouling coatings.

    PubMed

    Goodes, L R; Dennington, S P; Schuppe, H; Wharton, J A; Bakker, M; Klijnstra, J W; Stokes, K R

    2012-01-01

    A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu₂O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to these coatings for quantification of organic biocide and pigment distribution. Total leaching of the biocide from the novel copolymer binder was observed within 6 months of rotor immersion, compared to 35% from the pMMA coating. In pontoon immersions, 61% of the additive was lost from the pMMA coating, and 53% from the erodible binder. Profiles of FD content in the binders revealed an accelerated loss of additive from the surface of the CDP resulting from rosin degradation, compared to even depletion from pMMA. In all samples, release of the biocide was inhibited beyond the Cu₂O front, corresponding to the leached layer in samples where Cu₂O release occurred.

  6. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte

    NASA Astrophysics Data System (ADS)

    Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae

    2016-02-01

    Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.

  7. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    NASA Astrophysics Data System (ADS)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  8. Evaluation of ternary cementitious combinations.

    DOT National Transportation Integrated Search

    2012-02-01

    Portland cement concrete (PCC) is the worlds most versatile and most used construction materials. Global demand for PCC sustainability has risen as of late. To meet that need, engineers have looked to alternative binders such as fly ash, silica fu...

  9. Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder

    NASA Astrophysics Data System (ADS)

    Varzi, Alberto; Passerini, Stefano

    2015-12-01

    Potatoes starch (PS), a natural polymer obtainable from non-edible sources, is for the first time evaluated as alternative water-processable binder for Electrochemical Double-Layer Capacitor (EDLC) electrodes. Morphological and electrochemical properties of activated carbon (AC)-based electrodes are investigated and compared to those achieved with the state-of-the-art aqueous binder (CMC, i.e. Na-carboxymethyl cellulose). The obtained results suggest substantial benefits of PS, in particular regarding the electrode fabrication process. As a matter of fact, owing to its amylopectin content (moderately branched polysaccharide), PS displays only minimal shrinkage upon drying, resulting on rather homogeneous electrodes not presenting the dramatic surface cracking observed with CMC. Furthermore, owing to the smaller volume of water required for the processing, much higher active material loading per area unit can be achieved. This is reflected on improvements of up to 60% in terms of areal capacitance.

  10. Scaffold diversification enhances effectiveness of a superlibrary of hyperthermophilic proteins.

    PubMed

    Hussain, Mahmud; Gera, Nimish; Hill, Andrew B; Rao, Balaji M

    2013-01-18

    The use of binding proteins from non-immunoglobulin scaffolds has become increasingly common in biotechnology and medicine. Typically, binders are isolated from a combinatorial library generated by mutating a single scaffold protein. In contrast, here we generated a "superlibrary" or "library-of-libraries" of 4 × 10(8) protein variants by mutagenesis of seven different hyperthermophilic proteins; six of the seven proteins have not been used as scaffolds prior to this study. Binding proteins for five different model targets were successfully isolated from this library. Binders obtained were derived from five out of the seven scaffolds. Strikingly, binders from this modestly sized superlibrary have affinities comparable or higher than those obtained from a library with 1000-fold higher sequence diversity but derived from a single stable scaffold. Thus scaffold diversification, i.e., randomization of multiple different scaffolds, is a powerful alternate strategy for combinatorial library construction.

  11. Destructive testings: dry drilling operations with TruPro system to collect samples in a powder form, from two hulls containing immobilized wastes in a hydraulic binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pombet, Denis; Desnoyers, Yvon; Charters, Grant

    2013-07-01

    The TruPro{sup R} process enables to collect a significant number of samples to characterize radiological materials. This innovative and alternative technique is experimented for the ANDRA quality-control inspection of cemented packages. It proves to be quicker and more prolific than the current methodology. Using classical statistics and geo-statistics approaches, the physical and radiological characteristics of two hulls containing immobilized wastes (sludges or concentrates) in a hydraulic binder are assessed in this paper. The waste homogeneity is also evaluated in comparison to ANDRA criterion. Sensibility to sample size (support effect), presence of extreme values, acceptable deviation rate and minimum number ofmore » data are discussed. The final objectives are to check the homogeneity of the two characterized radwaste packages and also to validate and reinforce this alternative characterization methodology. (authors)« less

  12. Data related to the experimental design for powder bed binder jetting additive manufacturing of silicone.

    PubMed

    Liravi, Farzad; Vlasea, Mihaela

    2018-06-01

    The data included in this article provides additional supporting information on our recent publication (Liravi et al., 2018 [1]) on a novel hybrid additive manufacturing (AM) method for fabrication of three-dimensional (3D) structures from silicone powder. A design of experiments (DoE) study has been carried out to optimize the geometrical fidelity of AM-made parts. This manuscript includes the details of a multi-level factorial DOE and the response optimization results. The variation in the temperature of powder-bed when exposed to heat is plotted as well. Furthermore, the effect of blending ratio of two parts of silicone binder on its curing speed was investigated by conducting DSC tests on a silicone binder with 100:2 precursor to curing agent ratio. The hardness of parts fabricated with non-optimum printing conditions are included and compared.

  13. Effect of methionine and lactic acid bacteria as aflatoxin binder on broiler performance

    NASA Astrophysics Data System (ADS)

    Istiqomah, Lusty; Damayanti, Ema; Julendra, Hardi; Suryani, Ade Erma; Sakti, Awistaros Angger; Anggraeni, Ayu Septi

    2017-06-01

    The use of aflatoxin binder product based amino acids, lacic acid bacteria, and natural product gived the opportunity to be an alternative biological decontamination of aflatoxins. A study was conducted to determine the efficacy of aflatoxin binder administration (amino acid methionine and lactic acid bacteria (Lactobacillus plantarum G7)) as feed additive on broiler performance. In this study, 75 Lohmann unsexed day old chicks were distributed randomly into 5 units of cages, each filled with 15 broilers. Five cages were assigned into 5 treatments groups and fed with feed contained aflatoxin. The treatments as follow: P1 (aflatoxin feed without aflatoxin binder), P3 (aflatoxin feed + 0.8% of methionine + 1% of LAB), P4 (aflatoxin feed + 1.2% of methionine + 1% of LAB), P5 (aflatoxin feed + 1% of LAB), and K0 (commercial feed). The measurement of aflatoxin content in feed was performed by Enzyme Linked Immunosorbent Assay method using AgraQuant® Total Aflatoxin Assay Romer Labs procedure. The experimental period was 35 days with feeding and drinking ad libitum. LAB was administered into drinking water, while methionine into feed. Vaccination program of Newcastle Disease (ND) was using active vaccine at 4 and 18 day old, while Infectious Bursal Disease (IBD) was given at 8 day old. Parameter of body weight was observed weekly, while feed consumption noted daily. The result showed that aflatoxin in feed for 35 days period did not significantly affect the body weight gain and feed conversion. The lowest percentage of organ damage at 21 day old was found in P5 treatment (55%), while at 35day old was found in P4 treatment (64%). It could be concluded that technological process of detoxifying aflatoxin could be applied in an attempt to reduce the effect on the toxicity of aflatoxin in poultry feed.

  14. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Cápayová, Silvia; Unčík, Stanislav; Cihlářová, Denisa

    2018-03-01

    In most European countries, Hot Mix Asphalt (HMA) technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA), which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT) can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  15. Characterization and Modeling of Asphalt Binder Fatigue

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz

    Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.

  16. Investigation of the Effect of Oil Modification on Critical Characteristics of Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Golalipour, Amir

    Thermally induced cracking of asphalt pavement continues to be a serious issue in cold climate regions as well as in areas which experience extreme daily temperature differentials. Low temperature cracking of asphalt pavements is attributed to thermal stresses and strains developed during cooling cycles. Improving asphalt binder low temperature fracture and stiffness properties continues to be a subject of particular concern. Therefore, significant amount of research has been focused on improving asphalt binder properties through modification. In recent years, wide ranges of oil based modifications have been introduced to improve asphalt binder performance, especially at the low service temperatures. Although, significant use of these oils is seen in practice, knowledge of the fundamental mechanisms of oil modification and their properties for achieving optimum characteristics is limited. Hence, this study focuses on better understanding of the effect of oil modifiers which would help better material selection and achieve optimum performance in terms of increasing the life span of pavements. In this study, the effect of oil modification on the rheological properties of the asphalt binder is investigated. To examine the effect of oil modification on binder characteristics, low temperature properties as well as high temperature performance of oil modified binders were evaluated. It is found that oils vary in their effects on asphalt binder performance. However, for all oils used in the study, adding an oil to binder can improve binder low temperature performance, and this result mainly attributed to the softening effect. In addition to that, a simple linear model is proposed to predict the performance grade of oil modified binder based on the properties of its constituents at high and low temperatures. Another part of this study focuses on the oil modification effect on asphalt binder thermal strain and stresses. A viscoelastic analytical procedure is combined with experimentally derived failure stress and strain envelopes to determine the controlling failure mechanism, strain tolerance or critical stress, in thermal cracking of oil modified binders. The low temperature failure results depict that oil modification has a good potential of improving the cracking resistance of asphalt binders during thermal cycles.

  17. High-Performance Screen-Printed Thermoelectric Films on Fabrics

    DOE PAGES

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; ...

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screenprinting of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5Sb 1.5Te 3 or n-type Bi 2Te 2.7Se 0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscositymore » for printability at a very small concentration (0.45–0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.« less

  18. High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    PubMed

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

  19. High-Performance Screen-Printed Thermoelectric Films on Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screenprinting of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5Sb 1.5Te 3 or n-type Bi 2Te 2.7Se 0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscositymore » for printability at a very small concentration (0.45–0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.« less

  20. The role of nanocrystalline binder metallic coating into WC after additive manufacturing

    NASA Astrophysics Data System (ADS)

    Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.

    2018-01-01

    Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.

  1. Phosphate binders for the treatment of hyperphosphatemia in chronic kidney disease patients on dialysis: a comparison of safety profiles.

    PubMed

    Locatelli, Francesco; Del Vecchio, Lucia; Violo, Leano; Pontoriero, Giuseppe

    2014-05-01

    Hyperphosphatemia is common in the late stages of chronic kidney disease (CKD) and is associated with elevated parathormone levels, abnormal bone mineralization, extraosseous calcification and increased risk of cardiovascular events and death. Several classes of oral phosphate binders are available to help control phosphorus levels. Although effective at lowering serum phosphorus, they all have safety issues that need to be considered when selecting which one to use. This paper reviews the use of phosphate binders in patients with CKD on dialysis, with a focus on safety and tolerability. In addition to the more established agents, a new resin-based phosphate binder, colestilan, is discussed. Optimal phosphate control is still an unmet need in CKD. Nonetheless, we now have an extending range of phosphate binders available. Aluminium has potentially serious toxic risks. Calcium-based binders are still very useful but can lead to hypercalcemia and/or positive calcium balance and cardiovascular calcification. No long-term data are available for the new calcium acetate/magnesium combination product. Lanthanum is an effective phosphate binder, but there is insufficient evidence about possible long-term effects of tissue deposition. The resin-based binders, colestilan and sevelamer, appear to have profiles that would lead to less vascular calcification, and the main adverse events seen with these agents are gastrointestinal effects.

  2. In situ imaging during compression of plastic bonded explosives for damage modeling

    DOE PAGES

    Manner, Virginia Warren; Yeager, John David; Patterson, Brian M.; ...

    2017-06-10

    Here, the microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowingmore » for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.« less

  3. In situ imaging during compression of plastic bonded explosives for damage modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manner, Virginia Warren; Yeager, John David; Patterson, Brian M.

    Here, the microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowingmore » for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.« less

  4. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling.

    PubMed

    Manner, Virginia W; Yeager, John D; Patterson, Brian M; Walters, David J; Stull, Jamie A; Cordes, Nikolaus L; Luscher, Darby J; Henderson, Kevin C; Schmalzer, Andrew M; Tappan, Bryce C

    2017-06-10

    The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.

  5. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives

    PubMed Central

    Qu, Xin; Liu, Quan; Wang, Chao; Oeser, Markus

    2018-01-01

    Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately. PMID:29415421

  6. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling

    PubMed Central

    Manner, Virginia W.; Yeager, John D.; Patterson, Brian M.; Walters, David J.; Stull, Jamie A.; Cordes, Nikolaus L.; Luscher, Darby J.; Henderson, Kevin C.; Schmalzer, Andrew M.; Tappan, Bryce C.

    2017-01-01

    The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination. PMID:28772998

  7. Binders for Energetics - Modelling and Synthesis in Harmony

    NASA Astrophysics Data System (ADS)

    Dossi, Licia; Cleaver, Doug; Gould, Peter; Dunnett, Jim; Cavaye, Hamish; Ellison, Laurence; Luppi, Federico; Hollands, Ron; Bradley, Mark

    The Binders by Design UK programme develop new polymeric materials for energetic applications that can overcome problems related to chemico-physical properties, aging, additives, environmental and performance of energetic compositions. Combined multi-scale modelling and experiment is used for the development of a new modelling tool and with the aim to produce novel materials with great confidence and fast turnaround. New synthesised binders with attractive properties for energetic applications used to provide a high level of confidence in the results of developed models. Molecular dynamics simulations investigate the thermal behaviour and the results directly feed into a Group Interaction Model (GIM). A viscoelastic constitutive model has been developed examining stress development in energetic/binder configurations. GIM data has been used as the basis for developing hydrocode equations of state, which then applied in run-to-detonation type investigations to examine the effect of the shock properties of a binder on the reactivity of a typical Polymer Bonded Explosive in a high-velocity impact type scenario. The Binders by Design UK programme is funded through the Weapons Science and Technology Centre by DSTL.

  8. Performance analysis of flexible DSSC with binder addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com

    2016-04-19

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyzemore » morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.« less

  9. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    PubMed Central

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  10. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    PubMed

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  11. Aromaticity Parameters in Asphalt Binders Calculated From Profile Fitting X-ray Line Spectra Using Pearson VII and Pseudo-Voigt Functions

    NASA Astrophysics Data System (ADS)

    Shirokoff, J.; Lewis, J. Courtenay

    2010-10-01

    The aromaticity and crystallite parameters in asphalt binders are calculated from data obtained after profile fitting x-ray line spectra using Pearson VII and pseudo-Voigt functions. The results are presented and discussed in terms of the peak profile fit parameters used, peak deconvolution procedure, and differences in calculated values that can arise owing to peak shape and additional peaks present in the pattern. These results have implications concerning the evaluation and performance of asphalt binders used in highways and road applications.

  12. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  13. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE PAGES

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.; ...

    2017-07-26

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  14. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... looseleaf binder to include a table of contents. If an applicant desires approval of both a ground school course and a flight school course, they must be combined in one looseleaf binder that includes a separate... include additional subjects in the ground course curriculum, such as international law, flight hygiene, or...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, D.; Humenik, M. Jr.

    TiC--Ni--Mo--C compositions were prepared with binders containing 22.5 w/o Ni. The Mo content and the carbon content were varied. The amount of Ti in the binder phase was for determining the strength of the material, due to a solid solution strengthening; the optimum Ti content is a function of the amount of Mo additions.

  16. Hotspot-Centric De Novo Design of Protein Binders

    PubMed Central

    Fleishman, Sarel J.; Corn, Jacob E.; Strauch, Eva-Maria; Whitehead, Timothy A.; Karanicolas, John; Baker, David

    2014-01-01

    Protein–protein interactions play critical roles in biology, and computational design of interactions could be useful in a range of applications. We describe in detail a general approach to de novo design of protein interactions based on computed, energetically optimized interaction hotspots, which was recently used to produce high-affinity binders of influenza hemagglutinin. We present several alternative approaches to identify and build the key hotspot interactions within both core secondary structural elements and variable loop regions and evaluate the method's performance in natural-interface recapitulation. We show that the method generates binding surfaces that are more conformationally restricted than previous design methods, reducing opportunities for off-target interactions. PMID:21945116

  17. Structural comparison of Gilsonite and Trinidad Lake Asphalt using 13C-NMR technique

    NASA Astrophysics Data System (ADS)

    Nciri, Nader; Cho, Namjun

    2017-04-01

    The recent increased importance of natural asphalt as an alternative binder for sustainable road pavement has dictated that more knowledge should be acquired about its structure and properties. Earlier, Carbon-13 NMR spectroscopy has been applied to very few natural bituminous materials. In this work, two types of raw binders namely Gilsonite and Trinidad Lake asphalt (TLA) have been subjected to an extensive investigation by using 13C-NMR technique. Results have shown that valuable chemical data can be readily withdrawn on aromatic ring structures and ring substituents in natural asphalts derived from different sources. The chemical significance of these findings will be discussed.

  18. Magnesium-based methods, systems, and devices

    DOEpatents

    Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum

    2017-12-12

    An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.

  19. Cohesive finite element modeling of the delamination of HTPB binder and HMX crystals under tensile loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, David J.; Luscher, Darby J.; Yeager, John D.

    Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less

  20. Cohesive finite element modeling of the delamination of HTPB binder and HMX crystals under tensile loading

    DOE PAGES

    Walters, David J.; Luscher, Darby J.; Yeager, John D.; ...

    2018-02-27

    Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less

  1. Design of cemented tungsten carbide and boride-containing shields for a fusion power plant

    NASA Astrophysics Data System (ADS)

    Windsor, C. G.; Marshall, J. M.; Morgan, J. G.; Fair, J.; Smith, G. D. W.; Rajczyk-Wryk, A.; Tarragó, J. M.

    2018-07-01

    Results are reported on cemented tungsten carbide (cWC) and boride-containing composite materials for the task of shielding the centre column of a superconducting tokamak power plant. The shield is based on five concentric annular shells consisting of cWC and water layers of which the innermost cWC shield can be replaced with boride composites. Sample materials have been fabricated changing the parameters of porosity P, binder alloy fraction f binder and boron weight fraction f boron. For the fabricated materials, and other hypothetical samples with chosen parameters, Monte Carlo studies are made of: (i) the power deposition into the superconducting core, (ii) the fast neutron and gamma fluxes and (iii) the attenuation coefficients through the shield for the deposited power and neutron and gamma fluxes. It is shown that conventional Co-based cWC binder alloy can be replaced with a Fe–Cr alloy (92 wt.% Fe, 8 wt.% Cr), which has lower activation than cobalt with minor changes in shield performance. Boride-based composite materials have been prepared and shown to give a significant reduction in power deposition and flux, when placed close to the superconducting core. A typical shield of cemented tungsten carbide with 10 wt.% of Fe–8Cr binder and 0.1% porosity has a power reduction half-length of 0.06 m. It is shown that the power deposition increases by 4.3% for every 1% additional porosity, and 1.7% for every 1 wt.% additional binder. Power deposition decreased by 26% for an initial 1 wt.% boron addition, but further increases in f boron showed only a marginal decrease. The dependences of power deposited in the core, the maximum neutron and gamma fluxes on the core surface, and the half attenuation distances through the shield have been fitted to within a fractional percentage error by analytic functions of the porosity, metallic binder alloy and boron weight fractions.

  2. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    PubMed

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crossing borders to bind proteins--a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set.

    PubMed

    Baltzer, Lars

    2011-06-01

    A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.

  4. Phosphate binder use and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS): evaluation of possible confounding by nutritional status.

    PubMed

    Lopes, Antonio Alberto; Tong, Lin; Thumma, Jyothi; Li, Yun; Fuller, Douglas S; Morgenstern, Hal; Bommer, Jürgen; Kerr, Peter G; Tentori, Francesca; Akiba, Takashi; Gillespie, Brenda W; Robinson, Bruce M; Port, Friedrich K; Pisoni, Ronald L

    2012-07-01

    Poor nutritional status and both hyper- and hypophosphatemia are associated with increased mortality in maintenance hemodialysis (HD) patients. We assessed associations of phosphate binder prescription with survival and indicators of nutritional status in maintenance HD patients. Prospective cohort study (DOPPS [Dialysis Outcomes and Practice Patterns Study]), 1996-2008. 23,898 maintenance HD patients at 923 facilities in 12 countries. Patient-level phosphate binder prescription and case-mix-adjusted facility percentage of phosphate binder prescription using an instrumental-variable analysis. All-cause mortality. Overall, 88% of patients were prescribed phosphate binders. Distributions of age, comorbid conditions, and other characteristics showed small differences between facilities with higher and lower percentages of phosphate binder prescription. Patient-level phosphate binder prescription was associated strongly at baseline with indicators of better nutrition, ie, higher values for serum creatinine, albumin, normalized protein catabolic rate, and body mass index and absence of cachectic appearance. Overall, patients prescribed phosphate binders had 25% lower mortality (HR, 0.75; 95% CI, 0.68-0.83) when adjusted for serum phosphorus level and other covariates; further adjustment for nutritional indicators attenuated this association (HR, 0.88; 95% CI, 0.80-0.97). However, this inverse association was observed for only patients with serum phosphorus levels ≥3.5 mg/dL. In the instrumental-variable analysis, case-mix-adjusted facility percentage of phosphate binder prescription (range, 23%-100%) was associated positively with better nutritional status and inversely with mortality (HR for 10% more phosphate binders, 0.93; 95% CI, 0.89-0.96). Further adjustment for nutritional indicators reduced this association to an HR of 0.95 (95% CI, 0.92-0.99). Results were based on phosphate binder prescription; phosphate binder and nutritional data were cross-sectional; dietary restriction was not assessed; observational design limits causal inference due to possible residual confounding. Longer survival and better nutritional status were observed for maintenance HD patients prescribed phosphate binders and in facilities with a greater percentage of phosphate binder prescription. Understanding the mechanisms for explaining this effect and ruling out possible residual confounding require additional research. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Toward better Li-ion batteries: hard x-ray photoelectron spectroscopy investigation of binder materials for Si-based anodes

    NASA Astrophysics Data System (ADS)

    Young, Benjamin; Heskett, David; Nguyen, Cao Cuong; Woicik, Joseph; Lucht, Brett

    From portable electronics to space exploration, the desire for more capable rechargeable batteries is driving a search for high capacity anodes. There is much interest in incorporating silicon as a partial or full replacement for the current graphite material in the most popular batteries because it could potentially hold much more charge. There is a significant challenge, however, in that storing so much more lithium in either electrode as the battery is charged and discharged as this causes an accompanying increase in the physical size fluctuation of the electrodes. Specifically, in the anode where this investigation focuses, the active material may experience a 300% volume change between the charged and discharged state. This makes a long lifetime difficult to achieve because the passivation layer protecting the electrolyte material from decomposition is compromised upon each cycle. One approach to accommodating the large volumetric fluctuation without sacrificing lifetime is to find a better material to include in the anode substrate to act as a binder. Ideally, such a material would permit the anode to fluctuate without breaking. Polyvinylidene fluoride (PVdF) is not successful for silicon-based anodes and we present Hard X-ray photoelectron spectroscopy studies of batteries incorporating three alternatives. The alternative binders outperform the PVdF and we present possible explanations. DOE EPSCoR and RI College Faculty Research Fund.

  6. Development of a non-solvent based test method for evaluating reclaimed asphalt pavement mixes.

    DOT National Transportation Integrated Search

    2004-09-01

    The percent of reclaimed asphalt pavement (RAP) used in hot mix asphalt (HMA) is currently established either by arbitrarily setting maximum percent limits, or alternatively, by evaluating both the virgin and recovered binder properties. The first ap...

  7. Dynamic modulus of nanosilica modified porous asphalt

    NASA Astrophysics Data System (ADS)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  8. Effect of solvents on the electrochemical properties of binder-free sulfur cathode films in lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Ho-Suk; Kim, Byeong-Wook; Park, Jin-Woo

    Highlights: • The binder-free sulfur electrode with high sulfur contents of 75 wt.% was fabricated. • The binder-free sulfur electrode using NMP solvents showed 784 mAh g{sup −1} after 40 cycles. • The solvent affect the electrochemical properties of binder-free sulfur electrode films. - Abstract: The effects of solvents on the preparation of sulfur cathodes were investigated by fabricating binder-free sulfur electrode films using three different solvents: 1-methyl-2-pyrrolidinone (NMP), acetonitrile, and deionized water. These solvents are commonly employed to dissolve binders used to prepare sulfur cathodes for lithium–sulfur batteries. The sulfur electrode fabricated with NMP had a higher discharge capacitymore » and longer cycle life than the ones fabricated with acetonitrile and deionized water. Better adhesion between the current collector and the sulfur electrode accounted for the improved capacity and cycle life of the battery. In addition, the stability of the electrode in the electrolyte was a result of the solubility of sulfur in the solvent. We thus concluded that the solvents used in the fabrication of sulfur electrodes had a positive influence on the electrochemical properties of Li–S batteries.« less

  9. Use of Adhesion Promoters in Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Cihlářová, Denisa; Fencl, Ivan; Cápayová, Silvia; Pospíšil, Petr

    2018-03-01

    The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt's binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt's binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  10. Final Report on Initial Samples Supplied by LLNL for Task 3.3 Binder Burnout and Sintering Schedule Optimisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walls, P

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Runmore » 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A combination of: (1) use of a higher forming pressure, (2) reduction of organics content, (3) improvement in the distribution of the organic wax and binder components throughout the green body, could possibly alleviate cracking. Ultrasonic emulsification of the binder and wax with a small quantity of water prior to adding to the ball or attrition mill is advised to ensure more even distribution of the wax/binder system. This would also reduce the proportion of organic additives required. The binder burnout stage of the operation must first be optimized (i.e. production of pucks with no cracks) prior to optimization of the sintering stage.« less

  11. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil.

    PubMed

    Wang, Fei; Wang, Hailing; Jin, Fei; Al-Tabbaa, Abir

    2015-03-21

    This paper presents an investigation of the effects of novel binders and pH values on the effectiveness of the in-situ stabilisation/solidification technique in treating heavy metals and organic contaminated soils after 1.5-year treatment. To evaluate the performance of different binders, made ground soils of SMiRT site, upto 5 m depth, were stabilised/solidified with the triple auger system and cores were taken for laboratory testing after treatment. Twenty four different binders were used including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and zeolite. Unconfined compressive strength (UCS), leachate pH and the leachability of heavy metals and total organics were applied to study the behaviours of binders in treating site soils. Under various contaminant level and binder level, the results show that UCS values were 22-3476 kPa, the leachability of the total organics was in the range of 22-241 mg/l and the heavy metals was in the range of 0.002-0.225 mg/l. In addition, the combination of GGBS and MgO at a ratio of 9:1 shows better immobilisation efficiency in treating heavy metals and organic contaminated soils after 1.5-year treatment, and the binding mechanisms under different binders were also discussed in this paper. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library.

    PubMed

    Adler, Adam S; Bedinger, Daniel; Adams, Matthew S; Asensio, Michael A; Edgar, Robert C; Leong, Renee; Leong, Jackson; Mizrahi, Rena A; Spindler, Matthew J; Bandi, Srinivasa Rao; Huang, Haichun; Tawde, Pallavi; Brams, Peter; Johnson, David S

    2018-04-01

    Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of "randomly paired" scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.

  13. A natively paired antibody library yields drug leads with higher sensitivity and specificity than a randomly paired antibody library

    PubMed Central

    Adler, Adam S.; Bedinger, Daniel; Adams, Matthew S.; Asensio, Michael A.; Edgar, Robert C.; Leong, Renee; Leong, Jackson; Mizrahi, Rena A.; Spindler, Matthew J.; Bandi, Srinivasa Rao; Huang, Haichun; Brams, Peter; Johnson, David S.

    2018-01-01

    ABSTRACT Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of “randomly paired” scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs. PMID:29376776

  14. Engineered antibody CH2 domains binding to nucleolin: Isolation, characterization and improvement of aggregation.

    PubMed

    Li, Dezhi; Gong, Rui; Zheng, Jun; Chen, Xihai; Dimitrov, Dimiter S; Zhao, Qi

    2017-04-01

    Smaller recombinant antibody fragments are now emerging as alternatives of conventional antibodies. Especially, immunoglobulin (Ig) constant CH2 domain and engineered CH2 with improved stability are promising as scaffolds for selection of specific binders to various antigens. We constructed a yeast display library based on an engineered human IgG1 CH2 scaffold with diversified loop regions. A group of CH2 binders were isolated from this yeast display library by panning against nucleolin, which is a tumor-associated antigen involved in cell proliferation, tumor cell growth and angiogenesis. Out of 20 mutants, we selected 3 clones exhibiting relatively high affinities to nucleolin on yeasts. However, recombinant CH2 mutants aggregated when they were expressed. To find the mechanism of the aggregation, we employed computational prediction approaches through structural homology models of CH2 binders. The analysis of potential aggregation prone regions (APRs) and solvent accessible surface areas (ASAs) indicated two hydrophobic residues, Val 264 and Leu 309 , in the β-sheet, in which replacement of both charged residues led to significant decrease of the protein aggregation. The newly identified CH2 binders could be improved to use as candidate therapeutics or research reagents in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Ethanedithiol-treated manganese oxide nanoparticles for rapidly responsive and transparent supercapacitors

    NASA Astrophysics Data System (ADS)

    Ryu, Ilhwan; Kim, Green; Park, Dasom; Yim, Sanggyu

    2015-11-01

    Metal oxide nanoparticles (NPs) provide a large surface area and short diffusion pathways for ions in supercapacitor electrode materials. However, binders and conductive additives used for tight connections with current collectors and improved conductivity hamper these benefits. In this work, we successfully fix manganese oxide (Mn3O4) NPs onto ITO current collectors by a simple 1,2-ethanedithiol (EDT) treatment without using any binders or conductive additives. As compared to the electrode fabricated using binder-mixed Mn3O4 NPs, the EDT-treated electrode shows significantly improved specific capacitance of 403 F g-1 at a scan rate of 10 mV s-1. The EDT-treatment is more effective at higher scan rates. The specific capacitances, 278 F g-1 at 100 mV s-1 and 202 F g-1 at 200 mV s-1, are larger than those reported so far at scan rates ≥100 mV s-1. The deconvolution of capacitive elements indicates that these improved capacitive properties are attributed to large insertion elements of the binder-free NP electrodes. Furthermore, this additive-free electrode is highly transparent and can be easily fabricated by simple spray-coating on various substrates including polymer films, implying that this new method is promising for the fabrication of large-area, transparent and flexible electrodes for next-generation supercapacitors.

  16. Biobased alternatives to guar gum as tackifiers for hydromulch

    USDA-ARS?s Scientific Manuscript database

    Guar gum, obtained from guar [Cyamopsis tetragonoloba (L.) Taub.] seeds, is currently the principal gum used as a tackifier (binder) for hydraulically-applied mulches (hydromulches) used in erosion control. The oil industry’s increased use of guar gum in hydraulic fracturing together with lower glo...

