Science.gov

Sample records for alternative differentiation reveals

  1. Gene expression kinetics in individual plasmodial cells reveal alternative programs of differential regulation during commitment and differentiation.

    PubMed

    Rätzel, Viktoria; Marwan, Wolfgang

    2015-05-26

    During its life cycle, the amoebozoon Physarum polycephalum forms multinucleate plasmodial cells that can grow to macroscopic size while maintaining a naturally synchronous population of nuclei. Sporulation-competent plasmodia were stimulated through photoactivation of the phytochrome photoreceptor and the expression of sporulation marker genes was analyzed quantitatively by repeatedly taking samples of the same plasmodial cell at successive time points after the stimulus pulse. Principal component analysis of the gene expression data revealed that plasmodial cells take different trajectories leading to cell fate decision and differentiation and suggested that averaging over individual cells is inappropriate. Queries for genes with pairwise correlated expression kinetics revealed qualitatively different patterns of co-regulation, indicating that alternative programs of differential regulation are operational in individual plasmodial cells. At the single cell level, the response to stimulation of a non-sporulating mutant was qualitatively different as compared to the wild type with respect to the differentially regulated genes and their patterns of co-regulation. The observation of individual differences during commitment and differentiation supports the concept of a Waddington-type quasipotential landscape for the regulatory control of cell differentiation. Comparison of wild type and sporulation mutant data further supports the idea that mutations may impact the topology of this landscape.

  2. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity.

    PubMed

    Chen, Lu; Bush, Stephen J; Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Urrutia, Araxi O

    2014-06-01

    What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species--an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced N(e) in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome's functional information capacity.

  3. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    PubMed

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of

  4. Molecular Characterization of the α-Subunit of Na+/K+ ATPase from the Euryhaline Barnacle Balanus improvisus Reveals Multiple Genes and Differential Expression of Alternative Splice Variants

    PubMed Central

    Lind, Ulrika; Alm Rosenblad, Magnus; Wrange, Anna-Lisa; Sundell, Kristina S.; Jonsson, Per R.; André, Carl; Havenhand, Jonathan; Blomberg, Anders

    2013-01-01

    The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions. PMID:24130836

  5. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    USGS Publications Warehouse

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  6. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes.

    PubMed

    Purcell, Maureen K; Laing, Kerry J; Woodson, James C; Thorgaard, Gary H; Hansen, John D

    2009-02-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-gamma) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-gamma gene (rtIFN-gamma2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in naïve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-gamma1 and rtIFN-gamma2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-gamma2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection.

  7. Contextual fear conditioning induces differential alternative splicing.

    PubMed

    Poplawski, Shane G; Peixoto, Lucia; Porcari, Giulia S; Wimmer, Mathieu E; McNally, Anna G; Mizuno, Keiko; Giese, K Peter; Chatterjee, Snehajyoti; Koberstein, John N; Risso, Davide; Speed, Terence P; Abel, Ted

    2016-10-01

    The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Alternative splicing modulates stem cell differentiation.

    PubMed

    Fu, Ru-Huei; Liu, Shih-Ping; Ou, Chen-Wei; Yu, Hsiu-Hui; Li, Kuo-Wei; Tsai, Chang-Hai; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2009-01-01

    Stem cells have the surprising potential to develop into many different cell types. Therefore, major research efforts have focused on transplantation of stem cells and/or derived progenitors for restoring depleted diseased cells in degenerative disorders. Understanding the molecular controls, including alternative splicing, that arise during lineage differentiation of stem cells is crucial for developing stem cell therapeutic approaches in regeneration medicine. Alternative splicing to allow a single gene to encode multiple transcripts with different protein coding sequences and RNA regulatory elements increases genomic complexities. Utilizing differences in alternative splicing as a molecular marker may be more sensitive than simply gene expression in various degrees of stem cell differentiation. Moreover, alternative splicing maybe provide a new concept to acquire induced pluripotent stem cells or promote cell-cell transdifferentiation for restorative therapies and basic medicine researches. In this review, we highlight the recent advances of alternative splicing regulation in stem cells and their progenitors. It will hopefully provide much needed knowledge into realizing stem cell biology and related applications.

  9. Balance Trees Reveal Microbial Niche Differentiation.

    PubMed

    Morton, James T; Sanders, Jon; Quinn, Robert A; McDonald, Daniel; Gonzalez, Antonio; Vázquez-Baeza, Yoshiki; Navas-Molina, Jose A; Song, Se Jin; Metcalf, Jessica L; Hyde, Embriette R; Lladser, Manuel; Dorrestein, Pieter C; Knight, Rob

    2017-01-01

    Advances in sequencing technologies have enabled novel insights into microbial niche differentiation, from analyzing environmental samples to understanding human diseases and informing dietary studies. However, identifying the microbial taxa that differentiate these samples can be challenging. These issues stem from the compositional nature of 16S rRNA gene data (or, more generally, taxon or functional gene data); the changes in the relative abundance of one taxon influence the apparent abundances of the others. Here we acknowledge that inferring properties of individual bacteria is a difficult problem and instead introduce the concept of balances to infer meaningful properties of subcommunities, rather than properties of individual species. We show that balances can yield insights about niche differentiation across multiple microbial environments, including soil environments and lung sputum. These techniques have the potential to reshape how we carry out future ecological analyses aimed at revealing differences in relative taxonomic abundances across different samples. IMPORTANCE By explicitly accounting for the compositional nature of 16S rRNA gene data through the concept of balances, balance trees yield novel biological insights into niche differentiation. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/biocore/gneiss. Author Video: An author video summary of this article is available.

  10. Balance Trees Reveal Microbial Niche Differentiation

    PubMed Central

    Morton, James T.; Sanders, Jon; Quinn, Robert A.; McDonald, Daniel; Gonzalez, Antonio; Vázquez-Baeza, Yoshiki; Navas-Molina, Jose A.; Metcalf, Jessica L.; Hyde, Embriette R.; Lladser, Manuel; Dorrestein, Pieter C.

    2017-01-01

    ABSTRACT Advances in sequencing technologies have enabled novel insights into microbial niche differentiation, from analyzing environmental samples to understanding human diseases and informing dietary studies. However, identifying the microbial taxa that differentiate these samples can be challenging. These issues stem from the compositional nature of 16S rRNA gene data (or, more generally, taxon or functional gene data); the changes in the relative abundance of one taxon influence the apparent abundances of the others. Here we acknowledge that inferring properties of individual bacteria is a difficult problem and instead introduce the concept of balances to infer meaningful properties of subcommunities, rather than properties of individual species. We show that balances can yield insights about niche differentiation across multiple microbial environments, including soil environments and lung sputum. These techniques have the potential to reshape how we carry out future ecological analyses aimed at revealing differences in relative taxonomic abundances across different samples. IMPORTANCE By explicitly accounting for the compositional nature of 16S rRNA gene data through the concept of balances, balance trees yield novel biological insights into niche differentiation. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/biocore/gneiss. Author Video: An author video summary of this article is available. PMID:28144630

  11. Widespread alternative and aberrant splicing revealed by lariat sequencing

    PubMed Central

    Stepankiw, Nicholas; Raghavan, Madhura; Fogarty, Elizabeth A.; Grimson, Andrew; Pleiss, Jeffrey A.

    2015-01-01

    Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures. PMID:26261211

  12. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes

    PubMed Central

    Lin, Jung-Chun

    2015-01-01

    Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed. PMID:26389882

  13. Implications for practice: Resurgence and differential reinforcement of alternative responding.

    PubMed

    Bloom, Sarah E; Lambert, Joseph M

    2015-12-01

    During the maintenance stages of differential reinforcement of alternative responding (DRA), failure to reinforce alternative responses could result in a resurgence of problem behavior. However, translational work done with arbitrary human responses suggests that teaching individuals to emit multiple alternative responses in sequential order may facilitate the resurgence of appropriate, rather than problem, behavior. This paper discusses the practical implications of serial DRA training on problem and appropriate behavior resurgence, as presented in the preceding article, "Serial Alternative Response Training As Intervention for Target Response Resurgence." Clinical scenarios as well as implications for self-advocacy and acceptability of behavioral interventions are considered.

  14. Revealing Numerical Solutions of a Differential Equation

    ERIC Educational Resources Information Center

    Glaister, P.

    2006-01-01

    In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…

  15. Alternative Splicing of G9a Regulates Neuronal Differentiation.

    PubMed

    Fiszbein, Ana; Giono, Luciana E; Quaglino, Ana; Berardino, Bruno G; Sigaut, Lorena; von Bilderling, Catalina; Schor, Ignacio E; Steinberg, Juliana H Enriqué; Rossi, Mario; Pietrasanta, Lía I; Caramelo, Julio J; Srebrow, Anabella; Kornblihtt, Alberto R

    2016-03-29

    Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  16. An Investigation of Differential Reinforcement of Alternative Behavior without Extinction

    ERIC Educational Resources Information Center

    Athens, Elizabeth S.; Vollmer, Timothy R.

    2010-01-01

    We manipulated relative reinforcement for problem behavior and appropriate behavior using differential reinforcement of alternative behavior (DRA) without an extinction component. Seven children with developmental disabilities participated. We manipulated duration (Experiment 1), quality (Experiment 2), delay (Experiment 3), or a combination of…

  17. An Alternative Method of Thinning Reinforcer Delivery during Differential Reinforcement

    ERIC Educational Resources Information Center

    Roane, Henry S.; Fisher, Wayne W.; Sgro, Gina M.; Falcomata, Terry S.; Pabico, Robert R.

    2004-01-01

    Differential reinforcement of alternative behavior (DRA) may result in rates of reinforcement that are impractical for caregivers to implement; therefore, recent research has examined methods for thinning reinforcer delivery during DRA. In this study, reinforcer delivery was thinned during DRA by restricting access to the participant's alternative…

  18. When Unified Teacher Pay Scales Meet Differential Alternative Returns

    ERIC Educational Resources Information Center

    Walsh, Patrick

    2014-01-01

    This paper quantifies the extent to which unified teacher pay scales and differential alternatives produce opportunity costs that are asymmetric in math and verbal skills. Data from the Baccalaureate and Beyond 1997 and 2003 follow-ups are used to estimate a fully parametric, selection-corrected wage equation for nonteachers, which is then used to…

  19. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation.

    PubMed

    Schor, Ignacio E; Fiszbein, Ana; Petrillo, Ezequiel; Kornblihtt, Alberto R

    2013-08-14

    Alternative splicing contributes to cell type-specific transcriptomes. Here, we show that changes in intragenic chromatin marks affect NCAM (neural cell adhesion molecule) exon 18 (E18) alternative splicing during neuronal differentiation. An increase in the repressive marks H3K9me2 and H3K27me3 along the gene body correlated with inhibition of polymerase II elongation in the E18 region, but without significantly affecting total mRNA levels. Treatment with the general DNA methylation inhibitor 5-azacytidine and BIX 01294, a specific inhibitor of H3K9 dimethylation, inhibited the differentiation-induced E18 inclusion, pointing to a role for repressive marks in sustaining NCAM splicing patterns typical of mature neurons. We demonstrate that intragenic deployment of repressive chromatin marks, induced by intronic small interfering RNAs targeting NCAM intron 18, promotes E18 inclusion in undifferentiated N2a cells, confirming the chromatin changes observed upon differentiation to be sufficient to induce alternative splicing. Combined with previous evidence that neuronal depolarization causes H3K9 acetylation and subsequent E18 skipping, our results show how two alternative epigenetic marks regulate NCAM alternative splicing and E18 levels in different cellular contexts.

  20. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation

    PubMed Central

    Schor, Ignacio E; Fiszbein, Ana; Petrillo, Ezequiel; Kornblihtt, Alberto R

    2013-01-01

    Alternative splicing contributes to cell type-specific transcriptomes. Here, we show that changes in intragenic chromatin marks affect NCAM (neural cell adhesion molecule) exon 18 (E18) alternative splicing during neuronal differentiation. An increase in the repressive marks H3K9me2 and H3K27me3 along the gene body correlated with inhibition of polymerase II elongation in the E18 region, but without significantly affecting total mRNA levels. Treatment with the general DNA methylation inhibitor 5-azacytidine and BIX 01294, a specific inhibitor of H3K9 dimethylation, inhibited the differentiation-induced E18 inclusion, pointing to a role for repressive marks in sustaining NCAM splicing patterns typical of mature neurons. We demonstrate that intragenic deployment of repressive chromatin marks, induced by intronic small interfering RNAs targeting NCAM intron 18, promotes E18 inclusion in undifferentiated N2a cells, confirming the chromatin changes observed upon differentiation to be sufficient to induce alternative splicing. Combined with previous evidence that neuronal depolarization causes H3K9 acetylation and subsequent E18 skipping, our results show how two alternative epigenetic marks regulate NCAM alternative splicing and E18 levels in different cellular contexts. PMID:23892457

  1. Differential Impacts of Alternative Splicing Networks on Apoptosis

    PubMed Central

    Lin, Jung-Chun; Tsao, Mei-Fen; Lin, Ying-Ju

    2016-01-01

    Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases. PMID:27983653

  2. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq

    PubMed Central

    Gan, Qiang; Chepelev, Iouri; Wei, Gang; Tarayrah, Lama; Cui, Kairong; Zhao, Keji; Chen, Xin

    2010-01-01

    Both transcription and post-transcriptional processes, such as alternative splicing, play crucial roles in controlling developmental programs in metazoans. Recently emerged RNA-seq method has brought our understandings of eukaryotic transcriptomes to a new level, because it can resolve both gene expression level and alternative splicing events simultaneously. To gain a better understanding of cellular differentiation in gonads, we analyzed mRNA profiles from Drosophila testes and ovaries using RNA-seq. We identified a set of genes that have sex-specific isoforms in wild-type (wt) gonads, including several transcription factors. We found that differentiation of sperms from undifferentiated germ cells induced a dramatic down-regulation of RNA splicing factors. Our data confirmed that RNA splicing events are significantly more frequent in the undifferentiated-cell enriched bag of marbles (bam) mutant testis, but down-regulated upon differentiation in wt testis. Consistent with this, we showed that genes required for meiosis and terminal differentiation in wt testis were mainly regulated at the transcriptional level, but not by alternative splicing. Unexpectedly, we observed an increase in expression of all families of chromatin remodeling factors and histone modifying enzymes in the undifferentiated cell-enriched bam testis. More interestingly, chromatin regulators and histone modifying enzymes with opposite enzymatic activities are co-enriched in undifferentiated cells in testis, suggesting these cells may possess dynamic chromatin architecture. Finally, our data revealed many new features of the Drosophila gonadal transcriptomes, and will lead to a more comprehensive understanding of how differential gene expression and splicing regulate gametogenesis in Drosophila. Our data provided a foundation for the systematic study of gene expression and alternative splicing in many interesting areas of germ cell biology in Drosophila, such as the molecular basis for sexual

  3. Desquamative inflammatory vaginitis: differential diagnosis and alternate diagnostic criteria.

    PubMed

    Bradford, Jennifer; Fischer, Gayle

    2010-10-01

    To describe alternate diagnostic protocols and describe the differential diagnosis for desquamative inflammatory vaginitis (DIV). One hundred one cases of DIV were audited retrospectively. All patients were seen exclusively by the authors in their private practices using diagnostic criteria applicable to local practice limitations. Other potential etiologies (infection, contact irritant vaginitis, fixed drug eruptions, immunobullous diseases, estrogen hypersensitivity vulvovaginitis, and graft-vs-host disease) were excluded by history, examination, and focused trials of treatment. Historical triggers in the study cohort and a control group of 75 women with lichen planus also drawn from the authors' private practice were compared. Patients were treated with 4 to 6 weeks of topical vaginal antibiotics, 94% with clindamycin, and response to treatment was recorded at subsequent follow-up. All patients were white. Of 101 patients, 57 (56%) had historical triggers, most frequently diarrhea or antibiotic treatment. Of the 75 women in the control group with vaginal lichen planus, 11 had historical triggers (15%, p <.0001). Of 101 patients, examination revealed classic ecchymotic findings in 55 (54%), confluent erythema in 36 (36%), involvement of the upper vagina in 8 (8%), and heavy discharge in only 2 (2%). Of 101 patients, 54 (54%) had no significant abnormality on laboratory microbiological testing. Moreover, 20 (20%) had a pure growth of a commensal organism on culture, of which 13 were group B streptococci. Of 101 patients, 96 (95%) were symptomatically and objectively improved at initial review. On the other hand, 45 (45%) required maintenance treatment. Of this group, 10 patients who had triggers for their vaginitis, which were ongoing, were cured when their triggers were finally controlled or cured, leaving 35 patients who required long-term maintenance therapy. Desquamative inflammatory vaginitis seems to be a distinct entity of vaginitis that, in an office

  4. Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development

    PubMed Central

    Kim, Kee K.; Nam, Joseph

    2013-01-01

    Alternative premRNA splicing is a major mechanism to generate diversity of gene products. However, the biological roles of alternative splicing during development remain elusive. Here, we focus on a neuron-specific RNA-binding protein, Rbfox3, recently identified as the antigen of the widely used anti-NeuN antibody. siRNA-mediated loss-of-function studies using the developing chicken spinal cord revealed that Rbfox3 is required to promote neuronal differentiation of postmitotic neurons. Numb premRNA encoding a signaling adaptor protein was found to be a target of Rbfox3 action, and Rbfox3 repressed the inclusion of an alternative exon via binding to the conserved UGCAUG element in the upstream intron. Depleting a specific Numb splice isoform reproduced similar neuronal differentiation defects. Forced expression of the relevant Numb splice isoform was sufficient to rescue, in an isoform-specific manner, postmitotic neurons from defects in differentiation caused by Rbfox3 depletion. Thus, Rbfox3-dependent Numb alternative splicing plays an important role in the progression of neuronal differentiation during vertebrate development. PMID:23420872

  5. An investigation of differential reinforcement of alternative behavior without extinction.

    PubMed

    Athens, Elizabeth S; Vollmer, Timothy R

    2010-01-01

    We manipulated relative reinforcement for problem behavior and appropriate behavior using differential reinforcement of alternative behavior (DRA) without an extinction component. Seven children with developmental disabilities participated. We manipulated duration (Experiment 1), quality (Experiment 2), delay (Experiment 3), or a combination of each (Experiment 4), such that reinforcement favored appropriate behavior rather than problem behavior even though problem behavior still produced reinforcement. Results of Experiments 1 to 3 showed that behavior was often sensitive to manipulations of duration, quality, and delay in isolation, but the largest and most consistent behavior change was observed when several dimensions of reinforcement were combined to favor appropriate behavior (Experiment 4). Results suggest strategies for reducing problem behavior and increasing appropriate behavior without extinction.

  6. AN INVESTIGATION OF DIFFERENTIAL REINFORCEMENT OF ALTERNATIVE BEHAVIOR WITHOUT EXTINCTION

    PubMed Central

    Athens, Elizabeth S; Vollmer, Timothy R

    2010-01-01

    We manipulated relative reinforcement for problem behavior and appropriate behavior using differential reinforcement of alternative behavior (DRA) without an extinction component. Seven children with developmental disabilities participated. We manipulated duration (Experiment 1), quality (Experiment 2), delay (Experiment 3), or a combination of each (Experiment 4), such that reinforcement favored appropriate behavior rather than problem behavior even though problem behavior still produced reinforcement. Results of Experiments 1 to 3 showed that behavior was often sensitive to manipulations of duration, quality, and delay in isolation, but the largest and most consistent behavior change was observed when several dimensions of reinforcement were combined to favor appropriate behavior (Experiment 4). Results suggest strategies for reducing problem behavior and increasing appropriate behavior without extinction. PMID:21541145

  7. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern

    PubMed Central

    Bouton, Clément; Geldreich, Angèle; Ramel, Laëtitia; Ryabova, Lyubov A.; Dimitrova, Maria; Keller, Mario

    2015-01-01

    The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splic-ing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5’ region and sug-gested that the main role of CaMV splicing is to downregulate expression of open read-ing frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA. PMID:26162084

  8. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture.

    PubMed

    Martin, Alicia R; Costa, Helio A; Lappalainen, Tuuli; Henn, Brenna M; Kidd, Jeffrey M; Yee, Muh-Ching; Grubert, Fabian; Cann, Howard M; Snyder, Michael; Montgomery, Stephen B; Bustamante, Carlos D

    2014-08-01

    Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP). The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and regulatory genetics

  9. Alternate states of proteins revealed by detailed energy landscape mapping.

    PubMed

    Tyka, Michael D; Keedy, Daniel A; André, Ingemar; Dimaio, Frank; Song, Yifan; Richardson, David C; Richardson, Jane S; Baker, David

    2011-01-14

    What conformations do protein molecules populate in solution? Crystallography provides a high-resolution description of protein structure in the crystal environment, while NMR describes structure in solution but using less data. NMR structures display more variability, but is this because crystal contacts are absent or because of fewer data constraints? Here we report unexpected insight into this issue obtained through analysis of detailed protein energy landscapes generated by large-scale, native-enhanced sampling of conformational space with Rosetta@home for 111 protein domains. In the absence of tightly associating binding partners or ligands, the lowest-energy Rosetta models were nearly all <2.5 Å C(α)RMSD from the experimental structure; this result demonstrates that structure prediction accuracy for globular proteins is limited mainly by the ability to sample close to the native structure. While the lowest-energy models are similar to deposited structures, they are not identical; the largest deviations are most often in regions involved in ligand, quaternary, or crystal contacts. For ligand binding proteins, the low energy models may resemble the apo structures, and for oligomeric proteins, the monomeric assembly intermediates. The deviations between the low energy models and crystal structures largely disappear when landscapes are computed in the context of the crystal lattice or multimer. The computed low-energy ensembles, with tight crystal-structure-like packing in the core, but more NMR-structure-like variability in loops, may in some cases resemble the native state ensembles of proteins better than individual crystal or NMR structures, and can suggest experimentally testable hypotheses relating alternative states and structural heterogeneity to function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Small molecules reveal an alternative mechanism of Bax activation.

    PubMed

    Brahmbhatt, Hetal; Uehling, David; Al-Awar, Rima; Leber, Brian; Andrews, David

    2016-04-15

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. © 2016 The Author(s).

  11. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  12. Alternative response training, differential reinforcement of other behavior, and extinction in squirrel monkeys (Saimiri sciureus)1

    PubMed Central

    Mulick, J. A.; Leitenberg, H.; Rawson, R. A.

    1976-01-01

    In Experiment I, (a) extinction, (b) extinction plus reinforcement of a discrete alternative response, and (c) differential reinforcement of other behavior were each correlated with a different stimulus in a three-component multiple schedule. The alternative-response procedure more rapidly and completely suppressed behavior than did differential reinforcement of other behavior. Differential reinforcement of other behavior was slightly more effective than extinction alone. In Experiment II, reinforcement of specific alternative behavior during extinction and differential reinforcement of other behavior were used in two components, while one component continued to provide reinforcement for the original response. Once again, the alternative-response procedure was most effective in reducing responding as long as it remained in effect. However, the responding partially recovered when reinforcement for competing behavior was discontinued. In general, responding was less readily reduced by differential reinforcement of other behavior than by the specific alternative-response procedure. PMID:16811914

  13. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature1[OPEN

    PubMed Central

    Jiang, Jianfu; Liu, Xinna; Liu, Guotian; Li, Shaohua

    2017-01-01

    Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. PMID:28049741

  14. Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature.

    PubMed

    Jiang, Jianfu; Liu, Xinna; Liu, Chonghuai; Liu, Guotian; Li, Shaohua; Wang, Lijun

    2017-02-01

    Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels.

  15. Eye movement monitoring reveals differential influences of emotion on memory.

    PubMed

    Riggs, Lily; McQuiggan, Douglas A; Anderson, Adam K; Ryan, Jennifer D

    2010-01-01

    Research shows that memory for emotional aspects of an event may be enhanced at the cost of impaired memory for surrounding peripheral details. However, this has only been assessed directly via verbal reports which reveal the outcome of a long stream of processing but cannot shed light on how/when emotion may affect the retrieval process. In the present experiment, eye movement monitoring (EMM) was used as an indirect measure of memory as it can reveal aspects of online memory processing. For example, do emotions modulate the nature of memory representations or the speed with which such memories can be accessed? Participants viewed central negative and neutral scenes surrounded by three neutral objects and after a brief delay, memory was assessed indirectly via EMM and then directly via verbal reports. Consistent with the previous literature, emotion enhanced central and impaired peripheral memory as indexed by eye movement scanning and verbal reports. This suggests that eye movement scanning may contribute and/or is related to conscious access of memory. However, the central/peripheral tradeoff effect was not observed in an early measure of eye movement behavior, i.e., participants were faster to orient to a critical region of change in the periphery irrespective of whether it was previously studied in a negative or neutral context. These findings demonstrate emotion's differential influences on different aspects of retrieval. In particular, emotion appears to affect the detail within, and/or the evaluation of, stored memory representations, but it may not affect the initial access to those representations.

  16. Differential Reinforcement of Alternative Behavior in Center-Based Classrooms: Evaluation of Pre-Teaching the Alternative Behavior

    ERIC Educational Resources Information Center

    LeGray, Matthew W.; Dufrene, Brad A.; Mercer, Sterett; Olmi, D. Joe; Sterling, Heather

    2013-01-01

    This study investigated the effectiveness of a differential reinforcement of alternative behavior procedure in decreasing disruptive behavior while simultaneously increasing the appropriate behavior of four children of typical development between the ages of 4 and 6 in center-based classrooms. We began with brief functional analyses for each…

  17. Differential Reinforcement of Alternative Behavior in Center-Based Classrooms: Evaluation of Pre-Teaching the Alternative Behavior

    ERIC Educational Resources Information Center

    LeGray, Matthew W.; Dufrene, Brad A.; Mercer, Sterett; Olmi, D. Joe; Sterling, Heather

    2013-01-01

    This study investigated the effectiveness of a differential reinforcement of alternative behavior procedure in decreasing disruptive behavior while simultaneously increasing the appropriate behavior of four children of typical development between the ages of 4 and 6 in center-based classrooms. We began with brief functional analyses for each…

  18. On the Lower Alternating Integral of Pontryagin in Linear Differential Games of Pursuit

    NASA Astrophysics Data System (ADS)

    Nikol'skiĭ, M. S.

    1987-02-01

    In this article the concept of the lower alternating integral of Pontryagin, which differs from the analogous concept of A. Azamov (MR 83k: 90142), is introduced. The properties of this object are studied in comparison with those of the alternating integral of Pontryagin. A procedure is given for application of the lower alternating integral of Pontryagin to linear differential games of pursuit, with special consideration for the question of using the lower alternating integral of Pontryagin when there are countably many measurements of the phase vector. The results are illustrated in two known differential games: "the boy and the crocodile" and the "control example of Pontryagin."Bibliography: 18 titles.

  19. Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages

    PubMed Central

    Palii, Carmen G; Perez-Iratxeta, Carolina; Yao, Zizhen; Cao, Yi; Dai, Fengtao; Davison, Jerry; Atkins, Harold; Allan, David; Dilworth, F Jeffrey; Gentleman, Robert; Tapscott, Stephen J; Brand, Marjorie

    2011-01-01

    TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T-cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells. Analysis of the genome-wide binding properties of TAL1 in these two haematopoietic lineages revealed new insight into the mechanism by which transcription factors select their binding sites in alternate lineages. Our study shows limited overlap in the TAL1-binding profile between the two cell types with an unexpected preference for ETS and RUNX motifs adjacent to E-boxes in the T-cell lineage. Furthermore, we show that TAL1 interacts with RUNX1 and ETS1, and that these transcription factors are critically required for TAL1 binding to genes that modulate T-cell differentiation. Thus, our findings highlight a critical role of the cellular environment in modulating transcription factor binding, and provide insight into the mechanism by which TAL1 inhibits differentiation leading to oncogenesis in the T-cell lineage. PMID:21179004

  20. Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes

    PubMed Central

    2013-01-01

    Background Understanding how alternative phenotypes arise from the same genome is a major challenge in modern biology. Eusociality in insects requires the evolution of two alternative phenotypes - workers, who sacrifice personal reproduction, and queens, who realize that reproduction. Extensive work on honeybees and ants has revealed the molecular basis of derived queen and worker phenotypes in highly eusocial lineages, but we lack equivalent deep-level analyses of wasps and of primitively eusocial species, the latter of which can reveal how phenotypic decoupling first occurs in the early stages of eusocial evolution. Results We sequenced 20 Gbp of transcriptomes derived from brains of different behavioral castes of the primitively eusocial tropical paper wasp Polistes canadensis. Surprisingly, 75% of the 2,442 genes differentially expressed between phenotypes were novel, having no significant homology with described sequences. Moreover, 90% of these novel genes were significantly upregulated in workers relative to queens. Differential expression of novel genes in the early stages of sociality may be important in facilitating the evolution of worker behavioral complexity in eusocial evolution. We also found surprisingly low correlation in the identity and direction of expression of differentially expressed genes across similar phenotypes in different social lineages, supporting the idea that social evolution in different lineages requires substantial de novo rewiring of molecular pathways. Conclusions These genomic resources for aculeate wasps and first transcriptome-wide insights into the origin of castes bring us closer to a more general understanding of eusocial evolution and how phenotypic diversity arises from the same genome. PMID:23442883

  1. Differential Shannon entropy and differential coefficient of variation: alternatives and augmentations to differential expression in the search for disease-related genes.

    PubMed

    Wang, Kai; Phillips, Charles A; Rogers, Gary L; Barrenas, Fredrik; Benson, Mikael; Langston, Michael A

    2014-01-01

    Differential expression has been a standard tool for analysing case-control transcriptomic data since the advent of microarray technology. It has proved invaluable in characterising the molecular mechanisms of disease. Nevertheless, the expression profile of a gene across samples can be perturbed in ways that leave the expression level unaltered, while a biological effect is nonetheless present. This paper describes and analyses differential Shannon entropy and differential coefficient of variation, two alternate techniques for identifying genes of interest. Ontological analysis across 16 human disease datasets demonstrates that these alternatives are effective at identifying disease-related genes not found by mere differential expression alone. Because the two alternate techniques are based on somewhat different mathematical formulations, they tend to produce somewhat different gene lists. Moreover, each may pinpoint genes completely overlooked by the other. Thus, measures of entropy and variation can be used to replace or better yet augment standard differential expression computations.

  2. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis.

    PubMed

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  3. MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data

    PubMed Central

    Shen, Shihao; Park, Juw Won; Huang, Jian; Dittmar, Kimberly A.; Lu, Zhi-xiang; Zhou, Qing; Carstens, Russ P.; Xing, Yi

    2012-01-01

    Ultra-deep RNA sequencing has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We develop MATS (multivariate analysis of transcript splicing), a Bayesian statistical framework for flexible hypothesis testing of differential alternative splicing patterns on RNA-Seq data. MATS uses a multivariate uniform prior to model the between-sample correlation in exon splicing patterns, and a Markov chain Monte Carlo (MCMC) method coupled with a simulation-based adaptive sampling procedure to calculate the P-value and false discovery rate (FDR) of differential alternative splicing. Importantly, the MATS approach is applicable to almost any type of null hypotheses of interest, providing the flexibility to identify differential alternative splicing events that match a given user-defined pattern. We evaluated the performance of MATS using simulated and real RNA-Seq data sets. In the RNA-Seq analysis of alternative splicing events regulated by the epithelial-specific splicing factor ESRP1, we obtained a high RT–PCR validation rate of 86% for differential exon skipping events with a MATS FDR of <10%. Additionally, over the full list of RT–PCR tested exons, the MATS FDR estimates matched well with the experimental validation rate. Our results demonstrate that MATS is an effective and flexible approach for detecting differential alternative splicing from RNA-Seq data. PMID:22266656

  4. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis

    PubMed Central

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  5. Proteomic Characterization Reveals a Molecular Portrait of Nasopharyngeal Carcinoma Differentiation

    PubMed Central

    Xiao, Zhefeng; Li, Maoyu; Li, Guoqing; Fu, Ying; Peng, Fang; Chen, Yongheng; Chen, Zhuchu

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is categorized into three different differentiated subtypes by World Health Organization (WHO). Based on an earlier comparative proteomic database of the three histological subtypes, the study was to deepen our understanding of molecular mechanisms associated with NPC differentiation through bio-information mining. Among the three subtypes were 194 differentially expressed proteins (DEPs) of 725 identified proteins. Two DEPs, heat shock protein family B (small) member 1 (HSPB1) and keratin 5 (KRT5), were validated in a series of NPC tissue samples by using immunohistochemistry. Quantified protein families including keratins, S100 proteins (S100s) and heat shock proteins exhibited characteristic expression alterations. Comparisons of predicted bio-function activation states among different subtypes, including formation of cellular protrusion, metastasis, cell death, and viral infections, were conducted. Canonical pathway analysis inferred that Rho GTPases related signaling pathways regulated the motility and invasion of dedifferentiated NPC. In conclusion, the study explored the proteomic characteristics of NPC differentiation, which could deepen our knowledge of NPC tumorigenesis and allow the development of novel targets of therapeutic and prognostic value in NPC. PMID:28367237

  6. Fourier transform infrared microspectroscopy reveals biochemical changes associated with glioma stem cell differentiation.

    PubMed

    Kenig, Saša; Bedolla, Diana E; Birarda, Giovanni; Faoro, Valentina; Mitri, Elisa; Vindigni, Alessandro; Storici, Paola; Vaccari, Lisa

    2015-12-01

    According to the cancer stem cell theory malignant glioma is incurable because of the presence of the cancer stem cells - a subpopulation of cells that are resistant to therapy and cause the recurrence of a tumor after surgical resection. Several protein markers of cancer stem cell were reported but none of those is fully reliable to grade the content of stem cells in a tumor. Hereby we propose Fourier transform infrared (FTIR) microspectroscopy as an alternative, labelfree, non-damaging and fast method to identify glioma stem cells based on their own spectral characteristics. The analysis of FTIR data revealed that in NCH421k cells, a model of glioma stem cells, the relative content of lipids is higher than in their all-trans retinoic acid-differentiated counterparts. Moreover, it has been assessed that stem cells have more rigid cellular membranes and more phosphorylated proteins, whereas after differentiation glycogen level increases. The ability of FTIR to estimate the content of stem cells in a heterogeneous sample, on the base of the identified spectral markers, and to classify stem and non-stem cells into two separate populations was probed. Although it was not possible to calculate the exact percentage of each subpopulation, we could clearly see that with the increasing amount of differentiated cells in a sample, more hits occupy the PC space previously identified as a space of differentiated cells. The present study is therefore an initial step towards the development of a FTIR based protocol in clinical practice to estimate the content of stem cells in a tumor sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Chronology of Islet Differentiation Revealed By Temporal Cell Labeling

    PubMed Central

    Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.

    2009-01-01

    OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145

  8. Microarray analysis reveals differential gene expression in hybrid sunflower species

    PubMed Central

    LAI, ZHAO; GROSS, BRIANA L.; YIZOU; ANDREWS, JUSTEN; RIESEBERG, LOREN H.

    2008-01-01

    This paper describes the creation of a cDNA microarray for annual sunflowers and its use to elucidate patterns of gene expression in Helianthus annuus, Helianthus petiolaris, and the homoploid hybrid species Helianthus deserticola. The array comprises 3743 ESTs (expressed sequence tags) representing approximately 2897 unique genes. It has an average clone/EST identity rate of 91%, is applicable across species boundaries within the annual sunflowers, and shows patterns of gene expression that are highly reproducible according to real-time RT–PCR (reverse transcription–polymerase chain reaction) results. Overall, 12.8% of genes on the array showed statistically significant differential expression across the three species. Helianthus deserticola displayed transgressive, or extreme, expression for 58 genes, with roughly equal numbers exhibiting up- or down-regulation relative to both parental species. Transport-related proteins were strongly over-represented among the transgressively expressed genes, which makes functional sense given the extreme desert floor habitat of H. deserticola. The potential adaptive value of differential gene expression was evaluated for five genes in two populations of early generation (BC2) hybrids between the parental species grown in the H. deserticola habitat. One gene (a G protein-coupled receptor) had a significant association with fitness and maps close to a QTL controlling traits that may be adaptive in the desert habitat. PMID:16626449

  9. Biophysical Characteristics Reveal Neural Stem Cell Differentiation Potential

    PubMed Central

    Mulhall, Hayley J.; Marchenko, Steve A.; Hoettges, Kai F.; Estrada, Laura C.; Lee, Abraham P.; Hughes, Michael P.; Flanagan, Lisa A.

    2011-01-01

    Background Distinguishing human neural stem/progenitor cell (huNSPC) populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers. Methodology/Principal Findings We used dielectrophoresis (DEP) to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates. Conclusions/Significance We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors. PMID:21980464

  10. A genome wide analysis of alternative splicing events during the osteogenic differentiation of human cartilage endplate-derived stem cells.

    PubMed

    Shang, Jin; Wang, Honggang; Fan, Xin; Shangguan, Lei; Liu, Huan

    2016-08-01

    Low back pain is a prevalent disease, which leads to suffering and disabilities in a vast number of individuals. Degenerative disc diseases are usually the underlying causes of low back pain. However, the pathogenesis of degenerative disc diseases is highly complex and difficult to determine. Current therapies for degenerative disc diseases are various. In particular, cell-based therapies have proven to be effective and promising. Our research group has previously isolated and identified the cartilage endplate‑derived stem cells. In addition, alternative splicing is a sophisticated regulatory mechanism, which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. The present study continued to investigate alternative splicing events in osteogenic differentiation of cartilage endplate‑derived stem cells. An Affymetrix Human Transcriptome Array 2.0 was used to detect splicing changes between the control and differentiated samples. Additionally, molecular function and pathway analysis were also performed. Following rigorous bioinformatics analysis of the data, 3,802 alternatively spliced genes were identified, and 10 of these were selected for validation by reverse transcription‑polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis also revealed numerous enriched GO terms and signaling pathways. To the best of our knowledge, the present study is the first to investigate alternative splicing mechanisms in osteogenic differentiation of stem cells on a genome‑wide scale. The illumination of molecular mechanisms of stem cell osteogenic differentiation may assist the development novel bioengineered methods to treat degenerative disc diseases.

  11. New CD20 alternative splice variants: molecular identification and differential expression within hematological B cell malignancies.

    PubMed

    Gamonet, Clémentine; Bole-Richard, Elodie; Delherme, Aurélia; Aubin, François; Toussirot, Eric; Garnache-Ottou, Francine; Godet, Yann; Ysebaert, Loïc; Tournilhac, Olivier; Caroline, Dartigeas; Larosa, Fabrice; Deconinck, Eric; Saas, Philippe; Borg, Christophe; Deschamps, Marina; Ferrand, Christophe

    2015-01-01

    CD20 is a B cell lineage-specific marker expressed by normal and leukemic B cells and targeted by several antibody immunotherapies. We have previously shown that the protein from a CD20 mRNA splice variant (D393-CD20) is expressed at various levels in leukemic B cells or lymphoma B cells but not in resting, sorted B cells from the peripheral blood of healthy donors. Western blot (WB) analysis of B malignancy primary samples showed additional CD20 signals. Deep molecular PCR analysis revealed four new sequences corresponding to in-frame CD20 splice variants (D657-CD20, D618-CD20, D480-CD20, and D177-CD20) matching the length of WB signals. We demonstrated that the cell spliceosome machinery can process ex vivo D480-, D657-, and D618-CD20 transcript variants by involving canonical sites associated with cryptic splice sites. Results of specific and quantitative RT-PCR assays showed that these CD20 splice variants are differentially expressed in B malignancies. Moreover, Epstein-Barr virus (EBV) transformation modified the CD20 splicing profile and mainly increased the D393-CD20 variant transcripts. Finally, investigation of three cohorts of chronic lymphocytic leukemia (CLL) patients showed that the total CD20 splice variant expression was higher in a stage B and C sample collection compared to routinely collected CLL samples or relapsed refractory stage A, B, or C CLL. The involvement of these newly discovered alternative CD20 transcript variants in EBV transformation makes them interesting molecular indicators, as does their association with oncogenesis rather than non-oncogenic B cell diseases, differential expression in B cell malignancies, and correlation with CLL stage and some predictive CLL markers. This potential should be investigated in further studies.

  12. Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway

    PubMed Central

    Ptitsyn, Andrey A; Gimble, Jeffrey M

    2007-01-01

    Background It has been previously reported that most mammalian genes display a circadian oscillation in their baseline expression. Consequently, the phase and amplitude of each component of a signal transduction cascade has downstream consequences. Results Here, we report our analysis of alternative transcripts in the leptin signaling pathway which is responsible for the systemic regulation of macronutrient storage and energy balance. We focused on the circadian expression pattern of a critical component of the leptin signaling system, suppressor of cytokine signaling 3 (SOCS3). On an Affymetrix GeneChip 430A2 microarray, this gene is represented by three probe sets targeting different regions within the 3' end of the last exon. We demonstrate that in murine brown adipose tissue two downstream 3' probe sets experience circadian baseline oscillation in counter-phase to the upstream probe set. Such differences in expression patterns are a telltale sign of alternative splicing within the last exon of SOCS3. In contrast, all three probe sets oscillated in a common phase in murine liver and white adipose tissue. This suggests that the regulation of SOCS3 expression in brown fat is tissue specific. Another component of the signaling pathway, Janus kinase (JAK), is directly regulated by SOCS and has alternative transcript probe sets oscillating in counter-phase in a white adipose tissue specific manner. Conclusion We hypothesize that differential oscillation of alternative transcripts may provide a mechanism to maintain steady levels of expression in spite of circadian baseline variation. PMID:18047714

  13. Differential Network Analysis Reveals Genetic Effects on Catalepsy Modules

    PubMed Central

    Iancu, Ovidiu D.; Oberbeck, Denesa; Darakjian, Priscila; Kawane, Sunita; Erk, Jason; McWeeney, Shannon; Hitzemann, Robert

    2013-01-01

    We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS) formed by crossing four inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross (CC). All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections. PMID:23555609

  14. A Review of Empirical Support for Differential Reinforcement of Alternative Behavior

    ERIC Educational Resources Information Center

    Petscher, Erin S.; Rey, Catalina; Bailey, Jon S.

    2009-01-01

    Differential reinforcement of alternative behavior (DRA) is one of the most common behavior analytic interventions used to decrease unwanted behavior. We reviewed the DRA literature from the past 30 years to identify the aspects that are thoroughly researched and those that would benefit from further emphasis. We found and coded 116 empirical…

  15. Comparing Main and Collateral Effects of Extinction and Differential Reinforcement of Alternative Behavior

    ERIC Educational Resources Information Center

    Petscher, Erin Seligson; Bailey, Jon S.

    2008-01-01

    This study evaluated the effects and collateral effects of extinction (EXT) and differential reinforcement of alternative behavior (DRA) interventions with inappropriate vocalizations and work refusal. Both interventions have been used frequently to reduce problem behaviors. The benefits of these interventions have been established yet may be…

  16. Introducing Differential Equations Students to the Fredholm Alternative--In Staggered Doses

    ERIC Educational Resources Information Center

    Savoye, Philippe

    2011-01-01

    The development, in an introductory differential equations course, of boundary value problems in parallel with initial value problems and the Fredholm Alternative. Examples are provided of pairs of homogeneous and nonhomogeneous boundary value problems for which existence and uniqueness issues are considered jointly. How this heightens students'…

  17. Alternative Differential Identification Approaches for 2 Similar Bacilli Commonly Studied in Microbiology.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1991-01-01

    Alternatives to the traditional unknown tests that permit a clear and unequivocal differential identification decision between Bacillus subtilis and Bacillus megaterium are presented. Plates of Phenylethyl Alcohol agar with Blood (PEAB), slants of Bile Esculin agar and plates of DNA agar are used. The materials, methods, results, and conclusions…

  18. Alternative Differential Identification Approaches for 2 Similar Bacilli Commonly Studied in Microbiology.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1991-01-01

    Alternatives to the traditional unknown tests that permit a clear and unequivocal differential identification decision between Bacillus subtilis and Bacillus megaterium are presented. Plates of Phenylethyl Alcohol agar with Blood (PEAB), slants of Bile Esculin agar and plates of DNA agar are used. The materials, methods, results, and conclusions…

  19. Effects of Treatment Integrity Failures during Differential Reinforcement of Alternative Behavior: A Translational Model

    ERIC Educational Resources Information Center

    Pipkin, Claire St. Peter; Vollmer, Timothy R.; Sloman, Kimberly N.

    2010-01-01

    Differential reinforcement of alternative behavior (DRA) is used frequently as a treatment for problem behavior. Previous studies on treatment integrity failures during DRA suggest that the intervention is robust, but research has not yet investigated the effects of different types of integrity failures. We examined the effects of two types of…

  20. Introducing Differential Equations Students to the Fredholm Alternative--In Staggered Doses

    ERIC Educational Resources Information Center

    Savoye, Philippe

    2011-01-01

    The development, in an introductory differential equations course, of boundary value problems in parallel with initial value problems and the Fredholm Alternative. Examples are provided of pairs of homogeneous and nonhomogeneous boundary value problems for which existence and uniqueness issues are considered jointly. How this heightens students'…

  1. SRSF10 Plays a Role in Myoblast Differentiation and Glucose Production via Regulation of Alternative Splicing.

    PubMed

    Wei, Ning; Cheng, Yuanming; Wang, Zhijia; Liu, Yuguo; Luo, Chunling; Liu, Lina; Chen, Linlin; Xie, Zhiqin; Lu, Yun; Feng, Ying

    2015-11-24

    Alternative splicing is a major mechanism of controlling gene expression and protein diversity in higher eukaryotes. We report that the splicing factor SRSF10 functions during striated muscle development, myoblast differentiation, and glucose production both in cells and in mice. A combination of RNA-sequencing and molecular analysis allowed us to identify muscle-specific splicing events controlled by SRSF10 that are critically involved in striated muscle development. Inclusion of alternative exons 16 and 17 of Lrrfip1 is a muscle-specific event that is activated by SRSF10 and essential for myoblast differentiation. On the other hand, in mouse primary hepatocytes, PGC1α is a key target of SRSF10 that regulates glucose production by fasting. SRSF10 represses inclusion of PGC1α exon 7a and facilitates the production of functional protein. The results highlight the biological significance of SRSF10 and regulated alternative splicing in vivo.

  2. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium

    PubMed Central

    Iskandar, Christelle F.; Borges, Frédéric; Taminiau, Bernard; Daube, Georges; Zagorec, Monique; Remenant, Benoît; Leisner, Jørgen J.; Hansen, Martin A.; Sørensen, Søren J.; Mangavel, Cécile; Cailliez-Grimal, Catherine; Revol-Junelles, Anne-Marie

    2017-01-01

    Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium. PMID:28337181

  3. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength

    PubMed Central

    Paskin, Taylor R.; Jellies, John; Bacher, Jessica; Beane, Wendy S.

    2014-01-01

    Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment. PMID:25493551

  4. Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans.

