Science.gov

Sample records for alternative differentiation reveals

  1. Molecular Characterization of the α-Subunit of Na+/K+ ATPase from the Euryhaline Barnacle Balanus improvisus Reveals Multiple Genes and Differential Expression of Alternative Splice Variants

    PubMed Central

    Lind, Ulrika; Alm Rosenblad, Magnus; Wrange, Anna-Lisa; Sundell, Kristina S.; Jonsson, Per R.; André, Carl; Havenhand, Jonathan; Blomberg, Anders

    2013-01-01

    The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions. PMID:24130836

  2. Alternative splicing regulation and cell lineage differentiation.

    PubMed

    Liu, Huan; He, Ling; Tang, Liling

    2012-11-01

    The alternative splicing of precursor mRNA is an essential mechanism for protein diversity. It plays important biological roles, such as proliferation, differentiation and development of cells. Furthermore, alternative splicing participates in the pathogenesis of diseases, including cancer. Thus, in-depth understanding of splicing regulation is of great significance. Regulation of alternative splicing is an extraordinary complicated process in which several signal molecules are at work. Besides the cis-elements and trans-factors, several lines of evidences suggest that other molecules, structures or process also regulate splicing, such as RNA structures, transcription and transcription factors, chromatin and protein. Meanwhile, increasing body of evidence shows that alternative splicing correlated closely to stem cell lineage differentiation. It means that there is a fundamental role for splicing in controlling regulatory program required for cell lineage differentiation. This review systematically sums up the regulation of alternative splicing and summarizes the splicing events during cell lineage differentiation of stem cells.

  3. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    USGS Publications Warehouse

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  4. Contextual fear conditioning induces differential alternative splicing.

    PubMed

    Poplawski, Shane G; Peixoto, Lucia; Porcari, Giulia S; Wimmer, Mathieu E; McNally, Anna G; Mizuno, Keiko; Giese, K Peter; Chatterjee, Snehajyoti; Koberstein, John N; Risso, Davide; Speed, Terence P; Abel, Ted

    2016-10-01

    The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning. PMID:27451143

  5. Histone methylation, alternative splicing and neuronal differentiation.

    PubMed

    Fiszbein, Ana; Kornblihtt, Alberto R

    2016-01-01

    Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs. PMID:27606339

  6. Histone methylation, alternative splicing and neuronal differentiation.

    PubMed

    Fiszbein, Ana; Kornblihtt, Alberto R

    2016-01-01

    Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs.

  7. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation.

    PubMed

    Salomonis, Nathan; Schlieve, Christopher R; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C; Vranizan, Karen; Spindler, Matthew J; Pico, Alexander R; Cline, Melissa S; Clark, Tyson A; Williams, Alan; Blume, John E; Samal, Eva; Mercola, Mark; Merrill, Bradley J; Conklin, Bruce R

    2010-06-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon-exon junctions were interrogated on a genome-wide scale in differentiating mouse embryonic stem (ES) cells with a prototype Affymetrix microarray. Using a recently released open-source software package named AltAnalyze, we identified 144 genes for 170 putative isoform variants, the majority (67%) of which were predicted to alter protein sequence and domain composition. Verified alternative exons were largely associated with pathways of Wnt signaling and cell-cycle control, and most were conserved between mouse and human. To examine the functional impact of AS, we characterized isoforms for two genes. As predicted by AltAnalyze, we found that alternative isoforms of the gene Serca2 were targeted by distinct microRNAs (miRNA-200b, miRNA-214), suggesting a critical role for AS in cardiac development. Analysis of the Wnt transcription factor Tcf3, using selective knockdown of an ES cell-enriched and characterized isoform, revealed several distinct targets for transcriptional repression (Stmn2, Ccnd2, Atf3, Klf4, Nodal, and Jun) as well as distinct differentiation outcomes in ES cells. The findings herein illustrate a critical role for AS in the specification of ES cells with differentiation, and highlight the utility of global functional analyses of AS. PMID:20498046

  8. Implications for practice: Resurgence and differential reinforcement of alternative responding.

    PubMed

    Bloom, Sarah E; Lambert, Joseph M

    2015-12-01

    During the maintenance stages of differential reinforcement of alternative responding (DRA), failure to reinforce alternative responses could result in a resurgence of problem behavior. However, translational work done with arbitrary human responses suggests that teaching individuals to emit multiple alternative responses in sequential order may facilitate the resurgence of appropriate, rather than problem, behavior. This paper discusses the practical implications of serial DRA training on problem and appropriate behavior resurgence, as presented in the preceding article, "Serial Alternative Response Training As Intervention for Target Response Resurgence." Clinical scenarios as well as implications for self-advocacy and acceptability of behavioral interventions are considered. PMID:26477525

  9. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes

    PubMed Central

    Lin, Jung-Chun

    2015-01-01

    Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed. PMID:26389882

  10. Implications for practice: Resurgence and differential reinforcement of alternative responding.

    PubMed

    Bloom, Sarah E; Lambert, Joseph M

    2015-12-01

    During the maintenance stages of differential reinforcement of alternative responding (DRA), failure to reinforce alternative responses could result in a resurgence of problem behavior. However, translational work done with arbitrary human responses suggests that teaching individuals to emit multiple alternative responses in sequential order may facilitate the resurgence of appropriate, rather than problem, behavior. This paper discusses the practical implications of serial DRA training on problem and appropriate behavior resurgence, as presented in the preceding article, "Serial Alternative Response Training As Intervention for Target Response Resurgence." Clinical scenarios as well as implications for self-advocacy and acceptability of behavioral interventions are considered.

  11. Alternative Splicing of G9a Regulates Neuronal Differentiation.

    PubMed

    Fiszbein, Ana; Giono, Luciana E; Quaglino, Ana; Berardino, Bruno G; Sigaut, Lorena; von Bilderling, Catalina; Schor, Ignacio E; Steinberg, Juliana H Enriqué; Rossi, Mario; Pietrasanta, Lía I; Caramelo, Julio J; Srebrow, Anabella; Kornblihtt, Alberto R

    2016-03-29

    Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  12. When Unified Teacher Pay Scales Meet Differential Alternative Returns

    ERIC Educational Resources Information Center

    Walsh, Patrick

    2014-01-01

    This paper quantifies the extent to which unified teacher pay scales and differential alternatives produce opportunity costs that are asymmetric in math and verbal skills. Data from the Baccalaureate and Beyond 1997 and 2003 follow-ups are used to estimate a fully parametric, selection-corrected wage equation for nonteachers, which is then used to…

  13. An Investigation of Differential Reinforcement of Alternative Behavior without Extinction

    ERIC Educational Resources Information Center

    Athens, Elizabeth S.; Vollmer, Timothy R.

    2010-01-01

    We manipulated relative reinforcement for problem behavior and appropriate behavior using differential reinforcement of alternative behavior (DRA) without an extinction component. Seven children with developmental disabilities participated. We manipulated duration (Experiment 1), quality (Experiment 2), delay (Experiment 3), or a combination of…

  14. An alternative RNA polymerase I structure reveals a dimer hinge.

    PubMed

    Kostrewa, Dirk; Kuhn, Claus-D; Engel, Christoph; Cramer, Patrick

    2015-09-01

    RNA polymerase I (Pol I) is the central, 14-subunit enzyme that synthesizes the ribosomal RNA (rRNA) precursor in eukaryotic cells. The recent crystal structure of Pol I at 2.8 Å resolution revealed two novel elements: the `expander' in the active-centre cleft and the `connector' that mediates Pol I dimerization [Engel et al. (2013), Nature (London), 502, 650-655]. Here, a Pol I structure in an alternative crystal form that was solved by molecular replacement using the original atomic Pol I structure is reported. The resulting alternative structure lacks the expander but still shows an expanded active-centre cleft. The neighbouring Pol I monomers form a homodimer with a relative orientation distinct from that observed previously, establishing the connector as a hinge between Pol I monomers.

  15. Transcriptome analysis reveals differential splicing events in IPF lung tissue.

    PubMed

    Nance, Tracy; Smith, Kevin S; Anaya, Vanessa; Richardson, Rhea; Ho, Lawrence; Pala, Mauro; Mostafavi, Sara; Battle, Alexis; Feghali-Bostwick, Carol; Rosen, Glenn; Montgomery, Stephen B

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a complex disease in which a multitude of proteins and networks are disrupted. Interrogation of the transcriptome through RNA sequencing (RNA-Seq) enables the determination of genes whose differential expression is most significant in IPF, as well as the detection of alternative splicing events which are not easily observed with traditional microarray experiments. We sequenced messenger RNA from 8 IPF lung samples and 7 healthy controls on an Illumina HiSeq 2000, and found evidence for substantial differential gene expression and differential splicing. 873 genes were differentially expressed in IPF (FDR<5%), and 440 unique genes had significant differential splicing events in at least one exonic region (FDR<5%). We used qPCR to validate the differential exon usage in the second and third most significant exonic regions, in the genes COL6A3 (RNA-Seq adjusted pval = 7.18e-10) and POSTN (RNA-Seq adjusted pval = 2.06e-09), which encode the extracellular matrix proteins collagen alpha-3(VI) and periostin. The increased gene-level expression of periostin has been associated with IPF and its clinical progression, but its differential splicing has not been studied in the context of this disease. Our results suggest that alternative splicing of these and other genes may be involved in the pathogenesis of IPF. We have developed an interactive web application which allows users to explore the results of our RNA-Seq experiment, as well as those of two previously published microarray experiments, and we hope that this will serve as a resource for future investigations of gene regulation in IPF.

  16. Transcriptome analysis reveals differential splicing events in IPF lung tissue.

    PubMed

    Nance, Tracy; Smith, Kevin S; Anaya, Vanessa; Richardson, Rhea; Ho, Lawrence; Pala, Mauro; Mostafavi, Sara; Battle, Alexis; Feghali-Bostwick, Carol; Rosen, Glenn; Montgomery, Stephen B

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a complex disease in which a multitude of proteins and networks are disrupted. Interrogation of the transcriptome through RNA sequencing (RNA-Seq) enables the determination of genes whose differential expression is most significant in IPF, as well as the detection of alternative splicing events which are not easily observed with traditional microarray experiments. We sequenced messenger RNA from 8 IPF lung samples and 7 healthy controls on an Illumina HiSeq 2000, and found evidence for substantial differential gene expression and differential splicing. 873 genes were differentially expressed in IPF (FDR<5%), and 440 unique genes had significant differential splicing events in at least one exonic region (FDR<5%). We used qPCR to validate the differential exon usage in the second and third most significant exonic regions, in the genes COL6A3 (RNA-Seq adjusted pval = 7.18e-10) and POSTN (RNA-Seq adjusted pval = 2.06e-09), which encode the extracellular matrix proteins collagen alpha-3(VI) and periostin. The increased gene-level expression of periostin has been associated with IPF and its clinical progression, but its differential splicing has not been studied in the context of this disease. Our results suggest that alternative splicing of these and other genes may be involved in the pathogenesis of IPF. We have developed an interactive web application which allows users to explore the results of our RNA-Seq experiment, as well as those of two previously published microarray experiments, and we hope that this will serve as a resource for future investigations of gene regulation in IPF.

  17. Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development

    PubMed Central

    Kim, Kee K.; Nam, Joseph

    2013-01-01

    Alternative premRNA splicing is a major mechanism to generate diversity of gene products. However, the biological roles of alternative splicing during development remain elusive. Here, we focus on a neuron-specific RNA-binding protein, Rbfox3, recently identified as the antigen of the widely used anti-NeuN antibody. siRNA-mediated loss-of-function studies using the developing chicken spinal cord revealed that Rbfox3 is required to promote neuronal differentiation of postmitotic neurons. Numb premRNA encoding a signaling adaptor protein was found to be a target of Rbfox3 action, and Rbfox3 repressed the inclusion of an alternative exon via binding to the conserved UGCAUG element in the upstream intron. Depleting a specific Numb splice isoform reproduced similar neuronal differentiation defects. Forced expression of the relevant Numb splice isoform was sufficient to rescue, in an isoform-specific manner, postmitotic neurons from defects in differentiation caused by Rbfox3 depletion. Thus, Rbfox3-dependent Numb alternative splicing plays an important role in the progression of neuronal differentiation during vertebrate development. PMID:23420872

  18. An investigation of differential reinforcement of alternative behavior without extinction.

    PubMed

    Athens, Elizabeth S; Vollmer, Timothy R

    2010-01-01

    We manipulated relative reinforcement for problem behavior and appropriate behavior using differential reinforcement of alternative behavior (DRA) without an extinction component. Seven children with developmental disabilities participated. We manipulated duration (Experiment 1), quality (Experiment 2), delay (Experiment 3), or a combination of each (Experiment 4), such that reinforcement favored appropriate behavior rather than problem behavior even though problem behavior still produced reinforcement. Results of Experiments 1 to 3 showed that behavior was often sensitive to manipulations of duration, quality, and delay in isolation, but the largest and most consistent behavior change was observed when several dimensions of reinforcement were combined to favor appropriate behavior (Experiment 4). Results suggest strategies for reducing problem behavior and increasing appropriate behavior without extinction.

  19. Transcriptome Sequencing from Diverse Human Populations Reveals Differentiated Regulatory Architecture

    PubMed Central

    Lappalainen, Tuuli; Henn, Brenna M.; Kidd, Jeffrey M.; Yee, Muh-Ching; Grubert, Fabian; Cann, Howard M.; Snyder, Michael; Montgomery, Stephen B.; Bustamante, Carlos D.

    2014-01-01

    Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP). The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and regulatory genetics

  20. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern

    PubMed Central

    Bouton, Clément; Geldreich, Angèle; Ramel, Laëtitia; Ryabova, Lyubov A.; Dimitrova, Maria; Keller, Mario

    2015-01-01

    The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splic-ing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5’ region and sug-gested that the main role of CaMV splicing is to downregulate expression of open read-ing frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA. PMID:26162084

  1. Global Gene Expression Profiling and Alternative Splicing Events during the Chondrogenic Differentiation of Human Cartilage Endplate-Derived Stem Cells

    PubMed Central

    Shang, Jin; Fan, Xin; Shangguan, Lei; Liu, Huan; Zhou, Yue

    2015-01-01

    Low back pain (LBP) is a very prevalent disease and degenerative disc diseases (DDDs) usually account for the LBP. However, the pathogenesis of DDDs is complicated and difficult to elucidate. Alternative splicing is a sophisticated regulatory process which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. In addition, the cartilage endplate-derived stem cells have been discovered and identified by our research group. In this paper, we continue to investigate gene expression profiling and alternative splicing events during chondrogenic differentiation of cartilage endplate-derived stem cells. We adopted Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) to compare the transcriptional and splicing changes between the control and differentiated samples. RT-PCR and quantitative PCR are used to validate the microarray results. The GO and KEGG pathway analysis was also performed. After bioinformatics analysis of the data, we detected 1953 differentially expressed genes. In terms of alternative splicing, the Splicing Index algorithm was used to select alternatively spliced genes. We detected 4411 alternatively spliced genes. GO and KEGG pathway analysis also revealed several functionally involved biological processes and signaling pathways. To our knowledge, this is the first study to investigate the alternative splicing mechanisms in chondrogenic differentiation of stem cells on a genome-wide scale. PMID:26649308

  2. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  3. On the Lower Alternating Integral of Pontryagin in Linear Differential Games of Pursuit

    NASA Astrophysics Data System (ADS)

    Nikol'skiĭ, M. S.

    1987-02-01

    In this article the concept of the lower alternating integral of Pontryagin, which differs from the analogous concept of A. Azamov (MR 83k: 90142), is introduced. The properties of this object are studied in comparison with those of the alternating integral of Pontryagin. A procedure is given for application of the lower alternating integral of Pontryagin to linear differential games of pursuit, with special consideration for the question of using the lower alternating integral of Pontryagin when there are countably many measurements of the phase vector. The results are illustrated in two known differential games: "the boy and the crocodile" and the "control example of Pontryagin."Bibliography: 18 titles.

  4. Differential Reinforcement of Alternative Behavior in Center-Based Classrooms: Evaluation of Pre-Teaching the Alternative Behavior

    ERIC Educational Resources Information Center

    LeGray, Matthew W.; Dufrene, Brad A.; Mercer, Sterett; Olmi, D. Joe; Sterling, Heather

    2013-01-01

    This study investigated the effectiveness of a differential reinforcement of alternative behavior procedure in decreasing disruptive behavior while simultaneously increasing the appropriate behavior of four children of typical development between the ages of 4 and 6 in center-based classrooms. We began with brief functional analyses for each…

  5. Differential Shannon entropy and differential coefficient of variation: alternatives and augmentations to differential expression in the search for disease-related genes

    PubMed Central

    Wang, Kai; Phillips, Charles A.; Rogers, Gary L.; Barrenas, Fredrik; Benson, Mikael; Langston, Michael A.

    2014-01-01

    Differential expression has been a standard tool for analysing case-control transcriptomic data since the advent of microarray technology. It has proved invaluable in characterising the molecular mechanisms of disease. Nevertheless, the expression profile of a gene across samples can be perturbed in ways that leave the expression level unaltered, while a biological effect is nonetheless present. This paper describes and analyses differential Shannon entropy and differential coefficient of variation, two alternate techniques for identifying genes of interest. Ontological analysis across 16 human disease datasets demonstrates that these alternatives are effective at identifying disease-related genes not found by mere differential expression alone. Because the two alternate techniques are based on somewhat different mathematical formulations, they tend to produce somewhat different gene lists. Moreover, each may pinpoint genes completely overlooked by the other. Thus, measures of entropy and variation can be used to replace or better yet augment standard differential expression computations. PMID:24878729

  6. Differential Shannon entropy and differential coefficient of variation: alternatives and augmentations to differential expression in the search for disease-related genes.

    PubMed

    Wang, Kai; Phillips, Charles A; Rogers, Gary L; Barrenas, Fredrik; Benson, Mikael; Langston, Michael A

    2014-01-01

    Differential expression has been a standard tool for analysing case-control transcriptomic data since the advent of microarray technology. It has proved invaluable in characterising the molecular mechanisms of disease. Nevertheless, the expression profile of a gene across samples can be perturbed in ways that leave the expression level unaltered, while a biological effect is nonetheless present. This paper describes and analyses differential Shannon entropy and differential coefficient of variation, two alternate techniques for identifying genes of interest. Ontological analysis across 16 human disease datasets demonstrates that these alternatives are effective at identifying disease-related genes not found by mere differential expression alone. Because the two alternate techniques are based on somewhat different mathematical formulations, they tend to produce somewhat different gene lists. Moreover, each may pinpoint genes completely overlooked by the other. Thus, measures of entropy and variation can be used to replace or better yet augment standard differential expression computations.

  7. Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes

    PubMed Central

    2013-01-01

    Background Understanding how alternative phenotypes arise from the same genome is a major challenge in modern biology. Eusociality in insects requires the evolution of two alternative phenotypes - workers, who sacrifice personal reproduction, and queens, who realize that reproduction. Extensive work on honeybees and ants has revealed the molecular basis of derived queen and worker phenotypes in highly eusocial lineages, but we lack equivalent deep-level analyses of wasps and of primitively eusocial species, the latter of which can reveal how phenotypic decoupling first occurs in the early stages of eusocial evolution. Results We sequenced 20 Gbp of transcriptomes derived from brains of different behavioral castes of the primitively eusocial tropical paper wasp Polistes canadensis. Surprisingly, 75% of the 2,442 genes differentially expressed between phenotypes were novel, having no significant homology with described sequences. Moreover, 90% of these novel genes were significantly upregulated in workers relative to queens. Differential expression of novel genes in the early stages of sociality may be important in facilitating the evolution of worker behavioral complexity in eusocial evolution. We also found surprisingly low correlation in the identity and direction of expression of differentially expressed genes across similar phenotypes in different social lineages, supporting the idea that social evolution in different lineages requires substantial de novo rewiring of molecular pathways. Conclusions These genomic resources for aculeate wasps and first transcriptome-wide insights into the origin of castes bring us closer to a more general understanding of eusocial evolution and how phenotypic diversity arises from the same genome. PMID:23442883

  8. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis.

    PubMed

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  9. Transcriptome Bioinformatical Analysis of Vertebrate Stages of Schistosoma japonicum Reveals Alternative Splicing Events

    PubMed Central

    Wang, Xinye; Xu, Xindong; Lu, Xingyu; Zhang, Yuanbin; Pan, Weiqing

    2015-01-01

    Alternative splicing is a molecular process that contributes greatly to the diversification of proteome and to gene functions. Understanding the mechanisms of stage-specific alternative splicing can provide a better understanding of the development of eukaryotes and the functions of different genes. Schistosoma japonicum is an infectious blood-dwelling trematode with a complex lifecycle that causes the tropical disease schistosomiasis. In this study, we analyzed the transcriptome of Schistosoma japonicum to discover alternative splicing events in this parasite, by applying RNA-seq to cDNA library of adults and schistosomula. Results were validated by RT-PCR and sequencing. We found 11,623 alternative splicing events among 7,099 protein encoding genes and average proportion of alternative splicing events per gene was 42.14%. We showed that exon skip is the most common type of alternative splicing events as found in high eukaryotes, whereas intron retention is the least common alternative splicing type. According to intron boundary analysis, the parasite possesses same intron boundaries as other organisms, namely the classic “GT-AG” rule. And in alternative spliced introns or exons, this rule is less strict. And we have attempted to detect alternative splicing events in genes encoding proteins with signal peptides and transmembrane helices, suggesting that alternative splicing could change subcellular locations of specific gene products. Our results indicate that alternative splicing is prevalent in this parasitic worm, and that the worm is close to its hosts. The revealed secretome involved in alternative splicing implies new perspective into understanding interaction between the parasite and its host. PMID:26407301

  10. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation

    PubMed Central

    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

    2008-01-01

    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 nucleotides of exon 2 by use of an alternative 5’ splice site, resulting in a premature termination codon and possible nonsense-mediated decay of IIC mRNA. Low levels of the IIC isoform were detected by RT-PCR and Southern analysis of COL2A1 cDNA amplified from differentiating rabbit and human MSCs. A second novel transcript, named IID, arises by use of another 5’ alternative splice site in intron 2. The IID isoform contains exon 2 plus 3 nucleotides, resulting in the insertion of an additional amino acid. The IID isoform was co-expressed with the IIA isoform during chondrogenesis, and was approximately one-third as abundant. Deletion of the IIC alternative 5’ splice site from a COL2A1 mini-gene construct resulted in a significant increase in the IIA:IIB ratio. A mutant mini-gene that inhibited production of the IID isoform, however, had differential effects on the production of the IIA and IIB isoforms: this was apparently related to the differentiation status of the cell type used. These data suggest that COL2A1 mRNA abundance and other aspects of chondrocyte differentiation may be regulated by the use of these previously undetermined alternative splice sites. PMID:18023161

  11. A genome wide analysis of alternative splicing events during the osteogenic differentiation of human cartilage endplate-derived stem cells.

    PubMed

    Shang, Jin; Wang, Honggang; Fan, Xin; Shangguan, Lei; Liu, Huan

    2016-08-01

    Low back pain is a prevalent disease, which leads to suffering and disabilities in a vast number of individuals. Degenerative disc diseases are usually the underlying causes of low back pain. However, the pathogenesis of degenerative disc diseases is highly complex and difficult to determine. Current therapies for degenerative disc diseases are various. In particular, cell-based therapies have proven to be effective and promising. Our research group has previously isolated and identified the cartilage endplate‑derived stem cells. In addition, alternative splicing is a sophisticated regulatory mechanism, which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. The present study continued to investigate alternative splicing events in osteogenic differentiation of cartilage endplate‑derived stem cells. An Affymetrix Human Transcriptome Array 2.0 was used to detect splicing changes between the control and differentiated samples. Additionally, molecular function and pathway analysis were also performed. Following rigorous bioinformatics analysis of the data, 3,802 alternatively spliced genes were identified, and 10 of these were selected for validation by reverse transcription‑polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis also revealed numerous enriched GO terms and signaling pathways. To the best of our knowledge, the present study is the first to investigate alternative splicing mechanisms in osteogenic differentiation of stem cells on a genome‑wide scale. The illumination of molecular mechanisms of stem cell osteogenic differentiation may assist the development novel bioengineered methods to treat degenerative disc diseases.

  12. A genome wide analysis of alternative splicing events during the osteogenic differentiation of human cartilage endplate-derived stem cells.

    PubMed

    Shang, Jin; Wang, Honggang; Fan, Xin; Shangguan, Lei; Liu, Huan

    2016-08-01

    Low back pain is a prevalent disease, which leads to suffering and disabilities in a vast number of individuals. Degenerative disc diseases are usually the underlying causes of low back pain. However, the pathogenesis of degenerative disc diseases is highly complex and difficult to determine. Current therapies for degenerative disc diseases are various. In particular, cell-based therapies have proven to be effective and promising. Our research group has previously isolated and identified the cartilage endplate‑derived stem cells. In addition, alternative splicing is a sophisticated regulatory mechanism, which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. The present study continued to investigate alternative splicing events in osteogenic differentiation of cartilage endplate‑derived stem cells. An Affymetrix Human Transcriptome Array 2.0 was used to detect splicing changes between the control and differentiated samples. Additionally, molecular function and pathway analysis were also performed. Following rigorous bioinformatics analysis of the data, 3,802 alternatively spliced genes were identified, and 10 of these were selected for validation by reverse transcription‑polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis also revealed numerous enriched GO terms and signaling pathways. To the best of our knowledge, the present study is the first to investigate alternative splicing mechanisms in osteogenic differentiation of stem cells on a genome‑wide scale. The illumination of molecular mechanisms of stem cell osteogenic differentiation may assist the development novel bioengineered methods to treat degenerative disc diseases. PMID:27278552

  13. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength

    PubMed Central

    Paskin, Taylor R.; Jellies, John; Bacher, Jessica; Beane, Wendy S.

    2014-01-01

    Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment. PMID:25493551

  14. Alternative promoter usage and differential expression of multiple transcripts of mouse Prkar1a gene.

    PubMed

    Banday, Abdul Rouf; Azim, Shafquat; Tabish, Mohammad

    2011-11-01

    Prkar1a gene encodes regulatory type 1 alpha subunit (RIα) of cAMP-dependent protein kinase (PKA) in mouse. The role of this gene has been implicated in Carney complex and many cancer types that suggest its involvement in physiological processes like cell cycle regulation, growth and/or proliferation. We have identified and sequenced partial cDNA clones encoding four alternatively spliced transcripts of mouse Prkar1a gene. These transcripts have alternate 5' UTR structure which results from splicing of three exons (designated as E1a, E1b, and E1c) to canonical exon 2. The designated transcripts T1, T2, T3, and T4 contain 5' UTR exons as E1c, E1a + E1b, E1a, and E1b, respectively. The transcript T1 corresponded to earlier reported transcript in GenBank. In silico study of genomic DNA sequence revealed three distinct promoter regions namely, P1, P2, and P3 upstream of the exons E1a, E1b, and E1c, respectively. P1 is non-CpG-related promoter but P2 and P3 are CpG-related promoters; however, all three are TATA less. RT-PCR analysis demonstrated the expression of all four transcripts in late postnatal stages; however, these were differentially regulated in early postnatal stages of 0.5 day, 3 day, and 15 day mice in different tissue types. Variations in expression of Prkar1a gene transcripts suggest their regulation from multiple promoters that respond to a variety of signals arising in or out of the cell in tissue and developmental stage-specific manner. PMID:21638026

  15. Effects of Treatment Integrity Failures during Differential Reinforcement of Alternative Behavior: A Translational Model

    ERIC Educational Resources Information Center

    Pipkin, Claire St. Peter; Vollmer, Timothy R.; Sloman, Kimberly N.

    2010-01-01

    Differential reinforcement of alternative behavior (DRA) is used frequently as a treatment for problem behavior. Previous studies on treatment integrity failures during DRA suggest that the intervention is robust, but research has not yet investigated the effects of different types of integrity failures. We examined the effects of two types of…

  16. Alternative Differential Identification Approaches for 2 Similar Bacilli Commonly Studied in Microbiology.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1991-01-01

    Alternatives to the traditional unknown tests that permit a clear and unequivocal differential identification decision between Bacillus subtilis and Bacillus megaterium are presented. Plates of Phenylethyl Alcohol agar with Blood (PEAB), slants of Bile Esculin agar and plates of DNA agar are used. The materials, methods, results, and conclusions…

  17. Comparing Main and Collateral Effects of Extinction and Differential Reinforcement of Alternative Behavior

    ERIC Educational Resources Information Center

    Petscher, Erin Seligson; Bailey, Jon S.

    2008-01-01

    This study evaluated the effects and collateral effects of extinction (EXT) and differential reinforcement of alternative behavior (DRA) interventions with inappropriate vocalizations and work refusal. Both interventions have been used frequently to reduce problem behaviors. The benefits of these interventions have been established yet may be…

  18. Introducing Differential Equations Students to the Fredholm Alternative--In Staggered Doses

    ERIC Educational Resources Information Center

    Savoye, Philippe

    2011-01-01

    The development, in an introductory differential equations course, of boundary value problems in parallel with initial value problems and the Fredholm Alternative. Examples are provided of pairs of homogeneous and nonhomogeneous boundary value problems for which existence and uniqueness issues are considered jointly. How this heightens students'…

  19. A Review of Empirical Support for Differential Reinforcement of Alternative Behavior

    ERIC Educational Resources Information Center

    Petscher, Erin S.; Rey, Catalina; Bailey, Jon S.

    2009-01-01

    Differential reinforcement of alternative behavior (DRA) is one of the most common behavior analytic interventions used to decrease unwanted behavior. We reviewed the DRA literature from the past 30 years to identify the aspects that are thoroughly researched and those that would benefit from further emphasis. We found and coded 116 empirical…

  20. Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway

    PubMed Central

    Ptitsyn, Andrey A; Gimble, Jeffrey M

    2007-01-01

    Background It has been previously reported that most mammalian genes display a circadian oscillation in their baseline expression. Consequently, the phase and amplitude of each component of a signal transduction cascade has downstream consequences. Results Here, we report our analysis of alternative transcripts in the leptin signaling pathway which is responsible for the systemic regulation of macronutrient storage and energy balance. We focused on the circadian expression pattern of a critical component of the leptin signaling system, suppressor of cytokine signaling 3 (SOCS3). On an Affymetrix GeneChip 430A2 microarray, this gene is represented by three probe sets targeting different regions within the 3' end of the last exon. We demonstrate that in murine brown adipose tissue two downstream 3' probe sets experience circadian baseline oscillation in counter-phase to the upstream probe set. Such differences in expression patterns are a telltale sign of alternative splicing within the last exon of SOCS3. In contrast, all three probe sets oscillated in a common phase in murine liver and white adipose tissue. This suggests that the regulation of SOCS3 expression in brown fat is tissue specific. Another component of the signaling pathway, Janus kinase (JAK), is directly regulated by SOCS and has alternative transcript probe sets oscillating in counter-phase in a white adipose tissue specific manner. Conclusion We hypothesize that differential oscillation of alternative transcripts may provide a mechanism to maintain steady levels of expression in spite of circadian baseline variation. PMID:18047714

  1. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini

    SciTech Connect

    Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

    2003-03-25

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

  2. Dynamic Network-Based Relevance Score Reveals Essential Proteins and Functional Modules in Directed Differentiation

    PubMed Central

    Wu, Chia-Chou; Lin, Che

    2015-01-01

    The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693

  3. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    PubMed

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2016-01-01

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. PMID:26703587

  4. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation

    PubMed Central

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F.

    2015-01-01

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. PMID:26703587

  5. Morphometric Differentiation Among Anastrepha fraterculus (Diptera: Tephritidae) Exploiting Sympatric Alternate Hosts.

    PubMed

    Gómez-Cendra, P V; Paulin, L E; Oroño, L; Ovruski, S M; Vilardi, J C

    2016-04-01

    Anastrepha fraterculus (Wiedemann) is currently considered a complex of cryptic species infesting fruits from Mexico to Argentina and represents an interesting biological model for evolutionary studies. Moreover, detecting and quantifying behavioral, morphological, and genetic differentiation among populations is also relevant to the application of environment-friendly control programs. Here, phenotypic differentiation among individuals coexisting in the wild in a Northern region of Argentina was unveiled and associated with host choice. Six morphometric traits were measured in sympatric flies exploiting three different host species. Phenotypic variation was shown to be host-dependent regardless of geographical or temporal overlap. Flies collected from synchronous alternate hosts (peach and walnut) differed from each other despite the lack of geographical isolation. By contrast, flies emerging from guavas that ripen about two months later than peach and walnut showed no significant differentiation in comparison to flies collected from walnuts, but they differ significantly from flies originating from peaches. This result is consistent with the hypothesis that the same population of flies shifts from walnuts to guavas throughout the year, whereas the population of flies that uses peaches as a host is probably exploiting other alternate hosts when peach availability decreases. Further research is needed to study the underlying mechanism. Results are consistent with previous molecular markers (inter-simple sequence repeat-ISSR) research on flies stemming from the same hosts and the same area, suggesting that differentiation among flies emerging from alternative hosts occurs at both genetic and phenotypic levels. The contribution of host preference in long-term genetic differentiation is discussed. PMID:26787122

  6. Stimulus Fading and Response Elaboration in Differential Reinforcement for Alternative Behavior

    PubMed Central

    Schlichenmeyer, Kevin J.; Dube, William V.; Vargas-Irwin, Mariela

    2015-01-01

    A hallmark of applied behavior analysis is the development of function-based interventions for problem behavior. A widely recommended function-based intervention is differential reinforcement of alternative behavior (DRA), in which reinforcement is contingent upon socially acceptable alternatives to problem behavior (e.g., teaching communication skills). Typically, DRA is introduced under rich schedules of reinforcement. Although effective for initiating behavior change, rich schedules are often impractical in the natural setting. In this study, we evaluated the extent to which a stimulus fading program could be employed to elaborate alternative behavior (mands) in two individuals diagnosed with an Autism Spectrum Disorder. For both participants, problem behavior was reduced substantially upon implementation of the DRA procedure. Further, problem behavior rates remained low and mand rates decreased to more practical levels as the DRA behavioral requirements increased during the fading program. The fading approach demonstrated in this paper may be a useful component of intervention packages for clinicians. PMID:25844032

  7. IL-1β promotes Th17 differentiation by inducing alternative splicing of FOXP3

    PubMed Central

    Mailer, Reiner K. W.; Joly, Anne-Laure; Liu, Sang; Elias, Szabolcs; Tegner, Jesper; Andersson, John

    2015-01-01

    CD4+FOXP3+ regulatory T (Treg) cells are essential for maintaining immunological self-tolerance. Treg cell development and function depend on the transcription factor FOXP3, which is present in several distinct isoforms due to alternative splicing. Despite the importance of FOXP3 in the proper maintenance of Treg cells, the regulation and functional consequences of FOXP3 isoform expression remains poorly understood. Here, we show that in human Treg cells IL-1β promotes excision of FOXP3 exon 7. FOXP3 is not only expressed by Treg cells but is also transiently expressed when naïve T cells differentiate into Th17 cells. Forced splicing of FOXP3 into FOXP3Δ2Δ7 strongly favored Th17 differentiation in vitro. We also found that patients with Crohn’s disease express increased levels of FOXP3 transcripts lacking exon 7, which correlate with disease severity and IL-17 production. Our results demonstrate that alternative splicing of FOXP3 modulates T cell differentiation. These results highlight the importance of characterizing FOXP3 expression on an isoform basis and suggest that immune responses may be manipulated by modulating the expression of FOXP3 isoforms, which has broad implications for the treatment of autoimmune diseases. PMID:26441347

  8. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation.

    PubMed

    Ozsolak, Fatih; Kapranov, Philipp; Foissac, Sylvain; Kim, Sang Woo; Fishilevich, Elane; Monaghan, A Paula; John, Bino; Milos, Patrice M

    2010-12-10

    The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription. PMID:21145465

  9. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage.

    PubMed

    Jackson, Steven A; Olufs, Zachariah P G; Tran, Khoa A; Zaidan, Nur Zafirah; Sridharan, Rupa

    2016-03-01

    During the reprogramming of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells, the activation of pluripotency genes such as NANOG occurs after the mesenchymal to epithelial transition. Here we report that both adult stem cells (neural stem cells) and differentiated cells (astrocytes) of the neural lineage can activate NANOG in the absence of cadherin expression during reprogramming. Gene expression analysis revealed that only the NANOG+E-cadherin+ populations expressed stabilization markers, had upregulated several cell cycle genes; and were transgene independent. Inhibition of DOT1L activity enhanced both the numbers of NANOG+ and NANOG+E-cadherin+ colonies in neural stem cells. Expressing SOX2 in MEFs prior to reprogramming did not alter the ratio of NANOG colonies that express E-cadherin. Taken together these results provide a unique pathway for reprogramming taken by cells of the neural lineage. PMID:26905202

  10. Neu differentiation factors: A family of alternatively spliced neuronal and mesenchymal factors

    SciTech Connect

    Ben-Baruch, N.; Yarden Y.

    1994-12-31

    The Neu proto-oncogene (also called ErbB-2 and HER-2) encodes a tyrosine kinase transmembrane receptor homologous to the epidermal growth factor (EGF-R). Overexpression, a point-mutation, and co-expression with EGF-R activate the oncogenic potential of the Neu protein by permanent coupling to signal transducing pathways. The search for ligands that elevate tyrosine phosphorylation of Neu led to the discovery of a 44-kDa glycoprotein that acts either as a differentiation factor or as a mitogen for mammary tumor cells. This protein, termed Neu differentiation factor (NDF), is derived from a transmembrane precursor that contains an EGF-like motif and an immunoglobulin-like domain. Alternative splicing generates a dozen NDF-related proteins that are expressed in a variety of mesenchymal and neuronal tissues. This unprecedented multiplicity raises the possibility that different isoforms fulfill distinct biological roles. 22 refs., 2 figs., 1 tab.

  11. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2.

    PubMed

    Grammatikakis, Ioannis; Zhang, Peisu; Panda, Amaresh C; Kim, Jiyoung; Maudsley, Stuart; Abdelmohsen, Kotb; Yang, Xiaoling; Martindale, Jennifer L; Motiño, Omar; Hutchison, Emmette R; Mattson, Mark P; Gorospe, Myriam

    2016-05-01

    During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2) mRNA generates a short TRF2 protein isoform (TRF2-S) capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs) controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH) as RBPs specifically capable of interacting with the spliced RNA segment (exon 7) of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation. PMID:27117401

  12. Switch-like regulation of tissue-specific alternative pre-mRNA processing patterns revealed by customized fluorescence reporters

    PubMed Central

    Kuroyanagi, Hidehito

    2013-01-01

    Alternative processing of precursor mRNAs (pre-mRNAs), including alternative transcription start sites, alternative splicing and alternative polyadenylation, is the major source of protein diversity and plays crucial roles in development, differentiation and diseases in higher eukaryotes. It is estimated from microarray analyses and deep sequencing of mRNAs from synchronized worms that up to 25% of protein-coding genes in Caenorhabditis elegans undergo alternative pre-mRNA processing and that many of them are subject to developmental regulation. Recent progress in visualizing the alternative pre-mRNA processing patterns in living worms with custom-designed fluorescence reporters has enabled genetic analyses of the regulatory mechanisms for alternative processing events of interest in vivo. Expression of the tissue-specific isoforms of actin depolymerising factor (ADF)/cofilin, UNC-60A and UNC-60B, is regulated by a combination of alternative splicing and alternative polyadenylation of pre-mRNA from a single gene unc-60. We recently found that muscle-specific splicing regulators ASD-2 and SUP-12 cooperatively switch the pre-mRNA processing patterns of the unc-60 gene in body wall muscles. Here I summarize the bichromatic fluorescence reporter system utilized for visualizing the tissue-specific alternative processing patterns of the unc-60 pre-mRNA. I also discuss the model for the coordinated regulation of the UNC-60B-type pre-mRNA processing in body wall muscles by ASD-2 and SUP-12. PMID:24778931

  13. Integrated live imaging and molecular profiling of embryoid bodies reveals a synchronized progression of early differentiation.

    PubMed

    Boxman, Jonathan; Sagy, Naor; Achanta, Sirisha; Vadigepalli, Rajanikanth; Nachman, Iftach

    2016-01-01

    Embryonic stem cells can spontaneously differentiate into cell types of all germ layers within embryoid bodies (EBs) in a highly variable manner. Whether there exists an intrinsic differentiation program common to all EBs is unknown. Here, we present a novel combination of high-throughput live two-photon imaging and gene expression profiling to study early differentiation dynamics spontaneously occurring within developing EBs. Onset timing of Brachyury-GFP was highly variable across EBs, while the spatial patterns as well as the dynamics of mesendodermal progression following onset were remarkably similar. We therefore defined a 'developmental clock' using the Brachyury-GFP signal onset timing. Mapping snapshot gene expression measurements to this clock revealed their temporal trends, indicating that loss of pluripotency, formation of primitive streak and mesodermal lineage progression are synchronized in EBs. Exogenous activation of Wnt or BMP signaling accelerated the intrinsic clock. CHIR down-regulated Wnt3, allowing insights into dependency mechanisms between canonical Wnt signaling and multiple genes. Our findings reveal a developmental clock characteristic of an early differentiation program common to all EBs, further establishing them as an in vitro developmental model. PMID:27530599

  14. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation

    PubMed Central

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-01-01

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal. PMID:27067544

  15. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation.

    PubMed

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-05-19

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal.

  16. Integrated live imaging and molecular profiling of embryoid bodies reveals a synchronized progression of early differentiation

    PubMed Central

    Boxman, Jonathan; Sagy, Naor; Achanta, Sirisha; Vadigepalli, Rajanikanth; Nachman, Iftach

    2016-01-01

    Embryonic stem cells can spontaneously differentiate into cell types of all germ layers within embryoid bodies (EBs) in a highly variable manner. Whether there exists an intrinsic differentiation program common to all EBs is unknown. Here, we present a novel combination of high-throughput live two-photon imaging and gene expression profiling to study early differentiation dynamics spontaneously occurring within developing EBs. Onset timing of Brachyury-GFP was highly variable across EBs, while the spatial patterns as well as the dynamics of mesendodermal progression following onset were remarkably similar. We therefore defined a ‘developmental clock’ using the Brachyury-GFP signal onset timing. Mapping snapshot gene expression measurements to this clock revealed their temporal trends, indicating that loss of pluripotency, formation of primitive streak and mesodermal lineage progression are synchronized in EBs. Exogenous activation of Wnt or BMP signaling accelerated the intrinsic clock. CHIR down-regulated Wnt3, allowing insights into dependency mechanisms between canonical Wnt signaling and multiple genes. Our findings reveal a developmental clock characteristic of an early differentiation program common to all EBs, further establishing them as an in vitro developmental model. PMID:27530599

  17. Molecular Phylogeny of Sequenced Saccharomycetes Reveals Polyphyly of the Alternative Yeast Codon Usage

    PubMed Central

    Mühlhausen, Stefanie; Kollmar, Martin

    2014-01-01

    The universal genetic code defines the translation of nucleotide triplets, called codons, into amino acids. In many Saccharomycetes a unique alteration of this code affects the translation of the CUG codon, which is normally translated as leucine. Most of the species encoding CUG alternatively as serine belong to the Candida genus and were grouped into a so-called CTG clade. However, the “Candida genus” is not a monophyletic group and several Candida species are known to use the standard CUG translation. The codon identity could have been changed in a single branch, the ancestor of the Candida, or to several branches independently leading to a polyphyletic alternative yeast codon usage (AYCU). In order to resolve the monophyly or polyphyly of the AYCU, we performed a phylogenomics analysis of 26 motor and cytoskeletal proteins from 60 sequenced yeast species. By investigating the CUG codon positions with respect to sequence conservation at the respective alignment positions, we were able to unambiguously assign the standard code or AYCU. Quantitative analysis of the highly conserved leucine and serine alignment positions showed that 61.1% and 17% of the CUG codons coding for leucine and serine, respectively, are at highly conserved positions, whereas only 0.6% and 2.3% of the CUG codons, respectively, are at positions conserved in the respective other amino acid. Plotting the codon usage onto the phylogenetic tree revealed the polyphyly of the AYCU with Pachysolen tannophilus and the CTG clade branching independently within a time span of 30–100 Ma. PMID:25646540

  18. Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network

    PubMed Central

    Moriyama, Tetsuji; Tanaka, Shu; Nakayama, Yasumune; Fukumoto, Masahiro; Tsujimura, Kenji; Yamada, Kohji; Bamba, Takeshi; Yoneda, Yoshihiro; Fukusaki, Eiichiro; Oka, Masahiro

    2016-01-01

    Transaldolase 1 (TALDO1) is a rate-limiting enzyme involved in the pentose phosphate pathway, which is traditionally thought to occur in the cytoplasm. In this study, we found that the gene TALDO1 has two translational initiation sites, generating two isoforms that differ by the presence of the first 10 N-terminal amino acids. Notably, the long and short isoforms were differentially localised to the cell nucleus and cytoplasm, respectively. Pull-down and in vitro transport assays showed that the long isoform, unlike the short one, binds to importin α and is actively transported into the nucleus in an importin α/β-dependent manner, demonstrating that the 10 N-terminal amino acids are essential for its nuclear localisation. Additionally, we found that these two isoforms can form homo- and/or hetero-dimers with different localisation dynamics. A metabolite analysis revealed that the subcellular localisation of TALDO1 is not crucial for its activity in the pentose phosphate pathway. However, the expression of these two isoforms differentially affected the levels of various metabolites, including components of the tricarboxylic acid cycle, nucleotides, and sugars. These results demonstrate that the nucleocytoplasmic distribution of TALDO1, modulated via alternative translational initiation and dimer formation, plays an important role in a wide range of metabolic networks. PMID:27703206

  19. Genomic Scars Generated by Polymerase Theta Reveal the Versatile Mechanism of Alternative End-Joining

    PubMed Central

    van Schendel, Robin; van Heteren, Jane; Welten, Richard; Tijsterman, Marcel

    2016-01-01

    For more than half a century, genotoxic agents have been used to induce mutations in the genome of model organisms to establish genotype-phenotype relationships. While inaccurate replication across damaged bases can explain the formation of single nucleotide variants, it remained unknown how DNA damage induces more severe genomic alterations. Here, we demonstrate for two of the most widely used mutagens, i.e. ethyl methanesulfonate (EMS) and photo-activated trimethylpsoralen (UV/TMP), that deletion mutagenesis is the result of polymerase Theta (POLQ)-mediated end joining (TMEJ) of double strand breaks (DSBs). This discovery allowed us to survey many thousands of available C. elegans deletion alleles to address the biology of this alternative end-joining repair mechanism. Analysis of ~7,000 deletion breakpoints and their cognate junctions reveals a distinct order of events. We found that nascent strands blocked at sites of DNA damage can engage in one or more cycles of primer extension using a more downstream located break end as a template. Resolution is accomplished when 3’ overhangs have matching ends. Our study provides a step-wise and versatile model for the in vivo mechanism of POLQ action, which explains the molecular nature of mutagen-induced deletion alleles. PMID:27755535

  20. Mass Spectrometric and Spectrophotometric Analyses Reveal an Alternative Structure and a New Formation Mechanism for Melanin.

    PubMed

    Li, Yuanjiao; Liu, Jingjing; Wang, Yajie; Chan, Ho Wai; Wang, Lianrong; Chan, Wan

    2015-08-01

    In this study, we investigated the formation mechanism and chemical structure of melanin that results from the self-assembly of L-3,4-dihydroxyphenylalanine (L-DOPA). Using a combination of "top-down" and "bottom-up" approaches, and on the basis of state-of-the-art electrospray ionization mass spectrometry (ESI-MS) results, we propose a new formation mechanism and an alternative structure for melanin. Specifically, our study of the self-aggregation of L-DOPA based on L-DOPA clusters revealed that melanin is comprised partially of noncovalent supramolecular aggregate that is formed by self-aggregation of L-DOPA and with the individual monomers linked together by a combination of hydrogen bonds, π-π stacking, and ionic bonds. Furthermore, our study showed that unmodified L-DOPA may be part of the building block for melanin in addition to the previously proposed indole derivative based on L-DOPA cyclization. A similar self-aggregation phenomenon was also observed in other structurally related catecholamines, for example, adrenaline.

  1. An Oncogenic Role for Alternative NF-κB Signaling in DLBCL, Revealed Upon Deregulated BCL6 Expression

    PubMed Central

    Zhang, Baochun; Calado, Dinis Pedro; Wang, Zhe; Fröhler, Sebastian; Köchert, Karl; Qian, Yu; Koralov, Sergei B.; Schmidt-Supprian, Marc; Sasaki, Yoshiteru; Unitt, Christine; Rodig, Scott; Chen, Wei; Dalla-Favera, Riccardo; Alt, Frederick W.; Pasqualucci, Laura; Rajewsky, Klaus

    2015-01-01

    Diffuse large B cell lymphoma (DLBCL) is a complex disease comprising diverse subtypes and genetic profiles. Possibly due to the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs, and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development. PMID:25921526

  2. Comparing main and collateral effects of extinction and differential reinforcement of alternative behavior.

    PubMed

    Petscher, Erin Seligson; Bailey, Jon S

    2008-07-01

    This study evaluated the effects and collateral effects of extinction (EXT) and differential reinforcement of alternative behavior (DRA) interventions with inappropriate vocalizations and work refusal. Both interventions have been used frequently to reduce problem behaviors. The benefits of these interventions have been established yet may be outweighed by the reported negative side effects that result. However, these collateral effects have rarely been measured or reported. DRA produced the most rapid reductions in behavior for 4 of the 5 participants. Other behaviors were measured for changes and showed that the desirable collateral effect of academic engagement tended to be higher during EXT than DRA. No evidence of EXT bursts was present with any participant, although EXT-induced aggression occurred with 1 participant.

  3. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR.

    PubMed

    Oskin, Michael E; Arrowsmith, J Ramon; Hinojosa Corona, Alejandro; Elliott, Austin J; Fletcher, John M; Fielding, Eric J; Gold, Peter O; Gonzalez Garcia, J Javier; Hudnut, Ken W; Liu-Zeng, Jing; Teran, Orlando J

    2012-02-10

    Large [moment magnitude (M(w)) ≥ 7] continental earthquakes often generate complex, multifault ruptures linked by enigmatic zones of distributed deformation. Here, we report the collection and results of a high-resolution (≥nine returns per square meter) airborne light detection and ranging (LIDAR) topographic survey of the 2010 M(w) 7.2 El Mayor-Cucapah earthquake that produced a 120-kilometer-long multifault rupture through northernmost Baja California, Mexico. This differential LIDAR survey completely captures an earthquake surface rupture in a sparsely vegetated region with pre-earthquake lower-resolution (5-meter-pixel) LIDAR data. The postevent survey reveals numerous surface ruptures, including previously undocumented blind faults within thick sediments of the Colorado River delta. Differential elevation changes show distributed, kilometer-scale bending strains as large as ~10(3) microstrains in response to slip along discontinuous faults cutting crystalline bedrock of the Sierra Cucapah. PMID:22323817

  4. Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors

    PubMed Central

    Salomonis, Nathan; Nelson, Brandon; Vranizan, Karen; Pico, Alexander R.; Hanspers, Kristina; Kuchinsky, Allan; Ta, Linda; Mercola, Mark; Conklin, Bruce R.

    2009-01-01

    The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation. PMID:19893621

  5. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish.

    PubMed Central

    Altschmied, Joachim; Delfgaauw, Jacqueline; Wilde, Brigitta; Duschl, Jutta; Bouneau, Laurence; Volff, Jean-Nicolas; Schartl, Manfred

    2002-01-01

    The microphthalmia-associated transcription factor (MITF) exists in at least four isoforms. These are generated in higher vertebrates using alternative 5' exons and promoters from a single gene. Two separate genes (mitf-m and mitf-b), however, are present in different teleost fish species including the poeciliid Xiphophorus, the pufferfishes Fugu rubripes and Tetraodon nigroviridis, and the zebrafish Danio rerio. Fish proteins MITF-m and MITF-b correspond at both the structural and the expression levels to one particular bird/mammalian MITF isoform. In the teleost lineage subfunctionalization of mitf genes after duplication at least 100 million years ago is associated with the degeneration of alternative exons and, probably, regulatory elements and promoters. For example, a remnant of the first exon specific for MITF-m is detected within the pufferfish gene encoding MITF-b. Retracing the evolutionary history of mitf genes in vertebrates uncovered the differential recruitment of new introns specific for either the teleost or the bird/mammalian lineage. PMID:12019239

  6. Differential regulation of alternative 3{prime} splicing of {epsilon} messenger RNA variants

    SciTech Connect

    Diaz-Sanchez, D.; Zhang, K.; Saxon, A.

    1995-08-15

    Alternative 3{prime} splicing of the one active human {epsilon} heavy chain gene results in variants of {epsilon} mRNA encoding distinct IgE proteins. The same relative amounts of these {epsilon} mRNA variants were produced by non-atopic donor B cells when driven in a variety of T-dependent or T-independent systems. The most abundant variants were those for classic secreted {epsilon} and a novel secreted form (CH4-M2{double_prime}). In contrast, cells from subjects with high levels of serum IgE secondary to parasitic infection or atopy spontaneously produced higher relative levels of the CH4-M2{prime} {epsilon} mRNA variant, lower relative amounts of both the membrane and CH4-M2{double_prime} secreted variants, and very low levels of the CH4{prime}-CH5 variant. The existence of and corresponding changes in levels of the CH4-M2{prime}-enclosed secreted protein were demonstrated. IL-10 induced this same differential expression of {epsilon} splice variants in vitro when used to costimulate IL-4 plus CD40-driven B cells and could differentially enhance the production of CH4-M2{prime} protein by established IgE-secreting cell lines. Inhibition of IgE by cross-linking the low affinity IgE receptor (CD23) decreased the levels of {epsilon} mRNA and resulted in a distinct pattern of {epsilon} mRNA characterized by a dramatic decrease in CH4-M2{prime} splice variant. IL-6, IL-2, or IFN-{gamma} did not change the {epsilon} mRNA pattern. Overall, the absolute and relative amounts of the different {epsilon} mRNA splice variants produced appear to be controlled in a differentiation-related fashion.

  7. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    PubMed Central

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  8. Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events

    PubMed Central

    Ramirez-Villegas, Juan F.; Logothetis, Nikos K.; Besserve, Michel

    2015-01-01

    Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions. PMID:26540729

  9. Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events.

    PubMed

    Ramirez-Villegas, Juan F; Logothetis, Nikos K; Besserve, Michel

    2015-11-17

    Sharp-wave-ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R-triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions. PMID:26540729

  10. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    PubMed

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  11. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif.