  17. Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Shi, Yongzheng; Yang, Dongzhi; Yu, Ruomeng; Liu, Yaxin; Hao, Shu-Meng; Zhang, Shiyi; Qu, Jin; Yu, Zhong-Zhen

    2018-04-01

    To satisfy increasing power demands of mobile devices and electric vehicles, rationally designed electrodes with short diffusion length are highly imperative to provide highly efficient ion and electron transport paths for high-rate and long-life lithium-ion batteries. Herein, binder-free electrodes with the robust three-dimensional conductive network are prepared by assembling ultralong TiO2 nanowires with reduced graphene oxide (RGO) sheets for high-performance lithium-ion storage. Ultralong TiO2 nanowires are synthesized and used to construct an interconnecting network that avoids the use of inert auxiliary additives of polymer binders and conductive agents. By thermal annealing, a small amount of anatase is generated in situ in the TiO2(B) nanowires to form abundant TiO2(B)/anatase interfaces for accommodating additional lithium ions. Simultaneously, RGO sheets efficiently enhance the electronic conductivity and enlarge the specific surface area of the TiO2/RGO nanocomposite. The robust 3D network in the binder-free electrode not only effectively avoids the agglomeration of TiO2/RGO components during the long-term charging/discharging process, but also provides direct and fast ion/electron transport paths. The binder-free electrode exhibits a high reversible capacity of 259.9 mA h g-1 at 0.1 C and an excellent cycling performance with a high reversible capacity of 111.9 mA h g-1 at 25 C after 5000 cycles.

  18. Rice husk (RH) as additive in fly ash based geopolymer mortar

    NASA Astrophysics Data System (ADS)

    Yahya, Zarina; Razak, Rafiza Abd; Abdullah, Mohd Mustafa Al Bakri; Rahim, Mohd Azrin Adzhar; Nasri, Armia

    2017-09-01

    In recent year, the Ordinary Portland Cement (OPC) concrete is vastly used as main binder in construction industry which lead to depletion of natural resources in order to manufacture large amount of OPC. Nevertheless, with the introduction of geopolymer as an alternative binder which is more environmental friendly due to less emission of carbon dioxide (CO2) and utilized waste materials can overcome the problems. Rice husk (RH) is an agricultural residue which can be found easily in large quantity due to production of paddy in Malaysia and it's usually disposed in landfill. This paper investigated the effect of rice husk (RH) content on the strength development of fly ash based geopolymer mortar. The fly ash is replaced with RH by 0%, 5%, 10%, 15% and 20% where the sodium silicate and sodium hydroxide was used as alkaline activator. A total of 45 cubes were casted and their compressive strength, density and water absorption were evaluated at 1, 3, and 7 days. The result showed compressive strength decreased when the percentage of RH increased. At 5% replacement of RH, the maximum strength of 17.1MPa was recorded at day 7. The geopolymer has lowest rate of water absorption (1.69%) at 20% replacement of RH. The density of the sample can be classified as lightweight geopolymer concrete.

  19. Investigation of the Bitumen Modification Process Regime Parameters Influence on Polymer-Bitumen Bonding Qualitative Indicators

    NASA Astrophysics Data System (ADS)

    Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Belousov, O. A.; Frolov, V. A.

    2018-04-01

    The objects of this study are petroleum road bitumen and polymeric bituminous binder for road surfaces obtained by polymer materials. The subject of the study is monitoring the polymer-bitumen binder quality changes as a result of varying the bitumen modification process. The purpose of the work is to identify the patterns of the modification process and build a mathematical model that provides the ability to calculate and select technological equipment. It is shown that the polymer-bitumen binder production with specified quality parameters can be ensured in apparatuses with agitators in turbulent mode without the colloidal mills use. Bitumen mix and modifying additives limiting indicators which can be used as restrictions in the form of mathematical model inequalities are defined. A mathematical model for the polymer-bitumen binder preparation has been developed and its adequacy has been confirmed.

  20. Selective Laser Sintering of Porous Silica Enabled by Carbon Additive.

    PubMed

    Chang, Shuai; Li, Liqun; Lu, Li; Fuh, Jerry Ying Hsi

    2017-11-16

    The aim of this study is to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects directly without a mold, and the technique has the capability of generating porous ceramics with controlled porosity. However, ceramic printing has not yet fully achieved its 3D fabrication capabilities without using polymer binder. Except for the limitations of high melting point, brittleness, and low thermal shock resistance from ceramic material properties, the key obstacle lies in the very poor absorptivity of oxide ceramics to fiber laser, which is widely installed in commercial SLS equipment. An alternative solution to overcome the poor laser absorptivity via improving material compositions is presented in this study. The positive effect of carbon additive on the absorptivity of silica powder to fiber laser is discussed. To investigate the capabilities of the SLS process, 3D porous silica structures were successfully prepared and characterized.

  1. Computer Applications for Alternative Assessment: An Instructional and Organization Dilemma.

    ERIC Educational Resources Information Center

    Mills, Ed; Brown, John A.

    1997-01-01

    Describes the possibilities and problems that computer-generated portfolios will soon present to instructors across America. Highlights include the history of portfolio assessment, logistical problems of handling portfolios in the traditional three-ring binder format, use of the zip drive for storage, and software/hardware compatibility problems.…

  2. Stabilisation/solidification of synthetic petroleum drill cuttings.

    PubMed

    Al-Ansary, Marwa S; Al-Tabbaa, Abir

    2007-03-15

    This paper presents the results of an experimental investigation into the use of stabilisation/solidification (S/S) to treat synthetic drill cuttings as a pre-treatment to landfilling or for potential re-use as construction products. Two synthetic mixes were used based on average concentrations of specific contaminates present in typical drill cuttings from the North Sea and the Red Sea areas. The two synthetic drill cuttings contained similar chloride content of 2.03% and 2.13% by weight but different hydrocarbon content of 4.20% and 10.95% by weight, respectively; hence the mixes were denoted as low and high oil content mixes, respectively. A number of conventional S/S binders were tested including Portland cement (PC), lime and blast-furnace slag (BFS), in addition to novel binders such as microsilica and magnesium oxide cement. Physical, chemical and microstructural analyses were used to compare the relative performance of the different binder mixes. The unconfined compressive strength (UCS) values were observed to cover a wide range depending on the binder used. Despite the significant difference in the hydrocarbon content in the two synthetic cuttings, the measured UCS values of the mixes with the same binder type and content were similar. The leachability results showed the reduction of the synthetic drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the binders for chloride concentrations, and (b) by the 20% BFS-PC and 30% PC binders for the low oil content mix. The 30% BFS-PC binder successfully reduced the leached oil concentration of the low oil content mix to inert levels. Finally, the microstructural analysis offered valuable information on the morphology and general behaviour of the mixes that were not depicted by the other tests.

  3. Investigation of carbonate rocks appropriate for the production of natural hydraulic lime binders

    NASA Astrophysics Data System (ADS)

    Triantafyllou, George; Panagopoulos, George; Manoutsoglou, Emmanouil; Christidis, George; Přikryl, Richard

    2014-05-01

    Cement industry is facing growing challenges in conserving materials and conforming to the demanding environmental standards. Therefore, there is great interest in the development, investigation and use of binders alternatives to Portland cement. Natural hydraulic lime (NHL) binders have become nowadays materials with high added value, due to their advantages in various construction applications. Some of them include compatibility, suitability, workability and the versatility in applications. NHL binders are made from limestones which contain sufficient argillaceous or siliceous components fired at relatively low temperatures, with reduction to powder by slaking with or without grinding. This study is focused in developing technology for small-scale production of cementitious binders, combining the knowledge and experience of geologists and mineral resources engineers. The first step of investigation includes field techniques to the study the lithology, texture and sedimentary structure of Neogene carbonate sediments, from various basins of Crete Island, Greece and the construction of 3D geological models, in order to determine the deposits of each different geological formation. Sampling of appropriate quantity of raw materials is crucial for the investigation. Petrographic studies on the basis of the study of grain type, grain size, types of porosity and depositional texture, are necessary to classify effectively industrial mineral raw materials for this kind of application. Laboratory tests should also include the study of mineralogical and chemical composition of the bulk raw materials, as well as the content of insoluble limestone impurities, thus determining the amount of active clay and silica components required to produce binders of different degree of hydraulicity. Firing of the samples in various temperatures and time conditions, followed by X-ray diffraction analysis and slaking rate tests of the produced binders, is essential to insure the beneficiation of their behavior. Beneficiation is defined as the implementation of the best available techniques to insure the production of an economically usable final product which combines both the hydraulicity of the silicates, aluminates and ferrites, as well as the reactivity of the calcium oxide amounts that are present.

  4. Friction and wear of carbon-graphite materials for high-energy brakes

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.

  5. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm-2 (~548 F g-1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  6. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    PubMed Central

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-01-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm−2 (~548 F g−1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors. PMID:26531072

  7. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors.

    PubMed

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-04

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm(-2) (~548 F g(-1)) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  8. Design and Properties of Asphalt Concrete Mixtures Using Renewable Bioasphalt Binder

    NASA Astrophysics Data System (ADS)

    Setyawan, A.; Djumari; Irfansyah, P. A.; Shidiq, A. M.; Wibisono, I. S.; Fauzy, M. N.; Hadi, F. N.

    2017-02-01

    The needs of petroleum asphalt as materials for pavement is very large, while the petroleum classified as natural resources that cannot be renewable. As a result of petroleum dwindling and prices tend to be more expensive. So that requiring other alternative materials as a substitute for conventional asphalt derived from biomass or often called bioasphalt. This study aims to know the volumetric and Marshall characteristics on Asphalt Cement ( AC ) using the Damar asphalt modification to substitute 60/70 penetration asphalt as a binder. The volumetric and Marshall characteristic are porosity, density, flow, stability, and Marshall quotient. The characteristic of asphalt concrete at optimum bitumen content are compared to the conditions from highway agency 1987 and the general specification of asphalt concrete Bina Marga 2010 the third revision. The research uses experimental method in the laboratory with the samples made using the dasphalt modification as binder and incorporating the aggregate gradation no. VII SNI 03-1737-1989. The research is using 15 samples divided into 5 contents of damar asphalt, they are 5%, 5,5%, 6%, 6,5%, dan 7%. Tests carried out using Marshall test equipment to get the value of flow and stability and then be searched the value of optimum damar asphalt content. The result of asphalt concrete analysis using dasphalt modification as binder gives the value of optimum dasphalt content at 5,242%. The most characteristics already met the requirements and specifications.

  9. Carbonates in leaching reactions in context of 14C dating

    NASA Astrophysics Data System (ADS)

    Michalska, Danuta; Czernik, Justyna

    2015-10-01

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the 14C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly methodological character, illustrating the special preparation methods used for mortars with complicated (in context of radiocarbon dating) petrographic composition. The local geology combined with finding sources of raw materials for the production of mortars is important issue in final interpretation of the 14C measurement results.

  10. Assessments of low emission asphalt mixtures produced using combinations of foaming agents

    NASA Astrophysics Data System (ADS)

    Mohd Hasan, Mohd Rosli

    The asphalt foaming techniques have been used over the last couple of decades as an alternative to the traditional method of preparing asphalt mixtures. Based on positive feedback from the industry, this study was initiated to explore and evaluate the performance of the Warm Mix Asphalt (WMA) mixture produced through a foaming process using physical and chemical foaming agents, which are ethanol and sodium bicarbonate (NaHCO3), respectively. The success of this project may lead to new theories and provide an environmentally friendly technique to produce asphalt mixtures. This may advance the understanding of the foaming process and improve the performance of WMA to support sustainable development. Theoretically, ethanol can function in the same manner as water but requires less energy to foam due to its lower boiling point, 78°C. During the asphalt foaming process, numerous bubbles were generated by the vaporized ethanol, which significantly increased the volume of the asphalt binder, hence the coating potential of aggregates improves. The sodium bicarbonate was incorporated to enhance the quantity of bubbles and its stability. Therefore, understanding foaming agents, their solubility, chemical reactions, chemical function groups and rheological properties of the foamed binder are essential to help control the foam structure and final properties of the foamed WMA mixture. In order to understand the overall performance of newly developed foaming WMA, this material was evaluated for moisture susceptibility, rutting potential, and resistance to fracture and thermal cracking. The coatability, workability and compactability of foamed asphalt mixtures during production were also evaluated. Based on the results, it was found that the newly proposed foaming WMA has high potential to promote sustainable development by lowering the energy consumption and impacts on the environment. The ethanol is efficient in lowering the viscosity of asphalt binders, enhancing the workability, and having a higher expulsion rate from the foamed binder compared to water as a foaming agent. The addition of foaming agents to the asphalt binder has also lowered the activation energy of the asphalt binder, which has high potential in lowering the energy demand during production processes. The foamed WMA mixture prepared at 100°C was found to have behavior comparable with the control Hot Mix Asphalt (HMA) prepared at 155°C in terms of coatability, workability and compactability. Based on the mixture performance tests, the foamed WMA has a comparable or better performance than the HMA in terms of resistance to moisture damage, permanent deformation, fracture cracking and thermal cracking. The application of nano-hydrated lime is efficient in enhancing the aggregate coatability and improving the bearing capacity of asphalt pavement to lower the rutting potential and moisture susceptibility of foamed WMA mixtures. Limitations for each of the related parameters are also reported in this dissertation for the lab production of foamed WMA mixtures using ethanol and NaHCO 3 as foaming agents. The specified values were made based on the binder test, service characteristics and performance of foamed WMA mixtures in order to yield a comparable or better performance than the control HMA. Field validations should be carried out to understand the overall performance and durability of the proposed foaming WMA.

  11. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into amore » bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.« less

  12. Effect of rapid set binder on early strength and permeability of HES latex modified road repair pre-packed concrete

    NASA Astrophysics Data System (ADS)

    Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.

    2015-12-01

    The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.

  13. Dextrose monohydrate as a non-animal sourced alternative diluent in high shear wet granulation tablet formulations.

    PubMed

    Mitra, Biplob; Wolfe, Chad; Wu, Sy-Juen

    2018-05-01

    The feasibility of dextrose monohydrate as a non-animal sourced diluent in high shear wet granulation (HSWG) tablet formulations was determined. Impacts of granulation solution amount and addition time, wet massing time, impeller speed, powder and solution binder, and dry milling speed and screen opening size on granule size, friability and density, and tablet solid fraction (SF) and tensile strength (TS) were evaluated. The stability of theophylline tablets TS, disintegration time (DT) and in vitro dissolution were also studied. Following post-granulation drying at 60 °C, dextrose monohydrate lost 9% water and converted into the anhydrate form. Higher granulation solution amounts and faster addition, faster impeller speeds, and solution binder produced larger, denser and stronger (less friable) granules. All granules were compressed into tablets with acceptable TS. Contrary to what is normally observed, denser and larger granules (at ≥21% water level) produced tablets with a higher TS. The TS of the weakest tablets increased the most after storage at both 25 °C/60% RH and 40 °C/75% RH. Tablet DT was higher for stronger granules and after storage. Tablet dissolution profiles for 21% or less water were comparable and did not change on stability. However, the dissolution profile for tablets prepared with 24% water was slower initially and continued to decrease on stability. The results indicate a granulation water amount of not more than 21% is required to achieve acceptable tablet properties. This study clearly demonstrated the utility of dextrose monohydrate as a non-animal sourced diluent in a HSWG tablet formulation.

  14. Alkaline Activator Impact on the Geopolymer Binders

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  15. Efficiency of Composite Binders with Antifreezing Agents

    NASA Astrophysics Data System (ADS)

    Ogurtsova, Y. N.; Zhernovsky, I. V.; Botsman, L. N.

    2017-11-01

    One of the non-heating methods of cold-weather concreting is using concretes hardening at negative temperatures. This method consists in using chemical additives which reduce the freezing temperature of the liquid phase and provide for concrete hardening at negative temperatures. The non-heating cold-weather concreting, due to antifreezing agents, allows saving heat and electric energy at the more flexible work performance technology. At selecting the antifreezing components, the possibility of concreting at temperatures up to minus 20 °C and combination with a plasticizer contained in the composite binder were taken into account. The optimal proportions of antifreezing and complex agents produced by MC-Bauchemie Russia for fine-grained concretes were determined. So, the introduction of antifreezing and complex agents allows obtaining a structure of composite characteristic for cement stone in the conditions of below zero temperatures at using different binders; the hydration of such composite proceeded naturally. Low-water-demand binders (LWDB) based composites are characterized by a higher density and homogeneity due to a high dispersity of a binder and its complicated surface providing for a lot of crystallization centers. LWDB contains small pores keeping water in a liquid form and promoting a more complete hydration process.

  16. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders.

    PubMed

    Mostafaei, Amir; Hughes, Eamonn T; Hilla, Colleen; Stevens, Erica L; Chmielus, Markus

    2017-02-01

    Binder jet printing (BJP) is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016) [1-3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017) [4].

  17. Multilevel and Single-Level Models for Measured and Latent Variables When Data Are Clustered

    ERIC Educational Resources Information Center

    Stapleton, Laura M.; McNeish, Daniel M.; Yang, Ji Seung

    2016-01-01

    Multilevel models are often used to evaluate hypotheses about relations among constructs when data are nested within clusters (Raudenbush & Bryk, 2002), although alternative approaches are available when analyzing nested data (Binder & Roberts, 2003; Sterba, 2009). The overarching goal of this article is to suggest when it is appropriate…

  18. A study of the properties of tablets from coprocessed dry binders composed of alpha-lactose monohydrate and different types of cellulose.

    PubMed

    Muzíková, J; Zvolánková, J

    2007-12-01

    The paper evaluates the differences between the properties of tablets from two coprocessed dry binders based on alpha-lactose monohydrate and cellulose, MicroceLac 100 and Cellactose 80. The substances differ in the type of contained cellulose; MicroceLac 100 contains 25% of microcrystalline cellulose, Cellactose 80, 25% of powdered cellulose. The properties under study included the tensile strength and disintegration time in dependence on compression force, addition of two concentrations of the lubricant sodium stearylfumarate (Pruv) and a 50% addition of the active ingredients ascorbic acid and acetylsalicylic acid. Using one of the compression forces, the effect of Pruv and magnesium stearate on the above-mentioned properties were compared. In the compression forces of 6 and 8 kN the strength of the compacts from pure Cellactose 80 was lower than that of those from MicroceLac 100 both without and with the lubricant. The lubricant sensitivity of dry binders depended on compression force. Pruv decreased the strength of compacts less than magnesium stearate. The tablets from Cellactose 80 possessed a longer disintegration time than those from MicroceLac 100, excepting the tableting materials containing 0.4 Pruv with a compression force of 6 kN. Disintegration time was prolonged with the use of sodium stearylfumarate and it was increased with compression force much more markedly in the case of Cellactose 80. In the presence of ascorbic acid, the strength of tablets was decreased in the case of both dry binders, but it was higher with MicroceLac100, disintegration time was very short and independent of the type of the dry binder. In the case of acetylsalicylic acid, the strength of tablets was higher with a lesser influence of the type of the dry binder, and disintegration time was longer and especially in the case of Cellactose 80 increased with increasing concentration of Pruv.

  19. Low-CO2 Acid-Base Binders Made with Fly Ash

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2016-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works in urban areas. It is, however, responsible for 5-10 % of all anthropogenic CO2 emissions, nearly half of which arise from the decomposition of calcareous raw materials, and the other half from kiln fuel combustion and cement clinker grinding operations. As such, PC production contributes to global warming and climate change. Lately, efforts to develop alternative binders with lower greenhouse gas emissions have gained interest. An important class of such binders is geopolymers, typically formed by activating natural or waste materials with suitable alkaline solutions. These binders can have very low CO2 emissions from grinding of the starting materials, and some from the production of the activating chemical but the total CO2 emissions can be as low as 1/5th - 1/10th of those of PC concrete mixtures with comparable properties. Less commonly researched, acidic activating chemicals can also be used with powder materials to produce pastes that can set and harden into durable solids. One such powder is fly ash from coal-burning power plants. This ash is mostly stockpiled and can be an environmental hazard such as exacerbating air pollution in cities. This study investigates the chemical activation of fly ashes from Turkey using solutions of acids such as orthophosphoric acid. Amorphous and crystalline reaction products are observed to form, yielding a strong binder that sets much more rapidly than PC-based mixtures or alkali-activated geopolymers. As the change in the rheological properties and mechanical properties of these pastes can be balanced by combining different ashes, as well as by adjusting solution properties, they can offer environmental, energetic, and economical advantages over conventional PC-based mixtures.

  20. In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling

    NASA Astrophysics Data System (ADS)

    Yeager, John; Manner, Virginia; Patterson, Brian; Walters, David; Cordes, Nikolaus; Henderson, Kevin; Tappan, Bryce; Luscher, Darby

    2017-06-01

    The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during insults such as deformation, heating or initiation to detonation. Obtaining three-dimensional microstructural data can be difficult due in part to fragility of the material and small feature size. X-ray computed tomography (CT) is an ideal characterization technique but the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient x-ray contrast to differentiate between the components. Here, we have formulated several PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine (HMX) crystals and low-density binder systems. The full three-dimensional microstructure of these samples has been characterized using microscale CT during uniaxial mechanical compression in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and material flow. Additionally, the segmented, 3D images were meshed for finite element simulation. Initial results of the mesoscale modeling exhibit qualitatively similar delamination. Los Alamos National Laboratory - LDRD.

  1. Monitoring the petroleum bitumen characteristics changes during their interaction with the polymers

    NASA Astrophysics Data System (ADS)

    Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Frolov, V. A.

    2017-08-01

    The subject of the study is the characteristics (penetration, softening temperature, ductility and elasticity) of a road binder based on petroleum bitumen. The work purpose is to monitor the changes in the characteristics of petroleum bitumen when it interacting with polymers: thermoplastic elastomer, low-density polyethylene, including the adhesive additive presence. To carry out the research a special laboratory facility was designed and manufactured with two blade mixers providing intensive turbulent mixing and the possibility to effect on the transition process of combining the components in a polymer-bitumen binder. To construct a mathematical model of the polymer-bitumen binder characteristics dependence from the composition, methods of statistical experiments planning were used. The possibility of the expensive thermoplastic elastomers replacement with polyethylene is established while maintaining acceptable polymer-bitumen binder quality parameters. The obtained results are proposed for use in road construction. They allow to reduce the roads construction cost with solving the problem of recycling long-term waste packaging from polyethylene.

  2. Survey of Material for an Infrared-Opaque Coating

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.; Howitt, Richard V.

    1986-01-01

    More than 40 reflectance spectra in the range from 20 to 500 microns have been obtained for a variety of coatings, binders, and additives to identify promising components of an infrared-opaque coating for the Space Infrared Telescope Facility. Certain combinations of materials showed a specular reflectance below 0.1 throughout the spectral range measured. In addition to estimating the optical constants of several combination coatings, this survey also supports three qualitative conclusions: (1) promising off-the-shelf binders of different additives are Chemglaze Z-306, ECP-2200, and De Soto Black; (2) carbon black is very effective in reducing far-infrared reflectance; (3) the far-infrared reflectance from coatings containing 80 SiC grit is consistently lower than that from similar coatings containing TiBr powder.

  3. Survey of material for an infrared-opaque coating

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.; Howitt, Richard V.

    1986-01-01

    More than 40 reflectance spectra in the range from 20 to 500 microns have been obtained of a variety of coatings, binders, and additives to identify promising components of an infrared-opaque coating for the Space Infrared Telescope Facility. Certain combinations of materials showed a specular reflectance below 0.1 throughout the spectral range measured. In addition to estimating the optical constants of several combination coatings, this survey also supports three qualitative conclusions: (1) promising 'off-the-shelf' binders of different additives are Chemglaze Z-306, ECP-2200, and De Soto Black; (2) carbon black is very effective reducing far-infrared reflectance; and (3) the far-infrared reflectance from coatings containing 80 SiC grit is consistently lower than that from similar coatings containing TlBr powder.

  4. Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library.

    PubMed

    Liu, Jinny L; Anderson, George P; Goldman, Ellen R

    2007-11-19

    Shark heavy chain antibody, also called new antigen receptor (NAR), consists of one single Variable domain (VH), containing only two complementarity-determining regions (CDRs). The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs) make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB), ricin, and botulinum toxin A (BoNT/A) complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins.

  5. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H.

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slagmore » in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.« less

  6. Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library

    PubMed Central

    Liu, Jinny L; Anderson, George P; Goldman, Ellen R

    2007-01-01

    Background Shark heavy chain antibody, also called new antigen receptor (NAR), consists of one single Variable domain (VH), containing only two complementarity-determining regions (CDRs). The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs) make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. Results A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB), ricin, and botulinum toxin A (BoNT/A) complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. Conclusion We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins. PMID:18021450

  7. Effect of Ferrous Additives on Magnesia Stone Hydration

    NASA Astrophysics Data System (ADS)

    Zimich, V.

    2017-11-01

    The article deals with the modification of the magnesia binder with additives containing two- and three-valent iron cations which could be embedded in the chloromagnesium stone structure and also increase the strength from 60 MPa in a non-additive stone to 80MPa, water resistance from 0.58 for clear stone to 0.8 and reduce the hygroscopicity from 8% in the non-additive stone to 2% in the modified chloromagnesium stone. It is proposed to use the iron hydroxide sol as an additive in the quantities of up to 1% of the weight of the binder. The studies were carried out using the modern analysis methods: the differentialthermal and X-ray phase analysis. The structure was studied with an electron microscope with an X-ray microanalyzer. A two-factor plan-experiment was designed which allowed constructing mathematical models characterizing the influence of variable factors, such as the density of the zatcher and the amount of sol in the binder, on the basic properties of the magnesian stone. The result of the research was the magnesia stone with the claimed properties and formed from minerals characteristic for magnesian materials as well as additionally formed from amachenite and goethite. It has been established that a highly active iron hydroxide sol the ion sizes of which are commensurate with magnesium ions is actively incorporated into the structure of pentahydroxychloride and magnesium hydroxide changing the habit of crystals compacting the structure of the stone and changing its hygroscopicity.

  8. Formation of Green compact structure of low-temperature ceramics with taking into account the thermal degradation of the binder

    NASA Astrophysics Data System (ADS)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.

    2017-12-01

    The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.

  9. PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure.

    PubMed

    Yaguchi, Atsushi; Tatemichi, Satoshi; Takeda, Hiroo; Kobayashi, Mamoru

    2017-01-01

    The effects of PA21, a novel iron-based and non-calcium-based phosphate binder, on hyperphosphatemia and its accompanying bone abnormality in chronic kidney disease-mineral and bone disorder (CKD-MBD) were evaluated. Rats with adenine-induced chronic renal failure (CRF) were prepared by feeding them an adenine-containing diet for four weeks. They were also freely fed a diet that contained PA21 (0.5, 1.5, and 5%), sevelamer hydrochloride (0.6 and 2%) or lanthanum carbonate hydrate (0.6 and 2%) for four weeks. Blood biochemical parameters were measured and bone histomorphometry was performed for femurs, which were isolated after drug treatment. Serum phosphorus and parathyroid hormone (PTH) levels were higher in the CRF rats. Administration of phosphate binders for four weeks decreased serum phosphorus and PTH levels in a dose-dependent manner and there were significant decreases in the AUC0-28 day of these parameters in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups compared with that in the CRF control group. Moreover, osteoid volume improved significantly in 5% of the PA21 group, and fibrosis volume and cortical porosity were ameliorated in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups. These results suggest that PA21 is effective against hyperphosphatemia, secondary hyperparathyroidism, and bone abnormalities in CKD-MBD as sevelamer hydrochloride and lanthanum carbonate hydrate are, and that PA21 is a new potential alternative to phosphate binders.

  10. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement-based binders without taking into account the viscoelastic effects. For the first time, model based on poromechanics was used to calculate the macroscopic tensile stress that develops in CSA cement-based binders due to crystallization of ettringite. The models enabled a reasonable prediction of tensile stress due to crystallization of ettringite including the failure of an OPC-CSA binder which had high CSA cement content. Elastic strain based on crystallization stress was calculated and compared with the observed strain. A mismatch between observed and calculated elastic strain indicated the presence of early-age creep. Lastly, the application of CSA cement in concretes is discussed to link the paste and concrete behavior.

  11. The Influence of Sintering Method on Kaolin-Based Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene as Binder

    NASA Astrophysics Data System (ADS)

    Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.

    2017-11-01

    The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.

  12. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application

    DOE PAGES

    Zhao, Hui; Du, Allen; Ling, Min; ...

    2016-05-10

    The state-of-the-art graphite anode containing a small portion of silicon represents a promising way of applying high-capacity alloy anode in the next generation high energy density lithium-ion batteries. The conductive polymeric binders developed for Si anodes proved to be an effective binder for this graphite/nanoSi composite electrode. Without any acetylene black conductive additives in the electrode, a high areal capacity of above 2.5 mAh/cm 2 is achieved during long-term cycling over 100 cycles. Finally, this conductive polymer-enabled graphite/nanoSi composite electrode exhibits high specific capacity and high 1 st cycle efficiency, which is a significant progress toward commercial application of Simore » anodes.« less

  13. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  14. Selective Laser Sintering of Porous Silica Enabled by Carbon Additive

    PubMed Central

    Chang, Shuai; Li, Liqun; Lu, Li

    2017-01-01

    The aim of this study is to investigate the possibility of a freeform fabrication of porous ceramic parts through selective laser sintering (SLS). SLS was proposed to manufacture ceramic green parts because this additive manufacturing technique can be used to fabricate three-dimensional objects directly without a mold, and the technique has the capability of generating porous ceramics with controlled porosity. However, ceramic printing has not yet fully achieved its 3D fabrication capabilities without using polymer binder. Except for the limitations of high melting point, brittleness, and low thermal shock resistance from ceramic material properties, the key obstacle lies in the very poor absorptivity of oxide ceramics to fiber laser, which is widely installed in commercial SLS equipment. An alternative solution to overcome the poor laser absorptivity via improving material compositions is presented in this study. The positive effect of carbon additive on the absorptivity of silica powder to fiber laser is discussed. To investigate the capabilities of the SLS process, 3D porous silica structures were successfully prepared and characterized. PMID:29144425

  15. Superplasticizer Addition to Carbon Fly Ash Geopolymers Activated at Room Temperature.

    PubMed

    Carabba, Lorenza; Manzi, Stefania; Bignozzi, Maria Chiara

    2016-07-18

    Present concerns about global warming due to the greenhouse emissions in the atmosphere have pushed the cement industry to research alternatives to ordinary Portland cement (OPC). Geopolymer binder may constitute a possible breakthrough in the development of sustainable materials: understanding the effectiveness and the influences of superplasticizers on geopolymer systems is one of the essential requirements for its large-scale implementation. This study aims to investigate the possibility of using commercially available chemical admixtures designed for OPC concrete, to improve fresh properties of fly ash-based geopolymers and mortars. A special emphasis is laid upon evaluating their influence on mechanical and microstructural characteristics of the hardened material realized under room-temperature curing conditions. Results indicate that the addition of a polycarboxylic ether-based superplasticizer, in the amount of 1.0 wt. % by mass of fly ash, promotes an improvement in workability without compromising the final strength of the hardened material. Moreover, the addition of the polycarboxylic ether- and acrylic-based superplasticizers induces a refinement in the pore structure of hardened mortar leading to a longer water saturation time.