    PubMed

    Koepff, Joachim; Morschett, Holger; Busche, Tobias; Winkler, Anika; Kalinowski, Jörn; Wiechert, Wolfgang; Oldiges, Marco

    2017-09-27

    Recently, a comprehensive screening workflow for the filamentous bacterium Streptomyces lividans, a highly performant source for pharmaceutically active agents was introduced. This framework used parallelized cultivation in microtiter plates to efficiently accelerate early upstream process development. Focusing on growth performance, cultivation was successfully scaled-up to 1 liter stirred tank reactors. However, metabolic adaptation was observed on the transcriptomic level as among others, several genes incorporated in light response were up-regulated during bioreactor cultivation. Despite it was assumed that this was attributed to the fact that reactor cultivations were carried out in glass vessels exposed to daylight and artificial room light, this setup did not allow distinguishing exclusively between light and other effects. Upon that, the present study directly investigates the influence of light by defined illumination of microtiter plate cultures. Almost identical growth performance was observed for cultures grown in the dark or with illumination. Transcriptomics revealed the up-regulation of seven genes of which 6 have previously been described to be relevant for carotenoid synthesis and its regulation. These pigments are effective quenchers of reactive oxygen species. The seventh transcript coded for a photo-lyase incorporated in UV-damage repair of DNA further confirming induced light response. However, this was fully compensated by metabolic adaptation on the transcriptomic level and overall process performance was maintained. Consequently, environmental conditions need extremely careful control and evaluation during in-depth omics analysis of bioprocesses. Otherwise metabolic adaptation induced by such issues can easily be misinterpreted, especially during studies addressing cultivation system comparisons. This article is protected by copyright. All rights reserved. © 2017 American Institute of Chemical Engineers.

  5. Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer.

    PubMed

    Snezhkina, Anastasiya Vladimirovna; Krasnov, George Sergeevich; Zaretsky, Andrew Rostislavovich; Zhavoronkov, Alex; Nyushko, Kirill Mikhailovich; Moskalev, Alexey Alexandrovich; Karpova, Irina Yurievna; Afremova, Anastasiya Isaevna; Lipatova, Anastasiya Valerievna; Kochetkov, Dmitriy Vladimitovich; Fedorova, Maria Sergeena; Volchenko, Nadezhda Nikolaevna; Sadritdinova, Asiya Fayazovna; Melnikova, Nataliya Vladimirovna; Sidorov, Dmitry Vladimirovich; Popov, Anatoly Yurievich; Kalinin, Dmitry Valerievich; Kaprin, Andrey Dmitrievich; Alekseev, Boris Yakovlevich; Dmitriev, Alexey Alexandrovich; Kudryavtseva, Anna Viktorovna

    2016-12-28

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. CRC molecular pathogenesis is heterogeneous and may be followed by mutations in oncogenes and tumor suppressor genes, chromosomal and microsatellite instability, alternative splicing alterations, hypermethylation of CpG islands, oxidative stress, impairment of different signaling pathways and energy metabolism. In the present work, we have studied the alterations of alternative splicing patterns of genes related to energy metabolism in CRC. Using CrossHub software, we analyzed The Cancer Genome Atlas (TCGA) RNA-Seq datasets derived from colon tumor and matched normal tissues. The expression of 1014 alternative mRNA isoforms involved in cell energy metabolism was examined. We found 7 genes with differentially expressed alternative transcripts whereas overall expression of these genes was not significantly altered in CRC. A set of 8 differentially expressed transcripts of interest has been validated by qPCR. These eight isoforms encoded by OGDH, COL6A3, ICAM1, PHPT1, PPP2R5D, SLC29A1, and TRIB3 genes were up-regulated in colorectal tumors, and this is in concordance with the bioinformatics data. The alternative transcript NM_057167 of COL6A3 was also strongly up-regulated in breast, lung, prostate, and kidney tumors. Alternative transcript of SLC29A1 (NM_001078177) was up-regulated only in CRC samples, but not in the other tested tumor types. We identified tumor-specific expression of alternative spliced transcripts of seven genes involved in energy metabolism in CRC. Our results bring new knowledge on alternative splicing in colorectal cancer and suggest a set of mRNA isoforms that could be used for cancer diagnosis and development of treatment methods.

  6. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini

    SciTech Connect

    Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

    2003-03-25

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

  7. Global genome splicing analysis reveals an increased number of alternatively spliced genes with aging.

    PubMed

    Rodríguez, Sofía A; Grochová, Diana; McKenna, Tomás; Borate, Bhavesh; Trivedi, Niraj S; Erdos, Michael R; Eriksson, Maria

    2016-04-01

    Alternative splicing (AS) is a key regulatory mechanism for the development of different tissues; however, not much is known about changes to alternative splicing during aging. Splicing events may become more frequent and widespread genome-wide as tissues age and the splicing machinery stringency decreases. Using skin, skeletal muscle, bone, thymus, and white adipose tissue from wild-type C57BL6/J male mice (4 and 18 months old), we examined the effect of age on splicing by AS analysis of the differential exon usage of the genome. The results identified a considerable number of AS genes in skeletal muscle, thymus, bone, and white adipose tissue between the different age groups (ranging from 27 to 246 AS genes corresponding to 0.3-3.2% of the total number of genes analyzed). For skin, skeletal muscle, and bone, we included a later age group (28 months old) that showed that the number of alternatively spliced genes increased with age in all three tissues (P < 0.01). Analysis of alternatively spliced genes across all tissues by gene ontology and pathway analysis identified 158 genes involved in RNA processing. Additional analysis of AS in a mouse model for the premature aging disease Hutchinson-Gilford progeria syndrome was performed. The results show that expression of the mutant protein, progerin, is associated with an impaired developmental splicing. As progerin accumulates, the number of genes with AS increases compared to in wild-type skin. Our results indicate the existence of a mechanism for increased AS during aging in several tissues, emphasizing that AS has a more important role in the aging process than previously known.

  8. Transcriptome-wide functional characterization reveals novel relationships among differentially expressed transcripts in developing soybean embryos.

    PubMed

    Aghamirzaie, Delasa; Batra, Dhruv; Heath, Lenwood S; Schneider, Andrew; Grene, Ruth; Collakova, Eva

    2015-11-14

    Transcriptomics reveals the existence of transcripts of different coding potential and strand orientation. Alternative splicing (AS) can yield proteins with altered number and types of functional domains, suggesting the global occurrence of transcriptional and post-transcriptional events. Many biological processes, including seed maturation and desiccation, are regulated post-transcriptionally (e.g., by AS), leading to the production of more than one coding or noncoding sense transcript from a single locus. We present an integrated computational framework to predict isoform-specific functions of plant transcripts. This framework includes a novel plant-specific weighted support vector machine classifier called CodeWise, which predicts the coding potential of transcripts with over 96 % accuracy, and several other tools enabling global sequence similarity, functional domain, and co-expression network analyses. First, this framework was applied to all detected transcripts (103,106), out of which 13 % was predicted by CodeWise to be noncoding RNAs in developing soybean embryos. Second, to investigate the role of AS during soybean embryo development, a population of 2,938 alternatively spliced and differentially expressed splice variants was analyzed and mined with respect to timing of expression. Conserved domain analyses revealed that AS resulted in global changes in the number, types, and extent of truncation of functional domains in protein variants. Isoform-specific co-expression network analysis using ArrayMining and clustering analyses revealed specific sub-networks and potential interactions among the components of selected signaling pathways related to seed maturation and the acquisition of desiccation tolerance. These signaling pathways involved abscisic acid- and FUSCA3-related transcripts, several of which were classified as noncoding and/or antisense transcripts and were co-expressed with corresponding coding transcripts. Noncoding and antisense transcripts

  9. SRSF10 regulates alternative splicing and is required for adipocyte differentiation.

    PubMed

    Li, Huang; Cheng, Yuanming; Wu, Wenwu; Liu, Yuguo; Wei, Ning; Feng, Xiaoyan; Xie, Zhiqin; Feng, Ying

    2014-06-01

    During adipocyte differentiation, significant alternative splicing changes occur in association with the adipogenic process. However, little is known about roles played by splicing factors in this process. We observed that mice deficient for the splicing factor SRSF10 exhibit severely impaired development of subcutaneous white adipose tissue (WAT) as a result of defects in adipogenic differentiation. To identify splicing events responsible for this, transcriptome sequencing (RNA-seq) analysis was performed using embryonic fibroblast cells. Several SRSF10-affected splicing events that are implicated in adipogenesis have been identified. Notably, lipin1, known as an important regulator during adipogenesis, was further investigated. While lipin1β is mainly involved in lipogenesis, its alternatively spliced isoform lipin1α, generated through the skipping of exon 7, is primarily required for initial adipocyte differentiation. Skipping of exon 7 is controlled by an SRSF10-regulated cis element located in the constitutive exon 8. The activity of this element depends on the binding of SRSF10 and correlates with the relative abundance of lipin1α mRNA. A series of experiments demonstrated that SRSF10 controls the production of lipin1α and thus promotes adipocyte differentiation. Indeed, lipin1α expression could rescue SRSF10-mediated adipogenic defects. Taken together, our results identify SRSF10 as an essential regulator for adipocyte differentiation and also provide new insights into splicing control by SRSF10 in lipin1 pre-mRNA splicing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation.

    PubMed

    Gopinath, Chetna; Law, William D; Rodríguez-Molina, José F; Prasad, Arjun B; Song, Lingyun; Crawford, Gregory E; Mullikin, James C; Svaren, John; Antonellis, Anthony

    2016-11-07

    The transcription factor SOX10 is essential for all stages of Schwann cell development including myelination. SOX10 cooperates with other transcription factors to activate the expression of key myelin genes in Schwann cells and is therefore a context-dependent, pro-myelination transcription factor. As such, the identification of genes regulated by SOX10 will provide insight into Schwann cell biology and related diseases. While genome-wide studies have successfully revealed SOX10 target genes, these efforts mainly focused on myelinating stages of Schwann cell development. We propose that less-biased approaches will reveal novel functions of SOX10 outside of myelination. We developed a stringent, computational-based screen for genome-wide identification of SOX10 response elements. Experimental validation of a pilot set of predicted binding sites in multiple systems revealed that SOX10 directly regulates a previously unreported alternative promoter at SOX6, which encodes a transcription factor that inhibits glial cell differentiation. We further explored the utility of our computational approach by combining it with DNase-seq analysis in cultured Schwann cells and previously published SOX10 ChIP-seq data from rat sciatic nerve. Remarkably, this analysis enriched for genomic segments that map to loci involved in the negative regulation of gliogenesis including SOX5, SOX6, NOTCH1, HMGA2, HES1, MYCN, ID4, and ID2. Functional studies in Schwann cells revealed that: (1) all eight loci are expressed prior to myelination and down-regulated subsequent to myelination; (2) seven of the eight loci harbor validated SOX10 binding sites; and (3) seven of the eight loci are down-regulated upon repressing SOX10 function. Our computational strategy revealed a putative novel function for SOX10 in Schwann cells, which suggests a model where SOX10 activates the expression of genes that inhibit myelination during non-myelinating stages of Schwann cell development. Importantly, the

  11. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    PubMed

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2015-12-22

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.

  12. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation

    PubMed Central

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F.

    2015-01-01

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. PMID:26703587

  13. A reporter mouse reveals lineage-specific and heterogeneous expression of IRF8 during lymphoid and myeloid cell differentiation1

    PubMed Central

    Wang, Hongsheng; Yan, Ming; Sun, Jiafang; Jain, Shweta; Yoshimi, Ryusuke; Abolfath, Sanaz Momben; Ozato, Keiko; Coleman, William G.; Ng, Ashley P.; Metcalf, Donald; DiRago, Ladina; Nutt, Stephen L.; Morse, Herbert C.

    2014-01-01

    The interferon regulatory factor family member 8 (IRF8) regulates differentiation of lymphoid and myeloid lineage cells by promoting or suppressing lineage-specific genes. How IRF8 promotes hematopoietic progenitors to commit to one lineage while preventing the development of alternative lineages is not known. Here we report an IRF8-EGFP fusion protein reporter mouse that revealed previously unrecognized patterns of IRF8 expression. Differentiation of hematopoietic stem cells into oligopotent progenitors is associated with progressive increases in IRF8-EGFP expression. However, significant induction of IRF8-EGFP is found in granulocyte-myeloid progenitors (GMPs) and the common lymphoid progenitors (CLPs) but not the megakaryocytic-erythroid progenitors. Surprisingly, IRF8-EGFP identifies three subsets of the seemingly homogeneous GMPs with an intermediate level of expression of EGFP defining bipotent progenitors that differentiation into either EGFPhi monocytic progenitors or EGFPlo granulocytic progenitors. Also surprisingly, IRF8-EGFP revealed a highly heterogeneous pre-pro-B population with a fluorescence intensity ranging from background to 4 orders above background. Interestingly, IRF8-EGFP readily distinguishes true B cell-committed (EGFPint) from those that are non-committed. Moreover, dendritic cell progenitors expressed extremely high levels of IRF8-EGFP. Taken together, the IRF8-EGFP reporter revealed previously unrecognized subsets with distinct developmental potentials in phenotypically well-defined oligopotent progenitors, providing new insights into the dynamic heterogeneity of developing hematopoietic progenitors. PMID:25024380

  14. Morphometric Differentiation Among Anastrepha fraterculus (Diptera: Tephritidae) Exploiting Sympatric Alternate Hosts.

    PubMed

    Gómez-Cendra, P V; Paulin, L E; Oroño, L; Ovruski, S M; Vilardi, J C

    2016-04-01

    Anastrepha fraterculus (Wiedemann) is currently considered a complex of cryptic species infesting fruits from Mexico to Argentina and represents an interesting biological model for evolutionary studies. Moreover, detecting and quantifying behavioral, morphological, and genetic differentiation among populations is also relevant to the application of environment-friendly control programs. Here, phenotypic differentiation among individuals coexisting in the wild in a Northern region of Argentina was unveiled and associated with host choice. Six morphometric traits were measured in sympatric flies exploiting three different host species. Phenotypic variation was shown to be host-dependent regardless of geographical or temporal overlap. Flies collected from synchronous alternate hosts (peach and walnut) differed from each other despite the lack of geographical isolation. By contrast, flies emerging from guavas that ripen about two months later than peach and walnut showed no significant differentiation in comparison to flies collected from walnuts, but they differ significantly from flies originating from peaches. This result is consistent with the hypothesis that the same population of flies shifts from walnuts to guavas throughout the year, whereas the population of flies that uses peaches as a host is probably exploiting other alternate hosts when peach availability decreases. Further research is needed to study the underlying mechanism. Results are consistent with previous molecular markers (inter-simple sequence repeat-ISSR) research on flies stemming from the same hosts and the same area, suggesting that differentiation among flies emerging from alternative hosts occurs at both genetic and phenotypic levels. The contribution of host preference in long-term genetic differentiation is discussed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Stimulus Fading and Response Elaboration in Differential Reinforcement for Alternative Behavior

    PubMed Central

    Schlichenmeyer, Kevin J.; Dube, William V.; Vargas-Irwin, Mariela

    2015-01-01

    A hallmark of applied behavior analysis is the development of function-based interventions for problem behavior. A widely recommended function-based intervention is differential reinforcement of alternative behavior (DRA), in which reinforcement is contingent upon socially acceptable alternatives to problem behavior (e.g., teaching communication skills). Typically, DRA is introduced under rich schedules of reinforcement. Although effective for initiating behavior change, rich schedules are often impractical in the natural setting. In this study, we evaluated the extent to which a stimulus fading program could be employed to elaborate alternative behavior (mands) in two individuals diagnosed with an Autism Spectrum Disorder. For both participants, problem behavior was reduced substantially upon implementation of the DRA procedure. Further, problem behavior rates remained low and mand rates decreased to more practical levels as the DRA behavioral requirements increased during the fading program. The fading approach demonstrated in this paper may be a useful component of intervention packages for clinicians. PMID:25844032

  16. ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research

    Cancer.gov

    Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated, or M1, macrophages have immune-stimulatory properties and cytotoxic function against tumor cells. Alternatively activated, or M2, macrophages have low cytotoxic function but high tissue-remodeling activity. There are also M2-like cells called tumor-associated macrophages (TAMs) that are responsible for many tumor-promoting activities. Blocking the function of TAMs inhibits tumorigenesis.

  17. Ex-vivo iTreg differentiation revisited: Convenient alternatives to existing strategies.

    PubMed

    Akkaya, Billur; Holstein, Amanda H; Isaac, Christopher; Maz, Mitra P; Glass, Deborah D; Shevach, Ethan M; Akkaya, Munir

    2017-02-01

    Ex-vivo differentiation of regulatory T cells (Tregs) from naïve CD4(+) T-cells has been widely used in immunological research. Isolation of a highly pure naïve T cell population is the key factor that determines the efficiency of subsequent Treg differentiation. Currently, this step relies mostly on FACS sorting, which is often costly, time consuming, and inconvenient. Alternatively, magnetic separation of T-cells can be performed; yet, available protocols fail to reach sort level purity and consequently result in low Treg differentiation efficiency. Here, we present the results of a comprehensive side-by-side comparison of various magnetic separation strategies and FACS sorting in multiple levels. Additionally, we propose a novel optimized custom made magnetic separation protocol, which not only yields sort level purity and Treg differentiation but also lowers the reagent costs up to 75% compared to the commercially available purification kits. The highly pure naïve CD4(+) T-cell population obtained by this versatile method can also be used for differentiation of other T-cell subsets; therefore this protocol may have broad applications in T-cell research.

  18. DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus

    PubMed Central

    2013-01-01

    Background DNA methylation is of pivotal importance during development. Previous genome-wide studies identified numerous differentially methylated regions upon differentiation of stem cells, many of them associated with transcriptional start sites. Results We present the first genome-wide, single-base-resolution view into DNA methylation dynamics during differentiation of a mammalian epithelial stem cell: the mouse small intestinal Lgr5+ stem cell. Very little change was observed at transcriptional start sites and our data suggest that differentiation-related genes are already primed for expression in the stem cell. Genome-wide, only 50 differentially methylated regions were identified. Almost all of these loci represent enhancers driving gene expression in the differentiated part of the small intestine. Finally, we show that binding of the transcription factor Tcf4 correlates with hypo-methylation and demonstrate that Tcf4 is one of the factors contributing to formation of differentially methylated regions. Conclusions Our results reveal limited DNA methylation dynamics during small intestine stem cell differentiation and an impact of transcription factor binding on shaping the DNA methylation landscape during differentiation of stem cells in vivo. PMID:23714178

  19. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation.

    PubMed

    Ozsolak, Fatih; Kapranov, Philipp; Foissac, Sylvain; Kim, Sang Woo; Fishilevich, Elane; Monaghan, A Paula; John, Bino; Milos, Patrice M

    2010-12-10

    The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.

  20. Transcriptome analysis of alternative splicing events regulated by SRSF10 reveals position-dependent splicing modulation.

    PubMed

    Zhou, Xuexia; Wu, Wenwu; Li, Huang; Cheng, Yuanming; Wei, Ning; Zong, Jie; Feng, Xiaoyan; Xie, Zhiqin; Chen, Dai; Manley, James L; Wang, Hui; Feng, Ying

    2014-04-01

    Splicing factor SRSF10 is known to function as a sequence-specific splicing activator. Here, we used RNA-seq coupled with bioinformatics analysis to identify the extensive splicing network regulated by SRSF10 in chicken cells. We found that SRSF10 promoted both exon inclusion and exclusion. Motif analysis revealed that SRSF10 binding to cassette exons was associated with exon inclusion, whereas the binding of SRSF10 within downstream constitutive exons was associated with exon exclusion. This positional effect was further demonstrated by the mutagenesis of potential SRSF10 binding motifs in two minigene constructs. Functionally, many of SRSF10-verified alternative exons are linked to pathways of stress and apoptosis. Consistent with this observation, cells depleted of SRSF10 expression were far more susceptible to endoplasmic reticulum stress-induced apoptosis than control cells. Importantly, reconstituted SRSF10 in knockout cells recovered wild-type splicing patterns and considerably rescued the stress-related defects. Together, our results provide mechanistic insight into SRSF10-regulated alternative splicing events in vivo and demonstrate that SRSF10 plays a crucial role in cell survival under stress conditions.

  1. Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells.

    PubMed

    Kazantseva, Jekaterina; Kivil, Anri; Tints, Kairit; Kazantseva, Anna; Neuman, Toomas; Palm, Kaia

    2013-01-01

    Transcription factor IID (TFIID) activity can be regulated by cellular signals to specifically alter transcription of particular subsets of genes. Alternative splicing of TFIID subunits is often the result of external stimulation of upstream signaling pathways. We studied tissue distribution and cellular expression of different splice variants of TFIID subunit TAF4 mRNA and biochemical properties of its isoforms in human mesenchymal stem cells (hMSCs) to reveal the role of different isoforms of TAF4 in the regulation of proliferation and differentiation. Expression of TAF4 transcripts with exons VI or VII deleted, which results in a structurally modified hTAF4-TAFH domain, increases during early differentiation of hMSCs into osteoblasts, adipocytes and chondrocytes. Functional analysis data reveals that TAF4 isoforms with the deleted hTAF4-TAFH domain repress proliferation of hMSCs and preferentially promote chondrogenic differentiation at the expense of other developmental pathways. This study also provides initial data showing possible cross-talks between TAF4 and TP53 activity and switching between canonical and non-canonical WNT signaling in the processes of proliferation and differentiation of hMSCs. We propose that TAF4 isoforms generated by the alternative splicing participate in the conversion of the cellular transcriptional programs from the maintenance of stem cell state to differentiation, particularly differentiation along the chondrogenic pathway.

  2. Alternative requirements for Vestigial, Scalloped, and Dmef2 during muscle differentiation in Drosophila melanogaster.

    PubMed

    Deng, Hua; Hughes, Sarah C; Bell, John B; Simmonds, Andrew J

    2009-01-01

    Vertebrate development requires the activity of the myocyte enhancer factor 2 (mef2) gene family for muscle cell specification and subsequent differentiation. Additionally, several muscle-specific functions of MEF2 family proteins require binding additional cofactors including members of the Transcription Enhancing Factor-1 (TEF-1) and Vestigial-like protein families. In Drosophila there is a single mef2 (Dmef2) gene as well single homologues of TEF-1 and vestigial-like, scalloped (sd), and vestigial (vg), respectively. To clarify the role(s) of these factors, we examined the requirements for Vg and Sd during Drosophila muscle specification. We found that both are required for muscle differentiation as loss of sd or vg leads to a reproducible loss of a subset of either cardiac or somatic muscle cells in developing embryos. This muscle requirement for Sd or Vg is cell specific, as ubiquitous overexpression of either or both of these proteins in muscle cells has a deleterious effect on muscle differentiation. Finally, using both in vitro and in vivo binding assays, we determined that Sd, Vg, and Dmef2 can interact directly. Thus, the muscle-specific phenotypes we have associated with Vg or Sd may be a consequence of alternative binding of Vg and/or Sd to Dmef2 forming alternative protein complexes that modify Dmef2 activity.

  3. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  4. Atorvastatin promotes human monocyte differentiation toward alternative M2 macrophages through p38 mitogen-activated protein kinase-dependent peroxisome proliferator-activated receptor γ activation.

    PubMed

    Zhang, Ou; Zhang, Jinying

    2015-05-01

    M1 and M2 macrophages are detectable in human atherosclerotic lesions, and M2 macrophages are present at locations distant from the lipid core in more stable zones of the plaque and appear to exert anti-inflammatory properties on M1 macrophages. Peroxisome proliferator-activated receptor (PPAR) γ promotes the differentiation of monocytes into anti-inflammatory M2 macrophages. Although both statins and PPARγ ligands have been reported to protect against the progression of atherosclerosis, no data are currently available regarding the implication of statins in the alternative differentiation of human monocytes. In the present study, we hypothesized that atorvastatin may exert novel effects to prime human monocytes toward an anti-inflammatory alternative M2 phenotype. To this aim, we first found that abundant M2 markers were expressed in human circulating monocytes after atorvastatin treatment. Moreover, atorvastatin was able to induce PPARγ expression and activation in human monocytes in vivo and in vitro, resulting in priming primary human monocytes differentiation into M2 macrophages with a more pronounced paracrine anti-inflammatory activity in M1 macrophages. Additional data with molecular approaches revealed that p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) 1/2 activation was involved in atorvastatin-mediated PPARγ activation and enhanced alternative M2 macrophage phenotype. Collectively, our data demonstrated that atorvastatin promotes human monocyte differentiation toward alternative M2 macrophages via p38 MAPK-dependent PPARγ activation.

  5. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles.

    PubMed

    Blazie, Stephen M; Babb, Cody; Wilky, Henry; Rawls, Alan; Park, Jin G; Mangone, Marco

    2015-01-20

    Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis elegans intestine, pharynx and body muscle tissues and study changes in their tissue-specific transcriptomes and 3'UTRomes. We have identified thousands of novel genes and isoforms differentially expressed between these three tissues. The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs, while muscle transcriptomes are smaller but contain characteristic unique gene signatures. Active promoter regions in all three tissues reveal both known and novel enriched tissue-specific elements, along with putative transcription factors, suggesting novel tissue-specific modes of transcription initiation. We have precisely mapped approximately 20,000 tissue-specific polyadenylation sites and discovered that about 30% of transcripts in somatic cells use alternative polyadenylation in a tissue-specific manner, with their 3'UTR isoforms significantly enriched with microRNA targets. For the first time, PAT-Seq allowed us to directly study tissue specific gene expression changes in an in vivo setting and compare these changes between three somatic tissues from the same organism at single-base resolution within the same experiment. We pinpoint precise tissue-specific transcriptome rearrangements and for the first time link tissue-specific alternative polyadenylation to miRNA regulation, suggesting novel and unexplored tissue-specific post-transcriptional regulatory networks in somatic cells.

  6. Molecular Phylogeny of Sequenced Saccharomycetes Reveals Polyphyly of the Alternative Yeast Codon Usage

    PubMed Central

    Mühlhausen, Stefanie; Kollmar, Martin

    2014-01-01

    The universal genetic code defines the translation of nucleotide triplets, called codons, into amino acids. In many Saccharomycetes a unique alteration of this code affects the translation of the CUG codon, which is normally translated as leucine. Most of the species encoding CUG alternatively as serine belong to the Candida genus and were grouped into a so-called CTG clade. However, the “Candida genus” is not a monophyletic group and several Candida species are known to use the standard CUG translation. The codon identity could have been changed in a single branch, the ancestor of the Candida, or to several branches independently leading to a polyphyletic alternative yeast codon usage (AYCU). In order to resolve the monophyly or polyphyly of the AYCU, we performed a phylogenomics analysis of 26 motor and cytoskeletal proteins from 60 sequenced yeast species. By investigating the CUG codon positions with respect to sequence conservation at the respective alignment positions, we were able to unambiguously assign the standard code or AYCU. Quantitative analysis of the highly conserved leucine and serine alignment positions showed that 61.1% and 17% of the CUG codons coding for leucine and serine, respectively, are at highly conserved positions, whereas only 0.6% and 2.3% of the CUG codons, respectively, are at positions conserved in the respective other amino acid. Plotting the codon usage onto the phylogenetic tree revealed the polyphyly of the AYCU with Pachysolen tannophilus and the CTG clade branching independently within a time span of 30–100 Ma. PMID:25646540

  7. Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing

    PubMed Central

    Shen, Yingjia; Venu, R.C.; Nobuta, Kan; Wu, Xiaohui; Notibala, Varun; Demirci, Caghan; Meyers, Blake C.; Wang, Guo-Liang; Ji, Guoli; Li, Qingshun Q.

    2011-01-01

    Polyadenylation sites mark the ends of mRNA transcripts. Alternative polyadenylation (APA) may alter sequence elements and/or the coding capacity of transcripts, a mechanism that has been demonstrated to regulate gene expression and transcriptome diversity. To study the role of APA in transcriptome dynamics, we analyzed a large-scale data set of RNA “tags” that signify poly(A) sites and expression levels of mRNA. These tags were derived from a wide range of tissues and developmental stages that were mutated or exposed to environmental treatments, and generated using digital gene expression (DGE)–based protocols of the massively parallel signature sequencing (MPSS-DGE) and the Illumina sequencing-by-synthesis (SBS-DGE) sequencing platforms. The data offer a global view of APA and how it contributes to transcriptome dynamics. Upon analysis of these data, we found that ∼60% of Arabidopsis genes have multiple poly(A) sites. Likewise, ∼47% and 82% of rice genes use APA, supported by MPSS-DGE and SBS-DGE tags, respectively. In both species, ∼49%–66% of APA events were mapped upstream of annotated stop codons. Interestingly, 10% of the transcriptomes are made up of APA transcripts that are differentially distributed among developmental stages and in tissues responding to environmental stresses, providing an additional level of transcriptome dynamics. Examples of pollen-specific APA switching and salicylic acid treatment-specific APA clearly demonstrated such dynamics. The significance of these APAs is more evident in the 3034 genes that have conserved APA events between rice and Arabidopsis. PMID:21813626

  8. Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer

    PubMed Central

    Sebestyén, Endre; Zawisza, Michał; Eyras, Eduardo

    2015-01-01

    The determination of the alternative splicing isoforms expressed in cancer is fundamental for the development of tumor-specific molecular targets for prognosis and therapy, but it is hindered by the heterogeneity of tumors and the variability across patients. We developed a new computational method, robust to biological and technical variability, which identifies significant transcript isoform changes across multiple samples. We applied this method to more than 4000 samples from the The Cancer Genome Atlas project to obtain novel splicing signatures that are predictive for nine different cancer types, and find a specific signature for basal-like breast tumors involving the tumor-driver CTNND1. Additionally, our method identifies 244 isoform switches, for which the change occurs in the most abundant transcript. Some of these switches occur in known tumor drivers, including PPARG, CCND3, RALGDS, MITF, PRDM1, ABI1 and MYH11, for which the switch implies a change in the protein product. Moreover, some of the switches cannot be described with simple splicing events. Surprisingly, isoform switches are independent of somatic mutations, except for the tumor-suppressor FBLN2 and the oncogene MYH11. Our method reveals novel signatures of cancer in terms of transcript isoforms specifically expressed in tumors, providing novel potential molecular targets for prognosis and therapy. Data and software are available at: http://dx.doi.org/10.6084/m9.figshare.1061917 and https://bitbucket.org/regulatorygenomicsupf/iso-ktsp. PMID:25578962

  9. Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer.

    PubMed

    Sebestyén, Endre; Zawisza, Michał; Eyras, Eduardo

    2015-02-18

    The determination of the alternative splicing isoforms expressed in cancer is fundamental for the development of tumor-specific molecular targets for prognosis and therapy, but it is hindered by the heterogeneity of tumors and the variability across patients. We developed a new computational method, robust to biological and technical variability, which identifies significant transcript isoform changes across multiple samples. We applied this method to more than 4000 samples from the The Cancer Genome Atlas project to obtain novel splicing signatures that are predictive for nine different cancer types, and find a specific signature for basal-like breast tumors involving the tumor-driver CTNND1. Additionally, our method identifies 244 isoform switches, for which the change occurs in the most abundant transcript. Some of these switches occur in known tumor drivers, including PPARG, CCND3, RALGDS, MITF, PRDM1, ABI1 and MYH11, for which the switch implies a change in the protein product. Moreover, some of the switches cannot be described with simple splicing events. Surprisingly, isoform switches are independent of somatic mutations, except for the tumor-suppressor FBLN2 and the oncogene MYH11. Our method reveals novel signatures of cancer in terms of transcript isoforms specifically expressed in tumors, providing novel potential molecular targets for prognosis and therapy. Data and software are available at: http://dx.doi.org/10.6084/m9.figshare.1061917 and https://bitbucket.org/regulatorygenomicsupf/iso-ktsp.

  10. Genomic Scars Generated by Polymerase Theta Reveal the Versatile Mechanism of Alternative End-Joining

    PubMed Central

    van Schendel, Robin; van Heteren, Jane; Welten, Richard; Tijsterman, Marcel

    2016-01-01

    For more than half a century, genotoxic agents have been used to induce mutations in the genome of model organisms to establish genotype-phenotype relationships. While inaccurate replication across damaged bases can explain the formation of single nucleotide variants, it remained unknown how DNA damage induces more severe genomic alterations. Here, we demonstrate for two of the most widely used mutagens, i.e. ethyl methanesulfonate (EMS) and photo-activated trimethylpsoralen (UV/TMP), that deletion mutagenesis is the result of polymerase Theta (POLQ)-mediated end joining (TMEJ) of double strand breaks (DSBs). This discovery allowed us to survey many thousands of available C. elegans deletion alleles to address the biology of this alternative end-joining repair mechanism. Analysis of ~7,000 deletion breakpoints and their cognate junctions reveals a distinct order of events. We found that nascent strands blocked at sites of DNA damage can engage in one or more cycles of primer extension using a more downstream located break end as a template. Resolution is accomplished when 3’ overhangs have matching ends. Our study provides a step-wise and versatile model for the in vivo mechanism of POLQ action, which explains the molecular nature of mutagen-induced deletion alleles. PMID:27755535

  11. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins.

    PubMed

    Huelga, Stephanie C; Vu, Anthony Q; Arnold, Justin D; Liang, Tiffany Y; Liu, Patrick P; Yan, Bernice Y; Donohue, John Paul; Shiue, Lily; Hoon, Shawn; Brenner, Sydney; Ares, Manuel; Yeo, Gene W

    2012-02-23

    Understanding how RNA binding proteins control the splicing code is fundamental to human biology and disease. Here, we present a comprehensive study to elucidate how heterogeneous nuclear ribonucleoparticle (hnRNP) proteins, among the most abundant RNA binding proteins, coordinate to regulate alternative pre-mRNA splicing (AS) in human cells. Using splicing-sensitive microarrays, crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq), and cDNA sequencing, we find that more than half of all AS events are regulated by multiple hnRNP proteins and that some combinations of hnRNP proteins exhibit significant synergy, whereas others act antagonistically. Our analyses reveal position-dependent RNA splicing maps, in vivo consensus binding sites, a surprising level of cross- and autoregulation among hnRNP proteins, and the coordinated regulation by hnRNP proteins of dozens of other RNA binding proteins and genes associated with cancer. Our findings define an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells.

  12. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins

    PubMed Central

    Huelga, Stephanie C.; Vu, Anthony Q.; Arnold, Justin D.; Liang, Tiffany Y.; Liu, Patrick P.; Yan, Bernice Y.; Donohue, John Paul; Shiue, Lily; Hoon, Shawn; Brenner, Sydney; Ares, Manuel; Yeo, Gene W.

    2012-01-01

    SUMMARY Understanding how RNA binding proteins control the splicing code is fundamental to human biology and disease. Here we present a comprehensive study to elucidate how heterogeneous nuclear ribonucleoparticle (hnRNP) proteins, among the most abundant RNA binding proteins, coordinate to regulate alternative pre-mRNA splicing (AS) in human cells. Using splicing-sensitive microarrays, cross-linking and immunoprecipitation coupled with high-throughput sequencing, and cDNA sequencing, we find that more than half of all AS events are regulated by multiple hnRNP proteins, and that some combinations of hnRNP proteins exhibit significant synergy, whereas others act antagonistically. Our analyses reveal position-dependent RNA splicing maps, in vivo consensus binding sites, a surprising level of cross- and auto-regulation among hnRNP proteins, and the coordinated regulation by hnRNP proteins of dozens of other RNA binding proteins and genes associated with cancer. Our findings define an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells. PMID:22574288

  13. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation.

    PubMed

    Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G; Xie, Jiuyong

    2012-09-01

    The molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3' splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3' splice site usage.

  14. Differential expression and alternative splicing of cell cycle genes in imatinib-treated K562 cells.

    PubMed

    Liu, Jing; Lin, Jin; Huang, Lin-Feng; Huang, Bo; Xu, Yan-Mei; Li, Jing; Wang, Yan; Zhang, Jing; Yang, Wei-Ming; Min, Qing-Hua; Wang, Xiao-Zhong

    2015-09-01

    Cancer progression often involves the disorder of the cell cycle, and a number of effective chemotherapeutic drugs have been shown to induce cell cycle arrest. The purpose of this study was to comprehensively investigate the effects of imatinib on the expression profile of cell cycle genes in the chronic myeloid leukemia (CML) K562 cell line. In addition, we also investigated alternative splicing of the cell cycle genes affected by imatinib, since an important relationship has been shown to exist between RNA splicing and cell cycle progression. Exon array analysis was performed using total RNA purified from normal and imatinib-treated K562 cells. We identified 185 differentially expressed genes and 277 alternative splicing events between the two cell groups. A detailed analysis by reverse transcription-PCR (RT-PCR) of key genes confirmed the experimental results of the exon array. These results suggested that treatment of K562 cells with imatinib shifts the expression and alternative splicing profiles of several cell cycle-related genes. Importantly, these findings may help improve imatinib treatment strategies in patients with CML and may be useful for imatinib resistance research and CML drug development.

  15. SES differentials in health by age and alternative indicators of SES.

    PubMed

    Robert, S; House, J S

    1996-08-01

    Despite the general persistence and even increase of strong socioeconomic status (SES) differentials in health in the United States, research suggests that SES differentials in health may diminish or become nonexistent at older ages. However, most research has used only limited measures of SES (e.g. education, income), and has not thoroughly investigated intra-elderly age differences in this trend. The current study investigates how SES differentials in health vary by age in the United States, using fairly detailed age categories (through ages 85+), and 2 alternative indicators (home ownership and liquid assets) of a major additional dimension of SES, financial assets, which may be especially important at older ages. We address (a) how strongly financial assets are associated with health, considered both alone and net of education and income; (b) if the health effects of financial assets vary by age; and, more specifically, (c) if their effects are especially pronounced in older age, again considered both alone and net of or relative to education and income. Results show that financial assets, especially liquid assets, considered both alone and net of education and income, are associated with health throughout adulthood and old age, at least until ages 85+. Furthermore, financial assets remain associated with health until quite late in life and become more important relative to education and income at older ages for some measures of health.

  16. Revealing radiotherapy- and chemoradiation-induced pathway dynamics in glioblastoma by analyzing multiple differential networks.

    PubMed

    Zhou, Jia; Chen, Chao; Li, Hua-Feng; Hu, Yu-Jie; Xie, Hong-Ling

    2017-07-01

    The progression of glioblastoma (GBM) is driven by dynamic alterations in the activity and connectivity of gene pathways. Revealing these dynamic events is necessary in order to understand the pathological mechanisms of, and develop effective treatments for, GBM. The present study aimed to investigate dynamic alterations in pathway activity and connectivity across radiotherapy and chemoradiation conditions in GBM, and to give system‑level insights into molecular mechanisms for GBM therapy. A total of two differential co‑expression networks (DCNs) were constructed using Pearson correlation coefficient analysis and one sided t‑tests, based on gene expression profiles and protein‑protein interaction networks, one for each condition. Subsequently, shared differential modules across DCNs were detected via significance analysis for candidate modules, which were obtained according to seed selection, module search by seed expansion and refinement of searched modules. As condition‑specific differential modules mediate differential biological processes, the module connectivity dynamic score (MCDS) was implemented to explore dynamic alterations among them. Based on DCNs with 287 nodes and 1,052 edges, a total of 28 seed genes and seven candidate modules were identified. Following significance analysis, five shared differential modules were identified in total. Dynamic alterations among these differential modules were identified using the MCDS, and one module with significant dynamic alterations was identified, termed the dynamic module. The present study revealed the dynamic alterations of shared differential modules, identified one dynamic module between the radiotherapy and chemoradiation conditions, and demonstrated that pathway dynamics may applied to the study of the pathogenesis and therapy of GBM.

  17. Saline Stress Alters the Temporal Patterns of Xylem Differentiation and Alternative Oxidase Expression in Developing Soybean Roots1

    PubMed Central

    Hilal, Mirna; Zenoff, Ana M.; Ponessa, Graciela; Moreno, Hortensia; Massa, Eddy M.

    1998-01-01

    We conducted a coordinated biochemical and morphometric analysis of the effect of saline conditions on the differentiation zone of developing soybean (Glycine max L.) roots. Between d 3 and d 14 for seedlings grown in control or NaCl-supplemented medium, we studied (a) the temporal evolution of the respiratory alternative oxidase (AOX) capacity in correlation with the expression and localization of AOX protein analyzed by tissue-print immunoblotting; (b) the temporal evolution and tissue localization of a peroxidase activity involved in lignification; and (c) the structural changes, visualized by light microscopy and quantified by image digitization. The results revealed that saline stress retards primary xylem differentiation. There is a corresponding delay in the temporal pattern of AOX expression, which is consistent with the xylem-specific localization of AOX protein and the idea that this enzyme is linked to xylem development. An NaCl-induced acceleration of the development of secondary xylem was also observed. However, the temporal pattern of a peroxidase activity localized in the primary and secondary xylem was unaltered by NaCl treatment. Thus, the NaCl-stressed root was specifically affected in the temporal patterns of AOX expression and xylem development. PMID:9625723

  18. Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network

    PubMed Central

    Moriyama, Tetsuji; Tanaka, Shu; Nakayama, Yasumune; Fukumoto, Masahiro; Tsujimura, Kenji; Yamada, Kohji; Bamba, Takeshi; Yoneda, Yoshihiro; Fukusaki, Eiichiro; Oka, Masahiro

    2016-01-01

    Transaldolase 1 (TALDO1) is a rate-limiting enzyme involved in the pentose phosphate pathway, which is traditionally thought to occur in the cytoplasm. In this study, we found that the gene TALDO1 has two translational initiation sites, generating two isoforms that differ by the presence of the first 10 N-terminal amino acids. Notably, the long and short isoforms were differentially localised to the cell nucleus and cytoplasm, respectively. Pull-down and in vitro transport assays showed that the long isoform, unlike the short one, binds to importin α and is actively transported into the nucleus in an importin α/β-dependent manner, demonstrating that the 10 N-terminal amino acids are essential for its nuclear localisation. Additionally, we found that these two isoforms can form homo- and/or hetero-dimers with different localisation dynamics. A metabolite analysis revealed that the subcellular localisation of TALDO1 is not crucial for its activity in the pentose phosphate pathway. However, the expression of these two isoforms differentially affected the levels of various metabolites, including components of the tricarboxylic acid cycle, nucleotides, and sugars. These results demonstrate that the nucleocytoplasmic distribution of TALDO1, modulated via alternative translational initiation and dimer formation, plays an important role in a wide range of metabolic networks. PMID:27703206

  19. Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis

    PubMed Central

    Yuan, Yinan; Chung, Jeng-Der; Fu, Xueyan; Johnson, Virgil E.; Ranjan, Priya; Booth, Sarah L.; Harding, Scott A.; Tsai, Chung-Jui

    2009-01-01

    Isochorismate synthase (ICS) converts chorismate to isochorismate for the biosynthesis of phylloquinone, an essential cofactor for photosynthetic electron transport. ICS is also required for salicylic acid (SA) synthesis during Arabidopsis defense. In several other species, including Populus, SA is derived primarily from the phenylpropanoid pathway. We therefore sought to investigate ICS regulation in Populus to learn the extent of ICS involvement in SA synthesis and defense. Arabidopsis harbors duplicated AtICS genes that differ in their exon-intron structure, basal expression, and stress inducibility. In contrast, we found a single ICS gene in Populus and six other sequenced plant genomes, pointing to the AtICS duplication as a lineage-specific event. The Populus ICS encodes a functional plastidic enzyme, and was not responsive to stresses that stimulated phenylpropanoid accumulation. Populus ICS underwent extensive alternative splicing that was rare for the duplicated AtICSs. Sequencing of 184 RT-PCR Populus clones revealed 37 alternative splice variants, with normal transcripts representing ≈50% of the population. When expressed in Arabidopsis, Populus ICS again underwent alternative splicing, but did not produce normal transcripts to complement AtICS1 function. The splice-site sequences of Populus ICS are unusual, suggesting a causal link between junction sequence, alternative splicing, and ICS function. We propose that gene duplication and alternative splicing of ICS evolved independently in Arabidopsis and Populus in accordance with their distinct defense strategies. AtICS1 represents a divergent isoform for inducible SA synthesis during defense. Populus ICS primarily functions in phylloquinone biosynthesis, a process that can be sustained at low ICS transcript levels. PMID:19996170

  20. Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches.

    PubMed

    Cloutier, Danielle D; McLellan, Sandra L

    2017-02-15

    Alternative indicators have been developed that can be used to identify host sources of fecal pollution, yet little is known about how their distribution and fate compare to traditional indicators. Escherichia coli and enterococci were widely distributed at the six beaches studied and were detected in almost 95% of water samples (n = 422) and 100% of sand samples (n = 400). Berm sand contained the largest amount of E. coli (P < 0.01), whereas levels of enterococci were highest in the backshore (P < 0.01). E. coli and enterococci were the lowest in water, using a weight-to-volume comparison. The gull-associated Catellicoccus marimammalium (Gull2) marker was found in over 80% of water samples, regardless of E. coli levels, and in 25% of sand samples. Human-associated Bacteroides (HB) and Lachnospiraceae (Lachno2) were detected in only 2.4% of water samples collected under baseflow and post-rain conditions but produced a robust signal after a combined sewage overflow, despite low E. coli concentrations. Burdens of E. coli and enterococci in water and sand were disproportionately high in relation to alternative indicators when comparing environmental samples to source material. In microcosm studies, Gull2, HB, and Lachno2 quantitative PCR (qPCR) signals were reduced twice as quickly as those from E. coli and enterococci and approximately 20% faster than signals from culturable E. coli High concentrations of alternative indicators in source material illustrated their high sensitivity for the identification of fecal sources; however, differential survival and the potential for long-term persistence of traditional fecal indicators complicate the use of alternative indicator data to account for the levels of E. coli and enterococci in environmental samples. E. coli and enterococci are general indicators of fecal pollution and may persist in beach sand, making their use problematic for many applications. This study demonstrates that gull fecal pollution is widespread at

  1. Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches

    PubMed Central

    Cloutier, Danielle D.