    PubMed

    Tsigankov, Polina; Gherardini, Pier Federico; Helmer-Citterich, Manuela; Späth, Gerald F; Zilberstein, Dan

    2013-07-01

    Protists of the genus Leishmania are obligatory intracellular parasites that cause a wide range of cutaneous, mucocutaneous, and visceral diseases in humans. They cycle between phagolysosomes of mammalian macrophages and the sand fly midgut, proliferating as intracellular amastigotes and extracellular promastigotes, respectively. Exposure to a lysosomal environment, i.e. acidic pH and body temperature, signals promastigotes to differentiate into amastigotes. Time course analyses indicated that Leishmania differentiation is a highly regulated and coordinated process. However, the role of posttranslational events such as protein phosphorylation in this process is still unknown. Herein, we analyzed and compared the phosphoproteomes of L. donovani amastigotes and promastigotes using an axenic host-free system that simulates parasite differentiation. Shotgun phosphopeptide analysis revealed 1614 phosphorylation residues (p-sites) corresponding to 627 proteins. The analysis indicated that the majority of the p-sites are stage-specific. Serine phosphorylation in a previously identified trypanosomatid-specific "SF" motif was significantly enriched in amastigotes. We identified a few phosophotyrosines (pY), mostly in proteins known to participate in signal transduction pathways. The analysis indicated that Leishmania contains proteins with multiple p-sites that are phosphorylated at distinct stages of the life cycle. For over half of the phosphorylation events, changes in phosphoprotein abundance did not positively correlate with changes in protein abundance, suggesting functional regulation. This study compares, for the first time, the phosphoproteins of L. donovani axenic promastigotes and amastigotes and provides the largest data set of the Leishmania phosphoproteome to date.

  12. Rbfox proteins regulate tissue-specific alternative splicing of Mef2D required for muscle differentiation.

    PubMed

    Runfola, Valeria; Sebastian, Soji; Dilworth, F Jeffrey; Gabellini, Davide

    2015-02-15

    Among the Mef2 family of transcription factors, Mef2D is unique in that it undergoes tissue-specific splicing to generate an isoform that is essential for muscle differentiation. However, the mechanisms mediating this muscle-specific processing of Mef2D remain unknown. Using bioinformatics, we identified Rbfox proteins as putative modulators of Mef2D muscle-specific splicing. Accordingly, we found direct and specific Rbfox1 and Rbfox2 binding to Mef2D pre-mRNA in vivo. Gain- and loss-of-function experiments demonstrated that Rbfox1 and Rbfox2 cooperate in promoting Mef2D splicing and subsequent myogenesis. Thus, our findings reveal a new role for Rbfox proteins in regulating myogenesis through activation of essential muscle-specific splicing events.

  13. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics*

    PubMed Central

    Bell-Temin, Harris; Culver-Cochran, Ashley E.; Chaput, Dale; Carlson, Christina M.; Kuehl, Melanie; Burkhardt, Brant R.; Bickford, Paula C.; Liu, Bin; Stevens, Stanley M.

    2015-01-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells. PMID:26424600

  14. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics.

    PubMed

    Bell-Temin, Harris; Culver-Cochran, Ashley E; Chaput, Dale; Carlson, Christina M; Kuehl, Melanie; Burkhardt, Brant R; Bickford, Paula C; Liu, Bin; Stevens, Stanley M

    2015-12-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells.

  15. Differential Regulation of the Mouse and Human Wnt5a Alternative Promoters A and B

    PubMed Central

    Joyner-Powell, Nicole B.; Hsu, Chia-Chi; Kuk, Amber

    2012-01-01

    Wnt5a is an extracellular glycoprotein that activates Wnt signaling pathways, important in development and tissue homeostasis. Wnt5a expression is often misregulated during cancer progression. In this study, we analyzed the transcriptional regulation of two of the Wnt5a alternative promoters, termed A and B. Transient transfection of promoter A and B luciferase reporter constructs in to NIH3T3 and Caco-2 cells indicated that the separated promoters are both functional and that 300–450 base pair (bp) of upstream sequence is sufficient for activity. Promoter B constructs displayed distinct patterns of expression in the two cell types. The endogenous levels of promoter A-derived transcripts were found to be greater than the promoter B transcripts by four- to sixfold in fibroblast cells. Treatment of NIH3T3 cells with tumor necrosis factor (TNF)-alpha leads to an increase in both promoter A and B activities, but promoter B was more responsive. Using inhibitors of TNF-alpha effector proteins, we provide evidence that the transcription factor nuclear factor-kappaB and the MEK1/2 and p38 kinases have distinct roles in determining the activity levels of promoters, A and B. These results support the conclusion that Wnt5a promoters, A and B, are differentially regulated and provide a model for complex transcriptional regulation of Wnt5a. PMID:23046419

  16. Fair Pairs and Three Part Praise--Developing the Sustained Use of Differential Reinforcement of Alternative Behaviour

    ERIC Educational Resources Information Center

    Williams, Hugh

    2012-01-01

    A training course of two after-school sessions was run for teaching assistants (TAs) in a UK inner city primary school. The subject of the training was classroom use of a version of differential reinforcement of alternative behaviours (DRAs) known as Fair Pairs. The training introduced the concept of "Three Part Praise" within Fair Pairs. The…

  17. Differential Reinforcement of Alternative Behavior Increases Resistance to Extinction: Clinical Demonstration, Animal Modeling, and Clinical Test of One Solution

    ERIC Educational Resources Information Center

    Mace, F. Charles; McComas, Jennifer J.; Mauro, Benjamin C.; Progar, Patrick R.; Taylor, Bridget; Ervin, Ruth; Zangrillo, Amanda N.

    2010-01-01

    Basic research with pigeons on behavioral momentum suggests that differential reinforcement of alternative behavior (DRA) can increase the resistance of target behavior to change. This finding suggests that clinical applications of DRA may inadvertently increase the persistence of target behavior even as it decreases its frequency. We conducted…

  18. Teacher Implementation of Trial-Based Functional Analysis and Differential Reinforcement of Alternative Behavior for Students with Challenging Behavior

    ERIC Educational Resources Information Center

    Flynn, Susan D.; Lo, Ya-yu

    2016-01-01

    The purpose of this study was to examine the effects of a training package on three middle school special education teachers' accurate implementation of trial-based functional analysis (TBFA) and differential reinforcement of alternative behavior (DRA) with their students with autism spectrum disorders or emotional and behavioral disorders in the…

  19. Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney.

    PubMed Central

    Payne, J A; Forbush, B

    1994-01-01

    We have used cDNA probes derived from the secretory form of the Na-K-Cl cotransporter to screen both cortical and medullary rabbit kidney cDNA libraries. A sequence of 4750 bases was identified from multiple clones. The DNA encodes a protein containing 1099 amino acids, which is 61% identical over its length to the secretory Na-K-Cl cotransporter from shark rectal gland. From analysis of amino acid hydropathy, we predict that this putative renal Na-K-Cl cotransporter has 12 transmembrane helices and large N- and C-terminal cytoplasmic regions. Two sites for N-linked glycosylation are predicted on an extracellular loop. Three potential sites for modulation by protein kinase A are in the C-terminal cytoplasmic domain. Most of the isolated renal cDNA clones were identical over all regions of overlap; however, there was a 96-bp region for which there were three different but homologous variants (A, B, and F). This region of divergence was identified as an alternatively spliced cassette exon since clones were identified that contained intronic DNA as well as consensus splice acceptor sites that bounded the region. Tissue Northern blot analysis revealed a broad band at approximately 5.1 kb that was unique to the kidney. High-stringency Northern blot analysis of cortical and medullary mRNA using antisense oligonucleotides synthesized over each of the three cassette exons revealed that the isoforms were differentially distributed within the kidney--B almost exclusively in cortex, F almost exclusively in medulla, and A about equally distributed. Images PMID:7514306

  20. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal

    PubMed Central

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development. PMID:25985063

  1. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    PubMed Central

    Macaulay, Iain C.; Svensson, Valentine; Labalette, Charlotte; Ferreira, Lauren; Hamey, Fiona; Voet, Thierry; Teichmann, Sarah A.; Cvejic, Ana

    2016-01-01

    Summary The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment. PMID:26804912

  2. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  3. Hierarchical Clustering of Breast Cancer Methylomes Revealed Differentially Methylated and Expressed Breast Cancer Genes

    PubMed Central

    Lin, I-Hsuan; Chen, Dow-Tien; Chang, Yi-Feng; Lee, Yu-Ling; Su, Chia-Hsin; Cheng, Ching; Tsai, Yi-Chien; Ng, Swee-Chuan; Chen, Hsiao-Tan; Lee, Mei-Chen; Chen, Hong-Wei; Suen, Shih-Hui; Chen, Yu-Cheng; Liu, Tze-Tze; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2015-01-01

    Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation. PMID:25706888

  4. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    PubMed

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  5. Multiple Differential Networks Strategy Reveals Carboplatin and Melphalan-Induced Dynamic Module Changes in Retinoblastoma.

    PubMed

    Chen, Cui; Ma, Feng-Wei; Du, Cui-Yun; Wang, Ping

    2016-01-01

    BACKGROUND Retinoblastoma (RB) is the most common malignant tumor of the eye in childhood. The objective of this paper was to investigate carboplatin (CAR)- and melphalan (MEL)-induced dynamic module changes in RB based on multiple (M) differential networks, and to generate systems-level insights into RB progression. MATERIAL AND METHODS To achieve this goal, we constructed M-differential co-expression networks (DCNs), assigned a weight to each edge, and identified seed genes in M DCNs by ranking genes based on their topological features. Starting with seed genes, a module search was performed to explore candidate modules in CAR and MEL condition. M-DMs were detected according to significance evaluations of M-modules, which originated from refinement of candidate modules. Further, we revealed dynamic changes in M-DM activity and connectivity on the basis of significance of Module Connectivity Dynamic Score (MCDS). RESULTS In the present study, M=2, a total of 21 seed genes were obtained. By assessing module search, refinement, and evaluation, we gained 18 2-DMs. Moreover, 3 significant 2-DMs (Module 1, Module 2, and Module 3) with dynamic changes across CAR and MEL condition were determined, and we denoted them as dynamic modules. Module 1 had 27 nodes of which 6 were seed genes and 56 edges. Module 2 was composed of 28 nodes and 54 edges. A total of 28 nodes interacted with 45 edges presented in Module 3. CONCLUSIONS We have identified 3 dynamic modules with changes induced by CAR and MEL in RB, which might give insights in revealing molecular mechanism for RB therapy. PMID:27144687

  6. Exome Analysis Reveals Differentially Mutated Gene Signatures of Stage, Grade and Subtype in Breast Cancers

    PubMed Central

    Li, You; Wang, Xiaosheng; Vural, Suleyman; Mishra, Nitish K.; Cowan, Kenneth H.; Guda, Chittibabu

    2015-01-01

    Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies. PMID:25803781

  7. Differential Genes Expression between Fertile and Infertile Spermatozoa Revealed by Transcriptome Analysis

    PubMed Central

    Bansal, Sandeep Kumar; Gupta, Nishi; Sankhwar, Satya Narayan; Rajender, Singh

    2015-01-01

    Background It was believed earlier that spermatozoa have no traces of RNA because of loss of most of the cytoplasm. Recent studies have revealed the presence of about 3000 different kinds of mRNAs in ejaculated spermatozoa. However, the correlation of transcriptome profile with infertility remains obscure. Methods Total RNA from sperm (after exclusion of somatic cells) of 60 men consisting of individuals with known fertility (n=20), idiopathic infertility (normozoospermic patients, n=20), and asthenozoospermia (n=20) was isolated. After RNA quality check on Bioanalyzer, AffymetrixGeneChip Human Gene 1.0 ST Array was used for expression profiling, which consisted of >30,000 coding transcripts and >11,000 long intergenic non-coding transcripts. Results Comparison between all three groups revealed that two thousand and eighty one transcripts were differentially expressed. Analysis of these transcripts showed that some transcripts [ribosomal proteins (RPS25, RPS11, RPS13, RPL30, RPL34, RPL27, RPS5), HINT1, HSP90AB1, SRSF9, EIF4G2, ILF2] were up-regulated in the normozoospermic group, but down-regulated in the asthenozoospermic group in comparison to the control group. Some transcripts were specific to the normozoospermic group (up-regulated: CAPNS1, FAM153C, ARF1, CFL1, RPL19, USP22; down-regulated: ZNF90, SMNDC1, c14orf126, HNRNPK), while some were specific to the asthenozoospermic group (up-regulated: RPL24, HNRNPM, RPL4, PRPF8, HTN3, RPL11, RPL28, RPS16, SLC25A3, C2orf24, RHOA, GDI2, NONO, PARK7; down-regulated: HNRNPC, SMARCAD1, RPS24, RPS24, RPS27A, KIFAP3). A number of differentially expressed transcripts in spermatozoa were related to reproduction (n = 58) and development (n= 210). Some of these transcripts were related to heat shock proteins (DNAJB4, DNAJB14), testis specific genes (TCP11, TESK1, TSPYL1, ADAD1), and Y-chromosome genes (DAZ1, TSPYL1). Conclusion A complex RNA population in spermatozoa consisted of coding and non-coding RNAs. A number of

  8. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1

    PubMed Central

    Neubauer, Hans; Clare, Susan E; Wozny, Wojciech; Schwall, Gerhard P; Poznanović, Slobodan; Stegmann, Werner; Vogel, Ulrich; Sotlar, Karl; Wallwiener, Diethelm; Kurek, Raffael; Fehm, Tanja; Cahill, Michael A

    2008-01-01

    Introduction Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis. Methods Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays. Results Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of

  9. Differential spectral power alteration following acupuncture at different designated places revealed by magnetoencephalography

    NASA Astrophysics Data System (ADS)

    You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Liu, Zhenyu; Wang, Hu; Feng, Yuanyuan; Wei, Wenjuan; Tian, Jie

    2012-03-01

    As an ancient therapeutic technique in Traditional Chinese Medicine, acupuncture has been used increasingly in modern society to treat a range of clinical conditions as an alternative and complementary therapy. However, acupoint specificity, lying at the core of acupuncture, still faces many controversies. Considering previous neuroimaging studies on acupuncture have mainly employed functional magnetic resonance imaging, which only measures the secondary effect of neural activity on cerebral metabolism and hemodynamics, in the current study, we adopted an electrophysiological measurement technique named magnetoencephalography (MEG) to measure the direct neural activity. 28 healthy college students were recruited in this study. We filtered MEG data into 5 consecutive frequency bands (delta, theta, alpha, beta and gamma band) and grouped 140 sensors into 10 main brain regions (left/right frontal, central, temporal, parietal and occipital regions). Fast Fourier Transformation (FFT) based spectral analysis approach was further performed to explore the differential band-limited power change patterns of acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. Significantly increased delta power and decreased alpha as well as beta power in bilateral frontal ROIs were observed following stimulation at ST36. Compared with ST36, decreased alpha power in left and right central, right parietal as well as right temporal ROIs were detected in NAP group. Our research results may provide additional evidence for acupoint specificity.

  10. Alternative splicing of spleen tyrosine kinase differentially regulates colorectal cancer progression

    PubMed Central

    Ni, Beibei; Hu, Jun; Chen, Dianke; Li, Li; Chen, Daici; Wang, Jianping; Wang, Lei

    2016-01-01

    Spleen tyrosine kinase (SYK) has been reported as a potential tumor suppressor in colorectal cancer (CRC). However, the role of alternative splicing of SYK in carcinogenesis remains unclear. In the present study, SYK isoforms were overexpressed in the human CRC HCT 116 cell line using lentiviral expression vectors to investigate the biological functions of full length SYK [SYK(L)] and short form SYK [SYK(S)] in CRC. Real-time cellular analysis and the 5-ethynyl-2-deoxyuridine assay were used to detect the effects of SYK(L) and SYK(S) on cell proliferation. Cell cycle progression and migration were assessed via flow cytometry and Transwell assays, respectively. The results revealed that the recombinant lentivirus with SYK(L) overexpression significantly suppressed the proliferation and metastasis of CRC cells, while SYK(S) overexpression did not. In addition, MTS assays demonstrated that SYK(L) and SYK(S) increased the cellular sensitivity to 5-fluorouracil (5-FU), suggesting that SYK(L) and 5-FU produce a significant synergistic effect on CRC cell proliferation, while SYK(S) has an effect on modulating CRC 5-FU sensitivity. Furthermore, quantitative polymerase chain reaction results revealed that SYK(L) was downregulated in 69% of 26 pairs of CRC and adjacent non-cancerous tissues, whereas SYK(S) exhibited no significant differences between tumor and normal tissues. Overall, the present data provides evidence that SYK(L) is a tumor suppressor in CRC, and both SYK(L) and SYK(S) may serve as important predictors in the chemotherapeutic treatment of CRC.

  11. Alternative splicing of spleen tyrosine kinase differentially regulates colorectal cancer progression

    PubMed Central

    Ni, Beibei; Hu, Jun; Chen, Dianke; Li, Li; Chen, Daici; Wang, Jianping; Wang, Lei

    2016-01-01

    Spleen tyrosine kinase (SYK) has been reported as a potential tumor suppressor in colorectal cancer (CRC). However, the role of alternative splicing of SYK in carcinogenesis remains unclear. In the present study, SYK isoforms were overexpressed in the human CRC HCT 116 cell line using lentiviral expression vectors to investigate the biological functions of full length SYK [SYK(L)] and short form SYK [SYK(S)] in CRC. Real-time cellular analysis and the 5-ethynyl-2-deoxyuridine assay were used to detect the effects of SYK(L) and SYK(S) on cell proliferation. Cell cycle progression and migration were assessed via flow cytometry and Transwell assays, respectively. The results revealed that the recombinant lentivirus with SYK(L) overexpression significantly suppressed the proliferation and metastasis of CRC cells, while SYK(S) overexpression did not. In addition, MTS assays demonstrated that SYK(L) and SYK(S) increased the cellular sensitivity to 5-fluorouracil (5-FU), suggesting that SYK(L) and 5-FU produce a significant synergistic effect on CRC cell proliferation, while SYK(S) has an effect on modulating CRC 5-FU sensitivity. Furthermore, quantitative polymerase chain reaction results revealed that SYK(L) was downregulated in 69% of 26 pairs of CRC and adjacent non-cancerous tissues, whereas SYK(S) exhibited no significant differences between tumor and normal tissues. Overall, the present data provides evidence that SYK(L) is a tumor suppressor in CRC, and both SYK(L) and SYK(S) may serve as important predictors in the chemotherapeutic treatment of CRC. PMID:27602108

  12. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    DOE PAGESBeta

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.; Löffler, Frank E.; Edwards, Elizabeth A.

    2016-02-12

    Here we report that the genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 andmore » Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a

  13. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates.

    PubMed

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A; Löffler, Frank E; Edwards, Elizabeth A

    2016-01-01

    The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis

  14. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    PubMed Central

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.; Löffler, Frank E.; Edwards, Elizabeth A.

    2016-01-01

    The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis

  15. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates.

    PubMed

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A; Löffler, Frank E; Edwards, Elizabeth A

    2016-01-01

    The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis

  16. Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri.

    PubMed

    Arnoux, E; Eraud, C; Navarro, N; Tougard, C; Thomas, A; Cavallo, F; Vetter, N; Faivre, B; Garnier, S

    2014-12-01

    Mobile organisms are expected to show population differentiation only over fairly large geographical distances. However, there is growing evidence of discrepancy between dispersal potential and realized gene flow. Here we report an intriguing pattern of differentiation at a very small spatial scale in the forest thrush (Turdus lherminieri), a bird species endemic to the Lesser Antilles. Analysis of 331 individuals from 17 sampling sites distributed over three islands revealed a clear morphological and genetic differentiation between these islands isolated by 40-50 km. More surprisingly, we found that the phenotypic divergence between the two geographic zones of the island of Guadeloupe was associated with a very strong genetic differentiation (Fst from 0.073-0.153), making this pattern a remarkable case in birds given the very small spatial scale considered. Molecular data (mitochondrial control region sequences and microsatellite genotypes) suggest that this strong differentiation could have occurred in situ, although alternative hypotheses cannot be fully discarded. This study suggests that the ongoing habitat fragmentation, especially in tropical forests, may have a deeper impact than previously thought on avian populations.

  17. Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri

    PubMed Central

    Arnoux, E; Eraud, C; Navarro, N; Tougard, C; Thomas, A; Cavallo, F; Vetter, N; Faivre, B; Garnier, S

    2014-01-01

    Mobile organisms are expected to show population differentiation only over fairly large geographical distances. However, there is growing evidence of discrepancy between dispersal potential and realized gene flow. Here we report an intriguing pattern of differentiation at a very small spatial scale in the forest thrush (Turdus lherminieri), a bird species endemic to the Lesser Antilles. Analysis of 331 individuals from 17 sampling sites distributed over three islands revealed a clear morphological and genetic differentiation between these islands isolated by 40–50 km. More surprisingly, we found that the phenotypic divergence between the two geographic zones of the island of Guadeloupe was associated with a very strong genetic differentiation (Fst from 0.073–0.153), making this pattern a remarkable case in birds given the very small spatial scale considered. Molecular data (mitochondrial control region sequences and microsatellite genotypes) suggest that this strong differentiation could have occurred in situ, although alternative hypotheses cannot be fully discarded. This study suggests that the ongoing habitat fragmentation, especially in tropical forests, may have a deeper impact than previously thought on avian populations. PMID:24984605

  18. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring

    PubMed Central

    Lamichhaney, Sangeet; Barrio, Alvaro Martinez; Rafati, Nima; Sundström, Görel; Rubin, Carl-Johan; Gilbert, Elizabeth R.; Berglund, Jonas; Wetterbom, Anna; Laikre, Linda; Webster, Matthew T.; Grabherr, Manfred; Ryman, Nils; Andersson, Leif

    2012-01-01

    The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index FST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection. PMID:23134729

  19. Transcriptome Profiling Reveals Differentially Expressed Transcripts Between the Human Adrenal Zona Fasciculata and Zona Reticularis

    PubMed Central

    Rege, Juilee; Nakamura, Yasuhiro; Wang, Tao; Merchen, Todd D.; Sasano, Hironobu

    2014-01-01

    Context: The human adrenal zona fasciculata (ZF) and zona reticularis (ZR) are responsible for the production of cortisol and 19-carbon steroids (often called adrenal androgens), respectively. However, the gene profiles and exact molecular mechanisms leading to the functional phenotype of the ZF and ZR are still not clearly defined. In the present study, we identified the transcripts that are differentially expressed in the ZF and ZR. Objective: The objective of the study was to compare the transcriptome profiles of ZF and ZR. Design and Methods: ZF and ZR were microdissected from 10 human adrenals. Total RNA was extracted from 10 ZF/ZR pairs and hybridized to Illumina microarray chips. The 10 most differentially expressed transcripts were studied with quantitative RT-PCR (qPCR). Immunohistochemistry was also performed on four zone-specific genes. Results: Microarray results demonstrated that only 347 transcripts of the 47 231 were significantly different by 2-fold or greater in the ZF and ZR. ZF had 195 transcripts with 2-fold or greater increase compared with its paired ZR, whereas ZR was found to have 152 transcripts with 2-fold or greater higher expression than in ZF. Microarray and qPCR analysis of transcripts encoding steroidogenic enzymes (n = 10) demonstrated that only 3β-hydroxysteroid dehydrogenase, steroid sulfotransferase, type 5 17β-hydroxysteroid dehydrogenase, and cytochrome b5 were significantly different. Immunohistochemistry and qPCR studies confirmed that the ZF had an increased expression of lymphoid enhancer-binding factor 1 and nephroblastoma overexpressed, whereas ZR showed an increased expression of solute carrier family 27 (fatty acid transporter) (SLC27A2), member 2 and TSPAN12 (tetraspanin 12) Conclusion: Microarray revealed several novel candidate genes for elucidating the molecular mechanisms governing the ZF and ZR, thereby increasing our understanding of the functional zonation of these two adrenocortical zones. PMID:24423296

  20. Computational analysis of translational readthrough proteins in Drosophila and yeast reveals parallels to alternative splicing

    PubMed Central

    Pancsa, Rita; Macossay-Castillo, Mauricio; Kosol, Simone; Tompa, Peter

    2016-01-01

    In translational readthrough (TR) the ribosome continues extending the nascent protein beyond the first in-frame termination codon. Due to the lack of dedicated analyses of eukaryotic TR cases, the associated functional-evolutionary advantages are still unclear. Here, based on a variety of computational methods, we describe the structural and functional properties of previously proposed D. melanogaster and S. cerevisiae TR proteins and extensions. We found that in D. melanogaster TR affects long proteins in mainly regulatory roles. Their TR-extensions are structurally disordered and rich in binding motifs, which, together with their cell-type- and developmental stage-dependent inclusion, suggest that similarly to alternatively spliced exons they rewire cellular interaction networks in a temporally and spatially controlled manner. In contrast, yeast TR proteins are rather short and fulfil mainly housekeeping functions, like translation. Yeast extensions usually lack disorder and linear motifs, which precludes elucidating their functional relevance with sufficient confidence. Therefore we propose that by being much more restricted and by lacking clear functional hallmarks in yeast as opposed to fruit fly, TR shows remarkable parallels with alternative splicing. Additionally, the lack of conservation of TR extensions among orthologous TR proteins suggests that TR-mediated functions may be generally specific to lower taxonomic levels. PMID:27561673

  1. Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy

    PubMed Central

    Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew

    2016-01-01

    Alternative splicing is a regulated process that results in expression of specific mRNA and protein isoforms. Alternative splicing factors determine the relative abundance of each isoform. Here we focus on MBNL1, a splicing factor misregulated in the disease myotonic dystrophy. By altering the concentration of MBNL1 in cells across a broad dynamic range, we show that different splicing events require different amounts of MBNL1 for half-maximal response, and respond more or less steeply to MBNL1. Motifs around MBNL1 exon 5 were studied to assess how cis-elements mediate the MBNL1 dose-dependent splicing response. A framework was developed to estimate MBNL concentration using splicing responses alone, validated in the cell-based model, and applied to myotonic dystrophy patient muscle. Using this framework, we evaluated the ability of individual and combinations of splicing events to predict functional MBNL concentration in human biopsies, as well as their performance as biomarkers to assay mild, moderate, and severe cases of DM. PMID:27681373

  2. Computational analysis of translational readthrough proteins in Drosophila and yeast reveals parallels to alternative splicing.

    PubMed

    Pancsa, Rita; Macossay-Castillo, Mauricio; Kosol, Simone; Tompa, Peter

    2016-01-01

    In translational readthrough (TR) the ribosome continues extending the nascent protein beyond the first in-frame termination codon. Due to the lack of dedicated analyses of eukaryotic TR cases, the associated functional-evolutionary advantages are still unclear. Here, based on a variety of computational methods, we describe the structural and functional properties of previously proposed D. melanogaster and S. cerevisiae TR proteins and extensions. We found that in D. melanogaster TR affects long proteins in mainly regulatory roles. Their TR-extensions are structurally disordered and rich in binding motifs, which, together with their cell-type- and developmental stage-dependent inclusion, suggest that similarly to alternatively spliced exons they rewire cellular interaction networks in a temporally and spatially controlled manner. In contrast, yeast TR proteins are rather short and fulfil mainly housekeeping functions, like translation. Yeast extensions usually lack disorder and linear motifs, which precludes elucidating their functional relevance with sufficient confidence. Therefore we propose that by being much more restricted and by lacking clear functional hallmarks in yeast as opposed to fruit fly, TR shows remarkable parallels with alternative splicing. Additionally, the lack of conservation of TR extensions among orthologous TR proteins suggests that TR-mediated functions may be generally specific to lower taxonomic levels. PMID:27561673

  3. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    PubMed

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events.

  4. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    PubMed

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. PMID:27480881

  5. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing.

    PubMed

    Shahzad, K; Rauf, M; Ahmed, M; Malik, Z A; Habib, I; Ahmed, Z; Mahmood, K; Ali, R; Masmoudi, K; Lemtiri-Chlieh, F; Gehring, C; Berkowitz, G A; Saeed, N A

    2015-07-01

    Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  6. Structure of Est3 reveals a bimodal surface with differential roles in telomere replication

    PubMed Central

    Rao, Timsi; Lubin, Johnathan W.; Armstrong, Geoffrey S.; Tucey, Timothy M.; Lundblad, Victoria; Wuttke, Deborah S.

    2014-01-01

    Telomerase is essential for continuous cellular proliferation. Substantial insights have come from studies of budding yeast telomerase, which consists of a catalytic core in association with two regulatory proteins, ever shorter telomeres 1 and 3 (Est1 and Est3). We report here a high-resolution structure of the Est3 telomerase subunit determined using a recently developed strategy that combines minimal NMR experimental data with Rosetta de novo structure prediction algorithms. Est3 adopts an overall protein fold which is structurally similar to that adopted by the shelterin component TPP1. However, the characteristics of the surface of the experimentally determined Est3 structure are substantially different from those predicted by prior homology-based models of Est3. Structure-guided mutagenesis of the complete surface of the Est3 protein reveals two adjacent patches on a noncanonical face of the protein that differentially mediate telomere function. Mapping these two patches on the Est3 structure defines a set of shared features between Est3 and HsTPP1, suggesting an analogous multifunctional surface on TPP1. PMID:24344315

  7. Structure of Est3 reveals a bimodal surface with differential roles in telomere replication.

    PubMed

    Rao, Timsi; Lubin, Johnathan W; Armstrong, Geoffrey S; Tucey, Timothy M; Lundblad, Victoria; Wuttke, Deborah S

    2014-01-01

    Telomerase is essential for continuous cellular proliferation. Substantial insights have come from studies of budding yeast telomerase, which consists of a catalytic core in association with two regulatory proteins, ever shorter telomeres 1 and 3 (Est1 and Est3). We report here a high-resolution structure of the Est3 telomerase subunit determined using a recently developed strategy that combines minimal NMR experimental data with Rosetta de novo structure prediction algorithms. Est3 adopts an overall protein fold which is structurally similar to that adopted by the shelterin component TPP1. However, the characteristics of the surface of the experimentally determined Est3 structure are substantially different from those predicted by prior homology-based models of Est3. Structure-guided mutagenesis of the complete surface of the Est3 protein reveals two adjacent patches on a noncanonical face of the protein that differentially mediate telomere function. Mapping these two patches on the Est3 structure defines a set of shared features between Est3 and HsTPP1, suggesting an analogous multifunctional surface on TPP1.

  8. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation

    PubMed Central

    van Ham, Tjakko J.; Brady, Colleen A.; Kalicharan, Ruby D.; Oosterhof, Nynke; Kuipers, Jeroen; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Peterson, Randall T.; Kampinga, Harm H.; Giepmans, Ben N. G.

    2014-01-01

    Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage. PMID:24973753

  9. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    PubMed

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species.

  10. Genetic diversity and substantial population differentiation in Crassostrea hongkongensis revealed by mitochondrial DNA.

    PubMed

    Li, Lu; Wu, Xiangyun; Yu, Ziniu

    2013-09-01

    The Hong Kong oyster, Crassostrea hongkongensis, is an important fisheries resource that is cultivated in the coastal waters of the South China Sea. Despite significant advances in understanding biological and taxonomic aspects of this species, no detailed study of its population genetic diversity in regions of extensive cultivation are available. Direct sequencing of the mtDNA cox1 gene region was used to investigate genetic variation within and between eleven C. hongkongensis populations collected from typical habitats. Sixty-two haplotypes were identified; only haplotype 2 (21.74% of total haplotypes) was shared among all the eleven populations, and most of the observed haplotypes were restricted to individual populations. Both AMOVA and FST analyses revealed significant population structure, and the isolation by distance (IBD) was confirmed. The highest local differentiation was observed between the sample pools from Guangxi versus Guangdong and Fujian, which are separated by a geographic barrier, the Leizhou Peninsula. Current knowledge from seed management suggests that seed transfer from Guangxi province has likely reduced the divergence that somewhat naturally exists between these pools. The findings from the present study could be useful for genetic management and may serve as a baseline by which to monitor future changes in genetic diversity, either due to natural or anthropogenic impacts.

  11. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators

    PubMed Central

    Llorian, Miriam; Gooding, Clare; Bellora, Nicolas; Hallegger, Martina; Buckroyd, Adrian; Wang, Xiao; Rajgor, Dipen; Kayikci, Melis; Feltham, Jack; Ule, Jernej; Eyras, Eduardo; Smith, Christopher W.J.

    2016-01-01

    Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery. PMID:27317697

  12. Molecular cloning and functional characterization of a mouse gene upregulated by lipopolysaccharide treatment reveals alternative splicing

    SciTech Connect

    Du, Kejun; Chen, Yaoming; Dai, Zongming; Bi, Yuan; Cai, Tongjian; Hou, Lichao; Chai, Yubo; Song, Qinghe; Chen, Sumin; Luo, Wenjing; Chen, Jingyuan

    2010-01-01

    Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. (DQ316984) and (DQ320011)), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.

  13. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine.

    PubMed

    Sheng, Zhen; Sun, Yi; Zhu, Ruixin; Jiao, Na; Tang, Kailin; Cao, Zhiwei; Ma, Chao

    2015-01-01

    Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, RNA-seq technology was used to detect the differentially expressed genes and differentially alternative spliced genes in BEL-7402 cancer cells induced by berberine. Functional enrichment analysis indicated that these genes were mainly enriched in the p53 and cell cycle signalling pathway. In addition, it was statistically proven that the two sets of genes were locally co-enriched along chromosomes, closely connected to each other based on protein-protein interaction and functionally similar on Gene Ontology tree. These results suggested that the two sets of genes regulated by berberine might be functionally cross-talked and jointly contribute to its cell cycle arresting effect. It has provided new clues for further researches on the pharmacological mechanisms of berberine as well as the other botanical drugs.

  14. Regulation of Shootin1 Gene Expression Involves NGF-induced Alternative Splicing during Neuronal Differentiation of PC12 Cells

    PubMed Central

    Ergin, Volkan; Erdogan, Mutlu; Menevse, Adnan

    2015-01-01

    Shootin1 is a protein involved in neuronal polarization, and has been shown to be a key molecule for the positive/negative feedback loop for axon induction required during neuronal symmetry breaking. To better understand the molecular basis of shootin1 dynamics, we analysed the regulatory pathways and the expressional status of shootin1 gene during NGF-induced neuronal differentiation. We demonstrated that the isoform-1 and isoform-2 of shootin1 is differentially expressed during neuronal differentiation. By blocking individual downstream pathways of NGF signalling, we found that PI3K/Akt pathway plays a major role in the expression of shootin1 isoform-2. Western blot and RT-PCR results showed that the isoform-1 of shootin1 is constitutively expressed, while the isoform-2 is expressed in a manner that is strictly dependent on NGF-stimulation. Isoform-specific RT-PCR results demonstrated that the differential expression of the isoform-1 and isoform-2 of shootin1 is a consequence of alternative splicing of shootin1 pre-mRNA, in response to NGF-signalling. Collectively these findings provide the first information on the molecular mechanisms regulating the expression of shootin1 gene and represent the first example of NGF-induced alternative splicing process that has a regulatory role in neuritogenesis. PMID:26648138

  15. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.

    PubMed

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R

    2004-06-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.

  16. A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays.

    PubMed

    Lee, Joung-Hyun; Dustin, Michael L; Kam, Lance C

    2015-11-01

    T cells are key mediators of adaptive immunity. However, the overall immune response is often directed by minor subpopulations of this heterogeneous family of cells, owing to specificity of activation and amplification of functional response. Knowledge of differences in signaling and function between T cell subtypes is far from complete, but is clearly needed for understanding and ultimately leveraging this branch of the adaptive immune response. This report investigates differences in cell response to micropatterned surfaces by conventional and regulatory T cells. Specifically, the ability of cells to respond to the microscale geometry of TCR/CD3 and CD28 engagement is made possible using a magnetic-microfluidic device that overcomes limitations in imaging efficiency associated with conventional microscopy equipment. This device can be readily assembled onto micropatterned surfaces while maintaining the activity of proteins and other biomolecules necessary for such studies. In operation, a target population of cells is tagged using paramagnetic beads, and then trapped in a divergent magnetic field within the chamber. Following washing, the target cells are released to interact with a designated surface. Characterization of this system with mouse CD4(+) T cells demonstrated a 50-fold increase in target-to-background cell purity, with an 80% collection efficiency. Applying this approach to CD4(+)CD25(+) regulatory T cells, it is then demonstrated that these rare cells respond less selectively to micro-scale features of anti-CD3 antibodies than CD4(+)CD25(-) conventional T cells, revealing a difference in balance between TCR/CD3 and LFA-1-based adhesion. PKC-θ localized to the distal pole of regulatory T cells, away from the cell-substrate interface, suggests a mechanism for differential regulation of TCR/LFA-1-based adhesion. Moreover, specificity of cell adhesion to anti-CD3 features was dependent on the relative position of anti-CD28 signaling within the cell

  17. A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays.

    PubMed

    Lee, Joung-Hyun; Dustin, Michael L; Kam, Lance C

    2015-11-01

    T cells are key mediators of adaptive immunity. However, the overall immune response is often directed by minor subpopulations of this heterogeneous family of cells, owing to specificity of activation and amplification of functional response. Knowledge of differences in signaling and function between T cell subtypes is far from complete, but is clearly needed for understanding and ultimately leveraging this branch of the adaptive immune response. This report investigates differences in cell response to micropatterned surfaces by conventional and regulatory T cells. Specifically, the ability of cells to respond to the microscale geometry of TCR/CD3 and CD28 engagement is made possible using a magnetic-microfluidic device that overcomes limitations in imaging efficiency associated with conventional microscopy equipment. This device can be readily assembled onto micropatterned surfaces while maintaining the activity of proteins and other biomolecules necessary for such studies. In operation, a target population of cells is tagged using paramagnetic beads, and then trapped in a divergent magnetic field within the chamber. Following washing, the target cells are released to interact with a designated surface. Characterization of this system with mouse CD4(+) T cells demonstrated a 50-fold increase in target-to-background cell purity, with an 80% collection efficiency. Applying this approach to CD4(+)CD25(+) regulatory T cells, it is then demonstrated that these rare cells respond less selectively to micro-scale features of anti-CD3 antibodies than CD4(+)CD25(-) conventional T cells, revealing a difference in balance between TCR/CD3 and LFA-1-based adhesion. PKC-θ localized to the distal pole of regulatory T cells, away from the cell-substrate interface, suggests a mechanism for differential regulation of TCR/LFA-1-based adhesion. Moreover, specificity of cell adhesion to anti-CD3 features was dependent on the relative position of anti-CD28 signaling within the cell

  18. Comorbid Analysis of Genes Associated with Autism Spectrum Disorders Reveals Differential Evolutionary Constraints

    PubMed Central

    David, Maude M.; Enard, David; Ozturk, Alp; Daniels, Jena; Jung, Jae-Yoon; Diaz-Beltran, Leticia; Wall, Dennis. P.

    2016-01-01

    The burden of comorbidity in Autism Spectrum Disorder (ASD) is substantial. The symptoms of autism overlap with many other human conditions, reflecting common molecular pathologies suggesting that cross-disorder analysis will help prioritize autism gene candidates. Genes in the intersection between autism and related conditions may represent nonspecific indicators of dysregulation while genes unique to autism may play a more causal role. Thorough literature review allowed us to extract 125 ICD-9 codes comorbid to ASD that we mapped to 30 specific human disorders. In the present work, we performed an automated extraction of genes associated with ASD and its comorbid disorders, and found 1031 genes involved in ASD, among which 262 are involved in ASD only, with the remaining 779 involved in ASD and at least one comorbid disorder. A pathway analysis revealed 13 pathways not involved in any other comorbid disorders and therefore unique to ASD, all associated with basal cellular functions. These pathways differ from the pathways associated with both ASD and its comorbid conditions, with the latter being more specific to neural function. To determine whether the sequence of these genes have been subjected to differential evolutionary constraints, we studied long term constraints by looking into Genomic Evolutionary Rate Profiling, and showed that genes involved in several comorbid disorders seem to have undergone more purifying selection than the genes involved in ASD only. This result was corroborated by a higher dN/dS ratio for genes unique to ASD as compare to those that are shared between ASD and its comorbid disorders. Short-term evolutionary constraints showed the same trend as the pN/pS ratio indicates that genes unique to ASD were under significantly less evolutionary constraint than the genes associated with all other disorders. PMID:27414027

  19. Differential Molecular Responses of Rapeseed Cotyledons to Light and Dark Reveal Metabolic Adaptations toward Autotrophy Establishment

    PubMed Central

    He, Dongli; Damaris, Rebecca N.; Fu, Jinlei; Tu, Jinxing; Fu, Tingdong; Xi, Chen; Yi, Bin; Yang, Pingfang

    2016-01-01

    Photosynthesis competent autotrophy is established during the postgerminative stage of plant growth. Among the multiple factors, light plays a decisive role in the switch from heterotrophic to autotrophic growth. Under dark conditions, the rapeseed hypocotyl extends quickly with an apical hook, and the cotyledon is yellow and folded, and maintains high levels of the isocitrate lyase (ICL). By contrast, in the light, the hypocotyl extends slowly, the cotyledon unfolds and turns green, the ICL content changes in parallel with cotyledon greening. To reveal metabolic adaptations during the establishment of postgerminative autotrophy in rapeseed, we conducted comparative proteomic and metabolomic analyses of the cotyledons of seedlings grown under light versus dark conditions. Under both conditions, the increase in proteases, fatty acid β-oxidation and glyoxylate-cycle related proteins was accompanied by rapid degradation of the stored proteins and lipids with an accumulation of the amino acids. While light condition partially retarded these conversions. Light significantly induced the expression of chlorophyll-binding and photorespiration related proteins, resulting in an increase in reducing-sugars. However, the levels of some chlorophyllide conversion, Calvin-cycle and photorespiration related proteins also accumulated in dark grown cotyledons, implying that the transition from heterotrophy to autotrophy is programmed in the seed rather than induced by light. Various anti-stress systems, e.g., redox related proteins, salicylic acid, proline and chaperones, were employed to decrease oxidative stress, which was mainly derived from lipid oxidation or photorespiration, under both conditions. This study provides a comprehensive understanding of the differential molecular responses of rapeseed cotyledons to light and dark conditions, which will facilitate further study on the complex mechanism underlying the transition from heterotrophy to autotrophy. PMID:27471506

  20. Differential Molecular Responses of Rapeseed Cotyledons to Light and Dark Reveal Metabolic Adaptations toward Autotrophy Establishment.

    PubMed

    He, Dongli; Damaris, Rebecca N; Fu, Jinlei; Tu, Jinxing; Fu, Tingdong; Xi, Chen; Yi, Bin; Yang, Pingfang

    2016-01-01

    Photosynthesis competent autotrophy is established during the postgerminative stage of plant growth. Among the multiple factors, light plays a decisive role in the switch from heterotrophic to autotrophic growth. Under dark conditions, the rapeseed hypocotyl extends quickly with an apical hook, and the cotyledon is yellow and folded, and maintains high levels of the isocitrate lyase (ICL). By contrast, in the light, the hypocotyl extends slowly, the cotyledon unfolds and turns green, the ICL content changes in parallel with cotyledon greening. To reveal metabolic adaptations during the establishment of postgerminative autotrophy in rapeseed, we conducted comparative proteomic and metabolomic analyses of the cotyledons of seedlings grown under light versus dark conditions. Under both conditions, the increase in proteases, fatty acid β-oxidation and glyoxylate-cycle related proteins was accompanied by rapid degradation of the stored proteins and lipids with an accumulation of the amino acids. While light condition partially retarded these conversions. Light significantly induced the expression of chlorophyll-binding and photorespiration related proteins, resulting in an increase in reducing-sugars. However, the levels of some chlorophyllide conversion, Calvin-cycle and photorespiration related proteins also accumulated in dark grown cotyledons, implying that the transition from heterotrophy to autotrophy is programmed in the seed rather than induced by light. Various anti-stress systems, e.g., redox related proteins, salicylic acid, proline and chaperones, were employed to decrease oxidative stress, which was mainly derived from lipid oxidation or photorespiration, under both conditions. This study provides a comprehensive understanding of the differential molecular responses of rapeseed cotyledons to light and dark conditions, which will facilitate further study on the complex mechanism underlying the transition from heterotrophy to autotrophy. PMID:27471506

  1. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection

    PubMed Central

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-01-01

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions. PMID:27721457

  2. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.

    PubMed

    Shen, Shihao; Park, Juw Won; Lu, Zhi-xiang; Lin, Lan; Henry, Michael D; Wu, Ying Nian; Zhou, Qing; Xing, Yi

    2014-12-23

    Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNA-Seq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge.net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects. PMID:25480548

  3. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion

    PubMed Central

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W.; Kulozik, Andreas E.

    2016-01-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  4. Characterization of Differentiated SH-SY5Y as Neuronal Screening Model Reveals Increased Oxidative Vulnerability.

    PubMed

    Forster, J I; Köglsberger, S; Trefois, C; Boyd, O; Baumuratov, A S; Buck, L; Balling, R; Antony, P M A

    2016-06-01

    The immortalized and proliferative cell line SH-SY5Y is one of the most commonly used cell lines in neuroscience and neuroblastoma research. However, undifferentiated SH-SY5Y cells share few properties with mature neurons. In this study, we present an optimized neuronal differentiation protocol for SH-SY5Y that requires only two work steps and 6 days. After differentiation, the cells present increased levels of ATP and plasma membrane activity but reduced expression of energetic stress response genes. Differentiation results in reduced mitochondrial membrane potential and decreased robustness toward perturbations with 6-hydroxydopamine. We are convinced that the presented differentiation method will leverage genetic and chemical high-throughput screening projects targeting pathways that are involved in the selective vulnerability of neurons with high energetic stress levels.

  5. Characterization of Differentiated SH-SY5Y as Neuronal Screening Model Reveals Increased Oxidative Vulnerability

    PubMed Central

    Forster, J. I.; Köglsberger, S.; Trefois, C.; Boyd, O.; Baumuratov, A. S.; Buck, L.; Balling, R.; Antony, P. M. A.

    2016-01-01

    The immortalized and proliferative cell line SH-SY5Y is one of the most commonly used cell lines in neuroscience and neuroblastoma research. However, undifferentiated SH-SY5Y cells share few properties with mature neurons. In this study, we present an optimized neuronal differentiation protocol for SH-SY5Y that requires only two work steps and 6 days. After differentiation, the cells present increased levels of ATP and plasma membrane activity but reduced expression of energetic stress response genes. Differentiation results in reduced mitochondrial membrane potential and decreased robustness toward perturbations with 6-hydroxydopamine. We are convinced that the presented differentiation method will leverage genetic and chemical high-throughput screening projects targeting pathways that are involved in the selective vulnerability of neurons with high energetic stress levels. PMID:26738520

  6. Cost Differentials and the Treatment of Equipment Assets: An Analysis of Alternatives.

    ERIC Educational Resources Information Center

    Frohreich, Lloyd E.

    This paper is a discussion of alternative state approaches to aiding and costing capital outlay programs, particularly equipment purchases for vocational programs. Equipment costs for vocational programs tend to be a larger proportion of the total costs than in other programs. The paper includes a discussion of such topics as the magnitude of…

  7. Modified Multiple-Choice Items for Alternate Assessments: Reliability, Difficulty, and Differential Boost

    ERIC Educational Resources Information Center

    Kettler, Ryan J.; Rodriguez, Michael C.; Bolt, Daniel M.; Elliott, Stephen N.; Beddow, Peter A.; Kurz, Alexander

    2011-01-01

    Federal policy on alternate assessment based on modified academic achievement standards (AA-MAS) inspired this research. Specifically, an experimental study was conducted to determine whether tests composed of modified items would have the same level of reliability as tests composed of original items, and whether these modified items helped reduce…

  8. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    PubMed

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  9. Implications to Postsecondary Faculty of Alternative Calculation Methods of Gender-Based Wage Differentials.

    ERIC Educational Resources Information Center

    Hagedorn, Linda Serra

    1998-01-01

    A study explored two distinct methods of calculating a precise measure of gender-based wage differentials among college faculty. The first estimation considered wage differences using a formula based on human capital; the second included compensation for past discriminatory practices. Both measures were used to predict three specific aspects of…

  10. c-myc RNA degradation in growing and differentiating cells: Possible alternate pathways

    SciTech Connect

    Swartwout, S.G. ); Kinniburgh, A.J. . Dept. of Hematology Research)

    1989-01-01

    Transcripts of the proto-oncogene c-myc are composed of a rapidly degraded polyadenylated RNA species and an apparently much more stable, nonadenylated RNA species. In this report, the extended kinetics of c-myc RNA turnover have been examined in rapidly growing cells and in cells induced to differentiate. When transcription was blocked with actinomycin D in rapidly growing cells, poly(A)/sup +/ c-myc was rapidly degraded (t/sub 1/2/ = 12 min). c-myc RNA lacking poly (A) initially remained at or near control levels; however, after 80 to 90 min it was degraded with kinetics similar to those of poly (A)/sup +/ c-myc RNA. These bizarre kinetics are due to the deadenylation of poly (A)/sup +/ c-myc RNA to form poly (A)/sup -/ c-myc, thereby initially maintaining the poly (A)/sup -/ c-myc RNA pool when transcription is blocked. In contrast to growing cells, cells induced to differentiate degraded both poly (A)/sup +/ and poly (A)/sup -/ c-myc RNA rapidly. The rapid disappearance of both RNA species in differentiating cells suggests that a large proportion of the poly (A)/sup +/ c-myc RNA was directly degraded without first being converted to poly (A)/sup -/ c-myc RNA. Others have shown that transcriptional elongation of the c-myc gene is rapidly blocked in differentiating cells. The authors therefore hypothesize that in differentiating cells a direct, rapid degradation of poly (A)/sup +/ c-myc RNA may act as a backup or fail-safe system to ensure that c-myc protein is not synthesized.

  11. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation

    PubMed Central

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L.; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation. PMID:27148350

  12. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation.

    PubMed

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.

  13. Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mechanism.

    PubMed

    Whicher, Jonathan R; MacKinnon, Roderick

    2016-08-12

    Voltage-gated potassium (K(v)) channels are gated by the movement of the transmembrane voltage sensor, which is coupled, through the helical S4-S5 linker, to the potassium pore. We determined the single-particle cryo-electron microscopy structure of mammalian K(v)10.1, or Eag1, bound to the channel inhibitor calmodulin, at 3.78 angstrom resolution. Unlike previous K(v) structures, the S4-S5 linker of Eag1 is a five-residue loop and the transmembrane segments are not domain swapped, which suggest an alternative mechanism of voltage-dependent gating. Additionally, the structure and position of the S4-S5 linker allow calmodulin to bind to the intracellular domains and to close the potassium pore, independent of voltage-sensor position. The structure reveals an alternative gating mechanism for K(v) channels and provides a template to further understand the gating properties of Eag1 and related channels. PMID:27516594

  14. An alternative approach to estimating rainfall rate by radar using propagation differential phase shift

    NASA Technical Reports Server (NTRS)

    Jameson, A. R.

    1994-01-01

    In this work it is shown that for frequencies from 3 to 13 GHz, the ratio of the specific propagation differential phase shift phi(sub DP) to the rainfall rate can be specified essentially independently of the form of the drop size distribution by a function only of the mass-weighted mean drop size D(sub m). This significantly reduces one source of substantial bias errors common to most other techniques for measuring rain by radar. For frequencies 9 GHz and greater, the coefficient can be well estimated from the ratio of the specific differential attenuation to phi(sub DP), while at nonattenuating frequencies such as 3 GHz, the coefficient can be well estimated using the differential reflectivity. In practice it appears that this approach yields better estimates of the rainfall rate than any other current technique. The best results are most likely at 13.80 GHz, followed by those at 2.80 GHz. An optimum radar system for measuring rain should probably include components at a both frequencies so that when signals at 13.8 GHz are lost because of attenuation, good measurements are still possible at the lower frequency.

  15. Computational modeling reveals that a combination of chemotaxis and differential adhesion leads to robust cell sorting during tissue patterning.

    PubMed

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2014-01-01

    Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting.

  16. Computational Modeling Reveals that a Combination of Chemotaxis and Differential Adhesion Leads to Robust Cell Sorting during Tissue Patterning

    PubMed Central

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2014-01-01

    Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting. PMID:25302949

  17. Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements

    PubMed Central

    Egan, Jan B.; Barrett, Michael T.; Champion, Mia D.; Middha, Sumit; Lenkiewicz, Elizabeth; Evers, Lisa; Francis, Princy; Schmidt, Jessica; Shi, Chang-Xin; Van Wier, Scott; Badar, Sandra; Ahmann, Gregory; Kortuem, K. Martin; Boczek, Nicole J.; Fonseca, Rafael; Craig, David W.; Carpten, John D.; Borad, Mitesh J.; Stewart, A. Keith

    2014-01-01

    Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2. PMID:24505276

  18. Genotypic diversity and differentiation among populations of two benthic freshwater diatoms as revealed by microsatellites.

    PubMed

    Vanormelingen, Pieter; Evans, Katharine M; Mann, David G; Lance, Stacey; Debeer, Ann-Eline; D'Hondt, Sofie; Verstraete, Tine; De Meester, Luc; Vyverman, Wim

    2015-09-01

    Given their large population sizes and presumed high dispersal capacity, protists are expected to exhibit homogeneous population structure over large spatial scales. On the other hand, the fragmented and short-lived nature of the lentic freshwater habitats that many protists inhabit promotes strong population differentiation. We used microsatellites in two benthic freshwater diatoms, Eunotia bilunaris 'robust' and Sellaphora capitata, sampled from within a pond and connected ponds, through isolated ponds from the same region to western Europe to determine the spatial scale at which differentiation appears. Because periods of low genotypic diversity contribute to population differentiation, we also assessed genotypic diversity. While genotypic diversity was very high to maximal in most samples of both species, some had a markedly lower diversity, with up to half (Eunotia) and over 90% (Sellaphora) of the strains having the same multilocus genotype. Population differentiation showed an isolation-by-distance pattern with very low standardized FST values between samples from the same or connected ponds but high values between isolated ponds, even when situated in the same region. Partial rbcL sequences in Eunotia were consistent with this pattern as isolated ponds in the same region could differ widely in haplotype composition. Populations identified by Structure corresponded to the source ponds, confirming that 'pond' is the main factor structuring these populations. We conclude that freshwater benthic diatom populations are highly fragmented on a regional scale, reflecting either less dispersal than is often assumed or reduced establishment success of immigrants, so that dispersal does not translate into gene flow.

  19. Differential reinforcement of alternative behavior increases resistance to extinction: clinical demonstration, animal modeling, and clinical test of one solution.