  16. Superplasticizer Addition to Carbon Fly Ash Geopolymers Activated at Room Temperature

    PubMed Central

    Carabba, Lorenza; Manzi, Stefania; Bignozzi, Maria Chiara

    2016-01-01

    Present concerns about global warming due to the greenhouse emissions in the atmosphere have pushed the cement industry to research alternatives to ordinary Portland cement (OPC). Geopolymer binder may constitute a possible breakthrough in the development of sustainable materials: understanding the effectiveness and the influences of superplasticizers on geopolymer systems is one of the essential requirements for its large-scale implementation. This study aims to investigate the possibility of using commercially available chemical admixtures designed for OPC concrete, to improve fresh properties of fly ash-based geopolymers and mortars. A special emphasis is laid upon evaluating their influence on mechanical and microstructural characteristics of the hardened material realized under room-temperature curing conditions. Results indicate that the addition of a polycarboxylic ether-based superplasticizer, in the amount of 1.0 wt. % by mass of fly ash, promotes an improvement in workability without compromising the final strength of the hardened material. Moreover, the addition of the polycarboxylic ether- and acrylic-based superplasticizers induces a refinement in the pore structure of hardened mortar leading to a longer water saturation time. PMID:28773707

  17. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties

    NASA Astrophysics Data System (ADS)

    Poh, Chia Chin; Hassan, Norhidayah Abdul; Raman, Noor Azah Abdul; Shukry, Nurul Athma Mohd; Warid, Muhammad Naqiuddin Mohd; Satar, Mohd Khairul Idham Mohd; Ros Ismail, Che; Asmah Hassan, Sitti; Mashros, Nordiana

    2018-04-01

    Bitumen shortage has triggered the exploration of another alternative waste material that can be blended with conventional bitumen. This study presents the performance of pyrolysis bio-oil from palm oil empty fruit bunch (EFB) as an alternative binder in modified bitumen mixtures. The palm oil EFB was first pyrolyzed using auger pyrolyzer to extract the bio-oil. Conventional bitumen 80/100 penetration grade was used as a control sample and compared with samples that were modified with different percentages, i.e., 5% and 10%, of pyrolysis EFB bio-oil. The physical and rheological properties of the control and modified bitumen samples were investigated using penetration, softening point, viscosity and dynamic shear rheometer (DSR) tests. Results showed that the addition of EFB bio-oil softened the bitumen with high penetration and a reduction in softening point, penetration index, and viscosity. However, the DSR results showed a comparable rutting resistance between the bitumen samples containing EFB bio-oil and virgin bitumen with a failure temperature achieved greater than 64°C.

  18. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study

    PubMed Central

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-01-01

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc.) represents a relevant sustainable alternative to landfill and other more consolidated practices. PMID:28788149

  19. Recycling of Clay Sediments for Geopolymer Binder Production. A New Perspective for Reservoir Management in the Framework of Italian Legislation: The Occhito Reservoir Case Study.

    PubMed

    Molino, Bruno; De Vincenzo, Annamaria; Ferone, Claudio; Messina, Francesco; Colangelo, Francesco; Cioffi, Raffaele

    2014-07-31

    Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc. ) represents a relevant sustainable alternative to landfill and other more consolidated practices.

  20. Nanobodies and recombinant binders in cell biology

    PubMed Central

    Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge

    2015-01-01

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137

  1. Oxyphosphorus-containing polymers as binders for battery cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Russell Clayton; Mullin, Scott Allen; Eitouni, Hany Basam

    A class of polymeric phosphorous esters can be used as binders for battery cathodes. Metal salts can be added to the polymers to provide ionic conductivity. The polymeric phosphorous esters can be formulated with other polymers either as mixtures or as copolymers to provide additional desirable properties. Examples of such properties include even higher ionic conductivity and improved mechanical properties. Furthermore, cathodes that include the polymeric phosphorous esters can be assembled with a polymeric electrolyte separator and an anode to form a complete battery.

  2. Quantitative determination of asphalt antistripping additive.

    DOT National Transportation Integrated Search

    2004-01-01

    A small device (StripScan) has been developed by InstroTech, Inc., that uses litmus paper and a spectrophotometer to analyze vapors from hot liquid asphalt binders and mixtures to determine the percentage of antistripping additive present. Approximat...

  3. Friction and wear of carbon-graphite materials for high energy brakes

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1975-01-01

    Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.

  4. Improved sample preparation and rapid UHPLC analysis of SO2 binding carbonyls in wine by derivatisation to 2,4-dinitrophenylhydrazine.

    PubMed

    Jackowetz, J N; Mira de Orduña, R

    2013-08-15

    Sulphur dioxide (SO2) is essential for the preservation of wines. The presence of SO2 binding compounds in musts and wines may limit sulphite efficacy leading to higher total SO2 additions, which may exceed SO2 limits permitted by law and pose health risks for sensitive individuals. An improved method for the quantification of significant wine SO2 binding compounds is presented that applies a novel sample treatment approach and rapid UHPLC separation. Glucose, galacturonic acid, alpha-ketoglutarate, pyruvate, acetoin and acetaldehyde were derivatised with 2,4-dinitrophenylhydrazine and separated using a solid core C18 phase by ultra high performance liquid chromatography. Addition of EDTA to samples prevented de novo acetaldehyde formation from ethanol oxidation. Optimised derivatisation duration enhanced reproducibility and allowed for glucose and galacturonic acid quantification. High glucose residues were found to interfere with the recovery of other SO2 binders, but practical SO2 concentrations and red wine pigments did not affect derivatisation efficiency. The calibration range, method accuracy, precision and limits of detection were found to be satisfactory for routine analysis of SO2 binders in wines. The current method represents a significant improvement in the comprehensive analysis of SO2 binding wine carbonyls. It allows for the quantification of major SO2 binders at practical analyte concentrations, and uses a simple sample treatment method that prevents treatment artifacts. Equipment utilisation could be reduced by rapid LC separation while maintaining analytical performance parameters. The improved method will be a valuable addition for the analysis of total SO2 binder pools in oenological samples. Published by Elsevier Ltd.

  5. Fabrication of porous silicon nitride ceramics using binder jetting technology

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.

    2016-07-01

    This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.

  6. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-06-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  7. Non-competitive inhibition by active site binders.

    PubMed

    Blat, Yuval

    2010-06-01

    Classical enzymology has been used for generations to understand the interactions of inhibitors with their enzyme targets. Enzymology tools enabled prediction of the biological impact of inhibitors as well as the development of novel, more potent, ones. Experiments designed to examine the competition between the tested inhibitor and the enzyme substrate(s) are the tool of choice to identify inhibitors that bind in the active site. Competition between an inhibitor and a substrate is considered a strong evidence for binding of the inhibitor in the active site, while the lack of competition suggests binding to an alternative site. Nevertheless, exceptions to this notion do exist. Active site-binding inhibitors can display non-competitive inhibition patterns. This unusual behavior has been observed with enzymes utilizing an exosite for substrate binding, isomechanism enzymes, enzymes with multiple substrates and/or products and two-step binding inhibitors. In many of these cases, the mechanisms underlying the lack of competition between the substrate and the inhibitor are well understood. Tools like alternative substrates, testing the enzyme reaction in the reverse direction and monitoring inhibition time dependence can be applied to enable distinction between 'badly behaving' active site binders and true exosite inhibitors.

  8. Application of Hemp Hurds in the Preparation of Biocomposites

    NASA Astrophysics Data System (ADS)

    Cigasova, J.; Stevulova, N.; Schwarzova, I.; Sicakova, A.; Junak, J.

    2015-11-01

    Hemp is a controversial bio-product with promising performance as a sustainable building material. The fact that hemp is an organic, natural product makes it highly relevant in the present reality of global pollution and struggle for coping with planetary warming. The construction sector is among the leading industries when it comes to energy consumption, release of CO2; it is responsible for great amounts of waste and pollution. The research and implementation of sustainable building materials is a crucial necessity in the modern times. Hemp (Cannabis sativa) is an agricultural crop that can be used as a building material in combination with conventional or alternative binders. Hemp composites have many advantages as a building material, but it is not load-bearing and must be used in combination with a loadbearing wooden frame. Despite this disadvantage, hemp composite materials offer several of appropriate properties, namely: low density, good thermal insulation, antiseptic and breathability. This paper studies the possibility of preparing the lightweight composites based on hemp hurds (treated and/or untreated) as a filler and alternative MgO-cement as a binder. Properties of hemp composites are characterized by mechanical and physical methods.

  9. Interstage Outcomes in Infants With Single Ventricle Heart Disease Comparing Home Monitoring Technology to Three-Ring Binder Documentation: A Randomized Crossover Study.

    PubMed

    Bingler, Michael; Erickson, Lori A; Reid, Kimberly J; Lee, Brian; O'Brien, James; Apperson, Johnathan; Goggin, Kathy; Shirali, Girish

    2018-05-01

    Interstage outcomes for infants with single ventricle remain suboptimal. We have previously described a tablet PC-based platform Cardiac High Acuity Monitoring Program (CHAMP) for remote monitoring which provides immediate access to data, videos, and instant alerts to our single ventricle care team. This study compares traditional three-ring binder monitoring (Binder) to CHAMP using a randomized crossover design to evaluate mortality, resource utilization, and caregiver experience. At discharge, all single ventricle infants were monitored using Binder and randomized to receive CHAMP at either one or two months postdischarge. One month after randomization, caregivers could choose either Binder or CHAMP for the remainder of the interstage period. Caregivers experience was recorded using surveys. Enrollment included 31 single ventricle infants from May 2014 to June 2015. There was no interstage mortality over 4,911 total interstage days (median: 144/patient). Of 73 readmissions, 45 were unplanned. Of the initial 23 unplanned readmissions, 13 were found to have been based on data obtained exclusively through CHAMP (as instant alerts or based on data review) rather than caregiver concerns. Due to concerns regarding patient safety, additional enrollment was stopped. The CHAMP use was associated with significantly fewer unplanned intensive care unit days/100 interstage days, shorter delays in care, lower resource utilization at readmissions, and lower incidence of interstage growth failure and was preferred by a majority of caregivers. These findings suggest that CHAMP may offer benefits over Binder (improved interstage outcomes, delays in care, and caregiver experience). These findings should be tested across multiple centers in larger populations.

  10. The effects of crystal proximity and crystal-binder adhesion on the thermal responses of ultrasonically-excited composite energetic materials

    NASA Astrophysics Data System (ADS)

    Roberts, Z. A.; Casey, A. D.; Gunduz, I. E.; Rhoads, J. F.; Son, S. F.

    2017-12-01

    Composite energetic materials have been shown to generate heat under certain ultrasonic excitations, enough to drive rapid reactions in some cases. In an attempt to isolate the proposed heat generation mechanisms of frictional and viscoelastic heating at crystal-crystal and crystal-binder interfaces, a systematic study was conducted with cyclotetramethylene-tetranitramine crystals arranged as discrete inclusions within Sylgard 184 binder. Groups of three embedded crystals, or "triads," were arranged in two geometries with the crystals either in contact or slightly separated. Additionally, samples with good crystal-binder adhesion as well as ones mechanically debonded using compression were considered. The samples were excited ultrasonically with a contact piezoelectric transducer, and the top surface of each sample was monitored via infrared thermography. The contacting triads showed evidence of an intense localized heat source conducting to the polymer surface above the crystal locations in contrast to the separated triads. The debonded samples of both types reached higher maximum surface temperatures, on average. The results of both two-way and nested analysis of variance indicate a statistically significant difference for both adhesion and separation distance on temperature rise. We conclude that friction between crystal contact points and a debonded, moving binder at the crystal interface (also a mode of friction) play a significant role in localized heat generation, while viscoelastic/viscoplastic heating appears comparatively minor for these specific excitation conditions. The significance of frictional heat generation over viscoelastic heating in these systems may influence future design considerations related to the selection of binder materials for composite energetic materials.

  11. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections.

    PubMed

    Bauer, Lisa; Lyoo, Heyrhyoung; van der Schaar, Hilde M; Strating, Jeroen Rpm; van Kuppeveld, Frank Jm

    2017-06-01

    Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of glycerol concentrations on the mechanical properties of additive manufactured porous calcium polyphosphate structures for bone substitute applications.

    PubMed

    Sheydaeian, Esmat; Vlasea, Mihaela; Woo, Ami; Pilliar, Robert; Hu, Eugene; Toyserkani, Ehsan

    2017-05-01

    This article addresses the effects of glycerol (GLY) concentrations on the mechanical properties of calcium polyphosphate (CPP) bone substitute structures manufactured using binder jetting additive manufacturing. To achieve this goal, nine types of water-based binder solutions were prepared with 10, 12.5, and 15 wt % GLY liquid-binding agent, mixed, respectively, with 0, 0.75, and 1.5 wt % ethylene glycol diacetate (EGD) flow enhancer. The print quality of each of the solutions was established quantitatively using an image processing algorithm. The print quality analysis narrowed down the solutions to three batches containing 1.5 wt % EGD and variable amount of GLY. These solutions were used to manufacture porous CPP bone substitute samples, which were characterized physically to determine shrinkage, porosity, microstructure, and compression strength. The 12.5 wt % GLY, 1.5 wt % EGD solution resulted in the highest mechanical strength after sintering (34.6 ± 5.8 MPa), illustrating similar mechanical properties when compared to previous studies (33.9 ± 6.3 MPa) of additively manufactured CPP bone substitutes using a commercially available binder. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 828-835, 2017. © 2016 Wiley Periodicals, Inc.

  13. Open graded friction courses for HMA pavements.

    DOT National Transportation Integrated Search

    2013-12-01

    A laboratory study was conducted to evaluate OGFC mixtures meeting current Mississippi specifications. In addition, materials included a second 12.5 mm gradation and an asphalt rubber binder. The additional 12.5mm gradation was selected to evaluate a...

  14. Additive Manufacturing Consolidation of Low-Cost Water Atomized Steel Powder Using Micro-Induction Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, William G.; Rios, Orlando; U

    ORNL worked with Grid Logic Inc to demonstrate micro induction sintering (MIS) and binder decomposition of steel powders. It was shown that MIS effectively emits spatially confined electromagnetic energy that is directly coupled to metallic powders resulting in resistive heating of individual particles. The non-uniformity of particle morphology and distribution of the water atomized steel powders resulted in inefficient transfer of energy. It was shown that adhering the particles together using polymer binders resulted in more efficient coupling. Using the MIS processes, debinding and sintering could be done in a single step. When combined with another system, such as binder-jet,more » this could reduce the amount of required post-processing. An invention disclosure was filed on hybrid systems that use MIS to reduce the amount of required post-processing.« less

  15. Identification of lipid- and protein-based binders in paintings by direct on-plate wet chemistry and matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Palmisano, Francesco; Sabbatini, Luigia

    2015-01-01

    Direct on-target plate processing of small (ca. 100 μg) fragments of paint samples for MALDI-MS identification of lipid- and protein-based binders is described. Fragments were fixed on a conventional stainless steel target plate by colloidal graphite followed by in situ fast tryptic digestion and matrix addition. The new protocol was first developed on paint replicas composed of chicken egg, collagen, and cow milk mixed with inorganic pigments and then successfully applied on historical paint samples taken from a fifteenth century Italian panel painting. The present work contributes a step forward in the simplification of binder identification in very small paint samples since no conventional solvent extraction is required, speeding up the whole sample preparation to 10 min and reducing lipid/protein loss.

  16. Effect of various filler types on the properties of porous asphalt mixture

    NASA Astrophysics Data System (ADS)

    Shukry, Nurul Athma Mohd; Hassan, Norhidayah Abdul; Ezree Abdullah, Mohd; Rosli Hainin, Mohd; Yusoff, Nur Izzi Md; Putra Jaya, Ramadhansyah; Mohamed, Azman

    2018-04-01

    The open structure of porous asphalt exposes a large surface area to the effects of air and water, which accelerates the oxidation rate and affects the coating properties of the binder. These factors may influence the adhesive strength of the binder-aggregate and lead to cohesive failure within the binder film, contributing to aggregate stripping and moisture damage. The addition of fillers in asphalt mixtures has been identified to stiffen the asphalt binder and improve mixture strength. This study investigates the effect of various filler types (hydrated lime, cement, and diatomite) on the properties of porous asphalt. Compacted samples of porous asphalt were prepared using Superpave gyratory compactor at the target air void content of 21%. Each sample was incorporated with 2% of filler and polymer-modified binder of PG76. The morphology and chemical composition of fillers were investigated with a field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) analysis. The properties of porous asphalt were evaluated in terms of permeability, abrasion loss, resilient modulus, and indirect tensile strength. All mixtures were found to show high permeability rates. Mixtures with hydrated lime exhibited lower abrasion loss compared to mixtures with cement and diatomite. The use of diatomite increases the resistance of the mixtures to rutting and moisture damage compared to other fillers as shown by the enhanced resilient modulus and indirect tensile strength.

  17. Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders.

    PubMed

    Arndt, Oscar-Rupert; Kleinebudde, Peter

    2018-04-23

    Metformin has a poor tabletability and flowability. Therefore, metformin is typically wet granulated with a binder before tableting. To save production costs, it would be desirable to implement a roll compaction/dry granulation (RCDG) process for metformin instead of using wet granulation. In order to implement RCDG, the efficiency of dry binders is crucial to ensure a high drug load and suitable properties of dry granules and tablets. This study evaluates dry granules manufactured by RCDG and subsequently tableting of high metformin content formulations (≥ 87.5%). Based on previous results, fine particle grades of hydroxypropylcellulose and copovidone in different fractions were compared as dry binders. The formulations are suitable for RCDG and tableting. Furthermore, results can be connected to in-die and out-of-die compressibility analysis. The addition of 7% of dry binder is a good compromise to generate sufficient mechanical properties on the one hand, but also to save resources and ensure a high metformin content on the other hand. Hydroxypropylcellulose was more efficient in terms of granule size, tensile strength and friability. Three percent croscarmellose was added to reach the specifications of the US Pharmacopeia regarding dissolution. The final formulation has a metformin content of 87.5%. A loss in tabletability does not occur for granules compressed at different specific compaction forces, which displays a robust tensile strength of tablets independent of the granulation process.

  18. Development of viscosity sensor with long period fiber grating technology

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Dong; Wang, Jian-Neng; Chen, Shih-Huang; Wang, Juei-Mao

    2009-03-01

    In this paper, we describe the development of a viscosity sensing system using a simple and low-cost long-period fiber grating (LPFG) sensor. The LPFG sensor was extremely sensitive to the refractive index of the medium surrounding the cladding surface of the sensing grating, thus allowing it to be used as an ambient index sensor or chemical concentration indicator. Viscosity can be simply defined as resistance to flow of a liquid. We have measured asphalt binder, 100-190000 centistokes, in comparison with optical sensing results. The system sensing asphalt binders exhibited increase trend in the resonance wavelength shift when the refractive index of the medium changed. The prototype sensor consisted of a LPFG sensing component and a cone-shaped reservoir where gravitational force can cause asphalt binders flow through the capillary. Thus the measured time for a constant volume of asphalt binders can be converted into either absolute or kinematic viscosity. In addition, a rotational viscometer and a dynamic shear rheometer were also used to evaluate the viscosity of this liquid, the ratio between the applied shear stress and rate of shear, as well as the viscoelastic property including complex shear modulus and phase angle. The measured time could be converted into viscosity of asphalt binder based on calculation. This simple LPFG viscosity sensing system is hopefully expected to benefit the viscosity measurement for the field of civil, mechanical and aerospace engineering.

  19. Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Hua; Wang, Xiang S.; Teotico, Denise; Golbraikh, Alexander; Tropsha, Alexander

    2008-09-01

    The use of inaccurate scoring functions in docking algorithms may result in the selection of compounds with high predicted binding affinity that nevertheless are known experimentally not to bind to the target receptor. Such falsely predicted binders have been termed `binding decoys'. We posed a question as to whether true binders and decoys could be distinguished based only on their structural chemical descriptors using approaches commonly used in ligand based drug design. We have applied the k-Nearest Neighbor ( kNN) classification QSAR approach to a dataset of compounds characterized as binders or binding decoys of AmpC beta-lactamase. Models were subjected to rigorous internal and external validation as part of our standard workflow and a special QSAR modeling scheme was employed that took into account the imbalanced ratio of inhibitors to non-binders (1:4) in this dataset. 342 predictive models were obtained with correct classification rate (CCR) for both training and test sets as high as 0.90 or higher. The prediction accuracy was as high as 100% (CCR = 1.00) for the external validation set composed of 10 compounds (5 true binders and 5 decoys) selected randomly from the original dataset. For an additional external set of 50 known non-binders, we have achieved the CCR of 0.87 using very conservative model applicability domain threshold. The validated binary kNN QSAR models were further employed for mining the NCGC AmpC screening dataset (69653 compounds). The consensus prediction of 64 compounds identified as screening hits in the AmpC PubChem assay disagreed with their annotation in PubChem but was in agreement with the results of secondary assays. At the same time, 15 compounds were identified as potential binders contrary to their annotation in PubChem. Five of them were tested experimentally and showed inhibitory activities in millimolar range with the highest binding constant Ki of 135 μM. Our studies suggest that validated QSAR models could complement structure based docking and scoring approaches in identifying promising hits by virtual screening of molecular libraries.

  20. Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon-graphene hybrid anodes.

    PubMed

    Loveridge, Melanie J; Lain, Michael J; Huang, Qianye; Wan, Chaoying; Roberts, Alexander J; Pappas, George S; Bhagat, Rohit

    2016-11-09

    Hybrid anode materials consisting of micro-sized silicon (Si) particles interconnected with few-layer graphene (FLG) nanoplatelets and sodium-neutralized poly(acrylic acid) as a binder were evaluated for Li-ion batteries. The hybrid film has demonstrated a reversible discharge capacity of ∼1800 mA h g -1 with a capacity retention of 97% after 200 cycles. The superior electrochemical properties of the hybrid anodes are attributed to a durable, hierarchical conductive network formed between Si particles and the multi-scale carbon additives, with enhanced cohesion by the functional polymer binder. Furthermore, improved solid electrolyte interphase (SEI) stability is achieved from the electrolyte additives, due to the formation of a kinetically stable film on the surface of the Si.

  1. Nanobodies and recombinant binders in cell biology.

    PubMed

    Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich

    2015-06-08

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.

  2. Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy

    NASA Astrophysics Data System (ADS)

    Matveeva, Larisa; Belentsov, Yuri

    2017-10-01

    The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.

  3. Zinc titanate sorbents

    DOEpatents

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  4. Zinc titanate sorbents

    DOEpatents

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  5. Research on High-RAP Asphalt Mixtures with Rejuvenators and WMA Additives.

    DOT National Transportation Integrated Search

    2016-09-27

    This study is to evaluate the mechanical and chemical properties of the asphalt concrete (AC) mixture, fine aggregate matrix (FAM), and binder modified by three different rejuvenators and warm mix asphalt (WMA) additive. In this regard, for testing o...

  6. Hydrothermal Synthesis of Dicalcium Silicate Based Cement

    NASA Astrophysics Data System (ADS)

    Dutta, N.; Chatterjee, A.

    2017-06-01

    It is imperative to develop low energy alternative binders considering the large amounts of energy consumed as well as carbon dioxide emissions involved in the manufacturing of ordinary Portland cement. This study is on the synthesis of a dicalcium silicate based binder using a low temperature hydrothermal route.The process consists of synthesizing an intermediate product consisting of a calcium silicate hydrate phase with a Ca:Si ratio of 2:1 and further thermal treatment to produce the β-Ca2SiO4 (C2S) phase.Effect of various synthesis parameters like water to solid ratio, dwell time and temperature on the formation of the desired calcium silicate hydrate phase is reported along with effect of heating conditions for formation of the β-C2S phase. Around 77.45% of β-C2S phase was synthesized by thermal treatment of the intermediate phase at 820°C.

  7. Comparison of sevelamer and calcium carbonate on endothelial function and inflammation in patients on peritoneal dialysis.

    PubMed

    Chennasamudram, Sudha P; Noor, Tanjila; Vasylyeva, Tetyana L

    2013-06-01

    Hyperphosphataemia is a known independent risk factor for cardiovascular mortality. The objective of the study was to compare the effects of two phosphate binders, sevelamer carbonate and calcium carbonate on endothelial function (EF) and inflammation in patients on peritoneal dialysis (PD) with Type 2 diabetes mellitus (T2DM). Fifteen subjects with hyperphosphataemia discontinued all phosphate binders to undergo a two-week washout and were assigned to sevelamer carbonate or calcium carbonate treatments for eight weeks. After a second two-week washout period, subjects crossed over to either of the alternate treatments for another eight weeks. At the beginning and end of each treatment, biomarkers of EF, pro-inflammatory cytokines, serum albumin, calcium, phosphate and lipids were measured. Sevelamer carbonate significantly improved lipid profile compared with calcium carbonate. Amongst the EF and pro-inflammatory biomarkers, sevelamer carbonate decreased serum endothelin-1, plasminogen activator inhibitor-1, C-reactive protein and interleukin-6. Both phosphate binders were effective in decreasing serum phosphate but sevelamer had a positive effect on EF. Treatment with sevelamer carbonate has beneficial effects compared with calcium carbonate in decreasing inflammation and improving EF in patients with T2DM on PD. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  8. The use of Rheology Combined with Differential Scanning Calorimetry to Elucidate the Granulation Mechanism of an Immiscible Formulation During Continuous Twin-Screw Melt Granulation.

    PubMed

    Monteyne, Tinne; Heeze, Liza; Mortier, Severine Therese F C; Oldörp, Klaus; Cardinaels, Ruth; Nopens, Ingmar; Vervaet, Chris; Remon, Jean-Paul; De Beer, Thomas

    2016-10-01

    Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC). An immiscible drug-binder formulation (caffeine-Soluplus(®)) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI). A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus(®) concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules. The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.

  9. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork.

    PubMed

    Barnat-Hunek, Danuta; Widomski, Marcin K; Szafraniec, Małgorzata; Łagód, Grzegorz

    2018-03-01

    The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate.

  10. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork

    PubMed Central

    Barnat-Hunek, Danuta; Widomski, Marcin K.; Szafraniec, Małgorzata; Łagód, Grzegorz

    2018-01-01

    The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate. PMID:29494525

  11. Direct molding of pavement tiles made of ground tire rubber

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  12. Toward greener lithium-ion batteries: Aqueous binder-based LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Kim, Guk-Tae; Chao, Dongliang; Loeffler, Nicholas; Copley, Mark; Lin, Jianyi; Shen, Zexiang; Passerini, Stefano

    2017-12-01

    This work reports the performance of LiNi0.4Co0.2Mn0.4O2 electrodes employing sodium carboxymethyl cellulose as the binder (CMC/NCM). Compared with conventional organic PVDF-based electrodes, the CMC/NCM electrodes display very uniform distribution of NCM and carbon particles together with strong adhesion among the particles and with the current collector, leading to significantly mitigated crack formation and delamination of the electrode upon repeated delithiation/lithiation processes. Additionally, these electrodes offer enhanced Li+ diffusion kinetics, reduced polarization, therefore, excellent high C-rate capability, and extremely stable cycling performance even at elevated temperature (60 °C). Benefiting from the features of low cost, environmentally friendliness, and easy disposability-recyclability, the water-soluble CMC is a promising binder for practical application in energy storage systems.

  13. Polysilicate binding for silicate paints

    NASA Astrophysics Data System (ADS)

    Ivanovna, Loganina Valentina; Nikolaevna, Kislitsyna Svetlana; Bisengalievich, Mazhitov Yerkebulan

    2018-06-01

    It was suggested, that the polysilicate solutions obtained by mixing liquid glass and silicic acid sol as a binder in the manufacture of silicate paints. Information is provided on the structure and a property of the sodium polysilicate binder is presented. It has been found that the addition of silica powder to a liquid glass causes gelling in the course of time. It has been established that the introduction of the sol (increasing the silicate module) contributes to an increase in the fraction of high-polymer fractions of silicic anion, with the increase in the sol content of the polymer form of silica increasing. The research results the structure of sols and polysilicate solutions by the method of violation of total internal reflection. By the method of IR spectroscopy, the molybdate method established the presence of silica in the polysilicate binder polymeric varieties, which provides an increase in the stability of silicate coatings.

  14. Effect of liquid-phase sintering as a means of quality enhancement of pseudoalloys based on copper

    NASA Astrophysics Data System (ADS)

    Gordeev, Yu I.; Abkaryan, A. K.; Zeer, G. M.; Lepeshev, A. A.; Zelenkova, E. G.

    2017-01-01

    The effects of the liquid phase of a metal binder on the microstructure and properties of self-diffusion gradient composite (Cu - Al - ZnO) were investigated. For the compositions considered, it was revealed that at the temperature of about 550 °C, a liquid phase binder forms from nanoparticles Cu - Al. Applying a proper amount of a (Cu - Al) binder appeared to be beneficial for fabricating gradient composites with the desired self-diffusion process. It is also favorable for mass transfer of additives nanoparticles into the volume of a matrix during sintering and for the desired fine microstructure and mechanical properties. For the experimental conditions considered in this study, the best mechanical properties can be obtained when 6 mass % (Cu - Al) of ligature were used, which gave hardness HB at 120, electroerosion wear - 0.092 • 10-6 g / cycle, resistivity - 0.025 mcOm.

  15. Ceramics-bonded Nd-Fe-B-type magnet with high electrical resistivity

    NASA Astrophysics Data System (ADS)

    Kang, M. S.; Kwon, H. W.; Kim, D. H.; Lee, J. G.; Yu, J. H.

    2018-05-01

    Ceramics-bonded magnet with remarkably high electrical resistivity was fabricated by hot-pressing the mixture of Nd13.6Fe73.6Co6.6Ga0.6B5.6 alloy melt-spun flakes and dielectric Bi2O3-SiO2-B2O3 ceramics powder with low melting point. Coercivity of the ceramics-bonded magnet decreased with increasing the addition of ceramics binder, and this was attributed to the increased demagnetizing factor. Thin oxidized layer on the flake surface formed by reaction between the flake and oxide binder also contributed to reducing coercivity in the ceramics-bonded magnet. Highly resistive ceramics-bonded magnet containing 30 vol% ceramics binder still had good magnetic performance and high mechanical strength at 175 oC: iHc = 5 kOe, Mr = 4.8 kG, (BH)max = 4.3 MGOe, and over 900 MPa.

  16. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    PubMed

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Stabilization/solidification of hot dip galvanizing ash using different binders.