    2016-01-01

    ABSTRACT Alternative indicators have been developed that can be used to identify host sources of fecal pollution, yet little is known about how their distribution and fate compare to traditional indicators. Escherichia coli and enterococci were widely distributed at the six beaches studied and were detected in almost 95% of water samples (n = 422) and 100% of sand samples (n = 400). Berm sand contained the largest amount of E. coli (P < 0.01), whereas levels of enterococci were highest in the backshore (P < 0.01). E. coli and enterococci were the lowest in water, using a weight-to-volume comparison. The gull-associated Catellicoccus marimammalium (Gull2) marker was found in over 80% of water samples, regardless of E. coli levels, and in 25% of sand samples. Human-associated Bacteroides (HB) and Lachnospiraceae (Lachno2) were detected in only 2.4% of water samples collected under baseflow and post-rain conditions but produced a robust signal after a combined sewage overflow, despite low E. coli concentrations. Burdens of E. coli and enterococci in water and sand were disproportionately high in relation to alternative indicators when comparing environmental samples to source material. In microcosm studies, Gull2, HB, and Lachno2 quantitative PCR (qPCR) signals were reduced twice as quickly as those from E. coli and enterococci and approximately 20% faster than signals from culturable E. coli. High concentrations of alternative indicators in source material illustrated their high sensitivity for the identification of fecal sources; however, differential survival and the potential for long-term persistence of traditional fecal indicators complicate the use of alternative indicator data to account for the levels of E. coli and enterococci in environmental samples. IMPORTANCE E. coli and enterococci are general indicators of fecal pollution and may persist in beach sand, making their use problematic for many applications. This study demonstrates that gull fecal pollution

  2. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    PubMed Central

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  3. Integrated live imaging and molecular profiling of embryoid bodies reveals a synchronized progression of early differentiation

    PubMed Central

    Boxman, Jonathan; Sagy, Naor; Achanta, Sirisha; Vadigepalli, Rajanikanth; Nachman, Iftach

    2016-01-01

    Embryonic stem cells can spontaneously differentiate into cell types of all germ layers within embryoid bodies (EBs) in a highly variable manner. Whether there exists an intrinsic differentiation program common to all EBs is unknown. Here, we present a novel combination of high-throughput live two-photon imaging and gene expression profiling to study early differentiation dynamics spontaneously occurring within developing EBs. Onset timing of Brachyury-GFP was highly variable across EBs, while the spatial patterns as well as the dynamics of mesendodermal progression following onset were remarkably similar. We therefore defined a ‘developmental clock’ using the Brachyury-GFP signal onset timing. Mapping snapshot gene expression measurements to this clock revealed their temporal trends, indicating that loss of pluripotency, formation of primitive streak and mesodermal lineage progression are synchronized in EBs. Exogenous activation of Wnt or BMP signaling accelerated the intrinsic clock. CHIR down-regulated Wnt3, allowing insights into dependency mechanisms between canonical Wnt signaling and multiple genes. Our findings reveal a developmental clock characteristic of an early differentiation program common to all EBs, further establishing them as an in vitro developmental model. PMID:27530599

  4. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation.

    PubMed

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-05-19

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Differential fitness effects of immunocompetence and neighbourhood density in alternative female lizard morphs.

    PubMed

    Calsbeek, Ryan; Bonneaud, Camille; Smith, Thomas B

    2008-01-01

    1. A growing number of studies demonstrate that natural selection acts on traits important in whole animal performance and physiology. 2. Here we describe a heritable polymorphism in female dorsal pattern in the lizard Anolis sagrei (Dumeril & Bibron 1837). 3. Morphs did not differ in body size or habitat use (perch diameter), however, we show that the social environment, estimated by the number of female neighbours, had different selective effects on alternative morphs in nature. 4. We show that morphs displayed a significantly different immune response to phytohaemagglutinin. Furthermore, natural selection differentially acted on combinations of female morph and immunocompetence, favouring high levels of immune function in one morph and low levels of immune function in the other. 5. We discuss the possibility that morph-specific investments in life-history traits may lead to correlational selection between traits, even when those traits are likely to be determined by different genetic loci.

  6. EFFECTS OF TREATMENT INTEGRITY FAILURES DURING DIFFERENTIAL REINFORCEMENT OF ALTERNATIVE BEHAVIOR: A TRANSLATIONAL MODEL

    PubMed Central

    Peter Pipkin, Claire St; Vollmer, Timothy R; Sloman, Kimberly N

    2010-01-01

    Differential reinforcement of alternative behavior (DRA) is used frequently as a treatment for problem behavior. Previous studies on treatment integrity failures during DRA suggest that the intervention is robust, but research has not yet investigated the effects of different types of integrity failures. We examined the effects of two types of integrity failures on DRA, starting with a human operant procedure and extending the results to children with disabilities in a school setting. Human operant results (Experiment 1) showed that conditions involving reinforcement for problem behavior were more detrimental than failing to reinforce appropriate behavior alone, and that condition order affected the results. Experiments 2 and 3 replicated the effects of combined errors and sequence effects during actual treatment implementation. PMID:20808495

  7. Noncontingent reinforcement without extinction plus differential reinforcement of alternative behavior during treatment of problem behavior.

    PubMed

    Fritz, Jennifer N; Jackson, Lynsey M; Stiefler, Nicole A; Wimberly, Barbara S; Richardson, Amy R

    2017-07-01

    The effects of noncontingent reinforcement (NCR) without extinction during treatment of problem behavior maintained by social positive reinforcement were evaluated for five individuals diagnosed with autism spectrum disorder. A continuous NCR schedule was gradually thinned to a fixed-time 5-min schedule. If problem behavior increased during NCR schedule thinning, a continuous NCR schedule was reinstated and NCR schedule thinning was repeated with differential reinforcement of alternative behavior (DRA) included. Results showed an immediate decrease in all participants' problem behavior during continuous NCR, and problem behavior maintained at low levels during NCR schedule thinning for three participants. Problem behavior increased and maintained at higher rates during NCR schedule thinning for two other participants; however, the addition of DRA to the intervention resulted in decreased problem behavior and increased mands. © 2017 Society for the Experimental Analysis of Behavior.

  8. Comparing main and collateral effects of extinction and differential reinforcement of alternative behavior.

    PubMed

    Petscher, Erin Seligson; Bailey, Jon S

    2008-07-01

    This study evaluated the effects and collateral effects of extinction (EXT) and differential reinforcement of alternative behavior (DRA) interventions with inappropriate vocalizations and work refusal. Both interventions have been used frequently to reduce problem behaviors. The benefits of these interventions have been established yet may be outweighed by the reported negative side effects that result. However, these collateral effects have rarely been measured or reported. DRA produced the most rapid reductions in behavior for 4 of the 5 participants. Other behaviors were measured for changes and showed that the desirable collateral effect of academic engagement tended to be higher during EXT than DRA. No evidence of EXT bursts was present with any participant, although EXT-induced aggression occurred with 1 participant.

  9. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields.

    PubMed

    Hronik-Tupaj, Marie; Rice, William L; Cronin-Golomb, Mark; Kaplan, David L; Georgakoudi, Irene

    2011-01-26

    group, suggesting a connection with oxidative stress. Both differentiation factors and electrical stimulation improved hMSC differentiation potential to bone based on calcium deposition on day 28. Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  10. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    PubMed Central

    2011-01-01

    detected in the stimulation group, suggesting a connection with oxidative stress. Both differentiation factors and electrical stimulation improved hMSC differentiation potential to bone based on calcium deposition on day 28. Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes. PMID:21269490

  11. Epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation.

    PubMed

    Yu, Bingfei; Zhang, Kai; Milner, J Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P; Pereira, Renata M; Crotty, Shane; Chang, John T; Pipkin, Matthew E; Wang, Wei; Goldrath, Ananda W

    2017-03-13

    Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8(+) T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8(+) T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8(+) T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8(+) T cell differentiation.

  12. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish.

    PubMed Central

    Altschmied, Joachim; Delfgaauw, Jacqueline; Wilde, Brigitta; Duschl, Jutta; Bouneau, Laurence; Volff, Jean-Nicolas; Schartl, Manfred

    2002-01-01

    The microphthalmia-associated transcription factor (MITF) exists in at least four isoforms. These are generated in higher vertebrates using alternative 5' exons and promoters from a single gene. Two separate genes (mitf-m and mitf-b), however, are present in different teleost fish species including the poeciliid Xiphophorus, the pufferfishes Fugu rubripes and Tetraodon nigroviridis, and the zebrafish Danio rerio. Fish proteins MITF-m and MITF-b correspond at both the structural and the expression levels to one particular bird/mammalian MITF isoform. In the teleost lineage subfunctionalization of mitf genes after duplication at least 100 million years ago is associated with the degeneration of alternative exons and, probably, regulatory elements and promoters. For example, a remnant of the first exon specific for MITF-m is detected within the pufferfish gene encoding MITF-b. Retracing the evolutionary history of mitf genes in vertebrates uncovered the differential recruitment of new introns specific for either the teleost or the bird/mammalian lineage. PMID:12019239

  13. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    PubMed Central

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-01-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses. PMID:27929043

  14. Comparative Proteomics Reveals a Significant Bias Toward Alternative Protein Isoforms with Conserved Structure and Function

    PubMed Central

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L.

    2012-01-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of “novel” and “putative” protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is

  15. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function.

    PubMed

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L

    2012-09-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of "novel" and "putative" protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and

  16. Differential expression and co-expression gene networks reveal candidate biomarkers of boar taint in non-castrated pigs.

    PubMed

    Drag, Markus; Skinkyté-Juskiené, Ruta; Do, Duy N; Kogelman, Lisette J A; Kadarmideen, Haja N

    2017-09-22

    Boar taint (BT) is an offensive odour or taste observed in pork from a proportion of non-castrated male pigs. Surgical castration is effective in avoiding BT, but animal welfare issues have created an incentive for alternatives such as genomic selection. In order to find candidate biomarkers, gene expression profiles were analysed from tissues of non-castrated pigs grouped by their genetic merit of BT. Differential expression analysis revealed substantial changes with log-transformed fold changes of liver and testis from -3.39 to 2.96 and -7.51 to 3.53, respectively. Co-expression network analysis revealed one module with a correlation of -0.27 in liver and three modules with correlations of 0.31, -0.44 and -0.49 in testis. Differential expression and co-expression analysis revealed candidate biomarkers with varying biological functions: phase I (COQ3, COX6C, CYP2J2, CYP2B6, ACOX2) and phase II metabolism (GSTO1, GSR, FMO3) of skatole and androstenone in liver to steroidgenesis (HSD17B7, HSD17B8, CYP27A1), regulation of steroidgenesis (STARD10, CYB5R3) and GnRH signalling (MAPK3, MAP2K2, MAP3K2) in testis. Overrepresented pathways included "Ribosome", "Protein export" and "Oxidative phosphorylation" in liver and "Steroid hormone biosynthesis" and "Gap junction" in testis. Future work should evaluate the biomarkers in large populations to ensure their usefulness in genomic selection programs.

  17. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  18. Using revealed mate preferences to evaluate market force and differential preference explanations for mate selection.

    PubMed

    Wood, Dustin; Brumbaugh, Claudia Chloe

    2009-06-01

    In this article the authors illustrate how revealed preferences (i.e., preferences inferred through an individual's differential attraction to multiple targets) can be used to investigate the nature of mate preferences. The authors describe how revealed preferences can be estimated and how the reliability of these estimates can be established. Revealed preference estimates were used to explore the level of consensus in judgments of who is and is not attractive and whether revealed preferences are systematically related to self-reported mate preferences and personality traits. Revealed preference estimates were created for over 4,000 participants by examining their attraction to 98 photographs. Participants of both genders showed substantial consensus in judgments of whom they found attractive and unattractive, although men showed higher consensus than women. Revealed preference estimates also showed relationships with corresponding self-rated preferences and with other dispositional characteristics such as personality traits and age. Although the findings demonstrate the existence of meaningful individual differences in preferences, they also indicate an important role for consensual preferences in mate selection processes.

  19. Single-molecule analysis of myocyte differentiation reveals bimodal lineage commitment.

    PubMed

    Gibson, Tyler M; Gersbach, Charles A

    2015-06-01

    Cell differentiation is the foundation for tissue development and regeneration, disease modeling, and cell-based therapies. Although the differentiation of cell populations has been extensively studied in many systems, much less is known about the distribution of decision making of single cells within these populations. To characterize the differentiation of single skeletal muscle cells, we used single-molecule mRNA fluorescence in situ hybridization (smFISH) to precisely quantify the expression levels of the master myogenic regulatory factors MyoD and myogenin in individual myoblasts. We identified distinct cell states characterized by the number of myogenin transcripts expressed by a cell, with myoblasts stochastically transitioning to a myogenin-high state during differentiation. We also used MyoD overexpression to force the transdifferentiation of C3H10T1/2 cells into an induced myoblast phenotype. These reprogrammed cells revealed the presence of a critical threshold of MyoD expression required to initiate myogenin expression. These results provide quantitative single-molecule data to support the model of switch-like cell decision making and lineage specification.

  20. Single-Molecule Analysis of Myocyte Differentiation Reveals Bimodal Lineage Commitment

    PubMed Central

    Gibson, Tyler M.; Gersbach, Charles A.

    2015-01-01

    Cell differentiation is the foundation for tissue development and regeneration, disease modeling, and cell-based therapies. Although the differentiation of cell populations has been extensively studied in many systems, much less is known about the distribution of decision making of single cells within these populations. To characterize the differentiation of single skeletal muscle cells, we used single-molecule mRNA fluorescence in situ hybridization (smFISH) to precisely quantify the expression levels of the master myogenic regulatory factors MyoD and myogenin in individual myoblasts. We identified distinct cell states characterized by the number of myogenin transcripts expressed by a cell, with myoblasts stochastically transitioning to a myogenin-high state during differentiation. We also used MyoD overexpression to force the transdifferentiation of C3H10T1/2 cells into an induced myoblast phenotype. These reprogrammed cells revealed the presence of a critical threshold of MyoD expression required to initiate myogenin expression. These results provide quantitative single-molecule data to support the model of switch-like cell decision making and lineage specification. PMID:25953198

  1. Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes.

    PubMed

    Edmands, S

    2001-07-01

    Previous studies of the intertidal copepod Tigriopus californicus revealed one of the highest levels of mitochondrial DNA differentiation ever reported among conspecific populations. The present study extends the geographical sampling northward, adding populations from northern California to south-east Alaska. The mitochondrial phylogeny for the entire species range, based on cytochrome oxidase I sequences for a total of 49 individuals from 27 populations, again shows extreme differentiation among populations (up to 23%). However, populations from Oregon northwards appear to be derived and have interpopulation divergences five times lower than those between southern populations. Furthermore, although few individuals were sequenced from each locality, populations from Puget Sound northward had significantly reduced levels of within-population variation. These patterns are hypothesized to result from the contraction and expansion of populations driven by recent ice ages.

  2. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR.

    PubMed

    Oskin, Michael E; Arrowsmith, J Ramon; Hinojosa Corona, Alejandro; Elliott, Austin J; Fletcher, John M; Fielding, Eric J; Gold, Peter O; Gonzalez Garcia, J Javier; Hudnut, Ken W; Liu-Zeng, Jing; Teran, Orlando J

    2012-02-10

    Large [moment magnitude (M(w)) ≥ 7] continental earthquakes often generate complex, multifault ruptures linked by enigmatic zones of distributed deformation. Here, we report the collection and results of a high-resolution (≥nine returns per square meter) airborne light detection and ranging (LIDAR) topographic survey of the 2010 M(w) 7.2 El Mayor-Cucapah earthquake that produced a 120-kilometer-long multifault rupture through northernmost Baja California, Mexico. This differential LIDAR survey completely captures an earthquake surface rupture in a sparsely vegetated region with pre-earthquake lower-resolution (5-meter-pixel) LIDAR data. The postevent survey reveals numerous surface ruptures, including previously undocumented blind faults within thick sediments of the Colorado River delta. Differential elevation changes show distributed, kilometer-scale bending strains as large as ~10(3) microstrains in response to slip along discontinuous faults cutting crystalline bedrock of the Sierra Cucapah.

  3. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics*

    PubMed Central

    Bell-Temin, Harris; Culver-Cochran, Ashley E.; Chaput, Dale; Carlson, Christina M.; Kuehl, Melanie; Burkhardt, Brant R.; Bickford, Paula C.; Liu, Bin; Stevens, Stanley M.

    2015-01-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells. PMID:26424600

  4. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics.

    PubMed

    Bell-Temin, Harris; Culver-Cochran, Ashley E; Chaput, Dale; Carlson, Christina M; Kuehl, Melanie; Burkhardt, Brant R; Bickford, Paula C; Liu, Bin; Stevens, Stanley M

    2015-12-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells.

  5. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation.

    PubMed

    Miró-Mur, Francesc; Pérez-de-Puig, Isabel; Ferrer-Ferrer, Maura; Urra, Xabier; Justicia, Carles; Chamorro, Angel; Planas, Anna M

    2016-03-01

    Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Alternatively spliced myeloid differentiation protein-2 inhibits TLR4-mediated lung inflammation.

    PubMed

    Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Jones, Heather D; Chen, Shuang; Shimada, Kenichi; Crother, Timothy R; Arditi, Moshe

    2015-02-15

    We previously identified a novel alternatively spliced isoform of human myeloid differentiation protein-2 (MD-2s) that competitively inhibits binding of MD-2 to TLR4 in vitro. In this study, we investigated the protective role of MD-2s in LPS-induced acute lung injury by delivering intratracheally an adenovirus construct that expressed MD-2s (Ad-MD-2s). After adenovirus-mediated gene transfer, MD-2s was strongly expressed in lung epithelial cells and readily detected in bronchoalveolar lavage fluid. Compared to adenovirus serotype 5 containing an empty vector lacking a transgene control mice, Ad-MD-2s delivery resulted in significantly less LPS-induced inflammation in the lungs, including less protein leakage, cell recruitment, and expression of proinflammatory cytokines and chemokines, such as IL-6, keratinocyte chemoattractant, and MIP-2. Bronchoalveolar lavage fluid from Ad-MD-2s mice transferred into lungs of naive mice before intratracheal LPS challenge diminished proinflammatory cytokine levels. As house dust mite (HDM) sensitization is dependent on TLR4 and HDM Der p 2, a structural homolog of MD-2, we also investigated the effect of MD-2s on HDM-induced allergic airway inflammation. Ad-MD-2s given before HDM sensitization significantly inhibited subsequent allergic airway inflammation after HDM challenge, including reductions in eosinophils, goblet cell hyperplasia, and IL-5 levels. Our study indicates that the alternatively spliced short isoform of human MD-2 could be a potential therapeutic candidate to treat human diseases induced or exacerbated by TLR4 signaling, such as Gram-negative bacterial endotoxin-induced lung injury and HDM-triggered allergic lung inflammation.

  7. Alternatively spliced myeloid differentiation protein-2 (MD-2s) protein inhibits TLR4-mediated lung inflammation

    PubMed Central

    Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Jones, Heather D.; Chen, Shuang; Shimada, Kenichi; Crother, Timothy R.; Arditi, Moshe

    2014-01-01

    We previously identified a novel alternatively spliced isoform of human myeloid differentiation protein-2 (MD-2s) that competitively inhibits binding of MD-2 to TLR4 in vitro. Here we investigated the protective role of MD-2s in LPS-induced acute lung injury by delivering intracheally (i.t.) an adenovirus construct that expressed MD-2s (Ad-MD-2s). After adenovirus-mediated gene transfer, MD-2s was strongly expressed in lung epithelial cells and readily detected in bronchoalveolar lavage fluid (BALF). Compared to Ad-EV control mice, Ad-MD-2s delivery resulted in significantly less LPS-induced inflammation in the lungs, including less protein leakage, cell recruitment, and expression of proinflammatory cytokines and chemokines, such as IL-6, KC, and MIP-2. BALF from Ad-MD-2s mice transferred into lungs of naive mice before i.t. LPS challenge diminished pro-inflammatory cytokine levels. As house dust mite (HDM) sensitization is dependent on TLR4 and HDM Der p 2, a structural homolog of MD-2, we also investigated the effect of MD-2s on house dust mite (HDM)-induced allergic airway inflammation. Ad-MD-2s given before HDM sensitization significantly inhibited subsequent allergic airway inflammation after HDM challenge, including reductions in eosinophils, goblet cell hyperplasia, and IL-5 levels. Our study indicates that the alternatively spliced short isoform of human MD-2 could be a potential therapeutic candidate to treat human diseases induced or exacerbated by TLR4 signaling, such as Gram-negative bacterial endotoxin-induced lung injury and house dust mite-triggered allergic lung inflammation. PMID:25576596

  8. Differentiation of Human Dental Stem Cells Reveal a Role for microRNA-218

    PubMed Central

    Gay, Isabel; Cavender, Adriana; Peto, David; Sun, Zhao; Speer, Aline; Cao, Huojun; Amendt, Brad A.

    2013-01-01

    Background Regeneration of the lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in the periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data is available on micro-RNAs (miRNAs) activity behind human-derived dental stem cells. Methods In this study, we isolated periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and gingival stem cells (GSCs) from extracted third molars; human bone marrow stem cells (BMSCs) were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. A miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. Results RUNX2 expression demonstrated the successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human dental stem cells (DSCs). DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. Conclusions These data reveal a miRNA regulated pathway for the differentiation of human DSCs and a select network of human microRNAs that control DSC osteogenic differentiation. PMID:23662917

  9. Genetic differentiation within Eriochoir sinensis (milne, edwards) revealed by allozyme and RAPD

    NASA Astrophysics Data System (ADS)

    Cui, Zhao-Xia; Xiang, Jian-Hai; Song, Lin-Sheng; Zhou, Ling-Hua; Shi, Wei-Liang

    2000-09-01

    We analyzed 17 allozymes, and 20 primers in order to detect the genetic differentiation between commercial populations (Changjiang River, Liaohe River) of Eriochoir sinensis. Ten allozymes (LDH, MDH, ME, IDH, EST, ALP, AAT, CTL, POD, SOD) showed 21 loci by vertically discontinuos buffer system polyacrylamide gel electrophoresis. RAPD profiles generated by 12 ten-base primers showed 63 loci. The percentage of polymorphic loci and the expected heterozygosity obtained by using allozyme analysis were lower than those obtained by RAPD. The index of similarity between these two populations were 0.955 and 0.932 as revealed by allozyme analysis and RAPD technology. There was gene flow between the above populations.

  10. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders

    PubMed Central

    2013-01-01

    Background Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). Conclusions These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods. PMID:24007566

  11. Alternative robust estimators for autoregressive models with outliers using differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.

    2016-11-01

    The Least Squares (LS), Least Median Squares (LMdS), Reweighted Least Squares (RLS) and Trimmed Least Squares (TLS) estimators are used to obtain parameter estimates of AR models using DE algorithm. The empirical study indicated that, the RLS estimator seems to be very reasonable because of having smaller root mean square error (RMSE), particularly for the Gaussian AR(1) process with unknown drift and additive outliers. Moreover, while LS performs well on shorter processes with less percentage and smaller magnitude of additive outliers (AOS); RLS and TLS compare favorably with respect to LS for longer AR processes. Thus, this study recommends the Reweighted Least Squares estimator as an alternative to the LS estimator in the case of autoregressive processes with additive outliers. The experiment also demonstrates that Differential Evolution (DE) algorithm obtains optimal solutions for fitting first-order autoregressive processes with outliers using the estimators. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 15 December 2016. The original version supplied to AIP Publishing contained errors in some of the mathematical equations and in Table 2. The errors have been corrected in the updated and re-published article.

  12. Differential Reinforcement of Alternative Behavior Increases Resistance to Extinction: Clinical Demonstration, Animal Modeling, and Clinical Test of One Solution

    ERIC Educational Resources Information Center

    Mace, F. Charles; McComas, Jennifer J.; Mauro, Benjamin C.; Progar, Patrick R.; Taylor, Bridget; Ervin, Ruth; Zangrillo, Amanda N.

    2010-01-01

    Basic research with pigeons on behavioral momentum suggests that differential reinforcement of alternative behavior (DRA) can increase the resistance of target behavior to change. This finding suggests that clinical applications of DRA may inadvertently increase the persistence of target behavior even as it decreases its frequency. We conducted…

  13. Fair Pairs and Three Part Praise--Developing the Sustained Use of Differential Reinforcement of Alternative Behaviour

    ERIC Educational Resources Information Center

    Williams, Hugh

    2012-01-01

    A training course of two after-school sessions was run for teaching assistants (TAs) in a UK inner city primary school. The subject of the training was classroom use of a version of differential reinforcement of alternative behaviours (DRAs) known as Fair Pairs. The training introduced the concept of "Three Part Praise" within Fair…

  14. Teacher Implementation of Trial-Based Functional Analysis and Differential Reinforcement of Alternative Behavior for Students with Challenging Behavior

    ERIC Educational Resources Information Center

    Flynn, Susan D.; Lo, Ya-yu

    2016-01-01

    The purpose of this study was to examine the effects of a training package on three middle school special education teachers' accurate implementation of trial-based functional analysis (TBFA) and differential reinforcement of alternative behavior (DRA) with their students with autism spectrum disorders or emotional and behavioral disorders in the…

  15. Teacher Implementation of Trial-Based Functional Analysis and Differential Reinforcement of Alternative Behavior for Students with Challenging Behavior

    ERIC Educational Resources Information Center

    Flynn, Susan D.; Lo, Ya-yu

    2016-01-01

    The purpose of this study was to examine the effects of a training package on three middle school special education teachers' accurate implementation of trial-based functional analysis (TBFA) and differential reinforcement of alternative behavior (DRA) with their students with autism spectrum disorders or emotional and behavioral disorders in the…

  16. Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events

    PubMed Central

    Ramirez-Villegas, Juan F.; Logothetis, Nikos K.; Besserve, Michel

    2015-01-01

    Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions. PMID:26540729

  17. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    PubMed Central

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  18. Stochastic simulation of notch signaling reveals novel factors that mediate the differentiation of neural stem cells.

    PubMed

    Tzou, Wen-Shyong; Lo, Ying-Tsang; Pai, Tun-Wen; Hu, Chin-Hwa; Li, Chung-Hao

    2014-07-01

    Notch signaling controls cell fate decisions and regulates multiple biological processes, such as cell proliferation, differentiation, and apoptosis. Computational modeling of the deterministic simulation of Notch signaling has provided important insight into the possible molecular mechanisms that underlie the switch from the undifferentiated stem cell to the differentiated cell. Here, we constructed a stochastic model of a Notch signaling model containing Hes1, Notch1, RBP-Jk, Mash1, Hes6, and Delta. mRNA and protein were represented as a discrete state, and 334 reactions were employed for each biochemical reaction using a graphics processing unit-accelerated Gillespie scheme. We employed the tuning of 40 molecular mechanisms and revealed several potential mediators capable of enabling the switch from cell stemness to differentiation. These effective mediators encompass different aspects of cellular regulations, including the nuclear transport of Hes1, the degradation of mRNA (Hes1 and Notch1) and protein (Notch1), the association between RBP-Jk and Notch intracellular domain (NICD), and the cleavage efficiency of the NICD. These mechanisms overlap with many modifiers that have only recently been discovered to modulate the Notch signaling output, including microRNA action, ubiquitin-mediated proteolysis, and the competitive binding of the RBP-Jk-DNA complex. Moreover, we identified the degradation of Hes1 mRNA and nuclear transport of Hes1 as the dominant mechanisms that were capable of abolishing the cell state transition induced by other molecular mechanisms.

  19. Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity.

    PubMed

    Oltean, Sebastian; Sorg, Brian S; Albrecht, Todd; Bonano, Vivian I; Brazas, Robert M; Dewhirst, Mark W; Garcia-Blanco, Mariano A

    2006-09-19

    In epithelial cells, alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts leads to the expression of the FGFR2(IIIb) isoform, whereas in mesenchymal cells, the same process results in the synthesis of FGFR2(IIIc). Expression of the FGFR2(IIIc) isoform during prostate tumor progression suggests a disruption of the epithelial character of these tumors. To visualize the use of FGFR2 exon IIIc in prostate AT3 tumors in syngeneic rats, we constructed minigene constructs that report on alternative splicing. Imaging these alternative splicing decisions revealed unexpected mesenchymal-epithelial transitions in these primary tumors. These transitions were observed more frequently where tumor cells were in contact with stroma. Indeed, these transitions were frequently observed among lung micrometastases in the organ parenchyma and immediately adjacent to blood vessels. Our data suggest an unforeseen relationship between epithelial mesenchymal plasticity and malignant fitness.

  20. Transcriptomes of post-mitotic neurons identify the usage of alternative pathways during adult and embryonic neuronal differentiation.

    PubMed

    Tallafuss, Alexandra; Kelly, Meghan; Gay, Leslie; Gibson, Dan; Batzel, Peter; Karfilis, Kate V; Eisen, Judith; Stankunas, Kryn; Postlethwait, John H; Washbourne, Philip

    2015-12-23

    Understanding the mechanisms by which neurons are generated and specified, and how they integrate into functional circuits is key to being able to treat disorders of the nervous system and acute brain trauma. Much of what we know about neuronal differentiation has been studied in developing embryos, but differentiation steps may be very different during adult neurogenesis. For this reason, we compared the transcriptomes of newly differentiated neurons in zebrafish embryos and adults. Using a 4tU RNA labeling method, we isolated and sequenced mRNA specifically from cells of one day old embryos and adults expressing the transgene HA-uprt-mcherry under control of the neuronal marker elavl3. By categorizing transcript products into different protein classes, we identified similarities and differences of gene usage between adult and embryonic neuronal differentiation. We found that neurons in the adult brain and in the nervous system of one day old embryos commonly use transcription factors - some of them identical - during the differentiation process. When we directly compared adult differentiating neurons to embryonic differentiating neurons, however, we found that during adult neuronal differentiation, the expression of neuropeptides and neurotransmitter pathway genes is more common, whereas classical developmental signaling through secreted molecules like Hedgehog or Wnt are less enriched, as compared to embryonic stages. We conclude that both adult and embryonic differentiating neurons show enriched use of transcription factors compared to surrounding cells. However, adult and embryonic developing neurons use alternative pathways to differentiate. Our study provides evidence that adult neuronal differentiation is distinct from the better characterized embryonic neuronal differentiation process. This important insight and the lists of enriched genes we have identified will now help pave the way to a better understanding of the mechanisms of embryonic and adult

  1. Partial asteroid differentiation revealed by paleomagnetism of R-chondrite meteorites

    NASA Astrophysics Data System (ADS)

    Cournède, Cécile; Gattacceca, Jérôme; Rochette, Pierre

    2014-05-01

    The study of the paleomagnetism of extraterrestrial material allows constraining magnetic fields in the early solar system. This can help us to understand primordial aspects of the history of the early solar system. Indeed, nebular or solar magnetic fields could have played a major role in the accretion process that generated the primary components of our solar system. Internal fields (i.e. generated by a dynamo within a solid body) are also of substantial interest since they provide information on parent body evolution, especially on parent body differentiation. In this study we focused on Rumuruti chondrites (R chondrites) [1]. This meteorite group is of particular interest because R chondrites parent body is believed to have formed at a heliocentric distance greater than ordinary chondrites and less than carbonaceous chondrites [2]. As such, more than a simple new chondrite group, R chondrites offer the possibility to estimate the magnetic fields strength present in a yet unstudied part of the early solar system. Only preliminary paleomagnetic data are available for these meteorites [3]. We performed a detailed magnetic and paleomagnetic study of two R chondrites, PCA91002 and LAP03639. Our aim was to establish the nature and the origin of the magnetic field recorded in these meteorites. Our results show that these two meteorites contain sulfide (pyrrhotite). Magnetite was also found in PCA91002. Paleomagnetic analyses using thermal and alternating field demagnetization evidenced a stable and homogenous magnetization in both R chondrites. Because magnetic carriers in these meteorites are secondary phases formed during a metamorphic event several Myr after the parent body formation (I-Xe dating on magnetite, [4]), the magnetization was acquired after the possible existence of solar and nebular magnetic fields. Therefore the magnetizing field was most probably of internal origin. Using alternating field normalizing methods we estimate that the magnetization was

  2. Adult Human Mesenchymal Stem Cell Differentiation at the Cell Population and Single-Cell Levels Under Alternating Electric Current

    PubMed Central

    Wechsler, Marissa E.; Hermann, Brian P.

    2016-01-01

    Mesenchymal stem cells, precursors that can differentiate into osteoblasts, chondrocytes, and adipocytes, have tremendous potential for derivation of cells with specific (e.g., osteogenic) phenotypes for tissue engineering and tissue regeneration applications. To date, the predominant strategy to achieve directed differentiation of MSCs into osteoblasts was to recapitulate the normal developmental ontogeny of osteoblasts using growth factors (e.g., bone morphogenetic proteins). In contrast, the effects of biophysical stimuli alone on such outcomes remain, at best, partially understood. This in vitro study examined and optimized the effects of alternating electric current alone on the differentiation of adult human mesenchymal stem cells (hMSCs) at the cell population and single-cell levels. hMSCs, cultured on flat, indium-tin-oxide-coated glass in the absence of supplemented exogenous growth factors were exposed to alternating electric current (5–40 μA, 5–10 Hz frequency, sinusoidal waveform), for 1–24 h daily for up to 21 consecutive days. Compared to results obtained from the respective controls, hMSC populations exposed to the alternating electric current alone (in the absence of exogenous growth factors) expressed genes at various stages of differentiation (specifically, TAZ, Runx-2, Osterix, Osteopontin, and Osteocalcin). Optimal osteogenic differentiation was achieved when hMSCs were exposed to a 10 μA, 10 Hz alternating electric current for 6 h daily for up to 21 days. Exclusive osteodifferentiation was observed since genes for the chondrocyte (Collagen Type II) and adipocyte (FABP-4) lineages were not expressed under all conditions of the biophysical stimulus tested. Single cell mRNAs for 45 genes (indicative of hMSC differentiation) were monitored using Fluidigm Systems. Homogeneous expression of the early osteodifferentiation genes (specifically, TAZ and Runx-2) was observed in hMSCs exposed to the alternating electric current at 7 and

  3. Adult Human Mesenchymal Stem Cell Differentiation at the Cell Population and Single-Cell Levels Under Alternating Electric Current.

    PubMed

    Wechsler, Marissa E; Hermann, Brian P; Bizios, Rena

    2015-12-28

    Mesenchymal stem cells, precursors that can differentiate into osteoblasts, chondrocytes, and adipocytes, have tremendous potential for derivation of cells with specific (e.g., osteogenic) phenotypes for tissue engineering and tissue regeneration applications. To date, the predominant strategy to achieve directed differentiation of MSCs into osteoblasts was to recapitulate the normal developmental ontogeny of osteoblasts using growth factors (e.g., bone morphogenetic proteins). In contrast, the effects of biophysical stimuli alone on such outcomes remain, at best, partially understood. This in vitro study examined and optimized the effects of alternating electric current alone on the differentiation of adult human mesenchymal stem cells (hMSCs) at the cell population and single-cell levels. hMSCs, cultured on flat, indium-tin-oxide-coated glass in the absence of supplemented exogenous growth factors were exposed to alternating electric current (5-40 μA, 5-10 Hz frequency, sinusoidal waveform), for 1-24 h daily for up to 21 consecutive days. Compared to results obtained from the respective controls, hMSC populations exposed to the alternating electric current alone (in the absence of exogenous growth factors) expressed genes at various stages of differentiation (specifically, TAZ, Runx-2, Osterix, Osteopontin, and Osteocalcin). Optimal osteogenic differentiation was achieved when hMSCs were exposed to a 10 μA, 10 Hz alternating electric current for 6 h daily for up to 21 days. Exclusive osteodifferentiation was observed since genes for the chondrocyte (Collagen Type II) and adipocyte (FABP-4) lineages were not expressed under all conditions of the biophysical stimulus tested. Single cell mRNAs for 45 genes (indicative of hMSC differentiation) were monitored using Fluidigm Systems. Homogeneous expression of the early osteodifferentiation genes (specifically, TAZ and Runx-2) was observed in hMSCs exposed to the alternating electric current at 7 and 21

  4. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation.

    PubMed

    Tyleckova, Jirina; Valekova, Ivona; Zizkova, Martina; Rakocyova, Michaela; Marsala, Silvia; Marsala, Martin; Gadher, Suresh Jivan; Kovarova, Hana

    2016-01-30

    Pluripotent stem cell-derived committed neural precursors are an important source of cells to treat neurodegenerative diseases including spinal cord injury. There remains an urgency to identify markers for monitoring of neural progenitor specificity, estimation of neural fate and follow-up correlation with therapeutic effect in preclinical studies using animal disease models. Cell surface capture technology was used to uncover the cell surface exposed N-glycoproteome of neural precursor cells upon neuronal differentiation as well as post-mitotic mature hNT neurons. The data presented depict an extensive study of surfaceome during neuronal differentiation, confirming glycosylation at a particular predicted site of many of the identified proteins. Quantitative changes detected in cell surface protein levels reveal a set of proteins that highlight the complexity of the neuronal differentiation process. Several of these proteins including the cell adhesion molecules ICAM1, CHL1, and astrotactin1 as well as LAMP1 were validated by SRM. Combination of immunofluorescence staining of ICAM1 and flow cytometry indicated a possible direction for future scrutiny of such proteins as targets for enrichment of the neuronal subpopulation from mixed cultures after differentiation of neural precursor cells. These surface proteins hold an important key for development of safe strategies in cell-replacement therapies of neuronal disorders. Neural stem and/or precursor cells have a great potential for cell-replacement therapies of neuronal diseases. Availability of well characterised and expandable neural cell lineage specific populations is critical for addressing such a challenge. In our study we identified and relatively quantified several hundred surface N-glycoproteins in the course of neuronal differentiation. We further confirmed the abundant changes for several cell adhesion proteins by SRM and outlined a strategy for utilisation of such N-glycoproteins in antibody based cell

  5. Alternative splicing of spleen tyrosine kinase differentially regulates colorectal cancer progression

    PubMed Central

    Ni, Beibei; Hu, Jun; Chen, Dianke; Li, Li; Chen, Daici; Wang, Jianping; Wang, Lei

    2016-01-01

    Spleen tyrosine kinase (SYK) has been reported as a potential tumor suppressor in colorectal cancer (CRC). However, the role of alternative splicing of SYK in carcinogenesis remains unclear. In the present study, SYK isoforms were overexpressed in the human CRC HCT 116 cell line using lentiviral expression vectors to investigate the biological functions of full length SYK [SYK(L)] and short form SYK [SYK(S)] in CRC. Real-time cellular analysis and the 5-ethynyl-2-deoxyuridine assay were used to detect the effects of SYK(L) and SYK(S) on cell proliferation. Cell cycle progression and migration were assessed via flow cytometry and Transwell assays, respectively. The results revealed that the recombinant lentivirus with SYK(L) overexpression significantly suppressed the proliferation and metastasis of CRC cells, while SYK(S) overexpression did not. In addition, MTS assays demonstrated that SYK(L) and SYK(S) increased the cellular sensitivity to 5-fluorouracil (5-FU), suggesting that SYK(L) and 5-FU produce a significant synergistic effect on CRC cell proliferation, while SYK(S) has an effect on modulating CRC 5-FU sensitivity. Furthermore, quantitative polymerase chain reaction results revealed that SYK(L) was downregulated in 69% of 26 pairs of CRC and adjacent non-cancerous tissues, whereas SYK(S) exhibited no significant differences between tumor and normal tissues. Overall, the present data provides evidence that SYK(L) is a tumor suppressor in CRC, and both SYK(L) and SYK(S) may serve as important predictors in the chemotherapeutic treatment of CRC. PMID:27602108

  6. Non-mammalian models reveal the role of alternative ligands for thyroid hormone receptors.

    PubMed

    Orozco, Aurea; Lazcano, Iván; Hernández-Puga, Gabriela; Olvera, Aurora

    2017-03-04

    Thyroid hormones, or THs, are well-known regulators of a wide range of biological processes that occur throughout the lifespan of all vertebrates. THs act through genomic mechanisms mediated by thyroid hormone receptors (TRs). The main product of the thyroid gland is thyroxine or T4, which can be further transformed by different biochemical pathways to produce at least 15 active or inactive molecules. T3, a product of T4 outer-ring deiodination, has been recognized as the main bioactive TH. However, growing evidence has shown that other TH derivatives are able to bind to, and/or activate TRs, to induce thyromimetic effects. The compiled data in this review points to at least two of these TR alternative ligands: TRIAC and T2. Taking this into account, non-mammalian models have proven to be advantageous to explore new TH derivatives with potential novel actions, prompting a re-evaluation of the role and mechanism of action of TR alternative ligands that were previously believed to be inactive. The functional implications of these ligands across different vertebrates may require us to reconsider current established notions of thyroid physiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Computational analysis of translational readthrough proteins in Drosophila and yeast reveals parallels to alternative splicing

    PubMed Central

    Pancsa, Rita; Macossay-Castillo, Mauricio; Kosol, Simone; Tompa, Peter

    2016-01-01

    In translational readthrough (TR) the ribosome continues extending the nascent protein beyond the first in-frame termination codon. Due to the lack of dedicated analyses of eukaryotic TR cases, the associated functional-evolutionary advantages are still unclear. Here, based on a variety of computational methods, we describe the structural and functional properties of previously proposed D. melanogaster and S. cerevisiae TR proteins and extensions. We found that in D. melanogaster TR affects long proteins in mainly regulatory roles. Their TR-extensions are structurally disordered and rich in binding motifs, which, together with their cell-type- and developmental stage-dependent inclusion, suggest that similarly to alternatively spliced exons they rewire cellular interaction networks in a temporally and spatially controlled manner. In contrast, yeast TR proteins are rather short and fulfil mainly housekeeping functions, like translation. Yeast extensions usually lack disorder and linear motifs, which precludes elucidating their functional relevance with sufficient confidence. Therefore we propose that by being much more restricted and by lacking clear functional hallmarks in yeast as opposed to fruit fly, TR shows remarkable parallels with alternative splicing. Additionally, the lack of conservation of TR extensions among orthologous TR proteins suggests that TR-mediated functions may be generally specific to lower taxonomic levels. PMID:27561673

  8. Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy

    PubMed Central

    Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew

    2016-01-01

    Alternative splicing is a regulated process that results in expression of specific mRNA and protein isoforms. Alternative splicing factors determine the relative abundance of each isoform. Here we focus on MBNL1, a splicing factor misregulated in the disease myotonic dystrophy. By altering the concentration of MBNL1 in cells across a broad dynamic range, we show that different splicing events require different amounts of MBNL1 for half-maximal response, and respond more or less steeply to MBNL1. Motifs around MBNL1 exon 5 were studied to assess how cis-elements mediate the MBNL1 dose-dependent splicing response. A framework was developed to estimate MBNL concentration using splicing responses alone, validated in the cell-based model, and applied to myotonic dystrophy patient muscle. Using this framework, we evaluated the ability of individual and combinations of splicing events to predict functional MBNL concentration in human biopsies, as well as their performance as biomarkers to assay mild, moderate, and severe cases of DM. PMID:27681373

  9. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.

    PubMed

    Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y

    2014-01-31

    Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing

    PubMed Central

    Taube, Jennifer R.; Sperle, Karen; Banser, Linda; Seeman, Pavel; Cavan, Barbra Charina V.; Garbern, James Y.; Hobson, Grace M.

    2014-01-01

    Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5′ splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD. PMID:24890387

  11. Differential repression of alternative transcripts: a screen for miRNA targets.

    PubMed

    Legendre, Matthieu; Ritchie, William; Lopez, Fabrice; Gautheret, Daniel

    2006-05-01

    Alternative polyadenylation sites produce transcript isoforms with 3' untranslated regions (UTRs) of different lengths. If a microRNA (miRNA) target is present in the UTR, then only those target-containing isoforms should be sensitive to control by a cognate miRNA. We carried out a systematic examination of 3' UTRs containing multiple poly(A) sites and putative miRNA targets. Based on expressed sequence tag (EST) counts and EST library information, we observed that levels of isoforms containing targets for miR-1 or miR-124, two miRNAs causing downregulation of transcript levels, were reduced in tissues expressing the corresponding miRNA. This analysis was repeated for all conserved 7-mers in 3' UTRs, resulting in a selection of 312 motifs. We show that this set is significantly enriched in known miRNA targets and mRNA-destabilizing elements, which validates our initial hypothesis. We scanned the human genome for possible cognate miRNAs and identified phylogenetically conserved precursors matching our motifs. This analysis can help identify target-miRNA couples that went undetected in previous screens, but it may also reveal targets for other types of regulatory factors.

  12. Differential Repression of Alternative Transcripts: A Screen for miRNA Targets

    PubMed Central

    Lopez, Fabrice; Gautheret, Daniel

    2006-01-01

    Alternative polyadenylation sites produce transcript isoforms with 3′ untranslated regions (UTRs) of different lengths. If a microRNA (miRNA) target is present in the UTR, then only those target-containing isoforms should be sensitive to control by a cognate miRNA. We carried out a systematic examination of 3′ UTRs containing multiple poly(A) sites and putative miRNA targets. Based on expressed sequence tag (EST) counts and EST library information, we observed that levels of isoforms containing targets for miR-1 or miR-124, two miRNAs causing downregulation of transcript levels, were reduced in tissues expressing the corresponding miRNA. This analysis was repeated for all conserved 7-mers in 3′ UTRs, resulting in a selection of 312 motifs. We show that this set is significantly enriched in known miRNA targets and mRNA-destabilizing elements, which validates our initial hypothesis. We scanned the human genome for possible cognate miRNAs and identified phylogenetically conserved precursors matching our motifs. This analysis can help identify target-miRNA couples that went undetected in previous screens, but it may also reveal targets for other types of regulatory factors. PMID:16699595

  13. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing.

    PubMed

    Shahzad, K; Rauf, M; Ahmed, M; Malik, Z A; Habib, I; Ahmed, Z; Mahmood, K; Ali, R; Masmoudi, K; Lemtiri-Chlieh, F; Gehring, C; Berkowitz, G A; Saeed, N A

    2015-07-01

    Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  14. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons

    PubMed Central

    Kralovicova, Jana; Vorechovsky, Igor

    2017-01-01

    The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing. PMID:27566151

  15. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis

    PubMed Central

    Marquez, Yamile; Brown, John W.S.; Simpson, Craig; Barta, Andrea; Kalyna, Maria

    2012-01-01

    Alternative splicing (AS) is a key regulatory mechanism that contributes to transcriptome and proteome diversity. As very few genome-wide studies analyzing AS in plants are available, we have performed high-throughput sequencing of a normalized cDNA library which resulted in a high coverage transcriptome map of Arabidopsis. We detect ∼150,000 splice junctions derived mostly from typical plant introns, including an eightfold increase in the number of U12 introns (2069). Around 61% of multiexonic genes are alternatively spliced under normal growth conditions. Moreover, we provide experimental validation of 540 AS transcripts (from 256 genes coding for important regulatory factors) using high-resolution RT-PCR and Sanger sequencing. Intron retention (IR) is the most frequent AS event (∼40%), but many IRs have relatively low read coverage and are less well-represented in assembled transcripts. Additionally, ∼51% of Arabidopsis genes produce AS transcripts which do not involve IR. Therefore, the significance of IR in generating transcript diversity was generally overestimated in previous assessments. IR analysis allowed the identification of a large set of cryptic introns inside annotated coding exons. Importantly, a significant fraction of these cryptic introns are spliced out in frame, indicating a role in protein diversity. Furthermore, we show extensive AS coupled to nonsense-mediated decay in AFC2, encoding a highly conserved LAMMER kinase which phosphorylates splicing factors, thus establishing a complex loop in AS regulation. We provide the most comprehensive analysis of AS to date which will serve as a valuable resource for the plant community to study transcriptome complexity and gene regulation. PMID:22391557

  16. Genetic variability and differentiation of Caragana microphylla populations as revealed by RAPD markers.

    PubMed

    Chen, X H; Gao, Y B

    2011-09-01

    Genetic variability in random amplified polymorphic DNA (RAPD) was studied in 90 individuals of Caragana microphylla, an outcrossing perennial shrub species, from five natural populations sampled in Inner Mongolia steppe of China on a small scale. Nineteen selected primers were used to amplify DNA samples, and totally 225 bands were detected. The percentage of polymorphic bands within populations ranged form 58.22% to 63.56%, with an average of 60% at the population level and 71.11% at the species level, indicating relatively high genetic variations in C. microphylla species. Shannon's information index (I) and Nei's gene diversity (h) showed the similar trend with each other. According to the analysis of Nei's gene diversity, the percentage of genetic variation among populations was 7.13%, indicating a low level of genetic differentiation among populations. There existed a strong gene flow (Nm = 3.26) among populations. Although AMOVA analysis also revealed most variation was within populations (phi(ST) = 4.1%), a significant proportion was observed among populations (P<0.001) in the present study, suggesting genetic differentiation occurred among populations at a certain extent. Based on Mantel's tests and the results of previous studies, the genetic structure pattern of C. microphylla accorded with the isolation-by-distance model on a very large scale, however, on a small scale, the significant genetic differentiation among populations might be enhanced by the micro-environmental divergence among the sampling sites, rather than by geographic factors. Analysis of the genetic variations of C. microphylla populations provided useful information for the adaptive strategy of Caragana species.