    PubMed

    Mace, F Charles; McComas, Jennifer J; Mauro, Benjamin C; Progar, Patrick R; Taylor, Bridget; Ervin, Ruth; Zangrillo, Amanda N

    2010-05-01

    Basic research with pigeons on behavioral momentum suggests that differential reinforcement of alternative behavior (DRA) can increase the resistance of target behavior to change. This finding suggests that clinical applications of DRA may inadvertently increase the persistence of target behavior even as it decreases its frequency. We conducted three coordinated experiments to test whether DRA has persistence-strengthening effects on clinically significant target behavior and then tested the effectiveness of a possible solution to this problem in both a nonhuman and clinical study. Experiment 1 compared resistance to extinction following baseline rates of reinforcement versus higher DRA rates of reinforcement in a clinical study. Resistance to extinction was substantially greater following DRA. Experiment 2 tested a rat model of a possible solution to this problem. Training an alternative response in a context without reinforcement of the target response circumvented the persistence-strengthening effects of DRA. Experiment 3 translated the rat model into a novel clinical application of DRA. Training an alternative response with DRA in a separate context resulted in lower resistance to extinction than employing DRA in the context correlated with reinforcement of target behavior. The value of coordinated bidirectional translational research is discussed.

  20. Alternating Current Electric Fields of Varying Frequencies: Effects on Proliferation and Differentiation of Porcine Neural Progenitor Cells

    PubMed Central

    Lim, Ji-Hey; McCullen, Seth D.; Piedrahita, Jorge A.

    2013-01-01

    Abstract Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes. PMID:23961767

  1. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells.

    PubMed

    Lim, Ji-Hey; McCullen, Seth D; Piedrahita, Jorge A; Loboa, Elizabeth G; Olby, Natasha J

    2013-10-01

    Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.

  2. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians.

    PubMed

    Forsthoefel, David J; James, Noëlle P; Escobar, David J; Stary, Joel M; Vieira, Ana P; Waters, Forrest A; Newmark, Phillip A

    2012-10-16

    Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of postmitotic tissues. Understanding how these processes are orchestrated requires characterizing cell-type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling postembryonic organogenesis.

  3. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians

    PubMed Central

    Forsthoefel, David J.; James, Noelle P.; Escobar, David J.; Stary, Joel M.; Vieira, Ana P.; Waters, Forrest A.; Newmark, Phillip A.

    2012-01-01

    SUMMARY Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of post-mitotic tissues. Understanding how these processes are orchestrated requires characterizing cell type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis, and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling post-embryonic organogenesis. PMID:23079596

  4. Genotypic diversity and differentiation among populations of two benthic freshwater diatoms as revealed by microsatellites.

    PubMed

    Vanormelingen, Pieter; Evans, Katharine M; Mann, David G; Lance, Stacey; Debeer, Ann-Eline; D'Hondt, Sofie; Verstraete, Tine; De Meester, Luc; Vyverman, Wim

    2015-09-01

    Given their large population sizes and presumed high dispersal capacity, protists are expected to exhibit homogeneous population structure over large spatial scales. On the other hand, the fragmented and short-lived nature of the lentic freshwater habitats that many protists inhabit promotes strong population differentiation. We used microsatellites in two benthic freshwater diatoms, Eunotia bilunaris 'robust' and Sellaphora capitata, sampled from within a pond and connected ponds, through isolated ponds from the same region to western Europe to determine the spatial scale at which differentiation appears. Because periods of low genotypic diversity contribute to population differentiation, we also assessed genotypic diversity. While genotypic diversity was very high to maximal in most samples of both species, some had a markedly lower diversity, with up to half (Eunotia) and over 90% (Sellaphora) of the strains having the same multilocus genotype. Population differentiation showed an isolation-by-distance pattern with very low standardized FST values between samples from the same or connected ponds but high values between isolated ponds, even when situated in the same region. Partial rbcL sequences in Eunotia were consistent with this pattern as isolated ponds in the same region could differ widely in haplotype composition. Populations identified by Structure corresponded to the source ponds, confirming that 'pond' is the main factor structuring these populations. We conclude that freshwater benthic diatom populations are highly fragmented on a regional scale, reflecting either less dispersal than is often assumed or reduced establishment success of immigrants, so that dispersal does not translate into gene flow. PMID:26227512

  5. Novel Polymorphic Microsatellite Markers Reveal Genetic Differentiation between Two Sympatric Types of Galaxea fascicularis

    PubMed Central

    Nakajima, Yuichi; Shinzato, Chuya; Satoh, Noriyuki; Mitarai, Satoshi

    2015-01-01

    The reef-building, scleractinian coral, Galaxea fascicularis, is classified into soft and hard types, based on nematocyst morphology. This character is correlated with the length of the mitochondrial non-coding region (mt-Long: soft colony type, and nematocysts with wide capsules and long shafts; mt-Short: hard colony type, and nematocysts with thin capsules and short shafts). We isolated and characterized novel polymorphic microsatellite markers for G. fascicularis using next-generation sequencing. Based upon the mitochondrial non-coding region, 53 of the 97 colonies collected were mt-Long (mt-L) and 44 were mt-Short (mt-S). Among the 53 mt-L colonies, 27 loci were identified as amplifiable, polymorphic microsatellite loci, devoid of somatic mutations and free of scoring errors. Eleven of those 27 loci were also amplifiable and polymorphic in the 44 mt-S colonies; these 11 are cross-type microsatellite loci. The other 16 loci were considered useful only for mt-L colonies. These 27 loci identified 10 multilocus lineages (MLLs) among the 53 mt-L colonies (NMLL/N = 0.189), and the 11 cross-type loci identified 7 MLLs in 44 mt-S colonies (NMLL/N = 0.159). Significant genetic differentiation between the two types was detected based on the genetic differentiation index (FST = 0.080, P = 0.001). Bayesian clustering also indicated that these two types are genetically isolated. While nuclear microsatellite genotypes also showed genetic differentiation between mitochondrial types, the mechanism of divergence is not yet clear. These markers will be useful to estimate genetic diversity, differentiation, and connectivity among populations, and to understand evolutionary processes, including divergence of types in G. fascicularis. PMID:26147677

  6. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    PubMed Central

    Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment. PMID:27380174

  7. Differential alternation of the antinociceptive effect of narcotic analgesics on the inflammatory pain state.

    PubMed

    Aoki, Yuta; Mizoguchi, Hirokazu; Watanabe, Chizuko; Sakurada, Tsukasa; Sakurada, Shinobu

    2014-02-01

    Antinociceptive effect of narcotic analgesics, fentanyl, oxycodone and methadone in inflammatory pain state was described in the von Frey filament test using the complete Freund's adjuvant (CFA)-induced mouse inflammatory pain model. After the i.pl. injection of CFA, mechanical allodynia (decrease of mechanical threshold) was observed in ipsilateral paw. The antinociceptive effect of fentanyl and oxycodone injected s.c. against mechanical allodynia in inflammatory pain state was reduced bilaterally at 1 day after CFA pretreatment. However, the antinociceptive effect of methadone injected s.c. against mechanical allodynia in inflammatory pain state was reduced unilaterally at 1 day after CFA pretreatment. Moreover, the reduction of the antinociceptive effect of methadone in ipsilateral paw on inflammatory pain state was smaller than those of fentanyl or oxycodone. In conclusion, the alternation of the antinociceptive effect of narcotic analgesics in inflammatory pain state is variable among the narcotic analgesics used.

  8. The use of alternative polyadenylation sites renders integrin β1 (Itgb1) mRNA isoforms with differential stability during mammary gland development.

    PubMed

    Naipauer, Julian; Gattelli, Albana; Degese, Maria Sol; Slomiansky, Victoria; Wertheimer, Eva; LaMarre, Jonathan; Castilla, Lucio; Abba, Martin; Kordon, Edith C; Coso, Omar A

    2013-09-01

    Integrins are heterodimeric cell-surface adhesion receptors that play a critical role in tissue development. Characterization of the full-length mRNA encoding the β1 subunit (Itgb1) revealed an alternative functional cleavage and polyadenylation site that yields a new Itgb1 mRNA isoform 578 bp shorter than that previously reported. Using a variety of experimental and bioinformatic approaches, we found that the two Itgb1 isoforms are expressed at different levels in a variety of mouse tissues, including the mammary gland, where they are differentially regulated at successive developmental stages. The longer mRNA species is prevelant during lactation, whereas the shorter is induced after weaning. In 3D cultures, where expression of integrin β1 protein is required for normal formation of acini, experimental blockade of the longer isoform induced enhanced expression of the shorter species which allowed normal morphological mammary differentiation. The short isoform lacks AU-rich motifs and miRNA target sequences that are potentially implicated in the regulation of mRNA stability and translation efficiency. We further determined that the AU-binding protein HuR appears to selectively stabilize the longer isoform in the mammary gland. In summary, the results of the present study identify a new regulatory instance involved in the fine-tuning of Itgb1 expression during mammary gland development and function.

  9. Differential alternating current chip calorimeter for in situ investigation of vapor-deposited thin films

    NASA Astrophysics Data System (ADS)

    Ahrenberg, M.; Shoifet, E.; Whitaker, K. R.; Huth, H.; Ediger, M. D.; Schick, C.

    2012-03-01

    Physical vapor deposition can be used to produce thin films with interesting material properties including extraordinarily stable organic glasses. We describe an ac chip calorimeter for in situ heat capacity measurements of as-deposited nanometer thin films of organic glass formers. The calorimetric system is based on a differential ac chip calorimeter which is placed in the vacuum chamber for physical vapor deposition. The sample is directly deposited onto one calorimetric chip sensor while the other sensor is protected against deposition. The device and the temperature calibration procedure are described. The latter makes use of the phase transitions of cyclopentane and the frequency dependence of the dynamic glass transition of toluene and ethylbenzene. Sample thickness determination is based on a finite element modeling of the sensor sample arrangement. In the modeling, a layer of toluene was added to the sample sensor and its thickness was varied in an iterative way until the model fit the experimental data.

  10. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis.

  11. By Ounce or By Calorie: The Differential Effects of Alternative Sugar-Sweetened Beverage Tax Strategies.

    PubMed

    Zhen, Chen; Brissette, Ian F; Ruff, Ryan R

    2014-07-01

    The obesity epidemic and excessive consumption of sugar-sweetened beverages have led to proposals of economics-based interventions to promote healthy eating in the United States. Targeted food and beverage taxes and subsidies are prominent examples of such potential intervention strategies. This paper examines the differential effects of taxing sugar-sweetened beverages by calories and by ounces on beverage demand. To properly measure the extent of substitution and complementarity between beverage products, we developed a fully modified distance metric model of differentiated product demand that endogenizes the cross-price effects. We illustrated the proposed methodology in a linear approximate almost ideal demand system, although other flexible demand systems can also be used. In the empirical application using supermarket scanner data, the product-level demand model consists of 178 beverage products with combined market share of over 90%. The novel demand model outperformed the conventional distance metric model in non-nested model comparison tests and in terms of the economic significance of model predictions. In the fully modified model, a calorie-based beverage tax was estimated to cost $1.40 less in compensating variation than an ounce-based tax per 3,500 beverage calories reduced. This difference in welfare cost estimates between two tax strategies is more than three times as much as the difference estimated by the conventional distance metric model. If applied to products purchased from all sources, a 0.04-cent per kcal tax on sugar-sweetened beverages is predicted to reduce annual per capita beverage intake by 5,800 kcal. PMID:25414517

  12. By Ounce or By Calorie: The Differential Effects of Alternative Sugar-Sweetened Beverage Tax Strategies

    PubMed Central

    Zhen, Chen; Brissette, Ian F.; Ruff, Ryan R.

    2014-01-01

    The obesity epidemic and excessive consumption of sugar-sweetened beverages have led to proposals of economics-based interventions to promote healthy eating in the United States. Targeted food and beverage taxes and subsidies are prominent examples of such potential intervention strategies. This paper examines the differential effects of taxing sugar-sweetened beverages by calories and by ounces on beverage demand. To properly measure the extent of substitution and complementarity between beverage products, we developed a fully modified distance metric model of differentiated product demand that endogenizes the cross-price effects. We illustrated the proposed methodology in a linear approximate almost ideal demand system, although other flexible demand systems can also be used. In the empirical application using supermarket scanner data, the product-level demand model consists of 178 beverage products with combined market share of over 90%. The novel demand model outperformed the conventional distance metric model in non-nested model comparison tests and in terms of the economic significance of model predictions. In the fully modified model, a calorie-based beverage tax was estimated to cost $1.40 less in compensating variation than an ounce-based tax per 3,500 beverage calories reduced. This difference in welfare cost estimates between two tax strategies is more than three times as much as the difference estimated by the conventional distance metric model. If applied to products purchased from all sources, a 0.04-cent per kcal tax on sugar-sweetened beverages is predicted to reduce annual per capita beverage intake by 5,800 kcal. PMID:25414517

  13. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  14. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    SciTech Connect

    Sukseree, Supawadee; Rossiter, Heidemarie; Mildner, Michael; Pammer, Johannes; Buchberger, Maria; Gruber, Florian; Watanapokasin, Ramida; Tschachler, Erwin; Eckhart, Leopold

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  15. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication

    PubMed Central

    Akagi, Takashi; Hanada, Toshio; Yaegaki, Hideaki; Gradziel, Thomas M.; Tao, Ryutaro

    2016-01-01

    Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops. PMID:27085183

  16. Differential gene expression and alternative splicing between diploid and tetraploid watermelon

    PubMed Central

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A.; Vajja, Venkata G.; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K.; Levi, Amnon; Wehner, Todd; Reddy, Umesh K.

    2015-01-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. PMID:25520388

  17. Differential gene expression and alternative splicing between diploid and tetraploid watermelon.

    PubMed

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A; Vajja, Venkata G; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K; Levi, Amnon; Wehner, Todd; Reddy, Umesh K

    2015-03-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits.

  18. Ultrastructural spectrum of solitary fibrous tumor: a unique perivascular tumor with alternative lines of differentiation.

    PubMed

    Ide, Fumio; Obara, Kumi; Mishima, Kenji; Saito, Ichiro; Kusama, Kaoru

    2005-06-01

    Eight tumors diagnosed as solitary fibrous tumor (SFT) of the oral cavity were studied. Histologic spectrum was entirely comparable with the extrapleural SFT of other sites. One tumor had glomus tumor-like foci. Immunohistochemical results confirmed most of the previous observations, indicating characteristic expression of vimentin, CD34, bcl-2, and CD99. Factor XIIIa and alpha-smooth muscle actin were less commonly reactive and a very few cells were faintly positive for factor VIII-related antigen and Ulex europaeus agglutinin 1. All were essentially negative for S-100 protein, desmin, CD31, and CD68. In stark contrast to the conclusive immunoprofile, ultrastructural investigation of six tumors demonstrated considerable cellular heterogeneity. Other than fibroblasts, perivascular undifferentiated cells and pericytes predominated, but endothelial cells were regularly present. There was a distinctive proliferation of pericytic cells in four tumors, one of which had glomoid foci of myopericytes. The extreme increase in number of Weibel-Palade bodies occurred in voluminous capillary endothelium. Occasional single and clustered cells with consistent features of endothelium showed intracytoplasmic lumen formation. Such composite cells constituted an integral segment of richly vascularized SFT. Myofibroblastic form smooth muscle differentiation was present in only a minority of cells. From phenotypic analysis by electron microscopy, SFT may originate from a unique, perivascular multipotent mesenchyme sharing with its lineage with pericytes, fibroblasts, and infrequently, endothelium. Consequently, morphological features of SFT may become diversely varied by whether predominantly constituent cells are undifferentiated, pericytic or fibroblastic in nature.

  19. The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening.

    PubMed

    Chatterjee, Kaushik; Lin-Gibson, Sheng; Wallace, William E; Parekh, Sapun H; Lee, Young Jong; Cicerone, Marcus T; Young, Marian F; Simon, Carl G

    2010-07-01

    Cells are known to sense and respond to the physical properties of their environment and those of tissue scaffolds. Optimizing these cell-material interactions is critical in tissue engineering. In this work, a simple and inexpensive combinatorial platform was developed to rapidly screen three-dimensional (3D) tissue scaffolds and was applied to screen the effect of scaffold properties for tissue engineering of bone. Differentiation of osteoblasts was examined in poly(ethylene glycol) hydrogel gradients spanning a 30-fold range in compressive modulus ( approximately 10 kPa to approximately 300 kPa). Results demonstrate that material properties (gel stiffness) of scaffolds can be leveraged to induce cell differentiation in 3D culture as an alternative to biochemical cues such as soluble supplements, immobilized biomolecules and vectors, which are often expensive, labile and potentially carcinogenic. Gel moduli of approximately 225 kPa and higher enhanced osteogenesis. Furthermore, it is proposed that material-induced cell differentiation can be modulated to engineer seamless tissue interfaces between mineralized bone tissue and softer tissues such as ligaments and tendons. This work presents a combinatorial method to screen biological response to 3D hydrogel scaffolds that more closely mimics the 3D environment experienced by cells in vivo.

  20. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination.

    PubMed

    Olmos-Serrano, Jose Luis; Kang, Hyo Jung; Tyler, William A; Silbereis, John C; Cheng, Feng; Zhu, Ying; Pletikos, Mihovil; Jankovic-Rapan, Lucija; Cramer, Nathan P; Galdzicki, Zygmunt; Goodliffe, Joseph; Peters, Alan; Sethares, Claire; Delalle, Ivana; Golden, Jeffrey A; Haydar, Tarik F; Sestan, Nenad

    2016-03-16

    Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis. PMID:26924435

  1. Label-Free Quantitative Mass Spectrometry Reveals a Panel of Differentially Expressed Proteins in Colorectal Cancer

    PubMed Central

    Fan, Nai-Jun; Gao, Jiang-Ling; Liu, Yan; Song, Wei; Zhang, Zhan-Yang; Gao, Chun-Fang

    2015-01-01

    To identify potential biomarkers involved in CRC, a shotgun proteomic method was applied to identify soluble proteins in three CRCs and matched normal mucosal tissues using high-performance liquid chromatography and mass spectrometry. Label-free protein profiling of three CRCs and matched normal mucosal tissues were then conducted to quantify and compare proteins. Results showed that 67 of the 784 identified proteins were linked to CRC (28 upregulated and 39 downregulated). Gene Ontology and DAVID databases were searched to identify the location and function of differential proteins that were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, and so on. Among the differentially expressed proteins, tropomyosin-3 (TPM3), endoplasmic reticulum resident protein 29 (ERp29), 18 kDa cationic antimicrobial protein (CAMP), and heat shock 70 kDa protein 8 (HSPA8) were verified to be upregulated in CRC tissue and seven cell lines through western blot analysis. Furthermore, the upregulation of TPM3, ERp29, CAMP, and HSPA8 was validated in 69 CRCs byimmunohistochemistry (IHC) analysis. Combination of TPM3, ERp29, CAMP, and HSPA8 can identify CRC from matched normal mucosal achieving an accuracy of 73.2% using IHC score. These results suggest that TPM3, ERp29, CAMP, and HSPA8 are great potential IHC diagnostic biomarkers for CRC. PMID:25699276

  2. Transcriptional profiles reveal a stepwise developmental program of memory CD8(+) T cell differentiation.

    PubMed

    Roychoudhuri, Rahul; Lefebvre, Francois; Honda, Mitsuo; Pan, Li; Ji, Yun; Klebanoff, Christopher A; Nichols, Carmen N; Fourati, Slim; Hegazy, Ahmed N; Goulet, Jean-Philippe; Gattinoni, Luca; Nabel, Gary J; Gilliet, Michel; Cameron, Mark; Restifo, Nicholas P; Sékaly, Rafick P; Flatz, Lukas

    2015-02-11

    The generation of CD8(+) T-cell memory is a major aim of vaccination. While distinct subsets of CD8(+) T-cells are generated following immunization that differ in their ability to confer long-term immunity against infection, the transcriptional profiles of these subsets within endogenous vaccine-induced CD8(+) T cell responses have not been resolved. Here, we measure global transcriptional profiles of endogenous effector (TEFF), effector memory (TEM) and central memory (TCM) CD8(+) T-cells arising from immunization with three distinct prime-boost vaccine regimens. While a proportion of transcripts were uniquely regulated within distinct CD8(+) T cell populations, we observed progressive up- or down-regulation in the expression of a majority of differentially expressed transcripts when subsets were compared in the order TN>TCM>TEM>TEFF. Strikingly, when we compared global differences in gene expression between TN, TCM, TEM and TEFF cells with known transcriptional changes that result when CD8(+) T cells repetitively encounter antigen, our analysis overwhelmingly favored a model whereby cumulative antigen stimulation drives differentiation specifically from TN>TCM>TEM>TEFF and this was common to all vaccines tested. These findings provide insight into the molecular basis of immunological memory and identify potential biomarkers for characterization of vaccine-induced responses and prediction of vaccine efficacy.

  3. Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation

    PubMed Central

    Carthy, Jon M.; Stöter, Martin; Bellomo, Claudia; Vanlandewijck, Michael; Heldin, Angelos; Morén, Anita; Kardassis, Dimitris; Gahman, Timothy C.; Shiau, Andrew K.; Bickle, Marc; Zerial, Marino; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer. PMID:27430378

  4. Dynamic BRG1 Recruitment during T Helper Differentiation and Activation Reveals Distal Regulatory Elements▿§

    PubMed Central

    De, Supriyo; Wurster, Andrea L.; Precht, Patricia; Wood, William H.; Becker, Kevin G.; Pazin, Michael J.

    2011-01-01

    T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes. PMID:21262765

  5. Dynamic BRG1 recruitment during T helper differentiation and activation reveals distal regulatory elements.

    PubMed

    De, Supriyo; Wurster, Andrea L; Precht, Patricia; Wood, William H; Becker, Kevin G; Pazin, Michael J

    2011-04-01

    T helper cell differentiation and activation require specific transcriptional programs accompanied by changes in chromatin structure. However, little is known about the chromatin remodeling enzymes responsible. We performed genome-wide analysis to determine the general principles of BRG1 binding, followed by analysis of specific genes to determine whether these general rules were typical of key T cell genes. We found that binding of the remodeling protein BRG1 was programmed by both lineage and activation signals. BRG1 binding positively correlated with gene activity at protein-coding and microRNA (miRNA) genes. BRG1 binding was found at promoters and distal regions, including both novel and previously validated distal regulatory elements. Distal BRG1 binding correlated with expression, and novel distal sites in the Gata3 locus possessed enhancer-like activity, suggesting a general role for BRG1 in long-distance gene regulation. BRG1 recruitment to distal sites in Gata3 was impaired in cells lacking STAT6, a transcription factor that regulates lineage-specific genes. Together, these findings suggest that BRG1 interprets both differentiation and activation signals and plays a causal role in gene regulation, chromatin structure, and cell fate. Our findings suggest that BRG1 binding is a useful marker for identifying active cis-regulatory regions in protein-coding and miRNA genes.

  6. Differential proteins of the optic ganglion in octopus vulgaris under methanol stress revealed using proteomics.

    PubMed

    Huang, Lin; Huang, Qing-Yu; Chen, Hai-Bin; Huang, Fu-Sheng; Huang, He-Qing

    2011-10-01

    An analytical approach using the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) technique separated the proteome from the optic ganglia of Octopus vulgaris (OVOG). Approximately 600 protein spots were detected from the extraction when applying 150 μg protein to a 2D-PAGE gel in the pH range 5.0-8.0. Compared to the control, significant changes of 18 protein spots were observed in OVOG under the stress of native seawater containing 2% methanol for 72 h. Among these spots, we found that eight were down-regulated and ten were up-regulated in the gels, which were further identified using both peptide mass fingerprinting and database searches. Significant proteins such as glyceraldehyde-3-phosphate dehydrogenase, alpha subunit of succinyl-CoA synthetase, alcohol dehydrogenase, and long-chain specific acyl-CoA dehydrogenase were up-regulated proteins, whereas putative ABC transporter was a down -regulated protein. These differential proteins at the level of subcellular localization were further classified using LOCtree software with a hierarchical system of support vector machines. We found that most of the differential proteins in the gel could be identified as mitochondrial proteins, suggesting that these protective or marker proteins might help to prevent methanol poisoning via the mitochondria in the optical ganglia. The results indicated that both beta-tubulin and beta-actin were potential biomarkers as up-regulated proteins for monitoring methanol toxicosis associated with fish foods such as octopus and shark.

  7. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli.

    PubMed

    Thomason, Maureen K; Bischler, Thorsten; Eisenbart, Sara K; Förstner, Konrad U; Zhang, Aixia; Herbig, Alexander; Nieselt, Kay; Sharma, Cynthia M; Storz, Gisela

    2015-01-01

    While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.

  8. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    SciTech Connect

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Hallam, Steven J.

    2014-08-05

    Oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified marine waters. Currently OMZs are expanding due to global climate change. This expansion alters marine ecosystem function and the productivity of fisheries due to habitat compression and changes in biogeochemical cycling leading to fixed nitrogen loss and greenhouse gas production. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally anoxic fjord, Saanich Inlet to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification and inorganic carbon fixation predominantly co-varied with abundance and distribution patterns of Thaumarchaeota, Nitrospira, Planctomycetes and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Within these groups, pathways mediating inorganic carbon fixation and nitrogen and sulfur transformations were differentially expressed across the redoxcline. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters and denitrification, sulfur-oxidation and inorganic carbon fixation pathways affiliated with SUP05 dominated suboxic and anoxic waters. Nitrite-oxidation and anammox pathways affiliated with Nitrospina and Planctomycetes respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The differential expression of these pathways under changing water column redox conditions has quantitative implications for coupled biogeochemical cycling linking different modes of inorganic carbon fixation with distributed nitrogen and sulfur-based energy metabolism extensible to coastal and open ocean OMZs.

  9. Differential proteomics reveals multiple components in retrogradely transported axoplasm after nerve injury.

    PubMed

    Perlson, Eran; Medzihradszky, Katalin F; Darula, Zsuzsanna; Munno, David W; Syed, Naweed I; Burlingame, Alma L; Fainzilber, Mike

    2004-05-01

    Information on axonal damage is conveyed to neuronal cell bodies by a number of signaling modalities, including the post-translational modification of axoplasmic proteins. Retrograde transport of a subset of such proteins is thought to induce or enhance a regenerative response in the cell body. Here we report the use of a differential 2D-PAGE approach to identify injury-correlated retrogradely transported proteins in nerves of the mollusk Lymnaea. A comprehensive series of gels at different pI ranges allowed resolution of approximately 4000 spots by silver staining, and 172 of these were found to differ between lesioned versus control nerves. Mass spectrometric sequencing of 134 differential spots allowed their assignment to over 40 different proteins, some belonging to a vesicular ensemble blocked by the lesion and others comprising an up-regulated ensemble highly enriched in calpain cleavage products of an intermediate filament termed RGP51 (retrograde protein of 51 kDa). Inhibition of RGP51 expression by RNA interference inhibits regenerative outgrowth of adult Lymnaea neurons in culture. These results implicate regulated proteolysis in the formation of retrograde injury signaling complexes after nerve lesion and suggest that this signaling modality utilizes a wide range of protein components.

  10. Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming.

    PubMed

    Fan, Yiping; Marcy, Guillaume; Lee, Eddy S M; Rozen, Steve; Mattar, Citra N Z; Waddington, Simon N; Goh, Eyleen L K; Choolani, Mahesh; Chan, Jerry K Y

    2014-01-01

    Neural stem/progenitor cells (NSC) have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ) of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS) when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6%) over other sources (range of 0%-27.5%, p<0.004). Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.

  11. Genetic diversity and differentiation of the Ryukyu endemic frog Babina holsti as revealed by mitochondrial DNA.

    PubMed

    Tominaga, Atsushi; Matsui, Masafumi; Nakata, Katsushi

    2014-02-01

    We surveyed the genetic diversity and genetic differentiation of an endangered frog, Babina holsti, endemic to Okinawajima and Tokashikijima Islands of the Ryukyus, to elucidate its divergence history and obtain basic data for its conservation. Genetic differentiation between the two island lineages is moderate (3.1% p-distance in the cyt b gene). This result suggests that the two island lineages have been isolated between the late Pliocene and the middle Pleistocene and have never migrated between the current northern part of Okinawajima and Tokashikijima Islands, which were once connected in the late Pleistocene glacial age. On Okinawajima Island, the southernmost sample was constituted by a unique haplotype, without considerable genetic distance from haplotypes detected from northern samples. This unique haplotype composition in the southernmost sample would have resulted from the restricted gene flow between the southernmost population and the other populations in Okinawajima Island. Furthermore, the absence of genetic diversity within the southernmost sample indicates that this population has recently experienced population size reduction, possibly by predation pressure from an introduced mongoose, which is more abundant in the southern part than in the northern part of the island. Lower genetic diversity in the Tokashikijima sample implies a small effective population size for mitochondrial DNA (mtDNA) in B. holsti on the island. Immediate conservation measures should be taken for the populations from the southernmost range in Okinawajima and Tokashikijima. PMID:24521314

  12. Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons

    PubMed Central

    Queiroz, Rafael; Benz, Corinna; Fellenberg, Kurt; Hoheisel, Jörg D; Clayton, Christine

    2009-01-01

    Background Trypanosome gene expression is regulated almost exclusively at the post-transcriptional level, with mRNA degradation playing a decisive role. When trypanosomes are transferred from the blood of a mammal to the midgut of a Tsetse fly, they transform to procyclic forms: gene expression is reprogrammed, changing the cell surface and switching the mode of energy metabolism. Within the blood, trypanosomes can pre-adapt for Tsetse transmission, becoming growth-arrested stumpy forms. We describe here the transitions in gene expression that occur during differentiation of in-vitro cultured bloodstream forms to procyclic forms. Results Some mRNAs showed changes within 30 min of cis-aconitate addition, whereas others responded 12-24 hours later. For the first 12 h after addition of cis-aconitate, cells accumulated at the G1 phase of the cell cycle, and showed decreases in mRNAs required for proliferation, mimicking the changes seen in stumpy forms: many mRNAs needed for ribosomal and flagellar biogenesis showed striking co-regulation. Other mRNAs encoding components of signal transduction pathways and potential regulators were specifically induced only during differentiation. Messenger RNAs encoding proteins required for individual metabolic pathways were often co-regulated. Conclusion Trypanosome genes form post-transcriptional regulons in which mRNAs with functions in particular pathways, or encoding components of protein complexes, show almost identical patterns of regulation. PMID:19857263

  13. Genomic Analysis of Differentiation between Soil Types Reveals Candidate Genes for Local Adaptation in Arabidopsis lyrata

    PubMed Central

    Turner, Thomas L.; von Wettberg, Eric J.; Nuzhdin, Sergey V.

    2008-01-01

    Serpentine soil, which is naturally high in heavy metal content and has low calcium to magnesium ratios, comprises a difficult environment for most plants. An impressive number of species are endemic to serpentine, and a wide range of non-endemic plant taxa have been shown to be locally adapted to these soils. Locating genomic polymorphisms which are differentiated between serpentine and non-serpentine populations would provide candidate loci for serpentine adaptation. We have used the Arabidopsis thaliana tiling array, which has 2.85 million probes throughout the genome, to measure genetic differentiation between populations of Arabidopsis lyrata growing on granitic soils and those growing on serpentinic soils. The significant overrepresentation of genes involved in ion transport and other functions provides a starting point for investigating the molecular basis of adaptation to soil ion content, water retention, and other ecologically and economically important variables. One gene in particular, calcium-exchanger 7, appears to be an excellent candidate gene for adaptation to low Ca∶Mg ratio in A. lyrata. PMID:18784841

  14. Cryptic differentiation in alpine-endemic, high-altitude butterflies reveals down-slope glacial refugia.

    PubMed

    Haubrich, Karola; Schmitt, Thomas

    2007-09-01

    The influence of cyclic climate fluctuations and their impact on high-altitude species is still insufficiently understood. We therefore analysed in this study the genetic structure of cold-adapted animals and their coherence with geographical distributions throughout the Late Quaternary. We analysed 588 individuals from 23 populations of the alpine-endemic lesser mountain ringlet, Erebia melampus, by allozyme electrophoresis to detect its intraspecific differentiation. As an outgroup, we added one population of Erebia sudetica inalpina from Grindelwald (Swiss Alps). Seventeen of 18 loci were polymorphic. The mean F(ST) over all samples was 37%. We detected strong differentiation into three lineages with the genetic distances between the two E. melampus groups being larger than between each of the two E. melampus groups and E. sudetica. The mean genetic distance among these three groups was 0.17. These results give evidence for the existence of a species complex within the E. melampus/sudetica group and indicate a discontinuous distribution within this group during at least the last ice age. One of them, E. sudetica inalpina, is found in the northern Alps and most probably had its Würm glacial refugium north of the glaciated Alps. The western E. melampus group might have had a refugium at the southwestern Alps margin, the eastern group in the lower altitudes of the southeastern and/or eastern Alps. In the latter, a further subdivision within this relict area is possible.

  15. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system.

    PubMed

    Hu, Qi; Guo, Xue; Liang, Yili; Hao, Xiaodong; Ma, Liyuan; Yin, Huaqun; Liu, Xueduan

    2015-01-01

    The microbial community in a biological heap leaching (BHL) system is crucial for the decomposition of ores. However, the microbial community structure and functional differentiation in different parts of a biological heap leaching system are still unknown. In this study, metagenomic sequencing was used to fully illuminate the microbial community differentiation in the pregnant leach solution (PLS) and leaching heap (LH) of a BHL system. Long-read sequences (1.3 million) were obtained for the two samples, and the MG_RAST server was used to perform further analysis. The taxa analysis results indicated that the dominant genera of PLS is autotrophic bacterium Acidithiobacillus, but heterotrophic bacterium Acidiphilium is predominant in LH. Furthermore, functional annotation and hierarchical comparison with different reference samples showed that the abundant presence of genes was involved in transposition, DNA repair and heavy metal transport. The sequences related to transposase, which is important for the survival of the organism in the hostile environment, were both mainly classified into Acidiphilium for PLS and LH. These results indicated that not only autotrophic bacteria such as Acidithiobacillus, but also heterotrophic bacteria such as Acidiphilium, were essential participants in the bioleaching process. This new meta-view research will further facilitate the effective application of bioleaching. PMID:26117598

  16. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system.

    PubMed

    Hu, Qi; Guo, Xue; Liang, Yili; Hao, Xiaodong; Ma, Liyuan; Yin, Huaqun; Liu, Xueduan

    2015-01-01

    The microbial community in a biological heap leaching (BHL) system is crucial for the decomposition of ores. However, the microbial community structure and functional differentiation in different parts of a biological heap leaching system are still unknown. In this study, metagenomic sequencing was used to fully illuminate the microbial community differentiation in the pregnant leach solution (PLS) and leaching heap (LH) of a BHL system. Long-read sequences (1.3 million) were obtained for the two samples, and the MG_RAST server was used to perform further analysis. The taxa analysis results indicated that the dominant genera of PLS is autotrophic bacterium Acidithiobacillus, but heterotrophic bacterium Acidiphilium is predominant in LH. Furthermore, functional annotation and hierarchical comparison with different reference samples showed that the abundant presence of genes was involved in transposition, DNA repair and heavy metal transport. The sequences related to transposase, which is important for the survival of the organism in the hostile environment, were both mainly classified into Acidiphilium for PLS and LH. These results indicated that not only autotrophic bacteria such as Acidithiobacillus, but also heterotrophic bacteria such as Acidiphilium, were essential participants in the bioleaching process. This new meta-view research will further facilitate the effective application of bioleaching.

  17. Establishment of Two Mouse Models for CEDNIK Syndrome Reveals the Pivotal Role of SNAP29 in Epidermal Differentiation.

    PubMed

    Schiller, Stina A; Seebode, Christina; Wieser, Georg L; Goebbels, Sandra; Möbius, Wiebke; Horowitz, Mia; Sarig, Ofer; Sprecher, Eli; Emmert, Steffen

    2016-03-01

    Loss-of-function mutations in the synaptosomal-associated protein 29 (SNAP29) gene cause the cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome. In this study, we created total (Snap29(-/-)) as well as keratinocyte-specific (Snap29(fl/fl)/K14-Cre) Snap29 knockout mice. Both mutant mice exhibited a congenital distinct ichthyotic phenotype resulting in neonatal lethality. Mutant mice revealed acanthosis and hyperkeratosis as well as abnormal keratinocyte differentiation and increased proliferation. In addition, the epidermal barrier was severely impaired. These results indicate an essential role of SNAP29 in epidermal differentiation and barrier formation. Markedly decreased deposition of lamellar body contents in mutant mice epidermis and the observation of malformed lamellar bodies indicate severe impairments in lamellar body function due to the Snap29 knockout. We also found increased microtubule associated protein-1 light chain 3, isoform B-II levels, unchanged p62/SQSTM1 protein amounts, and strong induction of the endoplasmic reticulum stress marker C/EBP homologous protein in mutant mice. This emphasizes a role of SNAP29 in autophagy and endoplasmic reticulum stress. Our murine models serve as powerful tools for investigating keratinocyte differentiation processes and provide insights into the essential contribution of SNAP29 to epidermal differentiation. PMID:26747696

  18. A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction.

    PubMed

    Ritov, G; Boltyansky, B; Richter-Levin, G

    2016-05-01

    Human reactions to trauma exposure are extremely diverse, with some individuals exhibiting only time-limited distress and others qualifying for posttraumatic stress disorder diagnosis (PTSD). Furthermore, whereas most PTSD patients mainly display fear-based symptoms, a minority of patients display a co-morbid anhedonic phenotype. We employed an individual profiling approach to model these intriguing facets of the psychiatric condition in underwater-trauma exposed rats. Based on long-term assessments of anxiety-like and anhedonic behaviors, our analysis uncovered three separate phenotypes of stress response; an anxious, fear-based (38%), a co-morbid, fear-anhedonic (15%), and an exposed-unaffected group (47%). Immunohistochemical assessments for cellular activation (c-Fos) and activation of inhibition (c-Fos+GAD67) revealed a differential involvement of limbic regions and distinct co-activity patterns for each of these phenotypes, validating the behavioral categorization. In accordance with recent neurocognitive hypotheses for posttraumatic depression, we show that enhanced pretrauma anxiety predicts the progression of posttraumatic anhedonia only in the fear-anhedonic phenotype.

  19. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-29

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics.

  20. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells

    PubMed Central

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  1. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  2. Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects.

    PubMed

    Benabdelkamel, Hicham; Masood, Afshan; Almidani, Ghaith M; Alsadhan, Abdulmajeed A; Bassas, Abdulelah F; Duncan, Mark W; Alfadda, Assim A

    2015-02-01

    Overweight (OW) and obese individuals are considered to be graded parts of the scale having increasing weight as a common feature. They may not, however, be part of the same continuum and may differ metabolically. In this study we applied an untargeted proteomic approach to compare protein abundances in mature adipocytes derived from the subcutaneous adipose tissue of overweight and morbidly obese female subjects to those of lean age matched controls. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both lean (L; n = 7, 23.3 ± 0.4 kg/m(2); mean BMI ± SD), overweight (OW; n = 8, 27.9 ± 0.6 kg/m(2); mean BMI ± SD) and morbidly obese (MOB; n = 7, 44.8 ± 3.8 kg/m(2); mean BMI ± SD) individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). One hundred and ten differentially expressed protein spots (i.e., fitting the statistical criteria ANOVA test, p < 0.05; fold-change ≥1.5) were detected, and of these, 89 were identified by MALDI-TOF mass spectrometry. Of these, 66 protein spots were common to both groups whereas 23 were unique to the MOB group. Significant differences were evident in the abundances of key proteins involved in glucose and lipid metabolism, energy regulation, cytoskeletal structure and redox control signaling pathways. Differences in the abundance of some chaperones were also evident. The differentially abundant proteins were investigated using Ingenuity Pathway Analysis (IPA) to establish their associations with known biological functions. The network identified in the OW group with the highest score relates to-: cell-to-cell signaling and interaction; in contrast, in the MOB group the major interacting pathways are associated with lipid metabolism, small molecule biochemistry and cancer. The differences in abundance of the differentially regulated proteins were validated by

  3. Complexity of indica-japonica varietal differentiation in Bangladesh rice landraces revealed by microsatellite markers.

    PubMed

    Wang, Mumu; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Fu, Yongcai; Sun, Chuanqing; Cai, Hongwei

    2013-06-01

    To understand the genetic diversity and indica-japonica differentiation in Bangladesh rice varieties, a total of 151 accessions of rice varieties mostly Bangladesh traditional varieties including Aus, Boro, broadcast Aman, transplant Aman and Rayada varietal groups were genotyped using 47 rice nuclear SSRs. As a result, three distinct groups were detected by cluster analysis, corresponding to indica, Aus and japonica rice. Among deepwater rice varieties analyzed some having particular morphological features that mainly corresponded to the japonica varietal group. Some small seeded and aromatic varieties from Bangladesh also corresponded to the japonica varietal group. This research for the first time establishes that the japonica varietal group is a prominent component of traditional varieties in Bangladesh, particularly in deepwater areas.

  4. Complexity of indica-japonica varietal differentiation in Bangladesh rice landraces revealed by microsatellite markers

    PubMed Central

    Wang, Mumu; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Fu, Yongcai; Sun, Chuanqing; Cai, Hongwei

    2013-01-01

    To understand the genetic diversity and indica-japonica differentiation in Bangladesh rice varieties, a total of 151 accessions of rice varieties mostly Bangladesh traditional varieties including Aus, Boro, broadcast Aman, transplant Aman and Rayada varietal groups were genotyped using 47 rice nuclear SSRs. As a result, three distinct groups were detected by cluster analysis, corresponding to indica, Aus and japonica rice. Among deepwater rice varieties analyzed some having particular morphological features that mainly corresponded to the japonica varietal group. Some small seeded and aromatic varieties from Bangladesh also corresponded to the japonica varietal group. This research for the first time establishes that the japonica varietal group is a prominent component of traditional varieties in Bangladesh, particularly in deepwater areas. PMID:23853518

  5. Transcriptome Display During Testicular Differentiation of Channel Catfish (Ictalurus punctatus) as Revealed by RNA-Seq Analysis.

    PubMed

    Zeng, Qifan; Liu, Shikai; Yao, Jun; Zhang, Yu; Yuan, Zihao; Jiang, Chen; Chen, Ailu; Fu, Qiang; Su, Baofeng; Dunham, Rex; Liu, Zhanjiang

    2016-07-01

    Channel catfish (Ictalurus punctatus) has been recognized as a dominant freshwater aquaculture species in the United States. It is also a suitable model for studying the mechanisms of sex determination and differentiation because of its sexual plasticity and exhibition of both genetic and environmental sex determination. The testicular differentiation in male channel catfish normally starts between 90 and 102 days postfertilization (dpf), while the ovarian differentiation starts early from 19 dpf. As such, efforts to better understand the postponed testicular development at the molecular level are needed. Toward that end, we conducted transcriptomic comparison of gene expression of male and female gonads at 90, 100, and 110 dpf using high-throughput RNA-Seq. Transcriptomic profiles of male gonads on 90 and 100 dpf exhibited high similarities except for a small number of significantly up-regulated genes that were involved in development of germ cell-supporting somatic cells, while drastic changes were observed during 100-110 dpf, with a group of highly up-regulated genes that were involved in germ cells development, including nanog and pou5f1 Transcriptomic comparison between testes and ovaries identified male-preferential genes, such as gsdf, cxcl12, as well as other cytokines mediated the development of the gonad into a testis. Co-expression analysis revealed highly correlated genes and potential pathways underlying germ cell differentiation and spermatogonia stem cell development. The candidate genes and pathways identified in this study set the foundation for further studies on sex determination and differentiation in catfish as well as other teleosts.

  6. Transcriptome Display During Testicular Differentiation of Channel Catfish (Ictalurus punctatus) as Revealed by RNA-Seq Analysis.

    PubMed

    Zeng, Qifan; Liu, Shikai; Yao, Jun; Zhang, Yu; Yuan, Zihao; Jiang, Chen; Chen, Ailu; Fu, Qiang; Su, Baofeng; Dunham, Rex; Liu, Zhanjiang

    2016-07-01

    Channel catfish (Ictalurus punctatus) has been recognized as a dominant freshwater aquaculture species in the United States. It is also a suitable model for studying the mechanisms of sex determination and differentiation because of its sexual plasticity and exhibition of both genetic and environmental sex determination. The testicular differentiation in male channel catfish normally starts between 90 and 102 days postfertilization (dpf), while the ovarian differentiation starts early from 19 dpf. As such, efforts to better understand the postponed testicular development at the molecular level are needed. Toward that end, we conducted transcriptomic comparison of gene expression of male and female gonads at 90, 100, and 110 dpf using high-throughput RNA-Seq. Transcriptomic profiles of male gonads on 90 and 100 dpf exhibited high similarities except for a small number of significantly up-regulated genes that were involved in development of germ cell-supporting somatic cells, while drastic changes were observed during 100-110 dpf, with a group of highly up-regulated genes that were involved in germ cells development, including nanog and pou5f1 Transcriptomic comparison between testes and ovaries identified male-preferential genes, such as gsdf, cxcl12, as well as other cytokines mediated the development of the gonad into a testis. Co-expression analysis revealed highly correlated genes and potential pathways underlying germ cell differentiation and spermatogonia stem cell development. The candidate genes and pathways identified in this study set the foundation for further studies on sex determination and differentiation in catfish as well as other teleosts. PMID:27307075

  7. Differentiation processes in FeO-rich asteroids revealed by the achondrite Lewis Cliff 88763

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Corder, Christopher A.; Rumble, Douglas; Assayag, Nelly; Cartigny, Pierre; Taylor, Lawrence A.

    2015-10-01

    Olivine-dominated (70-80 modal %) achondrite meteorite Lewis Cliff (LEW) 88763 originated from metamorphism and limited partial melting of a FeO-rich parent body. The meteorite experienced some alteration on Earth, evident from subchondritic Re/Os, and redistribution of rhenium within the sample. LEW 88763 is texturally similar to winonaites, has a Δ17O value of -1.19 ± 0.10‰, and low bulk-rock Mg/(Mg+Fe) (0.39), similar to the FeO-rich cumulate achondrite Northwest Africa (NWA) 6693. The similar bulk-rock major-, minor-, and trace-element abundances of LEW 88763, relative to some carbonaceous chondrites, including ratios of Pd/Os, Pt/Os, Ir/Os, and 187Os/188Os (0.1262), implies a FeO- and volatile-rich precursor composition. Lack of fractionation of the rare earth elements, but a factor of approximately two lower highly siderophile element abundances in LEW 88763, compared with chondrites, implies limited loss of Fe-Ni-S melts during metamorphism and anatexis. These results support the generation of high Fe/Mg, sulfide, and/or metal-rich partial melts from FeO-rich parent bodies during partial melting. In detail, however, LEW 88763 cannot be a parent composition to any other meteorite sample, due to highly limited silicate melt loss (0 to <<5%). As such, LEW 88763 represents the least-modified FeO-rich achondrite source composition recognized to date and is distinct from all other meteorites. LEW 88763 should be reclassified as an anomalous achondrite that experienced limited Fe,Ni-FeS melt loss. Lewis Cliff 88763, combined with a growing collection of FeO-rich meteorites, such as brachinites, brachinite-like achondrites, the Graves Nunataks (GRA) 06128/9 meteorites, NWA 6693, and Tafassasset, has important implications for understanding the initiation of planetary differentiation. Specifically, regardless of precursor compositions, partial melting and differentiation processes appear to be similar on asteroidal bodies spanning a range of initial oxidation

  8. Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver.

    PubMed

    Abbondante, Serena; Eckel-Mahan, Kristin L; Ceglia, Nicholas J; Baldi, Pierre; Sassone-Corsi, Paolo

    2016-02-01

    Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition. PMID:26644470

  9. Lachnospiraceae and Bacteroidales Alternative Fecal Indicators Reveal Chronic Human Sewage Contamination in an Urban Harbor▿†

    PubMed Central

    Newton, Ryan J.; VandeWalle, Jessica L.; Borchardt, Mark A.; Gorelick, Marc H.; McLellan, Sandra L.

    2011-01-01

    The complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within the Lachnospiraceae family, which was closely related to the genus Blautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for human Bacteroidales (based on the HF183 genetic marker), total Bacteroidales spp., and enterococci and the conventional Escherichia coli and enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and human Bacteroidales increased specificity to

  10. Transcriptional analysis of Deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation.

    PubMed

    Tsai, Chen-Hsun; Liao, Rick; Chou, Brendan; Contreras, Lydia M

    2015-03-01

    Small noncoding RNAs (sRNAs) are posttranscriptional regulators that have been identified in multiple species and shown to play essential roles in responsive mechanisms to environmental stresses. The natural ability of specific bacteria to resist high levels of radiation has been of high interest to mechanistic studies of DNA repair and biomolecular protection. Deinococcus radiodurans is a model extremophile for radiation studies that can survive doses of ionizing radiation of >12,000 Gy, 3,000 times higher than for most vertebrates. Few studies have investigated posttranscriptional regulatory mechanisms of this organism that could be relevant in its general gene regulatory patterns. In this study, we identified 199 potential sRNA candidates in D. radiodurans by whole-transcriptome deep sequencing analysis and confirmed the expression of 41 sRNAs by Northern blotting and reverse transcriptase PCR (RT-PCR). A total of 8 confirmed sRNAs showed differential expression during recovery after acute ionizing radiation (15 kGy). We have also found and confirmed 7 sRNAs in Deinococcus geothermalis, a closely related radioresistant species. The identification of several novel sRNAs in Deinococcus bacteria raises important questions about the evolution and nature of global gene regulation in radioresistance. PMID:25548054

  11. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells.

    PubMed

    van den Broek, Theo; Delemarre, Eveline M; Janssen, Willemijn J M; Nievelstein, Rutger A J; Broen, Jasper C; Tesselaar, Kiki; Borghans, Jose A M; Nieuwenhuis, Edward E S; Prakken, Berent J; Mokry, Michal; Jansen, Nicolaas J G; van Wijk, Femke

    2016-03-01

    The generation of naive T cells is dependent on thymic output, but in adults, the naive T cell pool is primarily maintained by peripheral proliferation. Naive T cells have long been regarded as relatively quiescent cells; however, it was recently shown that IL-8 production is a signatory effector function of naive T cells, at least in newborns. How this functional signature relates to naive T cell dynamics and aging is unknown. Using a cohort of children and adolescents who underwent neonatal thymectomy, we demonstrate that the naive CD4+ T cell compartment in healthy humans is functionally heterogeneous and that this functional diversity is lost after neonatal thymectomy. Thymic tissue regeneration later in life resulted in functional restoration of the naive T cell compartment, implicating the thymus as having functional regenerative capacity. Together, these data shed further light on functional differentiation within the naive T cell compartment and the importance of the thymus in human naive T cell homeostasis and premature aging. In addition, these results affect and alter our current understanding on the identification of truly naive T cells and recent thymic emigrants. PMID:26901814

  12. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies.

    PubMed

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells.

  13. Transcriptional Analysis of Deinococcus radiodurans Reveals Novel Small RNAs That Are Differentially Expressed under Ionizing Radiation

    PubMed Central

    Tsai, Chen-Hsun; Liao, Rick; Chou, Brendan

    2014-01-01

    Small noncoding RNAs (sRNAs) are posttranscriptional regulators that have been identified in multiple species and shown to play essential roles in responsive mechanisms to environmental stresses. The natural ability of specific bacteria to resist high levels of radiation has been of high interest to mechanistic studies of DNA repair and biomolecular protection. Deinococcus radiodurans is a model extremophile for radiation studies that can survive doses of ionizing radiation of >12,000 Gy, 3,000 times higher than for most vertebrates. Few studies have investigated posttranscriptional regulatory mechanisms of this organism that could be relevant in its general gene regulatory patterns. In this study, we identified 199 potential sRNA candidates in D. radiodurans by whole-transcriptome deep sequencing analysis and confirmed the expression of 41 sRNAs by Northern blotting and reverse transcriptase PCR (RT-PCR). A total of 8 confirmed sRNAs showed differential expression during recovery after acute ionizing radiation (15 kGy). We have also found and confirmed 7 sRNAs in Deinococcus geothermalis, a closely related radioresistant species. The identification of several novel sRNAs in Deinococcus bacteria raises important questions about the evolution and nature of global gene regulation in radioresistance. PMID:25548054

  14. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies

    PubMed Central

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells. PMID:26973288

  15. Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function.

    PubMed

    Worah, Kuntal; Mathan, Till S M; Vu Manh, Thien Phong; Keerthikumar, Shivakumar; Schreibelt, Gerty; Tel, Jurjen; Duiveman-de Boer, Tjitske; Sköld, Annette E; van Spriel, Annemiek B; de Vries, I Jolanda M; Huynen, Martijn A; Wessels, Hans J; Gloerich, Jolein; Dalod, Marc; Lasonder, Edwin; Figdor, Carl G; Buschow, Sonja I

    2016-09-13

    Dendritic cells (DCs) play a key role in orchestrating adaptive immune responses. In human blood, three distinct subsets exist: plasmacytoid DCs (pDCs) and BDCA3+ and CD1c+ myeloid DCs. In addition, a DC-like CD16+ monocyte has been reported. Although RNA-expression profiles have been previously compared, protein expression data may provide a different picture. Here, we exploited label-free quantitative mass spectrometry to compare and identify differences in primary human DC subset proteins. Moreover, we integrated these proteomic data with existing mRNA data to derive robust cell-specific expression signatures with more than 400 differentially expressed proteins between subsets, forming a solid basis for investigation of subset-specific functions. We illustrated this by extracting subset identification markers and by demonstrating that pDCs lack caspase-1 and only express low levels of other inflammasome-related proteins. In accordance, pDCs were incapable of interleukin (IL)-1β secretion in response to ATP. PMID:27626665

  16. Transcriptional analysis of Deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation.

    PubMed

    Tsai, Chen-Hsun; Liao, Rick; Chou, Brendan; Contreras, Lydia M

    2015-03-01

    Small noncoding RNAs (sRNAs) are posttranscriptional regulators that have been identified in multiple species and shown to play essential roles in responsive mechanisms to environmental stresses. The natural ability of specific bacteria to resist high levels of radiation has been of high interest to mechanistic studies of DNA repair and biomolecular protection. Deinococcus radiodurans is a model extremophile for radiation studies that can survive doses of ionizing radiation of >12,000 Gy, 3,000 times higher than for most vertebrates. Few studies have investigated posttranscriptional regulatory mechanisms of this organism that could be relevant in its general gene regulatory patterns. In this study, we identified 199 potential sRNA candidates in D. radiodurans by whole-transcriptome deep sequencing analysis and confirmed the expression of 41 sRNAs by Northern blotting and reverse transcriptase PCR (RT-PCR). A total of 8 confirmed sRNAs showed differential expression during recovery after acute ionizing radiation (15 kGy). We have also found and confirmed 7 sRNAs in Deinococcus geothermalis, a closely related radioresistant species. The identification of several novel sRNAs in Deinococcus bacteria raises important questions about the evolution and nature of global gene regulation in radioresistance.