    PubMed

    Vinter, S; Montanes, M T; Bednarik, V; Hrivnova, P

    2016-12-15

    This study focuses on solidification of hot dip-galvanizing ash with a high content of zinc and soluble substances. The main purpose of this paper is to immobilize these pollutants into a matrix and allow a safer way for landfill disposal of that waste. Three different binders (Portland cement, fly ash and coal fluidized-bed combustion ash) were used for the waste solidification. Effectiveness of the process was evaluated using leaching test according to EN 12457-4 and by using the variance analysis and the categorical multifactorial test. In the leaching test, four parameters were observed: pH, zinc concentration in leachate, and concentration of chlorides and dissolved substances in leachate. The acquired data was then processed using statistical software to find an optimal solidifying ratio of the addition of binder, water, and waste to the mixture, with the aim to fulfil the requirement for landfill disposal set by the Council Decision 2003/33/EC. The influence on the main observed parameters (relative amount of water and a binder) on the effectiveness of the used method and their influence of measured parameters was also studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Developing the multiple stress-strain creep recovery (MS-SCR) test

    NASA Astrophysics Data System (ADS)

    Elnasri, Mahmoud; Airey, Gordon; Thom, Nick

    2018-04-01

    While most published work from Europe has been concerned with evaluating binders' resistance to rutting based on their stiffness (deformation resistance), work originating in the US has mainly been concerned with ranking binders based on their recoverability in a multiple stress form. This paper details the design of a new modified multiple stress-strain creep recovery (MS-SCR) test. The test is designed to evaluate binders' rutting resistance based on two rutting resistance mechanisms: stiffness and recoverability. A preliminary investigation is presented in this paper followed by details of the design of the new modified test. A 40/60 penetration grade bitumen and bitumen-filler mastics prepared with three filler concentrations (35%, 50%, and 65% filler content by mass of mastic) were tested. In addition, two polymer modified bitumens (PMBs) using the same base bitumen type were examined for validation. Two parameters are introduced to characterise the short and long recovery in the new test. In terms of stiffness, the test allows the behaviour of binders at different stress levels and loading cycles to be studied and produces a new parameter that can quantify the degree of modification. Finally, a relationship between nonlinearity and normal force in the test was investigated.

  19. Microfluidic Synthesis of Ca-Alginate Microcapsules for Self-Healing of Bituminous Binder.

    PubMed

    Shu, Benan; Wu, Shaopeng; Dong, Lijie; Wang, Qing; Liu, Quantao

    2018-04-19

    This work aims to develop an original alginate micro-emulsion combining with droplets microfluidic method to produce multinuclear Ca-alginate microcapsules containing rejuvenator for the self-healing of bituminous binder. The sizes of the Ca-alginate microcapsules could be easily controlled by tuning flow rates of the continuous and dispersed phases. The addition of a surfactant Tween80 not only improved the stability of the emulsion, but it also effectively reduced the size of the microcapsules. Size predictive mathematical model of the microcapsules was proposed through the analysis of fluid force. Optical microscope and remote Fourier infrared test confirmed the multinuclear structure of Ca-alginate microcapsules. Thermogravimetric analysis showed that the microcapsules coated with nearly 40% rejuvenator and they remained intact during the preparation of bitumen specimen at 135 °C. Micro self-healing process of bituminous binder with multinuclear Ca-alginate microcapsules containing rejuvenator was monitored and showed enhanced self-healing performance. Tensile stress-recovery test revealed that the recovery rate increased by 32.08% (in the case of 5% microcapsules), which meant that the Ca-alginate microcapsules containing rejuvenator could effectively enhance the self-healing property of bituminous binder.

  20. Surface analysis characterisation of gum binders used in modern watercolour paints

    NASA Astrophysics Data System (ADS)

    Sano, Naoko; Cumpson, Peter J.

    2016-02-01

    Conducting this study has demonstrated that not only SEM-EDX but also XPS can be an efficient tool for characterising watercolour paint surfaces. We find that surface effects are mediated by water. Once the powdered components in the watercolour come into contact with water they dramatically transform their chemical structures at the surface and show the presence of pigment components with a random dispersion within the gum layer. Hence the topmost surface of the paint is confirmed as being composed of the gum binder components. This result is difficult to confirm using just one analytical technique (either XPS or SEM-EDX). In addition, peak fitting of C1s XPS spectra suggests that the gum binder in the commercial watercolour paints is probably gum arabic (by comparison with the reference materials). This identification is not conclusive, but the combination techniques of XPS and SEM shows the surface structure with material distribution of the gum binder and the other ingredients of the watercolour paints. Therefore as a unique technique, XPS combined with SEM-EDX may prove a useful method in the study of surface structure for not only watercolour objects but also other art objects; which may in future help in the conservation for art.

  1. Durability of cement and geopolimer composites

    NASA Astrophysics Data System (ADS)

    Błaszczyński, T.; Król, M.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. This main feature depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used a highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in a chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcium ash from the burning of lignite.

  2. Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes

    DOE PAGES

    Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm; ...

    2016-12-01

    The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less

  3. Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm

    The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less

  4. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    NASA Astrophysics Data System (ADS)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  5. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  6. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  7. Fragment Screening and HIV Therapeutics

    PubMed Central

    Bauman, Joseph D.; Patel, Disha; Arnold, Eddy

    2013-01-01

    Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide-range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target. PMID:21972022

  8. Experimental Investigation of Bio-Sealants Used for Pavement Preservation and Development of a New Strength Test for Asphalt Binders at Low Temperature

    NASA Astrophysics Data System (ADS)

    Ghosh, Debaroti

    Surface treatment using sealants as a mean of pavement preservation is an important tool for cost-effectively extending service life of pavement. Sealants have become an important tool for cost-effectively extending the service life pavements. Due to the combined negative effects of asphalt aging and thermal cracking, it is always more challenging to choose an appropriate preservation technique for pavements built in cold-regions. Asphalt aging and thermal cracking negatively affect pavements built in cold climates. Therefore, it is important to evaluate the effects of sealants in laboratory conditions before application in the field to ensure effective performance. However, preservation activities cannot effectively address major distresses, such as low-temperature cracking, that can occur when the pavement was built from the very beginning with less durable materials. Therefore, an essential requirement to mitigate low-temperature cracking of pavements for asphalt materials used in the construction of pavement built in cold- regions is ensuring proper fracture properties of the asphalt materials used in construction. This study has two parts. In the first part, a laboratory evaluation of the effects of adding bio-sealants to both asphalt binder and mixture is performed. The goal is to obtain relevant properties of treated asphalt materials to understand the mechanism by which sealants improve pavement performance. For asphalt binders, a dynamic shear rheometer and a bending beam rheometer were used to obtain rheological properties of treated and untreated asphalt binders. For asphalt mixtures, field cores from both untreated and treated sections were collected and thin beam specimens were prepared from the cores to compare the creep and strength properties of the field-treated and laboratory-treated mixture. It is observed that the oil-based sealants have a significant softening effect on the control binder compared to the water-based sealant and traditional emulsion. Oil-based sealants increased rutting and fatigue potential of the binder and helped the low-temperature cracking resistance. For asphalt mixtures, different trends are observed for the field samples compared to the laboratory prepared samples. Similar to binder results, significant differences are observed between the asphalt mixtures treated with oil-based and water-based sealants, respectively. Additional analyses were performed to better understand the sealant effects. Fourier transform infrared spectroscopy (FTIR) analysis showed that the sealant products could not be detected in mixture samples collected from the surface of the treated section. Semi-empirical Hirsch model was able to predict asphalt mixture creep stiffness from binder stiffness. The results of a distress survey of the test sections correlated well with the laboratory findings. In the second part, a news binder strength testing method is proposed with the goal to provide an effective tool for selecting asphalt binders that are crack resistant. A modified Bending Beam Rheometer (BBR) is used to perform three-point bending strength tests, at constant loading rate, on asphalt binder beams at low temperature. Based on the results, a protocol for selecting the most crack resistant material from binders with similar rheological properties is proposed.

  9. Method Of Characterizing An Electrode Binder

    DOEpatents

    Cocciantelli, Jean-Michel; Coco, Isabelle; Villenave, Jean-Jacques

    1999-05-11

    In a method of characterizing a polymer binder for cell electrodes in contact with an electrolyte and including a current collector and a paste containing an electrochemically active material and said binder, a spreading coefficient of the binder on the active material is calculated from the measured angle of contact between standard liquids and the active material and the binder, respectively. An interaction energy of the binder with the electrolyte is calculated from the measured angle of contact between the electrolyte and the binder. The binder is selected such that the spreading coefficient is less than zero and the interaction energy is at least 60 mJ/m.sup.2.

  10. New Concept Study for Repair of Bomb-Damaged Runways. Volume I. Concept Identification.

    DTIC Science & Technology

    1979-09-01

    Expanded polystyrene beads would be pneumatically mixed with the cement to form a low density material. Initially, the ratio of foam to cement would...the combinations are presented with this concept. PRIMARY MATERIALS 0 Expanded polystyrene foam beads * Graded aggregate * Quick setting cement 61 E-4...probability of success - high ALTERNATE MATERIALS * Expanded polystyrene foam beads * Organic binders Furan Methyl Methacrylate Epoxy Aminos * Graded

  11. Plant proteins as binders in cellulosic paper composites.

    PubMed

    Fahmy, Yehia; El-Wakil, Nahla A; El-Gendy, Ahmed A; Abou-Zeid, Ragab E; Youssef, M A

    2010-07-01

    Plant proteins are used - for the first time - in this work as bulk binders for cellulosic fibers in paper composites. Soy bean protein and wheat gluten were denatured by two methods, namely by: urea+NaOH and by urea+NaOH+acrylamide. Addition of increased amounts of the denatured proteins resulted in a significant increase in all paper strength properties. Soy protein led, in addition, to a remarkable enhancement in opacity. The use of proteins increased kaolin retention in the paper composites, while keeping the paper strength higher than the blank protein-free paper. The results show that plant proteins are favorable than synthetic adhesives; because they are biodegradable and do not cause troubles in paper recycling i.e. they are environmentally friendly. (c) 2010 Elsevier B.V. All rights reserved.

  12. Initiation disruptor systems and methods of initiation disruption

    DOEpatents

    Baum, Dennis W

    2014-09-23

    A system that may be used as an initiation disruption system (IDS) according to one embodiment includes an explosive charge; a plurality of particles in a layer at least partially surrounding the explosive charge; and a fire suppressant adjacent the plurality of particles. A method for disabling an object according to one embodiment includes placing the system as recited above near an object; and causing the explosive charge to initiate, thereby applying mechanical loading to the object such that the object becomes disabled. Additional systems and methods are also presented. A device according to another embodiment includes a plurality of particles bound by a binder thereby defining a sidewall having an interior for receiving an explosive; and a fire suppressant adjacent the plurality of particles and binder. Additional systems and methods are also presented.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandersall, K S; Tarver, C M; Garcia, F

    Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of themore » binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.« less

  14. High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.

    Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.

  15. Color-coding and human factors engineering to improve patient safety characteristics of paper-based emergency department clinical documentation.

    PubMed

    Kobayashi, Leo; Boss, Robert M; Gibbs, Frantz J; Goldlust, Eric; Hennedy, Michelle M; Monti, James E; Siegel, Nathan A

    2011-01-01

    Investigators studied an emergency department (ED) physical chart system and identified inconsistent, small font labeling; a single-color scheme; and an absence of human factors engineering (HFE) cues. A case study and description of the methodology with which surrogate measures of chart-related patient safety were studied and subsequently used to reduce latent hazards are presented. Medical records present a challenge to patient safety in EDs. Application of HFE can improve specific aspects of existing medical chart organization systems as they pertain to patient safety in acute care environments. During 10 random audits over 5 consecutive days (573 data points), 56 (9.8%) chart binders (range 0.0-23%) were found to be either misplaced or improperly positioned relative to other chart binders; 12 (21%) were in the critical care area. HFE principles were applied to develop an experimental chart binder system with alternating color-based chart groupings, simple and prominent identifiers, and embedded visual cues. Post-intervention audits revealed significant reductions in chart binder location problems overall (p < 0.01), for Urgent Care A and B pods (6.4% to 1.2%; p < 0.05), Fast Track C pod (19.3% to 0.0%; p < 0.05) and Behavioral/Substance Abuse D pod (15.7% to 0.0%; p < 0.05) areas of the ED. The critical care room area did not display an improvement (11.4% to 13.2%; p = 0.40). Application of HFE methods may aid the development, assessment, and modification of acute care clinical environments through evidence-based design methodologies and contribute to safe patient care delivery.

  16. Influence of mycotoxin binders on the oral bioavailability of tylosin, doxycycline, diclazuril, and salinomycin in fed broiler chickens.

    PubMed

    De Mil, T; Devreese, M; Maes, A; De Saeger, S; De Backer, P; Croubels, S

    2017-07-01

    The presence of mycotoxins in broiler feed can have deleterious effects on the wellbeing of the animals and their performance. Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the intestinal tract and thereby prevent the oral absorption of the mycotoxin. The simultaneous administration of coccidiostats and/or antimicrobials with mycotoxin binders might lead to a reduced oral bioavailability of these veterinary medicinal products. This paper describes the influence of 3 mycotoxin binders (i.e., clay 1 containing montmorillonite, mica, and feldspars; clay 2 containing montmorillonite and quartz; and yeast 1 being a modified glucomannan fraction of inactivated yeast cells) and activated carbon on the oral bioavailability and pharmacokinetic parameters of the antimicrobials doxycycline and tylosin, and the coccidiostats diclazuril and salinomycin. A feeding study with 40 15 day-old broilers was performed evaluating the effects of long-term feeding 2 g mycotoxin binder/kg of feed. The birds were randomly divided into 5 groups of 8 birds each, i.e., a control group receiving no binder and 4 test groups receiving either clay 1, clay 2, yeast 1, or activated carbon mixed in the feed. After 15 d of feeding, both the control and each test group were administered doxycycline, tylosin, diclazuril, and salinomycin, consecutively, respecting a wash-out period of 2 to 3 d between each administration. The 4 medicinal products were dosed using a single bolus administration directly in the crop. After each bolus administration, blood was collected for plasma analysis and calculation of the main pharmacokinetic parameters and relative oral bioavailability (F = area under the plasma concentration-time curve (AUC0-8 h) in the test groups/AUC0-8 h in the control group)*100). No effects were observed of any of the mycotoxin binders on the relative oral bioavailability of the coccidiostats (i.e., F between 82 and 101% and 79 and 93% for diclazuril and salinomycin, respectively). Also, no significant effects could be noticed of any of the mycotoxin binders on the relative oral bioavailability of the antimicrobials doxycycline and tylosin (i.e., F between 67 and 83% and between 43 and 104%, respectively). © 2017 Poultry Science Association Inc.

  17. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag

    PubMed Central

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant. PMID:26539718

  18. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag.

    PubMed

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.

  19. Evaluation of hybrid binder for use in surface mixtures in Florida : final report, June 2009.

    DOT National Transportation Integrated Search

    2009-06-01

    Binder and mixture tests were performed to evaluate the relative performance of a PG 67-22 base binder and six other commercially available binders produced by modifying the same base binder with the following modifiers: one Styrene Butadiene Styrene...

  20. Combined method for simultaneously dewatering and reconstituting finely divided carbonaceous material

    DOEpatents

    Wen, Wu-Wey; Deurbrouck, Albert W.

    1990-01-01

    A finely-divided carbonaceous material is dewatered and reconstituted in a combined process by adding a binding agent directly into slurry of finely divided material and dewatering the material to form a cake or consolidated piece which can be hardened by drying at ambient or elevated temperatures. Alternatively, the binder often in the form of a crusting agent is sprayed onto the surface of a moist cake prior to curing.

  1. Laboratory Evaluation of Remediation Alternatives for U.S. Coast Guard Small Arms Firing Ranges

    DTIC Science & Technology

    1999-11-01

    S) is an immobilization process that involves the mixing of a contaminated soil with a binder material to enhance the physical and chemical...samples were shipped to WES for laboratory analysis. Phase III: Homogenization of the Bulk Samples. Each of the bulk samples was separately mixed to...produce uniform samples for testing. These mixed bulk soil samples were analyzed for metal content. Phase IV: Characterization of the Bulk Soils

  2. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with high Na2O contents were designed to generate waste forms having higher sodalite contents and fewer stress fractures. The structural, mechanical, and thermal properties of the new glasses were measured using variety of analytical techniques. The glasses were then used to produce ceramic waste forms with surrogate salt waste. The materials made using the glasses developed during this study were formulated to generate more sodalite than materialsmore » made with previous baseline glasses used. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability. Additionally, a model generated during this study for predicting softening temperature of silicate binder glasses is presented.« less

  3. Towards Understanding the Polymerization Process in Bitumen Bio-Fluxes.

    PubMed

    Król, Jan B; Niczke, Łukasz; Kowalski, Karol J

    2017-09-09

    Bitumen is a commonly used material for road construction. According to environmental regulations, vegetable-based materials are applied for binder modification. Fluxed road bitumen containing a bio-flux oxidation product increases the consistency over time. The efficiency of crosslinking depends on the number of double bonds and their position in the aliphatic chain of fatty acid. The main goal of this paper was to examine the structural changes taking place during hardening bitumen with bio-flux additives. Two types of road bitumens fluxed with two different oxidized methyl esters of rapeseed oil were used in this study. Various chemical and rheological tests were applied for the fluxed-bitumen at different stages of oxygen exposure. The oxidation of rapeseed oil methyl ester reduced the iodine amount by about 10%-30%. Hardening of the fluxed bitumen generally results in an increase of the resins content and a reduction of the aromatics and asphaltenes. In the temperature range of 0 °C to 40 °C, bio-flux results with a much higher increase in the phase angle than in temperatures above 40 °C in the bitumen binder. The increase in the proportion of the viscous component in the low and medium binder temperature is favorable due to the potential improvement of the fatigue resistance of the asphalt mixture with such binders.

  4. Moisture Sensitivity of Crumb Rubber Modified Modifier Warm Mix Asphalt Additive for Two Different Compaction Temperatures

    NASA Astrophysics Data System (ADS)

    Bilema, Munder A.; Aman, Mohamad Y.; Hassan, Norhidayah A.; Ahmad, Kabiru A.; Elghatas, Hamza M.; Radwan, Ashraf A.; Shyaa, Ahmed S.

    2018-04-01

    Crumb rubber obtained from scrap tires has been incorporated with asphalt binder to improve the performance of asphalt mixtures in the past decades. Pavements containing crumb-rubber modified (CRM) binders present one major drawback: larger amounts of greenhouse gas emissions are produced as there is rise in the energy consumption at the asphalt plant due to the higher viscosity of these type of binders compared with a conventional mixture. The objective of this paper is to calculate the optimum bitumen content for each percentage and evaluate the moisture sensitivity of crumb rubber modified asphalt at two different compacting temperatures. In this study, crumb rubber modified percentages was 0%, 5%, 10% and 15% from the binder weight, with adding 1.5% warm mix asphalt additive (Sasobit) and crush granite aggregate of 9.5mm Nominal maximum size was used after assessing its properties. Ordinary Portland Cement (OPC) used by 2% from fine aggregate. The wet method was using to mix the CRM with bitumen, the CRM conducted at 177°C for 30 min with 700rpm and Sasobit conducted at 120°C for 10 min with 1000rpm. As a result, from this study the optimum bitumen content (OBC) was increased with increased crumb rubber content. For performance test, it was conducted using the AASHTO T283 (2007): Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. The result was as expected and it was within the specification of the test, the result show that the moisture damage increased with increased the crumb rubber content but it is not exceeding the limit of specification 80% for indirect tension strength ratio (ITSR). For the temperature was with lowing the temperature the moisture damage increased.

  5. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives

    PubMed Central

    Cano, Santiago

    2018-01-01

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented. PMID:29783705

  6. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives.

    PubMed

    Gonzalez-Gutierrez, Joamin; Cano, Santiago; Schuschnigg, Stephan; Kukla, Christian; Sapkota, Janak; Holzer, Clemens

    2018-05-18

    Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

  7. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Xu, Yaolin; Wang, Xiaoqun; Shi, Xinghua; Mulder, Fokko M.

    2017-06-01

    Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to characterize its contribution in any study of active materials that uses this additive in non-negligible amounts. In this article the structure of SPCB has been characterized and a comprehensive study on the electrochemical Li/Na ion uptake capability and reaction mechanisms are reported. SPCB exhibits a considerable lithiation capacity (up to 310 mAh g-1) from the Li ion intercalation in the graphite structure. Sodiation in SPCB undergoes two stages: Na ion intercalation into the layers between the graphene sheets and the Na plating in the pores between the nano-graphitic domains, and a sodiation capacity up to 145 mAh g-1 has been achieved. Moreover, the influence of the type and content of binders on the lithiation and sodiation properties has been investigated. The cycling stability is much enhanced with sodium carboxymethyl cellulose (NaCMC) binder in the electrode and fluoroethylene carbonate (FEC) in the electrolyte; and a higher content of binder improves the Coulombic efficiency during dis-/charge.

  8. An Aqueous Inorganic Polymer Binder for High Performance Lithium–Sulfur Batteries with Flame-Retardant Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Guangmin; Liu, Kai; Fan, Yanchen

    Lithium–sulfur (Li–S) batteries are regarded as promising next-generation high energy density storage devices for both portable electronics and electric vehicles due to their high energy density, low cost, and environmental friendliness. However, there remain some issues yet to be fully addressed with the main challenges stemming from the ionically insulating nature of sulfur and the dissolution of polysulfides in electrolyte with subsequent parasitic reactions leading to low sulfur utilization and poor cycle life. The high flammability of sulfur is another serious safety concern which has hindered its further application. Herein, an aqueous inorganic polymer, ammonium polyphosphate (APP), has been developedmore » as a novel multifunctional binder to address the above issues. The strong binding affinity of the main chain of APP with lithium polysulfides blocks diffusion of polysulfide anions and inhibits their shuttling effect. The coupling of APP with Li ion facilitates ion transfer and promotes the kinetics of the cathode reaction. Moreover, APP can serve as a flame retardant, thus significantly reducing the flammability of the sulfur cathode. In addition, the aqueous characteristic of the binder avoids the use of toxic organic solvents, thus significantly improving safety. As a result, a high rate capacity of 520 mAh g –1 at 4 C and excellent cycling stability of ~0.038% capacity decay per cycle at 0.5 C for 400 cycles are achieved based on this binder. In conclusion, this work offers a feasible and effective strategy for employing APP as an efficient multifunctional binder toward building next-generation high energy density Li–S batteries.« less

  9. An Aqueous Inorganic Polymer Binder for High Performance Lithium–Sulfur Batteries with Flame-Retardant Properties

    PubMed Central

    2018-01-01

    Lithium–sulfur (Li–S) batteries are regarded as promising next-generation high energy density storage devices for both portable electronics and electric vehicles due to their high energy density, low cost, and environmental friendliness. However, there remain some issues yet to be fully addressed with the main challenges stemming from the ionically insulating nature of sulfur and the dissolution of polysulfides in electrolyte with subsequent parasitic reactions leading to low sulfur utilization and poor cycle life. The high flammability of sulfur is another serious safety concern which has hindered its further application. Herein, an aqueous inorganic polymer, ammonium polyphosphate (APP), has been developed as a novel multifunctional binder to address the above issues. The strong binding affinity of the main chain of APP with lithium polysulfides blocks diffusion of polysulfide anions and inhibits their shuttling effect. The coupling of APP with Li ion facilitates ion transfer and promotes the kinetics of the cathode reaction. Moreover, APP can serve as a flame retardant, thus significantly reducing the flammability of the sulfur cathode. In addition, the aqueous characteristic of the binder avoids the use of toxic organic solvents, thus significantly improving safety. As a result, a high rate capacity of 520 mAh g–1 at 4 C and excellent cycling stability of ∼0.038% capacity decay per cycle at 0.5 C for 400 cycles are achieved based on this binder. This work offers a feasible and effective strategy for employing APP as an efficient multifunctional binder toward building next-generation high energy density Li–S batteries. PMID:29532026

  10. An Evaluation of the Binding Strength of Okra Gum and the Drug Release Characteristics of Tablets Prepared from It.

    PubMed

    Hussain, Amjad; Qureshi, Farah; Abbas, Nasir; Arshad, Muhammad Sohail; Ali, Ejaz

    2017-06-02

    The aim of this study is to evaluate the adhesion ability of okra gum, which is gaining popularity as a tablet binder. For this purpose, gum was extracted from okra pods, and the binding strength of different concentrations (1%, 3%, and 5%) was determined quantitatively. Additionally, naproxen sodium tablets were prepared by using okra gum as a binder and were evaluated for their properties including hardness, friability, disintegration time, and dissolution rate. The binding strength values were compared with that of pre-gelatinized starch, a commonly used tablet binder. The results from universal testing machine indicate that the binding strengths of all dispersions of okra increase as the concentration increases from 1% to 5% and ranges from 2.5 to 4.5 N, which are almost twice a high as those of pre-gelatinized starch. The tablets prepared with okra gum have shown good mechanical strength with hardness values of 7-8.5 kg/cm² and a friability <1%, comparable to tablets prepared with starch. The disintegration time was longer (7.50 min with okra gum and 5.05 min with starch paste), and the drug release from these tablets was slower than the formulations with starch. The higher binding ability of okra gum probably linked with its chemical composition as it mainly contains galactose, rhamnose, and galacturonic acid. This study concludes that okra gum is a better binder than pre-gelatinized starch, it might be explored in future for introduction as a cost-effective binder in the pharmaceutical industry.

  11. An Aqueous Inorganic Polymer Binder for High Performance Lithium–Sulfur Batteries with Flame-Retardant Properties

    DOE PAGES

    Zhou, Guangmin; Liu, Kai; Fan, Yanchen; ...

    2018-02-14

    Lithium–sulfur (Li–S) batteries are regarded as promising next-generation high energy density storage devices for both portable electronics and electric vehicles due to their high energy density, low cost, and environmental friendliness. However, there remain some issues yet to be fully addressed with the main challenges stemming from the ionically insulating nature of sulfur and the dissolution of polysulfides in electrolyte with subsequent parasitic reactions leading to low sulfur utilization and poor cycle life. The high flammability of sulfur is another serious safety concern which has hindered its further application. Herein, an aqueous inorganic polymer, ammonium polyphosphate (APP), has been developedmore » as a novel multifunctional binder to address the above issues. The strong binding affinity of the main chain of APP with lithium polysulfides blocks diffusion of polysulfide anions and inhibits their shuttling effect. The coupling of APP with Li ion facilitates ion transfer and promotes the kinetics of the cathode reaction. Moreover, APP can serve as a flame retardant, thus significantly reducing the flammability of the sulfur cathode. In addition, the aqueous characteristic of the binder avoids the use of toxic organic solvents, thus significantly improving safety. As a result, a high rate capacity of 520 mAh g –1 at 4 C and excellent cycling stability of ~0.038% capacity decay per cycle at 0.5 C for 400 cycles are achieved based on this binder. In conclusion, this work offers a feasible and effective strategy for employing APP as an efficient multifunctional binder toward building next-generation high energy density Li–S batteries.« less

  12. Evaluation of the physicochemical properties and compaction behavior of melt granules produced in microwave-induced and conventional melt granulation in a single pot high shear processor.

    PubMed

    Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V

    2011-12-01

    Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.

  13. Development and Testing of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin; Hasegawa, Mark; Straka, Sharon

    2012-01-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  14. Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder.

    PubMed

    Napia, Chuwit; Sinsiri, Theerawat; Jaturapitakkul, Chai; Chindaprasirt, Prinya

    2012-07-01

    This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.« less

  16. Evaluating the effectiveness of integrating food science lessons in high school Biology curriculum in comparison to high school Chemistry curriculum

    NASA Astrophysics Data System (ADS)

    Ilogebe, Amamchukwu Bernard

    Binder-jet 3D printing has been one of the additive manufacturing techniques employed in fabrication of intricate parts, by utilizing metal powders. Liquid metal infiltration of bronze into binder-jet printed structural amorphous metal resulted in a net shape, fully-dense parts were made. The final part was characterized by means of scanning electron microscopy, electron dispersive x-ray spectroscopy and computed tomography. The densification in the binder-jet samples was also compared to die-pressed ones, and was found to be 3.96g/cm 3 and 3.89g/cm3. Thus, binder-jet can be used to model a die-pressed part. Scanning electron micrograph displayed the presence of considerable porosity in the sintered binder-jet samples, as well as some limited porosity in the infiltrated samples. Evident also from SEM analysis was the presence of internal powder micro pores. Electron dispersive spectroscopy results show that the bronze filled out the pores as was expected. According to the computed tomography results, the un-infiltrated sample has an average porosity of 34%, while the bronze-infiltrated samples have an average porosity of 1%. Micro-indentation was also performed on the infiltrated and uninfiltrated samples to evaluate the mechanical properties. The un-infiltrated sample had 2.98GPa hardness, while bronze infiltrated sample had 4.00GPa hardness using Vickers hardness method. Generally, it was found that infiltration of bronze into structural amorphous metal improved homogeneity of the material, as well as the mechanical properties. Further research needs to be done on the mechanical properties of binder-jet printed parts of SAM alloy, infiltrated with bronze. Variation of thickness needs to be included for further research to ascertain the critical achievable depth of infiltration using bronze as the reinforcement material.

  17. Ceramicrete stabilization of U-and Pu-bearing materials

    DOEpatents

    Wagh, Arun S.; Maloney, M. David; Thompson, Gary H.

    2007-11-13

    A method of stabilizing nuclear material is disclosed. Oxides or halides of actinides and/or transuranics (TRUs) and/or hydrocarbons and/or acids contaminated with actinides and/or TRUs are treated by adjusting the pH of the nuclear material to not less than about 5 and adding sufficient MgO to convert fluorides present to MgF.sub.2; alumina is added in an amount sufficient to absorb substantially all hydrocarbon liquid present, after which a binder including MgO and KH.sub.2PO.sub.4 is added to the treated nuclear material to form a slurry. Additional MgO may be added. A crystalline radioactive material is also disclosed having a binder of the reaction product of calcined MgO and KH.sub.2PO.sub.4 and a radioactive material of the oxides and/or halides of actinides and/or transuranics (TRUs). Acids contaminated with actinides and/or TRUs, and/or actinides and/or TRUs with or without oils and/or greases may be encapsulated and stabilized by the binder.

  18. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan

    2014-10-13

    Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Electrochemical components employing polysiloxane-derived binders

    DOEpatents

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  20. The effect of a new formaldehyde-free binder on the dissolution rate of glass wool fibre in physiological saline solution.

    PubMed

    Potter, Russell M; Olang, Nassreen

    2013-04-12

    The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating.

  1. The effect of a new formaldehyde-free binder on the dissolution rate of glass wool fibre in physiological saline solution

    PubMed Central

    2013-01-01

    The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating. PMID:23587247

  2. Evaluation of HMA mixtures containing Sasobit.

    DOT National Transportation Integrated Search

    2009-07-01

    This limited study provided a laboratory and field comparative evaluation of PG 76-22 HMA hot mix asphalt (HMA) mixture and a mixture containing the additive Sasobit. The fundamental material characterization testing (asphalt cement binder rh...