  17. Multivoxel patterns reveal functionally differentiated networks underlying auditory feedback processing of speech.

    PubMed

    Zheng, Zane Z; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N; Munhall, Kevin G; Cusack, Rhodri; Johnsrude, Ingrid S

    2013-03-06

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared with during passive listening. One network of regions appears to encode an "error signal" regardless of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a frontotemporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems.

  18. Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy

    PubMed Central

    Thalacker-Mercer, Anna; Stec, Michael; Cui, Xiangqin; Cross, James; Windham, Samuel

    2013-01-01

    Using genomic microarray analysis, we sought to identify and annotate differences in the pretraining skeletal muscle transcriptomes among human subjects clustered as nonresponders (Non), modest responders (Mod), and extreme responders (Xtr) based on differential magnitudes of myofiber hypertrophy in response to progressive resistance training (RT) (Non −16 μm2, Mod 1,111 μm2, or Xtr 2,475 μm2). In prior work, we noted differences among clusters in the prevalence of myogenic stem cells prior to and during RT (35), and in the translational signaling responses to the first bout of resistance exercise (30). Here we identified remarkable differences in the pretraining transcript profiles among clusters (8,026 gene transcripts differentially expressed between Xtr and Non, 2,463 between Xtr and Mod, and 1,294 between Mod and Non). Annotated functions and networks of differentially expressed genes suggest Xtr were “primed” to respond to RT through transcriptional regulation, along with a uniquely expressed network of genes involved in skeletal muscle development, while the failed response in Non may have been driven by excessive proinflammatory signaling. Protein follow-up analysis revealed higher basal levels of acetylated histone H3 (K36) in the two responder clusters (Mod, Xtr) compared with Non, and only the responders experienced alterations in the muscle content of select proteins (e.g., α-tubulin, p27kip) in response to the first resistance exercise stimulus. Overall, the widely disparate transcriptomes identified prior to RT among the three clusters support the notion that at least some of the interindividual heterogeneity in propensity for RT-induced myofiber hypertrophy is likely predetermined. PMID:23632419

  19. Semantic Differential Scale Method Can Reveal Multi-Dimensional Aspects of Mind Perception

    PubMed Central

    Takahashi, Hideyuki; Ban, Midori; Asada, Minoru

    2016-01-01

    As humans, we tend to perceive minds in both living and non-living entities, such as robots. From a questionnaire developed in a previous mind perception study, authors found that perceived minds could be located on two dimensions “experience” and “agency.” This questionnaire allowed the assessment of how we perceive minds of various entities from a multi-dimensional point of view. In this questionnaire, subjects had to evaluate explicit mental capacities of target characters (e.g., capacity to feel hunger). However, we sometimes perceive minds in non-living entities, even though we cannot attribute these evidently biological capacities to the entity. In this study, we performed a large-scale web survey to assess mind perception by using the semantic differential scale method. We revealed that two mind dimensions “emotion” and “intelligence,” respectively, corresponded to the two mind dimensions (experience and agency) proposed in a previous mind perception study. We did this without having to ask about specific mental capacities. We believe that the semantic differential scale is a useful method to assess the dimensions of mind perception especially for non-living entities that are hard to be attributed to biological capacities. PMID:27853445

  20. Semantic Differential Scale Method Can Reveal Multi-Dimensional Aspects of Mind Perception.

    PubMed

    Takahashi, Hideyuki; Ban, Midori; Asada, Minoru

    2016-01-01

    As humans, we tend to perceive minds in both living and non-living entities, such as robots. From a questionnaire developed in a previous mind perception study, authors found that perceived minds could be located on two dimensions "experience" and "agency." This questionnaire allowed the assessment of how we perceive minds of various entities from a multi-dimensional point of view. In this questionnaire, subjects had to evaluate explicit mental capacities of target characters (e.g., capacity to feel hunger). However, we sometimes perceive minds in non-living entities, even though we cannot attribute these evidently biological capacities to the entity. In this study, we performed a large-scale web survey to assess mind perception by using the semantic differential scale method. We revealed that two mind dimensions "emotion" and "intelligence," respectively, corresponded to the two mind dimensions (experience and agency) proposed in a previous mind perception study. We did this without having to ask about specific mental capacities. We believe that the semantic differential scale is a useful method to assess the dimensions of mind perception especially for non-living entities that are hard to be attributed to biological capacities.

  1. RNA sequencing reveals differentially expressed genes as potential diagnostic and prognostic indicators of gallbladder carcinoma

    PubMed Central

    Jiang, Mingming; Fang, Meng; Ji, Jun; Wang, Aihua; Wang, Mengmeng; Jiang, Xiaoqing; Gao, Chunfang

    2015-01-01

    Gallbladder carcinoma (GBC) is a rare tumor with a dismal survival rate overall. Hence, there is an urgent need for exploring more specific and sensitive biomarkers for the diagnosis and treatment of GBC. At first, amplified total RNAs from two paired GBC tumors and adjacent non-tumorous tissues (ANTTs) were subjected to RNA sequencing. 161 genes were identified differentially expressed between tumors and ANTTs. Functional enrichment analysis indicated that the up-regulated genes in tumor were primarily associated with signaling molecules and enzyme modulators, and mainly involved in cell cycles and pathways in cancer. Twelve differentially expressed genes (DEGs) were further confirmed in another independent cohort of 35 GBC patients. Expression levels of BIRC5, TK1, TNNT1 and MMP9 were found to be positively related to postoperative relapse. There was also a significant correlation between BIRC5 expression and tumor-node-metastasis (TNM) stage. Besides, we observed a positive correlation between serum CA19–9 concentration and the expression levels of TNNT1, MMP9 and CLIC3. Survival analysis revealed that GBC patients with high TK1 and MMP9 expression levels had worse prognosis. These identified DEGs might not only be promising biomarkers for GBC diagnosis and prognosis, but also expedite the discovery of novel therapeutic strategies. PMID:25970782

  2. Genetic Tagging During Human Mesoderm Differentiation Reveals Tripotent Lateral Plate Mesodermal Progenitors.

    PubMed

    Chin, Chee Jia; Cooper, Aaron R; Lill, Georgia R; Evseenko, Denis; Zhu, Yuhua; He, Chong Bin; Casero, David; Pellegrini, Matteo; Kohn, Donald B; Crooks, Gay M

    2016-05-01

    Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Stem Cells 2016;34:1239-1250.

  3. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    PubMed

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence.

  4. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae)

    PubMed Central

    Ziegenhagen, Birgit; Liepelt, Sascha

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the analysis and the amount of sequencing work and costs. For this study we combined an improved drought stress phenotyping of needles via a novel terahertz water monitoring technique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress response in European silver fir (Abies alba Mill.). A pooled cDNA library was constructed from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respectively. Differential expression analyses of these libraries revealed 296 candidate genes for drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code for currently uncharacterized proteins and hint on new genomic resources to be explored in conifers. Furthermore, we could show that some traditional reference genes from model plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose a new reference gene, TPC1, for drought stress expression profiling in needles of conifer seedlings. PMID:25924061

  5. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae).

    PubMed

    Behringer, David; Zimmermann, Heike; Ziegenhagen, Birgit; Liepelt, Sascha

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the analysis and the amount of sequencing work and costs. For this study we combined an improved drought stress phenotyping of needles via a novel terahertz water monitoring technique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress response in European silver fir (Abies alba Mill.). A pooled cDNA library was constructed from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respectively. Differential expression analyses of these libraries revealed 296 candidate genes for drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code for currently uncharacterized proteins and hint on new genomic resources to be explored in conifers. Furthermore, we could show that some traditional reference genes from model plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose a new reference gene, TPC1, for drought stress expression profiling in needles of conifer seedlings.

  6. Exome analysis reveals differentially mutated gene signatures of stage, grade and subtype in breast cancers.

    PubMed

    Li, You; Wang, Xiaosheng; Vural, Suleyman; Mishra, Nitish K; Cowan, Kenneth H; Guda, Chittibabu

    2015-01-01

    Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies.

  7. Exome Analysis Reveals Differentially Mutated Gene Signatures of Stage, Grade and Subtype in Breast Cancers

    PubMed Central

    Li, You; Wang, Xiaosheng; Vural, Suleyman; Mishra, Nitish K.; Cowan, Kenneth H.; Guda, Chittibabu

    2015-01-01

    Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies. PMID:25803781

  8. Comparative Transcriptional Analysis Reveals Differential Gene Expression between Asymmetric and Symmetric Zygotic Divisions in Tobacco

    PubMed Central

    Zhao, Jie

    2011-01-01

    Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY) could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH) and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO) term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these candidate

  9. Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis.

    PubMed

    Tejedor, J Ramón; Papasaikas, Panagiotis; Valcárcel, Juan

    2015-01-08

    Alternative splicing of Fas/CD95 exon 6 generates either a membrane-bound receptor that promotes, or a soluble isoform that inhibits, apoptosis. Using an automatized genome-wide siRNA screening for alternative splicing regulators of endogenous transcripts in mammalian cells, we identified 200 genes whose knockdown modulates the ratio between Fas/CD95 isoforms. These include classical splicing regulators; core spliceosome components; and factors implicated in transcription and chromatin remodeling, RNA transport, intracellular signaling, and metabolic control. Coherent effects of genes involved in iron homeostasis and pharmacological modulation of iron levels revealed a link between intracellular iron and Fas/CD95 exon 6 inclusion. A splicing regulatory network linked iron levels with reduced activity of the Zinc-finger-containing splicing regulator SRSF7, and in vivo and in vitro assays revealed that iron inhibits SRSF7 RNA binding. Our results uncover numerous links between cellular pathways and RNA processing and a mechanism by which iron homeostasis can influence alternative splicing.

  10. MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells

    PubMed Central

    Cardinali, B; Cappella, M; Provenzano, C; Garcia-Manteiga, J M; Lazarevic, D; Cittaro, D; Martelli, F; Falcone, G

    2016-01-01

    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein. PMID:26844700

  11. Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics

    PubMed Central

    2014-01-01

    Background Social dominance is important for the reproductive success of males in many species. In the black-faced blenny (Tripterygion delaisi) during the reproductive season, some males change color and invest in nest making and defending a territory, whereas others do not change color and ‘sneak’ reproductions when females lay their eggs. Using RNAseq, we profiled differential gene expression between the brains of territorial males, sneaker males, and females to study the molecular signatures of male dimorphism. Results We found that more genes were differentially expressed between the two male phenotypes than between males and females, suggesting that during the reproductive period phenotypic plasticity is a more important factor in differential gene expression than sexual dimorphism. The territorial male overexpresses genes related to synaptic plasticity and the sneaker male overexpresses genes involved in differentiation and development. Conclusions Previously suggested candidate genes for social dominance in the context of alternative mating strategies seem to be predominantly species-specific. We present a list of novel genes which are differentially expressed in Tripterygion delaisi. This is the first genome-wide study for a molecular non-model species in the context of alternative mating strategies and provides essential information for further studies investigating the molecular basis of social dominance. PMID:24581002

  12. Quantitative Proteomics Reveals GIMAP Family Proteins 1 and 4 to Be Differentially Regulated during Human T Helper Cell Differentiation *S⃞

    PubMed Central

    Filén, Jan-Jonas; Filén, Sanna; Moulder, Robert; Tuomela, Soile; Ahlfors, Helena; West, Anne; Kouvonen, Petri; Kantola, Suvi; Björkman, Mari; Katajamaa, Mikko; Rasool, Omid; Nyman, Tuula A.; Lahesmaa, Riitta

    2009-01-01

    T helper (Th) cells differentiate into functionally distinct effector cell subsets of which Th1 and Th2 cells are best characterized. Besides T cell receptor signaling, IL-12-induced STAT4 and T-bet- and IL-4-induced STAT6 and GATA3 signaling pathways are the major players regulating the Th1 and Th2 differentiation process, respectively. However, there are likely to be other yet unknown factors or pathways involved. In this study we used quantitative proteomics exploiting cleavable ICAT labeling and LC-MS/MS to identify IL-4-regulated proteins from the microsomal fractions of CD4+ cells extracted from umbilical cord blood. We were able to identify 557 proteins of which 304 were also quantified. This study resulted in the identification of the down-regulation of small GTPases GIMAP1 and GIMAP4 by IL-4 during Th2 differentiation. We also showed that both GIMAP1 and GIMAP4 genes are up-regulated by IL-12 and other Th1 differentiation-inducing cytokines in cells induced to differentiate toward Th1 lineage and down-regulated by IL-4 in cells induced to Th2. Our results indicate that the GIMAP (GTPase of the immunity-associated protein) family of proteins is differentially regulated during Th cell differentiation. PMID:18701445

  13. Differential spectral power alteration following acupuncture at different designated places revealed by magnetoencephalography

    NASA Astrophysics Data System (ADS)

    You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Liu, Zhenyu; Wang, Hu; Feng, Yuanyuan; Wei, Wenjuan; Tian, Jie

    2012-03-01

    As an ancient therapeutic technique in Traditional Chinese Medicine, acupuncture has been used increasingly in modern society to treat a range of clinical conditions as an alternative and complementary therapy. However, acupoint specificity, lying at the core of acupuncture, still faces many controversies. Considering previous neuroimaging studies on acupuncture have mainly employed functional magnetic resonance imaging, which only measures the secondary effect of neural activity on cerebral metabolism and hemodynamics, in the current study, we adopted an electrophysiological measurement technique named magnetoencephalography (MEG) to measure the direct neural activity. 28 healthy college students were recruited in this study. We filtered MEG data into 5 consecutive frequency bands (delta, theta, alpha, beta and gamma band) and grouped 140 sensors into 10 main brain regions (left/right frontal, central, temporal, parietal and occipital regions). Fast Fourier Transformation (FFT) based spectral analysis approach was further performed to explore the differential band-limited power change patterns of acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. Significantly increased delta power and decreased alpha as well as beta power in bilateral frontal ROIs were observed following stimulation at ST36. Compared with ST36, decreased alpha power in left and right central, right parietal as well as right temporal ROIs were detected in NAP group. Our research results may provide additional evidence for acupoint specificity.

  14. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1

    PubMed Central

    Neubauer, Hans; Clare, Susan E; Wozny, Wojciech; Schwall, Gerhard P; Poznanović, Slobodan; Stegmann, Werner; Vogel, Ulrich; Sotlar, Karl; Wallwiener, Diethelm; Kurek, Raffael; Fehm, Tanja; Cahill, Michael A

    2008-01-01

    Introduction Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis. Methods Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays. Results Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of

  15. Alternative cerebral generators and circuitry pathways in alpha coma revealed by independent component analysis.

    PubMed

    Abusleme, Isaac E; Chen, James W Y

    2009-04-01

    This study investigates the generators of alpha coma activity and the probable cerebral pathways involved in alpha coma patients. This study uses independent component analysis (ICA) and dipole fitting algorithm to locate the cerebral generators in alpha coma and normal alpha rhythms. Distinct distributions of the source generators for alpha activity were noted in alpha coma. They were localized to the anterior neocortical and subcortical regions, which includes caudate nucleus, midbrain and hypothalamus. In addition, the two patients who survive long term have five independent components identified vs. the other five patients who demised only had one or two independent components. The findings showed that alpha activity could be generated using alternative generators and pathways. This is probably due to the disinhibition of the normally inhibited pathways in coma. The presence of less independent components is probably a marker of less preserved brain tissue and predicts worse outcome. This is the first known human study using the ICA method to localize the cerebral generators in alpha coma. It might provide a new dimension of interpreting clinical EEGs in patients with alpha coma. It also might have significant application in predicting the clinical outcomes.

  16. Molecular cloning and functional characterization of a mouse gene upregulated by lipopolysaccharide treatment reveals alternative splicing

    SciTech Connect

    Du, Kejun; Chen, Yaoming; Dai, Zongming; Bi, Yuan; Cai, Tongjian; Hou, Lichao; Chai, Yubo; Song, Qinghe; Chen, Sumin; Luo, Wenjing; Chen, Jingyuan

    2010-01-01

    Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. (DQ316984) and (DQ320011)), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.

  17. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    SciTech Connect

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.; Löffler, Frank E.; Edwards, Elizabeth A.

    2016-02-12

    Here we report that the genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete

  18. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    DOE PAGES

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.; ...

    2016-02-12

    Here we report that the genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 andmore » Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a

  19. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    PubMed Central

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.; Löffler, Frank E.; Edwards, Elizabeth A.

    2016-01-01

    The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis

  20. Differentially expressed three non-coding alternate exons at 5' UTR of regulatory type I beta subunit gene of mouse.

    PubMed

    Banday, Abdul Rouf; Azim, Shafquat; Tabish, Mohammad

    2012-04-01

    Prkar1b gene encodes regulatory type I, beta subunit (RIβ) of cAMP dependent protein kinase A in mouse. Among the various isoforms of regulatory and catalytic subunits that comprise mammalian PKA, RIβ subunit is considered to be one of the important subunits for neuronal functions. This is involved in multiple forms of synaptic plasticity, and influences memory and learning by maintaining hippocampal long-term potentiation (LTP). Deficient expression of this gene has been implicated in autoimmune disease systemic lupus erythematosus (SLE). We have identified two novel non-coding exons of the Prkar1b gene (designated as exon 1A and exon 1B), which are spliced to the canonical exon 2 and constitute the 5' untranslated region giving rise to three alternative transcript isoforms. We have also confirmed the expression of the previously known first exon (designated as exon 1C) with known transcript published earlier. The transcripts containing exons 1A, 1B and 1C are differentially regulated during the development and tissue types. In silico study of more than 20 kb nucleotide sequence upstream of known translational initiation codon revealed three distinct promoter regions named as PA, PB, and PC upstream of the exon 1A, exon 1B and exon 1C respectively. PB is non-CpG related promoter but PA and PC are CpG related promoters, however all three promoters are TATA less. Further analysis showed that these promoters possess potential signature sequences for common as well as different transcription factors suggesting complex regulation of Prkar1b gene.

  1. ExactDAS: an exact test procedure for the detection of differential alternative splicing in microarray experiments.

    PubMed

    Mary-Huard, Tristan; Jaffrezic, Florence; Robin, Stéphane

    2012-11-06

    The aim of this paper is to propose a test procedure for the detection of differential alternative splicing across conditions for tiling array or exon chip data. While developed in a mixed model framework, the test procedure is exact (avoiding computational burden) and applicable to a large variety of contrasts, including several previously published ones. A simulation study is presented to evaluate the robustness and performance of the method. It is found to have a good detection power of genes under differential alternative splicing, even for five biological replicates and four probes per exon. The methodology also enables the comparison of various experimental designs through exact power curves. This is illustrated with the comparison of paired and unpaired experiments. The test procedure was applied to two publicly available cancer data sets based on exon arrays, and showed promising results.

  2. Genomic Profiling Reveals an Alternate Mechanism for Hepatic Tumor Promotion by Perfluorooctanoic Acid in Rainbow Trout

    PubMed Central

    Tilton, Susan C.; Orner, Gayle A.; Benninghoff, Abby D.; Carpenter, Hillary M.; Hendricks, Jerry D.; Pereira, Cliff B.; Williams, David E.

    2008-01-01

    Background Perfluorooctanoic acid (PFOA) is a potent hepatocarcinogen and peroxisome proliferator (PP) in rodents. Humans are not susceptible to peroxisome proliferation and are considered refractory to carcinogenesis by PPs. Previous studies with rainbow trout indicate they are also insensitive to peroxisome proliferation by the PP dehydroepiandrosterone (DHEA), but are still susceptible to enhanced hepatocarcinogenesis after chronic exposure. Objectives In this study, we used trout as a unique in vivo tumor model to study the potential for PFOA carcinogenesis in the absence of peroxisome proliferation compared with the structurally diverse PPs clofibrate (CLOF) and DHEA. Mechanisms of carcinogenesis were identified from hepatic gene expression profiles phenotypically anchored to tumor outcome. Methods We fed aflatoxin B1 or sham-initiated animals 200–1,800 ppm PFOA in the diet for 30 weeks for tumor analysis. We subsequently examined gene expression by cDNA array in animals fed PFOA, DHEA, CLOF, or 5 ppm 17β-estradiol (E2, a known tumor promoter) in the diet for 14 days. Results PFOA (1,800 ppm or 50 mg/kg/day) and DHEA treatments resulted in enhanced liver tumor incidence and multiplicity (p < 0.0001), whereas CLOF showed no effect. Carcinogenesis was independent of peroxisome proliferation, measured by lack of peroxisomal β-oxidation and catalase activity. Alternately, both tumor promoters, PFOA and DHEA, resulted in estrogenic gene signatures with strong correlation to E2 by Pearson correlation (R = 0.81 and 0.78, respectively), whereas CLOF regulated no genes in common with E2. Conclusions These data suggest that the tumor-promoting activities of PFOA in trout are due to novel mechanisms involving estrogenic signaling and are independent of peroxisome proliferation. PMID:18709148

  3. Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway

    PubMed Central

    de Vries, Erik; Tscherne, Donna M.; Wienholts, Marleen J.; Cobos-Jiménez, Viviana; Scholte, Florine; García-Sastre, Adolfo; Rottier, Peter J. M.; de Haan, Cornelis A. M.

    2011-01-01

    Influenza A virus (IAV) enters host cells upon binding of its hemagglutinin glycoprotein to sialylated host cell receptors. Whereas dynamin-dependent, clathrin-mediated endocytosis (CME) is generally considered as the IAV infection pathway, some observations suggest the occurrence of an as yet uncharacterized alternative entry route. By manipulating entry parameters we established experimental conditions that allow the separate analysis of dynamin-dependent and -independent entry of IAV. Whereas entry of IAV in phosphate-buffered saline could be completely inhibited by dynasore, a specific inhibitor of dynamin, a dynasore-insensitive entry pathway became functional in the presence of fetal calf serum. This finding was confirmed with the use of small interfering RNAs targeting dynamin-2. In the presence of serum, both IAV entry pathways were operational. Under these conditions entry could be fully blocked by combined treatment with dynasore and the amiloride derivative EIPA, the hallmark inhibitor of macropinocytosis, whereas either drug alone had no effect. The sensitivity of the dynamin-independent entry pathway to inhibitors or dominant-negative mutants affecting actomyosin dynamics as well as to a number of specific inhibitors of growth factor receptor tyrosine kinases and downstream effectors thereof all point to the involvement of macropinocytosis in IAV entry. Consistently, IAV particles and soluble FITC-dextran were shown to co-localize in cells in the same vesicles. Thus, in addition to the classical dynamin-dependent, clathrin-mediated endocytosis pathway, IAV enters host cells by a dynamin-independent route that has all the characteristics of macropinocytosis. PMID:21483486

  4. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.

    PubMed

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R

    2004-06-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.

  5. Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness

    PubMed Central

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R.

    2004-01-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying “normal” color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red–green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color. PMID:15148406

  6. 'Living stones' reveal alternative petal identity programs within the core eudicots.

    PubMed

    Brockington, Samuel F; Rudall, Paula J; Frohlich, Michael W; Oppenheimer, David G; Soltis, Pamela S; Soltis, Douglas E

    2012-01-01

    Petals, defined as the showy laminar floral organs in the second floral whorl, have been shown to be under similar genetic control in distantly related core eudicot model organisms. On the basis of these findings, it is commonly assumed that the petal identity program regulated by B-class MADS-box gene homologs is invariant across the core eudicot clade. However, the core eudicots, which comprise >70% of angiosperm species, exhibit numerous instances of petal and sepal loss, transference of petal function between floral whorls, and recurrent petal evolution. In the face of these complex patterns of perianth evolution, the concept of a core eudicot petal identity program has not been tested. We therefore examined the petal identity program in the Caryophyllales, a core eudicot clade in which perianth differentiation into sepals and petals has evolved multiple times. Specifically, we analyzed the expression patterns of B- and C-class MADS-box homologs for evidence of a conserved petal identity program between sepal-derived and stamen-derived petaloid organs in the 'living stone' family Aizoaceae. We found that neither sepal-derived nor stamen-derived petaloid organs exhibit gene expression patterns consistent with the core eudicot petal identity program. B-class gene homologs are not expressed during the development of sepal-derived petals and are not implicated in petal identity in stamen-derived petals, as their transient expression coincides with early expression of the C-class homolog. We therefore provide evidence for petal development that is independent of B-class genes and suggest that different genetic control of petal identity has evolved within this lineage of core eudicots. These findings call for a more comprehensive understanding of perianth variation and its genetic causes within the core eudicots--an endeavor that will have broader implications for the interpretation of perianth evolution across angiosperms.

  7. Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri

    PubMed Central

    Arnoux, E; Eraud, C; Navarro, N; Tougard, C; Thomas, A; Cavallo, F; Vetter, N; Faivre, B; Garnier, S

    2014-01-01

    Mobile organisms are expected to show population differentiation only over fairly large geographical distances. However, there is growing evidence of discrepancy between dispersal potential and realized gene flow. Here we report an intriguing pattern of differentiation at a very small spatial scale in the forest thrush (Turdus lherminieri), a bird species endemic to the Lesser Antilles. Analysis of 331 individuals from 17 sampling sites distributed over three islands revealed a clear morphological and genetic differentiation between these islands isolated by 40–50 km. More surprisingly, we found that the phenotypic divergence between the two geographic zones of the island of Guadeloupe was associated with a very strong genetic differentiation (Fst from 0.073–0.153), making this pattern a remarkable case in birds given the very small spatial scale considered. Molecular data (mitochondrial control region sequences and microsatellite genotypes) suggest that this strong differentiation could have occurred in situ, although alternative hypotheses cannot be fully discarded. This study suggests that the ongoing habitat fragmentation, especially in tropical forests, may have a deeper impact than previously thought on avian populations. PMID:24984605

  8. Transcriptome Profiling Reveals Differentially Expressed Transcripts Between the Human Adrenal Zona Fasciculata and Zona Reticularis

    PubMed Central

    Rege, Juilee; Nakamura, Yasuhiro; Wang, Tao; Merchen, Todd D.; Sasano, Hironobu

    2014-01-01

    Context: The human adrenal zona fasciculata (ZF) and zona reticularis (ZR) are responsible for the production of cortisol and 19-carbon steroids (often called adrenal androgens), respectively. However, the gene profiles and exact molecular mechanisms leading to the functional phenotype of the ZF and ZR are still not clearly defined. In the present study, we identified the transcripts that are differentially expressed in the ZF and ZR. Objective: The objective of the study was to compare the transcriptome profiles of ZF and ZR. Design and Methods: ZF and ZR were microdissected from 10 human adrenals. Total RNA was extracted from 10 ZF/ZR pairs and hybridized to Illumina microarray chips. The 10 most differentially expressed transcripts were studied with quantitative RT-PCR (qPCR). Immunohistochemistry was also performed on four zone-specific genes. Results: Microarray results demonstrated that only 347 transcripts of the 47 231 were significantly different by 2-fold or greater in the ZF and ZR. ZF had 195 transcripts with 2-fold or greater increase compared with its paired ZR, whereas ZR was found to have 152 transcripts with 2-fold or greater higher expression than in ZF. Microarray and qPCR analysis of transcripts encoding steroidogenic enzymes (n = 10) demonstrated that only 3β-hydroxysteroid dehydrogenase, steroid sulfotransferase, type 5 17β-hydroxysteroid dehydrogenase, and cytochrome b5 were significantly different. Immunohistochemistry and qPCR studies confirmed that the ZF had an increased expression of lymphoid enhancer-binding factor 1 and nephroblastoma overexpressed, whereas ZR showed an increased expression of solute carrier family 27 (fatty acid transporter) (SLC27A2), member 2 and TSPAN12 (tetraspanin 12) Conclusion: Microarray revealed several novel candidate genes for elucidating the molecular mechanisms governing the ZF and ZR, thereby increasing our understanding of the functional zonation of these two adrenocortical zones. PMID:24423296

  9. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring

    PubMed Central

    Lamichhaney, Sangeet; Barrio, Alvaro Martinez; Rafati, Nima; Sundström, Görel; Rubin, Carl-Johan; Gilbert, Elizabeth R.; Berglund, Jonas; Wetterbom, Anna; Laikre, Linda; Webster, Matthew T.; Grabherr, Manfred; Ryman, Nils; Andersson, Leif

    2012-01-01

    The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index FST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection. PMID:23134729

  10. Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting.

    PubMed

    Hébrard, Claire; Trap-Gentil, Marie-Véronique; Lafon-Placette, Clément; Delaunay, Alain; Joseph, Claude; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane

    2013-01-01

    Sugar beet (Beta vulgaris altissima) is a biennial root crop with an absolute requirement for cold exposure to bolt and flower, a process called vernalization. Global DNA methylation variations have been reported during vernalization in several plants. However, few genes targeted by DNA methylation during vernalization have been described. The objectives of this study were to identify differentially methylated regions and to study their involvement in bolting induction and tolerance. Restriction landmark genome scanning was applied to DNA from shoot apical meristems of sugar beet genotypes, providing a direct quantitative epigenetic assessment of several CG methylated genes without prior knowledge of gene sequence. Several differentially methylated regions exhibiting variations of gene-body DNA methylation and expression during cold exposure and/or between genotypes were identified, including an AROGENATE DEHYDRATASE and two RNA METHYLCYTOSINE TRANSFERASE sequences. One RNA METHYLCYTOSINE TRANSFERASE sequence displayed gene-body hypermethylation and activation of expression, while the other was hypomethylated and inhibited by cold exposure. Global RNA methylation and phenolic compound levels changed during cold exposure in a genotype-dependent way. The use of methyl RNA immunoprecipitation of total RNA and reverse transcription-PCR analysis revealed mRNA methylation in a vernalized bolting-resistant genotype for the FLOWERING LOCUS 1 gene, a repressor of flowering. Finally, Arabidopsis mutants for RNA METHYLCYTOSINE TRANSFERASE and AROGENATE DEHYDRATASE were shown to exhibit, under different environmental conditions, early or late bolting phenotypes, respectively. Overall, the data identified functional targets of DNA methylation during vernalization in sugar beet, and it is proposed that RNA methylation and phenolic compounds play a role in the floral transition.

  11. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis.

    PubMed

    Gurung, Bhusan; Bhardwaj, Pardeep K; Talukdar, Narayan C

    2016-11-01

    In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.

  12. RBM4 Regulates Neuronal Differentiation of Mesenchymal Stem Cells by Modulating Alternative Splicing of Pyruvate Kinase M.

    PubMed

    Su, Chun-Hao; Hung, Kuan-Yang; Hung, Shih-Chieh; Tarn, Woan-Yuh

    2017-02-01

    RBM4 promotes differentiation of neuronal progenitor cells and neurite outgrowth of cultured neurons via its role in splicing regulation. In this study, we further explored the role of RBM4 in neuronal differentiation. During neuronal differentiation, energy production shifts from glycolysis to oxidative phosphorylation. We found that the splice isoform change of the metabolic enzyme pyruvate kinase M (PKM) from PKM2 to PKM1 occurs during brain development and is impaired in RBM4-deficient brains. The PKM isoform change could be recapitulated in human mesenchymal stem cells (MSCs) during neuronal induction. Using a PKM minigene, we demonstrated that RBM4 plays a direct role in regulating alternative splicing of PKM. Moreover, RBM4 antagonized the function of the splicing factor PTB and induced the expression of a PTB isoform with attenuated splicing activity in MSCs. Overexpression of RBM4 or PKM1 induced the expression of neuronal genes, increased the mitochondrial respiration capacity in MSCs, and, accordingly, promoted neuronal differentiation. Finally, we demonstrated that RBM4 is induced and is involved in the PKM splicing switch and neuronal gene expression during hypoxia-induced neuronal differentiation. Hence, RBM4 plays an important role in the PKM isoform switch and the change in mitochondrial energy production during neuronal differentiation. Copyright © 2017 American Society for Microbiology.

  13. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators

    PubMed Central

    Llorian, Miriam; Gooding, Clare; Bellora, Nicolas; Hallegger, Martina; Buckroyd, Adrian; Wang, Xiao; Rajgor, Dipen; Kayikci, Melis; Feltham, Jack; Ule, Jernej; Eyras, Eduardo; Smith, Christopher W.J.

    2016-01-01

    Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery. PMID:27317697

  14. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine.

    PubMed

    Sheng, Zhen; Sun, Yi; Zhu, Ruixin; Jiao, Na; Tang, Kailin; Cao, Zhiwei; Ma, Chao

    2015-01-01

    Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, RNA-seq technology was used to detect the differentially expressed genes and differentially alternative spliced genes in BEL-7402 cancer cells induced by berberine. Functional enrichment analysis indicated that these genes were mainly enriched in the p53 and cell cycle signalling pathway. In addition, it was statistically proven that the two sets of genes were locally co-enriched along chromosomes, closely connected to each other based on protein-protein interaction and functionally similar on Gene Ontology tree. These results suggested that the two sets of genes regulated by berberine might be functionally cross-talked and jointly contribute to its cell cycle arresting effect. It has provided new clues for further researches on the pharmacological mechanisms of berberine as well as the other botanical drugs.

  15. Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation

    PubMed Central

    Bhanu, Natarajan V.; Sidoli, Simone; Garcia, Benjamin A.

    2016-01-01

    In this study, we trace developmental stages using epigenome changes in human embryonic stem cells (hESCs) treated with drugs modulating either self-renewal or differentiation. Based on microscopy, qPCR and flow cytometry, we classified the treatment outcome as inducing pluripotency (hESC, flurbiprofen and gatifloxacin), mesendoderm (sinomenine), differentiation (cyamarin, digoxin, digitoxin, selegeline and theanine) and lineage-commitment (RA). When we analyzed histone PTMs that imprinted these gene and protein expressions, the above classification was reassorted. Hyperacetylation at H3K4, 9, 14, 18, 56 and 122 as well as H4K5, 8, 12 and 16 emerged as the pluripotency signature of hESCs. Methylations especially of H3 at K9, K20, K27 and K36 characterized differentiation initiation as seen in no-drug control and fluribiprofen. Sinomenine-treated cells clustered close to “differentiation initiators”, consistent with flow cytometry where it induced mesendoderm, along with cyamarin and possibly selegnine. Neurectoderm, induced by RA and theanine manifested methylations on H3 shifts to H3.3. By both flow cytometry and histone PTM clustering, it appears that cells treated with gatifloxacin, flurbiprofen, digitoxin and digoxin were not yet lineage-committed or mixed cell types. Taken together, our moderate-throughput histone PTM profiling approach highlighted subtle epigenetic signatures that permitted us to predict divergent lineage progression even in differentiating cells with similar phenotype and gene expression. PMID:26631989

  16. Integrative omics analysis reveals differentially distributed proteins in dimorphic euspermatozoa of the squid, Loligo bleekeri.

    PubMed

    Yoshida, Masa-aki; Yamada, Lixy; Ochi, Hiroe; Iwata, Yoko; Tamura-Nakano, Miwa; Sawada, Hitoshi; Sauer, Warwick H H; Ogura, Atsushi; Hirohashi, Noritaka

    2014-08-01

    In the coastal squid Loligo bleekeri, each male produces one of two types of fertilization-competent spermatozoa (eusperm) that exhibit morphological and behavioral differences. Large "consort" males produce short-tailed spermatozoa that display free-swimming behavior when ejaculated into seawater. Small "sneaker" males, on the other hand, produce long-tailed spermatozoa that exhibit a self-swarming trait after ejaculation. To understand the molecular basis for adaptive traits employed by alternative male mating tactics, we performed the transcriptome deep sequencing (RNA-seq) and proteome analyses to search for differences in testicular mRNAs and sperm proteins, respectively. From mature male testes we identified a total of 236,455 contigs (FPKM ≧1) where 3789 and 2789 were preferentially (≧10-fold) expressed in consort and sneaker testes, respectively. A proteomic analysis detected 4302 proteins in the mature sperm as post-translational products. A strongly biased (≧10-fold) distribution occurred in 55 consort proteins and 61 sneaker proteins. There was no clear mRNA-protein correlation, making a ballpark estimate impossible for not only overall protein abundance but also the degree of biased sperm type expressed in the spermatozoa. A family encoding dynein heavy chain gene, however, was found to be biased towards sneakers, whereas many enzymes involving energy metabolism were heavily biased towards consort spermatozoa. The difference in flagellar length matched exactly the different amount of tubulins. From these results we hypothesize that discrete differential traits in dimorphic eusperm arose from a series of innovative alterations in the intracellular components of spermatozoa.

  17. Differentially expressed genes and interacting pathways in bladder cancer revealed by bioinformatic analysis.

    PubMed

    Shen, Yinzhou; Wang, Xuelei; Jin, Yongchao; Lu, Jiasun; Qiu, Guangming; Wen, Xiaofei

    2014-10-01

    The goal of this study was to identify cancer-associated differentially expressed genes (DEGs), analyze their biological functions and investigate the mechanism(s) of cancer occurrence and development, which may provide a theoretical foundation for bladder cancer (BCa) therapy. We downloaded the mRNA expression profiling dataset GSE13507 from the Gene Expression Omnibus database; the dataset includes 165 BCa and 68 control samples. T‑tests were used to identify DEGs. To further study the biological functions of the identified DEGs, we performed a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Next, we built a network of potentially interacting pathways to study the synergistic relationships among DEGs. A total of 12,105 genes were identified as DEGs, of which 5,239 were upregulated and 6,866 were downregulated in BCa. The DEGs encoding activator protein 1 (AP-1), nuclear factor of activated T-cells (NFAT) proteins, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and interleukin (IL)-10 were revealed to participate in the significantly enriched immune pathways that were downregulated in BCa. KEGG enrichment analysis revealed 7 significantly upregulated and 47 significantly downregulated pathways enriched among the DEGs. We found a crosstalk interaction among a total of 44 pathways in the network of BCa-affected pathways. In conclusion, our results show that BCa involves dysfunctions in multiple systems. Our study is expected to pave ways for immune and inflammatory research and provide molecular insights for cancer therapy.

  18. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    PubMed

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events.

  19. Differential gene expression and alternative splicing between diploid and tetraploid watermelon lines

    USDA-ARS?s Scientific Manuscript database

    Synthetic tetraploid plants have been used for production of seedless triploid watermelon lines being pollinated with diploid plants. When compared to their diploid or triploid counterparts, the tetraploid exhibit wide phenotypic differences. Though many factors, including alternative splicing (AS),...

  20. Effects of differential rates of alternative reinforcement on resurgence of human behavior.

    PubMed

    Smith, Brooke M; Smith, Gregory S; Shahan, Timothy A; Madden, Gregory J; Twohig, Michael P

    2017-01-01

    Despite the success of exposure-based psychotherapies in anxiety treatment, relapse remains problematic. Resurgence, the return of previously eliminated behavior following the elimination of an alternative source of reinforcement, is a promising model of operant relapse. Nonhuman resurgence research has shown that higher rates of alternative reinforcement result in faster, more comprehensive suppression of target behavior, but also in greater resurgence when alternative reinforcement is eliminated. This study investigated rich and lean rates of alternative reinforcement on response suppression and resurgence in typically developing humans. In Phase 1, three groups (Rich, n = 18; Lean, n = 18; Control, n = 10) acquired the target response. In Phase 2, target responding was extinguished and alternative reinforcement delivered on RI 1 s, RI 3 s, and extinction schedules, respectively. Resurgence was assessed during Phase 3 under extinction conditions for all groups. Target responding was suppressed most thoroughly in Rich and partially in Lean. Target responding resurged in the Rich and Lean groups, but not in the Control group. Between groups, resurgence was more pronounced in the Rich group than the Lean and Control groups. Clinical implications of these findings, including care on the part of clinicians when identifying alternative sources of reinforcement, are discussed.

  1. Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.

    PubMed

    Luo, Jianrang; Shi, Qianqian; Niu, Lixin; Zhang, Yanlong

    2017-02-20

    Tree peony (Paeonia suffruticosa Andrews) is an important traditional flower in China. Besides its beautiful flower, the leaf of tree peony has also good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in tree peony is unclear. In this study, the pigment level and transcriptome of three different color stages of tree peony leaf were analyzed. The purplish red leaf was rich in anthocyanin, while yellowish green leaf was rich in chlorophyll and carotenoid. Transcriptome analysis revealed that 4302 differentially expressed genes (DEGs) were upregulated, and 4225 were downregulated in the purplish red leaf vs. yellowish green leaf. Among these DEGs, eight genes were predicted to participate in anthocyanin biosynthesis, eight genes were predicted involved in porphyrin and chlorophyll metabolism, and 10 genes were predicted to participate in carotenoid metabolism. In addition, 27 MYBs, 20 bHLHs, 36 WD40 genes were also identified from DEGs. Anthocyanidin synthase (ANS) is the key gene that controls the anthocyanin level in tree peony leaf. Protochlorophyllide oxido-reductase (POR) is the key gene which regulated the chlorophyll content in tree peony leaf.

  2. Brain slice invasion model reveals genes differentially regulated in glioma invasion

    SciTech Connect

    Holtkamp, Nikola . E-mail: nikola.holtkamp@charite.de; Afanasieva, Anastasia; Elstner, Anja; Landeghem, Frank K.H. van; Koenneker, Matthias; Kuhn, Susanne A.; Kettenmann, Helmut; Deimling, Andreas von

    2005-11-04

    Invasion of tumor cells into adjacent brain areas is one of the major problems in treatment of glioma patients. To identify genes that might contribute to invasion, fluorescent F98 glioma cells were allowed to invade an organotypic brain slice. Gene expression analysis revealed 5 up-regulated and 14 down-regulated genes in invasive glioma cells as compared to non-invasive glioma cells. Two gene products, ferritin and cyclin B1, were verified in human gliomas by immunohistochemistry. Ferritin exhibited high mRNA levels in migratory F98 cells and also showed higher protein expression in the infiltrating edge of human gliomas. Cyclin B1 with high mRNA expression levels in stationary F98 cells showed marked protein expression in the central portions of gliomas. These findings are compatible with the concept of tumor cells either proliferating or migrating. Our study is the first to apply brain slice cultures for the identification of differentially regulated genes in glioma invasion.

  3. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  4. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation

    PubMed Central

    van Ham, Tjakko J.; Brady, Colleen A.; Kalicharan, Ruby D.; Oosterhof, Nynke; Kuipers, Jeroen; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Peterson, Randall T.; Kampinga, Harm H.; Giepmans, Ben N. G.

    2014-01-01

    Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage. PMID:24973753

  5. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies.

    PubMed

    Upasani, Medha L; Limaye, Bhakti M; Gurjar, Gayatri S; Kasibhatla, Sunitha M; Joshi, Rajendra R; Kadoo, Narendra Y; Gupta, Vidya S

    2017-08-10

    Fusarium wilt is one of the major biotic stresses reducing chickpea productivity. The use of wilt-resistant cultivars is the most appropriate means to combat the disease and secure productivity. As a step towards understanding the molecular basis of wilt resistance in chickpea, we investigated the transcriptomes of wilt-susceptible and wilt-resistant cultivars under both Fusarium oxysporum f.sp. ciceri (Foc) challenged and unchallenged conditions. Transcriptome profiling using LongSAGE provided a valuable insight into the molecular interactions between chickpea and Foc, which revealed several known as well as novel genes with differential or unique expression patterns in chickpea contributing to lignification, hormonal homeostasis, plant defense signaling, ROS homeostasis, R-gene mediated defense, etc. Similarly, several Foc genes characteristically required for survival and growth of the pathogen were expressed only in the susceptible cultivar with null expression of most of these genes in the resistant cultivar. This study provides a rich resource for functional characterization of the genes involved in resistance mechanism and their use in breeding for sustainable wilt-resistance. Additionally, it provides pathogen targets facilitating the development of novel control strategies.

  6. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    PubMed

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species.

  7. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated

    PubMed Central

    Xu, Mengmeng; Che, Long; Yang, Zhenguo; Zhang, Pan; Shi, Jiankai; Li, Jian; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Feng, Bin; Wu, De

    2017-01-01

    Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90). The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1), reticulocalbin-3 (RCN3)], cell differentiation (actin), and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK)]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP)] and stress response [heat shock-related 70 kDa protein 2 (HSPA2)]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s) involved in the regulation of the ovarian follicle development. PMID:28265575

  8. Proteomic Analysis of Fetal Ovaries Reveals That Primordial Follicle Formation and Transition Are Differentially Regulated.

    PubMed

    Xu, Mengmeng; Che, Long; Yang, Zhenguo; Zhang, Pan; Shi, Jiankai; Li, Jian; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Feng, Bin; Wu, De; Xu, Shengyu

    2017-01-01

    Primordial follicle formation represents a critical phase of the initiation of embryonic reproductive organ development, while the primordial follicle transition into primary follicle determines whether oestrus or ovulation will occur in female animals. To identify molecular mechanism of new proteins which are involved in ovarian development, we employed 2D-DIGE to compare the protein expression profiles of primordial follicles and primary follicles of fetal ovaries in pigs. Fetal ovaries were collected at distinct time-points of the gestation cycle (g55 and g90). The identified proteins at the g55 time-point are mainly involved in the development of anatomical structures [reticulocalbin-1 (RCN1), reticulocalbin-3 (RCN3)], cell differentiation (actin), and stress response [heterogeneous nuclear ribonucleoprotein K (HNRNPK)]. Meanwhile, at the g90 stage, the isolated proteins with altered expression levels were mainly associated with cell proliferation [major vault protein (MVP)] and stress response [heat shock-related 70 kDa protein 2 (HSPA2)]. In conclusion, our work revealed that primordial follicle formation is regulated by RCN1, RCN3, actin, and HNRNPK, while the primordial follicle transformation to primary follicle is regulated by MVP and HSPA2. Therefore, our results provide further information for the prospective understanding of the molecular mechanism(s) involved in the regulation of the ovarian follicle development.