  17. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells

    PubMed Central

    van den Broek, Theo; Delemarre, Eveline M.; Janssen, Willemijn J.M.; Nievelstein, Rutger A.J.; Broen, Jasper C.; Tesselaar, Kiki; Borghans, Jose A.M.; Nieuwenhuis, Edward E.S.; Prakken, Berent J.; Mokry, Michal; Jansen, Nicolaas J.G.

    2016-01-01

    The generation of naive T cells is dependent on thymic output, but in adults, the naive T cell pool is primarily maintained by peripheral proliferation. Naive T cells have long been regarded as relatively quiescent cells; however, it was recently shown that IL-8 production is a signatory effector function of naive T cells, at least in newborns. How this functional signature relates to naive T cell dynamics and aging is unknown. Using a cohort of children and adolescents who underwent neonatal thymectomy, we demonstrate that the naive CD4+ T cell compartment in healthy humans is functionally heterogeneous and that this functional diversity is lost after neonatal thymectomy. Thymic tissue regeneration later in life resulted in functional restoration of the naive T cell compartment, implicating the thymus as having functional regenerative capacity. Together, these data shed further light on functional differentiation within the naive T cell compartment and the importance of the thymus in human naive T cell homeostasis and premature aging. In addition, these results affect and alter our current understanding on the identification of truly naive T cells and recent thymic emigrants. PMID:26901814

  18. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes.

    PubMed

    Dean, Samuel; Moreira-Leite, Flavia; Varga, Vladimir; Gull, Keith

    2016-08-30

    The transition zone (TZ) of eukaryotic cilia and flagella is a structural intermediate between the basal body and the axoneme that regulates ciliary traffic. Mutations in genes encoding TZ proteins (TZPs) cause human inherited diseases (ciliopathies). Here, we use the trypanosome to identify TZ components and localize them to TZ subdomains, showing that the Bardet-Biedl syndrome complex (BBSome) is more distal in the TZ than the Meckel syndrome (MKS) complex. Several of the TZPs identified here have human orthologs. Functional analysis shows essential roles for TZPs in motility, in building the axoneme central pair apparatus and in flagellum biogenesis. Analysis using RNAi and HaloTag fusion protein approaches reveals that most TZPs (including the MKS ciliopathy complex) show long-term stable association with the TZ, whereas the BBSome is dynamic. We propose that some Bardet-Biedl syndrome and MKS pleiotropy may be caused by mutations that impact TZP complex dynamics. PMID:27519801

  19. RAP-PCR fingerprinting reveals time-dependent expression of development-related genes following differentiation process of Bacillus thuringiensis.

    PubMed

    Huang, Tianpei; Yu, Xiaomin; Gelbič, Ivan; Guan, Xiong

    2015-09-01

    Gene expression profiles are important data to reveal the functions of genes putatively involved in crucial biological processes. RNA arbitrarily primed polymerase chain reaction (RAP-PCR) and specifically primed reverse transcription polymerase chain reaction (RT-PCR) were combined to screen differentially expressed genes following development of a commercial Bacillus thuringiensis subsp. kurstaki strain 8010 (serotype 3a3b). Six differentially expressed transcripts (RAP1 to RAP6) were obtained. RAP1 encoded a putative triple helix repeat-containing collagen or an exosporium protein H related to spore pathogenicity. RAP2 was homologous to a ClpX protease and an ATP-dependent protease La (LonB), which likely acted as virulence factors. RAP3 was homologous to a beta subunit of propionyl-CoA carboxylase required for the development of Myxococcus xanthus. RAP4 had homology to a quinone oxidoreductase involved in electron transport and ATP formation. RAP5 showed significant homology to a uridine kinase that mediates phosphorylation of uridine and azauridine. RAP6 shared high sequence identity with 3-methyl-2-oxobutanoate-hydroxymethyltransferase (also known as ketopantoate hydroxymethyltransferase or PanB) involved in the operation of the tricarboxylic acid cycle. The findings described here would help to elucidate the molecular mechanisms underlying the differentiation process of B. thuringiensis and unravel novel pathogenic genes.

  20. Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species

    PubMed Central

    Zhan, X; Dixon, A; Batbayar, N; Bragin, E; Ayas, Z; Deutschova, L; Chavko, J; Domashevsky, S; Dorosencu, A; Bagyura, J; Gombobaatar, S; Grlica, I D; Levin, A; Milobog, Y; Ming, M; Prommer, M; Purev-Ochir, G; Ragyov, D; Tsurkanu, V; Vetrov, V; Zubkov, N; Bruford, M W

    2015-01-01

    Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species. PMID:25074575

  1. Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species.

    PubMed

    Zhan, X; Dixon, A; Batbayar, N; Bragin, E; Ayas, Z; Deutschova, L; Chavko, J; Domashevsky, S; Dorosencu, A; Bagyura, J; Gombobaatar, S; Grlica, I D; Levin, A; Milobog, Y; Ming, M; Prommer, M; Purev-Ochir, G; Ragyov, D; Tsurkanu, V; Vetrov, V; Zubkov, N; Bruford, M W

    2015-01-01

    Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species. PMID:25074575

  2. Differentiation of four Indian aboriginal cattle populations revealed by STR markers.

    PubMed

    Sharma, R; Maitra, A; Pandey, A K; Mishra, B P

    2012-06-01

    Cattle are the most important livestock in India and play a pivotal role in agrarian economy. There are 34 recognized breeds of cattle and number of unexplored lesser known populations. The present study is a contribution towards determining genetic variation and understanding the relationship among four lesser known populations. A total of 194 unrelated DNA samples from three cattle populations of Orissa (Binjharpuri, Ghumsuri, Motu) and Hill cattle of Kumaun (Kumauni) were collected from respective breeding tracts. Genotyping was done with 23 bovine microsatellite markers as suggested by International Society for Animal Genetics (ISAG) and FAO (DAD-IS) on automated sequencer. The average observed heterozygosity in the four populations lie within the narrow range of 0.623 +/- 0.04 in Binjharpuri to 0.664 +/- 0.03 in Kumauni. Mean estimates of observed and expected heterozygosity over all loci and breeds were 0.651 +/- 0.02 and 0.720 +/- 0.01, respectively. In the overall population, the homozygote excess (F(IT)) of 0.132 +/- 0.03, was partly due to the genetic differentiation among breeds (F(ST) = 0.044 +/- 0.01) and, to a larger extent, to a significant homozygote excess within breeds (F(IS) = 0.094 +/- 0.03). The phylogenetic reconstruction from a UPGMA clustering based on Nei's Standard genetic distance yielded a tree with Binjharpuri and Ghumsuri on a single node and Motu and Kumauni on separate nodes. The most probable clustering detected by STRUCTURE in population was three. Binjharpuri and Ghumsuri animals were assigned to one cluster with high proportion of membership. PMID:22946330

  3. Deletion of Smad2 in Mouse Liver Reveals Novel Functions in Hepatocyte Growth and Differentiation

    PubMed Central

    Ju, Wenjun; Ogawa, Atsushi; Heyer, Joerg; Nierhof, Dirk; Yu, Liping; Kucherlapati, Raju; Shafritz, David A.; Böttinger, Erwin P.

    2006-01-01

    Smad family proteins Smad2 and Smad3 are activated by transforming growth factor β (TGF-β)/activin/nodal receptors and mediate transcriptional regulation. Although differential functional roles of Smad2 and Smad3 are apparent in mammalian development, the relative functional roles of Smad2 and Smad3 in postnatal systems remain unclear. We used Cre/loxP-mediated gene targeting for hepatocyte-specific deletion of Smad2 (S2HeKO) in adult mice and generated hepatocyte-selective Smad2/Smad3 double knockouts by intercrossing AlbCre/Smad2f/f (S2HeKO) and Smad3-deficient Smad3ex8/ex8 (S3KO) mice. All strains were viable and had normal adult liver. However, necrogenic CCL4-induced hepatocyte proliferation was significantly increased in S2HeKO compared to Ctrl and S3KO livers, and transplanted S2HeKO hepatocytes repopulated recipient liver at dramatically increased rates compared to Ctrl hepatocytes in vivo. Using primary hepatocytes, we found that TGF-β-induced G1 arrest, apoptosis, and epithelial-to-mesenchymal transition in Ctrl and S2HeKO but not in S3KO hepatocytes. Interestingly, S2HeKO cells spontaneously acquired mesenchymal features characteristic of epithelial-to-mesenchymal transition (EMT). Collectively, these results demonstrate that Smad2 suppresses hepatocyte growth and dedifferentiation independent of TGF-β signaling. Smad2 is not required for TGF-β-stimulated apoptosis, EMT, and growth inhibition in hepatocytes. PMID:16382155

  4. Physiological and Transcriptional Analyses Reveal Differential Phytohormone Responses to Boron Deficiency in Brassica napus Genotypes

    PubMed Central

    Zhou, Ting; Hua, Yingpeng; Huang, Yupu; Ding, Guangda; Shi, Lei; Xu, Fangsen

    2016-01-01

    Phytohormones play pivotal roles in the response of plants to various biotic and abiotic stresses. Boron (B) is an essential microelement for plants, and Brassica napus (B. napus) is hypersensitive to B deficiency. However, how auxin responds to B deficiency remained a dilemma for many years and little is known about how other phytohormones respond to B deficiency. The identification of B-efficient/inefficient B. napus indicates that breeding might overcome these constraints in the agriculture production. Here, we seek to identify phytohormone-related processes underlying B-deficiency tolerance in B. napus at the physiological and gene expression levels. Our study indicated low-B reduced indole-3-acetic acid (IAA) concentration in both the shoots and roots of B. napus, and affected the expression of the auxin biosynthesis gene BnNIT1 and the efflux gene BnPIN1 in a time-dependent manner. Low-B increased the jasmonates (JAs) and abscisic acid (ABA) concentrations and induced the expression of the ABA biosynthesis gene BnNCED3 and the ABA sensor gene BnPYL4 in the shoot. In two contrasting genotypes, the auxin concentration decreased more drastically in the B-inefficient genotype ‘W10,’ and together the expression of BnNIT1 and BnPIN1 also decreased more significantly in ‘W10’ under long-term B deficiency. While the JAs concentration was considerably higher in this genotype, and the ABA concentration was induced in ‘W10’ compared with the B-efficient genotype ‘QY10.’ Digital gene expression (DGE) profiling confirmed the differential expression of the phytohormone-related genes, indicating more other phyohormone differences involving in gene regulation between ‘QY10’ and ‘W10’ under low-B stress. Additionally, the activity of DR5:GFP was reduced in the root under low-B in Arabidopsis, and the application of exogenous IAA could partly restore the B-defective phenotype in ‘W10.’ Overall, our data suggested that low-B disturbed phytohormone

  5. Low genetic differentiation among seasonal cohorts in Senecio vulgaris as revealed by amplified fragment length polymorphism analysis.

    PubMed

    Haldimann, P; Steinger, T; Müller-Schärer, H

    2003-10-01

    Common groundsel, Senecio vulgaris (Asteraceae), is a highly selfing semelparous ephemeral weed that belongs to the few plant species in central Europe capable of growing, flowering and fruiting all year round. In temperate climates, flowering S. vulgaris cohorts were found to appear up to three times per year. Using amplified fragment length polymorphism (AFLP) molecular markers we examined temporal genetic differentiation among spring, summer and autumn cohorts at each of seven sites located in two regions in Switzerland. Strong genetic differentiation among cohorts may indicate the existence of seasonal races of S. vulgaris, reproductively isolated by nonoverlapping flowering phenologies. Analysis of molecular variance (amova) revealed that < 2.5% of the AFLP variation resided among cohorts within sites, whereas there was significant genetic differentiation among plants from different sites (15.6%) and among individuals within cohorts (81.9%). Significant genetic differentiation was also observed between the two regions. Isolation-by-distance was found on a regional scale, but not on a local scale. Gene flow was estimated to be approximately 15-fold higher among cohorts within sites than among sites. We further found, on average, similar levels of genetic diversity within the three seasonal cohorts. The results of this study demonstrate that season of growth represents a weak barrier for genetic exchange among S. vulgaris populations and does not affect molecular variance. Therefore, there is no evidence for the existence of seasonally specialized races of S. vulgaris. We discuss some implications of the results for the biological control of S. vulgaris using a native rust fungus.

  6. Differential effect of three base modifications on DNA thermostability revealed by high resolution melting.

    PubMed

    López, Carlos M Rodríguez; Lloyd, Amanda J; Leonard, Kate; Wilkinson, Mike J

    2012-09-01

    High resolution melting (HRM) can detect and quantify the presence of 5-methylcytosine (5mC) in DNA samples, but the ability of HRM to diagnose other DNA modifications remains unexplored. The DNA bases N6-methyladenine and 5-hydroxymethylcytosine occur across almost all phyla. While their function remains controversial, their presence perturbs DNA structure. Such modifications could affect gene regulation, chromatin condensation and DNA packaging. Here, we reveal that DNA containing N6-methyladenine or 5-hydroxymethylcytosine exhibits reduced thermal stability compared to cytosine-methylated DNA. These thermostability changes are sufficiently divergent to allow detection and quantification by HRM analysis. Thus, we report that HRM distinguishes between sequence-identical DNA differing only in the modification type of one base. This approach is also able to distinguish between two DNA fragments carrying both N6-methyladenine and 5-methylcytosine but differing only in the distance separating the modified bases. This finding provides scope for the development of new methods to characterize DNA chemically and to allow for low cost screening of mutant populations of genes involved in base modification. More fundamentally, contrast between the thermostabilizing effects of 5mC on dsDNA compared with the destabilizing effects of N6-methyladenine (m6A) and 5-hydroxymethylcytosine (5hmC) raises the intriguing possibility of an antagonistic relationship between modification types with functional significance.

  7. Thermodynamics imprinting reveals differential binding of metals to {alpha}-synuclein: Relevance to parkinson's disease

    SciTech Connect

    Bharathi; Rao, K.S.J. . E-mail: kjr5n@yahoo.co.in

    2007-07-20

    The aggregation of {alpha}-synuclein is a hallmark feature of Parkinson's disease (PD) and other synucleinopathies. Metals are the significant etiological factors in PD, and their interaction with {alpha}-synuclein affect dramatically the kinetics of fibrillation in vitro and are proposed to play an important and potential neurodegenerative role in vivo. In the present study, we investigated the stoichiometry of binding of copper [Cu (II)] and iron [Fe (III)] with {alpha}-synuclein (wild recombinant type and A30P, A53T, E46K mutant forms) using isothermal titration calorimetry (ITC). {alpha}-Synuclein monomer (wild and mutant forms) titrated by Cu (II), showed two binding sites, with an apparent K {sub B} of 10{sup 5} M and 10{sup 4} M, respectively. But, {alpha}-synuclein (wild type and mutant forms) titrated with Fe (III) revealed a K {sub B} of 10{sup 5} M with single binding site. The present investigation uncovers the detailed binding propensities between metals and {alpha}-synuclein and has biological implications in PD.

  8. Differential proteomic analysis of STAT6 knockout mice reveals new regulatory function in liver lipid homeostasis.

    PubMed

    Iff, Joël; Wang, Wei; Sajic, Tatjana; Oudry, Nathalie; Gueneau, Estelle; Hopfgartner, Gérard; Varesio, Emmanuel; Szanto, Ildiko

    2009-10-01

    Increased inflammatory signaling is a key feature of metabolic disorders. In this context, the role of increased pro-inflammatory signals has been extensively studied. By contrast, no efforts have been dedicated to study the contrasting scenario: the attenuation of anti-inflammatory signals and their role in metabolic homeostasis. IL-4 and IL-13 are anti-inflammatory cytokines signaling through the Signal Transducer and Activator of Transcription 6 (STAT6). Our study was aimed at evaluating the lack of STAT6 signaling on liver homeostasis. To this end we analyzed the liver proteome of wild type and STAT6 knock-out mice using 2D nanoscale LC-MS/MS with iTRAQ labeling technique. The coordinated changes in proteins identified by this quantitative proteome analysis indicated disturbed lipid homeostasis and a state of hepatocellular stress. Most significantly, the expression of the liver fatty acid binding protein (FABP1) was increased in the knock-out mice. In line with the elevated FABP1 expression we found latent liver lipid accumulation in the STAT6-deficient mice which was further aggravated when mice were challenged by a high fat diet. In conclusion, our study revealed a so far uncharacterized role for STAT6 in regulating liver lipid homeostasis and demonstrates the importance of anti-inflammatory signaling in the defense against the development of liver steatosis.

  9. Nodal approach reveals differential impact of lateralized focal epilepsies on hub reorganization.

    PubMed

    Ridley, Ben Gendon Yeshe; Rousseau, Celia; Wirsich, Jonathan; Le Troter, Arnaud; Soulier, Elisabeth; Confort-Gouny, Sylvianne; Bartolomei, Fabrice; Ranjeva, Jean-Philippe; Achard, Sophie; Guye, Maxime

    2015-09-01

    The impact of the hemisphere affected by impairment in models of network disease is not fully understood. Among such models, focal epilepsies are characterised by recurrent seizures generated in epileptogenic areas also responsible for wider network dysfunction between seizures. Previous work focusing on functional connectivity within circumscribed networks suggests a divergence of network integrity and compensatory capacity between epilepsies as a function of the laterality of seizure onset. We evaluated the ability of complex network theory to reveal changes in focal epilepsy in global and nodal parameters using graph theoretical analysis of functional connectivity data obtained with resting-state fMRI. Graphs of functional connectivity networks were derived from 19 right and 13 left focal epilepsy patients and 15 controls. Topological metrics (degree, local efficiency, global efficiency and modularity) were computed for a whole-brain, atlas-defined network. We also calculated a hub disruption index for each graph metric, measuring the capacity of the brain network to demonstrate increased connectivity in some nodes for decreased connectivity in others. Our data demonstrate that the patient group as a whole is characterised by network-wide pattern of reorganization, even while global parameters fail to distinguish between groups. Furthermore, multiple metrics indicate that epilepsies with differently lateralized epileptic networks are asymmetric in their burden on functional brain networks; with left epilepsy patients being characterised by reduced efficiency and modularity, while in right epilepsy patients we provide the first evidence that functional brain networks are characterised by enhanced connectivity and efficiency at some nodes whereas reduced in others. PMID:26070261

  10. Feather isotope analysis reveals differential patterns of habitat and resource use in populations of white-winged doves

    USGS Publications Warehouse

    Carleton, Scott A.; Martinez Del Rio, Carlos; Robinson, Timothy J.

    2015-01-01

    The white-winged dove (Zenaida asiatica) serves an important ecological role as a diurnal pollinator of the saguaro cactus in the Sonoran desert and an economic role as a highly sought after game bird in North America. White-winged doves are intimately linked to anthropogenic changes on the landscape and because of this, have experienced dramatic population fluctuations over the last 75 years in response, both positively and negatively, to anthropogenic changes on the landscape. To understand the factors driving population growth and decline of migratory species like the white-winged dove, it is imperative we study resource use on both their breeding and wintering grounds. To understand how populations are distributed on the wintering grounds, we tested an alternative to band recovery approaches by using stable isotope analysis. Before we could use isotope analysis to link breeding and wintering locations for this species, we first needed to determine if hydrogen (δ2H) and carbon (δ13C) stable isotopes in feather tissue (δ2Hf and δ13Cf, respectively) could differentiate among populations of white-winged doves across their breeding range in Texas, New Mexico, and Arizona. δ2Hf and δ13Cf not only differentiated between populations of white-winged doves that breed in the United States, but δ2Hf also provided further differentiation in white-winged doves that breed in native Sonoran Desert and agricultural habitats in the western portion of their range. Ecological processes associated with desert resources and anthropogenic influences, specifically saguaro cacti and irrigated crops, largely determined δ2Hf in some white-winged doves in Arizona whereas δ2H of precipitation (δ2Hp) largely determined δ2Hfof doves in New Mexico and Texas. This study highlights the usefulness of stable isotope analysis to differentiate populations of animals across the landscape and the insight isotopes can provide into habitat and resource use. Published 2015. This article

  11. The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting

    PubMed Central

    Whitfield, Shawn T.; Burston, Helen E.; Bean, Björn D. M.; Raghuram, Nandini; Maldonado-Báez, Lymarie; Davey, Michael; Wendland, Beverly; Conibear, Elizabeth

    2016-01-01

    Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes. PMID:26658609

  12. Measuring Differential Beliefs in Complementary Therapy Research: An Exploration of the Complementary and Alternative Medicine Beliefs Inventory (CAMBI)

    PubMed Central

    Grzywacz, Joseph G.; Neiberg, Rebecca; Quandt, Sara A.; Lang, Wei; Bell, Ronny A.; Arcury, Thomas A.

    2011-01-01

    The Complementary and Alternative Medicine Beliefs Inventory (CAMBI) was developed to provide a comprehensive measure of beliefs believed to differentiate complementary therapy (CT) users from nonusers. The initial evaluation of the CAMBI was based on a relatively homogeneous sample of CT users, which raises questions about its applicability in more generalized samples. This study uses data from a community-based sample of older adults (N=200) to evaluate the utility of the CAMBI in more diverse samples. Results indicated substantial variation in responses to items with each of a-priori belief domains (i.e., perceived value of natural treatments, preference for participation in treatments, and orientation toward holistic health) and modest inter-correlation among items within each belief domain. Confirmatory factor analysis results indicated the a-priori measurement structure provided a poor fit to obtained data. Post-hoc analyses indicated that African Americans and those with less education had less consistent responses to items within each belief domain. Revision and additional development of the CAMBI is needed to enable its use in more diverse research samples. PMID:22305249

  13. Ability or Access-Ability: Differential Item Functioning of Items on Alternate Performance-Based Assessment Tests for Students with Visual Impairments

    ERIC Educational Resources Information Center

    Zebehazy, Kim T.; Zigmond, Naomi; Zimmerman, George J.

    2012-01-01

    Introduction: This study investigated differential item functioning (DIF) of test items on Pennsylvania's Alternate System of Assessment (PASA) for students with visual impairments and severe cognitive disabilities and what the reasons for the differences may be. Methods: The Wilcoxon signed ranks test was used to analyze differences in the scores…

  14. RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum

    PubMed Central

    2013-01-01

    Background The genome of Fusarium graminearum has been sequenced and annotated previously, but correct gene annotation remains a challenge. In addition, posttranscriptional regulations, such as alternative splicing and RNA editing, are poorly understood in F. graminearum. Here we took advantage of RNA-Seq to improve gene annotations and to identify alternative splicing and RNA editing in F. graminearum. Results We identified and revised 655 incorrectly predicted gene models, including revisions of intron predictions, intron splice sites and prediction of novel introns. 231 genes were identified with two or more alternative splice variants, mostly due to intron retention. Interestingly, the expression ratios between different transcript isoforms appeared to be developmentally regulated. Surprisingly, no RNA editing was identified in F. graminearum. Moreover, 2459 novel transcriptionally active regions (nTARs) were identified and our analysis indicates that many of these could be missed genes. Finally, we identified the 5′ UTR and/or 3′ UTR sequences of 7666 genes. A number of representative novel gene models and alternatively spliced genes were validated by reverse transcription polymerase chain reaction and sequencing of the generated amplicons. Conclusions We have developed novel and efficient strategies to identify alternatively spliced genes and incorrect gene models based on RNA-Seq data. Our study identified hundreds of alternatively spliced genes in F. graminearum and for the first time indicated that alternative splicing is developmentally regulated in filamentous fungi. In addition, hundreds of incorrect predicted gene models were identified and revised and thousands of nTARs were discovered in our study, which will be helpful for the future genomic and transcriptomic studies in F. graminearum. PMID:23324402

  15. Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form

    PubMed Central

    Boggavarapu, Nageswara Rao; Lalitkumar, Sujata; Joshua, Vijay; Kasvandik, Sergo; Salumets, Andres; Lalitkumar, Parameswaran Grace; Gemzell-Danielsson, Kristina

    2016-01-01

    The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity. PMID:27665743

  16. Nylon Filter Arrays Reveal Differential Gene Expression in Proteoid Roots of White Lupin in Response to Phosphorus Deficiency

    PubMed Central

    Uhde-Stone, Claudia; Zinn, Kelly E.; Ramirez-Yáñez, Mario; Li, Aiguo; Vance, Carroll P.; Allan, Deborah L.

    2003-01-01

    White lupin (Lupinus albus) adapts to phosphorus deficiency (−P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. In an effort to better understand the molecular events mediating these adaptive responses, we have isolated and sequenced 2,102 expressed sequence tags (ESTs) from cDNA libraries prepared with RNA isolated at different stages of proteoid root development. Determination of overlapping regions revealed 322 contigs (redundant copy transcripts) and 1,126 singletons (single-copy transcripts) that compile to a total of 1,448 unique genes (unigenes). Nylon filter arrays with these 2,102 ESTs from proteoid roots were performed to evaluate global aspects of gene expression in response to −P stress. ESTs differentially expressed in P-deficient proteoid roots compared with +P and −P normal roots include genes involved in carbon metabolism, secondary metabolism, P scavenging and remobilization, plant hormone metabolism, and signal transduction. PMID:12644659

  17. Transcriptional profiling of cortical versus cancellous bone from mechanically-loaded murine tibiae reveals differential gene expression.

    PubMed

    Kelly, Natalie H; Schimenti, John C; Ross, F Patrick; van der Meulen, Marjolein C H

    2016-05-01

    Mechanical loading is an anabolic stimulus that increases bone mass, and thus a promising method to counteract osteoporosis-related bone loss. The mechanism of this anabolism remains unclear, and needs to be established for both cortical and cancellous envelopes individually. We hypothesized that cortical and cancellous bone display different gene expression profiles at baseline and in response to mechanical loading. To test this hypothesis, the left tibiae of 10-week-old female C57Bl/6 mice were subjected to one session of axial tibial compression (9N, 1200cycles, 4Hz triangle waveform) and euthanized 3 and 24h following loading. The right limb served as the contralateral control. We performed RNA-seq on marrow-free metaphyseal samples from the cortical shell and the cancellous core to determine differential gene expression at baseline (control limb) and in response to load. Differential expression was verified with qPCR. Cortical and cancellous bone exhibited distinctly different transcriptional profiles basally and in response to mechanical loading. More genes were differentially expressed with loading at 24h with more genes downregulated at 24h than at 3h in both tissues. Enhanced Wnt signaling dominated the response in cortical bone at 3 and 24h, but in cancellous bone only at 3h. In cancellous bone at 24h many muscle-related genes were downregulated. These findings reveal key differences between cortical and cancellous genetic regulation in response to mechanical loading. Future studies at different time points and multiple loading sessions will add to our knowledge of cortical and cancellous mechanotransduction with the potential to identify new targets for mouse genetic knockout studies and drugs to treat osteoporosis. PMID:26876048

  18. Thermal stability and molecular microstructure of heat-induced cereal grains, revealed with Raman molecular microspectroscopy and differential scanning calorimetry.

    PubMed

    Khan, Md Majibur Rahman; Yu, Peiqiang

    2013-07-01

    The objectives of the present study were to use Raman molecular microspectroscopy and differential scanning calorimetry (DSC) to reveal molecular thermal stability and thermal degradation behavior of heat-induced cereal grains and reveal the molecular chemistry of the protein structures of cereal grain tissues affected by heat processing and to quantify the protein secondary structures using multicomponent peak modeling Gaussian and Lorentzian methods. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were also conducted to identify molecular differences in the Raman spectra. Three cereal grain seeds, wheat, triticale, and corn, were used as the model for feed protein in the experiment. The specimens were autoclaved (moist heating) and dry-heated (roasted) at 121 °C for 80 min, respectively. Raman spectroscopy results revealed that there are marked differences in the secondary structures of the proteins subjected to various heating treatments of different cereals. The sensitivity of cereals to moist heating was much higher than the sensitivity to dry heating. The multivariate analyses (CLA and PCA) showed that heat treatment was significantly isolated between the different Raman raw spectra. The DSC study revealed that the thermal degradation behavior of cereals was significantly changed after moist- and dry-heat treatments. The position of the major endothermic peak of dry-heated cereals shifted toward a higher temperature, from 131.7 to 134.0 °C, suggesting the high thermal stability of dry-heated cereals. In contrast, the endothermic peak position was slightly decreased to 132.1 °C in the case of moist autoclaved heating. The digestive behavior and nutritive value of rumen-undegradable protein in animals may be related to the changes of the protein secondary molecular structure and thermal stability of the cereal grain materials, which is attributed by Raman microspectroscopy and DSC endotherm profiles.

  19. Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone.

    PubMed

    Hamilton, Jill A; Lexer, Christian; Aitken, Sally N

    2013-02-01

    Differential patterns of introgression between species across ecological gradients provide a fine-scale depiction of extrinsic and intrinsic factors that contribute to the maintenance of species barriers and adaptation across heterogeneous environments. Introgression was examined for 721 individuals collected from the ecological transition zone spanning maritime to continental climates within the Picea sitchensis-Picea glauca contact zone using a panel of 268 candidate gene single nucleotide polymorphisms. Geographic clines showed a strong spatial relationship between allele frequencies and both distance from the ocean along major rivers and mean annual precipitation, indicating a strong role for environmental selection. Interspecific patterns of differentiation using outlier tests revealed three candidate genes that may be targets of long-term divergent selection between the parental species, although contemporary genomic clines within the hybrid zone suggested neutral patterns of introgression for these genes. This study provides a fine-scale analysis of locus-specific introgression, identifying a suite of candidate loci that may be targets of extrinsic or intrinsic selection, with broad application in understanding local adaptation to climate.

  20. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  1. The Protein Architecture of Human Secretory Vesicles Reveals Differential Regulation of Signaling Molecule Secretion by Protein Kinases

    PubMed Central

    Taupenot, Laurent; Ziegler, Michael; O'Connor, Daniel T.; Ma, Qi; Smoot, Michael; Ideker, Trey; Hook, Vivian

    2012-01-01

    Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the ‘human’ dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health. PMID:22916103

  2. Genome-wide Functional Analysis of Plasmodium Protein Phosphatases Reveals Key Regulators of Parasite Development and Differentiation

    PubMed Central

    Guttery, David S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard J.; Ferguson, David J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan H.; Mohamed, Alyaa M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward W.; Holder, Anthony A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Summary Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. PMID:25011111

  3. Comparative Genomic and Transcriptomic Analyses Reveal Habitat Differentiation and Different Transcriptional Responses during Pectin Metabolism in Alishewanella Species

    PubMed Central

    Jung, Jaejoon

    2013-01-01

    Alishewanella species are expected to have high adaptability to diverse environments because they are isolated from different natural habitats. To investigate how the evolutionary history of Alishewanella species is reflected in their genomes, we performed comparative genomic and transcriptomic analyses of A. jeotgali, A. aestuarii, and A. agri, which were isolated from fermented seafood, tidal flat sediment, and soil, respectively. Genomic islands with variable GC contents indicated that invasion of prophage and transposition events occurred in A. jeotgali and A. agri but not in A. aestuarii. Habitat differentiation of A. agri from a marine environment to a terrestrial environment was proposed because the species-specific genes of A. agri were similar to those of soil bacteria, whereas those of A. jeotgali and A. aestuarii were more closely related to marine bacteria. Comparative transcriptomic analysis with pectin as a sole carbon source revealed different transcriptional responses in Alishewanella species, especially in oxidative stress-, methylglyoxal detoxification-, membrane maintenance-, and protease/chaperone activity-related genes. Transcriptomic and experimental data demonstrated that A. agri had a higher pectin degradation rate and more resistance to oxidative stress under pectin-amended conditions than the other 2 Alishewanella species. However, expression patterns of genes in the pectin metabolic pathway and of glyoxylate bypass genes were similar among all 3 Alishewanella species. Our comparative genomic and transcriptomic data revealed that Alishewanella species have evolved through horizontal gene transfer and habitat differentiation and that pectin degradation pathways in Alishewanella species are highly conserved, although stress responses of each Alishewanella species differed under pectin culture conditions. PMID:23934491

  4. Structure and expression of the human L-myc gene reveal a complex pattern of alternative mRNA processing

    SciTech Connect

    Kaye, F.; Battey, J.; Nau, M.; Brooks, B.; Seifter, E.; De Greve, J.; Birrer, M.; Sausville, E.; Minna, J.

    1988-01-01

    The authors' analyzed in detail the structure of the L-myc gene isolated from human placental DNA and characterized its expression in several small-cell lung cancer cell lines. The gene is composed of three exons and two introns spanning 6.6 kilobases in human DNA. Several distinct mRNA species are produced in all small-cell lung cancer cell lines that express L-myc. These transcripts are generated from a single gene by alternative splicing of introns 1 and 2 and by use of alternative polyadenylation signals. In some mRNAs that is a long open reading frame with a predicted translated protein of 364 residues. Amino acid sequence comparison with c-myc and N-myc demonstrated multiple discrete regions with extensive homology. In contrast, other mRNA transcripts, generated by alternative processing, could encode a truncated protein with a novel carboxy-terminal end.

  5. Expression profiling of the RPE in zebrafish smarca4 mutant revealed altered signals that potentially affect RPE and retinal differentiation

    PubMed Central

    Ma, Ping; Collery, Ross; Trowbridge, Sara; Zhong, Wenxuan; Leung, Yuk Fai

    2014-01-01

    Purpose The purpose of this study was to develop a framework for analyzing retinal pigment epithelium (RPE) expression profiles from zebrafish eye mutants. Methods The fish model we used was SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (smarca4), a retinal dystrophic mutant with a previously described retinal phenotype and expression profiles. Histological and Affymetrix GeneChip analyses were conducted to characterize the RPE defects and underlying differential expression, respectively. Results Histological analysis revealed that smarca4 RPE was formed, but its differentiation was abnormal. In particular, ultrastructural analysis of smarca4 RPE by transmission electron microscopy demonstrated several defects in melanogenesis. The nature of these defects also suggests that the cytoskeletal dynamics, which are tightly linked with melanogenesis, were impaired in smarca4 RPE. To compare the expression profile of normal wild-type (WT) and smarca4 RPE, the gene expression profiles of microdissected retinas and RPE-attached retinas were measured with Affymetrix GeneChip analysis. The RPE expression values were then estimated from these samples by subtracting the retinal expression values from the expression values of the RPE-attached retinas. A factorial analysis was conducted using the expression values of the RPE, retinal, and whole-embryo samples. Specific rules (contrasts) were built using the coefficients of the resulting fitted models to select for three groups of genes: 1) smarca4-regulated RPE genes, 2) smarca4-regulated retinal genes, and 3) smarca4-regulated RPE genes that are not differentially expressed in the retina. Interestingly, the third group consists of 39 genes that are highly related to cytoskeletal dynamics, melanogenesis, and paracrine and intracellular signal transduction. Conclusions Our analytical framework provides an experimental approach to identify differentially-regulated genes in the

  6. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells.

    PubMed

    Ryan, M C; Lee, K; Miyashita, Y; Carter, W G

    1999-06-14

    Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium. PMID:10366601

  7. Gait analysis at multiple speeds reveals differential functional and structural outcomes in response to graded spinal cord injury.

    PubMed

    Krizsan-Agbas, Dora; Winter, Michelle K; Eggimann, Linda S; Meriwether, Judith; Berman, Nancy E; Smith, Peter G; McCarson, Kenneth E

    2014-05-01

    Open-field behavioral scoring is widely used to assess spinal cord injury (SCI) outcomes, but has limited usefulness in describing subtle changes important for posture and locomotion. Additional quantitative methods are needed to increase the resolution of locomotor outcome assessment. This study used gait analysis at multiple speeds (GAMS) across a range of mild-to-severe intensities of thoracic SCI in the rat. Overall, Basso, Beattie, and Bresnahan (BBB) scores and subscores were assessed, and detailed automated gait analysis was performed at three fixed walking speeds (3.5, 6.0, and 8.5 cm/sec). Variability in hindpaw brake, propel, and stance times were analyzed further by integrating across the stance phase of stepping cycles. Myelin staining of spinal cord sections was used to quantify white matter loss at the injury site. Varied SCI intensity produced graded deficits in BBB score, BBB subscores, and spinal cord white matter and total volume loss. GAMS measures of posture revealed decreased paw area, increased limb extension, altered stance width, and decreased values for integrated brake, propel, and stance. Measures of coordination revealed increased stride frequency concomitant with decreased stride length, resulting in deviation from consistent forelimb/hindlimb coordination. Alterations in posture and coordination were correlated to impact severity. GAMS results correlated highly with functional and histological measures and revealed differential relationships between sets of GAMS dynamics and cord total volume loss versus epicenter myelin loss. Automated gait analysis at multiple speeds is therefore a useful tool for quantifying nuanced changes in gait as an extension of histological and observational methods in assessing SCI outcomes.

  8. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line.

    PubMed

    Vázquez-Martínez, Edgar Ricardo; Camacho-Arroyo, Ignacio; Zarain-Herzberg, Angel; Rodríguez, María Carmen; Mendoza-Garcés, Luciano; Ostrosky-Wegman, Patricia; Cerbón, Marco

    2016-06-01

    Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells. PMID:26676302

  9. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line.

    PubMed

    Vázquez-Martínez, Edgar Ricardo; Camacho-Arroyo, Ignacio; Zarain-Herzberg, Angel; Rodríguez, María Carmen; Mendoza-Garcés, Luciano; Ostrosky-Wegman, Patricia; Cerbón, Marco

    2016-06-01

    Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells.

  10. Communication is key: Reducing DEK1 activity reveals a link between cell-cell contacts and epidermal cell differentiation status.

    PubMed

    Galletti, Roberta; Ingram, Gwyneth C

    2015-01-01

    Plant epidermis development requires not only the initial acquisition of tissue identity, but also the ability to differentiate specific cell types over time and to maintain these differentiated states throughout the plant life. To set-up and maintain differentiation, plants activate specific transcriptional programs. Interfering with these programs can prevent differentiation and/or force differentiated cells to lose their identity and re-enter a proliferative state. We have recently shown that the Arabidopsis Defective Kernel 1 (DEK1) protein is required both for the differentiation of epidermal cells and for the maintenance of their fully differentiated state. Defects in DEK1 activity lead to a deregulation of the expression of epidermis-specific differentiation-promoting HD-ZIP IV transcription factors. Here we propose a working model in which DEK1, by maintaining cell-cell contacts, and thus communication between neighboring cells, influences HD-ZIP IV gene expression and epidermis differentiation. PMID:27064205

  11. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. PMID:23851162

  12. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    SciTech Connect

    Teyssedre, G. Laurent, C.; Vu, T. T. N.

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  13. Transcriptome profiling of the eyestalk of precocious juvenile Chinese mitten crab reveals putative neuropeptides and differentially expressed genes.

    PubMed

    Xu, Zhiqiang; Zhao, Muzi; Li, Xuguang; Lu, Quanping; Li, Yuehua; Ge, Jiachun; Pan, Jianlin

    2015-09-15

    Chinese mitten crabs that reach maturity 1 year earlier than normal crabs are known as precocious juvenile crabs. The molecular mechanisms underlying the precocity of the Chinese mitten crab are poorly understood. To identify the genes that may be involved in the control of precocity in Chinese mitten crab, we measured the expression profile of eyestalk genes in precocious and normally developed juvenile crabs using high-throughput sequencing on an Illumina HiSeq 2500 platform. We obtained 56,446,284 raw reads from the precocious crabs and 58,029,476 raw reads from the normally developed juvenile crabs. Reads from the two libraries were combined into a single data set. De novo assembly of the combined read set yielded 78,777 unigenes with an average length of 1563 bp. A total of 41,405 unigenes with predicted ORFs were selected for functional annotation. Among these genes, we identified three neuropeptide genes belonging to the crustacean hyperglycemic hormone family and two neuropeptide genes encoding the chromatophorotropic hormones. Transcriptome comparison between the two libraries revealed 42 genes that exhibited significant differential expression, of which 29 genes were up-regulated and 13 genes were down-regulated in the precocious crabs. To confirm the sequencing data, six differentially expressed genes with functional annotations were selected and validated by qRT-PCR. In conclusion, we obtained the comprehensive transcriptome of the eyestalk tissues of precocious juvenile crabs. The sequencing results may provide new insights into the biomolecular basis of precocity in the Chinese mitten crab.

  14. Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System

    NASA Astrophysics Data System (ADS)

    Szejner, Paul; Wright, William E.; Babst, Flurin; Belmecheri, Soumaya; Trouet, Valerie; Leavitt, Steven W.; Ehleringer, James R.; Monson, Russell K.

    2016-07-01

    The arrival of the North American Monsoon System (NAMS) terminates a presummer hyperarid period in the southwestern United States (U.S.), providing summer moisture that is favorable for forest growth. Montane forests in this region rely on winter snowpack to drive much of their growth; the extent to which they use NAMS moisture is uncertain. We addressed this by studying stable carbon and oxygen isotopes in earlywood and latewood from 11 sites along a latitudinal gradient extending from Arizona and New Mexico to Utah. This study provides the first regional perspective on the relative roles of winter versus summer precipitation as an ecophysiological resource. Here we present evidence that Ponderosa pine uses NAMS moisture differentially across this gradient. 13C/12C ratios suggest that photosynthetic water use efficiency during latewood formation is more sensitive to summer precipitation at the northern than at the southern sites. This is likely due to the fact that NAMS moisture provides sufficiently favorable conditions for tree photosynthesis and growth during most years in the southern sites, whereas the northern sites experience larger summer moisture variability, which in some years is limiting growth. Cellulose δ18O and δ13C values revealed that photoassimilates in the southern sites were produced under higher vapor pressure deficit conditions during spring compared to summer, demonstrating a previously underappreciated effect of seasonal differences in atmospheric humidity on tree ring isotope ratios. Our findings suggest that future changes in NAMS will potentially alter productivity and photosynthetic water use dynamics differentially along latitudinal gradients in southwestern U.S. montane forests.

  15. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea

    PubMed Central

    2013-01-01

    Background Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. Results We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. Conclusion The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that

  16. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses

    PubMed Central

    Li, Jianfang; Yang, Yuchen; Chen, Qipian; Fang, Lu; He, Ziwen; Guo, Wuxia; Qiao, Sitan; Wang, Zhengzhen; Guo, Miaomiao; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2016-01-01

    Systematically investigating the impacts of Pleistocene sea-level fluctuations on mangrove plants may provide a better understanding of their demographic history and useful information for their conservation. Therefore, we conducted population genomic analyses of 88 nuclear genes to explore the population dynamics of a mangrove tree Lumnitzera racemosa across the Indo-West Pacific region. Our results revealed pronounced genetic differentiation in this species between the populations from the Indian Ocean and the Pacific Ocean, which may be attributable to the long-term isolation between the western and eastern coasts of the Malay Peninsula during sea-level drops in the Pleistocene glacial periods. The mixing of haplotypes from the two highly divergent groups was identified in a Cambodian population at almost all 88 nuclear genes, suggesting genetic admixture of the two lineages at the boundary region. Similar genetic admixture was also found in other populations from Southeast Asia based on the Bayesian clustering analysis of six nuclear genes, which suggests extensive and recent secondary contact of the two divergent lineages in Southeast Asia. Computer simulations indicated substantial migration from the Indian Ocean towards the South China Sea, which likely results in the genetic admixture in Southeast Asia. PMID:27380895

  17. Differential Features between Chronic Skin Inflammatory Diseases Revealed in Skin-Humanized Psoriasis and Atopic Dermatitis Mouse Models.

    PubMed

    Carretero, Marta; Guerrero-Aspizua, Sara; Illera, Nuria; Galvez, Victoria; Navarro, Manuel; García-García, Francisco; Dopazo, Joaquin; Jorcano, Jose Luis; Larcher, Fernando; del Rio, Marcela

    2016-01-01

    Psoriasis and atopic dermatitis are chronic and relapsing inflammatory diseases of the skin affecting a large number of patients worldwide. Psoriasis is characterized by a T helper type 1 and/or T helper type 17 immunological response, whereas acute atopic dermatitis lesions exhibit T helper type 2-dominant inflammation. Current single gene and signaling pathways-based models of inflammatory skin diseases are incomplete. Previous work allowed us to model psoriasis in skin-humanized mice through proper combinations of inflammatory cell components and disruption of barrier function. Herein, we describe and characterize an animal model for atopic dermatitis using similar bioengineered-based approaches, by intradermal injection of human T helper type 2 lymphocytes in regenerated human skin after partial removal of stratum corneum. In this work, we have extensively compared this model with the previous and an improved version of the psoriasis model, in which T helper type 1 and/or T helper type 17 lymphocytes replace exogenous cytokines. Comparative expression analyses revealed marked differences in specific epidermal proliferation and differentiation markers and immune-related molecules, including antimicrobial peptides. Likewise, the composition of the dermal inflammatory infiltrate presented important differences. The availability of accurate and reliable animal models for these diseases will contribute to the understanding of the pathogenesis and provide valuable tools for drug development and testing. PMID:26763433

  18. Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins.

    PubMed

    Alcolea, Pedro J; Alonso, Ana; García-Tabares, Francisco; Mena, María del Carmen; Ciordia, Sergio; Larraga, Vicente

    2016-06-01

    Leishmaniasis is a term that encompasses a compendium of neglected tropical diseases caused by dimorphic and digenetic protozoan parasites from the genus Leishmania (Kinetoplastida: Trypanosomatidae). The clinical manifestations of neotropical cutaneous leishmaniasis (NCL) caused by Leishmania pifanoi and other species of the "Leishmania mexicana complex" mainly correspond to anergic diffuse cutaneous leishmaniasis (ADCL), which is the origin of considerable morbidity. Despite the outstanding advances in the characterization of the trypanosomatid genomes and proteomes, the biology of this species has been scarcely explored. However, the close relation of L. pifanoi to the sequenced species L. mexicana and others included in the "L. mexicana complex" allowed us to perform a two-dimension electrophoresis (2DE) approach to the promastigote proteome at the differential expression level. Protein identifications were performed by matrix-assisted laser desorption-ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF). This insight has revealed similarities and differences between L. pifanoi and other species responsible for cutaneous and visceral leishmaniasis. Interestingly, certain proteins that were previously described as immunostimulatory (elongation factor 1β, trypanothione peroxidase, heat shock protein 70, enolase, GDP-forming succinyl-CoA and aldehyde dehydrogenase) are more abundant in the final growth stages of promastigotes (late-logarithmic and/or stationary phase) in the case of L. pifanoi. PMID:26992294

  19. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi

    PubMed Central

    Fiorilli, Valentina; Vallino, Marta; Biselli, Chiara; Faccio, Antonella; Bagnaresi, Paolo; Bonfante, Paola

    2015-01-01

    Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM) symbiosis, has both host and non-host roots. Large lateral (LLR) and fine lateral (FLR) roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR. We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant. PMID:26322072

  20. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum

    PubMed Central

    Vega, Andrea; Canessa, Paulo; Hoppe, Gustavo; Retamal, Ignacio; Moyano, Tomas C.; Canales, Javier; Gutiérrez, Rodrigo A.; Rubilar, Joselyn

    2015-01-01

    Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants. PMID:26583019

  1. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    PubMed

    Vega, Andrea; Canessa, Paulo; Hoppe, Gustavo; Retamal, Ignacio; Moyano, Tomas C; Canales, Javier; Gutiérrez, Rodrigo A; Rubilar, Joselyn

    2015-01-01

    Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants. PMID:26583019

  2. Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity.

    PubMed Central

    Andries, K; Dewindt, B; Snoeks, J; Wouters, L; Moereels, H; Lewi, P J; Janssen, P A

    1990-01-01

    A variety of chemically different compounds inhibit the replication of several serotypes of rhinoviruses (common-cold viruses). We noticed that one of these antiviral compounds, WIN 51711, had an antiviral spectrum clearly distinctive from a consensus spectrum or other capsid-binding compounds, although all of them were shown to share the same binding site. A systematic evaluation of all known rhinovirus capsid-binding compounds against all serotyped rhinoviruses was therefore initiated. Multivariate analysis of the results revealed the existence of two groups of rhinoviruses, which we will call antiviral groups A and B. The differential sensitivity of members of these groups to antiviral compounds suggests the existence of a dimorphic binding site. The antiviral groups turned out to be a reflection of a divergence of rhinovirus serotypes on a much broader level. Similarities in antiviral spectra were highly correlated with sequence similarities, not only of amino acids lining the antiviral compound-binding-site, but also of amino acids of the whole VP1 protein. Furthermore, analysis of epidemiological data indicated that group B rhinoviruses produced more than twice as many clinical infections per serotype than group A rhinoviruses did. Rhinoviruses belonging to the minor receptor group were without exception all computed to lie in the same region of antiviral group B. PMID:2154596

  3. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses.

    PubMed

    Li, Jianfang; Yang, Yuchen; Chen, Qipian; Fang, Lu; He, Ziwen; Guo, Wuxia; Qiao, Sitan; Wang, Zhengzhen; Guo, Miaomiao; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2016-01-01

    Systematically investigating the impacts of Pleistocene sea-level fluctuations on mangrove plants may provide a better understanding of their demographic history and useful information for their conservation. Therefore, we conducted population genomic analyses of 88 nuclear genes to explore the population dynamics of a mangrove tree Lumnitzera racemosa across the Indo-West Pacific region. Our results revealed pronounced genetic differentiation in this species between the populations from the Indian Ocean and the Pacific Ocean, which may be attributable to the long-term isolation between the western and eastern coasts of the Malay Peninsula during sea-level drops in the Pleistocene glacial periods. The mixing of haplotypes from the two highly divergent groups was identified in a Cambodian population at almost all 88 nuclear genes, suggesting genetic admixture of the two lineages at the boundary region. Similar genetic admixture was also found in other populations from Southeast Asia based on the Bayesian clustering analysis of six nuclear genes, which suggests extensive and recent secondary contact of the two divergent lineages in Southeast Asia. Computer simulations indicated substantial migration from the Indian Ocean towards the South China Sea, which likely results in the genetic admixture in Southeast Asia. PMID:27380895

  4. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    PubMed

    Fiorilli, Valentina; Vallino, Marta; Biselli, Chiara; Faccio, Antonella; Bagnaresi, Paolo; Bonfante, Paola

    2015-01-01

    Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM) symbiosis, has both host and non-host roots. Large lateral (LLR) and fine lateral (FLR) roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR. We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant. PMID:26322072

  5. Pronounced genetic differentiation and recent secondary contact in the mangrove tree Lumnitzera racemosa revealed by population genomic analyses.

    PubMed

    Li, Jianfang; Yang, Yuchen; Chen, Qipian; Fang, Lu; He, Ziwen; Guo, Wuxia; Qiao, Sitan; Wang, Zhengzhen; Guo, Miaomiao; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2016-01-01

    Systematically investigating the impacts of Pleistocene sea-level fluctuations on mangrove plants may provide a better understanding of their demographic history and useful information for their conservation. Therefore, we conducted population genomic analyses of 88 nuclear genes to explore the population dynamics of a mangrove tree Lumnitzera racemosa across the Indo-West Pacific region. Our results revealed pronounced genetic differentiation in this species between the populations from the Indian Ocean and the Pacific Ocean, which may be attributable to the long-term isolation between the western and eastern coasts of the Malay Peninsula during sea-level drops in the Pleistocene glacial periods. The mixing of haplotypes from the two highly divergent groups was identified in a Cambodian population at almost all 88 nuclear genes, suggesting genetic admixture of the two lineages at the boundary region. Similar genetic admixture was also found in other populations from Southeast Asia based on the Bayesian clustering analysis of six nuclear genes, which suggests extensive and recent secondary contact of the two divergent lineages in Southeast Asia. Computer simulations indicated substantial migration from the Indian Ocean towards the South China Sea, which likely results in the genetic admixture in Southeast Asia.

  6. Differential Replication of Two Chloroplast Genome Forms in Heteroplasmic Chlamydomonas reinhardtii Gametes Contributes to Alternative Inheritance Patterns

    PubMed Central

    Nishimura, Yoshiki; Stern, David B.

    2010-01-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS−. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only ∼25% of tetrads, whereas the PS− genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS− genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS− genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies. PMID:20519744

  7. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf.

    PubMed

    Cheung, C Y Maurice; Ratcliffe, R George; Sweetlove, Lee J

    2015-11-01

    Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture.

  8. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf1[OPEN

    PubMed Central

    Cheung, C.Y. Maurice; Ratcliffe, R. George; Sweetlove, Lee J.

    2015-01-01

    Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture. PMID:26265776

  9. A numerical modelling technique that can account for alternations of uplift and subsidence revealed by Late Cenozoic fluvial sequences

    NASA Astrophysics Data System (ADS)

    Westaway, Rob

    2012-09-01

    Alternations between fluvial incision and aggradation, in response to switches between uplift and subsidence and occurring over timescales of many hundreds of thousands of years, have been documented in many regions worldwide, contrasting markedly with the monotonic histories of uplift or subsidence evident elsewhere. It has been noted that this pattern of reversals in vertical crustal motion is only observed in regions where the mobile lower-crustal layer is thin, ≤ 6 km thick, suggesting a cause-and-effect connection with the physical properties of the underlying continental lithosphere. It is proposed that these reversals result from the interplay between the isostatic responses to erosional unloading by lower-crustal flow and by mantle lithosphere relaxation. Estimates of the characteristic timescale for relaxation of the continental mantle lithosphere range from several hundred thousand years in regions of ‘cold' crust, with a thin mobile lower-crustal layer, to a few tens of thousands of years in regions of ‘hot' crust, where the mobile lower-crustal layer is thicker. In regions of hot crust, relaxation of the mantle lithosphere requires a shorter characteristic timescale than flow within the lower crust. The complex interaction between these processes means that isostatic compensation of crustal thickening in regions of hot crust will typically involve surface uplift, the development of a lower-crustal ‘root', and thinning of the mantle lithosphere. The observation of alternations between uplift and subsidence in long-timescale fluvial sequences and the proposed physical interpretation demonstrate the importance of fluvial records for providing unique, high-resolution control on deformation of the continental lithosphere and for constraining its layered rheology.

  10. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts.