  3. Alkali-metal silicate binders and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B. (Inventor)

    1979-01-01

    A paint binder is described which uses a potassium or sodium silicate dispersion having a silicon dioxide to alkali-metal oxide mol ratio of from 4.8:1 to 6.0:1. The binder exhibits stability during both manufacture and storage. The process of making the binder is predictable and repeatable and the binder may be made with inexpensive components. The high mol ratio is achieved with the inclusion of a silicon dioxide hydrogel. The binder, which also employs a silicone, is in the final form of a hydrogel sol.

  4. Artificial Affinity Proteins as Ligands of Immunoglobulins

    PubMed Central

    Mouratou, Barbara; Béhar, Ghislaine; Pecorari, Frédéric

    2015-01-01

    A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized. PMID:25647098

  5. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JAMES G. GOODWIN, JR.; JAMES J. SPIVEY; K. JOTHIMURUGESAN

    1998-09-17

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C{sub 5}{sup +} selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation.« less

  6. From rabbit antibody repertoires to rabbit monoclonal antibodies.

    PubMed

    Weber, Justus; Peng, Haiyong; Rader, Christoph

    2017-03-24

    In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.

  7. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking.

    PubMed

    Yoon, Jihee; Oh, Dongyeop X; Jo, Changshin; Lee, Jinwoo; Hwang, Dong Soo

    2014-12-14

    Si-based anodes in lithium ion batteries (LIBs) have exceptionally high theoretical capacity, but the use of a Si-based anode in LIBs is problematic because the charging-discharging process can fracture the Si particles. Alginate and its derivatives show promise as Si particle binders in the anode. We show that calcium-mediated "egg-box" electrostatic cross-linking of alginate improves toughness, resilience, electrolyte desolvation of the alginate binder as a Si-binder for LIBs. Consequently, the improved mechanical properties of the calcium alginate binder compared to the sodium alginate binder and other commercial binders extend the lifetime and increase the capacity of Si-based anodes in LIBs.

  8. Effect of recovered binders from recycled shingles and increased RAP percentages on resultant binder PG.

    DOT National Transportation Integrated Search

    2011-12-01

    This research evaluated the properties of recycled asphalt binders from Wisconsin sources. Continuous grading : properties were measured for 18 recycled binder sources: 12 reclaimed asphalt pavement (RAP) sources and 6 recycled : asphalt shingle sour...

  9. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor)

    2006-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

  10. Distribution of a viscous binder during high shear granulation--sensitivity to the method of delivery and its impact on product properties.

    PubMed

    Tan, Bernice Mei Jin; Loh, Zhi Hui; Soh, Josephine Lay Peng; Liew, Celine Valeria; Heng, Paul Wan Sia

    2014-01-02

    Binder distribution in the powder mass during high shear granulation is especially critical with the use of viscous liquid binders and with short processing times. A viscous liquid binder was delivered into the powder mass at two flow rates using three methods: pouring, pumping and spraying from a pressure pot. Binder content analyses at the scale of individual granules were conducted to investigate the impact of different delivery conditions on the homogeneity of binder distribution. There was clear evidence of non-uniformity of binder content among individual granules across all delivery conditions, particularly for the fast rates of delivery. Poorer reproducibility values of tablet thickness and disintegration time were observed when binder was poured but this may be overcome by pumping or spraying from the pressure pot. Greater homogeneity of binder distribution occurred with the slow rates of delivery and led to the earlier onset of granule growth and a consequent increase in granule size. Larger granule size and lower proportion of fines were in turn associated with increased granule bulk density and improvement of granule flow. In conclusion, delivery of a viscous binder at a slow rate either by pumping or via a pressure pot was most desirable during granulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. [A study of the properties of compacts from a mixed dry binder on the base of alpha-lactose monohydrate and microcrystalline cellulose].

    PubMed

    Muzíková, J; Páleník, L

    2005-05-01

    The paper studies the tensile strength and disintegration time of compacts from the mixed dry binder MicroceLac 100. Tensile strength and disintegration time of tablets were tested in connection with the following factors: compression force, compression rate, addition of magnesium stearate, addition of ascorbic acid, the model active principle. The compression forces employed were 5, 6, and 7 kN, compression rates, 20 and 40 mm/min, stearate concentration 0, 0.4, and 0.8%, ascorbic acid concentration, 25 and 50%. With increasing addition of the stearate, the strength of compacts from MicroceLacu 100 was decreased for both compression rates, but with a higher rate, in a concentration of 0.4%, the decrease in strength was more marked. Disintegration time was increased with compression force and the addition of the stearate, but in all cases it was very short. Increased addition of ascorbic acid further intensified the decrease in the strength of compacts and decreased the disintegration time and the effect of the stearate on it. Disintegration time of compacts with ascorbic acid in a concentration of 50% did not increase with compression force.

  12. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts

    DOE PAGES

    Elliott, Amelia; AlSalihi, Sarah; Merriman, Abbey L.; ...

    2016-01-01

    The densification of parts that are produced by binder jetting Additive Manufacturing (AM; a.k.a. “3D Printing”) is an essential step in making them mechanically useful. By increasing the packing factor of the powder bed by incorporating nanoparticles into the binder has potential to alleviate the amount of shrinkage needed for full densification of binder jet parts. We present preliminary data on the use of 316L Stainless Steel Nanoparticles (SSN) to densify 316L stainless steel binder jet parts. Aqueous solutions of Diethylene Glycol (DEG) or Ethylene Glycol (EG) were prepared at different DEG/water and EG/water molar ratios; pH of the solutionsmore » was adjusted by the use of 0.10 M sodium hydroxide. Nanoparticles were suspended in a resulted solution at a volume percentage of SSN/solution at 0.5%. The suspension was then sonicated for thirty minutes. One milliliter of the suspension was added stepwise to a sintered, printed disk with the dimensions: (d = 10 mm, h = 3 mm) in the presence of a small magnet. The 3D part was then sintered again. Moreover, the increase in the mass of the 3D part was used as indication of the amount of nanoparticles that diffused in the 3D part. This mass percent increase was studied as a function of pH of the suspension and as function DEG/water molar ratio. Unlike EG, data show that change in pH affects the mass percent when the suspension was made with DEG. Finally, optical analysis of the discs’ cross sections revealed trends metallic densities similar to trends in the data for mass increase with changing pH and water molar ratio.« less

  13. Infiltration of Nanoparticles into Porous Binder Jet Printed Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amelia; AlSalihi, Sarah; Merriman, Abbey L.

    The densification of parts that are produced by binder jetting Additive Manufacturing (AM; a.k.a. “3D Printing”) is an essential step in making them mechanically useful. By increasing the packing factor of the powder bed by incorporating nanoparticles into the binder has potential to alleviate the amount of shrinkage needed for full densification of binder jet parts. We present preliminary data on the use of 316L Stainless Steel Nanoparticles (SSN) to densify 316L stainless steel binder jet parts. Aqueous solutions of Diethylene Glycol (DEG) or Ethylene Glycol (EG) were prepared at different DEG/water and EG/water molar ratios; pH of the solutionsmore » was adjusted by the use of 0.10 M sodium hydroxide. Nanoparticles were suspended in a resulted solution at a volume percentage of SSN/solution at 0.5%. The suspension was then sonicated for thirty minutes. One milliliter of the suspension was added stepwise to a sintered, printed disk with the dimensions: (d = 10 mm, h = 3 mm) in the presence of a small magnet. The 3D part was then sintered again. Moreover, the increase in the mass of the 3D part was used as indication of the amount of nanoparticles that diffused in the 3D part. This mass percent increase was studied as a function of pH of the suspension and as function DEG/water molar ratio. Unlike EG, data show that change in pH affects the mass percent when the suspension was made with DEG. Finally, optical analysis of the discs’ cross sections revealed trends metallic densities similar to trends in the data for mass increase with changing pH and water molar ratio.« less

  14. Fatigue and fracture properties of aged binders in the context of reclaimed asphalt mixes.

    DOT National Transportation Integrated Search

    2014-08-01

    Evidence in the literature indicates that the stiffness of the asphalt binder increases and ductility of the binder decreases : with oxidative aging. Typically for unmodified asphalt binders, increase in stiffness or decrease in ductility is regarded...

  15. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    PubMed

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-08

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

  16. Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: evaluations of phosphorus intercalation activity and cellular cytotoxicity

    NASA Astrophysics Data System (ADS)

    Lung, Yung-Feng; Sun, Ying-Sui; Lin, Chun-Kai; Uan, Jun-Yen; Huang, Her-Hsiung

    2016-09-01

    The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg2+: Fe3+ ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability.

  17. Development of non-petroleum-based binders for use in flexible pavements - phase II.

    DOT National Transportation Integrated Search

    2015-10-01

    Bio-binders can be utilized as asphalt modifiers, extenders, and replacements for conventional asphalt in bituminous binders. : From the rheology results of Phase I of this project, it was found that the bio-binders tested had good performance, simil...

  18. Silica Fume Functionalized With Amine-Based Additives as a Modifier to Enhance Asphalt Resistance to Oxidation

    NASA Astrophysics Data System (ADS)

    Abutalib, Nader Turki

    This dissertation investigates the practical feasibility of functionalizing silica fume particles with the amine groups in Bio-binder and pure APTES chemical to disperse silica fume in asphalt binder matrix to produce silica-fume-modified binder (SFMB). Dispersed silica fume was then introduced to asphalt to reduce oxidative aging. It has been widely reported that asphalt binder oxidation is one of the phenomena that reduces the service life of asphalt pavement by negatively affecting its rheological properties. This in turn can lead to a more brittle pavement, which is more prone to cracks due to thermal stress and traffic loading. It has been shown that the introduction of 4% silica fume to asphalt can reduce asphalt oxidative aging. However, the challenge with a higher percentage of silica fume was found to be the agglomeration of nano- particles to form micro-size clusters, which can reduce the effectiveness of silica fume while making asphalt binder more susceptible to shear. Therefore, this dissertation studies the effectiveness of functionalizing the SFMB to reduce asphalt oxidative aging while alleviating the agglomeration effect. To do so, various percentages of bio-binder (BB) and bio-char (BC) were introduced to SFMB, and the rheological properties and high-temperature performance of each specimen were evaluated by measuring the rotational viscosity and complex shear modulus before and after oxidative aging. It is hypothesized that fine-graded BC and BB with nano- to micro-level particles can be used to reduce asphalt oxidation and create a new generation of low- agglomeration SFMB with higher resistance to oxidative aging. To further study the effects of functionalization on dispersion of silica fume, silica fume particles were produced with different functional groups: amine (APTES) groups and phosphonate (THPMP) groups. Agglomeration studies using a scanning electron microscope and zeta potential analysis indicate that modifying asphalt binder with amine-modified silica fume particles can reduce the agglomeration of the silica fume particles. The performance characteristics of functionalized silica fume particles and non-functionalized silica fume particles are compared with those of base asphalt. The following research hypotheses were investigated: 1) Functionalized and well-dispersed silica fume will enhance asphalt's aging resistance. 2) The amine groups in functionalizing agent interact with silica fume particles and promote their dispersion. To test these hypotheses, a rotational viscometer was used to study the effect of functionalized-silica-fume-modified binder on the high-temperature properties of the asphalt binder. Fourier transform infrared spectroscopy analysis was used to determine the chemical compounds of the amine-group silica-fume- modified binder matrix. Scanning electron microscopy was used to observe the surface morphology and analyze the microstructure characteristics of materials. The positive effect of amine groups on the rheological properties of SFMB could be attributed to the high surface area of the silica fume and its granular particles with high polarity, factors that could improve the blending properties of the bio-modified silica fume and result in a uniformly distributed silica- fume-modified matrix with enhanced oxidative aging resistance. Surface adsorption of amines on silica fume particles helps promote repulsive forces between them to enhance dispersion.

  19. Influence of a Reclaimed Sand Addition to Moulding Sand with Furan Resin on Its Impact on the Environment.

    PubMed

    Holtzer, Mariusz; Dańko, Rafał; Kmita, Angelika

    Metalcasting involves having a molten metal poured in a hollow mould to produce metal objects. These moulds are generally made of sand and are chemically bonded, clay-bonded, or even unbounded. There are many binder systems used. Binders based on furfuryl resins constitute currently the highest fraction in the binders no-bake group. Moulding sand, after knocking out the cast, is partially reclaimed, and the remaining part, known as waste foundry sand is used or stored outside the foundry. In this case, the environment hazardous organic compounds and metals can be leached from the moulding sand, thus causing pollution of water and soil. Also during the casting moulds with molten metal, they emit pyrolysis gases containing many different compounds, often dangerous from the BTEX and PAH group, which has adverse impacts on the environment and workers. The article presents the results of research on the impact of the regenerate addition to the moulding sand matrix on emitted gases and the degree of threat to the environment due to leaching of hazardous components. Therefore, for the total assessment of the moulding sands harmfulness, it is necessary to perform investigations concerning the dangerous substances elution into the environment during their management and storage, as well as investigations concerning emissions of hazardous substances (especially from the BTEX and PAHs group) during moulds pouring, cooling, and casting knocking out. Both kinds of investigations indicated that reclaimed sand additions to moulding sands have significantly negative influence on the environment and working conditions.

  20. High phosphate diet increases arterial blood pressure via a parathyroid hormone mediated increase of renin.

    PubMed

    Bozic, Milica; Panizo, Sara; Sevilla, Maria A; Riera, Marta; Soler, Maria J; Pascual, Julio; Lopez, Ignacio; Freixenet, Montserrat; Fernandez, Elvira; Valdivielso, Jose M

    2014-09-01

    There is growing evidence suggesting that phosphate intake is associated with blood pressure levels. However, data from epidemiological studies show inconsistent results. The present study was designed to evaluate the effect of high circulating phosphorus on arterial blood pressure of healthy rats and to elucidate the potential mechanism that stands behind this effect. Animals fed a high phosphate diet for 4 weeks showed an increase in blood pressure, which returned to normal values after the addition of a phosphate binder (lanthanum carbonate) to the diet. The expression of renin in the kidney was higher, alongside an increase in plasma renin activity, angiotensin II (Ang II) levels and left ventricular hypertrophy. The addition of the phosphate binder blunted the increase in renin and Ang II levels. The levels of parathyroid hormone (PTH) were also higher in animals fed a high phosphate diet, and decreased when the phosphate binder was present in the diet. However, blood P levels remained elevated. A second group of rats underwent parathyroidectomy and received a continuous infusion of physiological levels of PTH through an implanted mini-osmotic pump. Animals fed a high phosphate diet with continuous infusion of PTH did not show an increase in blood pressure, although blood P levels were elevated. Finally, unlike with verapamil, the addition of losartan to the drinking water reverted the increase in blood pressure in rats fed a high phosphate diet. The results of this study suggest that a high phosphate diet increases arterial blood pressure through an increase in renin mediated by PTH.

  1. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    PubMed

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-07

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

  2. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets.

    PubMed

    Yang, Meiyan; Xie, Si; Li, Qiu; Wang, Yuli; Chang, Xinyi; Shan, Li; Sun, Lei; Huang, Xiaoli; Gao, Chunsheng

    2014-04-25

    Delivering sparingly water-soluble drugs from ethylcellulose (EC) coated pellets with a controlled-release pattern remains challenging. In the present study, hydrophilic polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former in EC coated pellets to deliver sparingly water-soluble topiramate, and the key factors that influenced drug release were identified. When the binder PVP content in drug layers below 20% w/w was decreased, the physical state of topiramate changed from amorphous to crystalline, making much difference to drug solubility and dissolution rates while modifying the drug release profile from first-order to zero-order. In addition, without PVP in drug layering solution, drug layered particles were less sticky during layering process, thus leading to a shorter process and higher loading efficiency. Furthermore, PVP level as a pore-former in EC coating layers mainly governed drug release from the coated pellets with the sensitivity ranging from 23% to 29%. PVP leaching rate and water permeability from EC/PVP film increased with the PVP level, which was perfectly correlated with drug release rate. Additionally, drug release from this formulation was independent of pH of release media or of the paddle mixing speed, but inversely proportional to the osmolality of release media above the physiological range. Copyright © 2014. Published by Elsevier B.V.

  3. 21 CFR 880.5160 - Therapeutic medical binder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Therapeutic medical binder. 880.5160 Section 880...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5160 Therapeutic medical binder. (a) Identification. A therapeutic medical binder is a...

  4. 21 CFR 880.5160 - Therapeutic medical binder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Therapeutic medical binder. 880.5160 Section 880...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5160 Therapeutic medical binder. (a) Identification. A therapeutic medical binder is a...

  5. Performance testing of asphalt concrete containing crumb rubber modifier and warm mix additives

    NASA Astrophysics Data System (ADS)

    Ikpugha, Omo John

    Utilisation of scrap tire has been achieved through the production of crumb rubber modified binders and rubberised asphalt concrete. Terminal and field blended asphalt rubbers have been developed through the wet process to incorporate crumb rubber into the asphalt binder. Warm mix asphalt technologies have been developed to curb the problem associated with the processing and production of such crumb rubber modified binders. Also the lowered production and compaction temperatures associated with warm mix additives suggests the possibility of moisture retention in the mix, which can lead to moisture damage. Conventional moisture sensitivity tests have not effectively discriminated good and poor mixes, due to the difficulty of simulating field moisture damage mechanisms. This study was carried out to investigate performance properties of crumb rubber modified asphalt concrete, using commercial warm mix asphalt technology. Commonly utilised asphalt mixtures in North America such as dense graded and stone mastic asphalt were used in this study. Uniaxial Cyclic Compression Testing (UCCT) was used to measure permanent deformation at high temperatures. Indirect Tensile Testing (IDT) was used to investigate low temperature performance. Moisture Induced Sensitivity Testing (MiST) was proposed to be an effective method for detecting the susceptibility of asphalt mixtures to moisture damage, as it incorporates major field stripping mechanisms. Sonnewarm(TM), Sasobit(TM) and Evotherm(TM) additives improved the resistance to permanent deformation of dense graded mixes at a loading rate of 0.5 percent by weight of the binder. Polymer modified mixtures showed superior resistance to permanent deformation compared to asphalt rubber in all mix types. Rediset(TM) WMX improves low temperature properties of dense graded mixes at 0.5 percent loading on the asphalt cement. Rediset LQ and Rediset WMX showed good anti stripping properties at 0.5 percent loading on the asphalt cement. The American Association of State Highway and Transportation Official's Mechanistic-Empirical Pavement Design Guide (AASHTO MEPDG) software was used to predict long term low temperature performance of the mixtures in various areas of Ontario. Sasobit, Rediset LQ and Rediset WMX gave good 15 years prediction with stone mastic asphalt mixtures but the performance of dense graded mixtures was less satisfactory.

  6. Controlling Properties of Agglomerates for Chemical Processes

    NASA Astrophysics Data System (ADS)

    Halt, Joseph A.

    Iron ore pellets are hard spheres made from powdered ore and binders. Pellets are used to make iron, mainly in blast furnaces. Around the time that the pelletizing process was developed, starch was proposed as a binder because it's viscous, adheres well to iron oxides, does not contaminate pellets and is relatively cheap. In practice, however, starch leads to weak pellets with rough surfaces - these increase the amount of dust generated within process equipment and during pellet shipping and handling. Thus, even though the usual binder (bentonite clay) contaminates pellets, pelletizers prefer it to starch or other organics. This dissertation describes three ways to make good starch-based binders for pellets. Importantly, they solve the usual problems of weak rough pellets and lots of dust. The three approaches are: (1) Addition of clay to starch. This is not a novel idea. In fact, it is the standard method used for their improvement. However, it has not been tested extensively with starch. This approach was expected to be - and indeed was - successful. (2) Addition of a clay-rich layer to green ball surfaces. This approach is a novel idea. The coating's purpose was to mimic the good surface properties of standard bentonite-clay bonded pellets; as a benefit, clay consumption was significantly reduced. This approach was successful. (3) Addition of dispersants to starch. This approach was a novel idea. The intent of the dispersants was to enable pelletization to occur at lower moisture contents, thus leading to denser particle packing and lower porosity. The dispersants resulted in significantly stronger, smoother pellets without contaminating them with silica. Using approaches 1 and 3, starch can be used directly in traditional pelletizing operations, and importantly, in new pelletizing processes for new iron making operations. For approach 2, new application methods must be developed. Future engineering work is suggested as follows: design better dispersants for magnetic magnetite ores; incorporate the dispersing agent and starch into bead form for easy use; design a simple way to add coatings in existing drum-based pelletizing circuits; and optimize the coating composition to decrease both abrasion losses and pellet clustering (for new Direct Reduction pellets).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na 2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions andmore » degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste loading from about 12% to 10% on a mass basis, but this will not significantly impact the waste loading on a volume basis. It is likely that heat output will limit the amount of waste salt that can be accommodated in a waste canister rather than the salt loading in an ACWF, and that the increase from 8 mass% to about 10 mass% salt loadings in ACWF materials will be sufficient to optimize these waste forms. Although the waste salt composition used in this study contained a moderate amount of NaCl, the test results suggest waste salts with little or no NaCl can be accommodated in ACWF materials by using the new binder glass, albeit at waste loadings lower than 8 mass%. The higher glass contents that will be required for ACWF materials made with salt wastes that do not contain NaCl are expected to result in much lower porosities in those waste forms.« less

  8. Asphalt rheology and strengthening through polymer binders : final report.

    DOT National Transportation Integrated Search

    2016-11-01

    This term paper investigates the influences of polymer modifications to asphalt rheology as compared to : conventional asphalt pavement sections. The addition of 2% to 3% of polymers into the wearing and base courses : of asphalt (flexible) pavements...

  9. 75 FR 17928 - Nisso America, Inc.; Filing of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... dietary supplements. FOR FURTHER INFORMATION CONTACT: Laura Dye, Center for Food Safety and Applied... from 145 cPs to 10 cPs and to permit its use as a binder in dietary supplements. The agency has...

  10. A laboratory evaluation of rubber-asphalt paving mixtures : final report.

    DOT National Transportation Integrated Search

    1974-06-01

    The primary objective of this study was to evaluate rubber additive asphalt and its aggregate mixtures in the laboratory with respect to their physical characteristics. : Results obtained on the physical properties of the rubberized asphalt binder we...

  11. Method of manufacturing ceramic shaped articles

    NASA Technical Reports Server (NTRS)

    Inoue, K.

    1983-01-01

    A method of manufacturing ceramic shaped articles, wherein tapes of ceramic powder material in mixture with a binder material and special additives are shaped and then articles are stamped out from said tapes and sintered in a sintering furnace is described.

  12. Repositioning the substrate activity screening (SAS) approach as a fragment-based method for identification of weak binders.

    PubMed

    Gladysz, Rafaela; Cleenewerck, Matthias; Joossens, Jurgen; Lambeir, Anne-Marie; Augustyns, Koen; Van der Veken, Pieter

    2014-10-13

    Fragment-based drug discovery (FBDD) has evolved into an established approach for "hit" identification. Typically, most applications of FBDD depend on specialised cost- and time-intensive biophysical techniques. The substrate activity screening (SAS) approach has been proposed as a relatively cheap and straightforward alternative for identification of fragments for enzyme inhibitors. We have investigated SAS for the discovery of inhibitors of oncology target urokinase (uPA). Although our results support the key hypotheses of SAS, we also encountered a number of unreported limitations. In response, we propose an efficient modified methodology: "MSAS" (modified substrate activity screening). MSAS circumvents the limitations of SAS and broadens its scope by providing additional fragments and more coherent SAR data. As well as presenting and validating MSAS, this study expands existing SAR knowledge for the S1 pocket of uPA and reports new reversible and irreversible uPA inhibitor scaffolds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  14. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  15. Sustainable hemp-based composites for the building industry application

    NASA Astrophysics Data System (ADS)

    Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola

    2017-07-01

    Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.

  16. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    NASA Astrophysics Data System (ADS)

    Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda

    2016-12-01

    The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  17. Elastic and Sorption Characteristics of an Epoxy Binder in a Composite During Its Moistening

    NASA Astrophysics Data System (ADS)

    Aniskevich, K.; Glaskova, T.; Jansons, J.

    2005-07-01

    Results of an experimental investigation into the elastic and sorption characteristics of a model composite material (CM) — epoxy resin filled with LiF crystals — during its moistening are presented. Properties of the binder in the CM with different filler contents ( v f = 0, 0.05, 0.11, 0.23, 0.28, 0.33, 0.38, and 0.46) were evaluated indirectly by using known micromechanical models of CMs. It was revealed that, for the CM in a conditionally initial state, the elastic modulus of the binder in it and the filler microstrain (change in the interplanar distance in the crystals, measured by the X-ray method) as functions of filler content had the same character. The elastic modulus of the binder in the CM with a low filler content was equal to that for the binder in a block; the elastic modulus of the binder in the CM decreased with increasing filler content. The maximum (corresponding to water saturation of the CM) stresses in the binder and the filler microstresses as functions of filler content were of the same character. Moreover, the absolute values of maximum stresses in the binder and of filler microstresses coincided for high and low contents of the filler. At v f = 0.2-0. 3, the filler microstrains exceeded the stresses in the binder. The effect of moisture on the epoxy binder in the CM with a high filler content was not entirely reversible: the elastic characteristics of the binder increased, the diffusivity decreased, and the ultimate water content increased after a moistening-drying cycle.

  18. The use of CVD diamond burs for ultraconservative cavity preparations: a report of two cases.

    PubMed

    Carvalho, Carlos Augusto R; Fagundes, Ticiane C; Barata, Terezinha J E; Trava-Airoldi, Vladimir Jesus; Navarro, Maria Fidela L

    2007-01-01

    During the past decades, scientific developments in cutting instruments have changed the conventional techniques used to remove caries lesions. Ultrasound emerged as an alternative for caries removal since the 1950s. However, the conventional technology for diamond powder aggregation with nickel metallic binders could not withstand ultrasonic power. Around 5 years ago, an alternative approach using chemical vapor deposition (CVD) resulted in synthetic diamond technology. CVD diamond burs are obtained with high adherence of the diamond as a unique stone on the metallic surface with excellent abrading performance. This technology allows for diamond deposition with coalescent granulation in different formats of substrates. When connected to an ultrasonic handpiece, CVD diamond burs become an option for cavity preparation, maximizing preservation of tooth structure. Potential advantages such as reduced noise, minimal damage to the gingival tissue, extended bur durability, improved proximal cavity access, reduced risk of hitting the adjacent tooth resulting from the high inclination angles, and minimal patient's risk of metal contamination. These innovative instruments also potentially eliminate some problems regarding decreased cutting efficiency of conventional diamond burs. This clinical report presents the benefits of using CVD diamond burs coupled with an ultrasonic handpiece in the treatment of incipient caries. CVD diamond burs coupled with an ultrasonic device offer a promising alternative for removal of carious lesions when ultraconservative cavity preparations are required. Additionally, this system provides a less-painful technique for caries removal, with minimal noise.

  19. 47 CFR 51.232 - Binder group management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...

  20. 47 CFR 51.232 - Binder group management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...

  1. 47 CFR 51.232 - Binder group management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...

  2. 46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...

  3. 46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...

  4. 46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...

  5. 46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...

  6. Five year magnetic tape for unattended satellite tape recorders

    NASA Technical Reports Server (NTRS)

    Benn, G. S. L.; Gutfreund, K.

    1972-01-01

    The development and fabrication of a quantity of long life magnetic tape with properties selected specifically for unattended operation in spacecraft tape recorders was studied. A detailed analytical consideration of various binder systems was undertaken. This included the chemical aspects of the binders, cohesion and adhesion effects, stability and the mechanical and physical properties. The ability to form free films of these polymers and their combination with various oxide loadings and other additives allowed a rapid selection of four polymer candidates for a five year magnetic tape. Samples were evaluated under actual running conditions which included physical, magnetic, and extensive life testing. These sample tapes withstood 50,000 bidirectional tape passes under fairly harsh operating conditions.

  7. Method of making a cermet fuel electrode containing an inert additive

    DOEpatents

    Jensen, R.R.

    1992-08-25

    An electrode is attached to a solid electrolyte material by: (1) mixing a metallic nickel component and 1 wt% to 10 wt% of yttria stabilized zirconia having particle diameters up to 3 micrometers with an organic binder solution to form a slurry, (2) applying the slurry to a solid zirconia electrolyte material, (3) heating the slurry to drive off the organic binder and form a porous layer of metallic nickel substantially surrounded and separated by the zirconia particles, and (4) electro-chemical vapor depositing a skeletal structure between and around the metallic nickel and the zirconia particles where the metallic nickel components do not substantially sinter to each other, yet the layer remains porous. 4 figs.

  8. Method of making a cermet fuel electrode containing an inert additive

    DOEpatents

    Jensen, Russel R.

    1992-01-01

    An electrode is attached to a solid electrolyte material by: (1) mixing a metallic nickel component and 1 wt% to 10 wt% of yttria stabilized zirconia having particle diameters up to 3 micrometers with an organic binder solution to form a slurry, (2) applying the slurry to a solid zirconia electrolyte material, (3) heating the slurry to drive off the organic binder and form a porous layer of metallic nickel substantially surrounded and separated by the zirconia particles, and (4) electro-chemical vapor depositing a skeletal structure between and around the metallic nickel and the zirconia particles where the metallic nickel components do not substantially sinter to each other, yet the layer remains porous.

  9. High Performance Composite Dielectric Ink for Ultracapacitors

    NASA Technical Reports Server (NTRS)

    Rolin, Terry D. (Inventor); Hill, Curtis W. (Inventor)

    2017-01-01

    The present invention is a dielectric ink and means for printing using said ink. Approximately 10-20% of the ink is a custom organic vehicle made of a polar solvent and a binder. Approximately 30-70% of the ink is a dielectric powder having an average particle diameter of approximately 10-750 nm. Approximately 5-15% of the ink is a dielectric constant glass. Approximately 10-35% of the ink is an additional amount of solvent. The ink is deposited on a printing substrate to form at least one printed product, which is then dried and cured to remove the solvent and binder, respectively. The printed product then undergoes sintering in an inert gas atmosphere.

  10. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    PubMed Central

    Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078

  11. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    PubMed

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  12. Knowledge-based grouping of modeled HLA peptide complexes.