  9. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts.

    PubMed

    Roe, D S; Yang, B Z; Vianey-Saban, C; Struys, E; Sweetman, L; Roe, C R

    2006-01-01

    The differentiation of carnitine-acylcarnitine translocase deficiency (CACT) from carnitine palmitoyltransferase type II deficiency (CPT-II) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency from mitochondrial trifunctional protein deficiency (MTP) continues to be ambiguous using current acylcarnitine profiling techniques either from plasma or blood spots, or in the intact cell system (fibroblasts/amniocytes). Currently, enzyme assays are required to unequivocally differentiate CACT from CPT-II, and LCHAD from MTP. Over the years we have studied the responses of numerous FOD deficient cell lines to both even and odd numbered fatty acids of various chain lengths as well as branched-chain amino acids. In doing so, we discovered diagnostic elevations of unlabeled butyrylcarnitine detected only in CACT deficient cell lines when incubated with a shorter chain fatty acid, [7-2H3]heptanoate plus l-carnitine compared to the routinely used long-chain fatty acid, [16-2H3]palmitate. In monitoring the unlabeled C4/C5 acylcarnitine ratio, further differentiation from ETF/ETF-DH is also achieved. Similarly, incubating LCHAD and MTP deficient cell lines with the long-chain branched fatty acid, pristanic acid, and monitoring the C11/C9 acylcarnitine ratio has allowed differentiation between these disorders. These methods may be considered useful alternatives to specific enzyme assays for differentiation between these long-chain fatty acid oxidation disorders, as well as provide insight into new treatment strategies.

  10. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    PubMed

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  11. Soil profiles' development and differentiation as revealed by their magnetic signal

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana

    2017-04-01

    Soil profiles' development is a major theme in soil science research, as far as it gives basic information on soil genesis and classification. The use of soil magnetic properties as indicators for physical and geochemical conditions during pedogenesis received great attention during the last decade mainly in relation to paleoclimate reconstructions. However, tracking the observed general relationships with respect to degree of soil differentiation would lead to capitalization of this knowledge and its further utilization as pedogenic indicator. Here we present an overview of the observed relationships and depth variations of magnetic characteristics along ten soil profiles of Chernozems, Luvisols and Planosols from Bulgaria. Depending on the general soil group considered, different relationships between depth distribution of the relative amount of superparamagnetic (SP), single domain (SD) and larger pseudo single domain (PSD) to multi domain (MD) ferrimagnetic fractions are revealed. The profiles of the soil group with pronounced accumulation of organic matter in the mineral topsoil (Chernozems and Phaeozems) a systematic shift in the relative maxima of SP- and SD- like concentration proxies is observed with the increase of profile differentiation. In contrast, the group of soils with clay-enriched subsoil horizon (e.g. Luvisols) shows different evolution of the depth distribution of the grain-size proxy parameters. The increase of profile's degradation leads to a decrease in the amount of the SP fraction and a split in its maxima into two depth intervals related to the eluvial and illuvial horizons respectively. Along with this tendency, the maximum of the SD fraction moves to progressively deeper levels of the illuvial horizon. The third soil group of the Planosols is characterized by specific re-distribution of the iron oxides, caused by the oscillating oxidation - reduction fluctuations within the profile. The diagnostic eluvial and illuvial soil horizons are

  12. Differential Expression of Alternative Oxidase Genes in Soybean Cotyledons during Postgerminative Development1

    PubMed Central

    McCabe, Tulene C.; Finnegan, Patrick M.; Harvey Millar, A.; Day, David A.; Whelan, James

    1998-01-01

    The expression of the alternative oxidase (AOX) was investigated during cotyledon development in soybean (Glycine max [L.] Merr.) seedlings. The total amount of AOX protein increased throughout development, not just in earlier stages as previously thought, and was correlated with the increase in capacity of the alternative pathway. Each AOX isoform (AOX1, AOX2, and AOX3) showed a different developmental trend in mRNA abundance, such that the increase in AOX protein and capacity appears to involve a shift in gene expression from AOX2 to AOX3. As the cotyledons aged, the size of the mitochondrial ubiquinone pool decreased. We discuss how this and other factors may affect the alternative pathway activity that results from the developmental regulation of AOX expression. PMID:9765553

  13. Integrated analysis of differential expression and alternative splicing of non-small cell lung cancer based on RNA sequencing.

    PubMed

    Li, Zulei; Zhao, Kai; Tian, Hui

    2017-08-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with high morbidity and mortality rates. Numerous diagnosis and treatment methods have been proposed, and the prognosis of NSCLC has improved to a certain extent. However, the mechanisms of NSCLC remain largely unknown, and additional studies are required. In the present study, the RNA sequencing dataset of NSCLC was downloaded from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). The clean reads obtained from the raw data were mapped to the University of California Santa Cruz human genome (hg19), based on TopHat, and were assembled into transcripts via Cufflink. The differential expression (DE) and differential alternative splicing (DAS) genes were screened out through Cuffdiff and rMATS, respectively. The significantly enriched gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes pathways were obtained through the Database of Annotation, Visualization and Integrated Discovery (DAVID). Different numbers of DE and DAS genes were identified in different types of NSCLC samples, but a number of common functions and pathways were obtained, including biological processes associated with abnormal immune and cell activity. GO terms and pathways associated with substance metabolism, including the insulin signaling pathway and oxidative phosphorylation, were enriched in DAS genes rather than DE genes. Integrated analysis of differential expression and alternative splicing may be helpful in understanding the mechanisms of NSCLC, in addition to its early diagnosis and treatment.

  14. Integrated analysis of hematopoietic differentiation outcomes and molecular characterization reveals unbiased differentiation capacity and minor transcriptional memory in HPC/HSC-iPSCs.

    PubMed

    Gao, Shuai; Hou, Xinfeng; Jiang, Yonghua; Xu, Zijian; Cai, Tao; Chen, Jiajie; Chang, Gang

    2017-01-23

    Transcription factor-mediated reprogramming can reset the epigenetics of somatic cells into a pluripotency compatible state. Recent studies show that induced pluripotent stem cells (iPSCs) always inherit starting cell-specific characteristics, called epigenetic memory, which may be advantageous, as directed differentiation into specific cell types is still challenging; however, it also may be unpredictable when uncontrollable differentiation occurs. In consideration of biosafety in disease modeling and personalized medicine, the availability of high-quality iPSCs which lack a biased differentiation capacity and somatic memory could be indispensable. Herein, we evaluate the hematopoietic differentiation capacity and somatic memory state of hematopoietic progenitor and stem cell (HPC/HSC)-derived-iPSCs (HPC/HSC-iPSCs) using a previously established sequential reprogramming system. We found that HPC/HSCs are amenable to being reprogrammed into iPSCs with unbiased differentiation capacity to hematopoietic progenitors and mature hematopoietic cells. Genome-wide analyses revealed that no global epigenetic memory was detectable in HPC/HSC-iPSCs, but only a minor transcriptional memory of HPC/HSCs existed in a specific tetraploid complementation (4 N)-incompetent HPC/HSC-iPSC line. However, the observed minor transcriptional memory had no influence on the hematopoietic differentiation capacity, indicating the reprogramming of the HPC/HSCs was nearly complete. Further analysis revealed the correlation of minor transcriptional memory with the aberrant distribution of H3K27me3. This work provides a comprehensive framework for obtaining high-quality iPSCs from HPC/HSCs with unbiased hematopoietic differentiation capacity and minor transcriptional memory.

  15. Duplication and differentiation of common carp (Cyprinus carpio) myoglobin genes revealed by BAC analysis.

    PubMed

    Zhao, Zi-Xia; Xu, Peng; Cao, Ding-Chen; Kuang, You-Yi; Deng, Hai-Xia; Zhang, Yan; Xu, Li-Ming; Li, Jiong-Tang; Xu, Jian; Sun, Xiao-Wen

    2014-09-15

    Two distinct myoglobin (mb) transcripts have been reported in common carp, Cyprinus carpio, which is a hypoxia-tolerant fish living in habitats with greatly fluctuant dissolved oxygen levels. Recombinant protein analysis has shown functional specialization of the two mb transcripts. In this work, analysis for mb-containing bacterial artificial chromosome (BAC) clones indicated different genome loci for common carp myoglobin-1 (mb-1) and myoglobin-2 (mb-2) genes. Fluorescence in situ hybridization (FISH) revealed that mb-1 and mb-2 are located on separate chromosomes. In both of the mb-1 and mb-2 containing BAC clones, gene synteny was well conserved with the homologous region on zebrafish chromosome 1, supporting that the common carp specific mb-2 gene originated from the recent whole genome duplication event in cyprinid lineage. Transcription factor binding sites search indicated that both common carp mb genes lacked specificity Protein 1 (Sp1) and myocyte enhancer factor-2 (MEF2) binding sites, which mediated muscle-specific and calcium-dependent expression in the well-studied mb promoters. Potential hypoxia response elements (HREs) were predicted in the regulatory region of common carp mb genes. These characteristics of common carp mb gene regulatory region well interpreted the hypoxia-inducible, non-muscle expression pattern of mb-1. In the case of mb-2, a 10 bp insertion to the binding site of upstream stimulatory factor (USF), which was a co-factor of hypoxia inducible factor (HIF), might cause the non-response to hypoxia treatment of mb-2. The case of common carp mb gene duplication and subsequent differentiation in expression pattern and protein function provided an example for adaptive evolution toward aquatic hypoxia tolerance.

  16. Genome-wide transcriptional analysis of T cell activation reveals differential gene expression associated with psoriasis.

    PubMed

    Palau, Nuria; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández, Emilia; López-Lasanta, María; Tortosa, Raül; Marsal, Sara

    2013-11-23

    Psoriasis is a chronic autoimmune disease in which T cells have a predominant role in initiating and perpetuating the chronic inflammation in skin. However, the mechanisms that regulate T cell activation in psoriasis are still incompletely understood. The objective of the present study was to characterize the main genetic pathways associated with T cell activation in psoriasis. Gene expression profiles from in vitro activated T cells were obtained from 17 psoriasis patients and 7 healthy controls using Illumina HT-12 v4 microarrays. From a total of 47,321 analyzed transcripts, 42 genes were found to be differentially expressed between psoriasis and controls (FDR p-value < 0.1, absolute fold-change > 1.2). Using an independent cohort of 8 patients and 8 healthy controls we validated the overexpression of SPATS2L (p-value =0.0009) and KLF6 (p-value =0.0012) genes in activated T cells from psoriasis patients. Using weighted correlation analysis we identified SPATS2L and KLF6 coexpression networks, which were also significantly associated with psoriasis (p-value < 0.05). Gene Ontology analysis allowed the identification of several biological processes associated with each coexpression network. Finally, using Gene Set Enrichment Analysis over the global T cell transcriptome we also found additional genetic pathways strongly associated with psoriasis (p-value < 0.0001). This study has identified two new genes, SPATS2L and KLF6, strongly associated with T cell activation in psoriasis. Functional analyses of the gene expression profiles also revealed new biological processes and genetic pathways associated with psoriasis. The results of this study provide an important insight into the biology of this common chronic inflammatory disease.

  17. Differential Molecular Responses of Rapeseed Cotyledons to Light and Dark Reveal Metabolic Adaptations toward Autotrophy Establishment

    PubMed Central

    He, Dongli; Damaris, Rebecca N.; Fu, Jinlei; Tu, Jinxing; Fu, Tingdong; Xi, Chen; Yi, Bin; Yang, Pingfang

    2016-01-01

    Photosynthesis competent autotrophy is established during the postgerminative stage of plant growth. Among the multiple factors, light plays a decisive role in the switch from heterotrophic to autotrophic growth. Under dark conditions, the rapeseed hypocotyl extends quickly with an apical hook, and the cotyledon is yellow and folded, and maintains high levels of the isocitrate lyase (ICL). By contrast, in the light, the hypocotyl extends slowly, the cotyledon unfolds and turns green, the ICL content changes in parallel with cotyledon greening. To reveal metabolic adaptations during the establishment of postgerminative autotrophy in rapeseed, we conducted comparative proteomic and metabolomic analyses of the cotyledons of seedlings grown under light versus dark conditions. Under both conditions, the increase in proteases, fatty acid β-oxidation and glyoxylate-cycle related proteins was accompanied by rapid degradation of the stored proteins and lipids with an accumulation of the amino acids. While light condition partially retarded these conversions. Light significantly induced the expression of chlorophyll-binding and photorespiration related proteins, resulting in an increase in reducing-sugars. However, the levels of some chlorophyllide conversion, Calvin-cycle and photorespiration related proteins also accumulated in dark grown cotyledons, implying that the transition from heterotrophy to autotrophy is programmed in the seed rather than induced by light. Various anti-stress systems, e.g., redox related proteins, salicylic acid, proline and chaperones, were employed to decrease oxidative stress, which was mainly derived from lipid oxidation or photorespiration, under both conditions. This study provides a comprehensive understanding of the differential molecular responses of rapeseed cotyledons to light and dark conditions, which will facilitate further study on the complex mechanism underlying the transition from heterotrophy to autotrophy. PMID:27471506

  18. Comorbid Analysis of Genes Associated with Autism Spectrum Disorders Reveals Differential Evolutionary Constraints

    PubMed Central

    David, Maude M.; Enard, David; Ozturk, Alp; Daniels, Jena; Jung, Jae-Yoon; Diaz-Beltran, Leticia; Wall, Dennis. P.

    2016-01-01

    The burden of comorbidity in Autism Spectrum Disorder (ASD) is substantial. The symptoms of autism overlap with many other human conditions, reflecting common molecular pathologies suggesting that cross-disorder analysis will help prioritize autism gene candidates. Genes in the intersection between autism and related conditions may represent nonspecific indicators of dysregulation while genes unique to autism may play a more causal role. Thorough literature review allowed us to extract 125 ICD-9 codes comorbid to ASD that we mapped to 30 specific human disorders. In the present work, we performed an automated extraction of genes associated with ASD and its comorbid disorders, and found 1031 genes involved in ASD, among which 262 are involved in ASD only, with the remaining 779 involved in ASD and at least one comorbid disorder. A pathway analysis revealed 13 pathways not involved in any other comorbid disorders and therefore unique to ASD, all associated with basal cellular functions. These pathways differ from the pathways associated with both ASD and its comorbid conditions, with the latter being more specific to neural function. To determine whether the sequence of these genes have been subjected to differential evolutionary constraints, we studied long term constraints by looking into Genomic Evolutionary Rate Profiling, and showed that genes involved in several comorbid disorders seem to have undergone more purifying selection than the genes involved in ASD only. This result was corroborated by a higher dN/dS ratio for genes unique to ASD as compare to those that are shared between ASD and its comorbid disorders. Short-term evolutionary constraints showed the same trend as the pN/pS ratio indicates that genes unique to ASD were under significantly less evolutionary constraint than the genes associated with all other disorders. PMID:27414027

  19. A large-scale analysis of alternative splicing reveals a key role of QKI in lung cancer.

    PubMed

    de Miguel, Fernando J; Pajares, María J; Martínez-Terroba, Elena; Ajona, Daniel; Morales, Xabier; Sharma, Ravi D; Pardo, Francisco J; Rouzaut, Ana; Rubio, Angel; Montuenga, Luis M; Pio, Ruben

    2016-11-01

    Increasing interest has been devoted in recent years to the understanding of alternative splicing in cancer. In this study, we performed a genome-wide analysis to identify cancer-associated splice variants in non-small cell lung cancer. We discovered and validated novel differences in the splicing of genes known to be relevant to lung cancer biology, such as NFIB, ENAH or SPAG9. Gene enrichment analyses revealed an important contribution of alternative splicing to cancer-related molecular functions, especially those involved in cytoskeletal dynamics. Interestingly, a substantial fraction of the altered genes found in our analysis were targets of the protein quaking (QKI), pointing to this factor as one of the most relevant regulators of alternative splicing in non-small cell lung cancer. We also found that ESYT2, one of the QKI targets, is involved in cytoskeletal organization. ESYT2-short variant inhibition in lung cancer cells resulted in a cortical distribution of actin whereas inhibition of the long variant caused an increase of endocytosis, suggesting that the cancer-associated splicing pattern of ESYT2 has a profound impact in the biology of cancer cells. Finally, we show that low nuclear QKI expression in non-small cell lung cancer is an independent prognostic factor for disease-free survival (HR = 2.47; 95% CI = 1.11-5.46, P = 0.026). In conclusion, we identified several splicing variants with functional relevance in lung cancer largely regulated by the splicing factor QKI, a tumor suppressor associated with prognosis in lung cancer.

  20. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion

    PubMed Central

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W.; Kulozik, Andreas E.

    2016-01-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  1. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. © 2016 Hollerer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Cost Differentials and the Treatment of Equipment Assets: An Analysis of Alternatives.

    ERIC Educational Resources Information Center

    Frohreich, Lloyd E.

    This paper is a discussion of alternative state approaches to aiding and costing capital outlay programs, particularly equipment purchases for vocational programs. Equipment costs for vocational programs tend to be a larger proportion of the total costs than in other programs. The paper includes a discussion of such topics as the magnitude of…

  3. Modified Multiple-Choice Items for Alternate Assessments: Reliability, Difficulty, and Differential Boost

    ERIC Educational Resources Information Center

    Kettler, Ryan J.; Rodriguez, Michael C.; Bolt, Daniel M.; Elliott, Stephen N.; Beddow, Peter A.; Kurz, Alexander

    2011-01-01

    Federal policy on alternate assessment based on modified academic achievement standards (AA-MAS) inspired this research. Specifically, an experimental study was conducted to determine whether tests composed of modified items would have the same level of reliability as tests composed of original items, and whether these modified items helped reduce…

  4. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    ERIC Educational Resources Information Center

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  5. Aptitude Testing: A Critical Examination of the Differential Aptitude Tests, Alternative Batteries, and Problems in Prediction.

    ERIC Educational Resources Information Center

    Toronto Board of Education (Ontario). Research Dept.

    In addition to a review of the Differential Aptitude Tests (DAT), a number of other aptitude tests are examined. They are: (1) Flanagan Aptitude Classification Tests, (2) Holzinger-Crowder Uni-Factor Tests, (3) Employee Aptitude Survey, (4) Revised Minnesota Paper Form Board Test, (5) Minnesota Clerical Test, and (6) Turse Clerical Aptitudes Test.…

  6. Implications to Postsecondary Faculty of Alternative Calculation Methods of Gender-Based Wage Differentials.

    ERIC Educational Resources Information Center

    Hagedorn, Linda Serra

    1998-01-01

    A study explored two distinct methods of calculating a precise measure of gender-based wage differentials among college faculty. The first estimation considered wage differences using a formula based on human capital; the second included compensation for past discriminatory practices. Both measures were used to predict three specific aspects of…

  7. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection

    PubMed Central

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-01-01

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions. PMID:27721457

  8. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection.

    PubMed

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-10-10

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions.

  9. Involvement of an Alternative Oxidase in Oxidative Stress and Mycelium-to-Yeast Differentiation in Paracoccidioides brasiliensis ▿ †

    PubMed Central

    Martins, Vicente P.; Dinamarco, Taisa M.; Soriani, Frederico M.; Tudella, Valéria G.; Oliveira, Sergio C.; Goldman, Gustavo H.; Curti, Carlos; Uyemura, Sérgio A.

    2011-01-01

    Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis. PMID:21183691

  10. Transcriptional analysis of histone deacetylase family members reveal similarities between differentiating and aging spermatogonial stem cells.

    PubMed

    Kofman, Amber E; Huszar, Jessica M; Payne, Christopher J

    2013-02-01

    The differentiation of adult stem cells involves extensive chromatin remodeling, mediated in part by the gene products of histone deacetylase (HDAC) family members. While the transcriptional downregulation of HDACs can impede stem cell self-renewal in certain contexts, it may also promote stem cell maintenance under other circumstances. In self-renewing, differentiating, and aging spermatogonial stem cells (SSCs), the gene expression dynamics of HDACs have not yet been characterized. To gain further insight with these studies, we analyzed the transcriptional profiles of six HDAC family members, previously identified to be the most highly expressed in self-renewing SSCs, during stem cell differentiation and aging. Here we discovered that in both differentiating and aging SSCs the expression of Sirt4 increases, while the expression of Hdac2, Hdac6, and Sirt1 decreases. When SSCs are exposed to the lifespan-enhancing drug rapamycin in vivo, the resultant HDAC gene expression patterns are opposite of those seen in the differentiating and aging SSCs, with increased Hdac2, Hdac6, and Sirt1 and decreased Hdac8, Hdac9, and Sirt4. Our findings suggest that HDACs important for stem cell maintenance and oxidative capacity are downregulated as adult stem cells differentiate or age. These results provide important insights into the epigenetic regulation of stem cell differentiation and aging in mammals.

  11. A combinatorial strategy of alternative promoter use during differentiation of a heterocystous cyanobacterium.

    PubMed

    Muro-Pastor, Alicia M; Brenes-Álvarez, Manuel; Vioque, Agustín

    2017-08-01

    Heterocystous cyanobacteria such as Nostoc sp. are filamentous photosynthetic organisms that, in response to nitrogen deficiency, undergo a differentiation process transforming certain, semi-regularly spaced cells into heterocysts, devoted to nitrogen fixation. During transition to a nitrogen-fixing regime, growth of most vegetative cells in the filament is temporarily arrested due to nutritional deprivation, but developing heterocysts require intense transcriptional activity. Therefore, the coexistence of arrested vegetative cells and actively developing prospective heterocysts relies on the simultaneous operation of somewhat opposite transcriptional programs. We have identified genes with multiple nitrogen-responsive transcriptional starts appearing in seemingly paradoxical combinations. For instance, sigA, encoding the RNA polymerase housekeeping sigma factor, is transcribed from one major nitrogen stress-repressed promoter and from a second, nitrogen stress-induced promoter. Here, we show that both promoters are expressed with complementary temporal dynamics. Using a gfp reporter we also show that transcription from the inducible promoter takes place exclusively in differentiating heterocysts and is already detected before any morphological or fluorescence signature of differentiation is observed. Tandem promoters with opposite dynamics could operate a compensatory mechanism in which repression of transcription from the major promoter operative in vegetative cells is offset by transcription from a new promoter only in developing heterocyst. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Alternative NF-κB Regulates RANKL-induced Osteoclast Differentiation and Mitochondrial Biogenesis via Independent Mechanisms

    PubMed Central

    Zeng, Rong; Faccio, Roberta; Novack, Deborah V

    2016-01-01

    Mitochondrial biogenesis, the generation of new mitochondrial DNA and proteins, has been linked to osteoclast (OC) differentiation and function. In this study we used mice with mutations in key alternative NF-κB pathway proteins, RelB and NIK, to dissect the complex relationship between mitochondrial biogenesis and osteoclastogenesis. OC precursors lacking either NIK or RelB, RANKL were unable to increase mitochondrial DNA or OxPhos protein expression, associated with lower oxygen consumption rates. Transgenic OC precursors expressing constitutively active NIK showed normal RANKL-induced mitochondrial biogenesis (OxPhos expression and mitochondria copy number) compared to controls, but larger mitochondrial dimensions and increased oxygen consumption rates, suggesting increased mitochondrial function. To deduce the mechanism for mitochondrial biogenesis defects in NIK- and RelB-deficient precursors, we examined expression of genes known to control this process. PGC-1β (Ppargc1b) expression, but not PGC-1α, PPRC1 or ERRα, was significantly reduced in RelB−/− and NIK−/− OCs. Because PGC-1β has been reported to positively regulate both mitochondrial biogenesis and differentiation in OCs, we retrovirally overexpressed PGC-1β in RelB−/− cells, but surprisingly found that it did not affect differentiation, nor restore RANKL-induced mitochondrial biogenesis. To determine whether the blockade in osteoclastogenesis in RelB-deficient cells precludes mitochondrial biogenesis, we rescued RelB−/− differentiation via overexpression of NFATc1. Mitochondrial parameters in neither WT nor RelB-deficient cultures were affected by NFATc1 overexpression, and bone resorption in RelB −/− was not restored. Furthermore, NFATc1 co-overexpression with PGC-1β, while allowing OC differentiation, did not rescue mitochondrial biogenesis or bone resorption in RelB−/− OCs, by CTX-I levels. Thus, our results indicate that the alternative NF-κB pathway plays dual, but

  13. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ɛHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay

  14. Small Nuclear Ribonucleoprotein Polypeptide A-Mediated Alternative Polyadenylation of STAT5B during Th1 Cell Differentiation.

    PubMed

    Qiu, Feifei; Fu, Yonggui; Lu, Chan; Feng, Yuchao; Wang, Qiong; Huo, Zhanfeng; Jia, Xin; Chen, Chengyong; Chen, Shangwu; Xu, Anlong

    2017-09-27

    T cells are activated and differentiated into Th cells depending on the rapid and accurate changes in the cell transcriptome. In addition to changes in mRNA expression, the sequences of many transcripts are altered by alternative splicing and alternative polyadenylation (APA). We profiled the APA sites of human CD4(+) T cell subsets with high-throughput sequencing and found that Th1 cells harbored more genes with shorter tandem 3' untranslated regions (UTRs) than did naive T cells. We observed that STAT5B, a key regulator of Th1 differentiation, possessed three major APA sites and preferred shorter 3' UTRs in Th1 cells. In addition, small nuclear ribonucleoprotein polypeptide A (SNRPA) was found to bind directly to STAT5B 3' UTR and facilitate its APA switching. We also found that p65 activation triggered by TCR signaling could promote SNRPA transcription and 3' UTR shortening of STAT5B. Thus we propose that the APA switching of STAT5B induced by TCR activation is mediated by SNRPA. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    PubMed

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  16. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity

    PubMed Central

    Zeng, Weihua; Jiang, Shan; Kong, Xiangduo; El-Ali, Nicole; Ball, Alexander R.; Ma, Christopher I-Hsing; Hashimoto, Naohiro; Yokomori, Kyoko; Mortazavi, Ali

    2016-01-01

    Myoblasts are precursor skeletal muscle cells that differentiate into fused, multinucleated myotubes. Current single-cell microfluidic methods are not optimized for capturing very large, multinucleated cells such as myotubes. To circumvent the problem, we performed single-nucleus transcriptome analysis. Using immortalized human myoblasts, we performed RNA-seq analysis of single cells (scRNA-seq) and single nuclei (snRNA-seq) and found them comparable, with a distinct enrichment for long non-coding RNAs (lncRNAs) in snRNA-seq. We then compared snRNA-seq of myoblasts before and after differentiation. We observed the presence of mononucleated cells (MNCs) that remained unfused and analyzed separately from multi-nucleated myotubes. We found that while the transcriptome profiles of myoblast and myotube nuclei are relatively homogeneous, MNC nuclei exhibited significant heterogeneity, with the majority of them adopting a distinct mesenchymal state. Primary transcripts for microRNAs (miRNAs) that participate in skeletal muscle differentiation were among the most differentially expressed lncRNAs, which we validated using NanoString. Our study demonstrates that snRNA-seq provides reliable transcriptome quantification for cells that are otherwise not amenable to current single-cell platforms. Our results further indicate that snRNA-seq has unique advantage in capturing nucleus-enriched lncRNAs and miRNA precursors that are useful in mapping and monitoring differential miRNA expression during cellular differentiation. PMID:27566152

  17. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity.

    PubMed

    Zeng, Weihua; Jiang, Shan; Kong, Xiangduo; El-Ali, Nicole; Ball, Alexander R; Ma, Christopher I-Hsing; Hashimoto, Naohiro; Yokomori, Kyoko; Mortazavi, Ali

    2016-12-01

    Myoblasts are precursor skeletal muscle cells that differentiate into fused, multinucleated myotubes. Current single-cell microfluidic methods are not optimized for capturing very large, multinucleated cells such as myotubes. To circumvent the problem, we performed single-nucleus transcriptome analysis. Using immortalized human myoblasts, we performed RNA-seq analysis of single cells (scRNA-seq) and single nuclei (snRNA-seq) and found them comparable, with a distinct enrichment for long non-coding RNAs (lncRNAs) in snRNA-seq. We then compared snRNA-seq of myoblasts before and after differentiation. We observed the presence of mononucleated cells (MNCs) that remained unfused and analyzed separately from multi-nucleated myotubes. We found that while the transcriptome profiles of myoblast and myotube nuclei are relatively homogeneous, MNC nuclei exhibited significant heterogeneity, with the majority of them adopting a distinct mesenchymal state. Primary transcripts for microRNAs (miRNAs) that participate in skeletal muscle differentiation were among the most differentially expressed lncRNAs, which we validated using NanoString. Our study demonstrates that snRNA-seq provides reliable transcriptome quantification for cells that are otherwise not amenable to current single-cell platforms. Our results further indicate that snRNA-seq has unique advantage in capturing nucleus-enriched lncRNAs and miRNA precursors that are useful in mapping and monitoring differential miRNA expression during cellular differentiation.

  18. Microarray profiling of monocytic differentiation reveals miRNA-mRNA intrinsic correlation.

    PubMed

    Wang, Jing; Xiang, Guangxing; Mitchelson, Keith; Zhou, Yuxiang

    2011-09-01

    MiRNAs (microRNAs) are small non-coding RNAs involved in mammalian gene expression of cellular processes including differentiation, apoptosis and cancer development. Both specific miRNAs and mRNAs have been identified during monocytic differentiation, but their interactions have not been fully characterized. Here we report that by genome-wide microarray analysis for U937 monocytic differentiation induced by TPA, a large number of miRNAs and mRNAs were differentially expressed, and by bioinformatics analysis could demonstrate that their functional pathway patterns overlap strongly. While expected negative correlation between the expression levels of miRNAs and their target mRNAs was seen, several positive correlations between miRNAs and host mRNAs were also observed, such as C13orf25/miR17, MCM7/miR93, and MGC14376/miR22. These microarray data were verified by quantitative RT-PCR, and the TPA-induced differentiation of U937 cells was confirmed by flow cytometric analysis. Our study suggests an intrinsic correlation between miRNAs and mRNAs underlying their interactions which would provide new insights for defining the mechanisms occurring during monocytic differentiation. Copyright © 2011 Wiley-Liss, Inc.

  19. Analysis of E-box DNA binding during myeloid differentiation reveals complexes that contain Mad but not Max.

    PubMed Central

    Ryan, K M; Birnie, G D

    1997-01-01

    It has been shown that during myeloid differentiation the levels of mad1 mRNA are induced before the loss of c-Myc protein. This suggests that inactivation of the differentiation-blocking activity of c-Myc might not occur primarily through the loss of Myc protein, but through an increase in the levels of its antagonist, Mad1. To investigate this question we have analysed the levels of mad1 mRNA during differentiation of myeloid leukaemic HL60 cells. Although levels of mad1 mRNA were moderately increased after induction with phorbol ester, we also found that differentiation could be achieved with other inducers without any concomitant up-regulation of mad1 mRNA. In addition, analysis of E-box DNA binding revealed that, although Myc-Max complexes were lost rapidly after differentiation induction, formation of Mad1-containing complexes only occurred during the later stages of the differentiation programme. Further analysis of these Mad-containing complexes revealed that they were also unlikely to have the capacity to antagonize c-Myc function, as they did not contain Max. Therefore these data suggest that an increase in the levels of mad1 mRNA or the formation of a Mad-Max complex are unlikely to be essential or determining events for myeloid differentiation. In addition, the discovery of DNA-binding complexes that contain Mad1, but not Max, opens up this transcription factor network to include other Max-like proteins or proteins of an unrelated nature. PMID:9224632

  20. [Differentiation of chum salmon Oncorhynchus keta Walbaum populations as revealed with microsatellite and allozyme markers: a comparison].

    PubMed

    Rubtsoba, G A; Afanas'ev, K I; Malinina, T V; Shitova, M V; Rakitskaia, T A; Prokhorovskaia, V D; Zhivotovskiĭ, L A

    2008-07-01

    The character and extent of population differentiation in chum salmon Oncorhynchus keta from Sakhalin and Iturup were comparatively studied with 10 microsatellite and 12 allozyme markers. It was demonstrated with the example of allozyme polymorphism at the EstD locus that the effect of an individual locus with one major allele is capable of distorting the total picture of population differentiation. Multiallelic microsatellites were more efficient in revealing the genetic structure of chum salmon populations at the levels of differences between regional populations and between the stocks of individual rivers of the same region.

  1. Differential reinforcement of alternative behavior increases resistance to extinction: clinical demonstration, animal modeling, and clinical test of one solution.

    PubMed

    Mace, F Charles; McComas, Jennifer J; Mauro, Benjamin C; Progar, Patrick R; Taylor, Bridget; Ervin, Ruth; Zangrillo, Amanda N

    2010-05-01

    Basic research with pigeons on behavioral momentum suggests that differential reinforcement of alternative behavior (DRA) can increase the resistance of target behavior to change. This finding suggests that clinical applications of DRA may inadvertently increase the persistence of target behavior even as it decreases its frequency. We conducted three coordinated experiments to test whether DRA has persistence-strengthening effects on clinically significant target behavior and then tested the effectiveness of a possible solution to this problem in both a nonhuman and clinical study. Experiment 1 compared resistance to extinction following baseline rates of reinforcement versus higher DRA rates of reinforcement in a clinical study. Resistance to extinction was substantially greater following DRA. Experiment 2 tested a rat model of a possible solution to this problem. Training an alternative response in a context without reinforcement of the target response circumvented the persistence-strengthening effects of DRA. Experiment 3 translated the rat model into a novel clinical application of DRA. Training an alternative response with DRA in a separate context resulted in lower resistance to extinction than employing DRA in the context correlated with reinforcement of target behavior. The value of coordinated bidirectional translational research is discussed.

  2. Differential Reinforcement of Alternative Behavior Increases Resistance to Extinction: Clinical Demonstration, Animal Modeling, and Clinical Test of One Solution

    PubMed Central

    Mace, F. Charles; McComas, Jennifer J; Mauro, Benjamin C; Progar, Patrick R; Taylor, Bridget; Ervin, Ruth; Zangrillo, Amanda N

    2010-01-01

    Basic research with pigeons on behavioral momentum suggests that differential reinforcement of alternative behavior (DRA) can increase the resistance of target behavior to change. This finding suggests that clinical applications of DRA may inadvertently increase the persistence of target behavior even as it decreases its frequency. We conducted three coordinated experiments to test whether DRA has persistence-strengthening effects on clinically significant target behavior and then tested the effectiveness of a possible solution to this problem in both a nonhuman and clinical study. Experiment 1 compared resistance to extinction following baseline rates of reinforcement versus higher DRA rates of reinforcement in a clinical study. Resistance to extinction was substantially greater following DRA. Experiment 2 tested a rat model of a possible solution to this problem. Training an alternative response in a context without reinforcement of the target response circumvented the persistence-strengthening effects of DRA. Experiment 3 translated the rat model into a novel clinical application of DRA. Training an alternative response with DRA in a separate context resulted in lower resistance to extinction than employing DRA in the context correlated with reinforcement of target behavior. The value of coordinated bidirectional translational research is discussed. PMID:21119850

  3. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation

    PubMed Central

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L.; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation. PMID:27148350

  4. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation.

    PubMed

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.

  5. Alternating Current Electric Fields of Varying Frequencies: Effects on Proliferation and Differentiation of Porcine Neural Progenitor Cells

    PubMed Central

    Lim, Ji-Hey; McCullen, Seth D.; Piedrahita, Jorge A.

    2013-01-01

    Abstract Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes. PMID:23961767

  6. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells.

    PubMed

    Lim, Ji-Hey; McCullen, Seth D; Piedrahita, Jorge A; Loboa, Elizabeth G; Olby, Natasha J

    2013-10-01

    Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.

  7. Dental Pulp Stem Cells Differentiation Reveals New Insights in Oct4A Dynamics

    PubMed Central

    D'Aurizio, Federica; Puppato, Elisa; Pandolfi, Maura; Beltrami, Antonio Paolo; Cesselli, Daniela; Falini, Giuseppe; Beltrami, Carlo Alberto; Curcio, Francesco

    2012-01-01

    Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES) pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC). A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A). Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research. PMID:22844522

  8. Integrative Multi-omic Analysis of Human Platelet eQTLs Reveals Alternative Start Site in Mitofusin 2

    PubMed Central

    Simon, Lukas M.; Chen, Edward S.; Edelstein, Leonard C.; Kong, Xianguo; Bhatlekar, Seema; Rigoutsos, Isidore; Bray, Paul F.; Shaw, Chad A.

    2016-01-01

    Platelets play a central role in ischemic cardiovascular events. Cardiovascular disease (CVD) is a major cause of death worldwide. Numerous genome-wide association studies (GWASs) have identified loci associated with CVD risk. However, our understanding of how these variants contribute to disease is limited. Using data from the platelet RNA and expression 1 (PRAX1) study, we analyzed cis expression quantitative trait loci (eQTLs) in platelets from 154 normal human subjects. We confirmed these results in silico by performing allele-specific expression (ASE) analysis, which demonstrated that the allelic directionality of eQTLs and ASE patterns correlate significantly. Comparison of platelet eQTLs with data from the Genotype-Tissue Expression (GTEx) project revealed that a number of platelet eQTLs are platelet specific and that platelet eQTL peaks localize to the gene body at a higher rate than eQTLs from other tissues. Upon integration with data from previously published GWASs, we found that the trait-associated variant rs1474868 coincides with the eQTL peak for mitofusin 2 (MFN2). Additional experimental and computational analyses revealed that this eQTL is linked to an unannotated alternate MFN2 start site preferentially expressed in platelets. Integration of phenotype data from the PRAX1 study showed that MFN2 expression levels were significantly associated with platelet count. This study links the variant rs1474868 to a platelet-specific regulatory role for MFN2 and demonstrates the utility of integrating multi-omic data with eQTL analysis in disease-relevant tissues for interpreting GWAS results. PMID:27132591

  9. Structural analyses of von Willebrand factor C domains of collagen 2A and CCN3 reveal an alternative mode of binding to bone morphogenetic protein-2.

    PubMed

    Xu, Emma-Ruoqi; Blythe, Emily E; Fischer, Gerhard; Hyvönen, Marko

    2017-07-28

    Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  11. By Ounce or By Calorie: The Differential Effects of Alternative Sugar-Sweetened Beverage Tax Strategies

    PubMed Central

    Zhen, Chen; Brissette, Ian F.; Ruff, Ryan R.

    2014-01-01

    The obesity epidemic and excessive consumption of sugar-sweetened beverages have led to proposals of economics-based interventions to promote healthy eating in the United States. Targeted food and beverage taxes and subsidies are prominent examples of such potential intervention strategies. This paper examines the differential effects of taxing sugar-sweetened beverages by calories and by ounces on beverage demand. To properly measure the extent of substitution and complementarity between beverage products, we developed a fully modified distance metric model of differentiated product demand that endogenizes the cross-price effects. We illustrated the proposed methodology in a linear approximate almost ideal demand system, although other flexible demand systems can also be used. In the empirical application using supermarket scanner data, the product-level demand model consists of 178 beverage products with combined market share of over 90%. The novel demand model outperformed the conventional distance metric model in non-nested model comparison tests and in terms of the economic significance of model predictions. In the fully modified model, a calorie-based beverage tax was estimated to cost $1.40 less in compensating variation than an ounce-based tax per 3,500 beverage calories reduced. This difference in welfare cost estimates between two tax strategies is more than three times as much as the difference estimated by the conventional distance metric model. If applied to products purchased from all sources, a 0.04-cent per kcal tax on sugar-sweetened beverages is predicted to reduce annual per capita beverage intake by 5,800 kcal. PMID:25414517

  12. By Ounce or By Calorie: The Differential Effects of Alternative Sugar-Sweetened Beverage Tax Strategies.

    PubMed

    Zhen, Chen; Brissette, Ian F; Ruff, Ryan R

    2014-07-01

    The obesity epidemic and excessive consumption of sugar-sweetened beverages have led to proposals of economics-based interventions to promote healthy eating in the United States. Targeted food and beverage taxes and subsidies are prominent examples of such potential intervention strategies. This paper examines the differential effects of taxing sugar-sweetened beverages by calories and by ounces on beverage demand. To properly measure the extent of substitution and complementarity between beverage products, we developed a fully modified distance metric model of differentiated product demand that endogenizes the cross-price effects. We illustrated the proposed methodology in a linear approximate almost ideal demand system, although other flexible demand systems can also be used. In the empirical application using supermarket scanner data, the product-level demand model consists of 178 beverage products with combined market share of over 90%. The novel demand model outperformed the conventional distance metric model in non-nested model comparison tests and in terms of the economic significance of model predictions. In the fully modified model, a calorie-based beverage tax was estimated to cost $1.40 less in compensating variation than an ounce-based tax per 3,500 beverage calories reduced. This difference in welfare cost estimates between two tax strategies is more than three times as much as the difference estimated by the conventional distance metric model. If applied to products purchased from all sources, a 0.04-cent per kcal tax on sugar-sweetened beverages is predicted to reduce annual per capita beverage intake by 5,800 kcal.

  13. Dynamic Analyses of Alternative Polyadenylation from RNA-Seq Reveal 3′-UTR Landscape Across 7 Tumor Types

    PubMed Central

    Xia, Zheng; Donehower, Lawrence A; Cooper, Thomas A.; Neilson, Joel R.; Wheeler, David A.; Wagner, Eric J.; Li, Wei

    2015-01-01

    Alternative polyadenylation (APA) is a pervasive mechanism in the regulation of most human genes, and its implication in diseases including cancer is only beginning to be appreciated. Since conventional APA profiling has not been widely adopted, global cancer APA studies are very limited. Here we develop a novel bioinformatics algorithm (DaPars) for the de novo identification of dynamic APAs from standard RNA-seq. When applied to 358 TCGA Pan-Cancer tumor/normal pairs across 7 tumor types, DaPars reveals 1,346 genes with recurrent and tumor-specific APAs. Most APA genes (91%) have shorter 3′ UTRs in tumors that can avoid miRNA-mediated repression, including glutaminase (GLS), a key metabolic enzyme for tumor proliferation. Interestingly, selected APA events add strong prognostic power beyond common clinical and molecular variables, suggesting their potential as novel prognostic biomarkers. Finally, our results implicate CstF64, an essential polyadenylation factor, as a master regulator of 3′ UTR shortening across multiple tumor types. PMID:25409906

  14. Computational modeling reveals that a combination of chemotaxis and differential adhesion leads to robust cell sorting during tissue patterning.

    PubMed

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2014-01-01

    Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting.

  15. Computational Modeling Reveals that a Combination of Chemotaxis and Differential Adhesion Leads to Robust Cell Sorting during Tissue Patterning

    PubMed Central

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2014-01-01

    Robust tissue patterning is crucial to many processes during development. The "French Flag" model of patterning, whereby naïve cells in a gradient of diffusible morphogen signal adopt different fates due to exposure to different amounts of morphogen concentration, has been the most widely proposed model for tissue patterning. However, recently, using time-lapse experiments, cell sorting has been found to be an alternative model for tissue patterning in the zebrafish neural tube. But it remains unclear what the sorting mechanism is. In this article, we used computational modeling to show that two mechanisms, chemotaxis and differential adhesion, are needed for robust cell sorting. We assessed the performance of each of the two mechanisms by quantifying the fraction of correct sorting, the fraction of stable clusters formed after correct sorting, the time needed to achieve correct sorting, and the size variations of the cells having different fates. We found that chemotaxis and differential adhesion confer different advantages to the sorting process. Chemotaxis leads to high fraction of correct sorting as individual cells will either migrate towards or away from the source depending on its cell type. However after the cells have sorted correctly, there is no interaction among cells of the same type to stabilize the sorted boundaries, leading to cell clusters that are unstable. On the other hand, differential adhesion results in low fraction of correct clusters that are more stable. In the absence of morphogen gradient noise, a combination of both chemotaxis and differential adhesion yields cell sorting that is both accurate and robust. However, in the presence of gradient noise, the simple combination of chemotaxis and differential adhesion is insufficient for cell sorting; instead, chemotaxis coupled with delayed differential adhesion is required to yield optimal sorting. PMID:25302949

  16. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD.

    PubMed

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development.

  17. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  18. Differential gene expression and subcellular targeting of Arabidopsis glutathione S-transferase F8 is achieved through alternative transcription start sites.

    PubMed

    Thatcher, Louise F; Carrie, Chris; Andersson, Carol R; Sivasithamparam, Krishnapillai; Whelan, James; Singh, Karam B

    2007-09-28

    Glutathione S-transferases (GSTs) play major roles in the protection of plants from biotic and abiotic stresses through the detoxification of xenobiotics and toxic endogenous products. This report describes additional complexity in the regulation of the well characterized stress-responsive Arabidopsis thaliana GSTF8 promoter. This complexity results from the use of multiple transcription start sites (TSS) to give rise to alternate GSTF8 transcripts with the potential to produce two in-frame proteins differing only in their N-terminal sequence. In addition to the originally mapped TSS (Chen, W., Chao, G., and Singh, K. B. (1996) Plant J. 10, 955-966), a further nine TSS have been identified, with the majority clustered into a distinct group. The most 3' TSS gives rise to the major message (GSTF8-S) and the shorter form of the protein, whereas those originating from upstream TSS (GSTF8-L) are more weakly expressed and encode for the larger form of the protein. Differential tissue-specific and stress-responsive expression patterns were observed (e.g. GSTF8-L is more highly expressed in leaves compared with roots, whereas GSTF8-S expression has the opposite pattern and is much more stress-responsive). Analysis of GSTF8-L and GSTF8-S proteins demonstrated that GSTF8-L is solely targeted to plastids, whereas GSTF8-S is cytoplasmic. In silico analysis revealed potential conservation of GSTF8-S across a wide range of plants; in contrast, conservation of GSTF8-L was confined to the Brassicaceae. These studies demonstrate that alternate TSS of the GSTF8 promoter are used to confer differential tissue-specific and stress-responsive expression patterns as well as to target the same protein to two different subcellular localizations.

  19. Ptf1a-mediated control of Dll1 reveals an alternative to the lateral inhibition mechanism

    PubMed Central

    Ahnfelt-Rønne, Jonas; Jørgensen, Mette C.; Klinck, Rasmus; Jensen, Jan N.; Füchtbauer, Ernst-Martin; Deering, Tye; MacDonald, Raymond J.; Wright, Chris V. E.; Madsen, Ole D.; Serup, Palle

    2012-01-01

    Neurog3-induced Dll1 expression in pancreatic endocrine progenitors ostensibly activates Hes1 expression via Notch and thereby represses Neurog3 and endocrine differentiation in neighboring cells by lateral inhibition. Here we show in mouse that Dll1 and Hes1 expression deviate during regionalization of early endoderm, and later during early pancreas morphogenesis. At that time, Ptf1a activates Dll1 in multipotent pancreatic progenitor cells (MPCs), and Hes1 expression becomes Dll1 dependent over a brief time window. Moreover, Dll1, Hes1 and Dll1/Hes1 mutant phenotypes diverge during organ regionalization, become congruent at early bud stages, and then diverge again at late bud stages. Persistent pancreatic hypoplasia in Dll1 mutants after eliminating Neurog3 expression and endocrine development, together with reduced proliferation of MPCs in both Dll1 and Hes1 mutants, reveals that the hypoplasia is caused by a growth defect rather than by progenitor depletion. Unexpectedly, we find that Hes1 is required to sustain Ptf1a expression, and in turn Dll1 expression in early MPCs. Our results show that Ptf1a-induced Dll1 expression stimulates MPC proliferation and pancreatic growth by maintaining Hes1 expression and Ptf1a protein levels. PMID:22096075

  20. Whole-genome analysis revealed the positively selected genes during the differentiation of indica and temperate japonica rice.