    PubMed

    Calsa, Tercilio; Figueira, Antonio

    2007-04-01

    Sugarcane (Saccharum spp.) is a highly efficient biomass and sugar producing crop. Leaf reactions have been considered as potential rate-limiting step for sucrose accumulation in sugarcane stalks. To characterize the sugarcane leaf transcriptome, field-grown mature leaves from cultivar "SP80-3280" were analyzed using Serial Analysis of Gene Expression (SAGE). From 480 sequenced clones, 9,482 valid tags were extracted, with 5,227 unique sequences, from which 3,659 (70%) matched at least a sugarcane assembled sequence (SAS) with putative function; while 872 tags (16.7%) matched SAS with unknown function; 523 (10%) matched SAS without a putative annotation; and only 173 (3.3%) did not match any sugarcane ESTs. Based on gene ontology (GO), photosystem (PS) I reaction center was identified as the most frequent gene product location, followed by the remaining sites of PS I, PS II and thylakoid complexes. For metabolic processes, photosynthesis light harvesting complexes; carbon fixation; and chlorophyll biosynthesis were the most enriched GO-terms. Considering the alternative photosynthetic C(4) cycles, tag frequencies related to phosphoenolpyruvate carboxykinase (PEPCK) and aspartate aminotransferase compared to those for NADP(+)-malic enzyme (NADP-ME) and NADP-malate dehydrogenase, suggested that PEPCK-type decarboxylation appeared to predominate over NADP-ME in mature leaves, although both may occur, opposite to currently assumed in sugarcane. From the unique tag set, 894 tags (17.1%) were assigned as potentially derived from antisense transcripts, while 73 tags (1.4%) were assigned to more than one SAS, suggesting the occurrence of alternative processing. The occurrence of antisense was validated by quantitative reverse transcription amplification. Sugarcane leaf transcriptome provided new insights for functional studies associated with sucrose synthesis and accumulation.

  11. Mobility and age of black carbon in two temperate grassland soils revealed by differential scanning calorimetry and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Leifeld, Jens; Feng, Xiaojuan; Eglinton, Timothy; Wacker, Lukas

    2015-04-01

    Black carbon (BC) is a natural component of soil organic matter (SOM) and abundant in many ecosystems. Its stability, due to its relative resistance to microbial decomposition, means it plays an important role in soil C sequestration. A recent review suggests that BC may be mobile in soil; hence, its contribution to a stable SOM pool may change over time due to its lateral or vertical reallocation (Rumpel et al. 2014). However, direct evidence of the mobility of BC, particularly with reference to its vertical mobility, is scarce. We studied the amount of BC in two temperate grassland fields (eutric clayey Camibsol,) that were established in 2001 on former cropland. Volumetric soil samples (0-50 cm, 5 cm increments) were taken at 10 spots in each field in 2001, 2006 and 2011. One of the fields was ploughed in 2007 and the sward was re-sown. BC content was measured by differential scanning calorimetry for a total number of c. 500 samples. The mean BC/OC ratio was 0.10 (±0.05) and reached 0.25 in some samples. Radiocarbon measurements from 24 bulk soil samples revealed relatively small 14C contents in 2001 (92±2.7 pMC) which increased over time (2006: 99.0±1.1 pMC; 2011: 99.1±1.1 pMC). Thermal fractionation of BC by DSC revealed calibrated BC ages of 400 to 1000 years (pMC 87-94), suggesting that BC originates from medieval and post-medieval fire clearings. The change in soil signature may have been caused by a preferential transport of old BC down the soil profile, leading to a selective enrichment of younger soil C over time. In line with this interpretation the DSC measurements suggest that in both fields, BC concentrations significantly decreased for most layers between 2001 and 2006. However, between 2006 and 2011, no further vertical reallocation was observed in the continuous grassland, whereas BC contents of the field ploughed in 2007 significantly increased in the top layers. Together, these data suggest that ploughing in 2001 triggered subsequent

  12. Changes in localization of human discs large (hDlg) during keratinocyte differentiation is associated with expression of alternatively spliced hDlg variants

    SciTech Connect

    Roberts, S. . E-mail: s.roberts@bham.ac.uk; Calautti, E.; Vanderweil, S.; Nguyen, H.O.; Foley, A.; Baden, H.P.; Viel, A.

    2007-07-15

    Alternative spliced variants of the human discs large (hDlg) tumour suppressor are characterized by combinations of insertions. Here, using insertions I2- and I3-specific antibodies, we show that I2 and I3 variants have distinct distributions in epidermal and cervical epithelia. In skin and cervix, I3 variants are found in the cytoplasm. Cytoplasmic localization of I3 variants decreases as cervical keratinocytes differentiate, concomitant with relocalization to the cell periphery. I2 variants are found at the cell periphery of differentiated epidermal and cervical keratinocytes. Nuclear localization of I2 variants was evident in both tissues, with concentration of nuclear I2 variants in basal and parabasal cervical keratinocytes. A prominent nuclear localization of hDlg in cells of hyperproliferative layers of psoriatic lesions, but not in mature differentiated keratinocytes, together with I2 redistribution in differentiating keratinocytes, suggests that nuclear hDlg functions may be pertinent to growth of undifferentiated cells. Supporting our findings in squamous tissues, a decrease of nuclear hDlg and an increase of membrane-bound and cytoplasmic hDlg upon calcium-induced keratinocyte differentiation were not concomitant processes. Furthermore, we confirm that the exit of I2 variants from the nucleus is linked to stimulation of epithelial differentiation. The dynamic redistribution of hDlg also correlated with a marked increase in the expression of I3 variants while the level of I2 variants showed only a moderate decrease. Because changes in the intracellular distribution of hDlg splice variants, and in their expression levels, correlate with changes in differentiation state we hypothesize that the different hDlg isoforms play distinct roles at various stages of epithelial differentiation.

  13. Kisspeptin Antagonists Reveal Kisspeptin 1 and Kisspeptin 2 Differential Regulation of Reproduction in the Teleost, Morone saxatilis.

    PubMed

    Zmora, Nilli; Stubblefield, John David; Wong, Ten-Tsao; Levavi-Sivan, Berta; Millar, Robert Peter; Zohar, Yonathan

    2015-09-01

    The importance of kisspeptin in regulating vertebrate reproduction has been well established, but the exact mechanism continues to unfold. Unlike mammals, many lower vertebrates possess a dual kisspeptin system, Kiss1 and Kiss2. To decipher the roles of the kisspeptins in fish, we identified two potential kisspeptin antagonists, pep 234 and pep 359, by screening analogs for their ability to inactivate striped bass Kiss1 and Kiss2 receptors expressed in COS7 cells. Pep 234 (a mammalian KISS1 antagonist) antagonizes Kiss1r signaling activated by Kiss1 and Kiss2, and pep 359 (a novel analog) antagonizes Kiss2 activation of both receptors. In vitro studies using brain slices demonstrated that only Kiss2 can upregulate the expression of the hypophysiotropic gnrh1, which was subsequently diminished by pep 234 and pep 359. In primary pituitary cell cultures, the two antagonists revealed a complex network of putative endogenous and exogenous regulation by kisspeptin. While both kisspeptins stimulate Fsh expression and secretion, Kiss2 predominately induces Lh secretion. Pep 234 and 359 treatment of spawning males hindered sperm production. This effect was accompanied with decreased brain gnrh1 and gnrh2 mRNA levels and peptide content in the pituitary, and increased levels of pituitary Lh, probably due to attenuation of Lh release. Strikingly, the mRNA levels of arginine-vasotocin, the neurons of which in the preoptic area coexpress kiss2r, were dramatically reduced by the antagonists. Our results demonstrate differential actions of Kiss1 and Kiss2 systems along the hypothalamic-pituitary axis and interactions with other neuropeptides, and further reinforce the importance of kisspeptin in the execution of spawning. PMID:26246220

  14. Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis

    PubMed Central

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  15. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis.

    PubMed

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C; Kocan, Katherine M; Šíma, Radek; López, Juan A; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-03-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  16. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis.

    PubMed

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C; Kocan, Katherine M; Šíma, Radek; López, Juan A; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-03-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  17. Multilocus sequence analysis of Thermoanaerobacter isolates reveals recombining, but differentiated, populations from geothermal springs of the Uzon Caldera, Kamchatka, Russia

    PubMed Central

    Wagner, Isaac D.; Varghese, Litty B.; Hemme, Christopher L.; Wiegel, Juergen

    2013-01-01

    Thermal environments have island-like characteristics and provide a unique opportunity to study population structure and diversity patterns of microbial taxa inhabiting these sites. Strains having ≥98% 16S rRNA gene sequence similarity to the obligately anaerobic Firmicutes Thermoanaerobacter uzonensis were isolated from seven geothermal springs, separated by up to 1600 m, within the Uzon Caldera (Kamchatka, Russian Far East). The intraspecies variation and spatial patterns of diversity for this taxon were assessed by multilocus sequence analysis (MLSA) of 106 strains. Analysis of eight protein-coding loci (gyrB, lepA, leuS, pyrG, recA, recG, rplB, and rpoB) revealed that all loci were polymorphic and that nucleotide substitutions were mostly synonymous. There were 148 variable nucleotide sites across 8003 bp concatenates of the protein-coding loci. While pairwise FST values indicated a small but significant level of genetic differentiation between most subpopulations, there was a negligible relationship between genetic divergence and spatial separation. Strains with the same allelic profile were only isolated from the same hot spring, occasionally from consecutive years, and single locus variant (SLV) sequence types were usually derived from the same spring. While recombination occurred, there was an “epidemic” population structure in which a particular T. uzonensis sequence type rose in frequency relative to the rest of the population. These results demonstrate spatial diversity patterns for an anaerobic bacterial species in a relative small geographic location and reinforce the view that terrestrial geothermal springs are excellent places to look for biogeographic diversity patterns regardless of the involved distances. PMID:23801987

  18. Multilocus sequence analysis of Thermoanaerobacter isolates reveals recombining, but differentiated, populations from geothermal springs of the Uzon Caldera, Kamchatka, Russia.

    PubMed

    Wagner, Isaac D; Varghese, Litty B; Hemme, Christopher L; Wiegel, Juergen

    2013-01-01

    Thermal environments have island-like characteristics and provide a unique opportunity to study population structure and diversity patterns of microbial taxa inhabiting these sites. Strains having ≥98% 16S rRNA gene sequence similarity to the obligately anaerobic Firmicutes Thermoanaerobacter uzonensis were isolated from seven geothermal springs, separated by up to 1600 m, within the Uzon Caldera (Kamchatka, Russian Far East). The intraspecies variation and spatial patterns of diversity for this taxon were assessed by multilocus sequence analysis (MLSA) of 106 strains. Analysis of eight protein-coding loci (gyrB, lepA, leuS, pyrG, recA, recG, rplB, and rpoB) revealed that all loci were polymorphic and that nucleotide substitutions were mostly synonymous. There were 148 variable nucleotide sites across 8003 bp concatenates of the protein-coding loci. While pairwise F ST values indicated a small but significant level of genetic differentiation between most subpopulations, there was a negligible relationship between genetic divergence and spatial separation. Strains with the same allelic profile were only isolated from the same hot spring, occasionally from consecutive years, and single locus variant (SLV) sequence types were usually derived from the same spring. While recombination occurred, there was an "epidemic" population structure in which a particular T. uzonensis sequence type rose in frequency relative to the rest of the population. These results demonstrate spatial diversity patterns for an anaerobic bacterial species in a relative small geographic location and reinforce the view that terrestrial geothermal springs are excellent places to look for biogeographic diversity patterns regardless of the involved distances.

  19. Kisspeptin Antagonists Reveal Kisspeptin 1 and Kisspeptin 2 Differential Regulation of Reproduction in the Teleost, Morone saxatilis.

    PubMed

    Zmora, Nilli; Stubblefield, John David; Wong, Ten-Tsao; Levavi-Sivan, Berta; Millar, Robert Peter; Zohar, Yonathan

    2015-09-01

    The importance of kisspeptin in regulating vertebrate reproduction has been well established, but the exact mechanism continues to unfold. Unlike mammals, many lower vertebrates possess a dual kisspeptin system, Kiss1 and Kiss2. To decipher the roles of the kisspeptins in fish, we identified two potential kisspeptin antagonists, pep 234 and pep 359, by screening analogs for their ability to inactivate striped bass Kiss1 and Kiss2 receptors expressed in COS7 cells. Pep 234 (a mammalian KISS1 antagonist) antagonizes Kiss1r signaling activated by Kiss1 and Kiss2, and pep 359 (a novel analog) antagonizes Kiss2 activation of both receptors. In vitro studies using brain slices demonstrated that only Kiss2 can upregulate the expression of the hypophysiotropic gnrh1, which was subsequently diminished by pep 234 and pep 359. In primary pituitary cell cultures, the two antagonists revealed a complex network of putative endogenous and exogenous regulation by kisspeptin. While both kisspeptins stimulate Fsh expression and secretion, Kiss2 predominately induces Lh secretion. Pep 234 and 359 treatment of spawning males hindered sperm production. This effect was accompanied with decreased brain gnrh1 and gnrh2 mRNA levels and peptide content in the pituitary, and increased levels of pituitary Lh, probably due to attenuation of Lh release. Strikingly, the mRNA levels of arginine-vasotocin, the neurons of which in the preoptic area coexpress kiss2r, were dramatically reduced by the antagonists. Our results demonstrate differential actions of Kiss1 and Kiss2 systems along the hypothalamic-pituitary axis and interactions with other neuropeptides, and further reinforce the importance of kisspeptin in the execution of spawning.

  20. Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird.

    PubMed

    Ornelas, Juan Francisco; González, Clementina; Hernández-Baños, Blanca E; García-Moreno, Jaime

    2016-02-01

    The present day distribution and spatial genetic diversity of Mesoamerican biota reflects a long history of responses to habitat change. The hummingbird Lampornis amethystinus is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling across the species range using mitochondrial DNA (mtDNA) sequences and nuclear microsatellites jointly analysed with phenotypic and climatic data, we (1) test whether the fragmented distribution is correlated with main evolutionary lineages, (2) assess body size and plumage color differentiation of populations in geographic isolation, and (3) evaluate a set of divergence scenarios and demographic patterns of the hummingbird populations. Analysis of genetic variation revealed four main groups: blue-throated populations (Sierra Madre del Sur); two groups of amethyst-throated populations (Trans-Mexican Volcanic Belt and Sierra Madre Oriental); and populations east of the Isthmus of Tehuantepec (IT) with males showing an amethyst throat. The most basal split is estimated to have originated in the Pleistocene, 2.39-0.57 million years ago (MYA), and corresponded to groups of populations separated by the IT. However, the estimated recent divergence time between blue- and amethyst-throated populations does not correspond to the 2-MY needed to be in isolation for substantial plumage divergence, likely because structurally iridescent colors are more malleable than others. Results of species distribution modeling and Approximate Bayesian Computation analysis fit a model of lineage divergence west of the Isthmus after the Last Glacial Maximum (LGM), and that the species' suitable habitat was disjunct during past and current conditions. These results challenge the generality of the contraction/expansion glacial model to cloud forest-interior species and urges management of cloud forest, a highly vulnerable ecosystem to climate change and currently facing destruction, to prevent further loss of genetic

  1. Unilateral once daily milking locally induces differential gene expression in both mammary tissue and milk epithelial cells revealing mammary remodeling.

    PubMed

    Boutinaud, Marion; Galio, Laurent; Lollivier, Vanessa; Finot, Laurence; Wiart, Sandra; Esquerré, Diane; Devinoy, Eve

    2013-10-16

    Once daily milking reduces milk yield, but the underlying mechanisms are not yet fully understood. Local regulation due to milk stasis in the tissue may contribute to this effect, but such mechanisms have not yet been fully described. To challenge this hypothesis, one udder half of six Holstein dairy cows was milked once a day (ODM), and the other twice a day (TDM). On the 8th day of unilateral ODM, mammary epithelial cells (MEC) were purified from the milk using immunomagnetic separation. Mammary biopsies were harvested from both udder halves. The differences in transcript profiles between biopsies from ODM and TDM udder halves were analyzed by a 22k bovine oligonucleotide array, revealing 490 transcripts that were differentially expressed. The principal category of upregulated transcripts concerned mechanisms involved in cell proliferation and death. We further confirmed remodeling of the mammary tissue by immunohistochemistry, which showed less cell proliferation and more apoptosis in ODM udder halves. Gene expression analyzed by RT-qPCR in MEC purified from milk and mammary biopsies showed a common downregulation of six transcripts (ABCG2, FABP3, NUCB2, RNASE1 and 5, and SLC34A2) but also some discrepancies. First, none of the upregulated transcripts in biopsies varied in milk-purified MEC. Second, only milk-purified MEC showed significant LALBA downregulation, which suggests therefore that they correspond to a mammary epithelial cell subpopulation. Our results, obtained after unilateral milking, suggest that cell remodeling during ODM is due to a local effect, which may be triggered by milk accumulation.

  2. Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes.

    PubMed

    Bruder, S P; Caplan, A I

    1990-01-01

    Monoclonal antibodies against the surface of embryonic osteogenic cells have been used to characterize the sequence of transitions involved in the osteoblastic cell lineage. These previous data identified distinct cell stages within the osteogenic lineage, but were incomplete. To further refine and extend these observations, additional monoclonal antibodies were generated against the surface of osteogenic cells by immunizing mice with a heterogeneous population of chick embryonic bone cells. Supernatants from growing hybridoma colonies were immunohistochemically screened against frozen sections of stage 35 (day 9.5) chick tibiae. One cell line, SB-5, which secretes an antibody against the surface of osteogenic cells was successfully cloned, stabilized, and immortalized. Studies on the developmental progression of osteogenesis in the embryonic chick tibia reveal that cells within the lineage stages from Pre-Osteoblast to Secretory Osteoblast were never observed to react with antibody SB-5 at any time. By contrast, strong cell surface immunoreactivity was present on mature osteoblastic cells as they became Osteocytes. Furthermore, in cultures of osteogenic cells derived from embryonic calvaria or tibiae, cells possessing the SB-5 antigen on their surface displayed a morphology remarkably similar to that of Osteocytes found in situ. Double immunofluorescent staining of developing chick tibiae with SB-5 and SB-2, a monoclonal antibody directed against the surface of Secretory Osteoblasts, indicates that these cells proceed through an intermediate lineage step before becoming terminally differentiated Osteocytes. This transitory cell state is characterized by the simultaneous cell surface binding of antibodies SB-2 and SB-5, and is referred to as the Osteocytic Osteoblast stage.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns.

    PubMed

    Li, Qin; Xiao, Guanghui; Zhu, Yu-Xian

    2014-05-01

    Alternative splicing (AS) is a vital genetic mechanism that enhances the diversity of eukaryotic transcriptomes. Here, we generated 8.3 Gb high-quality RNA-sequencing data from cotton (Gossypium raimondii) and performed a systematic, comparative analysis of AS events. We mapped 85% of the RNA-sequencing data onto the reference genome and identified 154368 splice junctions with 16437 as events in 10197 genes. Intron retention constituted the majority (40%) of all AS events in G. raimondii. Comparison across 11 eukaryote species showed that intron retention is the most common AS type in higher plants. Although transposable elements (TEs) were found in only 2.9% of all G. raimondii introns, they are present in 43% of the retained introns, suggesting that TE-insertion may be an important mechanism for intron retention during AS. The majority of the TE insertions are concentrated 0-40 nt upstream of the 3'-splice site, substantially altering the distribution of branch points from preferred positions and reducing the efficiency of intron splicing by decreasing RNA secondary structure flexibility. Our data suggest that TE-insertion-induced changes in branch point-site distribution are important for intron retention-type AS. Our findings may help explain the vast differences in intron-retention frequencies between vertebrates and higher plants.

  4. Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis

    PubMed Central

    Pakharukova, Natalia; Garnett, James A.; Tuittila, Minna; Paavilainen, Sari; Diallo, Mamou; Xu, Yingqi; Matthews, Steve J.; Zavialov, Anton V.

    2015-01-01

    Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we report atomic-resolution insight into the structure and biogenesis of Acinetobacter baumannii Csu and Escherichia coli ECP biofilm-mediating pili. We show that the two non-classical systems are structurally related, but their assembly mechanism is strikingly different from the classical assembly pathway. Non-classical chaperones, unlike their classical counterparts, maintain subunits in a substantially disordered conformational state, akin to a molten globule. This is achieved by a unique binding mechanism involving the register-shifted donor strand complementation and a different subunit carboxylate anchor. The subunit lacks the classical pre-folded initiation site for donor strand exchange, suggesting that recognition of its exposed hydrophobic core starts the assembly process and provides fresh inspiration for the design of inhibitors targeting chaperone-usher systems. PMID:26587649

  5. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii

    PubMed Central

    Chapman, Stephen P.; Paget, Caroline M.; Johnson, Giles N.; Schwartz, Jean-Marc

    2015-01-01

    Cells of the green alga Chlamydomonas reinhardtii cultured in the presence of acetate perform mixotrophic growth, involving both photosynthesis and organic carbon assimilation. Under such conditions, cells exhibit a reduced capacity for photosynthesis but a higher growth rate, compared to phototrophic cultures. Better understanding of the down regulation of photosynthesis would enable more efficient conversion of carbon into valuable products like biofuels. In this study, Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) have been used with a genome scale model of C. reinhardtii to examine changes in intracellular flux distribution in order to explain their changing physiology. Additionally, a reaction essentiality analysis was performed to identify which reaction subsets are essential for a given growth condition. Our results suggest that exogenous acetate feeds into a modified tricarboxylic acid (TCA) cycle, which bypasses the CO2 evolution steps, explaining increases in biomass, consistent with experimental data. In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions. Importantly, acetate addition leads to an increased flux through cyclic electron flow (CEF), but results in a repression of CO2 fixation via Rubisco, explaining the down regulation of photosynthesis. However, although CEF enhances growth on acetate, it is not essential—impairment of CEF results in alternative metabolic pathways being increased. We have demonstrated how the reactions of photosynthesis interconnect with carbon metabolism on a global scale, and how systems approaches play a viable tool in understanding complex relationships at the scale of the organism. PMID:26175742

  6. Feedback-Controlled Transcranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory Consolidation.

    PubMed

    Lustenberger, Caroline; Boyle, Michael R; Alagapan, Sankaraleengam; Mellin, Juliann M; Vaughn, Bradley V; Fröhlich, Flavio

    2016-08-22

    Transient episodes of brain oscillations are a common feature of both the waking and the sleeping brain. Sleep spindles represent a prominent example of a poorly understood transient brain oscillation that is impaired in disorders such as Alzheimer's disease and schizophrenia. However, the causal role of these bouts of thalamo-cortical oscillations remains unknown. Demonstrating a functional role of sleep spindles in cognitive processes has, so far, been hindered by the lack of a tool to target transient brain oscillations in real time. Here, we show, for the first time, selective enhancement of sleep spindles with non-invasive brain stimulation in humans. We developed a system that detects sleep spindles in real time and applies oscillatory stimulation. Our stimulation selectively enhanced spindle activity as determined by increased sigma activity after transcranial alternating current stimulation (tACS) application. This targeted modulation caused significant enhancement of motor memory consolidation that correlated with the stimulation-induced change in fast spindle activity. Strikingly, we found a similar correlation between motor memory and spindle characteristics during the sham night for the same spindle frequencies and electrode locations. Therefore, our results directly demonstrate a functional relationship between oscillatory spindle activity and cognition. PMID:27476602

  7. Spike-interval triggered averaging reveals a quasi-periodic spiking alternative for stochastic resonance in catfish electroreceptors.

    PubMed

    Lankheet, Martin J M; Klink, P Christiaan; Borghuis, Bart G; Noest, André J

    2012-01-01

    Catfish detect and identify invisible prey by sensing their ultra-weak electric fields with electroreceptors. Any neuron that deals with small-amplitude input has to overcome sensitivity limitations arising from inherent threshold non-linearities in spike-generation mechanisms. Many sensory cells solve this issue with stochastic resonance, in which a moderate amount of intrinsic noise causes irregular spontaneous spiking activity with a probability that is modulated by the input signal. Here we show that catfish electroreceptors have adopted a fundamentally different strategy. Using a reverse correlation technique in which we take spike interval durations into account, we show that the electroreceptors generate a supra-threshold bias current that results in quasi-periodically produced spikes. In this regime stimuli modulate the interval between successive spikes rather than the instantaneous probability for a spike. This alternative for stochastic resonance combines threshold-free sensitivity for weak stimuli with similar sensitivity for excitations and inhibitions based on single interspike intervals. PMID:22403709

  8. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype

    PubMed Central

    2014-01-01

    Background Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes. Results We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event. Conclusions As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures. PMID:24739459

  9. A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms.

    PubMed

    Costa, José Hélio; McDonald, Allison E; Arnholdt-Schmitt, Birgit; Fernandes de Melo, Dirce

    2014-11-01

    A classification scheme based on protein phylogenies and sequence harmony method was used to clarify the taxonomic distribution and evolutionary history of the alternative oxidase (AOX) in angiosperms. A large data set analyses showed that AOX1 and AOX2 subfamilies were distributed into 4 phylogenetic clades: AOX1a-c/1e, AOX1d, AOX2a-c and AOX2d. High diversity in AOX family compositions was found. While the AOX2 subfamily was not detected in monocots, the AOX1 subfamily has expanded (AOX1a-e) in the large majority of these plants. In addition, Poales AOX1b and 1d were orthologous to eudicots AOX1d and then renamed as AOX1d1 and 1d2. AOX1 or AOX2 losses were detected in some eudicot plants. Several AOX2 duplications (AOX2a-c) were identified in eudicot species, mainly in the asterids. The AOX2b originally identified in eudicots in the Fabales order (soybean, cowpea) was divergent from AOX2a-c showing some specific amino acids with AOX1d and then it was renamed as AOX2d. AOX1d and AOX2d seem to be stress-responsive, facultative and mutually exclusive among species suggesting a complementary role with an AOX1(a) in stress conditions. Based on the data collected, we present a model for the evolutionary history of AOX in angiosperms and highlight specific areas where further research would be most beneficial.

  10. Aromatase knockout mice reveal an impact of estrogen on drug-induced alternation of murine electrocardiography parameters.

    PubMed

    Kurokawa, Junko; Sasano, Tetsuo; Kodama, Masami; Li, Min; Ebana, Yusuke; Harada, Nobuhiro; Honda, Shin-ichiro; Nakaya, Haruaki; Furukawa, Tetsushi

    2015-06-01

    Our in vitro characterization showed that physiological concentrations of estrogen partially suppressed the I(Kr) channel current in guinea pig ventricular myocytes and the human ether-a-go-go-related gene (hERG) channel currents in CHO-K1 cells regardless of estrogen receptor signaling and revealed that the partially suppressed hERG currents enhanced the sensitivity to the hERG blocker E-4031. To obtain in vivo proof-of-concept data to support the effects of estrogen on cardiac electrophysiology, we here employed an aromatase knockout mouse as an in vivo estrogen-null model and compared the acute effects of E-4031 on cardiac electrophysiological parameters with those in wild-type mice (C57/BL6J) by recording surface electrocardiogram (ECG). The ablation of circulating estrogens blunted the effects of E-4031 on heart rate and QT interval in mice under a denervation condition. Our result provides in vivo proof of principle and demonstrates that endogenous estrogens increase the sensitivity of E-4031 to cardiac electrophysiology. PMID:25972195

  11. Aromatase knockout mice reveal an impact of estrogen on drug-induced alternation of murine electrocardiography parameters.

    PubMed

    Kurokawa, Junko; Sasano, Tetsuo; Kodama, Masami; Li, Min; Ebana, Yusuke; Harada, Nobuhiro; Honda, Shin-ichiro; Nakaya, Haruaki; Furukawa, Tetsushi

    2015-06-01

    Our in vitro characterization showed that physiological concentrations of estrogen partially suppressed the I(Kr) channel current in guinea pig ventricular myocytes and the human ether-a-go-go-related gene (hERG) channel currents in CHO-K1 cells regardless of estrogen receptor signaling and revealed that the partially suppressed hERG currents enhanced the sensitivity to the hERG blocker E-4031. To obtain in vivo proof-of-concept data to support the effects of estrogen on cardiac electrophysiology, we here employed an aromatase knockout mouse as an in vivo estrogen-null model and compared the acute effects of E-4031 on cardiac electrophysiological parameters with those in wild-type mice (C57/BL6J) by recording surface electrocardiogram (ECG). The ablation of circulating estrogens blunted the effects of E-4031 on heart rate and QT interval in mice under a denervation condition. Our result provides in vivo proof of principle and demonstrates that endogenous estrogens increase the sensitivity of E-4031 to cardiac electrophysiology.

  12. Alternative Isoform Analysis of Ttc8 Expression in the Rat Pineal Gland Using a Multi-Platform Sequencing Approach Reveals Neural Regulation

    PubMed Central

    Mullikin, James C.; Klein, David C.; Park, Morgan; Coon, Steven L.

    2016-01-01

    Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome. PMID:27684375

  13. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    SciTech Connect

    Bouhlel, Mohamed Amine; Brozek, John; Derudas, Bruno; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.

  14. Differential proteomic analysis of lymphocytes treated with mycophenolic acid reveals caspase 3-induced cleavage of rho GDP dissociation inhibitor 2.

    PubMed

    Heller, Tanja; Asif, Abdul R; Petrova, Darinka Todorova; Doncheva, Yuliana; Wieland, E; Oellerich, Michael; Shipkova, Maria; Armstrong, Victor William

    2009-04-01

    The antiproliferative immunosuppressive drug mycophenolic acid (MPA) is an uncompetitive inhibitor of inosine monophosphate dehydrogenase, a key enzyme in de novo synthesis of purine nucleotides. The latter are not only required for synthesis of DNA and RNA but also are essential for the regulation of numerous cellular signaling pathways modulated by guanine nucleotide binding proteins (G proteins). We undertook an analysis of the influence of MPA on protein expression in a T-lymphoblast cell line (CCRF-CEM), which displays concentration-dependent inhibition of proliferation by MPA to obtain insight into the influence of MPA on the cellular proteome. Cells were stimulated with phorbol myristate acetate/ionomycin and incubated in the presence or absence of MPA. Two-dimensional electrophoresis and densitometric imaging revealed 11 differentially expressed protein spots (P < 0.05) on MPA treatment, 6 with increased and 5 with decreased abundance. After in-gel tryptic digestion, proteins were identified by quadrupole time-of-flight mass spectrometry. Proteins displaying increased abundance after MPA treatment included splicing factor arginine/serine-rich 2, prostaglandin E synthase 3, peptidyl-prolyl cis-trans isomerase A, and deoxyuridine 5'-triphosphate nucleotidohydrolase. Endoplasmin, proliferating cell nuclear antigen, acidic leucine-rich nuclear phosphoprotein 32 family member A, and cofilin 1 showed decreased abundance after MPA treatment. Three separate spots (1 decreased and 2 increased abundance) were identified as Rho guanosine diphosphate dissociation inhibitor 2 (Rho GDI 2) proteins. Western blotting with a monoclonal antibody directed against the Rho GDI 2 site cleaved by caspase 3 demonstrated 1 spot with increased abundance to be the caspase 3-cleaved product of Rho GDI 2 lacking the first 19 amino acids. Rho GDI 2 plays a central regulatory role in the activation of Rho guanosine triphosphatases that function as molecular switches in cell signaling

  15. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level.

    PubMed

    Liu, Zhixiao; Tang, Yuzhao; Chen, Feng; Liu, Xia; Liu, Zhaojian; Zhong, Jiajia; Hu, Jun; Lü, Junhong

    2016-09-23

    Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early days (Day 1-3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events. PMID:27553281

  16. The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA

    PubMed Central

    2014-01-01

    Background Retention of a subset of introns in spliced polyadenylated mRNA is emerging as a frequent, unexplained finding from RNA deep sequencing in mammalian cells. Results Here we analyze intron retention in T lymphocytes by deep sequencing polyadenylated RNA. We show a developmentally regulated RNA-binding protein, hnRNPLL, induces retention of specific introns by sequencing RNA from T cells with an inactivating Hnrpll mutation and from B lymphocytes that physiologically downregulate Hnrpll during their differentiation. In Ptprc mRNA encoding the tyrosine phosphatase CD45, hnRNPLL induces selective retention of introns flanking exons 4 to 6; these correspond to the cassette exons containing hnRNPLL binding sites that are skipped in cells with normal, but not mutant or low, hnRNPLL. We identify similar patterns of hnRNPLL-induced differential intron retention flanking alternative exons in 14 other genes, representing novel elements of the hnRNPLL-induced splicing program in T cells. Retroviral expression of a normally spliced cDNA for one of these targets, Senp2, partially corrects the survival defect of Hnrpll-mutant T cells. We find that integrating a number of computational methods to detect genes with differentially retained introns provides a strategy to enrich for alternatively spliced exons in mammalian RNA-seq data, when complemented by RNA-seq analysis of purified cells with experimentally perturbed RNA-binding proteins. Conclusions Our findings demonstrate that intron retention in mRNA is induced by specific RNA-binding proteins and suggest a biological significance for this process in marking exons that are poised for alternative splicing. PMID:24476532

  17. miR-30-5p Regulates Muscle Differentiation and Alternative Splicing of Muscle-Related Genes by Targeting MBNL

    PubMed Central

    Zhang, Bo-Wen; Cai, Han-Fang; Wei, Xue-Feng; Sun, Jia-Jie; Lan, Xian-Yong; Lei, Chu-Zhao; Lin, Feng-Peng; Qi, Xing-Lei; Plath, Martin; Chen, Hong

    2016-01-01

    MicroRNAs (miRNAs), a class of single stranded, small (~22 nucleotides), non-coding RNAs, play an important role in muscle development. We focused on the role of the miR-30-5p family during bovine muscle development from previous high-throughput sequencing results and analyzed their expression profiles. MHC and MyoG mRNAs expression as well as their proteins were suppressed in differentiated C2C12 cells, suggesting the importance of miR-30-5p in muscle development. MBNL, the candidate target of miR-30-5p, is an alternative splicing regulation factor. MBNL1 and MBNL3 have opposite effects on muscle differentiation. Our results confirmed that miR-30a-5p and miR-30e-5p repress the expression of MBNL1, MBNL2 and MBNL3, whereas miR-30b-5p inhibits MBNL1 and MBNL2 expression. This provides direct evidence that MBNL expression can be flexibly regulated by miR-30-5p. Previous studies showed that MBNL1 promotes exon inclusion of two muscle-related genes (Trim55 and INSR). Through RNA splicing studies, we found that miR-30-5p had an effect on their alternative splicing, which means miR-30-5p via MBNL1 could be integrated into muscle signaling pathways in which INSR or Trim55 are located. In conclusion, miR-30-5p could inhibit muscle cell differentiation and regulate the alternative splicing of Trim55 and INSR by targeting MBNL. These results promote the understanding of the function of miRNAs in muscle development. PMID:26840300

  18. Differential reinforcement of alternative behavior and demand fading in the treatment of escape-maintained destructive behavior.

    PubMed

    Piazza, C C; Moes, D R; Fisher, W W

    1996-01-01

    The escape-maintained destructive behavior of a boy with autism was reduced during instructional sequences with differential reinforcement of compliance (DRA), escape extinction without physical guidance, and demand fading. The procedure decreased destructive behaviors to near-zero levels and greatly increased compliance.

  19. Differential Reinforcement of Alternative Behavior and Demand Fading in the Treatment of Escape-Maintained Destructive Behavior.

    ERIC Educational Resources Information Center

    Piazza, Cathleen C.; And Others

    1996-01-01

    A study of an 11-year-old boy with autism and mild mental retardation found that his escape-maintained destructive behavior was reduced during instructional sequences with differential reinforcement of compliance, escape extinction without physical guidance, and demand fading. The procedure decreased destructive behaviors to near-zero levels and…

  20. Dynamic Proteomic Analysis of Pancreatic Mesenchyme Reveals Novel Factors That Enhance Human Embryonic Stem Cell to Pancreatic Cell Differentiation.

    PubMed

    Russ, Holger A; Landsman, Limor; Moss, Christopher L; Higdon, Roger; Greer, Renee L; Kaihara, Kelly; Salamon, Randy; Kolker, Eugene; Hebrok, Matthias

    2016-01-01

    Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation.

  1. Genetic variability, differentiation, and founder effect in golden jackals (Canis aureus) from Serbia as revealed by mitochondrial DNA and nuclear microsatellite loci.

    PubMed

    Zachos, Frank E; Cirovic, Dusko; Kirschning, Julia; Otto, Marthe; Hartl, Günther B; Petersen, Britt; Honnen, Ann-Christin

    2009-04-01

    We analyzed 121 golden jackals (Canis aureus) from six sample sites in Serbia with regard to genetic variability and differentiation as revealed by mitochondrial control region sequences and eight nuclear microsatellite loci. There was no variation at all in the mtDNA sequences, and nuclear variability was very low (average observed and expected heterozygosity of 0.29 and 0.34, respectively). This is in line with the considerable recent range expansion of this species in the Balkans and indicates a strong founder effect in the recently established Serbian population. We did not find evidence of differentiation between the northeastern jackals and those from the plain of Srem or those in between. F-statistics and Bayesian Structure analyses, however, were indicative of a low degree of overall differentiation in the Serbian population. A vagrant Austrian jackal that was also analyzed was genetically indistinguishable from its Serbian conspecifics. PMID:19169806

  2. Genetic variability, differentiation, and founder effect in golden jackals (Canis aureus) from Serbia as revealed by mitochondrial DNA and nuclear microsatellite loci.

    PubMed

    Zachos, Frank E; Cirovic, Dusko; Kirschning, Julia; Otto, Marthe; Hartl, Günther B; Petersen, Britt; Honnen, Ann-Christin

    2009-04-01

    We analyzed 121 golden jackals (Canis aureus) from six sample sites in Serbia with regard to genetic variability and differentiation as revealed by mitochondrial control region sequences and eight nuclear microsatellite loci. There was no variation at all in the mtDNA sequences, and nuclear variability was very low (average observed and expected heterozygosity of 0.29 and 0.34, respectively). This is in line with the considerable recent range expansion of this species in the Balkans and indicates a strong founder effect in the recently established Serbian population. We did not find evidence of differentiation between the northeastern jackals and those from the plain of Srem or those in between. F-statistics and Bayesian Structure analyses, however, were indicative of a low degree of overall differentiation in the Serbian population. A vagrant Austrian jackal that was also analyzed was genetically indistinguishable from its Serbian conspecifics.

  3. Systems Chemo-Biology and Transcriptomic Meta-Analysis Reveal the Molecular Roles of Bioactive Lipids in Cardiomyocyte Differentiation.

    PubMed

    de Faria Poloni, Joice; Bonatto, Diego

    2015-09-01

    Lipids, which are essential constituents of biological membranes, play structural and functional roles in the cell. In recent years, certain lipids have been identified as regulatory signaling molecules and have been termed "bioactive lipids". Subsequently, the importance of bioactive lipids in stem cell differentiation and cardiogenesis has gained increasing recognition. Therefore, the aim of this study was to identify the biological processes underlying murine cardiac differentiation and the mechanisms by which bioactive lipids affect these processes. For this purpose, a transcriptomic meta-analysis of microarray and RNA-seq data from murine stem cells undergoing cardiogenic differentiation was performed. The differentially expressed genes identified via this meta-analysis, as well as bioactive lipids, were evaluated using systems chemo-biology tools. These data indicated that bioactive lipids are associated with the regulation of cell motility, cell adhesion, cytoskeletal rearrangement, and gene expression. Moreover, bioactive lipids integrate the signaling pathways involved in cell migration, the secretion and remodeling of extracellular matrix components, and the establishment of the cardiac phenotype. In conclusion, this study provides new insights into the contribution of bioactive lipids to the induction of cellular responses to various stimuli, which may originate from the extracellular environment and morphogens, and the manner in which this contribution directly affects murine heart morphogenesis.

  4. Genome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells.

    PubMed

    Metzakopian, Emmanouil; Bouhali, Kamal; Alvarez-Saavedra, Matías; Whitsett, Jeffrey A; Picketts, David J; Ang, Siew-Lan

    2015-04-01

    Midbrain dopamine neuronal progenitors develop into heterogeneous subgroups of neurons, such as substantia nigra pars compacta, ventral tegmental area and retrorubal field, that regulate motor control, motivated and addictive behaviours. The development of midbrain dopamine neurons has been extensively studied, and these studies indicate that complex cross-regulatory interactions between extrinsic and intrinsic molecules regulate a precise temporal and spatial programme of neurogenesis in midbrain dopamine progenitors. To elucidate direct molecular interactions between multiple regulatory factors during neuronal differentiation in mice, we characterised genome-wide binding sites of the forkhead/winged helix transcription factor Foxa1, which functions redundantly with Foxa2 to regulate the differentiation of mDA neurons. Interestingly, our studies identified a rostral brain floor plate Neurog2 enhancer that requires direct input from Otx2, Foxa1, Foxa2 and an E-box transcription factor for its transcriptional activity. Furthermore, the chromatin remodelling factor Smarca1 was shown to function downstream of Foxa1 and Foxa2 to regulate differentiation from immature to mature midbrain dopaminergic neurons. Our genome-wide Foxa1-bound cis-regulatory sequences from ChIP-Seq and Foxa1/2 candidate target genes from RNA-Seq analyses of embryonic midbrain dopamine cells also provide an excellent resource for probing mechanistic insights into gene regulatory networks involved in the differentiation of midbrain dopamine neurons.

  5. Single-molecule Force Spectroscopy Reveals the Calcium Dependence of the Alternative Conformations in the Native State of a βγ-Crystallin Protein.

    PubMed

    Scholl, Zackary N; Li, Qing; Yang, Weitao; Marszalek, Piotr E

    2016-08-26

    Although multidomain proteins predominate the proteome of all organisms and are expected to display complex folding behaviors and significantly greater structural dynamics as compared with single-domain proteins, their conformational heterogeneity and its impact on their interaction with ligands are poorly understood due to a lack of experimental techniques. The multidomain calcium-binding βγ-crystallin proteins are particularly important because their deterioration and misfolding/aggregation are associated with melanoma tumors and cataracts. Here we investigate the mechanical stability and conformational dynamics of a model calcium-binding βγ-crystallin protein, Protein S, and elaborate on its interactions with calcium. We ask whether domain interactions and calcium binding affect Protein S folding and potential structural heterogeneity. Our results from single-molecule force spectroscopy show that the N-terminal (but not the C-terminal) domain is in equilibrium with an alternative conformation in the absence of Ca(2+), which is mechanically stable in contrast to other proteins that were observed to sample a molten globule under similar conditions. Mutagenesis experiments and computer simulations reveal that the alternative conformation of the N-terminal domain is caused by structural instability produced by the high charge density of a calcium binding site. We find that this alternative conformation in the N-terminal domain is diminished in the presence of calcium and can also be partially eliminated with a hitherto unrecognized compensatory mechanism that uses the interaction of the C-terminal domain to neutralize the electronegative site. We find that up to 1% of all identified multidomain calcium-binding proteins contain a similarly highly charged site and therefore may exploit a similar compensatory mechanism to prevent structural instability in the absence of ligand. PMID:27378818

  6. A Genome-Wide Test of the Differential Susceptibility Hypothesis Reveals a Genetic Predictor of Differential Response to Psychological Treatments for Child Anxiety Disorders

    PubMed Central

    Keers, Robert; Coleman, Jonathan R.I.; Lester, Kathryn J.; Roberts, Susanna; Breen, Gerome; Thastum, Mikael; Bögels, Susan; Schneider, Silvia; Heiervang, Einar; Meiser-Stedman, Richard; Nauta, Maaike; Creswell, Cathy; Thirlwall, Kerstin; Rapee, Ronald M.; Hudson, Jennifer L.; Lewis, Cathryn; Plomin, Robert; Eley, Thalia C.

    2016-01-01

    Background The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to cognitive behavioural therapy (CBT) in children with anxiety disorders. Methods We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1,026 monozygotic twin pairs was examined as a function of the pairs' genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. Results The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9, 55.5 and 41.6%, respectively). Conclusions Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments but also benefit more from the most intensive types of treatment. PMID:27043157

  7. Alternative processing of H-2Dd pre-mRNAs results in membrane expression of differentially phosphorylated protein products.

    PubMed Central

    McCluskey, J; Boyd, L F; Maloy, W L; Coligan, J E; Margulies, D H

    1986-01-01

    Two distinct mRNA species encoding the mouse major histocompatibility antigen H-2Dd have been identified in BALB/c spleen cells as well as in cultured cell lines expressing this cell surface glycoprotein. The alternate transcripts of H-2Dd arise from either removal or inclusion of exon VII (encoding I2) during pre-mRNA processing. The relative levels of each kind of H-2Dd transcript varied considerably between different cell types, and in all cells examined both forms of alloantigen were expressed on the cell membrane. Antigen derived from both types of transcript reacted with H-2Dd-specific monoclonal antibodies, whereas only protein lacking the 13 amino acids of I2 reacted with a specific antiserum raised against a predicted exon VI/VIII fusion peptide. Those H-2Dd proteins translated from full length, but not smaller, transcripts were phosphorylated in resting and phorbol myristate acetate-stimulated BALB/c spleen cells, suggesting that the major site of in vivo phosphorylation is within the highly conserved sequence encoded by exon VII. Thus alternative splicing of pre-mRNA transcripts is a mechanism which leads to membrane expression of two forms of H-2Dd, one of which lacks a major site of phosphorylation. Images Fig. 1. Fig. 2. Fig. 4. PMID:3640710

  8. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells.

    PubMed

    McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G

    2010-12-01

    Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.

  9. Differential Gene Expression Reveals Mitochondrial Dysfunction in an Imprinting Center Deletion Mouse Model of Prader-Willi Syndrome

    PubMed Central

    Fan, Weiwei; Coskun, Pinar E.; Nalbandian, Angèle; Knoblach, Susan; Resnick, James L.; Hoffman, Eric; Wallace, Douglas C.; Kimonis, Virginia E.

    2013-01-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by deficiency of imprinted gene expression from the paternal chromosome 15q11-15q13 and clinically characterized by neonatal hypotonia, short stature, cognitive impairment, hypogonadism, hyperphagia, morbid obesity and diabetes. Previous clinical studies suggest that a defect in energy metabolism may be involved in the pathogenesis of PWS. We focused our attention on the genes associated with energy metabolism and found that there were 95 and 66 mitochondrial genes differentially expressed in PWS muscle and brain, respectively. Assessment of enzyme activities of mitochondrial oxidative phosphorylation (OXPHOS) complexes in the brain, heart, liver and muscle were assessed. We found the enzyme activities of the cardiac mitochondrial complexes II+III were upregulated in the imprinting center deletion (PWS-IC) mice compared to the wild type littermates. These studies suggest that differential gene expression, especially of the mitochondrial genes may contribute to the pathophysiology of PWS. PMID:24127921

  10. Atypical squamous cells in the urine revealing endometrioid adenocarcinoma of the endometrium with squamous cell differentiation: a case report.

    PubMed

    Wang, Yinong; Otis, Christopher N; Florence, Roxanne R

    2015-01-01

    Urine cytology is mainly used to detect urothelial carcinoma (UC), especially for high-grade lesions including urothelial carcinoma in situ. Benign squamous cells are often seen in the urine specimens of women, they are either exfoliated from the trigone area of the bladder, the urethra, or the cervicovaginal region. However, abnormal squamous cells in the urine raise concerns of abnormalities of the urinary tract and cervicovaginal area which range from squamous metaplasia of the urothelium, a cervicovaginal squamous intraepithelial lesion, condyloma acuminatum of the bladder, UC with squamous differentiation, and squamous cell carcinoma. We present here a unique case of atypical squamous cells (ASCs) in the urine subsequently leading to the diagnosis of endometrioid adenocarcinoma of the endometrium with squamous differentiation. The presence of ASCs in voided urine is a rare finding that may indicate an underlying malignancy. Careful evaluation of squamous cells in the urine is an important part of our daily cytopathology practice.

  11. Expression profiling of muscle reveals transcripts differentially expressed in muscle that affect water-holding capacity of pork.

    PubMed

    Ponsuksili, Siriluck; Murani, Eduard; Phatsara, Chirawath; Jonas, Elisabeth; Walz, Christina; Schwerin, Manfred; Schellander, Karl; Wimmers, Klaus

    2008-11-12

    To identify biological processes as well as molecular markers for drip loss, a parameter for water holding capacity of meat, the M. longissimus dorsi transcriptomes of six divergent sib pairs were analyzed using Affymetrix Porcine Genome Array. Functional categories of differentially regulated transcripts were determined by single-gene analysis and gene set analysis. The transcripts being up-regulated at high drip loss belong to groups of genes functionally categorized as genes of membrane proteins, signal transduction, cell communication, response to stimulus, and cytoskeleton. Among genes down-regulated with high drip loss, functional groups of oxidoreductase activity, lipid metabolism, and electron transport were identified. Differential regulation of the abundance of transcripts of these biological networks in live muscle affect mortem biochemical processes of meat maturation. Knowledge of this functional link is indicative for the identification of candidate genes for improvement of meat quality. PMID:18922009

  12. Gender-Differentiated Parenting Revisited: Meta-Analysis Reveals Very Few Differences in Parental Control of Boys and Girls

    PubMed Central

    Endendijk, Joyce J.; Groeneveld, Marleen G.; Bakermans-Kranenburg, Marian J.; Mesman, Judi

    2016-01-01

    Although various theories describe mechanisms leading to differential parenting of boys and girls, there is no consensus about the extent to which parents do treat their sons and daughters differently. The last meta-analyses on the subject were conducted more than fifteen years ago, and changes in gender-specific child rearing in the past decade are quite plausible. In the current set of meta-analyses, based on 126 observational studies (15,034 families), we examined mothers’ and fathers’ differential use of autonomy-supportive and controlling strategies with boys and girls, and the role of moderators related to the decade in which the study was conducted, the observational context, and sample characteristics. Databases of Web of Science, ERIC, PsychInfo, Online Contents, Picarta, and Proquest were searched for studies examining differences in observed parental control of boys and girls between the ages of 0 and 18 years. Few differences were found in parents’ use of control with boys and girls. Parents were slightly more controlling with boys than with girls, but the effect size was negligible (d = 0.08). The effect was larger, but still small, in normative groups and in samples with younger children. No overall effect for gender-differentiated autonomy-supportive strategies was found (d = 0.03). A significant effect of time emerged: studies published in the 1970s and 1980s reported more autonomy-supportive strategies with boys than toward girls, but from 1990 onwards parents showed somewhat more autonomy-supportive strategies with girls than toward boys. Taking into account parents’ gender stereotypes might uncover subgroups of families where gender-differentiated control is salient, but based on our systematic review of the currently available large data base we conclude that in general the differences between parenting of boys versus girls are minimal. PMID:27416099

  13. Meta-analysis of differentiating mouse embryonic stem cell gene expression kinetics reveals early change of a small gene set.

    PubMed

    Glover, Clive H; Marin, Michael; Eaves, Connie J; Helgason, Cheryl D; Piret, James M; Bryan, Jennifer

    2006-11-24

    Stem cell differentiation involves critical changes in gene expression. Identification of these should provide endpoints useful for optimizing stem cell propagation as well as potential clues about mechanisms governing stem cell maintenance. Here we describe the results of a new meta-analysis methodology applied to multiple gene expression datasets from three mouse embryonic stem cell (ESC) lines obtained at specific time points during the course of their differentiation into various lineages. We developed methods to identify genes with expression changes that correlated with the altered frequency of functionally defined, undifferentiated ESC in culture. In each dataset, we computed a novel statistical confidence measure for every gene which captured the certainty that a particular gene exhibited an expression pattern of interest within that dataset. This permitted a joint analysis of the datasets, despite the different experimental designs. Using a ranking scheme that favored genes exhibiting patterns of interest, we focused on the top 88 genes whose expression was consistently changed when ESC were induced to differentiate. Seven of these (103728_at, 8430410A17Rik, Klf2, Nr0b1, Sox2, Tcl1, and Zfp42) showed a rapid decrease in expression concurrent with a decrease in frequency of undifferentiated cells and remained predictive when evaluated in additional maintenance and differentiating protocols. Through a novel meta-analysis, this study identifies a small set of genes whose expression is useful for identifying changes in stem cell frequencies in cultures of mouse ESC. The methods and findings have broader applicability to understanding the regulation of self-renewal of other stem cell types.

  14. Gender-Differentiated Parenting Revisited: Meta-Analysis Reveals Very Few Differences in Parental Control of Boys and Girls.

    PubMed

    Endendijk, Joyce J; Groeneveld, Marleen G; Bakermans-Kranenburg, Marian J; Mesman, Judi

    2016-01-01

    Although various theories describe mechanisms leading to differential parenting of boys and girls, there is no consensus about the extent to which parents do treat their sons and daughters differently. The last meta-analyses on the subject were conducted more than fifteen years ago, and changes in gender-specific child rearing in the past decade are quite plausible. In the current set of meta-analyses, based on 126 observational studies (15,034 families), we examined mothers' and fathers' differential use of autonomy-supportive and controlling strategies with boys and girls, and the role of moderators related to the decade in which the study was conducted, the observational context, and sample characteristics. Databases of Web of Science, ERIC, PsychInfo, Online Contents, Picarta, and Proquest were searched for studies examining differences in observed parental control of boys and girls between the ages of 0 and 18 years. Few differences were found in parents' use of control with boys and girls. Parents were slightly more controlling with boys than with girls, but the effect size was negligible (d = 0.08). The effect was larger, but still small, in normative groups and in samples with younger children. No overall effect for gender-differentiated autonomy-supportive strategies was found (d = 0.03). A significant effect of time emerged: studies published in the 1970s and 1980s reported more autonomy-supportive strategies with boys than toward girls, but from 1990 onwards parents showed somewhat more autonomy-supportive strategies with girls than toward boys. Taking into account parents' gender stereotypes might uncover subgroups of families where gender-differentiated control is salient, but based on our systematic review of the currently available large data base we conclude that in general the differences between parenting of boys versus girls are minimal.

  15. [Differential diagnosis of reduced uptake images revealed by bone scan: about a case of acute lymphoblastic leukemia].

    PubMed

    Bahadi, Nisrine; Biyi, Abdelhamid; Oueriagli, Salah Nabih; Doudouh, Abderrahim

    2016-01-01

    If increased uptake during bone scan usually bring to light many bone pathologies, reduced uptakes are a rare occurrence and they require careful analysis to avoid erroneous interpretations. We report the case of a 17-year old admitted with diffuse bone pain, hypercalcemia and thrombopenia. Bone scan showed areas of low uptakes. Bone marrow tests allowed the diagnosis of acute lymphoblastic leukemia. This case report aims to discuss the main differential diagnoses based on such bone scan abnormalities. PMID:27642484

  16. Gender-Differentiated Parenting Revisited: Meta-Analysis Reveals Very Few Differences in Parental Control of Boys and Girls.