    PubMed

    Kangueane, P; Sakharkar, M K; Lim, K S; Hao, H; Lin, K; Chee, R E; Kolatkar, P R

    2000-05-01

    Human leukocyte antigens are the most polymorphic of human genes and multiple sequence alignment shows that such polymorphisms are clustered in the functional peptide binding domains. Because of such polymorphism among the peptide binding residues, the prediction of peptides that bind to specific HLA molecules is very difficult. In recent years two different types of computer based prediction methods have been developed and both the methods have their own advantages and disadvantages. The nonavailability of allele specific binding data restricts the use of knowledge-based prediction methods for a wide range of HLA alleles. Alternatively, the modeling scheme appears to be a promising predictive tool for the selection of peptides that bind to specific HLA molecules. The scoring of the modeled HLA-peptide complexes is a major concern. The use of knowledge based rules (van der Waals clashes and solvent exposed hydrophobic residues) to distinguish binders from nonbinders is applied in the present study. The rules based on (1) number of observed atomic clashes between the modeled peptide and the HLA structure, and (2) number of solvent exposed hydrophobic residues on the modeled peptide effectively discriminate experimentally known binders from poor/nonbinders. Solved crystal complexes show no vdW Clash (vdWC) in 95% cases and no solvent exposed hydrophobic peptide residues (SEHPR) were seen in 86% cases. In our attempt to compare experimental binding data with the predicted scores by this scoring scheme, 77% of the peptides are correctly grouped as good binders with a sensitivity of 71%.

  13. Environmentally-Friendly Geopolymeric Binders Made with Silica

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2013-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works. It is a big contributor to global warming and climate change since its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. Recently there have been efforts to develop alternative binders with lower greenhouse gas emissions. One such class of binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders use natural or industrial waste raw materials with a very low CO2 footprint from grinding of the starting materials, and some from the production of the activating chemicals. The total CO2 emissions from carefully formulated mixtures can be as low as 1/10th - 1/5th of those of PC concrete mixtures with comparable properties. While use of industrial wastes as raw materials is environmentally preferable, the variability of their chemical compositions over time renders their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Silica sand is a natural material containing very high amounts of quartz. Silica fume is a very fine waste from silicon metal production that is mostly non-crystalline silica. This study describes the use of sodium hydroxide and sodium silicate solutions to yield mortars with mechanical properties comparable to those of portland cement mortars and with better chemical and thermal durability. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in less than 24 h. The consistency of the chemical compositions of these materials and their abundance in several large, developing countries makes silica attractive for producing sustainable concretes with reduced carbon footprints.

  14. Sustainability issues in laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Sreenivasan, R.; Goel, A.; Bourell, D. L.

    Sustainability is a consideration of resource utilization without depletion or adverse environmental impact. In manufacturing, important sustainability issues include energy consumption, waste generation, water usage and the environmental impact of the manufactured part in service. This paper deals with three aspects of sustainability as it applies to additive manufacturing. First is a review of the research needs for energy and sustainability as applied to additive manufacturing based on the 2009 Roadmap for Additive Manufacturing Workshop. The second part is an energy assessment for selective laser sintering (SLS) of polymers. Using polyamide powder in a 3D Systems Vanguard HiQ Sinterstation, energy loss during a build was measured due to the chamber heaters, the roller mechanism, the piston elevators and the laser. This accounted for 95% of the total energy consumption. An overall energy assessment was accomplished using eco-indicators. The last topic is electrochemical deposition of porous SLS non-polymeric preforms. The goal is to reduce energy consumption in SLS of non-polymeric materials. The approach was to mix a transient binder with the material, to create an SLS green part, to convert the binder, and then to remove the open, connected porosity and to densify the part by chemical deposition at room temperature within the pore network. The model system was silicon carbide powder mixed with a phenolic transient binder coupled with electrolytic deposition of nickel. Deposition was facilitated by inserting a conductive graphite cathode in the part center to draw the positive nickel ions through the interconnected porous network and to deposit them on the pore walls. The Roadmap for Additive Manufacturing Workshop was sponsored by the National Science Foundation under Grant CMMI-0906212 and by the Office of Naval Research under Grant N00014-09-1-0558. The electrolytic deposition research was sponsored by the National Science Foundation, Grant CMMI-0926316.

  15. The effect of crumb rubber particle size to the optimum binder content for open graded friction course.

    PubMed

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  16. Development of fire-resistant wood structural panels

    NASA Technical Reports Server (NTRS)

    Vaughan, T. W.; Etzold, R.

    1977-01-01

    Structural panels made with Xylok 210 resin as the binder had a burn-through resistance at least equal to the structural panels made with Kerimid 500. Therefore, because of its comparative ease of handling, Xylok 210 was selected as the resin binder to provide the baseline panel for the study of a means of improving the flame-spread resistance of the structural panels. The final resin-filler system consisted of Xylok 210 binder with the addition of ammonium oxalate and ammonium phosphate to the strands of the surface layers, using 24% of each salt based upon the air-dry weight of the strands. This system resulted in a panel with a flame-spread code of about 60, a Class 2 classification. A standard phenolic based structural panel had a flame-spread greater than 200 for laboratory prepared panels. The burn-through tests indicated an average burn-through time of 588 seconds for the specimens made with the final system. This compares to an average burn-through time of 287 seconds for the standard phenolic base structural specimen. One full-size panel was made with the final system.

  17. Ceramic honeycomb structures and the method thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Cagliostro, Domenick E. (Inventor)

    1987-01-01

    The subject invention pertains to a method of producing an improved composite-composite honeycomb structure for aircraft or aerospace use. Specifically, the subject invention relates to a method for the production of a lightweight ceramic-ceramic composite honeycomb structure, which method comprises: (1) pyrolyzing a loosely woven fabric/binder having a honeycomb shape and having a high char yield and geometric integrity after pyrolysis at between about 700 and 1,100 C; (2) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric/binder of step (1); (3) recovering the coated ceramic honeycomb structure; (4) removing the pyrolyzed fabric/binder of the structure of step (3) by slow pyrolysis at between 700 and 1000 C in between about a 2 to 5% by volume oxygen atmosphere for between about 0.5 and 5 hr.; and (5) substantially evenly depositing on and within the rigid hollow honeycomb structure at least one additional layer of the same or a different ceramic material by chemical vapor deposition and chemical vapor infiltration. The honeycomb shaped ceramic articles have enhanced physical properties and are useful in aircraft and aerospace uses.

  18. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    DOE PAGES

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...

    2016-08-30

    In this paper, magnetite (Fe 3O 4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe 3O 4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridgesmore » between the carbon and Fe 3O 4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less

  19. Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Li, Xiaolin; Peng, Huisheng; Wang, Donghai

    2015-12-22

    Maintaining structural stability is a great challenge for high-capacity conversion electrodes with large volume change but is necessary for the development of high-energy-density, long-cycling batteries. Here, we report a stable phosphorus anode for sodium ion batteries by the synergistic use of chemically bonded phosphorus-carbon nanotube (P-CNT) hybrid and cross-linked polymer binder. The P-CNT hybrid was synthesized through ball-milling of red phosphorus and carboxylic group functionalized carbon nanotubes. The P-O-C bonds formed in this process help maintain contact between phosphorus and CNTs, leading to a durable hybrid. In addition, cross-linked carboxymethyl cellulose-citric acid binder was used to form a robust electrode. As a result, this anode delivers a stable cycling capacity of 1586.2 mAh/g after 100 cycles, along with high initial Coulombic efficiency of 84.7% and subsequent cycling efficiency of ∼99%. The unique electrode framework through chemical bonding strategy reported here is potentially inspirable for other electrode materials with large volume change in use.

  20. Pigment and Binder Concentrations in Modern Paint Samples Determined by IR and Raman Spectroscopy.

    PubMed

    Wiesinger, Rita; Pagnin, Laura; Anghelone, Marta; Moretto, Ligia M; Orsega, Emilio F; Schreiner, Manfred

    2018-06-18

    Knowledge of the techniques employed by artists, such as the composition of the paints, colour palette, and painting style, is of crucial importance not only to attribute works of art to the workshop or artist but also to develop strategies and measures for the conservation and restoration of the art. While much research has been devoted to investigating the composition of an artist's materials from a qualitative point of view, little effort has been made in terms of quantitative analyses. This study aims to quantify the relative concentrations of binders (acrylic and alkyd) and inorganic pigments in different paint samples by IR and Raman spectroscopies. To perform this quantitative evaluation, reference samples of known concentrations were prepared to obtain calibration plots. In a further step, the quantification method was verified by additional test samples and commercially available paint tubes. The results obtained confirm that the quantitative method developed for IR and Raman spectroscopy is able to efficiently determine different pigment and binder concentrations of paint samples with high accuracy. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaohui; Jacobsen, Stefan; He Jianying

    2009-08-15

    The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrixmore » bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.« less

  2. Comparison of pelletized lime with other antistripping additives.

    DOT National Transportation Integrated Search

    2014-05-01

    Stripping is a common problem in HMA pavements in Oregon, especially in Eastern Oregon. : Stripping is the degradation of the bond between the aggregate and the asphalt binder due to the : presence of water this mechanism of degradation can lead ...

  3. Development of a green binder system for paper products.

    PubMed

    Flory, Ashley R; Vicuna Requesens, Deborah; Devaiah, Shivakumar P; Teoh, Keat Thomas; Mansfield, Shawn D; Hood, Elizabeth E

    2013-03-26

    It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of "green" binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found.

  4. Development of a green binder system for paper products

    PubMed Central

    2013-01-01

    Background It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. Results In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. Conclusions These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of “green” binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found. PMID:23531016

  5. Assessment of low temperature cracking in asphalt pavement mixes and rheological performance of asphalt binders

    NASA Astrophysics Data System (ADS)

    Sowah-Kuma, David

    Government spends a lot of money on the reconstruction and rehabilitation of road pavements in any given year due to various distresses and eventual failure. Low temperature (thermal) cracking, one of the main types of pavement distress, contributes partly to this economic loss, and comes about as a result of accumulated tensile strains exceeding the threshold tensile strain capacity of the pavement. This pavement distress leads to a drastic reduction of the pavement's service life and performance. In this study, the severity of low temperature (thermal) cracking on road pavements selected across the Province of Ontario and its predicted time to failure was assessed using the AASTHO Mechanistic-Empirical Pavement Design Guide (MEPDG) and AASHTOWARE(TM) software, with inputs such as creep compliance and tensile strength from laboratory test. Highway 400, K1, K2, Y1, Sasobit, Rediset LQ, and Rediset WMX were predicted to have a pavement in-service life above 15 years. Additionally, the rheological performance of the recovered asphalt binders was assessed using Superpave(TM) tests such as the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). Further tests using modified standard protocols such as the extended bending beam rheometer (eBBR) (LS-308) test method and double-edge notched tension (DENT) test (LS-299) were employed to evaluate the failure properties associated with in service performance. The various rheological tests showed K1 to be the least susceptible to low temperature cracking compared to the remaining samples whiles Highway 24 will be highly susceptible to low temperature cracking. X-ray fluorescence (XRF) analysis was performed on the recovered asphalt binders to determine the presence of metals such as zinc (Zn) and molybdenum (Mo) believed to originate from waste engine oil, which is often added to asphalt binders. Finally, the severity of oxidative aging (hardening) of the recovered asphalt binders was also evaluated using the Fourier transform infrared (FTIR) spectroscopy to determine the abundance of functional groups such as the carbonyl (CO) and sulfoxide (SO). Functional groups such as styrene and butadiene were also evaluated to determine the polymer modifier content in recovered asphalt binders.

  6. Impact of the Ageing on Viscoelastic Properties of Bitumen with the Liquid Surface Active Agent at Operating Temperatures

    NASA Astrophysics Data System (ADS)

    Iwański, Marek; Cholewińska, Malgorzata; Mazurek, Grzegorz

    2017-10-01

    The paper presents the influence of the ageing on viscoelastic properties of the bitumen at road pavement operating temperatures. The ageing process of bituminous binders causes changes in physical and mechanical properties of the bitumen. This phenomenon takes place in all stages of bituminous mixtures manufacturing, namely: mixing, storage, transport, placing. Nevertheless, during the service life it occurs the increase in stiffness of asphalt binder that is caused by the physical hardening of bitumen as well as the influence of oxidation. Therefore, it is important to identify the binder properties at a high and low operating temperatures of asphalt pavement after simulation of an ageing process. In the experiment as a reference bitumen, the polymer modified bitumen PMB 45/80-65 was used. The liquid surface active agent FA (fatty amine) was used as a bitumen viscosity-reducing modifier. It was added in the amount of 0,2%, 0,4% and 0,6% by the bitumen mass. All binder properties have been determined before ageing (NEAT) and after long-term ageing simulated by the Pressure Ageing Vessel method (PAV). To determine the binder properties at high temperatures the dynamic viscosity at 60°C was tested. On the basis of test results coming from the dynamic viscosity test it was calculated the binder hardening index. The properties at a low temperature were determined by measuring the creep modulus using Bending Beam Rheometer (BBR) at four temperatures: -10°C, -16°C, -22°C and -28°C. The stiffness creep modulus “S” and parameter “m” were determined. On the basis of dynamic viscosity test it was found that the ageing process caused a slight decrease in a dynamic viscosity. The level of a hardening index considerably increased at 0.6% fatty amine content. The long-term ageing process had a minor effect on stiffening of a polymer modified bitumen with FA additive regardless of a low temperature and an amount of fatty amine content.

  7. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    PubMed

    Mudge, David W; Johnson, David W; Hawley, Carmel M; Campbell, Scott B; Isbel, Nicole M; van Eps, Carolyn L; Petrie, James J B

    2011-05-13

    Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of calcium binders, which continue to be widely used. The paper seeks to answer whether the continued use of aluminium is justifiable in the absence of prospective data establishing its safety, and we call for prospective trials to be conducted comparing the available binders both in terms of efficacy and safety. © 2011 Mudge et al; licensee BioMed Central Ltd.

  8. The use of abdominal binders to treat over-shunting headaches.

    PubMed

    Sklar, Frederick H; Nagy, Laszlo; Robertson, Brian D

    2012-06-01

    Headaches are common in children with shunts. Headaches associated with over-shunting are typically intermittent and tend to occur later in the day. Lying down frequently makes the headaches better. This paper examines the efficacy of using abdominal binders to treat over-shunting headaches. Over an 18-year period, the senior author monitored 1027 children with shunts. Office charts of 483 active patients were retrospectively reviewed to identify those children with headaches and, in particular, those children who were thought to have headaches as a result of over-shunting. Abdominal binders were frequently used to treat children with presumed over-shunting headaches, and these data were analyzed. Of the 483 patients undergoing chart review, 258 (53.4%) had headache. A clinical diagnosis of over-shunting was made in 103 patients (21.3% overall; 39.9% of patients with headache). In 14 patients, the headaches were very mild (1-2 on a 5-point scale) and infrequent (1 or 2 per month), and treatment with an abdominal binder was not thought indicated. Eighty-nine patients were treated with a binder, but 19 were excluded from this retrospective study for noncompliance, interruption of the binder trial, or lack of follow-up. The remaining 70 pediatric patients, who were diagnosed with over-shunting headaches and were treated with abdominal binders, were the subjects of a more detailed retrospective study. Significant headache improvement was observed in 85.8% of patients. On average, the patients wore the binders for approximately 1 month, and headache relief usually persisted even after the binders were discontinued. However, the headaches eventually did recur in many of the patients more than a year later. In these patients, reuse of the abdominal binder was successful in relieving headaches in 78.9%. The abdominal binder is an effective, noninvasive therapy to control over-shunting headaches in most children. This treatment should be tried before any surgery is considered. It is suggested that the abdominal binder may modulate abnormally increased intracranial pulse pressures associated with over-shunting. Interactions with the cerebrovascular bed are suspected to account for persistent headache relief after the binder is discontinued.

  9. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    PubMed Central

    2011-01-01

    Background Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. Discussion The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. Summary This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of calcium binders, which continue to be widely used. The paper seeks to answer whether the continued use of aluminium is justifiable in the absence of prospective data establishing its safety, and we call for prospective trials to be conducted comparing the available binders both in terms of efficacy and safety. PMID:21569446

  10. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  11. Preparation and magnetic properties of the Sr-hexaferrite with foam structure

    NASA Astrophysics Data System (ADS)

    Guerrero, A. L.; Espericueta, D. L.; Palomares-Sánchez, S. A.; Elizalde-Galindo, J. T.; Watts, B. E.; Mirabal-García, M.

    2016-12-01

    This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties.

  12. Modeling of Human Prokineticin Receptors: Interactions with Novel Small-Molecule Binders and Potential Off-Target Drugs

    PubMed Central

    Levit, Anat; Yarnitzky, Talia; Wiener, Ayana; Meidan, Rina; Niv, Masha Y.

    2011-01-01

    Background and Motivation The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted proteins of ∼80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer. Methods and Results Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity. PMID:22132188

  13. Phosphate-bonded ceramic–wood composites : R&D project overview and invitation to participate

    Treesearch

    Theodore L. Laufenberg; Matt Aro

    2004-01-01

    We are developing chemically bonded ceramic phosphate binders for the production of biofiber-based composite materials. These binders promise to have better processing and properties than some current cement and polymer resin binder systems. The ceramic phosphate binders (termed Ceramicrete), if used in place of cement and polymers, will significantly reduce the...

  14. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries.

    PubMed

    Luo, Shu; Wang, Ke; Wang, Jiaping; Jiang, Kaili; Li, Qunqing; Fan, Shoushan

    2012-05-02

    Binder-free LiCoO(2) -SACNT cathodes with excellent flexibility and conductivity are obtained by constructing a continuous three-dimensional super-aligned carbon nanotube (SACNT) framework with embedded LiCoO(2) particles. These binder-free cathodes display much better cycling stability, greater rate performance, and higher energy density than classical cathodes with binder. Various functional binder-free SACNT composites can be mass produced by the ultrasonication and co-deposition method described in this paper. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2002-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting. The solid acid material has the general form M.sub.a H.sub.b (XO.sub.t).sub.c.

  16. Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment

    NASA Technical Reports Server (NTRS)

    Murphy, Taylor J.; David, Kaia E.; Babel, Hank W.

    1995-01-01

    Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate.

  17. Binder-free nitrogen-doped carbon paper electrodes derived from polypyrrole/cellulose composite for Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Zhaohui; Zhu, Jiefang

    2016-02-01

    This work presents a novel binder-free nitrogen-doped carbon paper electrode (NCPE), which was derived from a N-rich polypyrrole (PPy)/cellulose-chopped carbon filaments (CCFs) composite, for Li-O2 batteries. The fabrication of NCPE involved cheap raw materials (e.g., Cladophora sp. green algae) and easy operation (e.g., doping N by a carbonization of N-rich polymer), which is especially suitable for large-scale production. The NCPE exhibited a bird's nest microstructure, which could provide the self-standing electrode with considerable mechanic durability, fast Li+ and O2 diffusion, and enough space for the discharge product deposition. In addition, the NCPE contained N-containing function groups, which may promote the electrochemical reactions. Furthermore, binder-free architecture designs can prevent binder-involved parasitic reactions. A Li-O2 cell with the NCPE displayed a cyclability of more than 30 cycles at a constant current density of 0.1 mA/cm2. The 1st discharge capacity for a cell with the NCPE reached 8040 mAh/g at a current density of 0.1 mA/cm2, with a cell voltage around 2.81 V. A cell with the NCPE displayed a coulombic efficiency of 81% on the 1st cycle at a current density of 0.2 mA/cm2. These results represent a promising progress in the development of a low-cost and versatile paper-based O2 electrode for Li-O2 batteries.

  18. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  19. Characterizing and modeling organic binder burnout from green ceramic compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, K.G.; Cesarano, J. III; Cochran, R.J.

    New characterization and computational techniques have been developed to evaluate and simulate binder burnout from pressed powder compacts. Using engineering data and a control volume finite element method (CVFEM) thermal model, a nominally one dimensional (1-D) furnace has been designed to test, refine, and validate computer models that simulate binder burnout assuming a 1-D thermal gradient across the ceramic body during heating. Experimentally, 1-D radial heat flow was achieved using a rod-shaped heater that directly heats the inside surface of a stack of ceramic annuli surrounded by thermal insulation. The computational modeling effort focused on producing a macroscopic model formore » binder burnout based on continuum approaches to heat and mass conservation for porous media. Two increasingly complex models have been developed that predict the temperature and mass of a porous powder compact as a function of time during binder burnout. The more complex model also predicts the pressure within a powder compact during binder burnout. Model predictions are in reasonably good agreement with experimental data on binder burnout from a 57--65% relative density pressed powder compact of a 94 wt% alumina body containing {approximately}3 wt% binder. In conjunction with the detailed experimental data from the prototype binder burnout furnace, the models have also proven useful for conducting parametric studies to elucidate critical i-material property data required to support model development.« less

  20. Effect of binder liquid type on spherical crystallization.

    PubMed

    Maghsoodi, Maryam; Hajipour, Ali

    2014-11-01

    Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.

  1. The Influence of Phosphor and Binder Chemistry on the Aging Characteristics of Remote Phosphor Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Yaga, Robert; Lamvik, Michael

    The influence of phosphor and binder layer chemistries on the lumen maintenance and color stability of remote phosphor disks were examined using wet high-temperature operational lifetime testing (WHTOL). As part of the experimental matrix, two different correlated color temperature (CCT) values, 2700 K and 5000 K, were studied and each had a different binder chemistry. The 2700 K samples used a urethane binder whereas the 5000 K samples used an acrylate binder. Experimental conditions were chosen to enable study of the binder and phosphor chemistries and to minimize photo-oxidation of the polycarbonate substrate. Under the more severe WHTOL conditions ofmore » 85°C and 85% relative humidity (RH), absorption in the binder layer significantly reduced luminous flux and produced a blue color shift. The milder WHTOL conditions of 75°C and 75% RH, resulted in chemical changes in the binder layer that may alter its index of refraction. As a result, lumen maintenance remained high, but a slight yellow shift was found. The aging of remote phosphor products provides insights into the impact of materials on the performance of phosphors in an LED lighting system.« less

  2. The impact of nurse-led education on haemodialysis patients' phosphate binder medication adherence.

    PubMed

    Sandlin, Kimberly; Bennett, Paul N; Ockerby, Cherene; Corradini, Ann-Marie

    2013-03-01

    Phosphate binder medication adherence is required to maintain optimal phosphate levels and minimise bone disease in people with end stage kidney disease. To examine the impact of a nurse-led education intervention on bone disorder markers, adherence to phosphate binder medication and medication knowledge. Descriptive study with a paired pre-post intervention survey. Adults receiving haemodialysis. Twelve-week intervention where patients self-administered their phosphate binder medication at each dialysis treatment. Nurses provided individualised education. Patients completed a pre- and post-intervention survey designed to explore their knowledge of phosphate binders. There were no statistically significant changes in clinical markers but a significant improvement in the proportion of patients who took their phosphate binder correctly, increasing from 44 to 72% (p = 0.016). There were moderate to large effect size changes for improved knowledge. A nurse-led intervention education programme can increase patients' phosphate binder adherence. However, this does not necessarily manifest into improved serum phosphate levels. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  3. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    PubMed Central

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S.

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875

  4. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Feng, Lili; Yang, Wenrong; Zhang, Yinyin; Zhang, Yanli; Bai, Wei; Liu, Bo; Zhang, Wei; Chuan, Yongming; Zheng, Ziguang; Guan, Hongjin

    2017-10-01

    When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.

  5. Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry

    DOE PAGES

    Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.; ...

    2016-11-01

    In this study, we utilize silver vanadium phosphorous oxide, Ag 2VO 2PO 4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag 2VO 2PO 4 only, Ag 2VO 2PO 44 with binder, and Ag 2VOmore » 2PO 4 with binder and carbon. Constant current discharge, pulse testing and impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag 0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag 0 formed. Results indicate that the metal center reduced (V 5+ or Ag +) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag 0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag 0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less

  6. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.

    PubMed

    Higgins, Thomas M; Park, Sang-Hoon; King, Paul J; Zhang, Chuanfang John; McEvoy, Niall; Berner, Nina C; Daly, Dermot; Shmeliov, Aleksey; Khan, Umar; Duesberg, Georg; Nicolosi, Valeria; Coleman, Jonathan N

    2016-03-22

    This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm(2)), a high areal capacity of 3 mA·h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

  7. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    NASA Astrophysics Data System (ADS)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  8. Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.

    In this study, we utilize silver vanadium phosphorous oxide, Ag 2VO 2PO 4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag 2VO 2PO 4 only, Ag 2VO 2PO 44 with binder, and Ag 2VOmore » 2PO 4 with binder and carbon. Constant current discharge, pulse testing and impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag 0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag 0 formed. Results indicate that the metal center reduced (V 5+ or Ag +) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag 0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag 0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less

  9. Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams

    DOEpatents

    Siriwardane, Ranjani V.

    2016-05-10

    Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.

  10. Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders.

    PubMed

    Jiménez-Moreno, Ester; Montalvillo-Jiménez, Laura; Santana, Andrés G; Gómez, Ana M; Jiménez-Osés, Gonzalo; Corzana, Francisco; Bastida, Agatha; Jiménez-Barbero, Jesús; Cañada, Francisco Javier; Gómez-Pinto, Irene; González, Carlos; Asensio, Juan Luis

    2016-05-25

    Development of strong and selective binders from promiscuous lead compounds represents one of the most expensive and time-consuming tasks in drug discovery. We herein present a novel fragment-based combinatorial strategy for the optimization of multivalent polyamine scaffolds as DNA/RNA ligands. Our protocol provides a quick access to a large variety of regioisomer libraries that can be tested for selective recognition by combining microdialysis assays with simple isotope labeling and NMR experiments. To illustrate our approach, 20 small libraries comprising 100 novel kanamycin-B derivatives have been prepared and evaluated for selective binding to the ribosomal decoding A-Site sequence. Contrary to the common view of NMR as a low-throughput technique, we demonstrate that our NMR methodology represents a valuable alternative for the detection and quantification of complex mixtures, even integrated by highly similar or structurally related derivatives, a common situation in the context of a lead optimization process. Furthermore, this study provides valuable clues about the structural requirements for selective A-site recognition.

  11. Mix design and mechanical performance of geopolymer binder for sustainable construction and building material

    NASA Astrophysics Data System (ADS)

    Saeli, Manfredi; Novais, Rui M.; Seabra, Maria Paula; Labrincha, João A.

    2017-11-01

    Sustainability in construction is a major concern worldwide, due to the huge volume of materials and energy consumed by this sector. Associated supplementing industries (e.g. Portland cement production) constitute a significant source of CO2 emissions and global warming. Valorisation and reuse of industrial wastes and by-products make geopolymers a solid and sustainable via to be followed as a valid alternative to Portland cement. In this work the mix design of a green fly ash-based geopolymer is evaluated as an environmentally friendly construction material. In the pursuit of sustainability, wastes from a regional kraft pulp industry are exploited for the material processing. Furthermore, a simple, reproducible, and low-cost manufacture is used. The mix design is hence optimised in order to improve the desirable mechanical performance of the material intended for structural applications in construction. Tests indicate that geopolymers may efficiently substitute the ordinary Portland cement as a mortar/concrete binder. Furthermore, valorisation and reuse of wastes in geopolymers is a suboptimal way of gaining financial surplus for the involved industrial players, while contributes for the implementation of a desirable circular economy.

  12. Flexible energetic materials and related methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaps, Ronald J.

    Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques maymore » be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.« less

  13. Research of movement process of fiber suspension in accelerating unit of wet grinding disintegrator

    NASA Astrophysics Data System (ADS)

    Mykhaylichenko, S. A.; Dubinin, N. N.; Kachaev, A. E.; Goncharov, S. I.; Farafonov, A. A.

    2018-03-01

    At the present stage of development of building material science, products reinforced with fibers of various origin (mineral, organic, metal and others) are commonly used. Determination of the optimal structure and the chemical composition of the fiber depends on a number of requirements for filler, binder, and other miscellaneous additives, etc. The rational combination of physical and chemical composition of the primary matrix of the product (e.g., binders, cement) with dispersion of anisotropic fiber of filler not only contributes to the strength of products, but also stabilizes their internal structure: prevents the occurrence of internal stress of the cement stone, increases the adhesive interaction of particles of cement at the contact boundary with fibers, etc.

  14. Coating hydroxiapatite on stainless steel 316 L by using sago starch as binder with dip-coating method

    NASA Astrophysics Data System (ADS)

    Fadli, A.; Akbar, F.; Prabowo, A.; Hidayah, P. H.

    2018-04-01

    Hydroxyapatite (HA) is a mineral form of naturally occurring apatite calcium with Ca10(PO4)6(OH)2 formula. One of the major innovations in the field of bone reconstruction is to apply HA as a surface coating on a mechanically strong implant metal and to improve the stability of bone implants thereby increasing the lifetime of the metal implants. Pure hydroxyapatite has poor mechanical properties so it is necessary to add sago starch as a binder to combine the strength and hardness of metal surfaces with bioactive properties of hydroxyapatite by Dip Coating method. Stainless steel 316L is the most commonly used alloy as an implant for bones and teeth due to its excellent corrosion and oxidation resistance and is easily formed. In this study, hydroxyapatite coatings used fixed variables as hydroxyapatite mass (10 grams), aquades mass (20 grams), dipping time (20 seconds), and calcination conditions (800°C, 1 hour). The variables are sago starch mass (1, 1.25, 1.5 gram) and stirring time (16, 20, 24 hours). The shear strength value is higher in the addition of 1.25, 10, 20, and again in the binder ratio of 1.5; 10; 20. The addition of stirring time causes a decrease in shear strength. The highest shear strength value obtained was 3.07 MPa. The layer attached to the substrate is a hydroxyapatite with a composition of 99.4% as evidenced by the results of XRD analysis.

  15. Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge.

    PubMed

    Walling, Sam A; Kinoshita, Hajime; Bernal, Susan A; Collier, Nick C; Provis, John L

    2015-05-07

    A cementitious system for the immobilisation of magnesium rich Magnox sludge was produced by blending an Mg(OH)2 slurry with silica fume and an inorganic phosphate dispersant. The Mg(OH)2 was fully consumed after 28 days of curing, producing a disordered magnesium silicate hydrate (M-S-H) with cementitious properties. The structural characterisation of this M-S-H phase by (29)Si and (25)Mg MAS NMR showed clearly that it has strong nanostructural similarities to a disordered form of lizardite, and does not take on the talc-like structure as has been proposed in the past for M-S-H gels. The addition of sodium hexametaphosphate (NaPO3)6 as a dispersant enabled the material to be produced at a much lower water/solids ratio, while still maintaining the fluidity which is essential in practical applications, and producing a solid monolith. Significant retardation of M-S-H formation was observed with larger additions of phosphate, however the use of 1 wt% (NaPO3)6 was beneficial in increasing fluidity without a deleterious effect on M-S-H formation. This work has demonstrated the feasibility of using M-S-H as binder to structurally immobilise Magnox sludge, enabling the conversion of a waste into a cementitious binder with potentially very high waste loadings, and providing the first detailed nanostructural description of the material thus formed.

  16. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  17. Effect of dietary supplementation with clay-based binders on biochemical and histopathological changes in organs of turkey fed with aflatoxin-contaminated diets.