    PubMed

    Sun, Xinli; Jia, Qi; Guo, Yuchun; Zheng, Xiujuan; Liang, Kangjing

    2015-01-01

    To investigate the selective pressures acting on the protein-coding genes during the differentiation of indica and japonica, all of the possible orthologous genes between the Nipponbare and 93-11 genomes were identified and compared with each other. Among these genes, 8,530 pairs had identical sequences, and 27,384 pairs shared more than 90% sequence identity. Only 2,678 pairs of genes displaying a Ka/Ks ratio significantly greater than one were revealed, and most of these genes contained only nonsynonymous sites. The genes without synonymous site were further analyzed with the SNP data of 1529 O. sativa and O. rufipogon accessions, and 1068 genes were identified to be under positive selection during the differentiation of indica and temperate japonica. The positively selected genes (PSGs) are unevenly distributed on 12 chromosomes, and the proteins encoded by the PSGs are dominant with binding, transferase and hydrolase activities, and especially enriched in the plant responses to stimuli, biological regulations, and transport processes. Meanwhile, the most PSGs of the known function and/or expression were involved in the regulation of biotic/abiotic stresses. The evidence of pervasive positive selection suggested that many factors drove the differentiation of indica and japonica, which has already started in wild rice but is much lower than in cultivated rice. Lower differentiation and less PSGs revealed between the Or-It and Or-IIIt wild rice groups implied that artificial selection provides greater contribution on the differentiation than natural selection. In addition, the phylogenetic tree constructed with positively selected sites showed that the japonica varieties exhibited more diversity than indica on differentiation, and Or-III of O. rufipogon exhibited more than Or-I.

  1. A screening approach reveals the influence of mineral coating morphology on human mesenchymal stem cell differentiation

    PubMed Central

    Choi, Siyoung; Murphy, William L.

    2013-01-01

    “Biomimetic” inorganic coating on biomaterials has been an active area of research with the intention of providing bioactive surfaces that can regulate cell behavior. Previous studies have demonstrated that human mesenchymal stem cell (hMSC) behavior is differentially regulated by physical and chemical properties of inorganic mineral coatings, indicating that modulation of mineral properties has potential importance in regulating hMSC behavior. However, the lack of an efficient experimental context in which to study stem cell behavior on inorganic substrates has made it difficult to systematically study the effects of specific mineral coating parameters on hMSC behavior. In this study, we developed an efficient experimental platform to screen for the effects of mineral coating morphology on hMSC expansion and differentiation. hMSC expansion on mineral coatings was regulated by micro-scale morphology of mineral coatings, with greater expansion on small granule-like coatings when compared to plate-like or net-like coatings. In contrast, hMSC osteogenic differentiation was inversely correlated with cell expansion on mineral coating, indicating that mineral coating morphology was a key parameter regulating hMSC differentiation. The effect of mineral coating morphology on hMSC behavior suggests the utility of this inorganic screening platform to identify optimal coatings for medical devices and bone tissue engineering applications. PMID:23420758

  2. DNA Methylation Profiling Reveals Correlation of Differential Methylation Patterns with Gene Expression in Human Epilepsy.

    PubMed

    Wang, Liang; Fu, Xinwei; Peng, Xi; Xiao, Zheng; Li, Zhonggui; Chen, Guojun; Wang, Xuefeng

    2016-05-01

    DNA methylation plays important roles in regulating gene expression and has been reported to be related with epilepsy. This study aimed to define differential DNA methylation patterns in drug-refractory epilepsy patients and to investigate the role of DNA methylation in human epilepsy. We performed DNA methylation profiling in brain tissues from epileptic and control patients via methylated-cytosine DNA immunoprecipitation microarray chip. Differentially methylated loci were validated by bisulfite sequencing PCR, and the messenger RNA (mRNA) levels of candidate genes were evaluated by reverse transcriptase PCR. We found 224 genes that showed differential DNA methylation between epileptic patients and controls. Among the seven candidate genes, three genes (TUBB2B, ATPGD1, and HTR6) showed relative transcriptional regulation by DNA methylation. TUBB2B and ATPGD1 exhibited hypermethylation and decreased mRNA levels, whereas HTR6 displayed hypomethylation and increased mRNA levels in the epileptic samples. Our findings suggest that certain genes become differentially regulated by DNA methylation in human epilepsy.

  3. Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements.

    PubMed

    Egan, Jan B; Barrett, Michael T; Champion, Mia D; Middha, Sumit; Lenkiewicz, Elizabeth; Evers, Lisa; Francis, Princy; Schmidt, Jessica; Shi, Chang-Xin; Van Wier, Scott; Badar, Sandra; Ahmann, Gregory; Kortuem, K Martin; Boczek, Nicole J; Fonseca, Rafael; Craig, David W; Carpten, John D; Borad, Mitesh J; Stewart, A Keith

    2014-01-01

    Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2.

  4. Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements

    PubMed Central

    Egan, Jan B.; Barrett, Michael T.; Champion, Mia D.; Middha, Sumit; Lenkiewicz, Elizabeth; Evers, Lisa; Francis, Princy; Schmidt, Jessica; Shi, Chang-Xin; Van Wier, Scott; Badar, Sandra; Ahmann, Gregory; Kortuem, K. Martin; Boczek, Nicole J.; Fonseca, Rafael; Craig, David W.; Carpten, John D.; Borad, Mitesh J.; Stewart, A. Keith

    2014-01-01

    Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2. PMID:24505276

  5. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen.

    PubMed

    Dai, Shaojun; Chen, Taotao; Chong, Kang; Xue, Yongbiao; Liu, Siqi; Wang, Tai

    2007-02-01

    Mature pollen from most plant species is metabolically quiescent; however, after pollination, it germinates quickly and gives rise to a pollen tube to transport sperms into the embryo sac. Because methods for collecting a large amount of in vitro germinated pollen grains for transcriptomics and proteomics studies from model plants of Arabidopsis and rice are not available, molecular information about the germination developmental process is lacking. Here we describe a method for obtaining a large quantity of in vitro germinating rice pollen for proteomics study. Two-dimensional electrophoresis of approximately 2300 protein spots revealed 186 that were differentially expressed in mature and germinated pollen. Most showed a changed level of expression, and only 66 appeared to be specific to developmental stages. Furthermore 160 differentially expressed protein spots were identified on mass spectrometry to match 120 diverse protein species. These proteins involve different cellular and metabolic processes with obvious functional skew toward wall metabolism, protein synthesis and degradation, cytoskeleton dynamics, and carbohydrate/energy metabolism. Wall metabolism-related proteins are prominently featured in the differentially expressed proteins and the pollen proteome as compared with rice sporophytic proteomes. Our study also revealed multiple isoforms and differential expression patterns between isoforms of a protein. These results provide novel insights into pollen function specialization.

  6. Transcriptomic Analysis of Thermally Stressed Symbiodinium Reveals Differential Expression of Stress and Metabolism Genes.

    PubMed

    Gierz, Sarah L; Forêt, Sylvain; Leggat, William

    2017-01-01

    Endosymbioses between dinoflagellate algae (Symbiodinium sp.) and scleractinian coral species form the foundation of coral reef ecosystems. The coral symbiosis is highly susceptible to elevated temperatures, resulting in coral bleaching, where the algal symbiont is released from host cells. This experiment aimed to determine the transcriptional changes in cultured Symbiodinium, to better understand the response of cellular mechanisms under future temperature conditions. Cultures were exposed to elevated temperatures (average 31°C) or control conditions (24.5°C) for a period of 28 days. Whole transcriptome sequencing of Symbiodinium cells on days 4, 19, and 28 were used to identify differentially expressed genes under thermal stress. A large number of genes representing 37.01% of the transcriptome (∼23,654 unique genes, FDR < 0.05) with differential expression were detected at no less than one of the time points. Consistent with previous studies of Symbiodinium gene expression, fold changes across the transcriptome were low, with 92.49% differentially expressed genes at ≤2-fold change. The transcriptional response included differential expression of genes encoding stress response components such as the antioxidant network and molecular chaperones, cellular components such as core photosynthesis machinery, integral light-harvesting protein complexes and enzymes such as fatty acid desaturases. Differential expression of genes encoding glyoxylate cycle enzymes were also found, representing the first report of this in Symbiodinium. As photosynthate transfer from Symbiodinium to coral hosts provides up to 90% of a coral's daily energy requirements, the implications of altered metabolic processes from exposure to thermal stress found in this study on coral-Symbiodinium associations are unknown and should be considered when assessing the stability of the symbiotic relationship under future climate conditions.

  7. Transcriptomic Analysis of Thermally Stressed Symbiodinium Reveals Differential Expression of Stress and Metabolism Genes

    PubMed Central

    Gierz, Sarah L.; Forêt, Sylvain; Leggat, William

    2017-01-01

    Endosymbioses between dinoflagellate algae (Symbiodinium sp.) and scleractinian coral species form the foundation of coral reef ecosystems. The coral symbiosis is highly susceptible to elevated temperatures, resulting in coral bleaching, where the algal symbiont is released from host cells. This experiment aimed to determine the transcriptional changes in cultured Symbiodinium, to better understand the response of cellular mechanisms under future temperature conditions. Cultures were exposed to elevated temperatures (average 31°C) or control conditions (24.5°C) for a period of 28 days. Whole transcriptome sequencing of Symbiodinium cells on days 4, 19, and 28 were used to identify differentially expressed genes under thermal stress. A large number of genes representing 37.01% of the transcriptome (∼23,654 unique genes, FDR < 0.05) with differential expression were detected at no less than one of the time points. Consistent with previous studies of Symbiodinium gene expression, fold changes across the transcriptome were low, with 92.49% differentially expressed genes at ≤2-fold change. The transcriptional response included differential expression of genes encoding stress response components such as the antioxidant network and molecular chaperones, cellular components such as core photosynthesis machinery, integral light-harvesting protein complexes and enzymes such as fatty acid desaturases. Differential expression of genes encoding glyoxylate cycle enzymes were also found, representing the first report of this in Symbiodinium. As photosynthate transfer from Symbiodinium to coral hosts provides up to 90% of a coral’s daily energy requirements, the implications of altered metabolic processes from exposure to thermal stress found in this study on coral-Symbiodinium associations are unknown and should be considered when assessing the stability of the symbiotic relationship under future climate conditions. PMID:28293249

  8. Genome-Wide Analysis in Brazilians Reveals Highly Differentiated Native American Genome Regions.

    PubMed

    Mychaleckyj, Josyf C; Havt, Alexandre; Nayak, Uma; Pinkerton, Relana; Farber, Emily; Concannon, Patrick; Lima, Aldo A; Guerrant, Richard L

    2017-03-01

    Despite its population, geographic size, and emerging economic importance, disproportionately little genome-scale research exists into genetic factors that predispose Brazilians to disease, or the population genetics of risk. After identification of suitable proxy populations and careful analysis of tri-continental admixture in 1,538 North-Eastern Brazilians to estimate individual ancestry and ancestral allele frequencies, we computed 400,000 genome-wide locus-specific branch length (LSBL) Fst statistics of Brazilian Amerindian ancestry compared to European and African; and a similar set of differentiation statistics for their Amerindian component compared with the closest Asian 1000 Genomes population (surprisingly, Bengalis in Bangladesh). After ranking SNPs by these statistics, we identified the top 10 highly differentiated SNPs in five genome regions in the LSBL tests of Brazilian Amerindian ancestry compared to European and African; and the top 10 SNPs in eight regions comparing their Amerindian component to the closest Asian 1000 Genomes population. We found SNPs within or proximal to the genes CIITA (rs6498115), SMC6 (rs1834619), and KLHL29 (rs2288697) were most differentiated in the Amerindian-specific branch, while SNPs in the genes ADAMTS9 (rs7631391), DOCK2 (rs77594147), SLC28A1 (rs28649017), ARHGAP5 (rs7151991), and CIITA (rs45601437) were most highly differentiated in the Asian comparison. These genes are known to influence immune function, metabolic and anthropometry traits, and embryonic development. These analyses have identified candidate genes for selection within Amerindian ancestry, and by comparison of the two analyses, those for which the differentiation may have arisen during the migration from Asia to the Americas.

  9. Genome-Wide Analysis in Brazilians Reveals Highly Differentiated Native American Genome Regions

    PubMed Central

    Havt, Alexandre; Nayak, Uma; Pinkerton, Relana; Farber, Emily; Concannon, Patrick; Lima, Aldo A.; Guerrant, Richard L.

    2017-01-01

    Despite its population, geographic size, and emerging economic importance, disproportionately little genome-scale research exists into genetic factors that predispose Brazilians to disease, or the population genetics of risk. After identification of suitable proxy populations and careful analysis of tri-continental admixture in 1,538 North-Eastern Brazilians to estimate individual ancestry and ancestral allele frequencies, we computed 400,000 genome-wide locus-specific branch length (LSBL) Fst statistics of Brazilian Amerindian ancestry compared to European and African; and a similar set of differentiation statistics for their Amerindian component compared with the closest Asian 1000 Genomes population (surprisingly, Bengalis in Bangladesh). After ranking SNPs by these statistics, we identified the top 10 highly differentiated SNPs in five genome regions in the LSBL tests of Brazilian Amerindian ancestry compared to European and African; and the top 10 SNPs in eight regions comparing their Amerindian component to the closest Asian 1000 Genomes population. We found SNPs within or proximal to the genes CIITA (rs6498115), SMC6 (rs1834619), and KLHL29 (rs2288697) were most differentiated in the Amerindian-specific branch, while SNPs in the genes ADAMTS9 (rs7631391), DOCK2 (rs77594147), SLC28A1 (rs28649017), ARHGAP5 (rs7151991), and CIITA (rs45601437) were most highly differentiated in the Asian comparison. These genes are known to influence immune function, metabolic and anthropometry traits, and embryonic development. These analyses have identified candidate genes for selection within Amerindian ancestry, and by comparison of the two analyses, those for which the differentiation may have arisen during the migration from Asia to the Americas. PMID:28100790

  10. Two-dimensional correlation spectroscopy reveals coupled immunoglobulin regions of differential flexibility that influence stability.

    PubMed

    Kamerzell, Tim J; Middaugh, C Russell

    2007-08-28

    Despite the well-accepted importance of protein flexibility and dynamics in molecular recognition and conformational stability, our understanding of these relationships is incomplete. Immunoglobulin flexibility is essential for antigen binding and adaptation to diverse molecular shapes and sizes. The inherent flexibility of immunoglobulins also renders these molecules suitable for investigating the possible relationships between protein flexibility and stability. To better understand these inter-relationships, we employ generalized perturbation-based two-dimensional correlation FTIR spectroscopy to monitor the time evolution of H-D exchange of an IgG1 as a function of pH. The differential flexibility of various immunoglobulin regions is described in response to an external perturbation and shown to vary widely. The greatest number of regions with differential exchange rates and, thus differential flexibility, is seen at pH 6. Approximately seven, six, five, and four separate states that exchange with different rates were observed at pH 6, 8, 4, and 2, respectively. The overall distribution of exchange rates calculated from the decays of the integrated Amide I and Amide II areas provides further evidence of multiple regions with differential flexibility. The sequence of events at pH 4 determined from the asynchronous vibrational patterns is of significant interest and suggests protonation of Glu and Asp side chains occurs first and initiates changes in the conformation and flexibility of different sheet and turns structure. A complex inter-relationship between differential regional flexibility and conformational coupling (i.e., cooperativity) initiated by changes in pH influences the stability of this IgG.

  11. Differential gene expression and alternative splicing between diploid and tetraploid watermelon

    PubMed Central

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A.; Vajja, Venkata G.; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K.; Levi, Amnon; Wehner, Todd; Reddy, Umesh K.

    2015-01-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. PMID:25520388

  12. Differential gene expression and alternative splicing between diploid and tetraploid watermelon.

    PubMed

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A; Vajja, Venkata G; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K; Levi, Amnon; Wehner, Todd; Reddy, Umesh K

    2015-03-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits.

  13. Aluminum Hydroxide Adjuvant Differentially Activates the Three Complement Pathways with Major Involvement of the Alternative Pathway

    PubMed Central

    Güven, Esin; Duus, Karen; Laursen, Inga; Højrup, Peter; Houen, Gunnar

    2013-01-01

    Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH)3 involves the three major pathways by monitoring complement components in Al(OH)3-treated serum and in Al(OH)3-containing precipitates. Al(OH)3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC) and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg2+. We thus confirm that Al(OH)3 activates the complement system and show that the alternative pathway is of major importance. PMID:24040248

  14. Effects of the neurotoxic thionophosphate pesticide chlorpyrifos on differentiating alternative models.

    PubMed

    Amaroli, Andrea; Aluigi, Maria Grazia; Falugi, Carla; Chessa, Maria Giovanna

    2013-02-01

    Studies by researchers worldwide have revealed that, even in industrialised nations, people, infants and the aged in particular, are even more exposed to neurotoxic drugs as a consequence of the increased quantity of pesticide residues in food. This phenomenon, as underlined by The Worldwatch Institute (2006), is linked to the exponential increase in the use of these toxic compounds over the last 40 years, up from 0.49 kg per hectare in 1961 to 2 kg in 2004, with the result that these substances are found in the daily diet. Many studies have demonstrated how the assumption of pesticides in the neonatal period and early infancy can alter the development and function of the nervous, immune, endocrine and reproductive apparatuses. Moreover, the unequivocal relationship between brain tumours, infant leukemia and pesticides are well recognised. On the basis of the above information, the effects of the neurotoxic thionophosphate pesticide chlorpyrifos (CPF) have been tested, considering biomarkers of toxicity and toxicity endpoint, on the biological models Dictyostelium discoideum, Paracentrotus lividus, and NTera2 Cells, as they are compatible with the 3Rs strategy (Reduction, Replacement, and Refinement in animal experiments). Our results have revealed that developing organisms are particularly sensitive to the toxic effects of CPF.

  15. Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach.

    PubMed

    Yildirim, Necmettin; Aktas, Mehmet Emin; Ozcan, Seyma Nur; Akbas, Esra; Ay, Ahmet

    2016-08-02

    Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group, they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activation mechanisms). We employed delay differential equation models. Our simulation results show that the competitive and noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mechanism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms by increased activator protein level display more effective and faster response. Our study exemplifies the importance of mathematical modeling and computer simulation in the analysis of gene expression dynamics.

  16. Differential isoform expression and protein localization from alternatively spliced Apetala2 in peanut under drought stress.

    PubMed

    Park, So-Yon; Grabau, Elizabeth

    2016-11-01

    APETALA2 (AP2) belongs to the AP2/Ethylene Responsive Factor (ERF) family and regulates expression levels of downstream stress responsive genes as a transcription factor. In this study, we cloned six different isoforms of AhAP2 from peanut (Arachis hypogaea). Four isoforms (AhAP2.1, AhAP2.2, AhAP2.3 and AhAP2.4) had both AP2/ERF DNA binding domains and ERF-associated amphiphilic repression (EAR) motifs. Two isoforms (AhAP2.5 and AhAP2.6) only had an EAR suppressor domain. After agroinfiltration, AhAP2.1, AhAP2.3, and AhAP2.4 fused to yellow fluorescent protein (YFP) showed localization to the nucleolus, which is the site of transcription and ribosome biogenesis. AhAP2.2-YFP showed a dispersed signal in the nucleus. AhAP2.5 and AhAP2.6 fused to YFP localized to both the nucleus and cytoplasm. In addition, increased levels of AhAP2.1 and AhAP2.2 transcripts were observed in drought-treated peanut leaves, suggesting differential transcriptional regulation under drought stress conditions.

  17. Evaluating a humane alternative to the bark collar: Automated differential reinforcement of not barking in a home-alone setting.

    PubMed

    Protopopova, Alexandra; Kisten, Dmitri; Wynne, Clive

    2016-12-01

    The aim of this study was to develop a humane alternative to the traditional remote devices that deliver punishers contingent on home-alone dog barking. Specifically, we evaluated the use of remote delivery of food contingent on intervals of not barking during the pet owner's absence. In Experiment 1, 5 dogs with a history of home-alone nuisance barking were recruited. Using an ABAB reversal design, we demonstrated that contingent remote delivery of food decreased home-alone barking for 3 of the dogs. In Experiment 2, we demonstrated that it is possible to thin the differential-reinforcement-of-other-behavior (DRO) schedule gradually, resulting in a potentially more acceptable treatment. Our results benefit the dog training community by providing a humane tool to combat nuisance barking.

  18. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains.

    PubMed

    Lucena, Pedro I; Faget, Douglas V; Pachulec, Emilia; Robaina, Marcela C; Klumb, Claudete E; Robbs, Bruno K; Viola, João P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4(+) T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions.

  19. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains

    PubMed Central

    Lucena, Pedro I.; Faget, Douglas V.; Pachulec, Emilia; Robaina, Marcela C.; Klumb, Claudete E.

    2015-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4+ T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions. PMID:26483414

  20. Differential expression and function of alternative splicing variants of human liver X receptor α.

    PubMed

    Endo-Umeda, Kaori; Uno, Shigeyuki; Fujimori, Ko; Naito, Yoshikazu; Saito, Koichi; Yamagishi, Kenji; Jeong, Yangsik; Miyachi, Hiroyuki; Tokiwa, Hiroaki; Yamada, Sachiko; Makishima, Makoto

    2012-06-01

    The liver X receptor α (LXRα) is a nuclear receptor that is involved in regulation of lipid metabolism, cellular proliferation and apoptosis, and immunity. In this report, we characterize three human LXRα isoforms with variation in the ligand-binding domain (LBD). While examining the expression of LXRα3, which lacks 60 amino acids within the LBD, we identified two novel transcripts that encode LXRα-LBD variants (LXRα4 and LXRα5). LXRα4 has an insertion of 64 amino acids in helix 4/5, and LXRα5 lacks the C-terminal helices 7 to 12 due to a termination codon in an additional exon that encodes an intron in the LXRα1 mRNA. LXRα3, LXRα4, and LXRα5 were expressed at lower levels compared with LXRα1 in many human tissues and cell lines. We also observed weak expression of LXRα3 and LXRα4 in several tissues of mice. LXR ligand treatment induced differential regulation of LXRα isoform mRNA expression in a cell type-dependent manner. Whereas LXRα3 had no effect, LXRα4 has weak transactivation, retinoid X receptor (RXR) heterodimerization, and coactivator recruitment activities. LXRα5 interacted with a corepressor in a ligand-independent manner and inhibited LXRα1 transactivation and target gene expression when overexpressed. Combination of LXRα5 cotransfection and LXRα antagonist treatment produced additive effects on the inhibition of ligand-dependent LXRα1 activation. We constructed structural models of the LXRα4-LBD and its complexes with ligand, RXR-LBD, and coactivator peptide. The models showed that the insertion in the LBD can be predicted to disrupt RXR heterodimerization. Regulation of LXRα pre-mRNA splicing may be involved in the pathogenesis of LXRα-related diseases.

  1. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians.

    PubMed

    Forsthoefel, David J; James, Noëlle P; Escobar, David J; Stary, Joel M; Vieira, Ana P; Waters, Forrest A; Newmark, Phillip A

    2012-10-16

    Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of postmitotic tissues. Understanding how these processes are orchestrated requires characterizing cell-type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling postembryonic organogenesis.

  2. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians

    PubMed Central

    Forsthoefel, David J.; James, Noelle P.; Escobar, David J.; Stary, Joel M.; Vieira, Ana P.; Waters, Forrest A.; Newmark, Phillip A.

    2012-01-01

    SUMMARY Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of post-mitotic tissues. Understanding how these processes are orchestrated requires characterizing cell type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis, and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling post-embryonic organogenesis. PMID:23079596

  3. High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation.

    PubMed

    Sebé-Pedrós, Arnau; Peña, Marcia Ivonne; Capella-Gutiérrez, Salvador; Antó, Meritxell; Gabaldón, Toni; Ruiz-Trillo, Iñaki; Sabidó, Eduard

    2016-10-24

    Cell-specific regulation of protein levels and activity is essential for the distribution of functions among multiple cell types in animals. The finding that many genes involved in these regulatory processes have a premetazoan origin raises the intriguing possibility that the mechanisms required for spatially regulated cell differentiation evolved prior to the appearance of animals. Here, we use high-throughput proteomics in Capsaspora owczarzaki, a close unicellular relative of animals, to characterize the dynamic proteome and phosphoproteome profiles of three temporally distinct cell types in this premetazoan species. We show that life-cycle transitions are linked to extensive proteome and phosphoproteome remodeling and that they affect key genes involved in animal multicellularity, such as transcription factors and tyrosine kinases. The observation of shared features between Capsaspora and metazoans indicates that elaborate and conserved phosphosignaling and proteome regulation supported temporal cell-type differentiation in the unicellular ancestor of animals. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Interplay of proliferation and differentiation factors is revealed in the early human eye development.

    PubMed

    Matas, Anita; Filipovic, Natalija; Znaor, Ljubo; Mardesic, Snjezana; Saraga-Babic, Mirna; Vukojevic, Katarina

    2015-12-01

    Eye development is a consequence of numerous epithelial-to-mesenchymal interactions between the prospective lens ectoderm, outpocketings of the forebrain forming optic vesicles, and surrounding mesenchyme. How different cell types forming eye structures differentiate from their precursors, and which factors coordinate complex human eye development remains largely unknown. Proper differentiation of photoreceptors is of special interest because of their involvement in the appearance of degenerative retinal diseases. Here we analyze the spatiotemporal expression of neuronal markers nestin, protein gene product 9.5 (PGP9.5), and calcium binding protein (S100), proliferation marker (Ki-67), markers for cilia (alpha-tubulin), and cell stemness marker octamer-binding transcription factor 4 (Oct-4) in histological sections of 5-12 -week human eyes using immunohistochemical and immunofluorescence methods. While during the investigated developmental period nestin shows strong expression in all mesenchymal derivatives, lens, optic stalk and inner neuroblastic layer, PGP9.5 and S100 expression characterizes only neural derivatives (optic nerve and neural retina). PGP9.5 is co-localized with nestin and S100 in the differentiating cells of the inner neuroblastic layer. Initially strong proliferation in all parts of the developing eye gradually ceases, especially in the outer neuroblastic layer. Proliferating Ki-67 positive cells co-localize with nestin in the retina, lens, and choroid. Strong Oct-4 and alpha-tubulin immunoreactivity in the retina and optic nerve gradually decreases, while they co-localize in outer neuroblastic and nerve fiber layers. The described expression of investigated markers indicates their importance in eye growth and morphogenesis, while their spatially and temporally restricted pattern coincides with differentiation of initially immature cells into specific retinal cell lineages. Alterations in their spatiotemporal interplay might lead to disturbances

  5. Genotypic diversity and differentiation among populations of two benthic freshwater diatoms as revealed by microsatellites.

    PubMed

    Vanormelingen, Pieter; Evans, Katharine M; Mann, David G; Lance, Stacey; Debeer, Ann-Eline; D'Hondt, Sofie; Verstraete, Tine; De Meester, Luc; Vyverman, Wim

    2015-09-01

    Given their large population sizes and presumed high dispersal capacity, protists are expected to exhibit homogeneous population structure over large spatial scales. On the other hand, the fragmented and short-lived nature of the lentic freshwater habitats that many protists inhabit promotes strong population differentiation. We used microsatellites in two benthic freshwater diatoms, Eunotia bilunaris 'robust' and Sellaphora capitata, sampled from within a pond and connected ponds, through isolated ponds from the same region to western Europe to determine the spatial scale at which differentiation appears. Because periods of low genotypic diversity contribute to population differentiation, we also assessed genotypic diversity. While genotypic diversity was very high to maximal in most samples of both species, some had a markedly lower diversity, with up to half (Eunotia) and over 90% (Sellaphora) of the strains having the same multilocus genotype. Population differentiation showed an isolation-by-distance pattern with very low standardized FST values between samples from the same or connected ponds but high values between isolated ponds, even when situated in the same region. Partial rbcL sequences in Eunotia were consistent with this pattern as isolated ponds in the same region could differ widely in haplotype composition. Populations identified by Structure corresponded to the source ponds, confirming that 'pond' is the main factor structuring these populations. We conclude that freshwater benthic diatom populations are highly fragmented on a regional scale, reflecting either less dispersal than is often assumed or reduced establishment success of immigrants, so that dispersal does not translate into gene flow. © 2015 John Wiley & Sons Ltd.

  6. Differential proteomics reveals novel insights into Nosema-honey bee interactions.

    PubMed

    Kurze, Christoph; Dosselli, Ryan; Grassl, Julia; Le Conte, Yves; Kryger, Per; Baer, Boris; Moritz, Robin F A

    2016-12-01

    Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.

  7. Genetic diversity and differentiation in Camellia reticulata (Theaceae) polyploid complex revealed by ISSR and ploidy.

    PubMed

    Wang, B-Y; Ruan, Z-Y

    2012-03-06

    Camellia reticulata is a well-known ornamental and oil plant that is endemic to southwest China. This species shows three cell ploidies, i.e., diploidy, tetraploidy and hexaploidy. We made the first investigation of genetic diversity and differentiation of natural populations of C. reticulata, and 114 individuals from 6 populations were sampled. Cytogeography results showed that ploidy is invariable within populations and evenly distributed. A relatively high level of genetic diversity was found in C. reticulata, both at the species level (PPB = 88.89%; H = 0.2809; I = 0.4278) and at the population level (mean PPB = 42.13%; mean H = 0.14; mean I = 0.21). We found a relatively low degree of differentiation among ploidies (G(ST) = 0.2384; AMOVA = 10.26%) and a relatively high degree of differentiation among populations (G(CS) = 0.3807; AMOVA = 48.75%). The high genetic diversity can be explained by its biological character, wide distribution and ploidies, and the special genetic structure can be ascribed to polyploid origin from hybridization with different Camellia spp. This information will be useful for the introduction, conservation and further studies of C. reticulata and related species.

  8. Genetic diversity and differentiation in Dalbergia sissoo (Fabaceae) as revealed by RAPD.

    PubMed

    Wang, B-Y; Shi, L; Ruan, Z-Y; Deng, J

    2011-01-01

    Dalbergia sissoo, a wind-dispersed tropical tree, is one of the most preferred timber tree species of South Asia. Genetic diversity and differentiation among natural populations of D. sissoo were examined for the first time. We found a relatively high level of genetic diversity in D. sissoo, both at the species level (percentage of polymorphic bands = 89.11%; H = 0.2730; I = 0.4180) and the population level (percentage of polymorphic bands = 68.7%; H = 0.239; I = 0.358), along with a relatively low degree of differentiation among populations (GST = 0.1311; AMOVA = 14.69%). Strong gene flow among populations was estimated, N(m) = 3.3125. The Mantel test suggested that genetic distances between populations were weakly correlated with geographic distances (R = 0.3702, P = 0.1236). The high level of genetic diversity, low degree of differentiation, strong gene flow, and weak correlation between genetic and geographic distances can be explained by its biological character and wide-spread planting. This information will be useful for the introduction, conservation and further studies of D. sissoo and related species.

  9. Alternative splicing and differential expression of two transcripts of nicotine adenine dinucleotide phosphate oxidase B gene from Zea mays.

    PubMed

    Lin, Fan; Zhang, Yun; Jiang, Ming-Yi

    2009-03-01

    With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs. Alternative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-alpha and -beta. Spliced transcript ZmrbohB-beta retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-alpha. The transcripts of ZmrbohB-alpha accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4 degrees C), heat (40 degrees C), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZmrbohB gene may play a role in response to environmental stresses.

  10. Lachnospiraceae and Bacteroidales Alternative Fecal Indicators Reveal Chronic Human Sewage Contamination in an Urban Harbor▿†

    PubMed Central

    Newton, Ryan J.; VandeWalle, Jessica L.; Borchardt, Mark A.; Gorelick, Marc H.; McLellan, Sandra L.

    2011-01-01

    The complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within the Lachnospiraceae family, which was closely related to the genus Blautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for human Bacteroidales (based on the HF183 genetic marker), total Bacteroidales spp., and enterococci and the conventional Escherichia coli and enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and human Bacteroidales increased specificity to

  11. Alternative Polyadenylation Allows Differential Negative Feedback of Human miRNA miR-579 on Its Host Gene ZFR

    PubMed Central

    Hinske, Ludwig Christian; Galante, Pedro A. F.; Limbeck, Elisabeth; Möhnle, Patrick; Parmigiani, Raphael B.; Ohno-Machado, Lucila; Camargo, Anamaria A.; Kreth, Simone

    2015-01-01

    About half of the known miRNA genes are located within protein-coding host genes, and are thus subject to co-transcription. Accumulating data indicate that this coupling may be an intrinsic mechanism to directly regulate the host gene’s expression, constituting a negative feedback loop. Inevitably, the cell requires a yet largely unknown repertoire of methods to regulate this control mechanism. We propose APA as one possible mechanism by which negative feedback of intronic miRNA on their host genes might be regulated. Using in-silico analyses, we found that host genes that contain seed matching sites for their intronic miRNAs yield longer 32UTRs with more polyadenylation sites. Additionally, the distribution of polyadenylation signals differed significantly between these host genes and host genes of miRNAs that do not contain potential miRNA binding sites. We then transferred these in-silico results to a biological example and investigated the relationship between ZFR and its intronic miRNA miR-579 in a U87 cell line model. We found that ZFR is targeted by its intronic miRNA miR-579 and that alternative polyadenylation allows differential targeting. We additionally used bioinformatics analyses and RNA-Seq to evaluate a potential cross-talk between intronic miRNAs and alternative polyadenylation. CPSF2, a gene previously associated with alternative polyadenylation signal recognition, might be linked to intronic miRNA negative feedback by altering polyadenylation signal utilization. PMID:25799583

  12. A phased strategy to differentiate human CD14+monocytes into classically and alternatively activated macrophages and dendritic cells.

    PubMed

    Zarif, Jelani C; Hernandez, James R; Verdone, James E; Campbell, Scott P; Drake, Charles G; Pienta, Kenneth J

    2016-01-01

    There are currently several in vitro strategies to differentiate human CD14(+) monocytes isolated from peripheral blood mononuclear cells (PBMCs) into the M1 or M2 macrophage cell types. Each cell type is then verified using flow cytometric analysis of cell-surface markers. Human CD14(+) monocytes have the potential to differentiate into M1 and M2 macrophages, both of which demonstrate varying degrees of cell-surface antigen overlap. Using multiple surface markers with current macrophage polarization protocols, our data reveal several limitations of currently used methods, such as highly ambiguous cell types that possess cell-surface marker overlap and functional similarities. Utilizing interleukin-6 (IL-6) and two phases of cytokine exposure, we have developed a protocol to differentiate human monocytes into M1, M2, or dendritic cells (DCs) with greater efficiency and fidelity relative to macrophages and DCs that are produced by commonly used methods. This is achieved via alterations in cytokine composition, dosing, and incubation times, as well as improvements in verification methodology. Our method reliably reproduces human in vitro monocyte-derived DCs and macrophage models that will aid in better defining and understanding innate and adaptive immunity, as well as pathologic states.

  13. Differential detection of nuclear envelope autoantibodies in primary biliary cirrhosis using routine and alternative methods.

    PubMed

    Tsangaridou, Elena; Polioudaki, Hara; Sfakianaki, Rania; Samiotaki, Martina; Tzardi, Maria; Koulentaki, Meri; Panayotou, George; Kouroumalis, Elias; Castanas, Elias; Theodoropoulos, Panayiotis A

    2010-03-08

    Detection of autoantibodies giving nuclear rim pattern by immunofluorescence (anti-nuclear envelope antibodies - ANEA) in sera from patients with primary biliary cirrhosis (PBC) is a useful tool for the diagnosis and prognosis of the disease. Differences in the prevalence of ANEA in PBC sera so far reported have been attributed to the methodology used for the detection as well as to ethnic/geographical variations. Therefore, we evaluated the prevalence of ANEA in sera of Greek patients with PBC by using methods widely used by clinical laboratories and a combination of techniques and materials. We screened 103 sera by immunoblotting on nuclear envelopes and indirect immunofluorescence (IIF) using cells and purified nuclei. Reactivities against specific autoantigens were assessed using purified proteins, ELISA, immunoprecipitation and mass spectrometry. We found higher prevalence of ANEA when sera were assayed by IIF on purified nuclei or cultured cells (50%) compared to Hep2 commercially available slides (15%). Anti-gp210 antibodies were identified in 22.3% and 33% of sera using ELISA for the C-terminal of gp210 or both ELISA and immunoprecipitation, respectively. Immunoblotting on nuclear envelopes revealed that immunoreactivity for the 210 kDa zone is related to anti-gp210 antibodies (p < 0.0001). Moreover, we found that sera had antibodies for lamins A (6.8%), B (1%) and C (1%) and LBR (8.7%), whereas none at all had detectable anti-p62 antibodies. The prevalence of ANEA or anti-gp210 antibodies is under-estimated in PBC sera which are analyzed by conventional commercially available IIF or ELISA, respectively. Therefore, new substrates for IIF and ELISA should be included by clinical laboratories in the analysis of ANEA in autoimmune sera.

  14. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    SciTech Connect

    Sukseree, Supawadee; Rossiter, Heidemarie; Mildner, Michael; Pammer, Johannes; Buchberger, Maria; Gruber, Florian; Watanapokasin, Ramida; Tschachler, Erwin; Eckhart, Leopold

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  15. Quantitative proteomic analysis to decipher the differential apoptotic response of bortezomib-treated APL cells before and after retinoic acid differentiation reveals involvement of protein toxicity mechanisms.

    PubMed

    Uttenweiler-Joseph, Sandrine; Bouyssié, David; Calligaris, David; Lutz, Pierre G; Monsarrat, Bernard; Burlet-Schiltz, Odile

    2013-01-01

    The ubiquitin-proteasome system allows the targeted degradation of proteins and plays a critical role in the regulation of many cellular processes. Proteasome inhibition is a recent antitumor therapeutic strategy and bortezomib was the first proteasome inhibitor approved for clinical use. In this study, we used the NB4 cell line to investigate the effects of bortezomib toward acute promyelocytic leukemia cells before and after retinoic acid-induced differentiation. We showed that apoptosis level after bortezomib treatment is higher in NB4 cells than in differentiated NB4 cells. To compare early protein variations upon bortezomib treatment in both NB4 cell populations, we performed a quantitative proteomic analysis based on iTRAQ peptide labeling followed by data analysis with in-house developed scripts. This strategy revealed the regulation of 14 proteins principally involved in protein stress response and apoptosis in NB4 cells after proteasome inhibition. Altogether, our results suggest that the differential level of apoptosis induced by bortezomib treatment in both NB4 cell populations could result from distinct protein toxicity level.

  16. Transcriptomic Analysis Reveals Mechanisms of Sterile and Fertile Flower Differentiation and Development in Viburnum macrocephalum f. keteleeri

    PubMed Central

    Lu, Zhaogeng; Xu, Jing; Li, Weixing; Zhang, Li; Cui, Jiawen; He, Qingsong; Wang, Li; Jin, Biao

    2017-01-01

    Sterile and fertile flowers are an important evolutionary developmental (evo-devo) phenotype in angiosperm flowers, playing important roles in pollinator attraction and sexual reproductive success. However, the gene regulatory mechanisms underlying fertile and sterile flower differentiation and development remain largely unknown. Viburnum macrocephalum f. keteleeri, which possesses fertile and sterile flowers in a single inflorescence, is a useful candidate species for investigating the regulatory networks in differentiation and development. We developed a de novo-assembled flower reference transcriptome. Using RNA sequencing (RNA-seq), we compared the expression patterns of fertile and sterile flowers isolated from the same inflorescence over its rapid developmental stages. The flower reference transcriptome consisted of 105,683 non-redundant transcripts, of which 5,675 transcripts showed significant differential expression between fertile and sterile flowers. Combined with morphological and cytological changes between fertile and sterile flowers, we identified expression changes of many genes potentially involved in reproductive processes, phytohormone signaling, and cell proliferation and expansion using RNA-seq and qRT-PCR. In particular, many transcription factors (TFs), including MADS-box family members and ABCDE-class genes, were identified, and expression changes in TFs involved in multiple functions were analyzed and highlighted to determine their roles in regulating fertile and sterile flower differentiation and development. Our large-scale transcriptional analysis of fertile and sterile flowers revealed the dynamics of transcriptional networks and potentially key components in regulating differentiation and development of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. Our data provide a useful resource for Viburnum transcriptional research and offer insights into gene regulation of differentiation of diverse evo-devo processes in

  17. Transcriptomic Analysis Reveals Mechanisms of Sterile and Fertile Flower Differentiation and Development in Viburnum macrocephalum f. keteleeri.

    PubMed

    Lu, Zhaogeng; Xu, Jing; Li, Weixing; Zhang, Li; Cui, Jiawen; He, Qingsong; Wang, Li; Jin, Biao

    2017-01-01

    Sterile and fertile flowers are an important evolutionary developmental (evo-devo) phenotype in angiosperm flowers, playing important roles in pollinator attraction and sexual reproductive success. However, the gene regulatory mechanisms underlying fertile and sterile flower differentiation and development remain largely unknown. Viburnum macrocephalum f. keteleeri, which possesses fertile and sterile flowers in a single inflorescence, is a useful candidate species for investigating the regulatory networks in differentiation and development. We developed a de novo-assembled flower reference transcriptome. Using RNA sequencing (RNA-seq), we compared the expression patterns of fertile and sterile flowers isolated from the same inflorescence over its rapid developmental stages. The flower reference transcriptome consisted of 105,683 non-redundant transcripts, of which 5,675 transcripts showed significant differential expression between fertile and sterile flowers. Combined with morphological and cytological changes between fertile and sterile flowers, we identified expression changes of many genes potentially involved in reproductive processes, phytohormone signaling, and cell proliferation and expansion using RNA-seq and qRT-PCR. In particular, many transcription factors (TFs), including MADS-box family members and ABCDE-class genes, were identified, and expression changes in TFs involved in multiple functions were analyzed and highlighted to determine their roles in regulating fertile and sterile flower differentiation and development. Our large-scale transcriptional analysis of fertile and sterile flowers revealed the dynamics of transcriptional networks and potentially key components in regulating differentiation and development of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. Our data provide a useful resource for Viburnum transcriptional research and offer insights into gene regulation of differentiation of diverse evo-devo processes in

  18. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication

    PubMed Central

    Akagi, Takashi; Hanada, Toshio; Yaegaki, Hideaki; Gradziel, Thomas M.; Tao, Ryutaro

    2016-01-01

    Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops. PMID:27085183

  19. Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication.

    PubMed

    Akagi, Takashi; Hanada, Toshio; Yaegaki, Hideaki; Gradziel, Thomas M; Tao, Ryutaro

    2016-06-01

    Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops.

  20. Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation

    PubMed Central

    Chang, Ying-Hua; Ye, Lei; Cai, Wenxuan; Lee, Yoonkyu; Guner, Huseyin; Lee, Youngsook; Kamp, Timothy J.; Zhang, Jianyi; Ge, Ying

    2015-01-01

    Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post-infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large-scale label-free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up-regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase-associated protein 1 and tropomodulin-1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up-regulated and another 21 down-regulated in MI, but reversed after trilineage cell transplantation. Proteins up-regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down-regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function. PMID:26033914

  1. Comparative transcriptional analysis reveals differential gene expression between Sand Daffodil tissues.

    PubMed

    De Felice, Bruna; Manfellotto, Francesco; D'Alessandro, Raffaella; De Castro, Olga; Di Maio, Antonietta; Trifuoggi, Marco

    2013-12-01

    Sand Daffodil (Pancratium maritimum) is a world-wide endangered Amayllidaceae species and represents an important anti-cancer medicinal resource due to alkaloids production. Despite its increasing pharmaceutical importance, there are not molecular resources that can be utilized toward improving genetic traits. In our research, the suppression subtractive hybridization (SSH) method conducted to generate large-scale expressed sequence tags (EST), was designed to identify gene candidates related to the morphological and physiological differences between the two tissues, leaves and bulbs, since lycorine, the main anti-cancer compound, is there synthesized. We focused on identification of transcripts in different tissues from Sand Daffodil using PCR-based suppression SSH to identify genes involved in global pathway control. Sequencing of 2,000 differentially screened clones from the SSH libraries resulted in 136 unigenes. Functional annotation and gene ontology analysis of up-regulated EST libraries showed several known biosynthetic genes and novel transcripts that may be involved in signaling, cellular transport, or metabolism. Real time RT-PCR analysis of a set of 8 candidate genes further confirmed the differential gene expression.

  2. RNA-Seq Reveals Differential Gene Expression in Staphylococcus aureus with Single-Nucleotide Resolution

    PubMed Central

    Osmundson, Joseph; Dewell, Scott; Darst, Seth A.

    2013-01-01

    Staphylococcus aureus is a gram-positive cocci and an important human commensal bacteria and pathogen. S. aureus infections are increasingly difficult to treat because of the emergence of highly resistant MRSA (methicillin-resistant S. aureus) strains. Here we present a method to study differential gene expression in S. aureus using high-throughput RNA-sequencing (RNA-seq). We used RNA-seq to examine gene expression in S. aureus RN4220 cells containing an exogenously expressed transcription factor and between two S. aureus strains (RN4220 and NCTC8325-4). We investigated the sequence and gene expression differences between RN4220 and NCTC8325-4 and used the RNA-seq data to identify S. aureus promoters suitable for in vitro analysis. We used RNA-seq to describe, on a genome wide scale, genes positively and negatively regulated by the phage encoded transcription factor gp67. RNA-seq offers the ability to study differential gene expression with single-nucleotide resolution, and is a considerable improvement over the predominant genome-wide transcriptome technologies used in S. aureus. PMID:24116120

  3. Acoustic differentiation and behavioral response reveals cryptic species within Buergeria treefrogs (Anura, Rhacophoridae) from Taiwan.