    PubMed

    Endendijk, Joyce J; Groeneveld, Marleen G; Bakermans-Kranenburg, Marian J; Mesman, Judi

    2016-01-01

    Although various theories describe mechanisms leading to differential parenting of boys and girls, there is no consensus about the extent to which parents do treat their sons and daughters differently. The last meta-analyses on the subject were conducted more than fifteen years ago, and changes in gender-specific child rearing in the past decade are quite plausible. In the current set of meta-analyses, based on 126 observational studies (15,034 families), we examined mothers' and fathers' differential use of autonomy-supportive and controlling strategies with boys and girls, and the role of moderators related to the decade in which the study was conducted, the observational context, and sample characteristics. Databases of Web of Science, ERIC, PsychInfo, Online Contents, Picarta, and Proquest were searched for studies examining differences in observed parental control of boys and girls between the ages of 0 and 18 years. Few differences were found in parents' use of control with boys and girls. Parents were slightly more controlling with boys than with girls, but the effect size was negligible (d = 0.08). The effect was larger, but still small, in normative groups and in samples with younger children. No overall effect for gender-differentiated autonomy-supportive strategies was found (d = 0.03). A significant effect of time emerged: studies published in the 1970s and 1980s reported more autonomy-supportive strategies with boys than toward girls, but from 1990 onwards parents showed somewhat more autonomy-supportive strategies with girls than toward boys. Taking into account parents' gender stereotypes might uncover subgroups of families where gender-differentiated control is salient, but based on our systematic review of the currently available large data base we conclude that in general the differences between parenting of boys versus girls are minimal. PMID:27416099

  17. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells.

    PubMed

    Mendes, Luis Filipe; Tam, Wai Long; Chai, Yoke Chin; Geris, Liesbet; Luyten, Frank P; Roberts, Scott J

    2016-05-01

    Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro. In a micromass culture (μMass) system, BMP2 had a positive effect on glycosaminoglycan deposition at day 7 (p < 0.001), which in combination with BMP6 synergistically enhanced cartilage-like tissue formation that displayed in vitro mineralization capacity at day 14 (p < 0.001). Gene expression of μMasses cultured for 7 days with a medium formulation supplemented with 100 ng/mL of BMP2 and BMP6 and a low concentration of GDF5, TGF-β1, and FGF2 showed increased expression of Sox9 (1.7-fold) and the matrix molecules aggrecan (7-fold increase) and COL2A1 (40-fold increase) compared to nonstimulated control μMasses. The DoE analysis indicated that in GF combinations, BMP2 was the strongest effector for chondrogenic differentiation of hPDCs. When transplanted ectopically in nude mice, the in vitro-differentiated μMasses showed maintenance of the cartilaginous phenotype after 4 weeks in vivo. This study indicates the power of using the DoE approach for the creation of new medium formulations for skeletal tissue engineering approaches. PMID:27018617

  18. Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease

    PubMed Central

    Bouquet, Jerome; Soloski, Mark J.; Swei, Andrea; Cheadle, Chris; Federman, Scot; Billaud, Jean-Noel; Rebman, Alison W.; Kabre, Beniwende; Halpert, Richard; Boorgula, Meher

    2016-01-01

    ABSTRACT Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the “window period” of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. PMID:26873097

  19. Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases.

    PubMed

    Gstir, Ronald; Schafferer, Simon; Scheideler, Marcel; Misslinger, Matthias; Griehl, Matthias; Daschil, Nina; Humpel, Christian; Obermair, Gerald J; Schmuckermair, Claudia; Striessnig, Joerg; Flucher, Bernhard E; Hüttenhofer, Alexander

    2014-12-01

    We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs.

  20. Comparative genomic analysis of transgenic poplar dwarf mutant reveals numerous differentially expressed genes involved in energy flow.

    PubMed

    Chen, Su; Bai, Shuang; Liu, Guifeng; Li, Huiyu; Jiang, Jing

    2014-01-01

    In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481) was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development. PMID:25192286

  1. Genetic population differentiation of the blue swimming crab Portunus pelagicus (Portunidae) in Thai waters revealed by RAPD analysis.

    PubMed

    Klinbunga, S; Yuvanatemiya, V; Wongphayak, S; Khetpu, K; Menasveta, P; Khamnamtong, B

    2010-08-17

    Genetic diversity and population differentiation of the blue swimming crab, Portunus pelagicus, in Thailand were analyzed by RAPD analysis. One hundred and twelve RAPD fragments were generated from 109 individuals of P. pelagicus using OPA02, OPA14, OPB10, UBC122, and UBC158 primers. The percentage of polymorphic bands in each geographic sample and that of each primer across overall samples were 72.7-85.0 and 92.0-100%, respectively. Large numbers of polymorphic bands found in the RAPD analysis suggested high genetic diversity of Thai P. pelagicus. The mean genetic distance between samples across all primers was 0.0929-0.2471. Significant geographic heterogeneity was observed across samples overall and between all pairs of geographic samples (P < 0.01 for theta and P < 0.0001 for the exact test), indicating strong genetic differentiation of P. pelagicus in Thai waters, despite its high potential of dispersal. Limited gene flow levels (0.44-1.19 individuals per generation) of Thai P. pelagicus were also observed. A fine scale level of differentiation suggested that P. pelagicus from each geographic sample in Thai waters should be regarded as a separate genetic population and treated as a different exploited stock.

  2. Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases

    PubMed Central

    Gstir, Ronald; Schafferer, Simon; Scheideler, Marcel; Misslinger, Matthias; Griehl, Matthias; Daschil, Nina; Humpel, Christian; Obermair, Gerald J.; Schmuckermair, Claudia; Striessnig, Joerg; Flucher, Bernhard E.

    2014-01-01

    We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs. PMID:25344396

  3. Differential gene expression for Curvularia eragrostidis pathogenic incidence in crabgrass (Digitaria sanguinalis) revealed by cDNA-AFLP analysis.

    PubMed

    Wang, Jianshu; Wang, Xuemin; Yuan, Bohua; Qiang, Sheng

    2013-01-01

    Gene expression profiles of Digitaria sanguinalis infected by Curvularia eragrostidis strain QZ-2000 at two concentrations of conidia and two dew durations were analyzed by cDNA amplified fragment length polymorphisms (cDNA-AFLP). Inoculum strength was more determinant of gene expression than dew duration. A total of 256 primer combinations were used for selective amplification and 1214 transcript-derived fragments (TDFs) were selected for their differential expression. Of these, 518 up-regulated differentially expressed TDFs were identified. Forty-six differential cDNA fragments were chosen to be cloned and 35 of them were successfully cloned and sequenced, of which 25 were homologous to genes of known function according to the GenBank database. Only 6 genes were up-regulated in Curvularia eragrostidis-inoculated D. sanguinalis, with functions involved in signal transduction, energy metabolism, cell growth and development, stress responses, abscisic acid biosynthesis and response. It appears that a few pathways may be important parts of the pathogenic strategy of C. eragrostidis strain QZ-2000 on D. sanguinalis. Our study provides the fundamentals to further study the pathogenic mechanism, screen for optimal C. eragrostidis strains as potential mycoherbicide and apply this product to control D. sanguinalis.

  4. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis)

    PubMed Central

    Tang, Wei; Zheng, Yi; Dong, Jing; Yu, Jia; Yue, Junyang; Liu, Fangfang; Guo, Xiuhong; Huang, Shengxiong; Wisniewski, Michael; Sun, Jiaqi; Niu, Xiangli; Ding, Jian; Liu, Jia; Fei, Zhangjun; Liu, Yongsheng

    2016-01-01

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis “Hongyang” at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of “Hongyang.” AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology.

  5. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis)

    PubMed Central

    Tang, Wei; Zheng, Yi; Dong, Jing; Yu, Jia; Yue, Junyang; Liu, Fangfang; Guo, Xiuhong; Huang, Shengxiong; Wisniewski, Michael; Sun, Jiaqi; Niu, Xiangli; Ding, Jian; Liu, Jia; Fei, Zhangjun; Liu, Yongsheng

    2016-01-01

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis “Hongyang” at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of “Hongyang.” AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology. PMID:27594858

  6. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis).

    PubMed

    Tang, Wei; Zheng, Yi; Dong, Jing; Yu, Jia; Yue, Junyang; Liu, Fangfang; Guo, Xiuhong; Huang, Shengxiong; Wisniewski, Michael; Sun, Jiaqi; Niu, Xiangli; Ding, Jian; Liu, Jia; Fei, Zhangjun; Liu, Yongsheng

    2016-01-01

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis "Hongyang" at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of "Hongyang." AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology. PMID:27594858

  7. Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis.

    PubMed

    Polfus, Linda M; Khajuria, Rajiv K; Schick, Ursula M; Pankratz, Nathan; Pazoki, Raha; Brody, Jennifer A; Chen, Ming-Huei; Auer, Paul L; Floyd, James S; Huang, Jie; Lange, Leslie; van Rooij, Frank J A; Gibbs, Richard A; Metcalf, Ginger; Muzny, Donna; Veeraraghavan, Narayanan; Walter, Klaudia; Chen, Lu; Yanek, Lisa; Becker, Lewis C; Peloso, Gina M; Wakabayashi, Aoi; Kals, Mart; Metspalu, Andres; Esko, Tõnu; Fox, Keolu; Wallace, Robert; Franceshini, Nora; Matijevic, Nena; Rice, Kenneth M; Bartz, Traci M; Lyytikäinen, Leo-Pekka; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Li-Gao, Ruifang; Mook-Kanamori, Dennis O; Lettre, Guillaume; van Duijn, Cornelia M; Franco, Oscar H; Rich, Stephen S; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, André G; Wilson, James G; Psaty, Bruce M; Soranzo, Nicole; Dehghan, Abbas; Boerwinkle, Eric; Zhang, Xiaoling; Johnson, Andrew D; O'Donnell, Christopher J; Johnsen, Jill M; Reiner, Alexander P; Ganesh, Santhi K; Sankaran, Vijay G

    2016-08-01

    Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent samples, we identified two previously undescribed coding variants associated with lower platelet count: a common missense variant in CPS1 (rs1047891, MAF = 0.33, discovery + replication p = 6.38 × 10(-10)) and a rare synonymous variant in GFI1B (rs150813342, MAF = 0.009, discovery + replication p = 1.79 × 10(-27)). By performing CRISPR/Cas9 genome editing in hematopoietic cell lines and follow-up targeted knockdown experiments in primary human hematopoietic stem and progenitor cells, we demonstrate an alternative splicing mechanism by which the GFI1B rs150813342 variant suppresses formation of a GFI1B isoform that preferentially promotes megakaryocyte differentiation and platelet production. These results demonstrate how unbiased studies of natural variation in blood cell traits can provide insight into the regulation of human hematopoiesis. PMID:27486782

  8. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis).

    PubMed

    Tang, Wei; Zheng, Yi; Dong, Jing; Yu, Jia; Yue, Junyang; Liu, Fangfang; Guo, Xiuhong; Huang, Shengxiong; Wisniewski, Michael; Sun, Jiaqi; Niu, Xiangli; Ding, Jian; Liu, Jia; Fei, Zhangjun; Liu, Yongsheng

    2016-01-01

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis "Hongyang" at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of "Hongyang." AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology.

  9. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.)

    PubMed Central

    Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various

  10. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).

    PubMed

    Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various

  11. Two chicken erythrocyte band 3 mRNAs are generated by alternative transcriptional initiation and differential RNA splicing.

    PubMed Central

    Kim, H R; Kennedy, B S; Engel, J D

    1989-01-01

    The erythrocyte anion transport protein (band 3) mediates two distinct cellular functions: it provides plasma membrane attachment sites for the erythroid cytoskeletal network, and it also functions as the anion transporter between the erythrocyte cytoplasm and extracellular milieu. We previously showed that two chicken band 3 polypeptides are encoded by two different mRNAs with different translation initiation sites. Here we show that these two band 3 mRNAs are transcribed from two separate promoters within a single gene. In addition, the two pre-mRNAs are differentially spliced, leading to fusion with coding exons used in common in the two mRNAs. The chicken erythrocyte band 3 gene is therefore the first example of a gene that has two promoters within a single locus which function equally efficiently in one cell type at the same developmental stage. Images PMID:2601717

  12. Single Cell Analysis Reveals Concomitant Transcription of Pluripotent and Lineage Markers During the Early Steps of Differentiation of Embryonic Stem Cells.

    PubMed

    Lanctôt, Christian

    2015-10-01

    The differentiation of embryonic stem cells is associated with extensive changes in gene expression. It is not yet clear whether these changes are the result of binary switch-like mechanisms or that of continuous and progressive variation. Here, I have used immunostaining and single molecule RNA fluorescence in situ hybridization (FISH) to assess changes in the expression of the well-known pluripotency-associated gene Pou5f1 (also known as Oct4) and early differentiation markers Sox1 and T-brachyury in single cells during the early steps of differentiation of mouse embryonic stem cells. I found extensive overlap between the expression of Pou5f1/Sox1 or Pou5f1/T-brachyury shortly after the initiation of differentiation towards either the neuronal or the mesendodermal lineage, but no evidence of correlation between their respective expression levels. Quantitative analysis of transcriptional output at the sites of nascent transcription revealed that Pou5f1 and Sox1 were transcribed in pulses and that embryonic stem cell differentiation was accompanied by changes in pulsing frequencies. The progressive induction of Sox1 was further associated with an increase in the average size of individual transcriptional bursts. Surprisingly, single cells that actively and simultaneously transcribe both the pluripotency- and the lineage-associated genes could easily be found in the differentiating population. The results presented here show for the first time that lineage priming can occur in cells that are actively transcribing a pluripotent marker. Furthermore, they suggest that this process is associated with changes in transcriptional dynamics.

  13. Modelling the Spatio-Temporal Cell Dynamics Reveals Novel Insights on Cell Differentiation and Proliferation in the Small Intestinal Crypt

    PubMed Central

    Pin, Carmen; Watson, Alastair J. M.; Carding, Simon R.

    2012-01-01

    We developed a slow structural relaxation model to describe cellular dynamics in the crypt of the mouse small intestine. Cells are arranged in a three dimensional spiral the size of which dynamically changes according to cell production demands of adjacent villi. Cell differentiation and proliferation is regulated through Wnt and Notch signals, the strength of which depends on the local cell composition. The highest level of Wnt activity is associated with maintaining equipotent stem cells (SC), Paneth cells and common goblet-Paneth cell progenitors (CGPCPs) intermingling at the crypt bottom. Low levels of Wnt signalling area are associated with stem cells giving rise to secretory cells (CGPCPs, enteroendocrine or Tuft cells) and proliferative absorptive progenitors. Deciding between these two fates, secretory and stem/absorptive cells, depends on Notch signalling. Our model predicts that Notch signalling inhibits secretory fate if more than 50% of cells they are in contact with belong to the secretory lineage. CGPCPs under high Wnt signalling will differentiate into Paneth cells while those migrating out from the crypt bottom differentiate into goblet cells. We have assumed that mature Paneth cells migrating upwards undergo anoikis. Structural relaxation explains the localisation of Paneth cells to the crypt bottom in the absence of active forces. The predicted crypt generation time from one SC is 4–5 days with 10–12 days needed to reach a structural steady state. Our predictions are consistent with experimental observations made under altered Wnt and Notch signalling. Mutations affecting stem cells located at the crypt floor have a 50% chance of being propagated throughout the crypt while mutations in cells above are rarely propagated. The predicted recovery time of an injured crypt losing half of its cells is approximately 2 days. PMID:22623982

  14. Investigations of TGF-β signaling in preantral follicles of female mice reveal differential roles for bone morphogenetic protein 15.

    PubMed

    Fenwick, Mark A; Mora, Jocelyn M; Mansour, Yosef T; Baithun, Christina; Franks, Stephen; Hardy, Kate

    2013-09-01

    Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are 2 closely related TGF-β ligands implicated as key regulators of follicle development and fertility. Animals harboring mutations of these factors often exhibit a blockage in follicle development beyond the primary stage and therefore little is known about the role of these ligands during subsequent (preantral) stages. Preantral follicles isolated from immature mice were cultured with combinations of BMP15, GDF9, and activin receptor-like kinase (ALK) inhibitors. Individually, GDF9 and BMP15 promoted follicle growth during the first 24 hours, whereas BMP15 subsequently (48-72 h) caused follicle shrinkage and atresia with increased granulosa cell apoptosis. Inhibition of ALK6 prevented the BMP15-induced reduction in follicle size and under basal conditions promoted a rapid increase in granulosa cell proliferation, suggesting BMP15 signals through ALK6, which in turn acts to restrain follicle growth. In the presence of GDF9, BMP15 no longer promoted atresia and in fact follicle growth was increased significantly more than with either ligand alone. This cooperative effect was accompanied by differential expression of Id1-3, Smad6-7, and Has2 and was blocked by the same ALK5 inhibitor used to block GDF9 signaling. Immunostaining for SMAD2/3 and SMAD1/5/8, representing the 2 main branches of TGF-β signaling, supported the fact that both canonical pathways have the potential to be active in growing follicles, whereas primordial follicles only express SMAD2/3. Overall results highlight differential effects of the 2 main TGF-β signaling pathways during preantral follicle growth.

  15. Moderate Genetic Diversity and Genetic Differentiation in the Relict Tree Liquidambar formosana Hance Revealed by Genic Simple Sequence Repeat Markers

    PubMed Central

    Sun, Rongxi; Lin, Furong; Huang, Ping; Zheng, Yongqi

    2016-01-01

    Chinese sweetgum (Liquidambar formosana) is a relatively fast-growing ecological pioneer species. It is widely used for multiple purposes. To assess the genetic diversity and genetic differentiation of the species, genic SSR markers were mined from transcriptome data for subsequent analysis of the genetic diversity and population structure of natural populations. A total of 10645 potential genic SSR loci were identified in 80482 unigenes. The average frequency was one SSR per 5.12 kb, and the dinucleotide unit was the most abundant motif. A total of 67 alleles were found, with a mean of 6.091 alleles per locus and a mean polymorphism information content of 0.390. Moreover, the species exhibited a relatively moderate level of genetic diversity (He = 0.399), with the highest was found in population XY (He = 0.469). At the regional level, the southwestern region displayed the highest genetic diversity (He = 0.435) and the largest number of private alleles (n = 5), which indicated that the Southwestern region may be the diversity hot spot of L. formosana. The AMOVA results showed that variation within populations (94.02%) was significantly higher than among populations (5.98%), which was in agreement with the coefficient of genetic differentiation (Fst = 0.076). According to the UPGMA analysis and principal coordinate analysis and confirmed by the assignment test, 25 populations could be divided into three groups, and there were different degrees of introgression among populations. No correlation was found between genetic distance and geographic distance (P > 0.05). These results provided further evidence that geographic isolation was not the primary factor leading to the moderate genetic differentiation of L. formosana. As most of the genetic diversity of L. formosana exists among individuals within a population, individual plant selection would be an effective way to use natural variation in genetic improvement programs. This would be helpful to not only protect the

  16. Genetic differentiation of strongyloides stercoralis from two different climate zones revealed by 18S ribosomal DNA sequence comparison.

    PubMed

    Pakdee, Wallop; Thaenkham, Urusa; Dekumyoy, Paron; Sa-Nguankiat, Surapol; Maipanich, Wanna; Pubampen, Somchit

    2012-11-01

    Over 70 countries in tropical and subtropical zones are endemic areas for Strongyloides stercoralis, with a higher prevalence of the parasite often occurring in tropical regions compared to subtropical ones. In order to explore genetic variations of S. stercoralis form different climate zones, 18S ribosomal DNA of parasite specimens obtained from Thailand were sequenced and compared with those from Japan. The maximum likelihood indicates that S. stercoralis populations from these two different climate zones have genetically diverged. The genetic relationship between S. stercoralis populations is not related to the host species, but rather to moisture and temperature. These factors may directly drive genetic differentiation among isolated populations of S. stercoralis.

  17. Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States.

    PubMed

    Xia, Chongjing; Wan, Anmin; Wang, Meinan; Jiwan, Derick A; See, Deven R; Chen, Xianming

    2016-05-01

    Single nucleotide polymorphism (SNP) is a powerful molecular marker technique that has been widely used in population genetics and molecular mapping studies for various organisms. However, the technique has not been used for studying Puccinia striiformis f. sp. tritici (Pst), the wheat stripe rust pathogen. In this study, we developed over a hundred secreted protein gene-derived SNP (SP-SNP) markers and used 92 markers to study the population structure of Pst. From 352 isolates collected in the United States, we identified 242 multi-locus genotypes. The SP-SNP genotypes had a moderate, but significant correlation with the virulence phenotype data. Clustering of the multi-locus genotypes was consistent by various analyses, revealing distinct genetic groups. Analysis of molecular variance detected significant differences between the eastern and western US Pst populations. High heterozygosity was found in the US population with significant differences identified among epidemiological regions. Analysis of population differentiation revealed that populations between the eastern and western US were highly differentiated while moderate differentiation was found in populations within the western or eastern US. Isolates from the western US were more diverse than isolates from the eastern US. The information is useful for guiding the disease management in different epidemiological regions. PMID:27109369

  18. Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei

    2014-11-01

    Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.

  19. Disturbed Dreaming and the Instability of Sleep: Altered Nonrapid Eye Movement Sleep Microstructure in Individuals with Frequent Nightmares as Revealed by the Cyclic Alternating Pattern

    PubMed Central

    Simor, Péter; Bódizs, Róbert; Horváth, Klára; Ferri, Raffaele

    2013-01-01

    Study Objectives: Nightmares are disturbing mental experiences during sleep that usually result in abrupt awakenings. Frequent nightmares are associated with poor subjective sleep quality, and recent polysomnographic data suggest that nightmare sufferers exhibit impaired sleep continuity during nonrapid eye movement (NREM) sleep. Because disrupted sleep might be related to abnormal arousal processes, the goal of this study was to examine polysomnographic arousal-related activities in a group of nightmare sufferers and a healthy control group. Design: Sleep microstructure analysis was carried out by scoring the cyclic alternating pattern (CAP) in NREM sleep and the arousal index in rapid eye movement (REM) sleep on the second night of the polysomnographic examination. Setting: Hospital-based sleep research laboratory. Participants: There were 17 in the nightmare (NMs) group and 23 in the healthy control (CTLs) group. Interventions: N/A. Measurements and Results: The NMs group exhibited reduced amounts of CAP A1 subtype and increased CAP A2 and A3 subtypes, as well as longer duration of CAP A phases in comparison with CTLs. Moreover, these differences remained significant after controlling for the confounding factors of anxious and depressive symptoms. The absolute number and frequency of REM arousals did not differ significantly between the two groups. Conclusions: The results of our study indicate that NREM sleep microstructure is altered during nonsymptomatic nights of nightmares. Disrupted sleep in the NMs group seems to be related to abnormal arousal processes, specifically an imbalance in sleep-promoting and arousing mechanisms during sleep. Citation: Simor P; Bódizs R; Horváth K; Ferri R. Disturbed dreaming and the instability of sleep: altered nonrapid eye movement sleep microstructure in individuals with frequent nightmares as revealed by the cyclic alternating pattern. SLEEP 2013;36(3):413-419. PMID:23449753

  20. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions.

    PubMed

    Vidau, Cyril; Panek, Johan; Texier, Catherine; Biron, David G; Belzunces, Luc P; Le Gall, Morgane; Broussard, Cédric; Delbac, Frédéric; El Alaoui, Hicham

    2014-09-01

    Many invasive pathogens effectively bypass the insect defenses to ensure the completion of their life cycle. Among those, an invasive microsporidian species, Nosema ceranae, can cause nosemosis in honeybees. N. ceranae was first described in the Asian honeybee Apis cerana and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the first barrier against N. ceranae attacks. To bring proteomics data on honeybee/N. ceranae crosstalk and more precisely to decipher the worker honeybee midgut response after an oral inoculation of N. ceranae (10days post-infection), we used 2D-DIGE (2-Dimensional Differential In-Gel Electrophoresis) combined with mass spectrometry. Forty-five protein spots produced by the infected worker honeybee group were shown to be differentially expressed when compared to the uninfected group; 14 were subsequently identified by mass spectrometry. N. ceranae mainly caused a modulation of proteins involved in three key host biological functions: (i) energy production, (ii) innate immunity (reactive oxygen stress) and (iii) protein regulation. The modulation of these host biological functions suggests that N. ceranae creates a zone of "metabolic habitat modification" in the honeybee midgut favoring its development by enhancing availability of nutrients and reducing the worker honeybee defense.

  1. Differential display RT-PCR reveals genes associated with lithium-induced neuritogenesis in SK-N-MC cells.

    PubMed

    Italia, Jennifer; Mukhopadhyaya, Rita; Rajadhyaksha, Medha S

    2011-10-01

    Lithium is shown to be neurotrophic and protective against variety of environmental stresses both in vitro as well as in vivo. In view of the wider clinical applications, it is necessary to examine alterations in levels of expression of genes affected by lithium. Lithium induces neuritogenesis in human neuroblastoma cell line SK-N-MC. Our aim was to elucidate genes involved in lithium-induced neuritogenesis using SK-N-MC cells. The differential display reverse transcriptase polymerase chain reaction (DD-RT-PCR) technique was used to study gene expression profiles in SK-N-MC cells undergoing lithium-induced neuritogenesis. Differential expression of genes in control and lithium (2.5 mM, 24 h)-treated cells was compared by display of cDNAs generated by reverse transcription of mRNA followed by PCR using arbitrary primers. Expression of four genes was altered in lithium-treated cells. Real-time PCR was done to confirm the levels of expression of each of these genes using specific primers. Lithium significantly up-regulated NCAM, a molecule known to stimulate neuritogenesis, occludin, a molecule participating in tight junctions and PKD2, a molecule known to modulate calcium transport. ANP 32c, a gene whose function is not fully known yet, was found to be down-regulated by lithium. This is the first report demonstrating altered levels of expression of these genes in lithium-induced neuritogenesis and contributes four hitherto unreported candidates possibly involved in the process.

  2. Rit Mutants Confirm Role of MEK/ERK Signaling in Neuronal Differentiation and Reveal Novel Par6 Interaction

    PubMed Central

    Rudolph, Jennifer L.; Shi, Geng-Xian; Erdogan, Eda; Fields, Alan P.; Andres, Douglas A.

    2007-01-01

    Rit is a novel member of the Ras superfamily of small GTP-binding proteins that regulates signaling pathways controlling cellular fate determination. Constitutively activated mutants of Rit induce terminal differentiation of pheochromocytoma (PC6) cells resulting in a sympathetic neuron-like phenotype characterized by the development of highly-branched neurites. Rit signaling has been found to activate several downstream pathways including MEK/ERK, p38 MAPK, Ral-specific guanine nucleotide exchange factors (GEFs), and Rit associates with the Par6 cell polarity machinery. In this study, a series of Rit effector loop mutants was generated to test the importance of these cellular targets to Rit-mediated neuronal differentiation. We find that Rit-mediated neuritogenesis is dependent upon MEK/ERK MAP kinase signaling but independent of RalGEF activation. In addition, in vivo binding studies identified a novel mechanism of Par6 interaction, suggesting that the cell polarity machinery may serve to spatially restrict Rit signaling. PMID:17976838

  3. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins.

    PubMed

    Gómez-Molero, Emilia; de Boer, Albert D; Dekker, Henk L; Moreno-Martínez, Ana; Kraneveld, Eef A; Ichsan; Chauhan, Neeraj; Weig, Michael; de Soet, Johannes J; de Koster, Chris G; Bader, Oliver; de Groot, Piet W J

    2015-12-01

    Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections. PMID:26546455

  4. A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals regulatory network during mESC differentiation.

    PubMed

    Duren, Zhana; Wang, Yong

    2016-01-01

    Chromatin regulators (CRs) are crucial for connecting the chromatin level and transcriptome level by modulating chromatin structures, establishing, and maintaining epigenetic modifications. We present a systematic method to identify MOdulation of transcriptional regulation via CHromatin Activity (MOCHA) from gene expression data and demonstrate its advantage in associating CRs to their chromatin localization and understand CRs' function. We first re-construct the CRs modulation network by integrating the correlation and conditional correlation concepts. Then we quantify the chromatin activity as hidden variable in network by integrating the upstream and downstream information. We applied MOCHA to systematically explore the interplay of CRs, TFs, and target genes in mouse embryonic stem cells (ESC). As a result, MOCHA identified 420 chromatin regulators with modulation preference, including Pou5f1 and Eed. We found that BAF complex, NuRD complex, and polycomb-group proteins, regulate the delicate balance between pluripotency and differentiation by modulating key TFs including Klf4, Tcf3, and Max; NuRD complex members Mbd3 and Hdac1 may modulate Klf4 to achieve its dual functional roles in pluripotent and differentiation stages;Imprinted gene H19 and Igf2 are modulated by DNA methylation, histone acetylation, and insulator CTCF. Finally, we analyzed CR's combinational modulation pattern by constructing a CR-CR interaction network. PMID:26949222

  5. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro.

  6. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358

  7. A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals regulatory network during mESC differentiation

    PubMed Central

    Duren, Zhana; Wang, Yong

    2016-01-01

    Chromatin regulators (CRs) are crucial for connecting the chromatin level and transcriptome level by modulating chromatin structures, establishing, and maintaining epigenetic modifications. We present a systematic method to identify MOdulation of transcriptional regulation via CHromatin Activity (MOCHA) from gene expression data and demonstrate its advantage in associating CRs to their chromatin localization and understand CRs’ function. We first re-construct the CRs modulation network by integrating the correlation and conditional correlation concepts. Then we quantify the chromatin activity as hidden variable in network by integrating the upstream and downstream information. We applied MOCHA to systematically explore the interplay of CRs, TFs, and target genes in mouse embryonic stem cells (ESC). As a result, MOCHA identified 420 chromatin regulators with modulation preference, including Pou5f1 and Eed. We found that BAF complex, NuRD complex, and polycomb-group proteins, regulate the delicate balance between pluripotency and differentiation by modulating key TFs including Klf4, Tcf3, and Max; NuRD complex members Mbd3 and Hdac1 may modulate Klf4 to achieve its dual functional roles in pluripotent and differentiation stages;Imprinted gene H19 and Igf2 are modulated by DNA methylation, histone acetylation, and insulator CTCF. Finally, we analyzed CR’s combinational modulation pattern by constructing a CR-CR interaction network. PMID:26949222

  8. Transcriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation

    PubMed Central

    Chai, Jin Choul; Kim, Sun Hwa; Won, Kyoung-Jae; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-01-01

    The removal of histone H3 trimethylation at lysine residue 27 (H3K27me3) plays a critical role in the transcriptional initiation of developmental genes. The H3K27me3-specific KDM6 demethylases JMJD3 and UTX are responsible for the transcriptional initiation of various developmental genes, but some genes are expressed in a KDM6 demethylase-independent manner. To address the role of H3K27me3 in the retinoic acid (RA)-induced differentiation of the human carcinoma NCCIT cell line, we inhibited JMJD3 and UTX using the H3K27me3 demethylase inhibitor GSK-J4. The commitment of JMJD3/UTX-inhibited cells to a specific fate was delayed, and transcriptome profiling also revealed the differential expression of genes related to cell fate specification in demethylase-inactivated cells; the expression levels of RA metabolism and HOX family genes significantly decreased. We observed a weak correlation between H3K27me3 enrichment and transcriptional repression in the control and JMJD/UTX-inhibited cells, except for a few sets of developmental genes that are indispensable for cell fate specification. Taken together, these results provide the H3K27me3 landscape of a differentiating cell line and suggest that both demethylase-dependent and demethylase-independent transcriptional regulation play a role in early differentiation and developmental gene expression activated by H3K27me3 demethylation. PMID:26263556

  9. Systems level approach reveals the correlation of endoderm differentiation of mouse embryonic stem cells with specific microstructural cues of fibrin gels.

    PubMed

    Task, Keith; D'Amore, Antonio; Singh, Satish; Candiello, Joe; Jaramillo, Maria; Wagner, William R; Kumta, Prashant; Banerjee, Ipsita

    2014-06-01

    Stem cells receive numerous cues from their associated substrate that help to govern their behaviour. However, identification of influential substrate characteristics poses difficulties because of their complex nature. In this study, we developed an integrated experimental and systems level modelling approach to investigate and identify specific substrate features influencing differentiation of mouse embryonic stem cells (mESCs) on a model fibrous substrate, fibrin. We synthesized a range of fibrin gels by varying fibrinogen and thrombin concentrations, which led to a range of substrate stiffness and microstructure. mESCs were cultured on each of these gels, and characterization of the differentiated cells revealed a strong influence of substrate modulation on gene expression patterning. To identify specific substrate features influencing differentiation, the substrate microstructure was quantified by image analysis and correlated with stem cell gene expression patterns using a statistical model. Significant correlations were observed between differentiation and microstructure features, specifically fibre alignment. Furthermore, this relationship occurred in a lineage-specific manner towards endoderm. This systems level approach allows for identification of specific substrate features from a complex material which are influential to cellular behaviour. Such analysis may be effective in guiding the design of scaffolds with specific properties for tissue engineering applications.

  10. Human 45,X Fibroblast Transcriptome Reveals Distinct Differentially Expressed Genes Including Long Noncoding RNAs Potentially Associated with the Pathophysiology of Turner Syndrome

    PubMed Central

    Patowary, Ashok; Scaria, Vinod; Sivasubbu, Sridhar; Deobagkar, Deepti D.

    2014-01-01

    Turner syndrome is a chromosomal abnormality characterized by the absence of whole or part of the X chromosome in females. This X aneuploidy condition is associated with a diverse set of clinical phenotypes such as gonadal dysfunction, short stature, osteoporosis and Type II diabetes mellitus, among others. These phenotypes differ in their severity and penetrance among the affected individuals. Haploinsufficiency for a few X linked genes has been associated with some of these disease phenotypes. RNA sequencing can provide valuable insights to understand molecular mechanism of disease process. In the current study, we have analysed the transcriptome profiles of human untransformed 45,X and 46,XX fibroblast cells and identified differential expression of genes in these two karyotypes. Functional analysis revealed that these differentially expressing genes are associated with bone differentiation, glucose metabolism and gonadal development pathways. We also report differential expression of lincRNAs in X monosomic cells. Our observations provide a basis for evaluation of cellular and molecular mechanism(s) in the establishment of Turner syndrome phenotypes. PMID:24932682

  11. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor

    PubMed Central

    Amsalem, Ayelet R.; Marom, Barak; Shapira, Keren E.; Hirschhorn, Tal; Preisler, Livia; Paarmann, Pia; Knaus, Petra; Henis, Yoav I.; Ehrlich, Marcelo

    2016-01-01

    The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane. PMID:26739752

  12. Denaturing Gradient Gel Electrophoresis (DGGE) as a Powerful Novel Alternative for Differentiation of Epizootic ISA Virus Variants

    PubMed Central

    Carmona, Marisela; Sepúlveda, Dagoberto; Cárdenas, Constanza; Nilo, Luis; Marshall, Sergio H.

    2012-01-01

    Infectious Salmon Anemia is a devastating disease critically affecting world-wide salmon production. Chile has been particularly stricken by this disease which in all cases has been directly related with its causative agent, a novel orthomyxovirus which presents specific and distinctive infective features. Among these, two molecular markers have been directly associated with pathogenicity in two of the eight RNA sub genomic coding units of the virus: an insertion hot spot region present in viral segment 5 and a Highly Polymorphic Region (HPR) located in viral segment 6. Here we report the successful adaptation of a PCR-dependent denaturing gel electrophoresis technique (DGGE), which enables differentiation of selected reported HPR epizootic variants detected in Chile. At the same time, the technique allows us to distinguish one nucleotide differences in sequences associated with the intriguing, and still not well-understood, insertion events which tend to occur on RNA Segment 5. Thus, the versatility of the technique opens new opportunities for improved understanding of the complex biology of all ISA variants as well as possible applications to other highly variable pathogens. PMID:22624020

  13. A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells

    PubMed Central

    Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier

    2016-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443

  14. High-Throughput Sequencing Reveals Differential Expression of miRNAs in Intestine from Sea Cucumber during Aestivation

    PubMed Central

    Chen, Muyan; Zhang, Xiumei; Liu, Jianning; Storey, Kenneth B.

    2013-01-01

    The regulatory role of miRNA in gene expression is an emerging hot new topic in the control of hypometabolism. Sea cucumber aestivation is a complicated physiological process that includes obvious hypometabolism as evidenced by a decrease in the rates of oxygen consumption and ammonia nitrogen excretion, as well as a serious degeneration of the intestine into a very tiny filament. To determine whether miRNAs play regulatory roles in this process, the present study analyzed profiles of miRNA expression in the intestine of the sea cucumber (Apostichopus japonicus), using Solexa deep sequencing technology. We identified 308 sea cucumber miRNAs, including 18 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA) after at least 15 days of continuous torpor, were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to the active state). We identified 42 differentially expressed miRNAs [RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01] during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-200-3p, miR-2004, miR-2010, miR-22, miR-252a, miR-252a-3p and miR-92 were significantly over-expressed during deep aestivation compared with non-aestivation animals. Preliminary analyses of their putative target genes and GO analysis suggest that these miRNAs could play important roles in global transcriptional depression and cell differentiation during aestivation. High-throughput sequencing data and microarray data have been submitted to GEO database. PMID:24143179

  15. Differentially expressed genes in autosomal dominant osteopetrosis type II osteoclasts reveal known and novel pathways for osteoclast biology.

    PubMed

    Coudert, Amélie E; Del Fattore, Andrea; Baulard, Céline; Olaso, Robert; Schiltz, Corinne; Collet, Corinne; Teti, Anna; de Vernejoul, Marie-Christine

    2014-03-01

    Autosomal dominant osteopetrosis type II (ADO II) is a rare, heritable bone disorder characterized by a high bone mass and insufficient osteoclast activity. Mutations in the CLCN7 gene have been reported to cause ADO II. To gain novel insights into the pathways dysregulated in ADOII osteoclasts, we identified changes in gene expression in osteoclasts from patients with a heterozygous mutation of CLCN7. To do this, we carried out a transcriptomic study comparing gene expression in the osteoclasts of patients with ADO II and healthy donors. Our data show that, according to our selection criteria, 182 genes were differentially expressed in osteoclasts from patients and controls. From the 18 displaying the highest change in microarray, we confirmed differential expression for seven by qPCR. Although two of them have previously been found to be expressed in osteoclasts (ITGB5 and SERPINE2), the other five (CES1 (carboxyl esterase 1), UCHL1 (ubiquitin carboxy-terminal esterase L1, also known as ubiquitin thiolesterase), WARS (tryptophanyl-tRNA synthetase), GBP4 (guanylate-binding protein 4), and PRF1) are not yet known to have a role in this cell type. At the protein level, we confirmed elevated expression of ITGB5 and reduced expression of WARS, PRF1, and SERPINE2. Transfection of ClC-7 harboring the G215R mutation into osteoclasts resulted in an increased ITGB5 and reduced PRF1 expression of borderline significance. Finally, we observed that the ADO II patients presented a normal or increased serum level of bone formation markers, demonstrating a coupling between dysfunctional osteoclasts and osteoblasts. Sphingosine kinase 1 mRNA was expressed at the same level in ADO II and control osteoclasts. In conclusion, these data suggest that in addition to an acidification dysfunction caused by the CLCN7 mutation, a change in ITGB5, PRF1, WARS, and SERPINE2 expression could be part of the osteoclastic phenotype of ADO II.

  16. High-throughput sequencing reveals differential expression of miRNAs in intestine from sea cucumber during aestivation.

    PubMed

    Chen, Muyan; Zhang, Xiumei; Liu, Jianning; Storey, Kenneth B

    2013-01-01

    The regulatory role of miRNA in gene expression is an emerging hot new topic in the control of hypometabolism. Sea cucumber aestivation is a complicated physiological process that includes obvious hypometabolism as evidenced by a decrease in the rates of oxygen consumption and ammonia nitrogen excretion, as well as a serious degeneration of the intestine into a very tiny filament. To determine whether miRNAs play regulatory roles in this process, the present study analyzed profiles of miRNA expression in the intestine of the sea cucumber (Apostichopus japonicus), using Solexa deep sequencing technology. We identified 308 sea cucumber miRNAs, including 18 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA) after at least 15 days of continuous torpor, were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to the active state). We identified 42 differentially expressed miRNAs [RPM (reads per million) >10, |FC| (|fold change|) ≥ 1, FDR (false discovery rate) <0.01] during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-200-3p, miR-2004, miR-2010, miR-22, miR-252a, miR-252a-3p and miR-92 were significantly over-expressed during deep aestivation compared with non-aestivation animals. Preliminary analyses of their putative target genes and GO analysis suggest that these miRNAs could play important roles in global transcriptional depression and cell differentiation during aestivation. High-throughput sequencing data and microarray data have been submitted to GEO database. PMID:24143179

  17. Analysis of the isoprenoid biosynthesis pathways in Listeria monocytogenes reveals a role for the alternative 2-C-methyl-D-erythritol 4-phosphate pathway in murine infection.

    PubMed

    Begley, Máire; Bron, Peter A; Heuston, Sinead; Casey, Pat G; Englert, Nadine; Wiesner, Jochen; Jomaa, Hassan; Gahan, Cormac G M; Hill, Colin

    2008-11-01

    Most bacteria synthesize isoprenoids through one of two essential pathways which provide the basic building block, isopentyl diphosphate (IPP): either the classical mevalonate pathway or the alternative non-mevalonate 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. However, postgenomic analyses of the Listeria monocytogenes genome revealed that this pathogen possesses the genetic capacity to produce the complete set of enzymes involved in both pathways. The nonpathogenic species Listeria innocua naturally lacks the last two genes (gcpE and lytB) of the MEP pathway, and bioinformatic analyses strongly suggest that the genes have been lost through evolution. In the present study we show that heterologous expression of gcpE and lytB in L. innocua can functionally restore the MEP pathway in this organism and confer on it the ability to induce Vgamma9 Vdelta2 T cells. We have previously confirmed that both pathways are functional in L. monocytogenes and can provide sufficient IPP for normal growth in laboratory media (M. Begley, C. G. Gahan, A. K. Kollas, M. Hintz, C. Hill, H. Jomaa, and M. Eberl, FEBS Lett. 561:99-104, 2004). Here we describe a targeted mutagenesis strategy to create a double pathway mutant in L. monocytogenes which cannot grow in the absence of exogenously provided mevalonate, confirming the requirement for at least one intact pathway for growth. In addition, murine studies revealed that mutants lacking the MEP pathway were impaired in virulence relative to the parent strain during intraperitoneal infection, while mutants lacking the classical mevalonate pathway were not impaired in virulence potential. In vivo bioluminescence imaging also confirmed in vivo expression of the gcpE gene (MEP pathway) during murine infection.

  18. Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3’ End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation

    PubMed Central

    Li, Wencheng; You, Bei; Hoque, Mainul; Zheng, Dinghai; Luo, Wenting; Ji, Zhe; Park, Ji Yeon; Gunderson, Samuel I.; Kalsotra, Auinash; Manley, James L.; Tian, Bin

    2015-01-01

    Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. PMID:25906188

  19. The Polymyxin Ceftazidime Oxford Medium as an alternative selective and differential medium for isolation of Listeria monocytogenes from raw or unpasteurized food.

    PubMed

    Martínez-Gonzáles, N E; Martínez-Chávez, L; Martínez-Cárdenas, C; Cabrera-Díaz, E; Castillo, A

    2014-04-01

    The Polymyxin Ceftazidime Oxford Medium (PCOM) was developed to recover Listeria monocytogenes from raw or unpasteurized foods. It contains esculin-ferric ammonium citrate as indicator system for Listeria growth, and ceftazidime and polymyxin B as selective agents, which are available in several Latin American countries. Comparison of PCOM, Modified Oxford Medium (MOX) and Tryptic Soy agar with 0.6% yeast extract (TSAYE) indicated that both selective media were equally effective at recovering four individual strains of L. monocytogenes (Scott A, V7, California and broccoli), and a mixture of these strains (LMM) (P > 0.05). The ability of PCOM, MOX, TSAYE and TSAYE supplemented with 4% NaCl to recover heat, acid and freeze-damaged LMM was similar for all media (P > 0.05). The PCOM proved to be effective at isolating colonies of LMM from inoculated raw beef chunks, unpasteurized orange juice, cabbage, and Mexican-style cheese by direct plating and by the US Department of Agriculture's Food Safety and Inspection Service enrichment method. Differentiation of L. monocytogenes colonies was easier on PCOM than on MOX for foods with high levels of background microbiota. Based on the evaluations performed on foods naturally contaminated with L. monocytogenes, PCOM was a more economical alternative than MOX for selective and differential isolation of Listeria from raw or unpasteurized foods.

  20. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.

    PubMed

    McCammon, Mark T; Epstein, Charles B; Przybyla-Zawislak, Beata; McAlister-Henn, Lee; Butow, Ronald A

    2003-03-01

    To understand the many roles of the Krebs tricarboxylic acid (TCA) cycle in cell function, we used DNA microarrays to examine gene expression in response to TCA cycle dysfunction. mRNA was analyzed from yeast strains harboring defects in each of 15 genes that encode subunits of the eight TCA cycle enzymes. The expression of >400 genes changed at least threefold in response to TCA cycle dysfunction. Many genes displayed a common response to TCA cycle dysfunction indicative of a shift away from oxidative metabolism. Another set of genes displayed a pairwise, alternating pattern of expression in response to contiguous TCA cycle enzyme defects: expression was elevated in aconitase and isocitrate dehydrogenase mutants, diminished in alpha-ketoglutarate dehydrogenase and succinyl-CoA ligase mutants, elevated again in succinate dehydrogenase and fumarase mutants, and diminished again in malate dehydrogenase and citrate synthase mutants. This pattern correlated with previously defined TCA cycle growth-enhancing mutations and suggested a novel metabolic signaling pathway monitoring TCA cycle function. Expression of hypoxic/anaerobic genes was elevated in alpha-ketoglutarate dehydrogenase mutants, whereas expression of oxidative genes was diminished, consistent with a heme signaling defect caused by inadequate levels of the heme precursor, succinyl-CoA. These studies have revealed extensive responses to changes in TCA cycle function and have uncovered new and unexpected metabolic networks that are wired into the TCA cycle.

  1. Alternative Binding Modes Identified for Growth and Differentiation Factor-associated Serum Protein (GASP) Family Antagonism of Myostatin*

    PubMed Central

    Walker, Ryan G.; Angerman, Elizabeth B.; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B.

    2015-01-01

    Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005

  2. Alternative binding modes identified for growth and differentiation factor-associated serum protein (GASP) family antagonism of myostatin.

    PubMed

    Walker, Ryan G; Angerman, Elizabeth B; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B

    2015-03-20

    Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005

  3. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics

    PubMed Central

    Bouchoux, Julien; Beilstein, Frauke; Pauquai, Thomas; Guerrera, I. Chiara; Chateau, Danielle; Ly, Nathalie; Alqub, Malik; Klein, Christophe; Chambaz, Jean; Rousset, Monique; Lacorte, Jean-Marc; Morel, Etienne; Demignot, Sylvie

    2011-01-01

    Background information. Intestinal absorption of alimentary lipids is a complex process ensured by enterocytes and leading to TRL [TAG (triacylglycerol)-rich lipoprotein] assembly and secretion. The accumulation of circulating intestine-derived TRL is associated with atherosclerosis, stressing the importance of the control of postprandial hypertriglyceridaemia. During the postprandial period, TAGs are also transiently stored as CLDs (cytosolic lipid droplets) in enterocytes. As a first step for determining whether CLDs could play a role in the control of enterocyte TRL secretion, we analysed the protein endowment of CLDs isolated by sucrose-gradient centrifugation from differentiated Caco-2/TC7 enterocytes, the only human model able to secrete TRL in culture and to store transiently TAGs as CLDs when supplied with lipids. Cells were analysed after a 24 h incubation with lipid micelles and thus in a state of CLD-associated TAG mobilization. Results. Among the 105 proteins identified in the CLD fraction by LC-MS/MS (liquid chromatography coupled with tandem MS), 27 were directly involved in lipid metabolism pathways potentially relevant to enterocyte-specific functions. The transient feature of CLDs was consistent with the presence of proteins necessary for fatty acid activation (acyl-CoA synthetases) and for TAG hydrolysis. In differentiated Caco-2/TC7 enterocytes, we identified for the first time LPCAT2 (lysophosphatidylcholine acyltransferase 2), involved in PC (phosphatidylcholine) synthesis, and 3BHS1 (3-β-hydroxysteroid dehydrogenase 1), involved in steroid metabolism, and confirmed their partial CLD localization by immunofluorescence. In enterocytes, LPCAT2 may provide an economical source of PC, necessary for membrane synthesis and lipoprotein assembly, from the lysoPC present in the intestinal lumen. We also identified proteins involved in lipoprotein metabolism, such as ApoA-IV (apolipoprotein A-IV), which is specifically expressed by enterocytes and has

  4. Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.

    PubMed

    Yang, Chendong; Harrison, Crystal; Jin, Eunsook S; Chuang, David T; Sherry, A Dean; Malloy, Craig R; Merritt, Matthew E; DeBerardinis, Ralph J

    2014-02-28

    Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of (13)C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized (13)C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined (13)C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-(13)C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-(13)C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[(13)C]O3(-) and [1-(13)C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-(13)C]pyruvate. Quantitation of hyperpolarized H[(13)C]O3(-) provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[(13)C]O3(-) appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-(13)C]pyruvate metabolism, enhancing exchanges with [1-(13)C]lactate and suppressing H[(13)C]O3(-) formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining (13)C isotopomer analyses and dynamic hyperpolarized (13)C spectroscopy may enable

  5. Simultaneous Steady-state and Dynamic 13C NMR Can Differentiate Alternative Routes of Pyruvate Metabolism in Living Cancer Cells*

    PubMed Central

    Yang, Chendong; Harrison, Crystal; Jin, Eunsook S.; Chuang, David T.; Sherry, A. Dean; Malloy, Craig R.; Merritt, Matthew E.; DeBerardinis, Ralph J.

    2014-01-01

    Metabolic reprogramming facilitates cancer cell growth, so quantitative metabolic flux measurements could produce useful biomarkers. However, current methods to analyze flux in vivo provide either a steady-state overview of relative activities (infusion of 13C and analysis of extracted metabolites) or a dynamic view of a few reactions (hyperpolarized 13C spectroscopy). Moreover, although hyperpolarization has successfully quantified pyruvate-lactate exchanges, its ability to assess mitochondrial pyruvate metabolism is unproven in cancer. Here, we combined 13C hyperpolarization and isotopomer analysis to quantify multiple fates of pyruvate simultaneously. Two cancer cell lines with divergent pyruvate metabolism were incubated with thermally polarized [3-13C]pyruvate for several hours, then briefly exposed to hyperpolarized [1-13C]pyruvate during acquisition of NMR spectra using selective excitation to maximize detection of H[13C]O3− and [1-13C]lactate. Metabolites were then extracted and subjected to isotopomer analysis to determine relative rates of pathways involving [3-13C]pyruvate. Quantitation of hyperpolarized H[13C]O3− provided a single definitive metabolic rate, which was then used to convert relative rates derived from isotopomer analysis into quantitative fluxes. This revealed that H[13C]O3− appearance reflects activity of pyruvate dehydrogenase rather than pyruvate carboxylation followed by subsequent decarboxylation reactions. Glucose substantially altered [1-13C]pyruvate metabolism, enhancing exchanges with [1-13C]lactate and suppressing H[13C]O3− formation. Furthermore, inhibiting Akt, an oncogenic kinase that stimulates glycolysis, reversed these effects, indicating that metabolism of pyruvate by both LDH and pyruvate dehydrogenase is subject to the acute effects of oncogenic signaling on glycolysis. The data suggest that combining 13C isotopomer analyses and dynamic hyperpolarized 13C spectroscopy may enable quantitative flux measurements in

  6. Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ~1.9-Ga Gunflint chert.

    PubMed

    Wacey, David; McLoughlin, Nicola; Kilburn, Matt R; Saunders, Martin; Cliff, John B; Kong, Charlie; Barley, Mark E; Brasier, Martin D

    2013-05-14

    The 1.88-Ga Gunflint biota is one of the most famous Precambrian microfossil lagerstätten and provides a key record of the biosphere at a time of changing oceanic redox structure and chemistry. Here, we report on pyritized replicas of the iconic autotrophic Gunflintia-Huroniospora microfossil assemblage from the Schreiber Locality, Canada, that help capture a view through multiple trophic levels in a Paleoproterozoic ecosystem. Nanoscale analysis of pyritic Gunflintia (sheaths) and Huroniospora (cysts) reveals differing relic carbon and nitrogen distributions caused by contrasting spectra of decay and pyritization between taxa, reflecting in part their primary organic compositions. In situ sulfur isotope measurements from individual microfossils (δ(34)S(V-CDT) +6.7‰ to +21.5‰) show that pyritization was mediated by sulfate-reducing microbes within sediment pore waters whose sulfate ion concentrations rapidly became depleted, owing to occlusion of pore space by coeval silicification. Three-dimensional nanotomography reveals additional pyritized biomaterial, including hollow, cellular epibionts and extracellular polymeric substances, showing a preference for attachment to Gunflintia over Huroniospora and interpreted as components of a saprophytic heterotrophic, decomposing community. This work also extends the record of remarkable biological preservation in pyrite back to the Paleoproterozoic and provides criteria to assess the authenticity of even older pyritized microstructures that may represent some of the earliest evidence for life on our planet.

  7. High-throughput sequencing reveals differential expression of miRNAs in prehierarchal follicles of laying and brooding geese.

    PubMed

    Yu, Jing; He, Ke; Ren, Ting; Lou, Yaping; Zhao, Ayong

    2016-07-01

    Broodiness is the primary factor influencing egg production in geese, in which several genes and miRNAs participate. Detailed spatiotemporal profiles of miRNAs encompassing follicle development levels, however, are lacking. In this study, we collected preovulatory follicles (classified as small white follicles, large white follicles, and small yellow follicles) from brooding and laying geese and aimed to analyze microRNA (miRNA or miR) during folliculogenesis. High-throughput sequencing and bioinformatics analysis were used to identify the miRNAs involved in follicle development. The let7 family, miR-10 family, and miR-143 family were abundant in these libraries, and they have been suggested to play a housekeeping role during folliculogenesis. Joint comparisons revealed 23 upregulated and 21 downregulated miRNAs (in at least two comparisons of follicles during brooding and laying, P < 0.1) in the laying stage. Unlike reproduction pathways reported for ovaries, GO and KEGG analysis suggested pathways for cell apoptosis and proliferation, such as the regulation of actin cytoskeleton, endocytosis, axon guidance, pathways in cancer, tight junctions, focal adhesion, the MAPK signaling pathway, cytokine-cytokine receptor interactions, and the Wnt signaling pathway in folliculogenesis. This study revealed the miRNAs that were directly involved in follicular atresia, and our results added to the understanding of the functional involvement of miRNAs during specific stages of follicle development. PMID:27199452

  8. High-throughput sequencing reveals differential expression of miRNAs in prehierarchal follicles of laying and brooding geese

    PubMed Central

    Yu, Jing; He, Ke; Ren, Ting; Lou, Yaping

    2016-01-01

    Broodiness is the primary factor influencing egg production in geese, in which several genes and miRNAs participate. Detailed spatiotemporal profiles of miRNAs encompassing follicle development levels, however, are lacking. In this study, we collected preovulatory follicles (classified as small white follicles, large white follicles, and small yellow follicles) from brooding and laying geese and aimed to analyze microRNA (miRNA or miR) during folliculogenesis. High-throughput sequencing and bioinformatics analysis were used to identify the miRNAs involved in follicle development. The let7 family, miR-10 family, and miR-143 family were abundant in these libraries, and they have been suggested to play a housekeeping role during folliculogenesis. Joint comparisons revealed 23 upregulated and 21 downregulated miRNAs (in at least two comparisons of follicles during brooding and laying, P < 0.1) in the laying stage. Unlike reproduction pathways reported for ovaries, GO and KEGG analysis suggested pathways for cell apoptosis and proliferation, such as the regulation of actin cytoskeleton, endocytosis, axon guidance, pathways in cancer, tight junctions, focal adhesion, the MAPK signaling pathway, cytokine-cytokine receptor interactions, and the Wnt signaling pathway in folliculogenesis. This study revealed the miRNAs that were directly involved in follicular atresia, and our results added to the understanding of the functional involvement of miRNAs during specific stages of follicle development. PMID:27199452

  9. Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ~1.9-Ga Gunflint chert.