    PubMed

    Lala, A O; Ajayi, O L; Oso, A O; Ajao, M O; Oni, O O; Okwelum, N; Idowu, O M O

    2016-12-01

    This study was carried out to investigate the effect of dietary supplementation with molecular or nano-clay binders on biochemical and histopathological examination of organs of turkeys fed diets contaminated with aflatoxin B 1. Two hundred and sixteen unsexed 1-day-old British United Turkeys were randomly allotted to nine diets in a 3 × 3 factorial arrangement of diets supplemented with no toxin binder, molecular toxin binder (MTB) and nano-clay toxin binder, each contaminated with 0, 60 and 110 ppb aflatoxin B 1 respectively. There were three replicates per treatment with eight turkeys per replicate. Biochemical analyses, organ weights and histopathological changes of some organs were examined at the end of the study which lasted for 84 days. Turkeys fed diets supplemented with molecular and nano-binders showed higher (p < 0.001) total serum protein, reduced (p < 0.001) serum uric acid and GGT concentration values when compared with those fed aflatoxin-contaminated diets supplemented with no binder. Turkeys fed aflatoxin-contaminated diets supplemented with no binder had increased (p < 0.001) AST and ALT concentration when compared with other treatments. The heaviest (p < 0.001) liver and intestinal weight was noticed with turkeys fed diets supplemented with no binder and contaminated with 110 ppb aflatoxin B 1 . Pathologically, there was no visible morphological alteration noticed in all turkeys fed uncontaminated diets and nano-clay-supplemented group. Hepatic paleness, hepatomegaly and yellowish discolouration of the liver were observed with turkeys fed diets containing no binder but contaminated with 60 and 110 ppb aflatoxin B1. Intestinal histopathological changes such as goblet cell hyperplasia, villous atrophy and diffuse lymphocytic enteritis were more prominent in turkeys fed diets containing no toxin binder and MTB. In conclusion, there were improved biochemical parameters and reduced deleterious effects of aflatoxin B 1 in turkeys fed diet supplemented with clay binders. However, the improvement was more conspicuous in the nano-clay-supplemented group than molecular clay group. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  18. Evaluate the contribution of the mixture components on the longevity and performance of FC-5 : [summary].

    DOT National Transportation Integrated Search

    2014-05-01

    At its most basic, an asphalt mixture is asphalt : binder and crushed stone aggregate. This : seemingly simple mixture is very complex; method : of preparation and application, additives, and : aggregate type all influence the quality and : durabilit...

  19. CONTROLLING ODOROUS EMISSIONS FROM IRON FOUNDRIES

    EPA Science Inventory

    The report discusses the control of odorous emissions from iron foundries. he main process sources of odors in iron foundries are mold and core making, casting, and sand shakeout. he odors are usually caused by chemicals, which may be present as binders and other additives to the...

  20. Effect of different binders on the physico-chemical, textural, histological, and sensory qualities of retort pouched buffalo meat nuggets.

    PubMed

    Devadason, I Prince; Anjaneyulu, A S R; Babji, Y

    2010-01-01

    The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.

  1. Influence of pH on in vitro disintegration of phosphate binders.

    PubMed

    Stamatakis, M K; Alderman, J M; Meyer-Stout, P J

    1998-11-01

    Hyperphosphatemia, a common complication in patients with end-stage renal disease, is treated with oral phosphate-binding medications that restrict phosphorus absorption from the gastrointestinal (GI) tract. Impaired product performance, such as failure to disintegrate and/or dissolve in the GI tract, could limit the efficacy of the phosphate binder. Disintegration may be as important as dissolution for predicting in vitro product performance for medications that act locally on the GI tract, such as phosphate binders. Furthermore, patients with end-stage renal disease have a wide range in GI pH, and pH can influence a product's performance. The purpose of this study was to determine the effect of pH on in vitro disintegration of phosphate binders. Fifteen different commercially available phosphate binders (seven calcium carbonate tablet formulations, two calcium acetate tablet formulations, three aluminum hydroxide capsule formulations, and three aluminum hydroxide tablet formulations) were studied using the United States Pharmacopeia (USP) standard disintegration apparatus. Phosphate binders were tested in simulated gastric fluid (pH 1.5), distilled water (pH 5.1), and simulated intestinal fluid (pH 7.5). Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within 30 minutes. Results indicate that 9 of the 15 phosphate binders tested showed statistically significant differences in disintegration time (DT) based on pH. The percentage of binders that passed the disintegration study test in distilled water, gastric fluid, and intestinal fluid were 80%, 80%, and 73%, respectively. The findings of this study show that the disintegration of commercially available phosphate binders is highly variable. The pH significantly affected in vitro disintegration in the majority of phosphate binders tested; how significantly this affects in vivo performance has yet to be studied.

  2. Seal coat binder performance specifications.

    DOT National Transportation Integrated Search

    2013-11-01

    Need to improve seal coat binder specs: replace empirical tests (penetration, ductility) with : performance-related tests applicable to both : unmodified and modified binders; consider temperatures that cover entire in service : range that are tied t...

  3. Polysiloxane binder for lithium ion battery electrodes

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2015-10-13

    An electrode includes a binder and an electroactive material, wherein the binder includes a polymer including a linear polysiloxane or a cyclic polysiloxane. The polymer may be generally represented by Formula I: ##STR00001##

  4. Practical experiences with new types of highly modified asphalt binders

    NASA Astrophysics Data System (ADS)

    Špaček, Petr; Hegr, Zdeněk; Beneš, Jan

    2017-09-01

    As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.

  5. Modified binders on the basis of flotation tailings

    NASA Astrophysics Data System (ADS)

    Shapovalov, N. A.; Zagorodnyuk, L. Kh; Shchekina, A. Yu; Gorodov, A. I.

    2018-03-01

    The article proposes compositions of efficient modified composite binders on the basis of portland cement and flotation tailings; the new binders attain the ultimate compressive stress that is twice as high as that of the cement stone. At that, use of annually growing volume of flotation tailings in the production of the composite binder is a rational way for recycling this type of waste and allows saving the planet's natural resources.

  6. The effects of two thick film deposition methods on tin dioxide gas sensor performance.

    PubMed

    Bakrania, Smitesh D; Wooldridge, Margaret S

    2009-01-01

    This work demonstrates the variability in performance between SnO(2) thick film gas sensors prepared using two types of film deposition methods. SnO(2) powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 - 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis.

  7. The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    PubMed Central

    Bakrania, Smitesh D.; Wooldridge, Margaret S.

    2009-01-01

    This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 – 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis. PMID:22399977

  8. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.

  9. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    NASA Astrophysics Data System (ADS)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was prepared, La0.85Sr0.15MnO 3 (LSM) was selected as the cathode. Cells were tested at 800°C using humidified H2 as fuel. Cell with anode prepared by using pure water as non-solvent shows a maximum power density up to 437mW/cm 2. By comparing the anode geometry and electrochemical performance, it indicated that microstructure with longer finger-like pores and thinner macrovoid free layer close to the inner side of the tube is benefit to cell performance. Another factor that can affect the microstructure of anode support is the ratio of solvent and polymer binder. In this research, anode-supported MT-SOFCs have been fabricated by phase inversion method. The effect of the viscosity of the casting slurry on the microstructure of YSZ-NiO anode support has been investigated. The microstructure of the YSZ-NiO support can be effectively controlled by varying the slurry composition with different solvent and polymer binder content. Gas permeation and mechanical strength of the YSZ-NiO support have been measured and four YSZ-NiO anode supports have been chosen for subsequent cell fabrication. The effective conductivity of the different anode supports has been measured at room temperature after reduced. Anode-supported single cells with YSZ electrolyte and LSM/YSZ cathode are fabricated and tested. Maximum cell power densities of 606 mWcm-2, 449 mWcm -2, 339 mWcm-2 and 253 mWcm-2 have been obtained respectively at 750 °C with humidified hydrogen as fuel and ambient air as oxidant. The correlation between the cell electrochemical performance and anode microstructures has been discussed. Adjusting the slurry composition by introducing additive is also an effective approach to tailor the microstructure of the anode support. Poly(ethylene glycol) (PEG), which is a common applied polymer additive, was selected to fabricate the YSZ-NiO anode supports. The effect of molecular weight and amount of PEG additive on the thermodynamics of the casting solutions was characterized by measuring the coagulation value. Viscosity of the casting slurries was also measured and the influence of PEG additive on viscosity was studied and discussed. The presence of PEG in the casting slurry can greatly influence the final anode support microstructure. Based on the microstructure result and the measured gas permeation value, two anode supports were selected for cell fabrication. For cell with the anode support fabricated using slurry with PEG additive, a maximum cell power density of 704 mWcm-2 is obtained at 750 oC with humidified hydrogen as fuel and ambient air as oxidant; cell fabricated without any PEG additive shows the peak cell power density of 331 mWcm-2. The relationship between anode microstructure and cell performance was discussed. Anode-supported micro-tubular solid oxide fuel cells (MT-SOFCs) based on BaZr0.1Ce0.7Y0.1Yb0.1O 3-delta (BZCYYb) proton-conducting electrolyte have been prepared using a phase inversion method. Three sulfur-free polymer binder candidates ethyl cellulose (EC), polyvinylidene fluoride (PVDF), polyetherimide (PEI) and sulfur-containing polythersulfone (PESf) were used as polymer binders to fabricate NiO-BZCYYb anode. The overall influence of polymer binder on the anode supports was evaluated. Sulfide impurity generated from PESf was revealed by XRD and X-ray photoelectron spectroscopy (XPS). The difference in the anode microstructure for samples fabricated by different polymer binders was examined by scanning electron microscope (SEM) and analyzed by measuring the gas permeation data of the reduced samples. Single cells based on different anode supports were characterized in anode-supported MT-SOFCs with the cell configuration of Ni-BZCYYb anode, BZCYYb electrolyte and La0.6Sr 0.4Co0.2Fe0.8O3-delta (LSCF)-BZCYYb cathode at 650 °C using hydrogen as fuel and ambient air as oxidant. MT-SOFCs of the anode fabricated using PEI show maximum power density of 0.45 Wcm -2 compared with 0.35 Wcm-2 for cells fabricated with PESf. The difference in cell performance was attributed to the phase purity of the anode fabricated by different polymer binders. Sulfur-free polymer binder PEI exhibits advantages over the commonly applied PESf and other sulfur-free polymer binder candidates. To eliminate the skin layer formed close to the inner side of the tubular sample when using the phase inversion method. Polyethersulfone (PESf)-polyethylenimine (PEI) blend was employed as the polymer binder to fabricate the micro-tubular solid oxide fuel cells (MT-SOFCs). The potential impurity introduced in the anode support by the polymer binder was examined by XPS and the resulting novel microstructure was analyzed based on the backscattered electron (BSE) images. Cells fabricated with blend polymer binder showed significantly enhanced power output compared with those cells only fabricated with PEI or PESf. The improved cell performance demonstrated that using blend polymer as binder is a promising and versatile approach for MT-SOFC fabrication via phase inversion method. Finally, to investigate the effect of the anode microstructure on the total cell performance, two types of anode support with different microstructure were prepared via the phase inversion method at different temperature. Cells fabricated based on these two anode supports were tested at 750 °C with hydrogen or hydrogen mixture with fuel gas. The measured current density-voltage (I-V) curves were fitted by a polarization model, and several parameters were archived through the modeling process. The influence of the anode support on the total cell performance was discussed based on the calculated result.

  10. Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins.

    PubMed

    Kavanagh, Owen; Elliott, Christopher T; Campbell, Katrina

    2015-04-01

    Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins.

  11. Final Report for X-ray Diffraction Sample Preparation Method Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  12. Experimentally validated computational modeling of organic binder burnout from green ceramic compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, K.G.; Cochran, R.J.; Blackwell, B.F.

    The properties and performance of a ceramic component is determined by a combination of the materials from which it was fabricated and how it was processed. Most ceramic components are manufactured by dry pressing a powder/binder system in which the organic binder provides formability and green compact strength. A key step in this manufacturing process is the removal of the binder from the powder compact after pressing. The organic binder is typically removed by a thermal decomposition process in which heating rate, temperature, and time are the key process parameters. Empirical approaches are generally used to design the burnout time-temperaturemore » cycle, often resulting in excessive processing times and energy usage, and higher overall manufacturing costs. Ideally, binder burnout should be completed as quickly as possible without damaging the compact, while using a minimum of energy. Process and computational modeling offer one means to achieve this end. The objective of this study is to develop an experimentally validated computer model that can be used to better understand, control, and optimize binder burnout from green ceramic compacts.« less

  13. Chelating effect in short polymers for the design of bidentate binders of increased affinity and selectivity

    PubMed Central

    Fortuna, Sara; Fogolari, Federico; Scoles, Giacinto

    2015-01-01

    The design of new strong and selective binders is a key step towards the development of new sensing devices and effective drugs. Both affinity and selectivity can be increased through chelation and here we theoretically explore the possibility of coupling two binders through a flexible linker. We prove the enhanced ability of double binders of keeping their target with a simple model where a polymer composed by hard spheres interacts with a spherical macromolecule, such as a protein, through two sticky spots. By Monte Carlo simulations and thermodynamic integration we show the chelating effect to hold for coupling polymers whose radius of gyration is comparable to size of the chelated particle. We show the binding free energy of flexible double binders to be higher than that of two single binders and to be maximized when the binding sites are at distances comparable to the mean free polymer end-to-end distance. The affinity of two coupled binders is therefore predicted to increase non linearly and in turn, by targeting two non-equivalent binding sites, this will lead to higher selectivity. PMID:26496975

  14. Comparison of Glass Powder and Fly Ash Effect on the Fresh Properties of Self-Compacting Mortars

    NASA Astrophysics Data System (ADS)

    Öznur Öz, Hatice; Erhan Yücel, Hasan; Güneş, Muhammet

    2017-10-01

    This study is aimed to determine effects of glass powder on fresh properties of self-compacting mortars. Self-compacting mortars incorporating glass powder (SCMGPs) were designed with a water/binder ratio of 0.40 and a total binder content of 550 kg/m3. At first, the control mixture was produced with 20% fly ash and % 80 cement of the total binder content without using the glass powder. Then, glass powder was used in the proportions 5%, 10%, 15% and 20% instead of fly ash in the mortars. Mini-slump flow and mini-v funnel tests experimentally investigated on SCMGPs to compare the effect of fly ash and glass powder. With increasing the amount of glass powder used in SCMGPs increased the amount of superplasticizer used to obtain the desired mini-slump flow diameter. So, the use of glass powder reduced the flow ability of SCMGPs in comparison to fly ash. Additionally, the compressive strength and flexural strength of the mortar mixtures were determined at the 28th day. The test results indicated that the mechanical characteristics of SCMGPs improved when the fly ash was replaced with glass powder in SCMGPs.

  15. Evaluation of the binding effect of human serum albumin on the properties of granules.

    PubMed

    Kristó, Katalin; Bajdik, János; Eros, István; Pintye-Hódi, Klára

    2008-11-01

    The main objective of this study was the application of a solution of human serum albumin as a granulating fluid. The properties of the granules formed were evaluated and compared with those when a conventional binder was applied in the same concentration. The powder mixture contained a soluble (mannitol) and an insoluble component (different types of cellulose). The protein solution applied exerted an appropriate aggregating effect if the system contained microcrystalline celluloses. Powdered cellulose was not suitable for the granulation with human serum albumin solution. As compared with the same concentration of the conventionally applied cellulose ethers as binder, the prepared granules exhibited a larger particle size, a significantly better compressibility, a higher breaking hardness and a favourable deformation process. These findings mainly reflect the good adhesive properties of the protein. The best compressibility and mechanical behaviour were attained on the application of the microcrystalline cellulose Vivapur type 105. This favourable behaviour may be connected with the wettability of cellulose. These results suggest that the formulation of tablets may be easier from an active agent in the serum that binds to albumin (e.g. interferon) since the amount of additives (binder) can be reduced.

  16. Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete.

    PubMed

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Xing, Feng; Wang, Wei-Lun

    2015-03-13

    In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of -1 to +1, eight axial mixtures were prepared at extreme values of -2 and +2 with the other variables maintained at the central points. Four replicate central mixtures were also evaluated. The effects of five mixture parameters, including binder type, binder content, dosage of viscosity-modifying admixture (VMA), water-cementitious material ratio (w/cm), and sand-to-total aggregate ratio (S/A) on compressive strength, modulus of elasticity, as well as autogenous and drying shrinkage are discussed. The applications of the models to better understand trade-offs between mixture parameters and carry out comparisons among various responses are also highlighted. A logical design approach would be to use the existing model to predict the optimal design, and then run selected tests to quantify the influence of the new binder on the model.

  17. Colloidal Aggregate Structure under Shear by USANS

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.

    2015-03-01

    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  18. Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Wu, Xianwen; Doan, The Nam Long; Tian, Ye; Zhao, Hongbin; Chen, P.

    2016-09-01

    Highly flexible LiMn2O4/carbon nanotube (CNT) electrodes are developed and used as a high power cathode for the Rechargeable Hybrid Aqueous Battery (ReHAB). LiMn2O4 particles are entangled into CNT networks, forming a self-supported free-standing hybrid films. Such hybrid films can be used as electrodes of ARLB without using any additional binders. The binder-free LiMn2O4/CNT electrode exhibits good mechanical properties, high conductivity, and effective charge transport. High-rate capability and high cycling stability are obtained. Typically, the LiMn2O4/CNT electrode achieves a discharge capacity of 72 mAh g-1 at the large-current of 20 C (1 C = 120 mAh g-1), and exhibits good cycling performance and high reversibility: Coulombic efficiency of almost 100% over 300 charge-discharge cycles at 4 C. By reducing the weight, and improving the large-current rate capability simultaneously, the LiMn2O4/CNT electrode can highly enhance the energy/power density of ARLB and hold potential to be used in ultrathin, lightweight electronic devices.

  19. Texas cracking performance prediction, simulation, and binder recommendation.

    DOT National Transportation Integrated Search

    2014-10-01

    Recent studies show some mixes with softer binders used outside of Texas (e.g., Minnesotas Cold Weather Road Research Facility mixes) have both good rutting and cracking performance. However, the current binder performance grading (PG) system fail...

  20. 76 FR 81487 - Agency Information Collection Extension; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... to Kathleen Binder at kathleen.binder@hq.doe.gov . Correction In the Federal Register of December 16... corrected to read: (1) OMB No. 1910-5118; Issued in Washington, DC on December 21, 2011. Kathleen M. Binder...

  1. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young

    1998-01-01

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.

  2. Method of waste stabilization via chemically bonded phosphate ceramics

    DOEpatents

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1998-11-03

    A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.

  3. Study of chloride ion transport of composite by using cement and starch as a binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less

  4. In Vitro Adsorption and in Vivo Pharmacokinetic Interaction between Doxycycline and Frequently Used Mycotoxin Binders in Broiler Chickens.

    PubMed

    De Mil, Thomas; Devreese, Mathias; Broekaert, Nathan; Fraeyman, Sophie; De Backer, Patrick; Croubels, Siska

    2015-05-06

    Mycotoxin binders are readily mixed in feeds to prevent uptake of mycotoxins by the animal. Concerns were raised for nonspecific binding with orally administered veterinary drugs by the European Food Safety Authority in 2010. This paper describes the screening for in vitro adsorption of doxycycline-a broad-spectrum tetracycline antibiotic-to six different binders that were able to bind >75% of the doxycycline. Next, an in vivo pharmacokinetic interaction study of doxycycline with two of the binders, which demonstrated significant in vitro binding, was performed in broiler chickens using an oral bolus model. It was shown that two montmorillonite-based binders were able to lower the area under the plasma concentration-time curve of doxycycline by >60% compared to the control group. These results may indicate a possible risk for reduced efficacy of doxycycline when used concomitantly with montmorillonite-based mycotoxin binders.

  5. Binder-induced surface structure evolution effects on Li-ion battery performance

    NASA Astrophysics Data System (ADS)

    Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.

    2018-03-01

    A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.

  6. Influence of Binder in Iron Matrix Composites

    NASA Astrophysics Data System (ADS)

    Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.

    2010-03-01

    The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100° C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.

  7. Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders.

    PubMed

    Tlatli, Rym; Nozach, Hervé; Collet, Guillaume; Beau, Fabrice; Vera, Laura; Stura, Enrico; Dive, Vincent; Cuniasse, Philippe

    2013-01-01

    Artificial miniproteins that are able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif-grafting approach. The motif corresponded to the four N-terminal residues of TIMP-2, a broad-spectrum protein inhibitor of MMPs. Scaffolds that are able to reproduce the functional topology of this motif were obtained by exhaustive screening of the Protein Data Bank (PDB) using STAMPS software (search for three-dimensional atom motifs in protein structures). Ten artificial protein binders were produced. The designed proteins bind catalytic sites of MMPs with affinities ranging from 450 nm to 450 μm prior to optimization. The crystal structure of one artificial binder in complex with the catalytic domain of MMP-12 showed that the inter-molecular interactions established by the functional motif in the artificial binder corresponded to those found in the MMP-14-TIMP-2 complex, albeit with some differences in geometry. Molecular dynamics simulations of the ten binders in complex with MMP-14 suggested that these scaffolds may allow partial reproduction of native inter-molecular interactions, but differences in geometry and stability may contribute to the lower affinity of the artificial protein binders compared to the natural protein binder. Nevertheless, these results show that the in silico design method used provides sets of protein binders that target a specific binding site with a good rate of success. This approach may constitute the first step of an efficient hybrid computational/experimental approach to protein binder design. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Evaluation of new binders using newly developed fracture energy test : [summary].

    DOT National Transportation Integrated Search

    2013-07-01

    The flexibility and cohesion that give asphalt concrete its performance characteristics largely derive from the properties of binders. The durability of binders affects the function and lifetime of paving, and considering how extensive Floridas ro...

  9. Laboratory evaluation of asphalt binder rutting, fracture, and adhesion tests.

    DOT National Transportation Integrated Search

    2014-04-01

    The current performance grading (PG) specification for asphalt binders was developed based on the Strategic Highway : Research Program (SHRP) and is based primarily on the study of unmodified asphalt binders. Over the years, experience has : proven t...

  10. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-04-01

    This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06082b

  11. The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams

    NASA Astrophysics Data System (ADS)

    Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.

    2017-09-01

    Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.

  12. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  13. Investigating the Doping Mechanism of Pyrene Based Methacrylate Functional Conductive Binder in Silicon Anodes for Lithium-Ion Batteries

    DOE PAGES

    Ling, Min; Liu, Michael; Zheng, Tianyue; ...

    2017-01-01

    The doping mechanism of poly (1-pyrenemethyl methacrylate) (PPy) is investigated through electrochemical analytical and spectroscopic method. The performance of PPy as a Si materials binder is studied and compared with that of a commercial available lithium polyacrylate (PAALi) binder. The pyrene moiety consumes lithium ions according to the cyclic voltammogram (CV) measurement, as a doping to the PPy binder. Based on the lithium consumption, PPy based Si/graphite electrode doping is quantified at 1.1 electron/pyrene moiety. Lastly, the PPy binder based electrodes surface are uniform and crack free during lithiation/delithiation, which is revealed through Scanning electron microscope (SEM) imaging.

  14. Development of bio-sourced binder to metal injection moulding

    NASA Astrophysics Data System (ADS)

    Royer, Alexandre; Barrière, Thierry; Gelin, Jean-Claude

    2016-10-01

    In the MIM process the binder play the most important role. It provides fluidity of the feedstock mixture for injection molding and adhesion of the powder to keep the molded shape. The binder must provide strength and cohesion for the molded part, must be easy to be removed from the molded part, and must be the recyclable, environmentally friendly and economical ones. The goal of this study is to develop a binder environmentally friendly. For this, a study of formulation based on polyethylene glycol, because of is water debinding properties, was made. Polylactic acid and Polyhydroxyalkanoates were investigated as bio sourced polymers. The chemical, miscibility and rheological behavior of the binder formulation were investigated.

  15. Drugs against avian influenza a virus: design of novel sulfonate inhibitors of neuraminidase N1.

    PubMed

    Udommaneethanakit, Thanyarat; Rungrotmongkol, Thanyada; Frecer, Vladimir; Seneci, Pierfausto; Miertus, Stanislav; Bren, Urban

    2014-01-01

    The outbreak of avian influenza A (H5N1) virus has raised a global concern for both the animal as well as human health. Besides vaccination, that may not achieve full protection in certain groups of patients, inhibiting neuraminidase or the transmembrane protein M2 represents the main measure of controlling the disease. Due to alarming emergence of influenza virus strains resistant to the currently available drugs, development of new neuraminidase N1 inhibitors is of utmost importance. The present paper provides an overview of the recent advances in the design of new antiviral drugs against avian influenza. It also reports findings in binding free energy calculations for nine neuraminidase N1 inhibitors (oseltamivir, zanamivir, and peramivir -carboxylate, -phosphonate, and -sulfonate) using the Linear Interaction Energy method. Molecular dynamics simulations of these inhibitors were performed in a free and two bound states - the so called open and closed conformations of neuraminidase N1. Obtained results successfully reproduce the experimental binding affinities of the already known neuraminidase N1 inhibitors, i.e. peramivir being a stronger binder than zanamivir that is in turn stronger binder than oseltamivir, or phosphonate inhibitors being stronger binders than their carboxylate analogues. In addition, the newly proposed sulfonate inhibitors are predicted to be the strongest binders - a fact to be confirmed by their chemical synthesis and a subsequent test of their biological activity. Finally, contributions of individual inhibitor moieties to the overall binding affinity are explicitly evaluated to assist further drug development towards inhibition of the H5N1 avian influenza A virus.

  16. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  17. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials.

    PubMed

    Holá, Markéta; Mikuska, Pavel; Hanzlíková, Renáta; Kaiser, Jozef; Kanický, Viktor

    2010-03-15

    A study of LA-ICP-MS analysis of pressed powdered tungsten carbide precursors was performed to show the advantages and problems of nanosecond laser ablation of matrix-unified samples. Five samples with different compositions were pressed into pellets both with silver powder as a binder serving to keep the matrix unified, and without any binder. The laser ablation was performed by nanosecond Nd:YAG laser working at 213 nm. The particle formation during ablation of both sets of pellets was studied using an optical aerosol spectrometer allowing the measurement of particle concentration in two size ranges (10-250 nm and 0.25-17 microm) and particle size distribution in the range of 0.25-17 microm. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using a scanning electron microscope (SEM) and the particle chemical composition was determined by an energy dispersive X-ray spectroscope (EDS). The matrix effect was proved to be reduced using the same silver powdered binder for pellet preparation in the case of the laser ablation of powdered materials. The LA-ICP-MS signal dependence on the element content present in the material showed an improved correlation for Co, Ti, Ta and Nb of the matrix-unified samples compared to the non-matrix-unified pellets. In the case of W, the ICP-MS signal of matrix-unified pellets was influenced by the changes in the particle formation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  19. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content

    PubMed Central

    Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi

    2015-01-01

    We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ≥21 MPa and a flexural strength of ≥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ≥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.29. The mixture exhibited a flexural strength of ≥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ≤0.29. PMID:28793596

  20. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content.

    PubMed

    Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi

    2015-10-01

    We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.

  1. Geopolymer concrete for structural use: Recent findings and limitations

    NASA Astrophysics Data System (ADS)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  2. ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries.

    PubMed

    Hu, Xiaofei; Han, Xiaopeng; Hu, Yuxiang; Cheng, Fangyi; Chen, Jun

    2014-04-07

    A sponge-like ε-MnO2 nanostructure was synthesized by direct growth of ε-MnO2 on Ni foam through a facile electrodeposition route. When applied as a self-supporting, binder-free cathode material for rechargeable nonaqueous lithium-oxygen batteries, the ε-MnO2/Ni electrode exhibits considerable high-rate capability (discharge capacity of ∼6300 mA h g(-1) at a current density of 500 mA g(-1)) and enhanced cyclability (exceeding 120 cycles) without controlling the discharge depth. The superior performance is proposed to be associated with the 3D nanoporous structures and abundant oxygen defects as well as the absence of side reactions related to carbon-based conductive additives and binders.

  3. Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase.

    PubMed

    Kourti, Ioanna; Devaraj, Amutha Rani; Bustos, Ana Guerrero; Deegan, David; Boccaccini, Aldo R; Cheeseman, Christopher R

    2011-11-30

    Air pollution control (APC) residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium aluminosilicate glass (APC glass). This has been used to form geopolymer-glass composites that exhibit high strength and density, low porosity, low water absorption, low leaching and high acid resistance. The composites have a microstructure consisting of un-reacted residual APC glass particles imbedded in a complex geopolymer and C-S-H gel binder phase, and behave as particle reinforced composites. The work demonstrates that materials prepared from DC plasma treated APC residues have potential to be used to form high quality pre-cast products. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. On The Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Fiske, Michael; Edmunson, Jennifer; Khoshnevis, Behrokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in-situ materials will become increasingly critical. As man's presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in-situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. This is important because gamma and particle radiation constitute a serious but reducible threat to long-term survival of human beings, electronics, and other materials in space environments. Also, it is anticipated that surface structures will constitute the primary mass element of lunar or Martian launch requirements. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for self-sufficiency necessary for long-duration habitation. Previously, under the auspices of the MSFC In Situ Fabrication and Repair (ISFR) project and more recently, under the joint MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in situ resources. One such technology, known as Contour Crafting (additive construction), is shown in Figure 1, along with a typical structure fabricated using this technology. This paper will present the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using the Contour Crafting process. This process, conceived initially for rapid development of cementitious structures on Earth, also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and imported binder material or binders developed from in situ materials. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. These binder materials have resulted from extensive evaluation and include both "imported" binder materials that might be launched from Earth as well as some binder materials that can theoretically also be derived from existing regolith materials. They were chosen to 1) reduce penetrating radiation as much as possible, primarily with hydrogen-bearing polymers, 2) attempt to provide an air-tight structure, 3) sufficiently mix and adsorb to regolith grains for strength, 4) maximize tolerance to day-night thermal cycling, 5) possibly increase electrical conductivity to dissipate any accumulated static charge, and 6) ease their application on planetary surfaces (specifically, the accommodation of reduced atmosphere and lack of heat sinks). Some of these materials have been tested with respect to radiation mitigation, micrometeorite resistance, and resistance to larger, slower-traveling pieces of regolith impinging on the surface, simulating nearby launch and landing activities. Conceptual designs for a Continuous Feedstock Delivery/Mixing System (CFDMS) will also be presented and future planned activities will be discussed as well.

  5. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...

  6. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...

  7. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...

  8. Evaluation of the Texas tier system for seal coat binder specification.

    DOT National Transportation Integrated Search

    2012-09-01

    The Texas Department of Transportation (TxDOT) instituted a change in their seal coat binder specification in 2010 which allowed districts to select multiple binders within specified traffic levels or tiers for the purposes of allowing contractors to...

  9. Impact of Recycled Asphalt Shingles (RAS) on Asphalt Binder Performance

    DOT National Transportation Integrated Search

    2018-01-01

    This study evaluated the effect of reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) on virgin binder true grade and fracture energy density (FED). A mortar approach, which avoids the need for binder extraction, was adopted to quan...