    PubMed

    Wang, Ying-Han; Hsiao, Yu-Wei; Lee, Ko-Huan; Tseng, Hui-Yun; Lin, Yen-Po; Komaki, Shohei; Lin, Si-Min

    2017-01-01

    Buergeria japonica is a widely distributed treefrog occurring from Ryukyu Archipelago to Taiwan. Across this wide distributional range, we combined molecular, acoustic, morphological, and behavioral characters to clarify the taxonomic status among these insular populations. Genetic differentiation in mitochondrial sequences indicated an over 16% divergence among two deeply divergent clades: Japanese clade distributes in Ryukyu Archipelago and northwestern drainages of Taiwan, while Taiwanese clade distributes in the remaining drainages on Taiwan. The Taiwanese clade can be distinguished from the nominative species not only by molecular and morphological differences, but also distinguishable by considerable acoustic differentiation, which is extraordinarily noticeable for an additional type of long call that never recorded from Japanese clade. The two clades form a parapatric distribution pattern with narrow contact zones both in western and eastern Taiwan. Playback experiments indicated that male frogs show significantly stronger defensiveness against conspecific calls rather than heterospecific calls, indicating that these signals play a crucial role in species recognition. Here we describe the Taiwanese clade as a new species; the behavioral response and the magnitude of gene flow across their contact zones are especially worth for detailed studies.

  4. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system.

    PubMed

    Hu, Qi; Guo, Xue; Liang, Yili; Hao, Xiaodong; Ma, Liyuan; Yin, Huaqun; Liu, Xueduan

    2015-01-01

    The microbial community in a biological heap leaching (BHL) system is crucial for the decomposition of ores. However, the microbial community structure and functional differentiation in different parts of a biological heap leaching system are still unknown. In this study, metagenomic sequencing was used to fully illuminate the microbial community differentiation in the pregnant leach solution (PLS) and leaching heap (LH) of a BHL system. Long-read sequences (1.3 million) were obtained for the two samples, and the MG_RAST server was used to perform further analysis. The taxa analysis results indicated that the dominant genera of PLS is autotrophic bacterium Acidithiobacillus, but heterotrophic bacterium Acidiphilium is predominant in LH. Furthermore, functional annotation and hierarchical comparison with different reference samples showed that the abundant presence of genes was involved in transposition, DNA repair and heavy metal transport. The sequences related to transposase, which is important for the survival of the organism in the hostile environment, were both mainly classified into Acidiphilium for PLS and LH. These results indicated that not only autotrophic bacteria such as Acidithiobacillus, but also heterotrophic bacteria such as Acidiphilium, were essential participants in the bioleaching process. This new meta-view research will further facilitate the effective application of bioleaching.

  5. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination.

    PubMed

    Olmos-Serrano, Jose Luis; Kang, Hyo Jung; Tyler, William A; Silbereis, John C; Cheng, Feng; Zhu, Ying; Pletikos, Mihovil; Jankovic-Rapan, Lucija; Cramer, Nathan P; Galdzicki, Zygmunt; Goodliffe, Joseph; Peters, Alan; Sethares, Claire; Delalle, Ivana; Golden, Jeffrey A; Haydar, Tarik F; Sestan, Nenad

    2016-03-16

    Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.

  6. Large Scale Immune Profiling of Infected Humans and Goats Reveals Differential Recognition of Brucella melitensis Antigens

    PubMed Central

    Liang, Li; Leng, Diana; Burk, Chad; Nakajima-Sasaki, Rie; Kayala, Matthew A.; Atluri, Vidya L.; Pablo, Jozelyn; Unal, Berkay; Ficht, Thomas A.; Gotuzzo, Eduardo; Saito, Mayuko; Morrow, W. John W.; Liang, Xiaowu; Baldi, Pierre; Gilman, Robert H.; Vinetz, Joseph M.; Tsolis, Renée M.; Felgner, Philip L.

    2010-01-01

    Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host. PMID:20454614

  7. Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons

    PubMed Central

    Queiroz, Rafael; Benz, Corinna; Fellenberg, Kurt; Hoheisel, Jörg D; Clayton, Christine

    2009-01-01

    Background Trypanosome gene expression is regulated almost exclusively at the post-transcriptional level, with mRNA degradation playing a decisive role. When trypanosomes are transferred from the blood of a mammal to the midgut of a Tsetse fly, they transform to procyclic forms: gene expression is reprogrammed, changing the cell surface and switching the mode of energy metabolism. Within the blood, trypanosomes can pre-adapt for Tsetse transmission, becoming growth-arrested stumpy forms. We describe here the transitions in gene expression that occur during differentiation of in-vitro cultured bloodstream forms to procyclic forms. Results Some mRNAs showed changes within 30 min of cis-aconitate addition, whereas others responded 12-24 hours later. For the first 12 h after addition of cis-aconitate, cells accumulated at the G1 phase of the cell cycle, and showed decreases in mRNAs required for proliferation, mimicking the changes seen in stumpy forms: many mRNAs needed for ribosomal and flagellar biogenesis showed striking co-regulation. Other mRNAs encoding components of signal transduction pathways and potential regulators were specifically induced only during differentiation. Messenger RNAs encoding proteins required for individual metabolic pathways were often co-regulated. Conclusion Trypanosome genes form post-transcriptional regulons in which mRNAs with functions in particular pathways, or encoding components of protein complexes, show almost identical patterns of regulation. PMID:19857263

  8. Pooled ecotype sequencing reveals candidate genetic mechanisms for adaptive differentiation and reproductive isolation.

    PubMed

    Gould, Billie A; Chen, Yani; Lowry, David B

    2017-01-01

    The early stages of speciation are often characterized by the formation of partially reproductively isolated ecotypes, which evolve as a by-product of divergent selective forces that are endemic to different habitats. Identifying the genomic regions, genes and ultimately functional polymorphisms that are involved in the processes of ecotype formation is inherently challenging, as there are likely to be many different loci involved in the process. To localize candidate regions of the genome contributing to ecotype formation, we conducted whole-genome pooled sequencing (pool-seq) with 47 coastal perennial and 50 inland annual populations of the yellow monkeyflower, Mimulus guttatus. Coastal perennial and inland annual ecotypes of M. guttatus have previously been shown to be ecologically reproductively isolated and highly locally adapted to their respective habitats. Our pool-seq results found allelic differentiation between the ecotypes for two chromosomal inversions, suggesting that frequencies of inversion heterokaryotypes are strongly differentiated between the ecotypes. Further, there were elevated levels of nonsynonymous change across chromosomal inversions. Across the genome, we identified multiple strong candidate genes potentially driving the morphological, life history and salt tolerance differences between the ecotypes. Several candidate genes coincide with previously identified quantitative trait locus regions and also show a signature of recent natural selection. Overall, the results of our study add to growing support for a major role of chromosomal inversions in adaptation and speciation and provide new insights into the genetic mechanisms underlying classic plant ecotype adaptations to wet and dry habitats.

  9. A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation.

    PubMed

    McAfee, Alison; Chan, Queenie; Evans, Jay; Foster, Leonard J

    2017-09-03

    Varroa destructor is the most economically damaging honey bee pest, weakening colonies by simultaneously parasitizing bees and transmitting harmful viruses. Despite these impacts on honey bee health, surprisingly little is known about its fundamental molecular biology. Here we present a Varroa protein atlas crossing all major developmental stages (egg, protonymph, deutonymph and adult) for both male and female mites as a web-based interactive tool (http://foster.nce.ubc.ca/varroa/index.html). We used intensity-based label-free quantitation to find 1,433 differentially expressed proteins across developmental stages. Enzymes for processing carbohydrates and amino acids were among many of these differences as well as proteins involved in cuticle formation. Lipid transport involving vitellogenin was the most significantly enriched biological process in the foundress (reproductive female) and young mites. In addition, we found that 101 proteins were sexually regulated and functional enrichment analysis suggests that chromatin remodeling may be a key feature of sex determination. In a proteogenomic effort, we identified 519 protein-coding regions, 301 of which were supported by two or more peptides and 169 of which were differentially expressed. Overall, this work provides a first-of-its-kind interrogation of the patterns of protein expression that govern the Varroa life cycle and the tools we have developed will support further research on this threatening honey bee pest. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  10. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    SciTech Connect

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Hallam, Steven J.

    2014-08-05

    Oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified marine waters. Currently OMZs are expanding due to global climate change. This expansion alters marine ecosystem function and the productivity of fisheries due to habitat compression and changes in biogeochemical cycling leading to fixed nitrogen loss and greenhouse gas production. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally anoxic fjord, Saanich Inlet to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification and inorganic carbon fixation predominantly co-varied with abundance and distribution patterns of Thaumarchaeota, Nitrospira, Planctomycetes and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Within these groups, pathways mediating inorganic carbon fixation and nitrogen and sulfur transformations were differentially expressed across the redoxcline. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters and denitrification, sulfur-oxidation and inorganic carbon fixation pathways affiliated with SUP05 dominated suboxic and anoxic waters. Nitrite-oxidation and anammox pathways affiliated with Nitrospina and Planctomycetes respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The differential expression of these pathways under changing water column redox conditions has quantitative implications for coupled biogeochemical cycling linking different modes of inorganic carbon fixation with distributed nitrogen and sulfur-based energy metabolism extensible to coastal and open ocean OMZs.

  11. Differential proteins of the optic ganglion in octopus vulgaris under methanol stress revealed using proteomics.

    PubMed

    Huang, Lin; Huang, Qing-Yu; Chen, Hai-Bin; Huang, Fu-Sheng; Huang, He-Qing

    2011-10-01

    An analytical approach using the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) technique separated the proteome from the optic ganglia of Octopus vulgaris (OVOG). Approximately 600 protein spots were detected from the extraction when applying 150 μg protein to a 2D-PAGE gel in the pH range 5.0-8.0. Compared to the control, significant changes of 18 protein spots were observed in OVOG under the stress of native seawater containing 2% methanol for 72 h. Among these spots, we found that eight were down-regulated and ten were up-regulated in the gels, which were further identified using both peptide mass fingerprinting and database searches. Significant proteins such as glyceraldehyde-3-phosphate dehydrogenase, alpha subunit of succinyl-CoA synthetase, alcohol dehydrogenase, and long-chain specific acyl-CoA dehydrogenase were up-regulated proteins, whereas putative ABC transporter was a down -regulated protein. These differential proteins at the level of subcellular localization were further classified using LOCtree software with a hierarchical system of support vector machines. We found that most of the differential proteins in the gel could be identified as mitochondrial proteins, suggesting that these protective or marker proteins might help to prevent methanol poisoning via the mitochondria in the optical ganglia. The results indicated that both beta-tubulin and beta-actin were potential biomarkers as up-regulated proteins for monitoring methanol toxicosis associated with fish foods such as octopus and shark.

  12. Large scale immune profiling of infected humans and goats reveals differential recognition of Brucella melitensis antigens.

    PubMed

    Liang, Li; Leng, Diana; Burk, Chad; Nakajima-Sasaki, Rie; Kayala, Matthew A; Atluri, Vidya L; Pablo, Jozelyn; Unal, Berkay; Ficht, Thomas A; Gotuzzo, Eduardo; Saito, Mayuko; Morrow, W John W; Liang, Xiaowu; Baldi, Pierre; Gilman, Robert H; Vinetz, Joseph M; Tsolis, Renée M; Felgner, Philip L

    2010-05-04

    Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host.

  13. Genetic diversity and differentiation of the Ryukyu endemic frog Babina holsti as revealed by mitochondrial DNA.

    PubMed

    Tominaga, Atsushi; Matsui, Masafumi; Nakata, Katsushi

    2014-02-01

    We surveyed the genetic diversity and genetic differentiation of an endangered frog, Babina holsti, endemic to Okinawajima and Tokashikijima Islands of the Ryukyus, to elucidate its divergence history and obtain basic data for its conservation. Genetic differentiation between the two island lineages is moderate (3.1% p-distance in the cyt b gene). This result suggests that the two island lineages have been isolated between the late Pliocene and the middle Pleistocene and have never migrated between the current northern part of Okinawajima and Tokashikijima Islands, which were once connected in the late Pleistocene glacial age. On Okinawajima Island, the southernmost sample was constituted by a unique haplotype, without considerable genetic distance from haplotypes detected from northern samples. This unique haplotype composition in the southernmost sample would have resulted from the restricted gene flow between the southernmost population and the other populations in Okinawajima Island. Furthermore, the absence of genetic diversity within the southernmost sample indicates that this population has recently experienced population size reduction, possibly by predation pressure from an introduced mongoose, which is more abundant in the southern part than in the northern part of the island. Lower genetic diversity in the Tokashikijima sample implies a small effective population size for mitochondrial DNA (mtDNA) in B. holsti on the island. Immediate conservation measures should be taken for the populations from the southernmost range in Okinawajima and Tokashikijima.

  14. Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation.

    PubMed

    Chang, Ying-Hua; Ye, Lei; Cai, Wenxuan; Lee, Yoonkyu; Guner, Huseyin; Lee, Youngsook; Kamp, Timothy J; Zhang, Jianyi; Ge, Ying

    2015-08-01

    Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post-infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large-scale label-free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up-regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase-associated protein 1 and tropomodulin-1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up-regulated and another 21 down-regulated in MI, but reversed after trilineage cell transplantation. Proteins up-regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down-regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function.

  15. Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies.

    PubMed

    Sakowski, Stacey A; Geddes, Timothy J; Thomas, David M; Levi, Edi; Hatfield, James S; Kuhn, Donald M

    2006-04-26

    Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of the neurotransmitter serotonin. Once thought to be a single-gene product, TPH is now known to exist in two isoforms-TPH1 is found in the pineal and gut, and TPH2 is selectively expressed in brain. Heretofore, probes used for localization of TPH protein or mRNA could not distinguish between the TPH isoforms because of extensive homology shared by them at the nucleotide and amino acid level. We have produced monospecific polyclonal antibodies against TPH1 and TPH2 using peptide antigens from nonoverlapping sequences in the respective proteins. These antibodies allow the differentiation of TPH1 and TPH2 upon immunoblotting, immunoprecipitation, and immunocytochemical staining of tissue sections from brain and gut. TPH1 and TPH2 antibodies do not cross-react with either tyrosine hydroxylase or phenylalanine hydroxylase. Analysis of mouse tissues confirms that TPH1 is the predominant form expressed in pineal gland and in P815 mastocytoma cells with a molecular weight of 51 kDa. TPH2 is the predominant enzyme form expressed in brain extracts from mesencephalic tegmentum, striatum, and hippocampus with a molecular weight of 56 kDa. Antibody specificity against TPH1 and TPH2 is retained across mouse, rat, rabbit, primate, and human tissues. Antibodies that distinguish between the isoforms of TPH will allow studies of the differential regulation of their expression in brain and periphery.

  16. Chemical regulators of epithelial plasticity reveal a nuclear receptor pathway controlling myofibroblast differentiation

    PubMed Central

    Carthy, Jon M.; Stöter, Martin; Bellomo, Claudia; Vanlandewijck, Michael; Heldin, Angelos; Morén, Anita; Kardassis, Dimitris; Gahman, Timothy C.; Shiau, Andrew K.; Bickle, Marc; Zerial, Marino; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    Plasticity in epithelial tissues relates to processes of embryonic development, tissue fibrosis and cancer progression. Pharmacological modulation of epithelial transitions during disease progression may thus be clinically useful. Using human keratinocytes and a robotic high-content imaging platform, we screened for chemical compounds that reverse transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition. In addition to TGF-β receptor kinase inhibitors, we identified small molecule epithelial plasticity modulators including a naturally occurring hydroxysterol agonist of the liver X receptors (LXRs), members of the nuclear receptor transcription factor family. Endogenous and synthetic LXR agonists tested in diverse cell models blocked α-smooth muscle actin expression, myofibroblast differentiation and function. Agonist-dependent LXR activity or LXR overexpression in the absence of ligand counteracted TGF-β-mediated myofibroblast terminal differentiation and collagen contraction. The protective effect of LXR agonists against TGF-β-induced pro-fibrotic activity raises the possibility that anti-lipidogenic therapy may be relevant in fibrotic disorders and advanced cancer. PMID:27430378

  17. RNA sequencing reveals small RNAs differentially expressed between incipient Japanese threespine sticklebacks

    PubMed Central

    2013-01-01

    Background Non-coding small RNAs, ranging from 20 to 30 nucleotides in length, mediate the regulation of gene expression and play important roles in many biological processes. One class of small RNAs, microRNAs (miRNAs), are highly conserved across taxa and mediate the regulation of the chromatin state and the post-transcriptional regulation of messenger RNA (mRNA). Another class of small RNAs is the Piwi-interacting RNAs, which play important roles in the silencing of transposons and other functional genes. Although the biological functions of the different small RNAs have been elucidated in several laboratory animals, little is known regarding naturally occurring variation in small RNA transcriptomes among closely related species. Results We employed next-generation sequencing technology to compare the expression profiles of brain small RNAs between sympatric species of the Japanese threespine stickleback (Gasterosteus aculeatus). We identified several small RNAs that were differentially expressed between sympatric Pacific Ocean and Japan Sea sticklebacks. Potential targets of several small RNAs were identified as repetitive sequences. Female-biased miRNA expression from the old X chromosome was also observed, and it was attributed to the degeneration of the Y chromosome. Conclusions Our results suggest that expression patterns of small RNA can differ between incipient species and may be a potential mechanism underlying differential mRNA expression and transposon activity. PMID:23547919

  18. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer.

    PubMed

    Gov, Esra; Arga, Kazim Yalcin

    2017-07-10

    Ovarian cancer is one of the most significant disease among gynecological disorders that women suffered from over the centuries. However, disease-specific and effective biomarkers were still not available, since studies have focused on individual genes associated with ovarian cancer, ignoring the interactions and associations among the gene products. Here, ovarian cancer differential co-expression networks were reconstructed via meta-analysis of gene expression data and co-expressed gene modules were identified in epithelial cells from ovarian tumor and healthy ovarian surface epithelial samples to propose ovarian cancer associated genes and their interactions. We propose a novel, highly interconnected, differentially co-expressed, and co-regulated gene module in ovarian cancer consisting of 84 prognostic genes. Furthermore, the specificity of the module to ovarian cancer was shown through analyses of datasets in nine other cancers. These observations underscore the importance of transcriptome based systems biomarkers research in deciphering the elusive pathophysiology of ovarian cancer, and here, we present reciprocal interplay between candidate ovarian cancer genes and their transcriptional regulatory dynamics. The corresponding gene module might provide new insights on ovarian cancer prognosis and treatment strategies that continue to place a significant burden on global health.

  19. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.

    PubMed

    Burton, Euan; Martin, Vincent J J

    2012-12-01

    Clostridium thermocellum is a Gram-positive thermophilic anaerobic bacterium with the ability to directly convert cellulosic biomass into useful products such as ethanol and hydrogen. In this study, a quantitative comparative proteomic analysis of the organism was performed to identify proteins and biochemical pathways that are differentially utilized by the organism after growth on cellobiose or cellulose. The cytoplasmic and membrane proteomes of C. thermocellum grown on cellulose or cellobiose were quantitatively compared using a metabolic (15)N isotope labelling method in conjunction with nanoLC-ESI-MS/MS (liquid chromatography - electrospray ionization - tandem mass spectrometry). In total, 1255 proteins were identified in the study, and 129 of those were able to have their relative abundance per cell compared in at least one cellular compartment in response to the substrate provided. This study reveals that cells grown on cellulose increase their abundance of phosphoenolpyruvate carboxykinase while decreasing the abundance of pyruvate dikinase and oxaloacetate decarboxylase, suggesting that the organism diverts carbon flow into a transhydrogenase-malate pathway that can increase the production of the biosynthetic intermediates NADPH and GTP. Glutamate dehydrogenase was also found to have increased abundance in cellulose-grown cells, suggesting that the assimilation of ammonia is upregulated in cells grown on the cellulosic substrates. The results illustrate a mechanism by which C. thermocellum can divert carbon into alternative pathways for the purpose of producing biosynthetic intermediates necessary to respond to growth on cellulose, including transhydrogenation of NADH to NADPH and increased nitrogen assimilation.

  20. Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows.

    PubMed

    Zachut, Maya; Sood, Pankaj; Levin, Yishai; Moallem, Uzi

    2016-04-29

    The follicular fluid (FF) proteome can provide an indication of follicular quality. High-yielding dairy cows suffer from low fertility, which could be related to follicular function. However, the proteome of preovulatory follicles has never been described in cows. Our objectives were to: 1) define the bovine preovulatory FF proteome, and 2) examine differentially abundant proteins in FF of controls (CTL, n=10) and less fertile cows (LFC; failed to conceive following ≥6 inseminations, n=8). Follicles ≥7mm in diameter were aspirated in vivo, and estradiol (E2) and progesterone (P4) were examined. The FF from 10 preovulatory follicles (E2/P4>1) was analyzed; E2 was higher and follicle diameter tended to be larger in LFC. As aspirations were conducted at a fixed time, this suggests accelerated follicular growth in LFC. The 219 identified and quantified proteins consisted mainly of binding proteins, proteases, receptor ligands, enzymes and transporters. Differential abundance of 8 relevant proteins was found in LFC compared to CTL: SERPINA1, TIMP2, ITIH1, HSPG2, C8A, COL1A2, F2, and IL1RAP. These proteins could influence follicular function-e.g., decreased SERPINA1 may be related to accelerated follicular growth-and therefore, further examination of their roles in the etiology of LFC is warranted. High yielding dairy cows suffer from infertility that leads to major economic losses worldwide. In Israel, about 30% of dairy cows fail to conceive following ≥4 inseminations. The etiology of this low fertility is multifactorial and remains a serious challenge. Follicular fluid proteome can provide indication to follicular quality, yet the proteome of pre-ovulatory follicles has not been described in cows. This work examined the differential abundance of proteins in less fertile dairy cows compared to controls, and found 8 relevant novel proteins that could influence follicular function. The role of these proteins in the etiology of less fertile cows should be further

  1. RAPID-COMMUNICATION Genetic diversity and differentiation in natural populations of Arapaima gigas from lower Amazon revealed by microsatellites.

    PubMed

    Fazzi-Gomes, P F; Melo, N; Palheta, G; Guerreiro, S; Amador, M; Ribeiro-Dos-Santos, A K; Santos, S; Hamoy, I

    2017-02-08

    Genetic variability is one of the important criteria for species conservation decisions. This study aimed to analyze the genetic diversity and the population differentiation of two natural populations of Arapaima gigas, a species with a long history of being commercially exploited. We collected 87 samples of A. gigas from Grande Curuai Lake and Paru Lake, located in the Lower Amazon region of Amazônia, Brazil, and genotyped these samples using a multiplex panel of microsatellite markers. Our results showed that the populations of A. gigas analyzed had high levels of genetic variability, which were similar to those described in previous studies. These two populations had a significant population differentiation supported by the estimates of FST and RST (0.06), by Bayesian analysis (K = 2), and by population assignment tests, which revealed a moderate genetic distance.

  2. Early transcriptional and epigenetic regulation of CD8(+) T cell differentiation revealed by single-cell RNA sequencing.

    PubMed

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E; He, Zhaoren; Aigner, Stefan; Metz, Patrick J; Yu, Bingfei; Wehrens, Ellen J; Lopez, Justine; Kim, Stephanie H; Zuniga, Elina I; Goldrath, Ananda W; Chang, John T; Yeo, Gene W

    2017-04-01

    During microbial infection, responding CD8(+) T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA-sequencing approach and analyzed individual CD8(+) T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants that controlled the fate specification of CD8(+) T lymphocytes. Our findings suggest a model for the differentiation of terminal effector cells initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, which highlights the power and necessity of single-cell approaches.

  3. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA-seq

    PubMed Central

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E.; He, Zhaoren; Aigner, Stefan; Metz, Patrick J.; Yu, Bingfei; Wehrens, Ellen J.; Lopez, Justine; Kim, Stephanie H.; Zuniga, Elina I.; Goldrath, Ananda W.; Chang, John T.; Yeo, Gene W.

    2017-01-01

    SUMMARY During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants controlling CD8+ T lymphocyte fate specification. These findings suggest a model of terminal effector cell differentiation initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, highlighting the power and necessity of single-cell approaches. PMID:28218746

  4. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes

    PubMed Central

    Eticha, Dejene; Zahn, Marc; Bremer, Melanie; Yang, Zhongbao; Rangel, Andrés F.; Rao, Idupulapati M.; Horst, Walter J.

    2010-01-01

    Background and Aims Aluminium (Al) resistance in common bean is known to be due to exudation of citrate from the root after a lag phase, indicating the induction of gene transcription and protein synthesis. The aims of this study were to identify Al-induced differentially expressed genes and to analyse the expression of candidate genes conferring Al resistance in bean. Methods The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes in an Al-resistant bean genotype (‘Quimbaya’) during the induction period. Using quantitative real-time PCR the expression patterns of selected genes were compared between an Al-resistant and an Al-sensitive genotype (‘VAX 1’) treated with Al for up to 24 h. Key Results Short-term Al treatment resulted in up-regulation of stress-induced genes and down-regulation of genes involved in metabolism. However, the expressions of genes encoding enzymes involved in citrate metabolism were not significantly affected by Al. Al treatment dramatically increased the expression of common bean expressed sequence tags belonging to the citrate transporter gene family MATE (multidrug and toxin extrusion family protein) in both the Al-resistant and -sensitive genotype in close agreement with Al-induced citrate exudation. Conclusions The expression of a citrate transporter MATE gene is crucial for citrate exudation in common bean. However, although the expression of the citrate transporter is a prerequisite for citrate exudation, genotypic Al resistance in common bean particularly depends on the capacity to sustain the synthesis of citrate for maintaining the cytosolic citrate pool that enables exudation. PMID:20237115

  5. Genome-wide differential expression reveals candidate genes involved in the pathogenesis of lupus and lupus nephritis.

    PubMed

    AlFadhli, Suad; Ghanem, Aqeel A M; Nizam, Rasheeba

    2016-01-01

    Systemic lupus erythematosus (lupus) is an autoimmune disease characterized by multiorgan pathology, accelerated apoptosis and hyper-autoantibody production against self-components. The root cause of lupus remains unknown, although multiple susceptibility factors have been reported in different ethnic group. We aimed to explore the genome-wide differential expression spectrum of lupus and its severe form lupus nephritis (LN) in Arab females. A total of 98 subjects: 40 lupus, 18 LN and 40 age/gender/ethnically matched healthy controls (HC) were recruited. Carefully chosen subjects (n = 11) were employed for whole human-genome expression profiling using high-density Human Exon 1.0.ST arrays (Affymetrix) and statistical analysis was carried out using appropriate software. Validation cohorts (n = 98) were investigated to quantify the expression of the nine selected candidate genes relative to GAPDH as endogenous control. Genome-wide differential analysis revealed seven candidate genes in lupus and 36 in LN, when individually compared to HC (anova Welch t-test, P ≤ 0.005, Tukey's honestly post hoc analysis). Analysis of differentially expressed genes with a fold change of 2, revealed 16 Gene Ontology terms satisfying a P ≤ 0.05. We further detected five distinct inflammatory and metabolic pathways such as TWEAK, osteopontin, endochondral ossification, fluropyrimidine activity and urea cycle and metabolism of amino groups that significantly contribute to the pathogenesis of lupus (P < 0.05). Validation of selected candidate genes (IRF9, ABCA1, APOBEC3, CEACAM3, OSCAR, TNFA1P6, MMP9, SLC4A1) revealed significant differences in expression, indicating their promissory role in the pathogenesis of lupus. Our study provides central gene regulators of therapeutic potential, indicating the future prospects of the study. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  6. Alternatively spliced transcripts of the thymus-specific protease PRSS16 are differentially expressed in human thymus.

    PubMed

    Luther, C; Wienhold, W; Oehlmann, R; Heinemann, M K; Melms, A; Tolosa, E

    2005-02-01

    The putative serine protease PRSS16 is abundantly expressed in the thymic cortex and the gene is encoded within the HLA I complex. Although its function is not yet defined, the very restricted expression points to a role in T-cell development in the thymus. In this study, we show that the PRSS16 mRNA is alternatively spliced to generate at least five transcripts. Apart from the full-length sequence, we found two other isoforms with all putative active site residues of the serine protease, suggesting that those variants may also be functional. Semi-quantitative analysis of the splice variants in different tissue samples revealed a strong correlation between the specific formation of alternatively spliced PRSS16 transcripts and the age and thymus pathology status of the donor. Newborn thymi express mostly the PRSS16-4 and -5 isoforms and lack the PRSS16-1 transcript, which appears around 2 years of age and stays until adulthood. Incidentally, thymi from myasthenia gravis (MG) patients with thymoma showed a marked decrease in the expression of the full-length PRSS16-1 and increased expression of the smaller isoforms. The data suggest a potential role of the PRSS16 isoforms in the postnatal morphogenesis of the thymus and in the thymus pathology related to MG.

  7. Comparative glandular trichome transcriptome based gene characterization reveals reasons for differential (-)-menthol biosynthesis in Mentha species.

    PubMed

    Akhtar, Md Qussen; Qamar, Nida; Yadav, Pallavi; Kulkarni, Pallavi; Kumar, Ajay; Shasany, Ajit Kumar

    2017-02-11

    The genes involved in menthol biosynthesis are reported earlier in Mentha × piperita. But the information on these genes is not available in Mentha arvensis. To bridge the gap in knowledge on differential biosynthesis of monoterpenes leading to compositional variation in the essential oil of these species, a comparative transcriptome analysis of the glandular trichome was carried out. In addition to the MVA and MEP pathway genes, about 210 and 196 different terpene synthases (TPS) transcripts were identified from annotation in M. arvensis and M. × piperita, respectively, and correlated to several monoterpenes present in the essential oil. Six isoforms of (-)-menthol dehydrogenases (MD), the last enzyme of the menthol biosynthetic pathway, were identified, cloned and characterized from the transcriptome data (3 from each species). Varied expression levels and differential enzyme kinetics of these isoforms indicated the nature and composition of the product, as these isoforms generate both (-)-menthol and (+)-neomenthol from (-)-menthone and converts (-)-menthol to (-)-menthone in the reverse reaction, and hence together determine the quantity of (-)-menthol in the essential oil in these two species. Several genes for high value minor monoterpenes could also be identified from the transcriptome data. Abbreviations - AACT, acetyl-CoA C-acetyltransferase; CMK, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; DGE, digital gene expression; DXR, 1-deoxy-D-xylulose-5-phosphate reductoisomerase; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; FPPS, farnesyl pyrophosphate synthase; GC, gas chromatography; GPPS, geranyl pyrophosphate synthase; GT, glandular trichome; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; HDS, (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase; HMGR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; HMGS, hydroxymethylglutaryl-CoA synthase; IDI, isopentenyl-diphosphate delta-isomerase; IPD, isopiperitenol dehydrogenase; IPI

  8. Differentiation processes in FeO-rich asteroids revealed by the achondrite Lewis Cliff 88763

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Corder, Christopher A.; Rumble, Douglas; Assayag, Nelly; Cartigny, Pierre; Taylor, Lawrence A.

    2015-10-01

    Olivine-dominated (70-80 modal %) achondrite meteorite Lewis Cliff (LEW) 88763 originated from metamorphism and limited partial melting of a FeO-rich parent body. The meteorite experienced some alteration on Earth, evident from subchondritic Re/Os, and redistribution of rhenium within the sample. LEW 88763 is texturally similar to winonaites, has a Δ17O value of -1.19 ± 0.10‰, and low bulk-rock Mg/(Mg+Fe) (0.39), similar to the FeO-rich cumulate achondrite Northwest Africa (NWA) 6693. The similar bulk-rock major-, minor-, and trace-element abundances of LEW 88763, relative to some carbonaceous chondrites, including ratios of Pd/Os, Pt/Os, Ir/Os, and 187Os/188Os (0.1262), implies a FeO- and volatile-rich precursor composition. Lack of fractionation of the rare earth elements, but a factor of approximately two lower highly siderophile element abundances in LEW 88763, compared with chondrites, implies limited loss of Fe-Ni-S melts during metamorphism and anatexis. These results support the generation of high Fe/Mg, sulfide, and/or metal-rich partial melts from FeO-rich parent bodies during partial melting. In detail, however, LEW 88763 cannot be a parent composition to any other meteorite sample, due to highly limited silicate melt loss (0 to <<5%). As such, LEW 88763 represents the least-modified FeO-rich achondrite source composition recognized to date and is distinct from all other meteorites. LEW 88763 should be reclassified as an anomalous achondrite that experienced limited Fe,Ni-FeS melt loss. Lewis Cliff 88763, combined with a growing collection of FeO-rich meteorites, such as brachinites, brachinite-like achondrites, the Graves Nunataks (GRA) 06128/9 meteorites, NWA 6693, and Tafassasset, has important implications for understanding the initiation of planetary differentiation. Specifically, regardless of precursor compositions, partial melting and differentiation processes appear to be similar on asteroidal bodies spanning a range of initial oxidation

  9. Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo

    PubMed Central

    Rivera-Monroy, Jhon; Musiol, Lena; Unthan-Fechner, Kirsten; Farkas, Ákos; Clancy, Anne; Coy-Vergara, Javier; Weill, Uri; Gockel, Sarah; Lin, Shuh-Yow; Corey, David P.; Kohl, Tobias; Ströbel, Philipp; Schuldiner, Maya; Schwappach, Blanche; Vilardi, Fabio

    2016-01-01

    Tail-anchored (TA) proteins are post-translationally inserted into membranes. The TRC40 pathway targets TA proteins to the endoplasmic reticulum via a receptor comprised of WRB and CAML. TRC40 pathway clients have been identified using in vitro assays, however, the relevance of the TRC40 pathway in vivo remains unknown. We followed the fate of TA proteins in two tissue-specific WRB knockout mouse models and found that their dependence on the TRC40 pathway in vitro did not predict their reaction to receptor depletion in vivo. The SNARE syntaxin 5 (Stx5) was extremely sensitive to disruption of the TRC40 pathway. Screening yeast TA proteins with mammalian homologues, we show that the particular sensitivity of Stx5 is conserved, possibly due to aggregation propensity of its cytoplasmic domain. We establish that Stx5 is an autophagy target that is inefficiently membrane-targeted by alternative pathways. Our results highlight an intimate relationship between the TRC40 pathway and cellular proteostasis. PMID:28000760

  10. Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system.

    PubMed

    Dircksen, Heinrich

    2009-02-01

    Insect ionic and fluid homeostasis relies upon the Malpighian tubules (MT) and different hindgut compartments. Primary urine formed in MTs is finally modified by ion, solute and water reabsorptive processes primarily in the hindgut under the control of several large peptide hormones. One of these, the ion transport peptide (ITP), is a chloride transport-stimulating and acid secretion-inhibiting hormone similar to crustacean hyperglycaemic hormones (CHHs). In locusts, moths and fruit flies, ITP together with the slightly longer ITPL isoforms, inactive in hindgut bioassays, arise by alternative splicing from very similar itp genes. ITP and ITPL are differentially distributed in (1) pars lateralis/retrocerebral complex neurosecretory cells (NSCs) containing both splice forms, (2) interneurons with either one of the splice forms, (3) hindgut-innervating abdominal ITP neurons (in Drosophila only), and (4) intrinsic, putative sensory NSCs in peripheral neurohaemal perisympathetic/perivisceral organs or transverse nerves (usually containing ITPL). Both splice forms occur as hormones released into the haemolymph in response to feeding or stress stimuli. ITPL mainly released from the peripheral NSCs is discussed as a competitive inhibitor (as established in vitro) of ITP action on yet to be identified hindgut ITP receptors. Furthermore, some evidence has been provided for possible ecdysis-related functions of ITP and/or ITPL in moths. The comparative data on the highly similar gene, precursor and primary structures and similar differential distributions in insect and crustacean NSCs suggest that CHH/ITP and ITPL neuropeptide-producing cells and their gene products share common phylogenetic ancestry.

  11. Becoming Irreplaceable: How Comparisons to the Partner’s Alternatives Differentially Affect Low and High Self-Esteem People

    PubMed Central

    Murray, Sandra L.; Leder, Sadie; McClellan, Jennifer C. D.; Holmes, John G.; Pinkus, Rebecca T.; Harris, Brianna

    2009-01-01

    It is proposed that people are motivated to feel hard to replace in romantic relationships because feeling irreplaceable fosters trust in a partner’s continued responsiveness. By contrast, feeling replaceable motivates compensatory behavior aimed at strengthening the partner’s commitment to the relationship. A correlational study of dating couples and 2 experiments examined how satiating/thwarting the goal of feeling irreplaceable differentially affects relationship perception and behavior for low and high self-esteem people. The results revealed that satiating the goal of feeling irreplaceable increases trust for people low in self-esteem. In contrast, thwarting the goal of feeling irreplaceable increases compensatory behaviors meant to prove one’s indispensability for people high in self-esteem. PMID:20161401

  12. Cerebral hemovelocity reveals differential resource allocation strategies for extraverts and introverts during vigilance.

    PubMed

    Shaw, Tyler H; Nguyen, Cynthia; Satterfield, Kelly; Ramirez, Raul; McKnight, Patrick E

    2016-02-01

    Extraversion--one of the Big 5 personality factors--correlates negatively with vigilance, but most studies focus on performance outcomes and not the performance process. Previous research has shown that transcranial Doppler sonography (TCD), which measures cerebral blood flow velocity (CBFV), can be used to examine resource allocation strategies during vigilance performance. Hence, this study was designed to assess the attentional resource allocation strategies of introverts and extraverts using the CBFV measure. Twelve extroverts and 13 introverts monitored a 60-min vigilance task for a critical signal--the absence of a line on a five-circle array. The results revealed an overall performance decrement that was not modulated by extraversion. We observed an interaction between extraversion and time; CBFV declined in the introversion group, but not in the extraversion group. Additionally, an interaction between cerebral hemisphere and personality revealed that extraverts were recruiting resources from both the left and right cerebral hemispheres, while introverts only recruited resources from the right hemisphere. The results suggest that extraverts can allocate compensatory effort to mask performance differences. We discuss the theoretical and practical implications of these findings and offer future research directions that may help us understand these effects.

  13. Meta-Analytic Connectivity Modeling Reveals Differential Functional Connectivity of the Medial and Lateral Orbitofrontal Cortex

    PubMed Central

    Zald, David H.; McHugo, Maureen; Ray, Kimberly L.; Glahn, David C.; Eickhoff, Simon B.; Laird, Angela R.

    2014-01-01

    The orbitofrontal cortex (OFC) is implicated in a broad range of behaviors and neuropsychiatric disorders. Anatomical tracing studies in nonhuman primates reveal differences in connectivity across subregions of the OFC, but data on the connectivity of the human OFC remain limited. We applied meta-analytic connectivity modeling in order to examine which brain regions are most frequently coactivated with the medial and lateral portions of the OFC in published functional neuroimaging studies. The analysis revealed a clear divergence in the pattern of connectivity for the medial OFC (mOFC) and lateral OFC (lOFC) regions. The lOFC showed coactivations with a network of prefrontal regions and areas involved in cognitive functions including language and memory. In contrast, the mOFC showed connectivity with default mode, autonomic, and limbic regions. Convergent patterns of coactivations were observed in the amygdala, hippocampus, striatum, and thalamus. A small number of regions showed connectivity specific to the anterior or posterior sectors of the OFC. Task domains involving memory, semantic processing, face processing, and reward were additionally analyzed in order to identify the different patterns of OFC functional connectivity associated with specific cognitive and affective processes. These data provide a framework for understanding the human OFC's position within widespread functional networks. PMID:23042731

  14. Expression Microarray Analysis Reveals Alternative Splicing of LAMA3 and DST Genes in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Li, Ryan; Ochs, Michael F.; Ahn, Sun Mi; Hennessey, Patrick; Tan, Marietta; Soudry, Ethan; Gaykalova, Daria A.; Uemura, Mamoru; Brait, Mariana; Shao, Chunbo; Westra, William; Bishop, Justin; Fertig, Elana J.; Califano, Joseph A.

    2014-01-01

    Purpose Prior studies have demonstrated tumor-specific alternative splicing events in various solid tumor types. The role of alternative splicing in the development and progression of head and neck squamous cell carcinoma (HNSCC) is unclear. Our study queried exon-level expression to implicate splice variants in HNSCC tumors. Experimental Design We performed a comparative genome-wide analysis of 44 HNSCC tumors and 25 uvulopalatopharyngoplasty (UPPP) tissue samples at an exon expression level. In our comparison we ranked genes based upon a novel score—the Maximum-Minimum Exon Score (MMES) – designed to predict the likelihood of an alternative splicing event occurring. We validated predicted alternative splicing events using quantitative RT-PCR on an independent cohort. Results After MMES scoring of 17,422 genes, the top 900 genes with the highest scores underwent additional manual inspection of expression patterns in a graphical analysis. The genes LAMA3, DST, VEGFC, SDHA, RASIP1, and TP63 were selected for further validation studies because of a high frequency of alternative splicing suggested in our graphical analysis, and literature review showing their biological relevance and known splicing patterns. We confirmed TP63 as having dominant expression of the short DeltaNp63 isoform in HNSCC tumor samples, consistent with prior reports. Two of the six genes (LAMA3 and DST) validated by quantitative RT-PCR for tumor-specific alternative splicing events (Student's t test, P<0.001). Conclusion Alternative splicing events of oncologically relevant proteins occur in HNSCC. The number of genes expressing tumor-specific splice variants needs further elucidation, as does the functional significance of selective isoform expression. PMID:24675808

  15. RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum.

    PubMed

    Zhao, Chunzhao; Waalwijk, Cees; de Wit, Pierre J G M; Tang, Dingzhong; van der Lee, Theo

    2013-01-16

    The genome of Fusarium graminearum has been sequenced and annotated previously, but correct gene annotation remains a challenge. In addition, posttranscriptional regulations, such as alternative splicing and RNA editing, are poorly understood in F. graminearum. Here we took advantage of RNA-Seq to improve gene annotations and to identify alternative splicing and RNA editing in F. graminearum. We identified and revised 655 incorrectly predicted gene models, including revisions of intron predictions, intron splice sites and prediction of novel introns. 231 genes were identified with two or more alternative splice variants, mostly due to intron retention. Interestingly, the expression ratios between different transcript isoforms appeared to be developmentally regulated. Surprisingly, no RNA editing was identified in F. graminearum. Moreover, 2459 novel transcriptionally active regions (nTARs) were identified and our analysis indicates that many of these could be missed genes. Finally, we identified the 5' UTR and/or 3' UTR sequences of 7666 genes. A number of representative novel gene models and alternatively spliced genes were validated by reverse transcription polymerase chain reaction and sequencing of the generated amplicons. We have developed novel and efficient strategies to identify alternatively spliced genes and incorrect gene models based on RNA-Seq data. Our study identified hundreds of alternatively spliced genes in F. graminearum and for the first time indicated that alternative splicing is developmentally regulated in filamentous fungi. In addition, hundreds of incorrect predicted gene models were identified and revised and thousands of nTARs were discovered in our study, which will be helpful for the future genomic and transcriptomic studies in F. graminearum.

  16. Alternative exon usage creates novel transcript variants of tumor suppressor SHREW-1 gene with differential tissue expression profile

    PubMed Central

    Klemmt, Petra A. B.; Resch, Eduard; Smyrek, Isabell; Engels, Knut; Stelzer, Ernst H. K.

    2016-01-01

    ABSTRACT Shrew-1, also called AJAP1, is a transmembrane protein associated with E-cadherin-mediated adherence junctions and a putative tumor suppressor. Apart from its interaction with β-catenin and involvement in E-cadherin internalization, little structure or function information exists. Here we explored shrew-1 expression during postnatal differentiation of mammary gland as a model system. Immunohistological analyses with antibodies against either the extracellular or the cytoplasmic domains of shrew-1 consistently revealed the expression of full-length shrew-1 in myoepithelial cells, but only part of it in luminal cells. While shrew-1 localization remained unaltered in myoepithelial cells, nuclear localization occurred in luminal cells during lactation. Based on these observations, we identified two unknown shrew-1 transcript variants encoding N-terminally truncated proteins. The smallest shrew-1 protein lacks the extracellular domain and is most likely the only variant present in luminal cells. RNA analyses of human tissues confirmed that the novel transcript variants of shrew-1 exist in vivo and exhibit a differential tissue expression profile. We conclude that our findings are essential for the understanding and interpretation of future functional and interactome analyses of shrew-1 variants. PMID:27870635

  17. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells

    PubMed Central

    van den Broek, Theo; Delemarre, Eveline M.; Janssen, Willemijn J.M.; Nievelstein, Rutger A.J.; Broen, Jasper C.; Tesselaar, Kiki; Borghans, Jose A.M.; Nieuwenhuis, Edward E.S.; Prakken, Berent J.; Mokry, Michal; Jansen, Nicolaas J.G.

    2016-01-01

    The generation of naive T cells is dependent on thymic output, but in adults, the naive T cell pool is primarily maintained by peripheral proliferation. Naive T cells have long been regarded as relatively quiescent cells; however, it was recently shown that IL-8 production is a signatory effector function of naive T cells, at least in newborns. How this functional signature relates to naive T cell dynamics and aging is unknown. Using a cohort of children and adolescents who underwent neonatal thymectomy, we demonstrate that the naive CD4+ T cell compartment in healthy humans is functionally heterogeneous and that this functional diversity is lost after neonatal thymectomy. Thymic tissue regeneration later in life resulted in functional restoration of the naive T cell compartment, implicating the thymus as having functional regenerative capacity. Together, these data shed further light on functional differentiation within the naive T cell compartment and the importance of the thymus in human naive T cell homeostasis and premature aging. In addition, these results affect and alter our current understanding on the identification of truly naive T cells and recent thymic emigrants. PMID:26901814

  18. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies

    PubMed Central

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-01-01

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells. PMID:26973288

  19. Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy.

    PubMed

    Halvorsen, Ann Rita; Helland, Aslaug; Fleischer, Thomas; Haug, Karen Marie; Grenaker Alnaes, Grethe Irene; Nebdal, Daniel; Syljuåsen, Randi G; Touleimat, Nizar; Busato, Florence; Tost, Jörg; Saetersdal, Anna B; Børresen-Dale, Anne-Lise; Kristensen, Vessela; Edvardsen, Hege

    2014-11-01

    Radiotherapy (RT) is a central treatment modality for breast cancer patients. The purpose of our study was to investigate the DNA methylation changes in tumors following RT, and to identify epigenetic markers predicting treatment outcome. Paired biopsies from patients with inoperable breast cancer were collected both before irradiation (n = 20) and after receiving 10-24 Gray (Gy) (n = 19). DNA methylation analysis was performed by using Illumina Infinium 27K arrays. Fourteen genes were selected for technical validation by pyrosequencing. Eighty-two differentially methylated genes were identified in irradiated (n = 11) versus nonirradiated (n = 19) samples (false discovery rate, FDR = 1.1%). Methylation levels in pathways belonging to the immune system were most altered after RT. Based on methylation levels before irradiation, a panel of five genes (H2AFY, CTSA, LTC4S, IL5RA and RB1) were significantly associated with clinical response (p = 0.041). Furthermore, the degree of methylation changes for 2,516 probes correlated with the given radiation dose. Within the 2,516 probes, an enrichment for pathways involved in cellular immune response, proliferation and apoptosis was identified (FDR < 5%). Here, we observed clear differences in methylation levels induced by radiation, some associated with response to treatment. Our study adds knowledge on the molecular mechanisms behind radiation response. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  20. Site-Specific Acetyl Lysine Antibodies Reveal Differential Regulation of Histone Acetylation upon Kinase Inhibition.