    PubMed

    Wacey, David; McLoughlin, Nicola; Kilburn, Matt R; Saunders, Martin; Cliff, John B; Kong, Charlie; Barley, Mark E; Brasier, Martin D

    2013-05-14

    The 1.88-Ga Gunflint biota is one of the most famous Precambrian microfossil lagerstätten and provides a key record of the biosphere at a time of changing oceanic redox structure and chemistry. Here, we report on pyritized replicas of the iconic autotrophic Gunflintia-Huroniospora microfossil assemblage from the Schreiber Locality, Canada, that help capture a view through multiple trophic levels in a Paleoproterozoic ecosystem. Nanoscale analysis of pyritic Gunflintia (sheaths) and Huroniospora (cysts) reveals differing relic carbon and nitrogen distributions caused by contrasting spectra of decay and pyritization between taxa, reflecting in part their primary organic compositions. In situ sulfur isotope measurements from individual microfossils (δ(34)S(V-CDT) +6.7‰ to +21.5‰) show that pyritization was mediated by sulfate-reducing microbes within sediment pore waters whose sulfate ion concentrations rapidly became depleted, owing to occlusion of pore space by coeval silicification. Three-dimensional nanotomography reveals additional pyritized biomaterial, including hollow, cellular epibionts and extracellular polymeric substances, showing a preference for attachment to Gunflintia over Huroniospora and interpreted as components of a saprophytic heterotrophic, decomposing community. This work also extends the record of remarkable biological preservation in pyrite back to the Paleoproterozoic and provides criteria to assess the authenticity of even older pyritized microstructures that may represent some of the earliest evidence for life on our planet. PMID:23630257

  10. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    PubMed

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages.

  11. Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress

    PubMed Central

    Long, Ruicai; Li, Mingna; Zhang, Tiejun; Kang, Junmei; Sun, Yan; Cong, Lili; Gao, Yanli; Liu, Fengqi; Yang, Qingchuan

    2016-01-01

    Salt stress is an important abiotic stress that causes decreased crop yields. Root growth and plant activities are affected by salt stress through the actions of specific genes that help roots adapt to adverse environmental conditions. For a more comprehensive understanding of proteins affected by salinity, we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. Our physiological and phenotypic observations indicated that Zhongmu-1 was more salt tolerant than Jemalong A17. We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively. Function analyses indicated molecule binding and catalytic activity were the two primary functional categories. These proteins have known functions in various molecular processes, including defense against oxidative stress, metabolism, photosynthesis, protein synthesis and processing, and signal transduction. The transcript levels of four identified proteins were determined by quantitative reverse transcription polymerase chain reaction. Our results indicate that some of the identified proteins may play key roles in salt stress tolerance. PMID:27066057

  12. Analysis of microsatellite DNA markers reveals no genetic differentiation between wild and hatchery populations of Pacific threadfin in Hawaii.

    PubMed

    Pan, Gang; Yang, Jinzeng

    2010-01-01

    Pacific threadfin, Polydactylus sexfilis, is popular fish in recreational fishing, as well as aquaculture in Hawaii. Its natural population has been continuously declining in the past several decades. Microsatellite DNA markers are useful DNA-based tool for monitoring Pacific threadfin populations. In this study, fifteen Microsatellite (MS) DNA markers were identified from a partial genomic Pacific threadfin DNA library enriched in CA repeats, and six highly-polymorphic microsatellite loci were employed to analyze genetic similarity and differences between the wild population and hatchery population in Oahu Island. A total of 37 alleles were detected at the six MS loci in the two populations. Statistical analysis of fixation index (F(ST)) and analysis of molecular variance (AMOVA) showed no genetic differentiation between the wild and hatchery populations (F(ST) = 0.001, CI(95%) = -0.01-0.021). Both high genetic diversity (H(o) = 0.664-0.674 and H(e) = 0.710-0.715) and Hardy-Weinberg equilibrium were observed in the wild and hatchery populations. Results of genetic bottleneck analysis indicated that the hatchery was founded with sufficient numbers of brooders as inbreeding coefficient is very low (F(IS) = 0.052-0.072) in both wild and hatchery populations. Further studies are needed for comprehensive determinations of genetic varieties of primary founder broodstocks and successive offspring of the hatchery and wild populations with increased number of Pacific threadfin sample collections.

  13. Genetic differentiation of Octopus minor (Mollusca, Cephalopoda) off the northern coast of China as revealed by amplified fragment length polymorphisms.

    PubMed

    Yang, J M; Sun, G H; Zheng, X D; Ren, L H; Wang, W J; Li, G R; Sun, B C

    2015-01-01

    Octopus minor (Sasaki, 1920) is an economically important cephalopod that is found in the northern coastal waters of China. In this study, we investigated genetic differentiation in fishery populations using amplified fragment length polymorphisms (AFLPs). A total of 150 individuals were collected from five locations: Dalian (DL), Yan-tai (YT), Qingdao (QD), Lianyungang (LY), and Zhoushan (ZS), and 243 reproducible bands were amplified using five AFLP primer combinations. The percentage of polymorphic bands ranged from 53.33 to 76.08%. Nei's genetic identity ranged from 0.9139 to 0.9713, and the genetic distance ranged from 0.0291 to 0.0900. A phylogenetic tree was constructed using the unweighted pair group method with arithmetic mean, based on the genetic distance. The DL and YT populations originated from one clade, while the QD, LY, and ZS populations originated from another. The results indicate that the O. minor stock consisted of two genetic populations with an overall significantly analogous FST value (0.1088, P < 0.05). Most of the variance was within populations. These findings will be important for more sustainable octopus fisheries, so that this marine resource can be conserved for its long-term utilization. PMID:26634529

  14. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  15. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    PubMed

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages. PMID:27302865

  16. High-throughput sequencing reveals differential regulation of miRNAs in fenoxaprop-P-ethyl-resistant Beckmannia syzigachne.

    PubMed

    Pan, Lang; Wang, Zhaoyun; Cai, Jia; Gao, Haitao; Zhao, Hongwei; Dong, Liyao

    2016-01-01

    Non-target site resistance (NTSR) to herbicides is an increasing concern for weed control. The majority of previous studies have focused on metabolic resistance mechanisms of NTSR, but no research exists on gene regulation mechanisms behind herbicide resistance, such as microRNA (miRNA). Here, we identified 3 American sloughgrass (Beckmannia syzigachne Steud.) populations containing fenoxaprop-P-ethyl-resistant plants. We then constructed small RNA libraries and subjected them to deep sequencing and bioinformatics analyses. Forty known and 36 potentially novel, predicted miRNAs were successfully identified. Of these, we identified 3 conserved, predicted candidate NTSR-determinant miRNAs and their potential corresponding target genes, as well as 4 novel potential miRNAs with high count. Target gene prediction and annotation indicated that these 7 differentially expressed miRNAs potentially play a role in regulating specific stress-responsive genes, very likely related to herbicide resistance. Expression profiles were determined with quantitative real-time PCR. The present study is a novel, large-scale characterization of weed miRNAs. The results should further our understanding of miRNA expression profiles associated with herbicide resistance, allowing for the development of more effective weed management strategies. PMID:27353151

  17. Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation

    PubMed Central

    Chiu, Han Sheng; Szucsik, John C.; Georgas, Kylie M.; Jones, Julia L.; Rumballe, Bree A.; Tang, Dave; Grimmond, Sean M.; Lewis, Alfor G.; Aronow, Bruce J.; Lessard, James L.; Little, Melissa H.

    2010-01-01

    Here we describe the first detailed catalogue of gene expression in the developing lower urinary tract (LUT), including epithelial and mesenchymal portions of the developing bladder, urogenital sinus, urethra and genital tubercle (GT) at E13 and E14. Top compartment-specific genes implicated by the microarray data were validated using wholemount in situ hybridization (ISH) over the entire LUT. To demonstrate the potential of this resource to implicate developmentally critical features, we focused on gene expression patterns and pathways in the sexually indeterminate, androgen-independent GT. GT expression patterns reinforced the proposed similarities between development of GT, limb and craniofacial prominences. Comparison of spatial expression patterns predicted a network of Wnt7a-associated GT-enriched epithelial genes, including Gjb2, Dsc3, Krt5 and Sostdc1. Known from other contexts, these genes are associated with normal epidermal differentiation, with disruptions in Dsc3 and Gjb2 showing palmo-plantar keratoderma in the limb. We propose that this gene network contributes to normal foreskin, scrotum and labial development. As several of these are known regulated by, or contain cis elements responsive to retinoic acid, estrogen, or androgen, this implicates this pathway in the later androgen-dependent development of the GT. PMID:20510229

  18. High-throughput sequencing reveals differential regulation of miRNAs in fenoxaprop-P-ethyl-resistant Beckmannia syzigachne

    PubMed Central

    Pan, Lang; Wang, Zhaoyun; Cai, Jia; Gao, Haitao; Zhao, Hongwei; Dong, Liyao

    2016-01-01

    Non-target site resistance (NTSR) to herbicides is an increasing concern for weed control. The majority of previous studies have focused on metabolic resistance mechanisms of NTSR, but no research exists on gene regulation mechanisms behind herbicide resistance, such as microRNA (miRNA). Here, we identified 3 American sloughgrass (Beckmannia syzigachne Steud.) populations containing fenoxaprop-P-ethyl-resistant plants. We then constructed small RNA libraries and subjected them to deep sequencing and bioinformatics analyses. Forty known and 36 potentially novel, predicted miRNAs were successfully identified. Of these, we identified 3 conserved, predicted candidate NTSR-determinant miRNAs and their potential corresponding target genes, as well as 4 novel potential miRNAs with high count. Target gene prediction and annotation indicated that these 7 differentially expressed miRNAs potentially play a role in regulating specific stress-responsive genes, very likely related to herbicide resistance. Expression profiles were determined with quantitative real-time PCR. The present study is a novel, large-scale characterization of weed miRNAs. The results should further our understanding of miRNA expression profiles associated with herbicide resistance, allowing for the development of more effective weed management strategies. PMID:27353151

  19. Genetic differentiation of Octopus minor (Mollusca, Cephalopoda) off the northern coast of China as revealed by amplified fragment length polymorphisms.

    PubMed

    Yang, J M; Sun, G H; Zheng, X D; Ren, L H; Wang, W J; Li, G R; Sun, B C

    2015-12-02

    Octopus minor (Sasaki, 1920) is an economically important cephalopod that is found in the northern coastal waters of China. In this study, we investigated genetic differentiation in fishery populations using amplified fragment length polymorphisms (AFLPs). A total of 150 individuals were collected from five locations: Dalian (DL), Yan-tai (YT), Qingdao (QD), Lianyungang (LY), and Zhoushan (ZS), and 243 reproducible bands were amplified using five AFLP primer combinations. The percentage of polymorphic bands ranged from 53.33 to 76.08%. Nei's genetic identity ranged from 0.9139 to 0.9713, and the genetic distance ranged from 0.0291 to 0.0900. A phylogenetic tree was constructed using the unweighted pair group method with arithmetic mean, based on the genetic distance. The DL and YT populations originated from one clade, while the QD, LY, and ZS populations originated from another. The results indicate that the O. minor stock consisted of two genetic populations with an overall significantly analogous FST value (0.1088, P < 0.05). Most of the variance was within populations. These findings will be important for more sustainable octopus fisheries, so that this marine resource can be conserved for its long-term utilization.

  20. EPG Recordings Reveal Differential Feeding Behaviors in Sogatella furcifera in Response to Plant Virus Infection and Transmission Success

    PubMed Central

    Lei, Wenbin; Li, Pei; Han, Yongqiang; Gong, Shaolong; Yang, Lang; Hou, Maolin

    2016-01-01

    Plant viruses are primarily transmitted by insect vectors and virus infection may influence on the vectors’ feeding behaviors. Using an electrical penetration graph, we detected that infection with the Southern rice black-streaked dwarf virus (SRBSDV) in the white-backed planthopper (WBPH) and in rice plants both altered the vector’s feeding behavior. When viruliferous WBPH (carrying SRBSDV) were fed on uninfected plants, they spent more time in salivation and phloem sap ingestion than non-viruliferous insects. In comparison with uninfected plants, infected plants showed an arrestant effect on non-viruliferous WBPH for phloem sap ingestion. Differential feeding behaviors were also detected between the WBPH that inoculated or acquired SRBSDV and those that failed to. The WBPH that inoculated SRBSDV exhibited more probing bouts, salivation events and phloem sap ingestion events and longer salivation than those that failed to. The WBPH that acquired SRBSDV were quicker to reach phloem and spent more time in phloem sap ingestion than those that failed to. These behavior alterations in the vector may have adaptive advantages for SRBSDV transmission and spread success because greater salivation by viruliferous vectors on uninfected hosts will promote virus inoculation, whereas more sap ingestion by non-viruliferous vectors on infected hosts will promote virus acquisition. PMID:27492995

  1. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging.

    PubMed

    McDonagh, Brian; Sakellariou, Giorgos K; Smith, Neil T; Brownridge, Philip; Jackson, Malcolm J

    2014-11-01

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054.

  2. EPG Recordings Reveal Differential Feeding Behaviors in Sogatella furcifera in Response to Plant Virus Infection and Transmission Success.

    PubMed

    Lei, Wenbin; Li, Pei; Han, Yongqiang; Gong, Shaolong; Yang, Lang; Hou, Maolin

    2016-01-01

    Plant viruses are primarily transmitted by insect vectors and virus infection may influence on the vectors' feeding behaviors. Using an electrical penetration graph, we detected that infection with the Southern rice black-streaked dwarf virus (SRBSDV) in the white-backed planthopper (WBPH) and in rice plants both altered the vector's feeding behavior. When viruliferous WBPH (carrying SRBSDV) were fed on uninfected plants, they spent more time in salivation and phloem sap ingestion than non-viruliferous insects. In comparison with uninfected plants, infected plants showed an arrestant effect on non-viruliferous WBPH for phloem sap ingestion. Differential feeding behaviors were also detected between the WBPH that inoculated or acquired SRBSDV and those that failed to. The WBPH that inoculated SRBSDV exhibited more probing bouts, salivation events and phloem sap ingestion events and longer salivation than those that failed to. The WBPH that acquired SRBSDV were quicker to reach phloem and spent more time in phloem sap ingestion than those that failed to. These behavior alterations in the vector may have adaptive advantages for SRBSDV transmission and spread success because greater salivation by viruliferous vectors on uninfected hosts will promote virus inoculation, whereas more sap ingestion by non-viruliferous vectors on infected hosts will promote virus acquisition. PMID:27492995

  3. A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells.

    PubMed

    Schrankel, Catherine S; Solek, Cynthia M; Buckley, Katherine M; Anderson, Michele K; Rast, Jonathan P

    2016-08-01

    E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E

  4. Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation

    PubMed Central

    Cruz-Becerra, Grisel; Juárez, Mandy; Valadez-Graham, Viviana

    2016-01-01

    Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However, how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients. PMID:27805905

  5. Atomic Force Microscopy Reveals a Morphological Differentiation of Chromobacterium violaceum Cells Associated with Biofilm Development and Directed by N-Hexanoyl-L-Homoserine Lactone

    PubMed Central

    Kamaeva, Anara A.; Vasilchenko, Alexey S.; Deryabin, Dmitry G.

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure. PMID:25111599

  6. A Populus TIR1 gene family survey reveals differential expression patterns and responses to 1-naphthaleneacetic acid and stress treatments.

    PubMed

    Shu, Wenbo; Liu, Yingli; Guo, Yinghua; Zhou, Houjun; Zhang, Jin; Zhao, Shutang; Lu, Mengzhu

    2015-01-01

    The plant hormone auxin is a central regulator of plant growth. TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) is a component of the E3 ubiquitin ligase complex SCF(TIR1/AFB) and acts as an auxin co-receptor for nuclear auxin signaling. The SCF(TIR1/AFB)-proteasome machinery plays a central regulatory role in development-related gene transcription. Populus trichocarpa, as a model tree, has a unique fast-growth trait to which auxin signaling may contribute. However, no systematic analyses of the genome organization, gene structure, and expression of TIR1-like genes have been undertaken in this woody model plant. In this study, we identified a total of eight TIR1 genes in the Populus genome that are phylogenetically clustered into four subgroups, PtrFBL1/PtrFBL2, PtrFBL3/PtrFBL4, PtrFBL5/PtrFBL6, and PtrFBL7/PtrFBL8, representing four paralogous pairs. In addition, the gene structure and motif composition were relatively conserved in each paralogous pair and all of the PtrFBL members were localized in the nucleus. Different sets of PtrFBLs were strongly expressed in the leaves, stems, roots, cambial zones, and immature xylem of Populus. Interestingly, PtrFBL1 and 7 were expressed mainly in vascular and cambial tissues, respectively, indicating their potential but different roles in wood formation. Furthermore, Populus FBLs responded differentially upon exposure to various stresses. Finally, over-expression studies indicated a role of FBL1 in poplar stem growth and response to drought stress. Collectively, these observations lay the foundation for further investigations into the potential roles of PtrFBL genes in tree growth and development.

  7. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca

    PubMed Central

    Zhang, Junxiang; Jiang, Guihua; Miao, Lixiang; Han, Guofen; Liu, Yuexue; Li, He; Zhang, Zhihong

    2015-01-01

    Fragaria vesca (2n = 2x = 14), the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb). It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW) and red (Ruegen, RG) fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2%) had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs), including MYB (putative MYB86 and MYB39), WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca. PMID:26636322

  8. Behavioural and neurophysiological markers reveal differential sensitivity to homeostatic interactions between centrally and peripherally applied passive stimulation.

    PubMed

    Gatica Tossi, M A; Stude, P; Schwenkreis, P; Tegenthoff, M; Dinse, H R

    2013-09-01

    Repetitive transcranial magnetic stimulation (rTMS) is an effective tool for inducing functional plastic changes in the brain. rTMS can also potentiate the effects of other interventions such as tactile coactivation, a form of repetitive stimulation, when both are applied simultaneously. In this study, we investigated the interaction of these techniques in affecting tactile acuity and cortical excitability, measured with somatosensory evoked potentials after paired median nerve stimulation. We first applied a session of 5-Hz rTMS, followed by a session of tactile repetitive stimulation, consisting of intermittent high-frequency tactile stimulation (iHFS) to a group of 15 healthy volunteers ("rTMS + iHFS" group). In a second group ("rTMS w/o iHFS"), rTMS was applied without iHFS, with a third assessment performed after a similar wait period. In the rTMS w/o iHFS group, the 5-Hz rTMS induced an increase in cortical excitability that continued to build for at least 25 min after stimulation, with the effect on excitability after the wait period being inversely correlated to the baseline state. In the rTMS + iHFS group, the second intervention prevented the continued increase in excitability after rTMS. In contrast to the effect on cortical excitability, rTMS produced an improvement in tactile acuity that remained stable until the last assessment, independent of the presence or absence of iHFS. Our results show that these methods can interact homeostatically when used consecutively, and suggest that different measures of cortical plasticity are differentially susceptible to homeostatic interactions.

  9. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery

    PubMed Central

    2014-01-01

    Background High temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C. Results High temperature increased the concentrations of TBARS and inhibited electronic transport in photosynthesis apparatus, indicating that grape leaves were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. One hundred and seventy-four proteins were differentially expressed under heat stress and/or during the recovery phase, in comparison to unstressed controls, respectively. Stress and recovery conditions shared 42 proteins, while 113 and 103 proteins were respectively identified under heat stress and recovery conditions alone. Based on MapMan ontology, functional categories for these dysregulated proteins included mainly photosynthesis (about 20%), proteins (13%), and stress (8%). The subcellular localization using TargetP showed most proteins were located in the chloroplasts (34%), secretory pathways (8%) and mitochondrion (3%). Conclusion On the basis of these findings, we proposed that some proteins related to electron transport chain of photosynthesis, antioxidant enzymes, HSPs and other stress response proteins, and glycolysis may play key roles in enhancing grapevine adaptation to and recovery capacity from heat stress. These results provide a better understanding of the proteins involved in, and mechanisms of thermotolerance in grapevines. PMID:24774513

  10. Transcriptome Analysis of Blunt Snout Bream (Megalobrama amblycephala) Reveals Putative Differential Expression Genes Related to Growth and Hypoxia

    PubMed Central

    Li, Fu-Gui; Chen, Jie; Jiang, Xia-Yun; Zou, Shu-Ming

    2015-01-01

    The blunt snout bream (Megalobrama amblycephala) is an important freshwater aquaculture species, but it is sensitive to hypoxia. No transcriptome data related to growth and hypoxia response are available for this species. In this study, we performed de novo transcriptome sequencing for the liver and gills of the fast-growth family and slow-growth family derived from ‘Pujiang No.1’ F10 blunt snout bream that were under hypoxic stress and normoxia, respectively. The fish were divided into the following 4 groups: fast-growth family under hypoxic stress, FH; slow-growth family under hypoxic stress, SH; fast-growth family under normoxia, FN; and slow-growth family under normoxia, SN. A total of 185 million high-quality reads were obtained from the normalized cDNA of the pooled samples, which were assembled into 465,582 contigs and 237,172 transcripts. A total of 31,338 transcripts from the same locus (unigenes) were annotated and assigned to 104 functional groups, and 23,103 unigenes were classified into seven main categories, including 45 secondary KEGG pathways. A total of 22,255 (71%) known putative unigenes were found to be shared across the genomes of five model fish species and mammals, and a substantial number (9.4%) of potentially novel genes were identified. When 6,639 unigenes were used in the analysis of differential expression (DE) genes, the number of putative DE genes related to growth pathways in FH, SH, SN and FN was 159, 118, 92 and 65 in both the liver and gills, respectively, and the number of DE genes related to hypoxic response was 57, 33, 23 and 21 in FH, FN, SH and SN, respectively. Our results suggest that growth performance of the fast-growth family should be due to complex mutual gene regulatory mechanisms of these putative DE genes between growth and hypoxia. PMID:26554582

  11. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    PubMed

    Zhang, Yuchao; Li, Weijia; Dou, Yujuan; Zhang, Junxiang; Jiang, Guihua; Miao, Lixiang; Han, Guofen; Liu, Yuexue; Li, He; Zhang, Zhihong

    2015-01-01

    Fragaria vesca (2n = 2x = 14), the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb). It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW) and red (Ruegen, RG) fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2%) had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs), including MYB (putative MYB86 and MYB39), WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca.

  12. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages

    PubMed Central

    Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A.

    2016-01-01

    Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species. PMID:26896851

  13. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    PubMed

    Zhang, Yuchao; Li, Weijia; Dou, Yujuan; Zhang, Junxiang; Jiang, Guihua; Miao, Lixiang; Han, Guofen; Liu, Yuexue; Li, He; Zhang, Zhihong

    2015-01-01

    Fragaria vesca (2n = 2x = 14), the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb). It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW) and red (Ruegen, RG) fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2%) had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs), including MYB (putative MYB86 and MYB39), WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca. PMID:26636322

  14. Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi.

    PubMed

    van Dam, Teunis J P; Rehmann, Holger; Bos, Johannes L; Snel, Berend

    2009-11-01

    The members of the Ras-like superfamily of small GTP-binding proteins are molecular switches that are in general regulated in time and space by guanine nucleotide exchange factors and GTPase activating proteins. The Ras-like G-proteins Ras, Rap and Ral are regulated by a variety of guanine nucleotide exchange factors that are characterized by a CDC25 homology domain. Here we study the evolution of the Ras pathway by determining the evolutionary history of CDC25 homology domain coding sequences. We identified CDC25 homology domain coding sequences in animals, fungi and a wide range of protists, but not in plants. This suggests that the CDC25 homology domain originated in or before the last eukaryotic ancestor but was subsequently lost in plant. We provide evidence that at least seven different ancestral Ras guanine nucleotide exchange factors were present in the ancestor of fungi and animals. Differences between present day fungi and animals are the result of loss of ancestral Ras guanine nucleotide exchange factors early in fungal and animal evolution combined with lineage specific duplications and domain acquisitions. In addition, we identify Ral guanine exchange factors and Ral in early diverged fungi, dating the origin of Ral signaling back to before the divergence of animals and fungi. We conclude that the Ras signaling pathway evolved by gradual change as well as through differential sampling of the ancestral CDC25 homology domain repertoire by both fungi and animals. Finally, a comparison of the domain composition of the Ras guanine nucleotide exchange factors shows that domain addition and diversification occurred both prior to and after the fungal-animal split.

  15. Quantitative Western ligand blotting reveals common patterns and differential features of IGFBP-fingerprints in domestic ruminant breeds and species.

    PubMed

    Wirthgen, Elisa; Höflich, Christine; Spitschak, Marion; Helmer, Carina; Brand, Bodo; Langbein, Jan; Metzger, Friedrich; Hoeflich, Andreas

    2016-02-01

    The insulin-like growth factor binding proteins (IGFBPs) are determinants of local IGF-effects and thus have an impact on growth and metabolism in vertebrate species. In farm animals, IGFBPs are associated with traits such as growth rate, body composition, milk production, or fertility. It may be assumed, that selective breeding and characteristic phenotypes of breeds are related to differential expression of IGFBPs. Therefore, the aim of the present study was to investigate the effects of selective breeding on blood IGFBP concentrations of farm animals. Breeds of the sheep, goat, and cattle species were investigated. IGFBP-3, -2, and -4 were analyzed with quantitative Western ligand blotting (qWLB), enabling comprehensive monitoring of intact IGFBPs with IGF-binding capacity. We show that in sera of all species and breeds investigated, IGFBP-3, -2, and -4 were simultaneously detectable by qWLB analysis. IGFBP-3 and the total amount of IGFBPs were significantly increased (P<0.05) in Cameroon sheep, if compared to 3 of 4 other sheep breeds, as well as in Dwarf goats versus Toggenburg and Boer goats (P<0.01). IGFBP-2 was elevated in Cameroon sheep and Boer goats, if compared to other breeds of these species (P<0.01), respectively. Holstein Friesian dairy cows had higher levels of IGFBP-4 (P<0.05), if compared to conventional crossbreeds of beef cattle. In Dwarf goats the ratio of IGFBP-3/IGFBP-2 was about 3-fold higher than in other goat breeds (P<0.001). The total IGFBP amount of Toggenburg goats was reduced (P<0.05), compared to the other goat breeds. In conclusion, our data indicate that common and specific features of IGFBP fingerprints are found in different ruminant species and breeds. Our findings may introduce quantitative Western ligand blotting as an attractive tool for biomarker development and molecular phenotyping in farm animal breeds. PMID:26597140

  16. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis.

    PubMed

    McDonough, Patrick M; Maciejewski-Lenoir, Dominique; Hartig, Sean M; Hanna, Rita A; Whittaker, Ross; Heisel, Andrew; Nicoll, James B; Buehrer, Benjamin M; Christensen, Kurt; Mancini, Maureen G; Mancini, Michael A; Edwards, Dean P; Price, Jeffrey H

    2013-01-01

    Lipolysis in adipocytes is regulated by phosphorylation of lipid droplet-associated proteins, including perilipin 1A and hormone-sensitive lipase (HSL). Perilipin 1A is potentially phosphorylated by cAMP(adenosine 3',5'-cyclic monophosphate)-dependent protein kinase (PKA) on several sites, including conserved C-terminal residues, serine 497 (PKA-site 5) and serine 522 (PKA-site 6). To characterize perilipin 1A phosphorylation, novel monoclonal antibodies were developed, which selectively recognize perilipin 1A phosphorylation at PKA-site 5 and PKA-site 6. Utilizing these novel antibodies, as well as antibodies selectively recognizing HSL phosphorylation at serine 563 or serine 660, we used high content analysis to examine the phosphorylation of perilipin 1A and HSL in adipocytes exposed to lipolytic agents. We found that perilipin PKA-site 5 and HSL-serine 660 were phosphorylated to a similar extent in response to forskolin (FSK) and L-γ-melanocyte stimulating hormone (L-γ-MSH). In contrast, perilipin PKA-site 6 and HSL-serine 563 were phosphorylated more slowly and L-γ-MSH was a stronger agonist for these sites compared to FSK. When a panel of lipolytic agents was tested, including multiple concentrations of isoproterenol, FSK, and L-γ-MSH, the pattern of results was virtually identical for perilipin PKA-site 5 and HSL-serine 660, whereas a distinct pattern was observed for perilipin PKA-site 6 and HSL-serine 563. Notably, perilipin PKA-site 5 and HSL-serine 660 feature two arginine residues upstream from the phospho-acceptor site, which confers high affinity for PKA, whereas perilipin PKA-site 6 and HSL-serine 563 feature only a single arginine. Thus, we suggest perilipin 1A and HSL are differentially phosphorylated in a similar manner at the initiation of lipolysis and arginine residues near the target serines may influence this process.

  17. Quantitative Western ligand blotting reveals common patterns and differential features of IGFBP-fingerprints in domestic ruminant breeds and species.

    PubMed

    Wirthgen, Elisa; Höflich, Christine; Spitschak, Marion; Helmer, Carina; Brand, Bodo; Langbein, Jan; Metzger, Friedrich; Hoeflich, Andreas

    2016-02-01

    The insulin-like growth factor binding proteins (IGFBPs) are determinants of local IGF-effects and thus have an impact on growth and metabolism in vertebrate species. In farm animals, IGFBPs are associated with traits such as growth rate, body composition, milk production, or fertility. It may be assumed, that selective breeding and characteristic phenotypes of breeds are related to differential expression of IGFBPs. Therefore, the aim of the present study was to investigate the effects of selective breeding on blood IGFBP concentrations of farm animals. Breeds of the sheep, goat, and cattle species were investigated. IGFBP-3, -2, and -4 were analyzed with quantitative Western ligand blotting (qWLB), enabling comprehensive monitoring of intact IGFBPs with IGF-binding capacity. We show that in sera of all species and breeds investigated, IGFBP-3, -2, and -4 were simultaneously detectable by qWLB analysis. IGFBP-3 and the total amount of IGFBPs were significantly increased (P<0.05) in Cameroon sheep, if compared to 3 of 4 other sheep breeds, as well as in Dwarf goats versus Toggenburg and Boer goats (P<0.01). IGFBP-2 was elevated in Cameroon sheep and Boer goats, if compared to other breeds of these species (P<0.01), respectively. Holstein Friesian dairy cows had higher levels of IGFBP-4 (P<0.05), if compared to conventional crossbreeds of beef cattle. In Dwarf goats the ratio of IGFBP-3/IGFBP-2 was about 3-fold higher than in other goat breeds (P<0.001). The total IGFBP amount of Toggenburg goats was reduced (P<0.05), compared to the other goat breeds. In conclusion, our data indicate that common and specific features of IGFBP fingerprints are found in different ruminant species and breeds. Our findings may introduce quantitative Western ligand blotting as an attractive tool for biomarker development and molecular phenotyping in farm animal breeds.

  18. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions.

    PubMed

    Fenhalls, Gael; Stevens, Liesel; Moses, Lorraine; Bezuidenhout, Juanita; Betts, Joanna C; Helden Pv, Paul van; Lukey, Pauline T; Duncan, Ken

    2002-11-01

    We have used RNA-RNA in situ hybridization to detect the expression of several Mycobacterium tuberculosis genes in tuberculous granulomas in lung tissue sections from tuberculosis patients. The M. tuberculosis genes chosen fall into two classes. Four genes (icl, narX, and Rv2557 and Rv2558) have been implicated in the persistence of the bacterium in the host, and two genes (iniB and kasA) are upregulated in response to isoniazid exposure. Both necrotic and nonnecrotic granulomas were identified in all of the patients. Necrotic granulomas were divided into three zones: an outer lymphocyte cuff containing lymphocytes and macrophages, a transition zone consisting of necrotic material interspersed with macrophages, and a central acellular necrotic region. Transcripts of all of the genes studied were found in nonnecrotic granulomas and in the lymphocyte cuff of necrotic granulomas. Mycobacterial gene expression was associated with CD68-positive myeloid cells. Rv2557 and/or its homologue Rv2558, kasA, and iniB were expressed within the transition zone of necrotic granulomas, whereas icl and narX transcripts were absent from this area. There was no evidence of transcription of any of the genes examined in the central necrotic region, although mycobacterial DNA was present. The differential expression of genes within granulomas demonstrates that M. tuberculosis exists in a variety of metabolic states and may be indicative of the response to different microenvironments. These observations confirm that genes identified in models of persistence or in response to drug treatment in vitro are expressed in the human host. PMID:12379712

  19. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    PubMed

    Low, Van Lun; Adler, Peter H; Takaoka, Hiroyuki; Ya'cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A L; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected. PMID:24941043

  20. Genome‐wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation

    PubMed Central

    Pai, Vaibhav P.; Martyniuk, Christopher J.; Echeverri, Karen; Sundelacruz, Sarah; Kaplan, David L.

    2015-01-01

    Abstract Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re‐specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome‐wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well‐conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies. PMID:27499876

  1. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.

    PubMed

    Pai, Vaibhav P; Martyniuk, Christopher J; Echeverri, Karen; Sundelacruz, Sarah; Kaplan, David L; Levin, Michael

    2016-02-01

    Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re-specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome-wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well-conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies. PMID:27499876

  2. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development.

    PubMed Central

    Hansen, L. A.; Alexander, N.; Hogan, M. E.; Sundberg, J. P.; Dlugosz, A.; Threadgill, D. W.; Magnuson, T.; Yuspa, S. H.

    1997-01-01

    Mice harboring a targeted disruption of the epidermal growth factor receptor (EGFR) allele exhibit a severely disorganized hair follicle phenotype, fuzzy coat, and systemic disease resulting in death before 3 weeks. This skin phenotype was reproduced in whole skin grafts and in grafts of EGFR null hair follicle buds onto nude mice, providing a model to evaluate the natural evolution of skin lacking the EGFR. Hair follicles in grafts of null skin did not progress from anagen to telogen and scanning electron micrografts revealed wavy, flattened hair fibers with cuticular abnormalities. Many of the EGFR null hair follicles in the grafted skin were consumed by an inflammatory reaction resulting in complete hair loss in 67% of the grafts by 10 weeks. Localization of follicular differentiation markers including keratin 6, transglutaminase, and the hair keratins mHa2 and hacl-1 revealed a pattern of premature differentiation within the null hair follicles. In intact EGFR null mice, proliferation in the interfollicular epidermis, but not hair follicles, was greatly decreased in the absence of EGFR. In contrast, grafting of EGFR null skin resulted in a hyperplastic response in the epidermis that did not resolve even after 10 weeks, although the wound-induced hyperplasia in EGFR wild-type grafts had resolved within 3 to 4 weeks. Thus, epithelial expression of the EGFR has complex functions in the skin. It is important in delaying follicular differentiation, may serve to protect the hair follicle from immunological reactions, and modifies both normal and wound-induced epidermal proliferation but seems dispensable for follicular proliferation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9176390

  3. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its

  4. Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone

    PubMed Central

    Gottardini, Elena; Cristofori, Antonella; Pellegrini, Elisa; La Porta, Nicola; Nali, Cristina; Baldi, Paolo; Sablok, Gaurav

    2016-01-01

    Tropospheric ozone (O3) is a global air pollutant that causes high economic damages by decreasing plant productivity. It enters the leaves through the stomata, generates reactive oxygen species, which subsequent decrease in photosynthesis, plant growth, and biomass accumulation. In order to identify genes that are important for conferring O3 tolerance or sensitivity to plants, a suppression subtractive hybridization analysis was performed on the very sensitive woody shrub, Viburnum lantana, exposed to chronic O3 treatment (60 ppb, 5 h d−1 for 45 consecutive days). Transcript profiling and relative expression assessment were carried out in asymptomatic leaves, after 15 days of O3 exposure. At the end of the experiment symptoms were observed on all treated leaves and plants, with an injured leaf area per plant accounting for 16.7% of the total surface. Cloned genes were sequenced by 454-pyrosequencing and transcript profiling and relative expression assessment were carried out on sequenced reads. A total of 38,800 and 12,495 high quality reads obtained in control and O3-treated libraries, respectively (average length of 319 ± 156.7 and 255 ± 107.4 bp). The Ensembl transcriptome yielded a total of 1241 unigenes with a total sequence length of 389,126 bp and an average length size of 389 bp (guanine-cytosine content = 49.9%). mRNA abundance was measured by reads per kilobase per million and 41 and 37 ensembl unigenes showed up- and down-regulation respectively. Unigenes functionally associated to photosynthesis and carbon utilization were repressed, demonstrating the deleterious effect of O3 exposure. Unigenes functionally associated to heat-shock proteins and glutathione were concurrently induced, suggesting the role of thylakoid-localized proteins and antioxidant-detoxification pathways as an effective strategy for responding to O3. Gene Ontology analysis documented a differential expression of co-regulated transcripts for several functional categories, including

  5. Suppression Substractive Hybridization and NGS Reveal Differential Transcriptome Expression Profiles in Wayfaring Tree (Viburnum lantana L.) Treated with Ozone.

    PubMed

    Gottardini, Elena; Cristofori, Antonella; Pellegrini, Elisa; La Porta, Nicola; Nali, Cristina; Baldi, Paolo; Sablok, Gaurav

    2016-01-01

    Tropospheric ozone (O3) is a global air pollutant that causes high economic damages by decreasing plant productivity. It enters the leaves through the stomata, generates reactive oxygen species, which subsequent decrease in photosynthesis, plant growth, and biomass accumulation. In order to identify genes that are important for conferring O3 tolerance or sensitivity to plants, a suppression subtractive hybridization analysis was performed on the very sensitive woody shrub, Viburnum lantana, exposed to chronic O3 treatment (60 ppb, 5 h d(-1) for 45 consecutive days). Transcript profiling and relative expression assessment were carried out in asymptomatic leaves, after 15 days of O3 exposure. At the end of the experiment symptoms were observed on all treated leaves and plants, with an injured leaf area per plant accounting for 16.7% of the total surface. Cloned genes were sequenced by 454-pyrosequencing and transcript profiling and relative expression assessment were carried out on sequenced reads. A total of 38,800 and 12,495 high quality reads obtained in control and O3-treated libraries, respectively (average length of 319 ± 156.7 and 255 ± 107.4 bp). The Ensembl transcriptome yielded a total of 1241 unigenes with a total sequence length of 389,126 bp and an average length size of 389 bp (guanine-cytosine content = 49.9%). mRNA abundance was measured by reads per kilobase per million and 41 and 37 ensembl unigenes showed up- and down-regulation respectively. Unigenes functionally associated to photosynthesis and carbon utilization were repressed, demonstrating the deleterious effect of O3 exposure. Unigenes functionally associated to heat-shock proteins and glutathione were concurrently induced, suggesting the role of thylakoid-localized proteins and antioxidant-detoxification pathways as an effective strategy for responding to O3. Gene Ontology analysis documented a differential expression of co-regulated transcripts for several functional categories, including

  6. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation

    PubMed Central

    Cacciapaglia, Fabio; Wightman, R. Mark; Carelli, Regina M.

    2015-01-01

    Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have

  7. Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees.

    PubMed

    Ueno, Hiroki; Urasaki, Naoya; Natsume, Satoshi; Yoshida, Kentaro; Tarora, Kazuhiko; Shudo, Ayano; Terauchi, Ryohei; Matsumura, Hideo

    2015-04-01

    The sex type of papaya (Carica papaya) is determined by the pair of sex chromosomes (XX, female; XY, male; and XY(h), hermaphrodite), in which there is a non-recombining genomic region in the Y and Y(h) chromosomes. This region is presumed to be involved in determination of males and hermaphrodites; it is designated as the male-specific region in the Y chromosome (MSY) and the hermaphrodite-specific region in the Y(h) chromosome (HSY). Here, we identified the genes determining male and hermaphrodite sex types by comparing MSY and HSY genomic sequences. In the MSY and HSY genomic regions, we identified 14,528 nucleotide substitutions and 965 short indels with a large gap and two highly diverged regions. In the predicted genes expressed in flower buds, we found no nucleotide differences leading to amino acid changes between the MSY and HSY. However, we found an HSY-specific transposon insertion in a gene (SVP like) showing a similarity to the Short Vegetative Phase (SVP) gene. Study of SVP-like transcripts revealed that the MSY allele encoded an intact protein, while the HSY allele encoded a truncated protein. Our findings demonstrated that the SVP-like gene is a candidate gene for male-hermaphrodite determination in papaya.

  8. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants.

    PubMed

    Rodrigues, Silas P; Ventura, José A; Aguilar, Clemente; Nakayasu, Ernesto S; Choi, HyungWon; Sobreira, Tiago J P; Nohara, Lilian L; Wermelinger, Luciana S; Almeida, Igor C; Zingali, Russolina B; Fernandes, Patricia M B

    2012-06-18

    Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses.

  9. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  10. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants

    PubMed Central

    Rodrigues, Silas P.; Ventura, José A.; Aguilar, Clemente; Nakayasu, Ernesto S.; Choi, HyungWon; Sobreira, Tiago J. P.; Nohara, Lilian L.; Wermelinger, Luciana S.; Almeida, Igor C.; Zingali, Russolina B.; Fernandes, Patricia M. B.

    2012-01-01

    Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers’ regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses. PMID:22465191

  11. Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene

    PubMed Central

    Crees, Jennifer J.; Carbone, Chris; Sommer, Robert S.; Benecke, Norbert; Turvey, Samuel T.

    2016-01-01

    The use of short-term indicators for understanding patterns and processes of biodiversity loss can mask longer-term faunal responses to human pressures. We use an extensive database of approximately 18 700 mammalian zooarchaeological records for the last 11 700 years across Europe to reconstruct spatio-temporal dynamics of Holocene range change for 15 large-bodied mammal species. European mammals experienced protracted, non-congruent range losses, with significant declines starting in some species approximately 3000 years ago and continuing to the present, and with the timing, duration and magnitude of declines varying individually between species. Some European mammals became globally extinct during the Holocene, whereas others experienced limited or no significant range change. These findings demonstrate the relatively early onset of prehistoric human impacts on postglacial biodiversity, and mirror species-specific patterns of mammalian extinction during the Late Pleistocene. Herbivores experienced significantly greater declines than carnivores, revealing an important historical extinction filter that informs our understanding of relative resilience and vulnerability to human pressures for different taxa. We highlight the importance of large-scale, long-term datasets for understanding complex protracted extinction processes, although the dynamic pattern of progressive faunal depletion of European mammal assemblages across the Holocene challenges easy identification of ‘static’ past baselines to inform current-day environmental management and restoration. PMID:27009229

  12. The hand in motion of liberals and conservatives reveals the differential processing of positive and negative information.

    PubMed

    Carraro, Luciana; Castelli, Luigi; Negri, Paolo

    2016-07-01

    Recent research revealed that political conservatives and liberals differ in the processing of valenced information. In particular, conservatives (vs. liberals) tend to weigh negative information more than positive information in their perception of the physical and social world. In the present work, we further investigated the ideology-based asymmetries in the processing of negative and positive information examining both the attention-grabbing power of negative information and the trajectories of the movements performed by respondents when required to categorize positive and negative stimuli. To this end we employed a modified version of the Mouse-Tracking procedure (Freeman & Ambady, 2010), recording hand movements during the execution of categorization tasks. Results showed that conservatives were indeed slower to start and execute response actions to negative stimuli, and, more specifically, the trajectories of their movements signaled avoidance tendencies aimed at increasing the distance from negative stimuli. In addition, this pattern of findings emerged both when participants were asked to categorize the stimuli according to their valence and when the same stimuli had to be categorized on the basis of irrelevant perceptual features. Overall, results demonstrate that conservatives and liberals process valenced information differently, perform different spontaneous movements when exposed to them, and that such asymmetries are largely independent from current processing goals. PMID:27160061

  13. Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene.

    PubMed

    Crees, Jennifer J; Carbone, Chris; Sommer, Robert S; Benecke, Norbert; Turvey, Samuel T

    2016-03-30

    The use of short-term indicators for understanding patterns and processes of biodiversity loss can mask longer-term faunal responses to human pressures. We use an extensive database of approximately 18,700 mammalian zooarchaeological records for the last 11,700 years across Europe to reconstruct spatio-temporal dynamics of Holocene range change for 15 large-bodied mammal species. European mammals experienced protracted, non-congruent range losses, with significant declines starting in some species approximately 3000 years ago and continuing to the present, and with the timing, duration and magnitude of declines varying individually between species. Some European mammals became globally extinct during the Holocene, whereas others experienced limited or no significant range change. These findings demonstrate the relatively early onset of prehistoric human impacts on postglacial biodiversity, and mirror species-specific patterns of mammalian extinction during the Late Pleistocene. Herbivores experienced significantly greater declines than carnivores, revealing an important historical extinction filter that informs our understanding of relative resilience and vulnerability to human pressures for different taxa. We highlight the importance of large-scale, long-term datasets for understanding complex protracted extinction processes, although the dynamic pattern of progressive faunal depletion of European mammal assemblages across the Holocene challenges easy identification of 'static' past baselines to inform current-day environmental management and restoration. PMID:27009229

  14. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress. PMID:23379338

  15. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    SciTech Connect

    Frey, K.; Liu, J; Lombardo, M; Bolstad, D; Wright, D; Anderson, A

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.

  16. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    PubMed Central

    Frey, Kathleen M.; Liu, Jieying; Lombardo, Michael N.; Bolstad, David B.; Wright, Dennis L.; Anderson, Amy C.

    2009-01-01

    SUMMARY Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance. PMID:19249312

  17. Chromosomal investigations of the Usubuchi sarcoma. II. Chromosomal alteration of the stem line cells revealed by differential staining techniques.

    PubMed

    Obara, Y; Sasaki, M; Shibasaki, Y; Okubo, M

    1982-11-01

    Stem line cells of the Usubuchi sarcoma (US) were karyologically investigated by means of G-, C-, and N-banding methods in ten samples from the 1,923rd to 2,081st transfer generations, with special attention to the structural alteration of marker-1 chromosome. The US cells showed wide variations in chromosome constitution and number, while the modal number of chromosomes was consistently 64 in all the generations examined. The chromosome constitutions varied widely even in cells with the modal number. In the early stage (1,923rd to 1,936th generations) the US contained two major stem lines characterized by marker combinations such as 1-2-3-4(1)-4(3)-8 and 2-3-4(1)-4(2)-4(3)-8, occurring with nearly similar frequency. From the middle to later transfer stages (from the 2,004th to the 2,081st generations), the 1-2-3-4(1)-4(3)-8 stem line rapidly declined and finally disappeared. In contrast, the 2-3-4(1)-4(2)-4(3)-8 line became a predominant part of the stem line. The G- and C-banding and population analyses of the stem line cells strongly suggested that marker 4(2) might have been derived from marker 1 by a deletion of the distal half of its long arm. The US studied contained a few stem lines and various types of sublines, each karyologically characteristic. G-Banding analysis revealed various types of intra- and interchromosomal rearrangements probably due to occasional chromosomal mutations either in markers or in nonmarkers in both stem lines and sublines. It seems likely that the stem line cells of the US are not always stable, but rather variable, in their chromosome makeup during the course of multiplication and successive transfers.

  18. Expression profiling reveals differential gene induction underlying specific and non-specific memory for pheromones in mice.

    PubMed

    Upadhya, Sudarshan C; Smith, Thuy K; Brennan, Peter A; Mychaleckyj, Josyf C; Hegde, Ashok N

    2011-11-01

    Memory for the mating male's pheromones in female mice is thought to require synaptic changes in the accessory olfactory bulb (AOB). Induction of this memory depends on release of glutamate in response to pheromonal exposure coincident with release of norepinephrine (NE) in the AOB following mating. A similar memory for pheromones can also be induced artificially by local infusion of the GABA(A) receptor antagonist bicuculline into the AOB. The natural memory formed by exposure to pheromones during mating is specific to the pheromones sensed by the female during mating. In contrast, the artificial memory induced by bicuculline is non-specific and results in the female mice recognizing all pheromones as if they were from the mating male. Although protein synthesis has been shown to be essential for development of pheromone memory, the gene expression cascades critical for memory formation are not known. We investigated changes in gene expression in the AOB using oligonucleotide microarrays during mating-induced pheromone memory (MIPM) as well as bicuculline-induced pheromone memory (BIPM). We found the set of genes induced during MIPM and BIPM are largely non-overlapping and Ingenuity Pathway Analysis revealed that the signaling pathways in MIPM and BIPM also differ. The products of genes induced during MIPM are associated with synaptic function, indicating the possibility of modification at specific synapses, while those induced during BIPM appear to possess neuron-wide functions, which would be consistent with global cellular changes. Thus, these results begin to provide a mechanistic explanation for specific and non-specific memories induced by pheromones and bicuculline infusion respectively.

  19. Spontaneous Chronic Pain After Experimental Thoracotomy Revealed by Conditioned Place Preference: Morphine Differentiates Tactile Evoked Pain From Spontaneous Pain.

    PubMed

    Hung, Ching-Hsia; Wang, Jeffrey Chi-Fei; Strichartz, Gary R

    2015-09-01

    Chronic pain after surgery limits social activity, interferes with work, and causes emotional suffering. A major component of such pain is reported as resting or spontaneous pain with no apparent external stimulus. Although experimental animal models can simulate the stimulus-evoked chronic pain that occurs after surgery, there have been no studies of spontaneous chronic pain in such models. Here the conditioned place preference (CPP) paradigm was used to reveal resting pain after experimental thoracotomy. Male Sprague Dawley rats received a thoracotomy with 1-hour rib retraction, resulting in evoked tactile hypersensitivity, previously shown to last for at least 9 weeks. Intraperitoneal injections of morphine (2.5 mg/kg) or gabapentin (40 mg/kg) gave equivalent 2- to 3-hour-long relief of tactile hypersensitivity when tested 12 to 14 days postoperatively. In separate experiments, single trial CPP was conducted 1 week before thoracotomy and then 12 days (gabapentin) or 14 days (morphine) after surgery, followed the next day by 1 conditioning session with morphine or gabapentin, both versus saline. The gabapentin-conditioned but not the morphine-conditioned rats showed a significant preference for the analgesia-paired chamber, despite the equivalent effect of the 2 agents in relieving tactile allodynia. These results show that experimental thoracotomy in rats causes spontaneous pain and that some analgesics, such as morphine, that reduce evoked pain do not also relieve resting pain, suggesting that pathophysiological mechanisms differ between these 2 aspects of long-term postoperative pain. Perspective: Spontaneous pain, a hallmark of chronic postoperative pain, is demonstrated here in a rat model of experimental postthoracotomy pain, further validating the use of this model for the development of analgesics to treat such symptoms. Although stimulus-evoked pain was sensitive to systemic morphine, spontaneous pain was not, suggesting different mechanistic

  20. 1H NMR-Based Profiling Reveals Differential Immune-Metabolic Networks during Influenza Virus Infection in Obese Mice

    PubMed Central

    Milner, J. Justin; Wang, Jue; Sheridan, Patricia A.; Ebbels, Tim; Beck, Melinda A.; Saric, Jasmina

    2014-01-01

    Obese individuals are at greater risk for death from influenza virus infection. Paralleling human evidence, obese mice are also more susceptible to influenza infection mortality. However, the underlying mechanisms driving greater influenza severity in the obese remain unclear. Metabolic profiling has been utilized in infectious disease models to enhance prognostic or diagnostic methods, and to gain insight into disease pathogenesis by providing a more global picture of dynamic infection responses. Herein, metabolic profiling was used to develop a deeper understanding of the complex processes contributing to impaired influenza protection in obese mice and to facilitate generation of new explanatory hypotheses. Diet-induced obese and lean mice were infected with influenza A/Puerto Rico/8/34. 1H nuclear magnetic resonance-based metabolic profiling of urine, feces, lung, liver, mesenteric white adipose tissue, bronchoalveolar lavage fluid and serum revealed distinct metabolic signatures in infected obese mice, including perturbations in nucleotide, vitamin, ketone body, amino acid, carbohydrate, choline and lipid metabolic pathways. Further, metabolic data was integrated with immune analyses to obtain a more comprehensive understanding of potential immune-metabolic interactions. Of interest, uncovered metabolic signatures in urine and feces allowed for discrimination of infection status in both lean and obese mice at an early influenza time point, which holds prognostic and diagnostic implications for this methodology. These results confirm that obesity causes distinct metabolic perturbations during influenza infection and provide a basis for generation of new hypotheses and use of this methodology in detection of putative biomarkers and metabolic patterns to predict influenza infection outcome. PMID:24844920

  1. Differential Interaction Kinetics of a Bipolar Structure-Specific Endonuclease with DNA Flaps Revealed by Single-Molecule Imaging

    PubMed Central

    Rezgui, Rachid; Lestini, Roxane; Kühn, Joëlle; Fave, Xenia; McLeod, Lauren; Myllykallio, Hannu; Alexandrou, Antigoni; Bouzigues, Cedric

    2014-01-01

    As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5′ and 3′-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5′ or 3′ extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases. PMID:25412080

  2. Differential Communications between Fungi and Host Plants Revealed by Secretome Analysis of Phylogenetically Related Endophytic and Pathogenic Fungi

    PubMed Central

    Xu, Xihui; He, Qin; Zhang, Chulong

    2016-01-01

    During infection, both phytopathogenic and endophytic fungi form intimate contact with living plant cells, and need to resist or disable host defences and modify host metabolism to adapt to their host. Fungi can achieve these changes by secreting proteins and enzymes. A comprehensive comparison of the secretomes of both endophytic and pathogenic fungi can improve our understanding of the interactions between plants and fungi. Although Magnaporthe oryzae, Gaeumannomyces graminis, and M. poae are economically important fungal pathogens, and the related species Harpophora oryzae is an endophyte, they evolved from a common pathogenic ancestor. We used a pipeline analysis to predict the H. oryzae, M. oryzae, G. graminis, and M. poae secretomes and identified 1142, 1370, 1001, and 974 proteins, respectively. Orthologue gene analyses demonstrated that the M. oryzae secretome evolved more rapidly than those of the other three related species, resulting in many species-specific secreted protein-encoding genes, such as avirulence genes. Functional analyses highlighted the abundance of proteins involved in the breakdown of host plant cell walls and oxidation-reduction processes. We identified three novel motifs in the H. and M. oryzae secretomes, which may play key roles in the interaction between rice and H. oryzae. Furthermore, we found that expression of the H. oryzae secretome involved in plant cell wall degradation was downregulated, but the M. oryzae secretome was upregulated with many more upregulated genes involved in oxidation-reduction processes. The divergent in planta expression patterns of the H. and M. oryzae secretomes reveal differences that are associated with mutualistic and pathogenic interactions, respectively. PMID:27658302

  3. Spontaneous Chronic Pain After Experimental Thoracotomy Revealed by Conditioned Place Preference: Morphine Differentiates Tactile Evoked Pain From Spontaneous Pain.