  10. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  11. Guidelines on design and construction of high performance thin HMA overlays.

    DOT National Transportation Integrated Search

    2016-08-01

    Key Components of Mix Design and Material Properties: : High-quality aggregate - SAC A for high : volume roads : - PG 70 or 76 (Polymer Modified binders) : - RAP and RAS (shingles) not allowed : - Minimum binder content ( Over 6%) : - Pay for binder ...

  12. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  13. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  14. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  15. 40 CFR 247.16 - Non-paper office products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...

  16. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan

    1999-03-29

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with themore » use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C5 + selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation. An HPR series of proprietary catalysts was prepared to further improve the attrition resistance. Based on the experience gained, a proprietary HPR-43 catalyst has been successfully spray dried in 500 g quantity. This catalyst showed 95 % CO conversion over 125 h and had less than 4 % methane selectivity. Its attrition resistance was one of the highest among the catalyst tested.« less

  17. The influence of different geotechnically relevant amendments on the reductive degradation of TCE by nZVI

    NASA Astrophysics Data System (ADS)

    Freitag, Peter; Schöftner, Philipp; Waldner, Georg; Reichenauer, Thomas G.; Nickel, Claudia; Spitz, Marcus; Dietzel, Martin

    2014-05-01

    Trichloroethylene (TCE) was widely used as a cleaning and degreasing agent. Companies needing these agents were often situated in or close to built up areas, so spillage led to contaminated sites which now can only be remediated using in situ techniques. The situation is compounded by the fact that TCE tends to seep through ground water bodies forming pools at the bottom of the aquifer. When reacting with TCE, nanoscale zero valent iron (nZVI) is known to reduce it into non-toxic substances. The difficulty is to bring it in contact with the pollutant. Attempts using passive insertion into the groundwater via wells yielded mixed results. Reasons for this are that ZVI tends to coagulate, to sediment and to adsorb on the matrix of the aquifer. Also, in inhomogeneous aquifers a passive application of nZVI can be difficult and might not bring the desired results, due to existence of preferential flow paths. A possible solution to this problem is the physical in situ mixing of ZVI into the contaminant source. This can, in principle, be done by adapting jet grouting - a method that uses a high pressure slurry jet, consisting of water and geotechnical additives ("binders"), to mix and compact zones ("columns") in soil. These columns are commonly used to solve foundation problems but can also be used to solve the problem of delivering nZVI to TCE source zones. This paper examines the influence binders have on the degradation reaction between TCE and nZVI. The necessity of these binders is explained by the fact that the subsoil structure is rearranged during the jetting process leading to subsidence on the surface. These subsidences could result in damage to neighbouring structures. A series of batch experiments was conducted in this study. Contaminated groundwater was brought into contact with samples of slurries commonly used in geotechnical applications. We tested the effects of concresole, bentonite, zeolithe, fly ash, slag sand and cement on the kinetics of TCE degradation by nZVI. The degradation of TCE was measured using GC Headspace samples. Furthermore, additional experiments were conducted to investigate the interaction between binders and TCE as well as binders and nZVI. The results of these experiments led to the conclusion that jet grouting could be well suited for the delivery of nZVI to TCE contaminated source zones. Currently, soil column experiments and large-scale experiments in test facilities are performed to confirm the batch testing results.

  18. Development of an MgO-based binder for stabilizing fine sediments and storing CO2.

    PubMed

    Hwang, Kyung-Yup; Ahn, Jun-Young; Kim, Cheolyong; Seo, Jeong-Yun; Hwang, Inseong

    2015-12-01

    An MgO-based binder was developed that could stabilize fine dredged sediments for reuse and store CO2. Initially, a binder consisting of fly ash (FA) and blast furnace slag (BFS) was developed by using alkaline activators such as KOH, NaOH, and lime. The FA0.4-BFS0.6 binder (mixed at a FA-to-BFS weight ratio of 4:6) showed the highest compressive strength of 10.7 MPa among FA/BFS binders when 5 M KOH was used. When lime (L) was tested as an alkaline activator, the strength was comparable with those obtained when KOH or NaOH was used. The L0.1-(FA0.4BFS0.6)0.9 binder (10 % lime mixed with the FA/BFS binder) showed the highest strength of 11.0 MPa. Finally, by amending this L0.1-(FA0.4BFS0.6)0.9 binder with MgO, a novel MgO-based binder (MgO0.5-(L0.1-(FA0.4BFS0.6)0.9) 0.5) was developed, which demonstrated the 28th day strength of 11.9 MPa. The MgO-based binder was successfully applied to stabilize a fine sediment to yield a compressive strength of 4.78 MPa in 365 days, which was higher than that obtained by the Portland cement (PC) system (3.22 MPa). Carbon dioxide sequestration was evidenced by three observations: (1) the decrease in pH of the treated sediment from 12.2 to 11.0; (2) the progress of the carbonation front inward the treated sediment; and (3) the presence of magnesium carbonates. The thermogravimetric analysis (TGA) results showed that 67.2 kg of CO2 per ton of the treated sediment could be stored under the atmospheric condition during 1 year.

  19. Viscoelastic behaviour of cold recycled asphalt mixes

    NASA Astrophysics Data System (ADS)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  20. A "Sticky" Mucin-Inspired DNA-Polysaccharide Binder for Silicon and Silicon-Graphite Blended Anodes in Lithium-Ion Batteries.

    PubMed

    Kim, Sunjin; Jeong, You Kyeong; Wang, Younseon; Lee, Haeshin; Choi, Jang Wook

    2018-05-14

    New binder concepts have lately demonstrated improvements in the cycle life of high-capacity silicon anodes. Those binder designs adopt adhesive functional groups to enhance affinity with silicon particles and 3D network conformation to secure electrode integrity. However, homogeneous distribution of silicon particles in the presence of a substantial volumetric content of carbonaceous components (i.e., conductive agent, graphite, etc.) is still difficult to achieve while the binder maintains its desired 3D network. Inspired by mucin, the amphiphilic macromolecular lubricant, secreted on the hydrophobic surface of gastrointestine to interface aqueous serous fluid, here, a renatured DNA-alginate amphiphilic binder for silicon and silicon-graphite blended electrodes is reported. Mimicking mucin's structure comprised of a hydrophobic protein backbone and hydrophilic oligosaccharide branches, the renatured DNA-alginate binder offers amphiphilicity from both components, along with a 3D fractal network structure. The DNA-alginate binder facilitates homogeneous distribution of electrode components in the electrode as well as its enhanced adhesion onto a current collector, leading to improved cyclability in both silicon and silicon-graphite blended electrodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analysis of the binder yield energy test as an indicator of fatigue behaviour of asphalt mixes

    NASA Astrophysics Data System (ADS)

    O'Connell, Johan; Mturi, Georges A. J.; Komba, Julius; Du Plessis, Louw

    2017-09-01

    Empirical binder testing has increasingly failed to predict pavement performance in South Africa, with fatigue cracking being one of the major forms of premature pavement distress. In response, it has become a national aspiration to incorporate a performance related fatigue test into the binder specifications for South Africa. The Binder Yield Energy Test (BYET) was the first in a series of tests analysed for its potential to predict the fatigue performance of the binder. The test is performed with the dynamic shear rheometer, giving two key parameters, namely, yield energy and shear strain at maximum shear stress (γτmax). The objective of the investigation was to perform a rudimentary evaluation of the BYET; followed by a more in-depth investigation should the initial BYET results prove promising. The paper discusses the results generated from the BYET under eight different conditions, using six different binders. The results are then correlated with four point bending beam fatigue test results obtained from asphalt mix samples that were manufactured from the same binders. Final results indicate that the BYET is not ideal as an indicator of fatigue performance.

  2. Effects of ageing on different binders for retouching and on some binder-pigment combinations used for restoration of wall paintings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ropret, P.; Zoubek, R.; Skapin, A. Sever

    2007-11-15

    In restoration of colour layers, the selection of the most appropriate retouching binder is a very important step that may have a crucial impact on materials durability. As different weather conditions can have versatile influence on stability of colour layers, we determined the effect of ageing on carefully selected samples of binders (Tylose, Klucel, ammonium caseinate, gum arabicum, fish and skin glues and some other synthetic binders) as well as on several binder-pigment combinations (the pigments in combinations being cinnabar, green earth and smalt). The samples were subjected to accelerated ageing tests in climatic chambers. In these tests the temperaturemore » and the relative humidity were daily oscillating between - 20 deg. C and 50 deg. C and 50% to 90%, respectively, for a period of one month. Then the samples were exposed to UV and visible light generated by a metal halide lamp for a month. The differences in microstructure before and after ageing were determined by optical and scanning electron microscopy, while the ageing of the organic structures in binders was investigated by Fourier transform infrared (FTIR) microscopy.« less

  3. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : final report 564.

    DOT National Transportation Integrated Search

    2017-09-01

    Numerous studies have shown that G*/Sin, the high temperature specification parameter for current Performance Graded (PG) asphalt binder is not adequate to reflect the rutting characteristics of polymer-modified binders. Consequently, many state De...

  4. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : technical summary.

    DOT National Transportation Integrated Search

    2017-09-01

    Higher traffic coupled with heavier loads led the asphalt industry to introduce polymer-modified binders to enhance the durability and strength of hot mix asphalt (HMA) pavements. When the Superpave Performance Graded (PG) binder specification (AASHT...

  5. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of...

  6. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of...

  7. Grade determination of crumb rubber-modified performance graded asphalt binder.

    DOT National Transportation Integrated Search

    2013-08-01

    Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. Asphalt binder testing an...

  8. Grade determination of crumb rubber-modified performance graded asphalt binder.

    DOT National Transportation Integrated Search

    2013-08-01

    Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic : Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. : Asphalt binder testin...

  9. Effect of asphalt rejuvenating agent on aged reclaimed asphalt pavement and binder properties.

    DOT National Transportation Integrated Search

    2016-11-01

    Hot in-place recycling (HIR) preserves distressed asphalt pavements while minimizing use of virgin binder : and aggregates. The final quality of an HIR mixture depends on the characteristics of the original binder, aging of the : pavement surface dur...

  10. Wetting characteristics of asphalt binders at mixing temperatures.

    DOT National Transportation Integrated Search

    2013-10-01

    Conventional hot mix asphalt (HMA) is produced by heating the aggregate and the asphalt binder to elevated : temperatures that are typically in the range of 150C to 160C. These temperatures ensure that the viscosity of the : asphalt binder is low eno...

  11. Development of binder test to determine fracture energy [summary].

    DOT National Transportation Integrated Search

    2012-04-01

    Asphalt binder makes up a relatively small percentage 4% to 8% of the hot mix asphalt used in pavements, but its performance as a binder is critical to the longevity of road surfaces. Asphalt is : a material whose flexibility changes with : t...

  12. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards.

    PubMed

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry; Evon, Philippe

    2017-07-17

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness.

  13. Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards

    PubMed Central

    Uitterhaegen, Evelien; Labonne, Laurent; Merah, Othmane; Talou, Thierry; Ballas, Stéphane; Véronèse, Thierry

    2017-01-01

    The aim of this study consisted of manufacturing renewable binderless fiberboards from coriander straw and a deoiled coriander press cake, thus at the same time ensuring the valorization of crop residues and process by-products. The press cake acted as a natural binder inside the boards owing to the thermoplastic behavior of its protein fraction during thermopressing. The influence of different fiber-refining methods was evaluated and it was shown that a twin-screw extrusion treatment effectively improved fiber morphology and resulted in fiberboards with enhanced performance as compared to a conventional grinding process. The best fiberboard was produced with extrusion-refined straw using a 0.4 liquid/solid (L/S) ratio and with 40% press cake addition. The water sensitivity of the boards was effectively reduced by 63% through the addition of an extrusion raw material premixing operation and thermal treatment of the panels at 200 °C, resulting in materials with good performance showing a flexural strength of 29 MPa and a thickness swelling of 24%. Produced without the use of any chemical adhesives, these fiberboards could thus present viable, sustainable alternatives for current commercial wood-based materials such as oriented strand board, particleboard and medium-density fiberboard, with high cost-effectiveness. PMID:28714928

  14. Advanced thermal batteries

    NASA Astrophysics Data System (ADS)

    Ryan, D. M.

    1980-03-01

    The feasibility of building thermal batteries with cells composed of an anode of LiAl alloy, a cathode of a heavy metal chloride, and a NaAlCl4 electrolyte has been demonstrated. During the further investigation of this system some interesting problems have developed and had to be studied. The particle size growth of the catholyte developed into a major storage problem. MoCl5 was found to form a volatile catholyte which is not suited for thermal battery use. As a result of this problem other catholyte materials were experimented with. CuCl2 is the most successful alternate to MoCl5. Some alternate binder materials have been investigated: kaolin clay, Illinois Mineral Amorphous Silica, and magnesia. Some alternate electrolytes have been investigated including NaAlCl4 (containing 52 m/o AlCl3), LiAlCl4 and KCl-LiCl. This work indicates that each material has unique properties which lend themselves to a particular application. Among the alternate cathode materials experimented with are CrCl3, a number of heavy metal oxides, fluorocarbon, TiS2, TiS3, and sulfur. Some alternate process investigated have been freon blending, adding materials to the anode, cell and battery desiccation and filling batteries with an inert atmosphere.

  15. Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.

    Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less

  16. Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries

    DOE PAGES

    Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.

    2017-05-04

    Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less

  17. [The dry binders, Vivapur 102, Vivapur 12 and the effect of magnesium stearate on the strength of tablets containing these substances].

    PubMed

    Muzíková, J; Horácek, J

    2003-07-01

    Vivapur is microcrystalline cellulose manufactured by the German firm J. Rettenmeier & Söhne GmbH + Co. The types Vivapur 102 and 12 enjoy priority use as dry binders for direct tablet compression. The present paper evaluates tensile strength of tablets made from these substances and the effect of an addition of the lubricant magnesium stearate in connection with its concentration and the conditions of the process of mixing, particularly the period and intensity of mixing. The tested concentrations of stearate were 0.4 and 0.8%, the tested periods of mixing being 2.5, 5, 10, and 20 minutes, intensities of mixing 17 and 34 rot./min. Sensitivity of dry binders to added stearate was evaluated by means of the LSR (lubricant sensitivity ratio) values. The results demonstrated higher sensitivity to an addition of the lubricant in Vivapur 12 than in Vivapur 102. In the first part of the paper focused on the effect of stearate concentration on tensile strength of tablets, Vivapur 102 was also compared with Avicel PH-102. Tablets from Vivapur 102 alone were stronger than those from Avicel PH-102. A concentration of stearate of 0.8% decreased the binding capacity of Vivapur 102 more than that of Avicel PH-102. With a prolonged period of mixing and increased intensity of mixing with stearate, tensile strength of tablets from both Vivapur types was decresed, and a prolonged period of mixing exerted a more marked effect on Vivapur 12 and increased intensity of mixing, on Vivapur 102.

  18. Qualitative criteria and thresholds for low noise asphalt mixture design

    NASA Astrophysics Data System (ADS)

    Vaitkus, A.; Andriejauskas, T.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R.

    2018-05-01

    Low noise asphalt pavements are cost efficient and cost effective alternative for road traffic noise mitigation comparing with noise barriers, façade insulation and other known noise mitigation measures. However, design of low noise asphalt mixtures strongly depends on climate and traffic peculiarities of different regions. Severe climate regions face problems related with short durability of low noise asphalt mixtures in terms of considerable negative impact of harsh climate conditions (frost-thaw, large temperature fluctuations, hydrological behaviour, etc.) and traffic (traffic loads, traffic volumes, studded tyres, etc.). Thus there is a need to find balance between mechanical and acoustical durability as well as to ensure adequate pavement skid resistance for road safety purposes. Paper presents analysis of the qualitative criteria and design parameters thresholds of low noise asphalt mixtures. Different asphalt mixture composition materials (grading, aggregate, binder, additives, etc.) and relevant asphalt layer properties (air void content, texture, evenness, degree of compaction, etc.) were investigated and assessed according their suitability for durable and effective low noise pavements. Paper concluded with the overview of requirements, qualitative criteria and thresholds for low noise asphalt mixture design for severe climate regions.

  19. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    PubMed

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-05-04

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.

  20. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells

    PubMed Central

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-01-01

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm2 and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761

  1. Direct deposit laminate nanocomposites with enhanced propellent properties.

    PubMed

    Li, Xiangyu; Guerieri, Philip; Zhou, Wenbo; Huang, Chuan; Zachariah, Michael R

    2015-05-06

    One of the challenges in the use of energetic nanoparticles within a polymer matrix for propellant applications is obtaining high particle loading (high energy density) while maintaining mechanical integrity and reactivity. In this study, we explore a new strategy that utilizes laminate structures. Here, a laminate of alternating layers of aluminum nanoparticle (Al-NPs)/copper oxide nanoparticle (CuO-NPs) thermites in a polyvinylidene fluoride (PVDF) reactive binder, with a spacer layer of PVDF was fabricated by a electrospray layer-by-layer deposition method. The deposited layers containing up to 60 wt % Al-NPs/CuO-NPs thermite are found to be uniform and mechanically flexible. Both the reactive and mechanical properties of laminate significantly outperformed the single-layer structure with the same material composition. These results suggest that deploying a multilayer laminate structure enables the incorporation of high loadings of energetic materials and, in some cases, enhances the reactive properties over the corresponding homogeneous structure. These results imply that an additive manufacturing approach may yield significant advantages in developing a tailored architecture for advanced propulsion systems.

  2. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...

  3. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...

  4. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...

  5. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper...

  6. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper...

  7. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders : Executive Summary Report

    DOT National Transportation Integrated Search

    2011-03-01

    Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...

  8. Mechanical properties of warm mix asphalt prepared using foamed asphalt binders : executive summary report.

    DOT National Transportation Integrated Search

    2011-03-01

    Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...

  9. Validity of multiple stress creep recovery test for LADOTD asphalt binder specification.

    DOT National Transportation Integrated Search

    2010-09-01

    The objectives of this research are to characterize the elastic response of various binders used by LADOTD to determine the feasibility of the Multiple Stress Creep Recovery (MSCR) test to be included in the LADOTD asphalt binder specification and to...

  10. Effect of asphalt rejuvenating agent on aged reclaimed asphalt pavement and binder properties : technical summary.

    DOT National Transportation Integrated Search

    2016-11-01

    Hot in-place recycling (HIR) preserves distressed asphalt pavements while minimizing use of virgin binder and aggregates. The final quality of an HIR mixture depends on the characteristics of the original binder, aging of the pavement surface during ...

  11. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from MARAD's...

  12. 47 CFR 51.232 - Binder group management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Binder group management. 51.232 Section 51.232 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops...

  13. Rheological and thermal performance of newly developed binder systems for ceramic injection molding

    NASA Astrophysics Data System (ADS)

    Hausnerova, Berenika; Kasparkova, Vera; Hnatkova, Eva

    2016-05-01

    In a novel binder system, carnauba wax was considered to replace the synthetic backbone polymers (polyolefins) enhancing the environmental sustainability of Ceramic Injection Molding (CIM) technology. The paper presents comparison of the rheological performance and thermal behavior of the aluminum oxide CIM feedstocks based on a binder containing carnauba wax with those consisting of a commercial binder. Further, acrawax (N, N'-Ethylene Bis-stearamide) has been considered as another possible substitute of polyolefins. For both proposed substitutes there is a significant reduction in viscosity, and in case of carnauba wax based feedstock also in processing temperature, which is essential for injection molding of reactive powders. Thermal characterization comprised analyses of single neat binders, their mixtures and mixtures with aluminum oxide. The presence of powder lowered melting temperatures of all tested binders except of polyolefin. Further depression in melting point of poly(ethylene glycol) is observed in combination with polyolefin in the presence of powder, and it is related to changes in size of the crystalline domains.

  14. Cortisol-21-sulfate (FS) is a specific ligand for intracellular transcortin: demonstration of three types of high affinity corticosteroid binders in bovine aortic cytosol by a combined use of FS and RU 28362.

    PubMed

    Hayashi, T; Kornel, L

    1990-01-01

    This paper reports the results of a study on the binding of adrenal steroids in bovine aortic tissue. Using the same method as in our previous study of mineralocorticoid and glucocorticoid binding in rabbit arterial cytosol, we could not demonstrate in the bovine aorta the three types of high affinity binders for these steroids, which we found in the rabbit arteries. In the search for specific markers for each of the three types of binders (glucocorticoid and mineralocorticoid receptors and the transcortin-like intracellular binder), we have found that a conjugated steroid, cortisol-21-sulfate, binds preferentially to the transcortin-like binder, but not to the two receptors. Using this steroid, in combination with the pure synthetic glucocorticoid RU 28362, we were able to clearly discriminate between the three types of corticosteroid binders in bovine aorta.

  15. Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO2 as High-Performance Anode in Sodium Ion Batteries.

    PubMed

    Ling, Liming; Bai, Ying; Wang, Zhaohua; Ni, Qiao; Chen, Guanghai; Zhou, Zhiming; Wu, Chuan

    2018-02-14

    Sodium alginate (SA) is investigated as the aqueous binder to fabricate high-performance, low-cost, environmentally friendly, and durable TiO 2 anodes in sodium-ion batteries (SIBs) for the first time. Compared to the conventional polyvinylidene difluoride (PVDF) binder, electrodes using SA as the binder exhibit significant promotion of electrochemical performances. The initial Coulombic efficiency is as high as 62% at 0.1 C. A remarkable capacity of 180 mAh g -1 is achieved with no decay after 500 cycles at 1 C. Even at 10 C (3.4 A g -1 ), it remains 82 mAh g -1 after 3600 cycles with approximate 100% Coulombic efficiency. TiO 2 electrodes with SA binder display less electrolyte decomposition, fewer side reactions, high electrochemistry reaction activity, effective suppression of polarization, and good electrode morphology, which is ascribed to the rich carboxylic groups, high Young's modulus, and good electrochemical stability of SA binder.

  16. Effect of microstructure on the coupled electromagnetic-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates to infrared laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Judith A.; Zikry, M. A., E-mail: zikry@ncsu.edu

    2015-09-28

    The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, andmore » crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.« less

  17. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled

    NASA Astrophysics Data System (ADS)

    Huang, Jianfei; Zhu, Yihua; Yang, Xiaoling; Chen, Wei; Zhou, Ying; Li, Chunzhong

    2014-12-01

    Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires pile (NWP) immobilized with polymer binder by conventional drop-casting technique were both studied for enzymeless glucose sensing. The NWA electrode exhibited greatly promoted electrochemistry characterized by decreased overpotential for electro-oxidation of glucose and over 5-fold higher sensitivity compared to the NWP counterpart, benefiting from the binder-free nanoarray structure. Besides, its sensing performance was also satisfying in terms of rapidness, selectivity and durability. Further, the CuO NWA was utilized to fabricate a flexible sensor which showed excellent performance stability against mechanical bending. Thanks to its favorable electrode architecture, the CuO NWA is believed to offer opportunities for building high-efficiency flexible electrochemical devices.Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires pile (NWP) immobilized with polymer binder by conventional drop-casting technique were both studied for enzymeless glucose sensing. The NWA electrode exhibited greatly promoted electrochemistry characterized by decreased overpotential for electro-oxidation of glucose and over 5-fold higher sensitivity compared to the NWP counterpart, benefiting from the binder-free nanoarray structure. Besides, its sensing performance was also satisfying in terms of rapidness, selectivity and durability. Further, the CuO NWA was utilized to fabricate a flexible sensor which showed excellent performance stability against mechanical bending. Thanks to its favorable electrode architecture, the CuO NWA is believed to offer opportunities for building high-efficiency flexible electrochemical devices. Electronic supplementary information (ESI) available: TEM images of CuO nanowires. SEM images of the composite film of CuO NWs in the Nafion binder. Flowchart of electrodes fabrication procedures. Current response time to addition of the glucose. Amperometric i-t test for the NWP under +0.35 V. Nyquist plot of the electrodes. SEM images of fractured parts of CuO nanowires at the NWP-Nafion film. Parameter comparison of enzymeless sensors for glucose detection. See DOI: 10.1039/c4nr05620e

  18. Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Y. S.; Zhao, T. S.; Liang, Z. X.

    In preparing low-temperature fuel cell electrodes, a polymer binder is essential to bind discrete catalyst particles to form a porous catalyst layer that simultaneously facilitates the transfer of ions, electrons, and reactants/products. For two types of polymer binder, namely, an A3-an anion conducting ionomer and a PTFE-a neutral polymer, an investigation is made of the effect of the content of each binder in the anode catalyst layer on the performance of an alkaline direct ethanol fuel cell (DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts. Experiments are performed by feeding either ethanol (C 2H 5OH) solution or ethanol-potassium hydroxide (C 2H 5OH-KOH) solution. The experimental results for the case of feeding C 2H 5OH solution without added KOH indicate that the cell performance varies with the A3 ionomer content in the anode catalyst layer, and a content of 10 wt.% exhibits the best performance. When feeding C 2H 5OH-KOH solution, the results show that: (i) in the region of low current density, the best performance is achieved for a membrane electrode assembly without any binder in the anode catalyst layer; (ii) in the region of high current density, the performance is improved with incorporation of PTFE binder in the anode catalyst layer; (iii) the PTFE binder yields better performance than does the A3 binder.

  19. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    2016-07-01

    Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.

  20. Field test of a polyphosphoric acid (PPA) modified asphalt binder on Rt. 1 in Perry.

    DOT National Transportation Integrated Search

    2013-04-01

    The Maine Department of Transportation (MaineDOT) uses the Superpave hot mix asphalt process and : specifies asphalt binder grades using the Performance Grade criteria. The Department mainly uses asphalt : binder grade PG 64-28. This is an asphalt bi...

  1. 0-6674 : improving fracture resistance measurement in asphalt binder specification with verification on asphalt mixture cracking performance.

    DOT National Transportation Integrated Search

    2014-08-01

    The current performance grading (PG) specification for asphalt binders is based primarily on the study of unmodified asphalt binders. Over the years, experience has proven that the PG grading system, while good for ensuring overall quality, fails in ...

  2. 44 CFR 61.13 - Standard Flood Insurance Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... use. (e) Oral and written binders. No oral binder or contract shall be effective. No written binder shall be effective unless issued with express authorization of the Federal Insurance Administrator. (f...” (WYO) property insurance companies, based upon flood insurance applications and renewal forms, all of...

  3. Evaluation of binder aging and its influence in aging of hot mix asphalt concrete : literature review and experimental design.

    DOT National Transportation Integrated Search

    2009-02-01

    Binder oxidation in pavements and its impact on pavement performance has been addressed by : numerous laboratory studies of binder oxidation chemistry, reaction kinetics, and hardening and its impact on : mixture fatigue. Studies also have included s...

  4. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  5. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  6. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  7. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  8. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  9. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  10. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  11. 46 CFR 308.203 - Amount insured under interim binder.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Amount insured under interim binder. 308.203 Section 308.203 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.203 Amount insured under interim binder. The...

  12. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  13. Theme Binders: One Size Fits All.

    ERIC Educational Resources Information Center

    Baskwill, Steve

    1996-01-01

    Describes theme binders designed by sixth graders as an independent study component that unites the class as a learning community, showcases student work, and illustrates developmental milestones for parents. Details theme binder components: (1) cover page; (2) introductory page outlining the theme and contents; (3) evaluation sections indicating…

  14. Effects of two warm-mix additives on aging, rheological and failure properties of asphalt cements

    NASA Astrophysics Data System (ADS)

    Omari, Isaac Obeng

    Sustainable road construction and maintenance could be supported when excellent warm-mix additives are employed in the modification of asphalt. These warm-mix additives provide remedies for today's requirements such as fatigue cracking resistance, durability, thermal cracking resistance, rutting resistance and resistance to moisture damage. Warm-mix additives are based on waxes and surfactants which reduce energy consumption and carbon dioxide emissions significantly during the construction phase of the pavement. In this study, the effects of two warm mix additives, siloxane and oxidised polyethylene wax, on roofing asphalt flux (RAF) and asphalt modified with waste engine oil (655-7) were investigated to evaluate the rheological, aging and failure properties of the asphalt binders. In terms of the properties of these two different asphalts, RAF has proved to be superior quality asphalt whereas 655-7 is poor quality asphalt. The properties of the modified asphalt samples were measured by Superpave(TM) tests such as Dynamic Shear Rheometer (DSR) test and Bending Beam Rheometer (BBR) test as well as modified protocols such as the extended BBR (eBBR) test (LS-308) and the Double- Edge-Notched Tension (DENT) test (LS-299) after laboratory aging. In addition, the Avrami theory was used to gain an insight on the crystallization of asphalt or the waxes within the asphalt binder. This study has however shown that the eBBR and DENT tests are better tools for providing accurate specification tests to curb thermal and fatigue cracking in contemporary asphalt pavements.

  15. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    EPA Science Inventory

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  16. Field test of a polyphosphoric acid (PPA) modified asphalt binder on Rt. 1 in Perry : [second interim report, April 2012].

    DOT National Transportation Integrated Search

    2012-04-01

    The Maine Department of Transportation (MaineDOT) uses the Superpave hot mix asphalt process and : specifies asphalt binder grades using the Performance Grade criteria. The Department mainly uses asphalt : binder grade PG64-28. This is an asphalt bin...

  17. Redox-Active Supramolecular Polymer Binders for Lithium–Sulfur Batteries That Adapt Their Transport Properties in Operando

    DOE PAGES

    Frischmann, Peter D.; Hwa, Yoon; Cairns, Elton J.; ...

    2016-10-25

    π-Stacked perylene bisimide (PBI) molecules are implemented here as highly networked, redox-active supramolecular polymer binders in sulfur cathodes for lightweight and energy-dense Li-S batteries. We show that the in operando reduction and lithiation of these PBI binders sustainably reduces Li-S cell impedance relative to nonredox active conventional polymer binders. This lower impedance enables high-rate cycling in Li-S cells with excellent durability, a critical step toward unlocking the full potential of Li-S batteries for electric vehicles and aviation.

  18. Binder-Free V 2 O 5 Cathode for Greener Rechargeable Aluminum Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huali; Bai, Ying; Chen, Shi

    This letter reports on the investigation of a binder-free cathode material to be used in rechargeable aluminum batteries. This cathode is synthesized by directly depositing V2O5 on a Ni foam current collector. Rechargeable aluminum coin cells fabricated using the as-synthesized binder-free cathode delivered an initial discharge capacity of 239 mAh/g, which is much higher than that of batteries fabricated using a cathode composed of V2O5 nanowires and binder. An obvious discharge voltage plateau appeared at 0.6 V in the discharge curves of the Ni–V2O5 cathode, which is slightly higher than that of the V2O5 nanowire cathodes with common binders. Thismore » improvement is attributed to reduced electrochemical polarization.« less

  19. Method of making bonded or sintered permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-08-31

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  20. Method of making bonded or sintered permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density. 14 figs.

Top