    PubMed

    Hung, Ching-Hsia; Wang, Jeffrey Chi-Fei; Strichartz, Gary R

    2015-09-01

    Chronic pain after surgery limits social activity, interferes with work, and causes emotional suffering. A major component of such pain is reported as resting or spontaneous pain with no apparent external stimulus. Although experimental animal models can simulate the stimulus-evoked chronic pain that occurs after surgery, there have been no studies of spontaneous chronic pain in such models. Here the conditioned place preference (CPP) paradigm was used to reveal resting pain after experimental thoracotomy. Male Sprague Dawley rats received a thoracotomy with 1-hour rib retraction, resulting in evoked tactile hypersensitivity, previously shown to last for at least 9 weeks. Intraperitoneal injections of morphine (2.5 mg/kg) or gabapentin (40 mg/kg) gave equivalent 2- to 3-hour-long relief of tactile hypersensitivity when tested 12 to 14 days postoperatively. In separate experiments, single trial CPP was conducted 1 week before thoracotomy and then 12 days (gabapentin) or 14 days (morphine) after surgery, followed the next day by 1 conditioning session with morphine or gabapentin, both versus saline. The gabapentin-conditioned but not the morphine-conditioned rats showed a significant preference for the analgesia-paired chamber, despite the equivalent effect of the 2 agents in relieving tactile allodynia. These results show that experimental thoracotomy in rats causes spontaneous pain and that some analgesics, such as morphine, that reduce evoked pain do not also relieve resting pain, suggesting that pathophysiological mechanisms differ between these 2 aspects of long-term postoperative pain. Perspective: Spontaneous pain, a hallmark of chronic postoperative pain, is demonstrated here in a rat model of experimental postthoracotomy pain, further validating the use of this model for the development of analgesics to treat such symptoms. Although stimulus-evoked pain was sensitive to systemic morphine, spontaneous pain was not, suggesting different mechanistic

  4. Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules.

    PubMed

    Xu, Hongyang; Stapleton, David; Murphy, Robyn M

    2015-06-01

    Glycogenin, glycogen-debranching enzyme (GDE) and glycogen phosphorylase (GP) are important enzymes that contribute to glycogen particle metabolism. In Long-Evans Hooded rat whole muscle homogenates prepared from extensor digitorum longus (EDL, fast-twitch) and soleus (SOL, oxidative, predominantly slow twitch), it was necessary to include α-amylase, which releases glucosyl units from glycogen, to detect glycogenin but not GDE or GP. Up to ∼12 % of intramuscular glycogen pool was broken down using either in vitro electrical stimulation or leaving muscle at room temperature >3 h (delayed, post-mortem). Electrical stimulation did not reveal glycogenin unless α-amylase was added, although in post-mortem muscle ∼50 and ∼30 % of glycogenin in EDL and SOL muscles, respectively, was detected compared to the amount detected with α-amylase treatment. Single muscle fibres were dissected from fresh or post-mortem EDL muscles, mechanically skinned to remove surface membrane and the presence of glycogenin, GDE and GP as freely diffusible proteins (i.e. cytoplasmic localization) compared by Western blotting. Diffusibility of glycogenin (∼20 %) and GP (∼60 %) was not different between muscles, although GDE increased from ∼15 % diffusible in fresh muscle to ∼60 % in post-mortem muscle. Under physiologically relevant circumstances, in rat muscle and within detection limits: (1) The total cellular pool of glycogenin is always associated with glycogen granules, (2) GDE is associated with glycogen granules with over half the total pool associated with the outer tiers of glycogen, (3) GP is only ever weakly associated with glycogen granules and (4) addition of α-amylase is necessary in order to detect glycogenin, but not GDE or GP.

  5. SPONTANEOUS CHRONIC PAIN AFTER EXPERIMENTAL THORACTOMY REVEALED BY CONDITIONED PLACE PREFERENCE: morphine differentiates tactile evoked pain from spontaneous pain

    PubMed Central

    Hung, Ching-Hsia; Wang, Jeffrey Chi-Fei; Strichartz, Gary

    2015-01-01

    Chronic pain following surgery limits social activity, interferes with work and causes emotional suffering. A major component of such pain is is reported as “resting” or spontaneous pain with no apparent external stimulus. Although experimental animal models can simulate the stimulus-evoked chronic pain that occurs after surgery, there have been no studies of spontaneous chronic pain in such models. Here the Conditioned Place Preference (CPP) paradigm was used to reveal resting pain after experimental thoracotomy. Male Sprague-Dawley rats received a thoracotomy with 1 hour rib retraction, resulting in evoked tactile hypersensitivity, previously shown to last for at least 9 weeks. Intraperitoneal injections of morphine (2.5 mg/kg) or gabapentin (40mg/kg) gave equivalent 2-3h long relief of tactile hypersensitivity, when tested 12-14 days post-operative. In separate experiments, single trial CPP was conducted 1 week before thoracotomy and then 12 days (gabapentin) or 14 days (morphine) after surgery, followed the next day by one conditioning sesssion with morphine or gabapentin, both vs saline. The gabapentin-conditioned, but not the morphine-conditioned rats showed a significant preference for the analgesia-paired chamber, despite the two agents’ equivalent effect in relieving tactile allodynia. These results show that experimental thoracotomy in rats causes spontaneous pain, and that some analgesics, such as morphine, that reduce evoked pain do not also relieve resting pain, suggesting that pathophysiological mechanisms differ between these two aspects of long-term post-operative pain. PMID:26116369

  6. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    PubMed Central

    2010-01-01

    Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei. PMID:20540813

  7. The AP2-like gene OitaAP2 is alternatively spliced and differentially expressed in inflorescence and vegetative tissues of the orchid Orchis italica.

    PubMed

    Salemme, Marinella; Sica, Maria; Iazzetti, Giovanni; Gaudio, Luciano; Aceto, Serena

    2013-01-01

    The AP2/ERF proteins are plant-specific transcription factors involved in multiple regulatory pathways, from plant organ development to response to various environmental stresses. One of the mechanisms that regulates the AP2-like genes involves the microRNA miR172, which controls their activity at the post-transcriptional level. Extensive studies on AP2-like genes are available in many different species; however, in orchids, one of the largest plant families, studies are restricted to a few species, all belonging to the Epidendroideae subfamily. In the present study, we report the isolation of an AP2-like gene in the Mediterranean orchid Orchis italica (Orchidoideae). The OitaAP2 locus includes 10 exons and 9 introns, and its transcript is alternatively spliced, resulting in the long OitaAP2 and the short OitaAP2_ISO isoforms, with the latter skipping exon 9. Both isoforms contain the conserved target site for miR172, whose action is demonstrated by the presence of cleaved OitaAP2 mRNA. The OitaAP2 and OitaAP2_ISO mRNAs are present in the tepals and lip before and after anthesis at different expression levels. In addition, the OitaAP2_ISO isoform is expressed in the ovary before pollination and in the root and stem. The isoform-specific expression pattern suggests a functional differentiation of the OitaAP2 alternatively spliced transcripts. The expression profile of miR172 is complementary to that of the OitaAP2 isoforms in inflorescence tissues before anthesis, whereas after anthesis and in ovary tissue before and after pollination, this relationship disappears, suggesting the existence of OitaAP2 inhibitory mechanisms in these tissues that differ from that involving miR172.

  8. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.

    PubMed

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-09-01

    Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes

  9. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.

    PubMed

    Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T

    2015-09-01

    Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes

  10. Integrative genomic analysis in K562 chronic myelogenous leukemia cells reveals that proximal NCOR1 binding positively regulates genes that govern erythroid differentiation and Imatinib sensitivity

    PubMed Central

    Long, Mark D.; van den Berg, Patrick R.; Russell, James L.; Singh, Prashant K.; Battaglia, Sebastiano; Campbell, Moray J.

    2015-01-01

    To define the functions of NCOR1 we developed an integrative analysis that combined ENCODE and NCI-60 data, followed by in vitro validation. NCOR1 and H3K9me3 ChIP-Seq, FAIRE-seq and DNA CpG methylation interactions were related to gene expression using bootstrapping approaches. Most NCOR1 combinations (24/44) were associated with significantly elevated level expression of protein coding genes and only very few combinations related to gene repression. DAVID's biological process annotation revealed that elevated gene expression was uniquely associated with acetylation and ETS binding. A matrix of gene and drug interactions built on NCI-60 data identified that Imatinib significantly targeted the NCOR1 governed transcriptome. Stable knockdown of NCOR1 in K562 cells slowed growth and significantly repressed genes associated with NCOR1 cistrome, again, with the GO terms acetylation and ETS binding, and significantly dampened sensitivity to Imatinib-induced erythroid differentiation. Mining public microarray data revealed that NCOR1-targeted genes were significantly enriched in Imatinib response gene signatures in cell lines and chronic myelogenous leukemia (CML) patients. These approaches integrated cistrome, transcriptome and drug sensitivity relationships to reveal that NCOR1 function is surprisingly most associated with elevated gene expression, and that these targets, both in CML cell lines and patients, associate with sensitivity to Imatinib. PMID:26117541

  11. Integrative genomic analysis in K562 chronic myelogenous leukemia cells reveals that proximal NCOR1 binding positively regulates genes that govern erythroid differentiation and Imatinib sensitivity.

    PubMed

    Long, Mark D; van den Berg, Patrick R; Russell, James L; Singh, Prashant K; Battaglia, Sebastiano; Campbell, Moray J

    2015-09-01

    To define the functions of NCOR1 we developed an integrative analysis that combined ENCODE and NCI-60 data, followed by in vitro validation. NCOR1 and H3K9me3 ChIP-Seq, FAIRE-seq and DNA CpG methylation interactions were related to gene expression using bootstrapping approaches. Most NCOR1 combinations (24/44) were associated with significantly elevated level expression of protein coding genes and only very few combinations related to gene repression. DAVID's biological process annotation revealed that elevated gene expression was uniquely associated with acetylation and ETS binding. A matrix of gene and drug interactions built on NCI-60 data identified that Imatinib significantly targeted the NCOR1 governed transcriptome. Stable knockdown of NCOR1 in K562 cells slowed growth and significantly repressed genes associated with NCOR1 cistrome, again, with the GO terms acetylation and ETS binding, and significantly dampened sensitivity to Imatinib-induced erythroid differentiation. Mining public microarray data revealed that NCOR1-targeted genes were significantly enriched in Imatinib response gene signatures in cell lines and chronic myelogenous leukemia (CML) patients. These approaches integrated cistrome, transcriptome and drug sensitivity relationships to reveal that NCOR1 function is surprisingly most associated with elevated gene expression, and that these targets, both in CML cell lines and patients, associate with sensitivity to Imatinib.

  12. Comparative analyses across cattle genders and breeds reveal the pitfalls caused by false positive and lineage-differential copy number variations.

    PubMed

    Zhou, Yang; Utsunomiya, Yuri T; Xu, Lingyang; Hay, El Hamidi Abdel; Bickhart, Derek M; Sonstegard, Tad S; Van Tassell, Curtis P; Garcia, Jose Fernando; Liu, George E

    2016-01-01

    We compared CNV region (CNVR) results derived from 1,682 Nellore cattle with equivalent results derived from our previous analysis of Bovine HapMap samples. By comparing CNV segment frequencies between different genders and groups, we identified 9 frequent, false positive CNVRs with a total length of 0.8 Mbp that were likely caused by assembly errors. Although there was a paucity of lineage specific events, we did find one 54 kb deletion on chr5 significantly enriched in Nellore cattle. A few highly frequent CNVRs present in both datasets were detected within genomic regions containing olfactory receptor, ATP-binding cassette, and major histocompatibility complex genes. We further evaluated their impacts on downstream bioinformatics and CNV association analyses. Our results revealed pitfalls caused by false positive and lineage-differential copy number variations and will increase the accuracy of future CNV studies in both taurine and indicine cattle. PMID:27381368

  13. Comparative analyses across cattle genders and breeds reveal the pitfalls caused by false positive and lineage-differential copy number variations

    PubMed Central

    Zhou, Yang; Utsunomiya, Yuri T.; Xu, Lingyang; Hay, El Hamidi abdel; Bickhart, Derek M.; Sonstegard, Tad S.; Van Tassell, Curtis P.; Garcia, Jose Fernando; Liu, George E.

    2016-01-01

    We compared CNV region (CNVR) results derived from 1,682 Nellore cattle with equivalent results derived from our previous analysis of Bovine HapMap samples. By comparing CNV segment frequencies between different genders and groups, we identified 9 frequent, false positive CNVRs with a total length of 0.8 Mbp that were likely caused by assembly errors. Although there was a paucity of lineage specific events, we did find one 54 kb deletion on chr5 significantly enriched in Nellore cattle. A few highly frequent CNVRs present in both datasets were detected within genomic regions containing olfactory receptor, ATP-binding cassette, and major histocompatibility complex genes. We further evaluated their impacts on downstream bioinformatics and CNV association analyses. Our results revealed pitfalls caused by false positive and lineage-differential copy number variations and will increase the accuracy of future CNV studies in both taurine and indicine cattle. PMID:27381368

  14. Genetic variation and population differentiation in a medical herb Houttuynia cordata in China revealed by inter-simple sequence repeats (ISSRs).

    PubMed

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included. PMID:22942696

  15. Extensive sampling of polar bears (Ursus maritimus) in the Northwest Passage (Canadian Arctic Archipelago) reveals population differentiation across multiple spatial and temporal scales.

    PubMed

    Campagna, Leonardo; Van Coeverden de Groot, Peter J; Saunders, Brenda L; Atkinson, Stephen N; Weber, Diana S; Dyck, Markus G; Boag, Peter T; Lougheed, Stephen C

    2013-09-01

    As global warming accelerates the melting of Arctic sea ice, polar bears (Ursus maritimus) must adapt to a rapidly changing landscape. This process will necessarily alter the species distribution together with population dynamics and structure. Detailed knowledge of these changes is crucial to delineating conservation priorities. Here, we sampled 361 polar bears from across the center of the Canadian Arctic Archipelago spanning the Gulf of Boothia (GB) and M'Clintock Channel (MC). We use DNA microsatellites and mitochondrial control region sequences to quantify genetic differentiation, estimate gene flow, and infer population history. Two populations, roughly coincident with GB and MC, are significantly differentiated at both nuclear (F ST = 0.01) and mitochondrial (ΦST = 0.47; F ST = 0.29) loci, allowing Bayesian clustering analyses to assign individuals to either group. Our data imply that the causes of the mitochondrial and nuclear genetic patterns differ. Analysis of mtDNA reveals the matrilineal structure dates at least to the Holocene, and is common to individuals throughout the species' range. These mtDNA differences probably reflect both genetic drift and historical colonization dynamics. In contrast, the differentiation inferred from microsatellites is only on the scale of hundreds of years, possibly reflecting contemporary impediments to gene flow. Taken together, our data suggest that gene flow is insufficient to homogenize the GB and MC populations and support the designation of GB and MC as separate polar bear conservation units. Our study also provide a striking example of how nuclear DNA and mtDNA capture different aspects of a species demographic history. PMID:24102001

  16. Extensive sampling of polar bears (Ursus maritimus) in the Northwest Passage (Canadian Arctic Archipelago) reveals population differentiation across multiple spatial and temporal scales

    PubMed Central

    Campagna, Leonardo; Van Coeverden de Groot, Peter J; Saunders, Brenda L; Atkinson, Stephen N; Weber, Diana S; Dyck, Markus G; Boag, Peter T; Lougheed, Stephen C

    2013-01-01

    As global warming accelerates the melting of Arctic sea ice, polar bears (Ursus maritimus) must adapt to a rapidly changing landscape. This process will necessarily alter the species distribution together with population dynamics and structure. Detailed knowledge of these changes is crucial to delineating conservation priorities. Here, we sampled 361 polar bears from across the center of the Canadian Arctic Archipelago spanning the Gulf of Boothia (GB) and M'Clintock Channel (MC). We use DNA microsatellites and mitochondrial control region sequences to quantify genetic differentiation, estimate gene flow, and infer population history. Two populations, roughly coincident with GB and MC, are significantly differentiated at both nuclear (FST = 0.01) and mitochondrial (ΦST = 0.47; FST = 0.29) loci, allowing Bayesian clustering analyses to assign individuals to either group. Our data imply that the causes of the mitochondrial and nuclear genetic patterns differ. Analysis of mtDNA reveals the matrilineal structure dates at least to the Holocene, and is common to individuals throughout the species’ range. These mtDNA differences probably reflect both genetic drift and historical colonization dynamics. In contrast, the differentiation inferred from microsatellites is only on the scale of hundreds of years, possibly reflecting contemporary impediments to gene flow. Taken together, our data suggest that gene flow is insufficient to homogenize the GB and MC populations and support the designation of GB and MC as separate polar bear conservation units. Our study also provide a striking example of how nuclear DNA and mtDNA capture different aspects of a species demographic history. PMID:24102001

  17. Extensive sampling of polar bears (Ursus maritimus) in the Northwest Passage (Canadian Arctic Archipelago) reveals population differentiation across multiple spatial and temporal scales.

    PubMed

    Campagna, Leonardo; Van Coeverden de Groot, Peter J; Saunders, Brenda L; Atkinson, Stephen N; Weber, Diana S; Dyck, Markus G; Boag, Peter T; Lougheed, Stephen C

    2013-09-01

    As global warming accelerates the melting of Arctic sea ice, polar bears (Ursus maritimus) must adapt to a rapidly changing landscape. This process will necessarily alter the species distribution together with population dynamics and structure. Detailed knowledge of these changes is crucial to delineating conservation priorities. Here, we sampled 361 polar bears from across the center of the Canadian Arctic Archipelago spanning the Gulf of Boothia (GB) and M'Clintock Channel (MC). We use DNA microsatellites and mitochondrial control region sequences to quantify genetic differentiation, estimate gene flow, and infer population history. Two populations, roughly coincident with GB and MC, are significantly differentiated at both nuclear (F ST = 0.01) and mitochondrial (ΦST = 0.47; F ST = 0.29) loci, allowing Bayesian clustering analyses to assign individuals to either group. Our data imply that the causes of the mitochondrial and nuclear genetic patterns differ. Analysis of mtDNA reveals the matrilineal structure dates at least to the Holocene, and is common to individuals throughout the species' range. These mtDNA differences probably reflect both genetic drift and historical colonization dynamics. In contrast, the differentiation inferred from microsatellites is only on the scale of hundreds of years, possibly reflecting contemporary impediments to gene flow. Taken together, our data suggest that gene flow is insufficient to homogenize the GB and MC populations and support the designation of GB and MC as separate polar bear conservation units. Our study also provide a striking example of how nuclear DNA and mtDNA capture different aspects of a species demographic history.

  18. Genetic differentiation and genetic diversity of Castanopsis (Fagaceae), the dominant tree species in Japanese broadleaved evergreen forests, revealed by analysis of EST-associated microsatellites.

    PubMed

    Aoki, Kyoko; Ueno, Saneyoshi; Kamijo, Takashi; Setoguchi, Hiroaki; Murakami, Noriaki; Kato, Makoto; Tsumura, Yoshihiko

    2014-01-01

    The broadleaved evergreen forests of the East Asian warm temperate zone are characterised by their high biodiversity and endemism, and there is therefore a need to extend our understanding of its genetic diversity and phylogeographic patterns. Castanopsis (Fagaceae) is one of the dominant tree species in the broadleaved evergreen forests of Japan. In this study we investigate the genetic diversity, genetic structure and leaf epidermal morphology of 63 natural populations of C. sieboldii and C. cuspidata, using 32 Expressed Sequence Tag associated microsatellites. The overall genetic differentiation between populations was low (GST = 0.069 in C. sieboldii and GST = 0.057 in C. cuspidata). Neighbor-joining tree and Bayesian clustering analyses revealed that the populations of C. sieboldii and C. cuspidata were genetically clearly differentiated, a result which is consistent with the morphology of their epidermal cell layers. This suggests that C. sieboldii and C. cuspidata should be treated as independent species, although intermediate morphologies are often observed, especially at sites where the two species coexist. The higher level of genetic diversity observed in the Kyushu region (for both species) and the Ryukyu Islands (for C. sieboldii) is consistent with the available fossil pollen data for Castanopsis-type broadleaved evergreen trees during the Last Glacial Maximum and suggests the existence of refugia for Castanopsis forests in southern Japan. Within the C. sieboldii populations, Bayesian clustering analyses detected three clusters, in the western and eastern parts of the main islands and in the Ryukyu Islands. The west-east genetic differentiation observed for this species in the main islands, a pattern which is also found in several plant and animal species inhabiting Castanopsis forests in Japan, suggests that they have been isolated from each other in the western and eastern populations for an extended period of time, and may imply the

  19. Genetic Differentiation and Genetic Diversity of Castanopsis (Fagaceae), the Dominant Tree Species in Japanese Broadleaved Evergreen Forests, Revealed by Analysis of EST-Associated Microsatellites

    PubMed Central

    Aoki, Kyoko; Ueno, Saneyoshi; Kamijo, Takashi; Setoguchi, Hiroaki; Murakami, Noriaki; Kato, Makoto; Tsumura, Yoshihiko

    2014-01-01

    The broadleaved evergreen forests of the East Asian warm temperate zone are characterised by their high biodiversity and endemism, and there is therefore a need to extend our understanding of its genetic diversity and phylogeographic patterns. Castanopsis (Fagaceae) is one of the dominant tree species in the broadleaved evergreen forests of Japan. In this study we investigate the genetic diversity, genetic structure and leaf epidermal morphology of 63 natural populations of C. sieboldii and C. cuspidata, using 32 Expressed Sequence Tag associated microsatellites. The overall genetic differentiation between populations was low (GST = 0.069 in C. sieboldii and GST = 0.057 in C. cuspidata). Neighbor-joining tree and Bayesian clustering analyses revealed that the populations of C. sieboldii and C. cuspidata were genetically clearly differentiated, a result which is consistent with the morphology of their epidermal cell layers. This suggests that C. sieboldii and C. cuspidata should be treated as independent species, although intermediate morphologies are often observed, especially at sites where the two species coexist. The higher level of genetic diversity observed in the Kyushu region (for both species) and the Ryukyu Islands (for C. sieboldii) is consistent with the available fossil pollen data for Castanopsis-type broadleaved evergreen trees during the Last Glacial Maximum and suggests the existence of refugia for Castanopsis forests in southern Japan. Within the C. sieboldii populations, Bayesian clustering analyses detected three clusters, in the western and eastern parts of the main islands and in the Ryukyu Islands. The west-east genetic differentiation observed for this species in the main islands, a pattern which is also found in several plant and animal species inhabiting Castanopsis forests in Japan, suggests that they have been isolated from each other in the western and eastern populations for an extended period of time, and may imply the

  20. Holistic microstructural techniques reveal synchronous and alternating andalusite and staurolite growth during three tectonic events resulted from shifting partitioning of growth vs deformation

    NASA Astrophysics Data System (ADS)

    Bell, T. H.; Fay, C.

    2016-10-01

    Excellent inclusion trails in a sample containing both staurolite and andalusite porphyroblasts are used to demonstrate techniques that allow the intimate relationships between deformation and porphyroblast growth to be recognized, described in detail and understood. This approach reveals three main phases of growth of both mineral phases, some of which was demonstrably synchronous, during three tectonic events. Each main period of growth occurred during the early stages of three deformations that were successively near orthogonal. However, extra periods are distinguishable in andalusite in some of these events because this phase occurs as clusters of large crystals that vary in orientation by 2° to > 10°. All foliations defined by all inclusion trails within every porphyroblast inflect/intersect about an axis trending at 025° (called a FIA). This indicates that the direction of the horizontal component of bulk shortening was identical for the first and third of the three deformations recorded by porphyroblast growth. Portions of sigmoidal to slightly spiral-shaped inclusion trails in most porphyroblast clusters locally diverge in opposite directions due to overprinting orthogonal bulk shortening typical of that which forms millipede geometries. These microstructures confirm the role of coaxial bulk shortening in initiating porphyroblast growth in an environment that locally becomes strongly non-coaxial as the deformation intensifies in the same event. In this sample, increasing non-coaxiality as the deformation intensified resulted in the same asymmetry for each of the three events and thus an overall spiral-like shape. Differing stages in the development of these bulk-shortening geometries preserved in adjacent or touching phases negate any role for porphyroblast rotation during ductile deformation. Andalusite and staurolite grew without any inter-reaction in locations where they lie in contact. This multiply repeated growth behaviour initiated within zones of

  1. Variation of pathways and network profiles reveals the differential pharmacological mechanisms of each effective component to treat middle cerebral artery ischemia-reperfusion mice.

    PubMed

    Dang, HaiXia; Li, KangNing; Yu, YaNan; Zhang, YingYing; Liu, Jun; Wang, PengQian; Li, Bing; Wang, HaiNan; Li, Haixia; Wang, Zhong; Wang, YongYan

    2016-01-01

    Using a system pharmacology strategy, this study evaluated the unique pharmacological characteristics of three different neuroprotective compounds for the treatment of cerebral ischemia-reperfusion. A microarray including 374 brain ischemia-related genes was used to identify the differentially expressed genes among five treatment groups: baicalin, jasminoidin, ursodeoxycholic acid, sham, and vehicle, and MetaCore analysis software was applied to identify the significantly altered pathways, processes and interaction network parameters. At pathway level, 46, 25, and 31 pathways were activated in the baicalin, jasminoidin, and ursodeoxycholic acid groups, respectively. Thirteen pathways mainly related with apoptosis and development were commonly altered in the three groups. Additionally, baicalin also targeted pathways related with development, neurophysiologic process and cytoskeleton remodeling, while jasminoidin targeted pathways related with cell cycle and ursodeoxycholic acid targeted those related with apoptosis and development. At process level, three processes were commonly regulated by the three groups in the top 10 processes. Further interaction network analysis revealed that baicalin, jasminoidin, and ursodeoxycholic acid displayed unique features either on network topological parameters or network structure. Additional overlapping analysis demonstrated that compared with ursodeoxycholic acid, the pharmacological mechanism of baicalin was more similar with that of jasminoidin in treating brain ischemia. The data presented in this study may contribute toward the understanding of the common and differential pharmacological mechanisms of these three compounds.

  2. Variation of pathways and network profiles reveals the differential pharmacological mechanisms of each effective component to treat middle cerebral artery ischemia-reperfusion mice

    PubMed Central

    Dang, HaiXia; Li, KangNing; Yu, YaNan; Zhang, YingYing; Liu, Jun; Wang, PengQian; Li, Bing; Wang, HaiNan; Li, Haixia; Wang, YongYan

    2015-01-01

    Using a system pharmacology strategy, this study evaluated the unique pharmacological characteristics of three different neuroprotective compounds for the treatment of cerebral ischemia-reperfusion. A microarray including 374 brain ischemia-related genes was used to identify the differentially expressed genes among five treatment groups: baicalin, jasminoidin, ursodeoxycholic acid, sham, and vehicle, and MetaCore analysis software was applied to identify the significantly altered pathways, processes and interaction network parameters. At pathway level, 46, 25, and 31 pathways were activated in the baicalin, jasminoidin, and ursodeoxycholic acid groups, respectively. Thirteen pathways mainly related with apoptosis and development were commonly altered in the three groups. Additionally, baicalin also targeted pathways related with development, neurophysiologic process and cytoskeleton remodeling, while jasminoidin targeted pathways related with cell cycle and ursodeoxycholic acid targeted those related with apoptosis and development. At process level, three processes were commonly regulated by the three groups in the top 10 processes. Further interaction network analysis revealed that baicalin, jasminoidin, and ursodeoxycholic acid displayed unique features either on network topological parameters or network structure. Additional overlapping analysis demonstrated that compared with ursodeoxycholic acid, the pharmacological mechanism of baicalin was more similar with that of jasminoidin in treating brain ischemia. The data presented in this study may contribute toward the understanding of the common and differential pharmacological mechanisms of these three compounds. PMID:26168995

  3. De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure

    PubMed Central

    Hill, Camilla Beate; Cassin, Andrew; Keeble-Gagnère, Gabriel; Doblin, Monika S.; Bacic, Antony; Roessner, Ute

    2016-01-01

    Plant roots are the first organs sensing and responding to salinity stress, manifested differentially between different root types, and also at the individual tissue and cellular level. High genetic diversity and the current lack of an assembled map-based sequence of the barley genome severely limit barley research potential. We used over 580 and 600 million paired-end reads, respectively, to create two de novo assemblies of a barley landrace (Sahara) and a malting cultivar (Clipper) with known contrasting responses to salinity. Generalized linear models were used to statistically access spatial, treatment-related, and genotype-specific responses. This revealed a spatial gene expression gradient along the barley root, with more differentially expressed transcripts detected between different root zones than between treatments. The root transcriptome also showed a gradual transition from transcripts related to sugar-mediated signaling at the root meristematic zone to those involved in cell wall metabolism in the elongation zone, and defense response-related pathways toward the maturation zone, with significant differences between the two genotypes. The availability of these additional transcriptome reference sets will serve as a valuable resource to the cereal research community, and may identify valuable traits to assist in breeding programmes. PMID:27527578

  4. Progenitor tumours from Emu-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cell survival.

    PubMed Central

    Strasser, A; Elefanty, A G; Harris, A W; Cory, S

    1996-01-01

    Mice expressing both a bcl-2 and a myc transgene within the B lymphoid cell compartment invariably develop novel immature haemopoietic tumours. The likely cell of origin of these tumours was identified by a common pattern of cell surface marker expression on a subset of cells comprising approximately 1% of normal mouse bone marrow. The bcl-2-myc tumour cells could be induced to differentiate into either B lymphocytes or macrophages in culture with certain cytokines and feeder cells. Analysis of their progression into the B lymphoid lineage revealed that Igk locus transcription can precede Igh as well as Igk rearrangement. Surprisingly, the undifferentiated tumour cells died rapidly in culture, even in the presence of multiple cytokines, but they proliferated on monolayers of stromal cells derived from haemopoietic tissues. Thus, even with Bcl-2 levels that protect more differentiated cells, these immature bi-potential progenitor cells require a stromal-induced signal for survival. These results provide insight into the process of lineage commitment and suggest new levels of control of cell survival during early steps in haemopoietic development. Images PMID:8670887

  5. MALDI Mass Spectrometry Imaging Reveals Decreased CK5 Levels in Vulvar Squamous Cell Carcinomas Compared to the Precursor Lesion Differentiated Vulvar Intraepithelial Neoplasia

    PubMed Central

    Zhang, Chao; Arentz, Georgia; Winderbaum, Lyron; Lokman, Noor A.; Klingler-Hoffmann, Manuela; Mittal, Parul; Carter, Christopher; Oehler, Martin K.; Hoffmann, Peter

    2016-01-01

    Vulvar cancer is the fourth most common gynecological cancer worldwide. However, limited studies have been completed on the molecular characterization of vulvar squamous cell carcinoma resulting in a poor understanding of the disease initiation and progression. Analysis and early detection of the precursor lesion of HPV-independent vulvar squamous cell carcinoma (VSCC), differentiated vulvar intraepithelial neoplasia (dVIN), is of great importance given dVIN lesions have a high level of malignant potential. Here we present an examination of adjacent normal vulvar epithelium, dVIN, and VSCC from six patients by peptide Matrix-assisted laser desorption/ionization Mass Spectrometry Imaging (MALDI-MSI). The results reveal the differential expression of multiple peptides from the protein cytokeratin 5 (CK5) across the three vulvar tissue types. The difference observed in the relative abundance of CK5 by MALDI-MSI between the healthy epithelium, dVIN, and VSCC was further analyzed by immunohistochemistry (IHC) in tissue from eight VSCC patients. A decrease in CK5 immunostaining was observed in the VSCC compared to the healthy epithelium and dVIN. These results provide an insight into the molecular fingerprint of the vulvar intraepithelial neoplasia that appears to be more closely related to the healthy epithelium than the VSCC. PMID:27399691

  6. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    PubMed

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  7. Ancient DNA of the Extinct Lava Shearwater (Puffinus olsoni) from the Canary Islands Reveals Incipient Differentiation within the P. puffinus Complex

    PubMed Central

    Ramirez, Oscar; Illera, Juan Carlos; Rando, Juan Carlos; Gonzalez-Solis, Jacob; Alcover, Josep Antoni; Lalueza-Fox, Carles

    2010-01-01

    Background The loss of species during the Holocene was, dramatically more important on islands than on continents. Seabirds from islands are very vulnerable to human-induced alterations such as habitat destruction, hunting and exotic predators. For example, in the genus Puffinus (family Procellariidae) the extinction of at least five species has been recorded during the Holocene, two of them coming from the Canary Islands. Methodology/Principal Findings We used bones of the two extinct Canary shearwaters (P. olsoni and P. holeae) to obtain genetic data, for use in providing insights into the differentiation process within the genus Puffinus. Although mitochondrial DNA (mtDNA) cytochrome b sequences were successfully retrieved from four Holocene specimens of the extinct Lava shearwater (P. olsoni) from Fuerteventura (Canary Islands), the P. holeae specimens yielded no DNA. Only one haplotype was detected in P. olsoni, suggesting a low genetic diversity within this species. Conclusions The phylogenetic analyses based on the DNA data reveal that: (i) the “Puffinus puffinus complex”, an assemblage of species defined using osteological characteristics (P. puffinus, P. olsoni, P. mauretanicus, P. yelkouan and probably P. holeae), shows unresolved phylogenetic relationships; (ii) despite the differences in body size and proportions, P. olsoni and the extant P. puffinus are sister species. Several hypotheses can be considered to explain the incipient differentiation between P. olsoni and P. puffinus. PMID:21209838

  8. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation

    PubMed Central

    Grandy, Rodrigo A.; Whitfield, Troy W.; Wu, Hai; Fitzgerald, Mark P.; VanOudenhove, Jennifer J.; Zaidi, Sayyed K.; Montecino, Martin A.; Lian, Jane B.; van Wijnen, André J.; Stein, Janet L.

    2015-01-01

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. PMID:26644406

  9. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation.

    PubMed

    Grandy, Rodrigo A; Whitfield, Troy W; Wu, Hai; Fitzgerald, Mark P; VanOudenhove, Jennifer J; Zaidi, Sayyed K; Montecino, Martin A; Lian, Jane B; van Wijnen, André J; Stein, Janet L; Stein, Gary S

    2016-02-01

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. PMID:26644406

  10. De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure.

    PubMed

    Hill, Camilla Beate; Cassin, Andrew; Keeble-Gagnère, Gabriel; Doblin, Monika S; Bacic, Antony; Roessner, Ute

    2016-01-01

    Plant roots are the first organs sensing and responding to salinity stress, manifested differentially between different root types, and also at the individual tissue and cellular level. High genetic diversity and the current lack of an assembled map-based sequence of the barley genome severely limit barley research potential. We used over 580 and 600 million paired-end reads, respectively, to create two de novo assemblies of a barley landrace (Sahara) and a malting cultivar (Clipper) with known contrasting responses to salinity. Generalized linear models were used to statistically access spatial, treatment-related, and genotype-specific responses. This revealed a spatial gene expression gradient along the barley root, with more differentially expressed transcripts detected between different root zones than between treatments. The root transcriptome also showed a gradual transition from transcripts related to sugar-mediated signaling at the root meristematic zone to those involved in cell wall metabolism in the elongation zone, and defense response-related pathways toward the maturation zone, with significant differences between the two genotypes. The availability of these additional transcriptome reference sets will serve as a valuable resource to the cereal research community, and may identify valuable traits to assist in breeding programmes. PMID:27527578

  11. Evidence for an anterior-posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: Focus on the subiculum

    PubMed Central

    Chase, Henry W.; Clos, Mareike; Dibble, Sofia; Fox, Peter; Grace, Anthony A.; Phillips, Mary L.; Eickhoff, Simon B.

    2015-01-01

    Previous studies, predominantly in experimental animals, have suggested the presence of a differentiation of function across the hippocampal formation. In rodents, ventral regions are thought to be involved in emotional behavior while dorsal regions mediate cognitive or spatial processes. Using a combination of modeling the co-occurrence of significant activations across thousands of neuroimaging experiments and subsequent data-driven clustering of these data we were able to provide evidence of distinct subregions within a region corresponding to the human subiculum, a critical hub within the hippocampal formation. This connectivity-based model consists of a bilateral anterior region, as well as separate posterior and intermediate regions on each hemisphere. Functional connectivity assessed both by meta-analytic and resting fMRI approaches revealed that more anterior regions were more strongly connected to the default mode network, and more posterior regions were more strongly connected to ‘task positive’ regions. In addition, our analysis revealed that the anterior subregion was functionally connected to the ventral striatum, midbrain and amygdala, a circuit that is central to models of stress and motivated behavior. Analysis of a behavioral taxonomy provided evidence for a role for each subregion in mnemonic processing, as well as implication of the anterior subregion in emotional and visual processing and the right posterior subregion in reward processing. These findings lend support to models which posit anterior-posterior differentiation of function within the human hippocampal formation and complement other early steps toward a comparative (cross-species) model of the region. PMID:25776219

  12. N-glycosylation Profiling of Colorectal Cancer Cell Lines Reveals Association of Fucosylation with Differentiation and Caudal Type Homebox 1 (CDX1)/Villin mRNA Expression*

    PubMed Central

    Holst, Stephanie; Deuss, Anna J. M.; van Pelt, Gabi W.; van Vliet, Sandra J.; Garcia-Vallejo, Juan J.; Koeleman, Carolien A. M.; Deelder, André M.; Mesker, Wilma E.; Tollenaar, Rob A.; Rombouts, Yoann; Wuhrer, Manfred

    2016-01-01

    Various cancers such as colorectal cancer (CRC) are associated with alterations in protein glycosylation. CRC cell lines are frequently used to study these (glyco)biological changes and their mechanisms. However, differences between CRC cell lines with regard to their glycosylation have hitherto been largely neglected. Here, we comprehensively characterized the N-glycan profiles of 25 different CRC cell lines, derived from primary tumors and metastatic sites, in order to investigate their potential as glycobiological tumor model systems and to reveal glycans associated with cell line phenotypes. We applied an optimized, high-throughput membrane-based enzymatic glycan release for small sample amounts. Released glycans were derivatized to stabilize and differentiate between α2,3- and α2,6-linked N-acetylneuraminic acids, followed by N-glycosylation analysis by MALDI-TOF(/TOF)-MS. Our results showed pronounced differences between the N-glycosylation patterns of CRC cell lines. CRC cell line profiles differed from tissue-derived N-glycan profiles with regard to their high-mannose N-glycan content but showed a large overlap for complex type N-glycans, supporting their use as a glycobiological cancer model system. Importantly, we could show that the high-mannose N-glycans did not only occur as intracellular precursors but were also present at the cell surface. The obtained CRC cell line N-glycan features were not clearly correlated with mRNA expression levels of glycosyltransferases, demonstrating the usefulness of performing the structural analysis of glycans. Finally, correlation of CRC cell line glycosylation features with cancer cell markers and phenotypes revealed an association between highly fucosylated glycans and CDX1 and/or villin mRNA expression that both correlate with cell differentiation. Together, our findings provide new insights into CRC-associated glycan changes and setting the basis for more in-depth experiments on glycan function and regulation

  13. Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq.

    PubMed

    Zhang, Dawei; Pan, Qi; Cui, Cheng; Tan, Chen; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2015-01-01

    Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinata, BBCC) from the pair-wise crosses of the same three diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC) were compared to reveal the patterns of gene expressions from progenitor genomes and the effects of different types of genome combinations and cytoplasm, upon the genome merger and duplication. From transcriptomic analyses for leaves and silique walls, extensive expression alterations were revealed in these resynthesized allotetraploids relative to their diploid progenitors, as well as during the transition from vegetative to reproductive development, for differential and transgressive gene expressions were variable in numbers and functions. Genes involved in glucosinolates and DNA methylation were transgressively up-regulated among most samples, suggesting that gene expression regulation was immediately established after allopolyploidization. The expression of ribosomal protein genes was also tissue-specific and showed a similar expression hierarchy of rRNA genes. The balance between the co-up and co-down regulation was observed between reciprocal B. napus with different types of the cytoplasm. Our results suggested that gene expression changes occurred after initial genome merger and such profound alterations might enhance the growth vigor and adaptability of Brassica allotetraploids.

  14. Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq

    PubMed Central

    Zhang, Dawei; Pan, Qi; Cui, Cheng; Tan, Chen; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2015-01-01

    Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinata, BBCC) from the pair-wise crosses of the same three diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC) were compared to reveal the patterns of gene expressions from progenitor genomes and the effects of different types of genome combinations and cytoplasm, upon the genome merger and duplication. From transcriptomic analyses for leaves and silique walls, extensive expression alterations were revealed in these resynthesized allotetraploids relative to their diploid progenitors, as well as during the transition from vegetative to reproductive development, for differential and transgressive gene expressions were variable in numbers and functions. Genes involved in glucosinolates and DNA methylation were transgressively up-regulated among most samples, suggesting that gene expression regulation was immediately established after allopolyploidization. The expression of ribosomal protein genes was also tissue-specific and showed a similar expression hierarchy of rRNA genes. The balance between the co-up and co-down regulation was observed between reciprocal B. napus with different types of the cytoplasm. Our results suggested that gene expression changes occurred after initial genome merger and such profound alterations might enhance the growth vigor and adaptability of Brassica allotetraploids. PMID:26583027

  15. Genome-specific differential gene expressions in resynthesized Brassica allotetraploids from pair-wise crosses of three cultivated diploids revealed by RNA-seq.

    PubMed

    Zhang, Dawei; Pan, Qi; Cui, Cheng; Tan, Chen; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2015-01-01

    Polyploidy is popular for the speciation of angiosperms but the initial stage of allopolyploidization resulting from interspecific hybridization and genome duplication is associated with different extents of changes in genome structure and gene expressions. Herein, the transcriptomes detected by RNA-seq in resynthesized Brassica allotetraploids (Brassica juncea, AABB; B. napus, AACC; B. carinata, BBCC) from the pair-wise crosses of the same three diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC) were compared to reveal the patterns of gene expressions from progenitor genomes and the effects of different types of genome combinations and cytoplasm, upon the genome merger and duplication. From transcriptomic analyses for leaves and silique walls, extensive expression alterations were revealed in these resynthesized allotetraploids relative to their diploid progenitors, as well as during the transition from vegetative to reproductive development, for differential and transgressive gene expressions were variable in numbers and functions. Genes involved in glucosinolates and DNA methylation were transgressively up-regulated among most samples, suggesting that gene expression regulation was immediately established after allopolyploidization. The expression of ribosomal protein genes was also tissue-specific and showed a similar expression hierarchy of rRNA genes. The balance between the co-up and co-down regulation was observed between reciprocal B. napus with different types of the cytoplasm. Our results suggested that gene expression changes occurred after initial genome merger and such profound alterations might enhance the growth vigor and adaptability of Brassica allotetraploids. PMID:26583027

  16. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5′ splice site selection

    PubMed Central

    Bielli, Pamela; Bordi, Matteo; Biasio, Valentina Di; Sette, Claudio

    2014-01-01

    Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5′ splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5′ splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5′ splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5′ splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5′ splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5′ splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator. PMID:25294838

  17. Peroxisome Proliferator-Activated Receptor γ Deficiency in T Cells Accelerates Chronic Rejection by Influencing the Differentiation of CD4+ T Cells and Alternatively Activated Macrophages

    PubMed Central

    Ye, Ping; Cheng, Chao; Wu, Jie; Wang, Sihua; Sun, Yuan; Liu, Zheng; Xie, Aini; Xia, Jiahong

    2014-01-01

    Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects. PMID:25383620

  18. Differential expression and interaction specificity of the heterotrimeric G-protein family in Brassica nigra reveal their developmental- and condition-specific roles.

    PubMed

    Kumar, Roshan; Arya, Gulab C; Bisht, Naveen C

    2014-11-01

    Heterotrimeric G-proteins, comprised of α, β and γ subunits, are important signal transducers across phyla. The G-proteins are well characterized in the model plants Arabidopsis and rice, and their inventories are possible from a few other plant species; however, information about the roles played by G-proteins in regulating various growth and developmental traits particularly from polyploid crops is still awaited. In this study, we have isolated one Gα (BniB.Gα1), three Gβ (BniB.Gβ1-BniB.Gβ3) and four Gγ (BniB.Gγ1-BniB.Gγ4) coding sequences from the paleopolyploid Brassica nigra, a major condiment crop of the Brassicaceae family. Sequence and phylogenetic analysis revealed that whole-genome triplication events in the Brassica lineage had proportionally increased the inventory of the Gβ subunit, but not of the Gα and Gγ subunits in B. nigra. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis showed that members of the G-protein subunit genes have distinct temporal and spatial expression patterns and were differentially altered in response to various stress and phytohormone treatments, thereby suggesting differential transcriptional regulation of G-protein genes in B. nigra. Interestingly, specific members of G-protein subunits were co-expressed across plant developmental stages, and in response to different elicitor treatments. Yeast-based interaction screens further predicted that the B. nigra G-protein subunits interacted in most of the possible combinations, although showing a high degree of interaction specificity between different G-protein subunits. Our data on physical interactions coupled with the co-expression pattern of the multiple G-protein subunit genes suggested that tissue- and condition-specific functional combinations of Gαβγ heterotrimers may exist in paleopolyploid B. nigra, to control diverse growth and development processes. PMID:25231958

  19. Comparative Transcriptomics in East African Cichlids Reveals Sex- and Species-Specific Expression and New Candidates for Sex Differentiation in Fishes

    PubMed Central

    Böhne, Astrid; Sengstag, Thierry; Salzburger, Walter

    2014-01-01

    Males and females of the same species differ largely in gene expression, which accounts for most of the morphological and physiological differences and sex-specific phenotypes. Here, we analyzed sex-specific gene expression in the brain and the gonads of cichlid fishes from Lake Tanganyika belonging to four different lineages, so-called tribes (Eretmodini, Ectodini, Haplochromini, and Lamprologini), using the outgroup Nile tilapia (Oreochromis niloticus) as reference. The comparison between male and female brains revealed few differences between the sexes, consistent in all investigated species. The gonads, on the other hand, showed a large fraction of differentially expressed transcripts with the majority of them showing the same direction of expression in all four species. All here-studied cichlids, especially the three investigated mouth-breeding species, showed a trend toward more male- than female-biased transcripts. Transcripts, which were female-biased in expression in all four species, were overrepresented on linkage group (LG)1 in the reference genome and common male-biased transcripts showed accumulation on LG23, the presumable sex chromosomes of the Nile tilapia. Sex-specific transcripts contained candidate genes for sex determination and differentiation in fishes, especially members of the transforming growth factor-β-superfamily and the Wnt-pathway and also prominent members of the sox-, dm-domain-, and high mobility group-box families. We further confirmed our previous finding on species/lineage-specific gene expression shifts in the sex steroid pathway, including synthesizing enzymes as the aromatase cyp19a1 and estrogen and androgen receptors. PMID:25364805

  20. Differential impacts of juvenile hormone, soldier head extract and alternate caste phenotypes on host and symbiont transcriptome composition in the gut of the termite Reticulitermes flavipes

    PubMed Central

    2013-01-01

    Background Termites are highly eusocial insects and show a division of labor whereby morphologically distinct individuals specialize in distinct tasks. In the lower termite Reticulitermes flavipes (Rhinotermitidae), non-reproducing individuals form the worker and soldier castes, which specialize in helping (e.g., brood care, cleaning, foraging) and defense behaviors, respectively. Workers are totipotent juveniles that can either undergo status quo molts or develop into soldiers or neotenic reproductives. This caste differentiation can be regulated by juvenile hormone (JH) and primer pheromones contained in soldier head extracts (SHE). Here we offered worker termites a cellulose diet treated with JH or SHE for 24-hr, or held them with live soldiers (LS) or live neotenic reproductives (LR). We then determined gene expression profiles of the host termite gut and protozoan symbionts concurrently using custom cDNA oligo-microarrays containing 10,990 individual ESTs. Results JH was the most influential treatment (501 total ESTs affected), followed by LS (24 ESTs), LR (12 ESTs) and SHE treatments (6 ESTs). The majority of JH up- and downregulated ESTs were of host and symbiont origin, respectively; in contrast, SHE, LR and LS treatments had more uniform impacts on host and symbiont gene expression. Repeat “follow-up” bioassays investigating combined JH + SHE impacts in relation to individual JH and SHE treatments on a subset of array-positive genes revealed (i) JH and SHE treatments had opposite impacts on gene expression and (ii) JH + SHE impacts on gene expression were generally intermediate between JH and SHE. Conclusions Our results show that JH impacts hundreds of termite and symbiont genes within 24-hr, strongly suggesting a role for the termite gut in JH-dependent caste determination. Additionally, differential impacts of SHE and LS treatments were observed that are in strong agreement with previous studies that specifically investigated soldier caste

  1. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber.

    PubMed

    Lou, Qunfeng; He, Yuhua; Cheng, Chunyan; Zhang, Zhonghua; Li, Ji; Huang, Sanwen; Chen, Jinfeng

    2013-01-01

    Cucumber is an important model crop and the first species sequenced in Cucurbitaceae family. Compared to the fast increasing genetic and genomics resources, the molecular cytogenetic researches in cucumber are still very limited, which results in directly the shortage of relation between plenty of physical sequences or genetic data and chromosome structure. We mapped twenty-three fosmids anchored by SSR markers from LG-3, the longest linkage group, and LG-4, the shortest linkage group on pachytene chromosomes 3 and 4, using uorescence in situ hybridization (FISH). Integrated molecular cytogenetic maps of chromosomes 3 and 4 were constructed. Except for three SSR markers located on heterochromatin region, the cytological order of markers was concordant with those on the linkage maps. Distinct structural differences between chromosomes 3 and 4 were revealed by the high resolution pachytene chromosomes. The extreme difference of genetic length between LG-3 and LG-4 was mainly attributed to the difference of overall recombination frequency. The significant differentiation of heterochromatin contents in chromosomes 3 and 4 might have a direct correlation with recombination frequency. Meanwhile, the uneven distribution of recombination frequency along chromosome 4 was observed, and recombination frequency of the long arm was nearly 3.5 times higher than that of the short arm. The severe suppression of recombination was exhibited in centromeric and heterochromatin domains of chromosome 4. Whereas a close correlation between the gene density and recombination frequency was observed in chromosome 4, no significant correlation was observed between them along chromosome 3. The comparison between cytogenetic and sequence maps revealed a large gap on the pericentromeric heterochromatin region of sequence map of chromosome 4. These results showed that integrated molecular cytogenetic maps can provide important information for the study of genetic and genomics in cucumber.

  2. High-Throughput Sequence Typing Reveals Genetic Differentiation and Host Specialization among Populations of the Borrelia burgdorferi Species Complex that Infect Rodents

    PubMed Central

    Jacquot, Maude; Bisseux, Maxime; Abrial, David; Marsot, Maud; Ferquel, Elisabeth; Chapuis, Jean-Louis; Vourc'h, Gwenaël; Bailly, Xavier

    2014-01-01

    Lyme disease is a zoonosis caused by various species belonging to the Borrelia burgdorferi bacterial species complex. These pathogens are transmitted by ticks and infect multiple, taxonomically distinct, host species. From an epidemiological perspective, it is important to determine whether genetic variants within the species complex are able to spread freely through the whole host community or, instead, if certain variants are restricted to particular hosts. To this end, we characterized the genotypes of members of the B. burgdorferi species complex; the bacteria were isolated from more than two hundred individuals captured in the wild and belonging to three different rodent host species. For each individual, we used a high-throughput approach to amplify and sequence rplB, a housekeeping gene, and ospC, which is involved in infection. This approach allowed us to evaluate the genetic diversity both within and among species in the B. burgdorferi species complex. Strong evidence of genetic differentiation among host species was revealed by both genes, even though they are, a priori, not constrained by the same selective pressures. These data are discussed in the context of the advancements made possible by multi-locus high-throughput sequencing and current knowledge of Lyme disease epidemiology. PMID:24533116

  3. Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1.

    PubMed

    Renault, T; Faury, N; Barbosa-Solomieu, V; Moreau, K

    2011-07-01

    Virus-induced genes were identified using suppression subtractive hybridisation (SSH) from Pacific cupped oyster, Crassostrea gigas, haemocytes challenged by OsHV-1. A total of 304 clones from SSH forward library were sequenced. Among these sequences, some homologues corresponded to (i) immune related genes (macrophage express protein, IK cytokine, interferon-induced protein 44 or multicopper oxidase), (ii) apoptosis related genes (Bcl-2) and (iii) cell signalling and virus receptor genes (glypican). Molecular characterization and phylogenic analysis of 3 immune-related genes (macrophage expressed protein, multicopper oxidase and immunoglobulin domain cell adhesion molecule) were performed. Finally, quantitative PCR revealed significant changes in the expression of immune related genes (multicopper oxidase, macrophage expressed protein, myeloid differentiation factor 88 and interferon-induced protein 44) in oysters experimentally challenged with OsHV-1. These findings provide a first basis for studying the role of innate immunity in response to viruses in bivalves and identified genes may serve as markers of interest in breeding programs in order to obtain selected oysters presenting OsHV-1 resistance.

  4. Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species.

    PubMed

    Sun, Genlou; Ni, Yan; Daley, Tracy

    2008-03-01

    It has been hypothesized from isozymic and cytological studies of Elymus species that the Old and New World taxa may be of separate origin of the H genome in the StH genome species. To test this hypothesis, and estimate the phylogenet