    PubMed

    Chen, Shi; Chen, Suping; Duan, Qianqian; Xu, Guoqiang

    2017-03-01

    Lysine acetylation regulates diverse biological functions for the modified proteins. Mass spectrometry-based proteomic approaches have identified thousands of lysine acetylation sites in cells and tissues. However, functional studies of these acetylation sites were limited by the lack of antibodies recognizing the specific modification sites. Here, we generated 55 site-specific acetyl lysine antibodies for the detection of this modification in cell lysates and evaluated the quality of these antibodies. Based on the immunoblotting analyses, we found that the nature of amino acid sequences adjacent to the modification sites affected the specificity of the site-specific acetyl lysine antibodies. Amino acids with charged, hydrophilic, small, or flexible side chains adjacent to the modification sites increase the likelihood of obtaining high quality site-specific acetyl lysine antibodies. This result may provide valuable insights in fine-tuning the amino acid sequences of the epitopes for the generation of site-specific acetyl lysine antibodies. Using the site-specific acetyl lysine antibodies, we further discovered that acetylation of histone 3 at four lysine residues was differentially regulated by kinase inhibitors. This result demonstrates the potential application of these antibodies in the study of new signaling pathways that lysine acetylation may participate in.

  1. Differential cytokine profiles in juvenile idiopathic arthritis subtypes revealed by cluster analysis.

    PubMed

    van den Ham, Henk-Jan; de Jager, Wilco; Bijlsma, Johannes W J; Prakken, Berent J; de Boer, Rob J

    2009-08-01

    With the introduction of high-throughput biomarker measurements, traditional analysis of these markers is increasingly difficult. Using samples from a diverse group of patients, we tested the applicability of cluster analysis to these data. Using this method, we aim to visualize some of the patterns specific to certain disease groups. In particular, we focus on juvenile idiopathic arthritis (JIA), a multifactorial autoimmune disorder that ultimately leads to chronic inflammation of the joints. Cytokine measurements were performed using multiplex immunoassays. Using heuristic clustering methods, we set out to compare the pattern of 30 cytokines in plasma and SF of JIA, RA, OA, or diabetes type II patients and healthy controls. Analysis shows that oligo- and polyarticular JIA have similar biomarker profiles, both in plasma and SF. Systemic onset JIA (SoJIA) has a profile distinct from other JIA subtypes, suggesting that they involve different inflammatory processes. SoJIA samples do, however, cluster together with RA in SF, suggesting that these two conditions have similar cytokine profiles. Furthermore, we identify several clusters of ILs and chemokines that are co-expressed, suggesting that they are co-regulated. We show that previously undetected clusters of cytokines and patients can be identified by applying cluster analysis to multiplex data. Cytokine clusters identified in plasma and SF samples were quite different, which underscore the differential cytokine signalling in these two compartments, and suggest that plasma samples may not be suitable for estimating joint biomarker profiles and inflammation.

  2. Antibodies Raised Against Chlamydial Lipopolysaccharide Antigens Reveal Convergence in Germline Gene Usage and Differential Epitope Recognition

    PubMed Central

    Brooks, Cory L; Müller-Loennies, Sven; Borisova, Svetlana N.; Brade, Lore; Kosma, Paul; Hirama, Tomoko; MacKenzie, C. Roger; Brade, Helmut; Evans, Stephen V

    2011-01-01

    In order to explore monoclonal antibody recognition carbohydrate antigens, several structures from two monoclonal antibodies directed against carbohydrate epitopes derived from chlamydial LPS have been solved to high resolution. With the exception of CDR H3, antibodies S54-10 and S73-2 are both derived from the same set of germline gene segments as the previously reported structures S25-2 and S45-18. Despite this similarity, the antibodies differ in specificity and the mechanism by which they recognize their cognate antigen. S54-10 uses an unrelated CDR H3 to recognize its antigen in a fashion analogous to S45-18; however, S73-2 recognizes the same antigen as S45-18 and S54-10 in a wholly unrelated manner. Together, these antibody-antigen structures provide snapshots into how the immune system uses the same set of inherited germline gene segments to generate multiple possible specificities that allow for differential recognition of epitopes, and how unrelated CDR H3 sequences can result in convergent binding of clinically-relevant bacterial antigens. PMID:20000757

  3. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies.

    PubMed

    Indoliya, Yuvraj; Tiwari, Poonam; Chauhan, Abhisekh Singh; Goel, Ridhi; Shri, Manju; Bag, Sumit Kumar; Chakrabarty, Debasis

    2016-03-14

    Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells.

  4. Reciprocal gene replacements reveal unique functions for Phox2 genes during neural differentiation

    PubMed Central

    Coppola, Eva; Pattyn, Alexandre; Guthrie, Sarah C; Goridis, Christo; Studer, Michèle

    2005-01-01

    The paralogous paired-like homeobox genes Phox2a and Phox2b are involved in the development of specific neural subtypes in the central and peripheral nervous systems. The different phenotypes of Phox2 knockout mutants, together with their asynchronous onset of expression, prompted us to generate two knock-in mutant mice, in which Phox2a is replaced by the Phox2b coding sequence, and vice versa. Our results indicate that Phox2a and Phox2b are not functionally equivalent, as only Phox2b can fulfill the role of Phox2a in the structures that depend on both genes. Furthermore, we demonstrate unique roles of Phox2 genes in the differentiation of specific motor neurons. Whereas the oculomotor and the trochlear neurons require Phox2a for their proper development, the migration of the facial branchiomotor neurons depends on Phox2b. Therefore, our analysis strongly indicates that biochemical differences between the proteins rather than temporal regulation of their expression account for the specific function of each paralogue. PMID:16319924

  5. Molecular cloning and expression analysis of duplicated polyphenol oxidase genes reveal their functional differentiations in sorghum.

    PubMed

    Yan, Song; Li, Sujuan; Zhai, Guowei; Lu, Ping; Deng, Hui; Zhu, Shan; Huang, Renliang; Shao, Jianfeng; Tao, Yuezhi; Zou, Guihua

    2017-10-01

    Polyphenol oxidase (PPO) is believed to play a role in plant growth, reproduction, and resistance to pathogens and pests. PPO causes browning of grains in cereals. In this study, genetic mapping of sorghum grain for phenol color reaction (PHR) was performed using a recombinant inbred line population. Only one locus was detected between SSR markers SM06072 and Xtxp176 on chromosome 6. Two linked orthologous genes (Sb06PPO1 and Sb06PPO2) within the mapped region were discovered and cloned. Transformation experiments using Nipponbare (a PHR negative rice cultivar) showed that Sb06PPO1 from LTR108 and two Sb06PPO2 alleles from both varieties could complement Nipponbare, whereas Sb06PPO1 from 654 could not. Subsequent quantitative real-time PCR (qPCR) experiments showed that Sb06PPO1 and Sb06PPO2 functioned diversely, Sb06PPO1 was mainly expressed in young panicles before flowering. Sb06PPO2 was strongly expressed in flowering panicles, especially in hulls and branches at filling stage. Moreover, the expression of Sb06PPO1 was found to be significantly up-regulated by exogenous ABA and salt, whereas Sb06PPO2 was not changed significantly, further demonstrating functional differentiation between the two genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Quantitative Proteomic Analysis of Hemogenic Endothelium Reveals Differential Regulation of Hematopoiesis by SOX17

    PubMed Central

    Clarke, Raedun L.; Robitaille, Aaron M.; Moon, Randall T.; Keller, Gordon

    2015-01-01

    Summary The in vitro derivation of hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) is complicated by the existence of multiple overlapping embryonic blood cell programs called primitive, erythromyeloid progenitor (EMP), and definitive. As HSCs are only generated during the definitive stage of hematopoiesis, deciphering the regulatory pathways that control the emergence of this program and identifying markers that distinguish it from the other programs are essential. To identify definitive specific pathways and marker sets, we used label-free proteomics to determine the proteome of embryo-derived and mouse embryonic stem cell-derived VE-CADHERIN+CD45− definitive hematopoietic progenitors. With this approach, we identified Stat1 as a marker that distinguishes the definitive erythroid lineage from the primitive- and EMP-derived lineages. Additionally, we provide evidence that the generation of the Stat1+ definitive lineage is dependent on Sox17. These findings establish an approach for monitoring the emergence of definitive hematopoiesis in the PSC differentiation cultures. PMID:26267830

  7. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    PubMed Central

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Hallam, Steven J.

    2014-01-01

    Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand. PMID:25053816

  8. Differential Proteomics of Urinary Exovesicles from Classical Galactosemic Patients Reveals Subclinical Kidney Insufficiency.

    PubMed

    Staubach, Simon; Pekmez, Murat; Hanisch, Franz-Georg

    2016-06-03

    Classical galactosemia is caused by a nearly complete deficiency of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), resulting in a severely impaired galactose metabolism with galactose-1-phosphate and galactitol accumulation. Even on a galactose-restricted diet, patients develop serious long-term complications of the central nervous system and ovaries that may result from chronic cell-toxic effects exerted by endogenous galactose. To address the question of whether disease-associated cellular perturbations could affect the kidney function of the patients, we performed differential proteomics of detergent-resistant membranes from urinary exovesicles. Galactosemic samples (showing drastic shifts from high-mannose to complex-type N-glycosylation on exosomal N-glycoproteins) and healthy, sex-matched controls were analyzed in quadruplex iTRAQ experiments performed in biological and technical replicates. Particularly in the female patient group, the most striking finding was a drastic increase of abundant serum (glyco)proteins, like albumin, leucine-rich α-2-glycoprotein, fetuin, immunoglobulins, prostaglandin H2 d-isomerase, and α-1-microglobulin protein (AMBP), pointing to a subclinical failure of kidney filter function in galactosemic patients and resulting in a heavy overload of exosomal membranes with adsorbed serum (glyco)proteins. Several of these proteins are connected to TBMN and IgAN, proteinuria, and renal damage. The impairment of renal protein filtration was also indicated by increased protein contents derived from extracellular matrices and lysosomes.

  9. Proteomic analysis reveals differentially expressed proteins in the rat frontal cortex after methamphetamine treatment.

    PubMed

    Faure, J J; Hattingh, S M; Stein, D J; Daniels, W M

    2009-12-01

    Methamphetamine (MA) is an addictive psycho-stimulant and the illicit use of the drug is escalating. In the present study, we examined protein expression profiles in the rat frontal cortex exposed to a total of eight MA injections (1 mg/kg, intraperitoneal) using 2-DE based proteomics. We investigated protein changes occurring in both the cytosolic fraction and the membrane fraction. 2-DE analysis resulted in 62 cytosolic and 44 membrane protein spots that were differentially regulated in the frontal cortex of rats exposed to MA when compared to control animals. Of these spots, 47 cytosolic and 42 membrane proteins were identified respectively, using ESI-Quad-TOF, which included ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1), beta-synuclein, 78 kDa glucose-regulated protein (GRP 78), gamma-enolase, dihydropyrimidase-related protein 2 (DRP 2), complexin 2 and synapsin II. These proteins are associated with protein degradation, redox regulation, energy metabolism, cellular growth, cytoskeletal modifications and synaptic function. Proteomic research may be useful in exploring the complex underlying molecular mechanisms of MA dependence.

  10. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation

    PubMed Central

    Brown, Maile R; Kronengold, Jack; Gazula, Valeswara-Rao; Spilianakis, Charalampos G; Flavell, Richard A; von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2008-01-01

    data suggest that alternative promoters of the Slack gene differentially modulate the properties of neurones. PMID:18787033

  11. Functional perturbation of forebrain principal neurons reveals differential effects in novel and well-learned tasks.

    PubMed

    Stoneham, Emily T; McHail, Daniel G; Boggs, Katelyn N; Albani, Sarah H; Carty, Jason A; Evans, Rebekah C; Hamilton, Kelly A; Saadat, Victoria M; Hussain, Samanza; Greer, Maggie E; Dumas, Theodore C

    2017-09-15

    Neural circuits in mammalian brains consist of large numbers of different cell types having different functional properties. To better understand the separate roles of individual neuron types in specific aspects of spatial learning and memory, we perturbed the function of principal neurons in vivo during maze performance or in hippocampal slices during recording of evoked excitatory synaptic potentials. Transgenic mice expressing the Drosophila allatostatin receptor (AlstR) in cortical and hippocampal pyramidal cells were tested on an elevated plus maze, in a Y-maze, and in the Morris water maze. Relative to a control cohort, AlstR-positive mice treated with allatostatin exhibited no difference in open arm dwell time on the elevated plus maze or total number of arm entries in a Y-maze, but displayed reduced spontaneous alternation. When animals received massed or spaced training trials in the Morris water maze, and the peptide was delivered prior to an immediate probe, no effects on performance were observed. When the peptide was delivered during a probe trial performed 24h after seven days of spaced training, allatostatin delivery to AlstR positive mice enhanced direct navigation to the escape platform. Combined, these results suggest that cortical and hippocampal pyramidal neurons are required during spatial decision-making in a novel environment and compete with other neural systems after extended training in a long-term reference memory task. In hippocampal slices collected from AlstR positive animals, allatostatin delivery produced frequency dependent alterations in the Schaffer collateral fiber volley (attenuated accommodation at 100Hz) and excitatory postsynaptic potential (attenuated facilitation at 5Hz). Combined, the neural and behavioral discoveries support the involvement of short-term plasticity of Schaffer collateral axons and synapses during exploration of a novel environment and during initial orientation to a goal in a well-learned setting

  12. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes

    PubMed Central

    Moreira-Leite, Flavia; Varga, Vladimir; Gull, Keith

    2016-01-01

    The transition zone (TZ) of eukaryotic cilia and flagella is a structural intermediate between the basal body and the axoneme that regulates ciliary traffic. Mutations in genes encoding TZ proteins (TZPs) cause human inherited diseases (ciliopathies). Here, we use the trypanosome to identify TZ components and localize them to TZ subdomains, showing that the Bardet-Biedl syndrome complex (BBSome) is more distal in the TZ than the Meckel syndrome (MKS) complex. Several of the TZPs identified here have human orthologs. Functional analysis shows essential roles for TZPs in motility, in building the axoneme central pair apparatus and in flagellum biogenesis. Analysis using RNAi and HaloTag fusion protein approaches reveals that most TZPs (including the MKS ciliopathy complex) show long-term stable association with the TZ, whereas the BBSome is dynamic. We propose that some Bardet-Biedl syndrome and MKS pleiotropy may be caused by mutations that impact TZP complex dynamics. PMID:27519801

  13. Differential proteomics in dequeened honeybee colonies reveals lower viral load in hemolymph of fertile worker bees.

    PubMed

    Cardoen, Dries; Ernst, Ulrich R; Van Vaerenbergh, Matthias; Boerjan, Bart; de Graaf, Dirk C; Wenseleers, Tom; Schoofs, Liliane; Verleyen, Peter

    2011-01-01

    The eusocial societies of honeybees, where the queen is the only fertile female among tens of thousands sterile worker bees, have intrigued scientists for centuries. The proximate factors, which cause the inhibition of worker bee ovaries, remain largely unknown; as are the factors which cause the activation of worker ovaries upon the loss of queen and brood in the colony. In an attempt to reveal key players in the regulatory network, we made a proteomic comparison of hemolymph profiles of workers with completely activated ovaries vs. rudimentary ovaries. An unexpected finding of this study is the correlation between age matched worker sterility and the enrichment of Picorna-like virus proteins. Fertile workers, on the other hand, show the upregulation of potential components of the immune system. It remains to be investigated whether viral infections contribute to worker sterility directly or are the result of a weaker immune system of sterile workers.

  14. Differential Proteomics in Dequeened Honeybee Colonies Reveals Lower Viral Load in Hemolymph of Fertile Worker Bees

    PubMed Central

    Cardoen, Dries; Ernst, Ulrich R.; Van Vaerenbergh, Matthias; Boerjan, Bart; de Graaf, Dirk C.; Wenseleers, Tom; Schoofs, Liliane; Verleyen, Peter

    2011-01-01

    The eusocial societies of honeybees, where the queen is the only fertile female among tens of thousands sterile worker bees, have intrigued scientists for centuries. The proximate factors, which cause the inhibition of worker bee ovaries, remain largely unknown; as are the factors which cause the activation of worker ovaries upon the loss of queen and brood in the colony. In an attempt to reveal key players in the regulatory network, we made a proteomic comparison of hemolymph profiles of workers with completely activated ovaries vs. rudimentary ovaries. An unexpected finding of this study is the correlation between age matched worker sterility and the enrichment of Picorna-like virus proteins. Fertile workers, on the other hand, show the upregulation of potential components of the immune system. It remains to be investigated whether viral infections contribute to worker sterility directly or are the result of a weaker immune system of sterile workers. PMID:21698281

  15. A differential gene expression profile reveals overexpression of RUNX1/AML1 in invasive endometrioid carcinoma.

    PubMed

    Planagumà, Jesús; Díaz-Fuertes, María; Gil-Moreno, Antonio; Abal, Miguel; Monge, Marta; García, Angel; Baró, Teresa; Thomson, Timothy M; Xercavins, Jordi; Alameda, Francesc; Reventós, Jaume

    2004-12-15

    Endometrial carcinoma is the most common gynecological malignant disease in industrialized countries. Two clinicopathological types of endometrial carcinoma have been described, based on estrogen relation and grade: endometrioid carcinoma (EEC) and non-EEC (NEEC). Some of the molecular events that occur during the development of endometrial carcinoma have been characterized, showing a dualistic genetic model for EEC and NEEC. However, the molecular bases for endometrial tumorigenesis are not clearly elucidated. In the present work, we attempted to identify new genes that could trigger cell transformation in EEC. We analyzed the differential gene expression profile between tumoral and nontumoral endometrial specimens with cDNA array hybridization. Among the 53 genes for which expression was found to be altered in EEC, the acute myeloid leukemia proto-oncogene, RUNX1/AML1, was one of the most highly up-regulated. The gene expression levels of RUNX1/AML1 were quantified by real-time quantitative PCR, and protein levels were characterized by tissue array immunohistochemistry. Real-time quantitative PCR validated RUNX1/AML1 up-regulation in EEC and demonstrated a specific and significantly stronger up-regulation in those tumor stages associated with myometrial invasion. Furthermore, tissue array immunohistochemistry showed that RUNX1/AML1 up-regulation correlates to the process of tumorigenesis, from normal atrophic endometrium to simple and complex hyperplasia and then, on to carcinoma. These results demonstrate for the first time the up-regulation of RUNX1/AML1 in EEC correlating with the initial steps of myometrial infiltration.

  16. Coseismic fault zone deformation revealed with differential lidar: Examples from Japanese Mw ∼7 intraplate earthquakes

    NASA Astrophysics Data System (ADS)

    Nissen, Edwin; Maruyama, Tadashi; Ramon Arrowsmith, J.; Elliott, John R.; Krishnan, Aravindhan K.; Oskin, Michael E.; Saripalli, Srikanth

    2014-11-01

    We use two recent Japanese earthquakes to demonstrate the rich potential, as well as some of the challenges, of differencing repeat airborne Light Detection and Ranging (lidar) topographic data to measure coseismic fault zone deformation. We focus on densely-vegetated sections of the 14 June 2008 Iwate-Miyagi (Mw 6.9) and 11 April 2011 Fukushima-Hamadori (Mw 7.1) earthquake ruptures, each covered by 2 m-resolution pre-event and 1 m-resolution post-event bare Earth digital terrain models (DTMs) obtained from commercial lidar providers. Three-dimensional displacements and rotations were extracted from these datasets using an adaptation of the Iterative Closest Point (ICP) algorithm. These displacements remain coherent close to surface fault breaks, as well as within dense forest, despite intervals of ∼2 years (Iwate-Miyagi) and ∼4 years (Fukushima-Hamadori) encompassed by the lidar scenes. Differential lidar analysis is thus complementary to Interferometric Synthetic Aperture Radar (InSAR) and sub-pixel correlation techniques which often break down under conditions of long time intervals, dense vegetation or steep displacement gradients. Although the ICP displacements are much noisier than overlapping InSAR line-of-sight displacements, they still provide powerful constraints on near-surface fault slip. In the Fukushima-Hamadori case, near-fault displacements and rotations are consistent with decreased primary fault slip at very shallow depths of a few tens of meters, helping to account for the large, along-strike heterogeneity in surface offsets observed in the field. This displacement field also captures long-wavelength deformation resulting from the 11 March 2011 Tohoku great earthquake.

  17. Suppression subtractive hybridization reveals differentially expressed genes in supraspinous ligaments of patients with ankylosing spondylitis.

    PubMed

    Zhang, Ying; Hu, Xu; Zhang, Chao; Zhou, Yue; Chu, Tong-Wei

    2015-06-01

    Ankylosing spondylitis (AS) is a severe chronic inflammatory disease that may ultimately result in the development of a 'bamboo‑like' spine. Although the pathological changes that occur in AS have been extensively investigated, the mechanism underlying spinal fusion during AS remains elusive. Differentially expressed genes (DEGs) in paraspinal tissues from patients with AS compared with those from healthy controls were therefore investigated. Polymerase chain reaction (PCR)‑based suppression subtractive hybridization was performed using total mRNA from the supraspinal ligaments of three patients with AS and three patients with spinal fractures as controls. From this, 27 genes were identified in all of the three independent forward libraries, which were defined as DEGs associated with AS. Reverse transcription‑quantitative PCR demonstrated that six DEGs were overexpressed in the tissues from patients with AS compared with those from individuals in the control group, including those encoding transforming growth factor β types I and III receptor, vascular endothelial growth factor, matrix metalloproteinase‑3, core‑binding factor α1 and bone morphogenetic protein 2. Western blot analysis showed increased expression in all six of these proteins in the samples from patients with AS compared with those in the control groups. These findings suggested that changes in the expression of these genes and proteins are associated with the development of spinal fusion during the pathogenesis of AS. Furthermore, these genes may be novel markers of the risk of developing AS, in addition to being targets for the treatment of this disease.

  18. Differentiation of four Indian aboriginal cattle populations revealed by STR markers.

    PubMed

    Sharma, R; Maitra, A; Pandey, A K; Mishra, B P

    2012-06-01

    Cattle are the most important livestock in India and play a pivotal role in agrarian economy. There are 34 recognized breeds of cattle and number of unexplored lesser known populations. The present study is a contribution towards determining genetic variation and understanding the relationship among four lesser known populations. A total of 194 unrelated DNA samples from three cattle populations of Orissa (Binjharpuri, Ghumsuri, Motu) and Hill cattle of Kumaun (Kumauni) were collected from respective breeding tracts. Genotyping was done with 23 bovine microsatellite markers as suggested by International Society for Animal Genetics (ISAG) and FAO (DAD-IS) on automated sequencer. The average observed heterozygosity in the four populations lie within the narrow range of 0.623 +/- 0.04 in Binjharpuri to 0.664 +/- 0.03 in Kumauni. Mean estimates of observed and expected heterozygosity over all loci and breeds were 0.651 +/- 0.02 and 0.720 +/- 0.01, respectively. In the overall population, the homozygote excess (F(IT)) of 0.132 +/- 0.03, was partly due to the genetic differentiation among breeds (F(ST) = 0.044 +/- 0.01) and, to a larger extent, to a significant homozygote excess within breeds (F(IS) = 0.094 +/- 0.03). The phylogenetic reconstruction from a UPGMA clustering based on Nei's Standard genetic distance yielded a tree with Binjharpuri and Ghumsuri on a single node and Motu and Kumauni on separate nodes. The most probable clustering detected by STRUCTURE in population was three. Binjharpuri and Ghumsuri animals were assigned to one cluster with high proportion of membership.

  19. [Differential expression of genes related to photoperiod-temperature sensitive genic male sterility in wheat, revealed by mRNA differential display using G-box family primer].

    PubMed

    Cao, Shuang-He; Liu, Dong-Cheng; Liu, Li-Ke; Guo, Xiao-Li; Zhang, Ai-Min

    2003-01-01

    mRNA differential display with G-box family primer was used to analyze the differential expression of genes of the photoperiod-temperature sensitive genic male sterile(PTSGMS) line of wheat, BAU3338, between the sterile and fertile conditions. The result indicated that gene expression was significantly different between the two types of condition during the fertility transformation phase. The twelve qualitatively different DNA bands were identified with reverse Northern blot hybridization and five positive clones, HT1-G10, HT1-G3, HT2-G2, HT1-G4 and HT2-G5 were sequenced. The homology search indicated that HT1-G10 was highly homological (96%) to the partial sequences of Triticum aestivum chloroplast genes, rbcL and atpB, HT1-G3 was also homological (88%) to Triticum aestivum histone H2A gene and the other three gene fragments were new sequences in Gen-Bank. The analysis of the candidate gene fragments supplied some effective evidences to reveal the developmental mechanism of PTSGMS.

  20. RAP-PCR fingerprinting reveals time-dependent expression of development-related genes following differentiation process of Bacillus thuringiensis.

    PubMed

    Huang, Tianpei; Yu, Xiaomin; Gelbič, Ivan; Guan, Xiong

    2015-09-01

    Gene expression profiles are important data to reveal the functions of genes putatively involved in crucial biological processes. RNA arbitrarily primed polymerase chain reaction (RAP-PCR) and specifically primed reverse transcription polymerase chain reaction (RT-PCR) were combined to screen differentially expressed genes following development of a commercial Bacillus thuringiensis subsp. kurstaki strain 8010 (serotype 3a3b). Six differentially expressed transcripts (RAP1 to RAP6) were obtained. RAP1 encoded a putative triple helix repeat-containing collagen or an exosporium protein H related to spore pathogenicity. RAP2 was homologous to a ClpX protease and an ATP-dependent protease La (LonB), which likely acted as virulence factors. RAP3 was homologous to a beta subunit of propionyl-CoA carboxylase required for the development of Myxococcus xanthus. RAP4 had homology to a quinone oxidoreductase involved in electron transport and ATP formation. RAP5 showed significant homology to a uridine kinase that mediates phosphorylation of uridine and azauridine. RAP6 shared high sequence identity with 3-methyl-2-oxobutanoate-hydroxymethyltransferase (also known as ketopantoate hydroxymethyltransferase or PanB) involved in the operation of the tricarboxylic acid cycle. The findings described here would help to elucidate the molecular mechanisms underlying the differentiation process of B. thuringiensis and unravel novel pathogenic genes.

  1. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    PubMed Central

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  2. Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome.

    PubMed

    Arrell, D Kent; Niederländer, Nicolas J; Faustino, Randolph S; Behfar, Atta; Terzic, Andre

    2008-02-01

    In the developing embryo, instructive guidance from the ventral endoderm secures cardiac program induction within the anterolateral mesoderm. Endoderm-guided cardiogenesis, however, has yet to be resolved at the proteome level. Here, through cardiopoietic priming of the endoderm with the reprogramming cytokine tumor necrosis factor alpha (TNFalpha), candidate effectors of embryonic stem cell cardiac differentiation were delineated by comparative proteomics. Differential two-dimensional gel electrophoretic mapping revealed that more than 75% of protein species increased >1.5-fold in the TNFalpha-primed versus unprimed endodermal secretome. Protein spot identification by linear ion trap quadrupole (LTQ) tandem mass spectrometry (MS/MS) and validation by shotgun LTQ-Fourier transform MS/MS following multidimensional chromatography mapped 99 unique proteins from 153 spot assignments. A definitive set of 48 secretome proteins was deduced by iterative bioinformatic screening using algorithms for detection of canonical and noncanonical indices of secretion. Protein-protein interaction analysis, in conjunction with respective expression level changes, revealed a nonstochastic TNFalpha-centric secretome network with a scale-free hierarchical architecture. Cardiovascular development was the primary developmental function of the resolved TNFalpha-anchored network. Functional cooperativity of the derived cardioinductive network was validated through direct application of the TNFalpha-primed secretome on embryonic stem cells, potentiating cardiac commitment and sarcomerogenesis. Conversely, inhibition of primary network hubs negated the procardiogenic effects of TNFalpha priming. Thus, proteomic cartography establishes a systems biology framework for the endodermal secretome network guiding stem cell cardiopoiesis.

  3. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis

    PubMed Central

    Guo, Haibin; Mendrikahy, Jean Nestor; Xie, Lei; Deng, Junfeng; Lu, Zijun; Wu, Jinwen; Li, Xiang; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-01

    Polyploid rice hybrids have a powerful biological and yield potential that may become a new way for rice breeding; however, low fertility is major hindrance in commercial utilization. Here, we developed a neo-tetraploid rice that could overcome the sterility of autotetraploid rice and produce high heterosis. Transcriptome analysis of F1 hybrid developed by crossing neo-tetraploid with autotetraploid rice displayed 807, 663 and 866 differentially expressed genes that uniquely associated with F1 and specific to (DEGFu-sp) anther, ovary and leaf, respectively. Of the DEGFu-sp, 1224 genes displayed nonadditive expression; 44 and 10 genes were annotated as TFs and methyltransferase or hydroxymethyltransferase, respectively. Gene ontology enrichment and co-expression analysis revealed specific differential gene expressions in the DEGFu-sp to leaf, anther and ovary, such as genes related to photosynthesis, metabolic process and transport, and co-expression network including fertility, resistance and epigenetic elements. Of the DEGFu-sp to anther, 42 meiosis stage-specific genes, eight meiosis-related genes, such as RAD51 and SMC2, were identified. We identified 38 miRNAs from DEGFu-sp to anther, and their targets were associated with pollen fertility and retrotransposon protein. Our study provides new germplasm for polyploid rice breeding, and revealed complex regulatory mechanisms that might be associated with heterosis and fertility. PMID:28071676

  4. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis.

    PubMed

    Guo, Haibin; Mendrikahy, Jean Nestor; Xie, Lei; Deng, Junfeng; Lu, Zijun; Wu, Jinwen; Li, Xiang; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-10

    Polyploid rice hybrids have a powerful biological and yield potential that may become a new way for rice breeding; however, low fertility is major hindrance in commercial utilization. Here, we developed a neo-tetraploid rice that could overcome the sterility of autotetraploid rice and produce high heterosis. Transcriptome analysis of F1 hybrid developed by crossing neo-tetraploid with autotetraploid rice displayed 807, 663 and 866 differentially expressed genes that uniquely associated with F1 and specific to (DEGFu-sp) anther, ovary and leaf, respectively. Of the DEGFu-sp, 1224 genes displayed nonadditive expression; 44 and 10 genes were annotated as TFs and methyltransferase or hydroxymethyltransferase, respectively. Gene ontology enrichment and co-expression analysis revealed specific differential gene expressions in the DEGFu-sp to leaf, anther and ovary, such as genes related to photosynthesis, metabolic process and transport, and co-expression network including fertility, resistance and epigenetic elements. Of the DEGFu-sp to anther, 42 meiosis stage-specific genes, eight meiosis-related genes, such as RAD51 and SMC2, were identified. We identified 38 miRNAs from DEGFu-sp to anther, and their targets were associated with pollen fertility and retrotransposon protein. Our study provides new germplasm for polyploid rice breeding, and revealed complex regulatory mechanisms that might be associated with heterosis and fertility.

  5. RNA-seq reveals differential gene expression in the brains of juvenile resident and migratory smolt rainbow trout (Oncorhynchus mykiss).

    PubMed

    Hale, Matthew C; McKinney, Garrett J; Thrower, Frank P; Nichols, Krista M

    2016-12-01

    Many migratory traits are heritable, but there is a paucity of evidence identifying the molecular mechanisms underlying differentiation in alternative migratory tactics, or in linking variation in gene expression to migratory behaviors. To that end, we examined differential gene expression in the brain transcriptome between young steelhead trout that had undergone the smoltification process, and resident rainbow trout (Oncorhynchus mykiss) from Sashin Creek, Alaska. Samples were sequenced from two time points: immediately before (at 20months of age) and during (2years of age) the presumed peak of smoltification. Smolt and resident individuals came from two genetic crosses, one where both parents were migratory, and another where both parents were residents. A total of 533 (1.9%) genes were differentially expressed between crosses, or between smolt and resident samples. These genes include some candidate migratory genes (such as POMC), as well as genes with no previous known involvement in the migratory process. Progeny from resident parents showed more upregulated genes than progeny from migrant parents at both time points. Pathway analysis showed enrichment in 227 biological pathways between cross type, and 171 biological pathways were enriched between residents and smolts. Enriched pathways had connections to many biofunctions, and most were only enriched in one contrast. However, pathways connected to phototransduction were enriched between both cross type and migratory tactics in 11 out of 12 contrasts, suggesting there are fundamental differences in how smolts and residents process light in the brain. The genes and pathways described herein constitute an a priori candidate list for future studies of migration in other populations of O. mykiss, and other migratory species. Published by Elsevier Inc.

  6. Physiological and Transcriptional Analyses Reveal Differential Phytohormone Responses to Boron Deficiency in Brassica napus Genotypes

    PubMed Central

    Zhou, Ting; Hua, Yingpeng; Huang, Yupu; Ding, Guangda; Shi, Lei; Xu, Fangsen

    2016-01-01

    Phytohormones play pivotal roles in the response of plants to various biotic and abiotic stresses. Boron (B) is an essential microelement for plants, and Brassica napus (B. napus) is hypersensitive to B deficiency. However, how auxin responds to B deficiency remained a dilemma for many years and little is known about how other phytohormones respond to B deficiency. The identification of B-efficient/inefficient B. napus indicates that breeding might overcome these constraints in the agriculture production. Here, we seek to identify phytohormone-related processes underlying B-deficiency tolerance in B. napus at the physiological and gene expression levels. Our study indicated low-B reduced indole-3-acetic acid (IAA) concentration in both the shoots and roots of B. napus, and affected the expression of the auxin biosynthesis gene BnNIT1 and the efflux gene BnPIN1 in a time-dependent manner. Low-B increased the jasmonates (JAs) and abscisic acid (ABA) concentrations and induced the expression of the ABA biosynthesis gene BnNCED3 and the ABA sensor gene BnPYL4 in the shoot. In two contrasting genotypes, the auxin concentration decreased more drastically in the B-inefficient genotype ‘W10,’ and together the expression of BnNIT1 and BnPIN1 also decreased more significantly in ‘W10’ under long-term B deficiency. While the JAs concentration was considerably higher in this genotype, and the ABA concentration was induced in ‘W10’ compared with the B-efficient genotype ‘QY10.’ Digital gene expression (DGE) profiling confirmed the differential expression of the phytohormone-related genes, indicating more other phyohormone differences involving in gene regulation between ‘QY10’ and ‘W10’ under low-B stress. Additionally, the activity of DR5:GFP was reduced in the root under low-B in Arabidopsis, and the application of exogenous IAA could partly restore the B-defective phenotype in ‘W10.’ Overall, our data suggested that low-B disturbed phytohormone

  7. Differential transcriptome analysis reveals insight into monosymmetric corolla development of the crucifer Iberis amara.

    PubMed

    Busch, Andrea; Horn, Stefanie; Zachgo, Sabine

    2014-11-19

    In the co-evolution between insects and plants, the establishment of floral monosymmetry was an important step in angiosperm development as it facilitated the interaction with insect pollinators and, by that, likely enhanced angiosperm diversification. In Antirrhinum majus, the TCP transcription factor CYCLOIDEA is the molecular key regulator driving the formation of floral monosymmetry. Although most Brassicaceae form a polysymmetric corolla, six genera develop monosymmetric flowers with two petal pairs of unequal size. In the monosymmetric crucifer Iberis amara, formation of the different petal pairs coincides with a stronger expression of the CYC-homolog IaTCP1 in the small, adaxial petals. In this study, RNA-Seq was employed to reconstruct the petal transcriptome of the non-model species Iberis amara. About 9 Gb of sequence data was generated, processed and re-assembled into 18,139 likely Iberis unigenes, from which 15,983 showed high sequence homology to Arabidopsis proteins. The transcriptome gives detailed insight into the molecular mechanisms governing late petal development. In addition, it was used as a scaffold to detect genes differentially expressed between the small, adaxial and the large, abaxial petals in order to understand the molecular mechanisms driving unequal petal growth. Far more genes are expressed in adaxial compared to abaxial petals implying that IaTCP1 activates more genes than it represses. Amongst all genes upregulated in adaxial petals, a significantly enhanced proportion is associated with cell wall modification and cell-cell signalling processes. Furthermore, microarrays were used to detect and compare quantitative differences in TCP target genes in transgenic Arabidopsis plants ectopically expressing different TCP transcription factors. The increased occurrences of genes implicated in cell wall modification and signalling implies that unequal petal growth is achieved through an earlier stop of the cell proliferation phase in the

  8. Ability or Access-Ability: Differential Item Functioning of Items on Alternate Performance-Based Assessment Tests for Students with Visual Impairments

    ERIC Educational Resources Information Center

    Zebehazy, Kim T.; Zigmond, Naomi; Zimmerman, George J.

    2012-01-01

    Introduction: This study investigated differential item functioning (DIF) of test items on Pennsylvania's Alternate System of Assessment (PASA) for students with visual impairments and severe cognitive disabilities and what the reasons for the differences may be. Methods: The Wilcoxon signed ranks test was used to analyze differences in the scores…

  9. Ability or Access-Ability: Differential Item Functioning of Items on Alternate Performance-Based Assessment Tests for Students with Visual Impairments

    ERIC Educational Resources Information Center

    Zebehazy, Kim T.; Zigmond, Naomi; Zimmerman, George J.

    2012-01-01

    Introduction: This study investigated differential item functioning (DIF) of test items on Pennsylvania's Alternate System of Assessment (PASA) for students with visual impairments and severe cognitive disabilities and what the reasons for the differences may be. Methods: The Wilcoxon signed ranks test was used to analyze differences in the scores…

  10. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    PubMed Central

    Tong, Wei; He, Qiang; Park, Yong-Jin

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level. PMID:28256554

  11. Differential effect of three base modifications on DNA thermostability revealed by high resolution melting.

    PubMed

    López, Carlos M Rodríguez; Lloyd, Amanda J; Leonard, Kate; Wilkinson, Mike J

    2012-09-04

    High resolution melting (HRM) can detect and quantify the presence of 5-methylcytosine (5mC) in DNA samples, but the ability of HRM to diagnose other DNA modifications remains unexplored. The DNA bases N6-methyladenine and 5-hydroxymethylcytosine occur across almost all phyla. While their function remains controversial, their presence perturbs DNA structure. Such modifications could affect gene regulation, chromatin condensation and DNA packaging. Here, we reveal that DNA containing N6-methyladenine or 5-hydroxymethylcytosine exhibits reduced thermal stability compared to cytosine-methylated DNA. These thermostability changes are sufficiently divergent to allow detection and quantification by HRM analysis. Thus, we report that HRM distinguishes between sequence-identical DNA differing only in the modification type of one base. This approach is also able to distinguish between two DNA fragments carrying both N6-methyladenine and 5-methylcytosine but differing only in the distance separating the modified bases. This finding provides scope for the development of new methods to characterize DNA chemically and to allow for low cost screening of mutant populations of genes involved in base modification. More fundamentally, contrast between the thermostabilizing effects of 5mC on dsDNA compared with the destabilizing effects of N6-methyladenine (m6A) and 5-hydroxymethylcytosine (5hmC) raises the intriguing possibility of an antagonistic relationship between modification types with functional significance.

  12. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation

    NASA Astrophysics Data System (ADS)

    Gentleman, Eileen; Swain, Robin J.; Evans, Nicholas D.; Boonrungsiman, Suwimon; Jell, Gavin; Ball, Michael D.; Shean, Tamaryn A. V.; Oyen, Michelle L.; Porter, Alexandra; Stevens, Molly M.

    2009-09-01

    An important aim of regenerative medicine is to restore tissue function with implantable, laboratory-grown constructs that contain tissue-specific cells that replicate the function of their counterparts in the healthy native tissue. It remains unclear, however, whether cells used in bone regeneration applications produce a material that mimics the structural and compositional complexity of native bone. By applying multivariate analysis techniques to micro-Raman spectra of mineralized nodules formed in vitro, we reveal cell-source-dependent differences in interactions between multiple bone-like mineral environments. Although osteoblasts and adult stem cells exhibited bone-specific biological activities and created a material with many of the hallmarks of native bone, the `bone nodules' formed from embryonic stem cells were an order of magnitude less stiff, and lacked the distinctive nanolevel architecture and complex biomolecular and mineral composition noted in the native tissue. Understanding the biological mechanisms of bone formation in vitro that contribute to cell-source-specific materials differences may facilitate the development of clinically successful engineered bone.

  13. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice.

    PubMed

    Tong, Wei; He, Qiang; Park, Yong-Jin

    2017-03-03

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level.

  14. Integrated analysis reveals tubal and ovarian originated serous ovarian cancer and predicts differential therapeutic responses.

    PubMed

    Hao, Dapeng; Li, Jingjing; Jia, Shanshan; Meng, Yuan; Wang, Li; Zhang, Chao; Di, Li-Jun

    2017-09-22

    The relative importance of fallopian tube (FT) compared to ovarian surface epithelium (OSE) in the genesis of serous type of ovarian cancer (SOC) is still unsettled. Here, we followed an integrated approach to study the tissue origin of SOC, as well as its association with clinical outcome and response to therapeutic drugs. A collection of transcriptome data of 80 FTs, 89 OSEs and 2,668 SOCs was systematically analyzed to determine the characteristic of FT-like and OSE-like tumors. A molecular signature was developed for identifying tissue origin of SOC and then was used to re-evaluate the prognostic genes and therapeutic biomarkers of SOC of different tissue origins. IHC staining of tissue array and functional experiments on a panel of ovarian cancer cell lines were used to further validate the key findings. The expression patterns of tissue specific genes, prognostic genes and molecular markers all support a dualistic tissue origin of SOC, from either FT or OSE. A molecular signature was established to identify the tissue identity of SOCs. Surprisingly, the signature showed a strong association with overall survival [OSE-like versus FT-like, HR = 4.16, 95%CI, 2.67-6.48, p<10-9]. The phamacogenomic approach revealed AXL to be a therapeutic target of the aggressive OSE-derived SOC. SOC has two subtypes originated from either FT or OSE, which show different clinical and pathological features. Copyright ©2017, American Association for Cancer Research.

  15. Thermodynamics imprinting reveals differential binding of metals to {alpha}-synuclein: Relevance to parkinson's disease

    SciTech Connect

    Bharathi; Rao, K.S.J. . E-mail: kjr5n@yahoo.co.in

    2007-07-20

    The aggregation of {alpha}-synuclein is a hallmark feature of Parkinson's disease (PD) and other synucleinopathies. Metals are the significant etiological factors in PD, and their interaction with {alpha}-synuclein affect dramatically the kinetics of fibrillation in vitro and are proposed to play an important and potential neurodegenerative role in vivo. In the present study, we investigated the stoichiometry of binding of copper [Cu (II)] and iron [Fe (III)] with {alpha}-synuclein (wild recombinant type and A30P, A53T, E46K mutant forms) using isothermal titration calorimetry (ITC). {alpha}-Synuclein monomer (wild and mutant forms) titrated by Cu (II), showed two binding sites, with an apparent K {sub B} of 10{sup 5} M and 10{sup 4} M, respectively. But, {alpha}-synuclein (wild type and mutant forms) titrated with Fe (III) revealed a K {sub B} of 10{sup 5} M with single binding site. The present investigation uncovers the detailed binding propensities between metals and {alpha}-synuclein and has biological implications in PD.

  16. Differential gene expression analysis by RNA-seq reveals the importance of actin cytoskeletal proteins in erythroleukemia cells

    PubMed Central

    Fernández-Calleja, Vanessa; Hernández, Pablo; Schvartzman, Jorge B.; García de Lacoba, Mario

    2017-01-01

    Development of drug resistance limits the effectiveness of anticancer treatments. Understanding the molecular mechanisms triggering this event in tumor cells may lead to improved therapeutic strategies. Here we used RNA-seq to compare the transcriptomes of a murine erythroleukemia cell line (MEL) and a derived cell line with induced resistance to differentiation (MEL-R). RNA-seq analysis identified a total of 596 genes (Benjamini–Hochberg adjusted p-value < 0.05) that were differentially expressed by more than two-fold, of which 81.5% (486/596) of genes were up-regulated in MEL cells and 110 up-regulated in MEL-R cells. These observations revealed that for some genes the relative expression of mRNA amount in the MEL cell line has decreased as the cells acquired the resistant phenotype. Clustering analysis of a group of genes showing the highest differential expression allowed identification of a sub-group among genes up-regulated in MEL cells. These genes are related to the organization of the actin cytoskeleton network. Moreover, the majority of these genes are preferentially expressed in the hematopoietic lineage and at least three of them, Was (Wiskott Aldrich syndrome), Btk (Bruton’s tyrosine kinase) and Rac2, when mutated in humans, give rise to severe hematopoietic deficiencies. Among the group of genes that were up-regulated in MEL-R cells, 16% of genes code for histone proteins, both canonical and variants. A potential implication of these results on the blockade of differentiation in resistant cells is discussed. PMID:28663935

  17. Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane.

    PubMed

    Gallo, Giuseppe; Lo Piccolo, Luca; Renzone, Giovanni; La Rosa, Ruggero; Scaloni, Andrea; Quatrini, Paola; Puglia, Anna Maria

    2012-06-01

    The alkB gene, encoding an alkane monooxygenase in the actinomycete Gordonia sp. SoCg, was expressed in the non-alkane-degrading actinomycete Streptomyces coelicolor M145. The resulting engineered strain, M145-AH, can grow on n-hexadecane as sole carbon source. To unravel proteins associated with growth on n-alkanes, proteome of M145-AH after 6, 24, and 48 h of incubation in the Bushnell-Haas (BH) mineral medium containing n-hexadecane as sole carbon source (H condition) and in BH without any carbon source (0 condition) were compared using 2D-differential gel electrophoresis. Proteome analysis revealed significant changes only at 48 h, showing 48 differentially abundant proteins identified by mass spectrometry procedures. To asses if these proteins were specifically related to n-hexadecane metabolism, their expression was investigated, comparing H proteome with that of M145-AH incubated in BH with glucose as sole carbon source (G condition). Thus, protein expression profiles at 6, 24, and 48 h under H, 0, and G conditions were combined, revealing that M145-AH regulates in a temporally- and carbon source-dependent manner the expression of proteins involved in regulatory events, central carbon metabolism, respiration, β-oxidation, membrane transport, and amino acid and protein metabolism. Interestingly, 21 % of them, mostly involved in membrane transport and protein metabolism, showed a n-hexadecane-dependent regulation with regulatory proteins such as CRP likely to have a key role in M145-AH n-hexadecane growth. These results, expanding the knowledge on n-alkane utilization in Gram-positive bacteria, reveal genes to be targeted to develop an efficient S. coelicolor M145-AH-based bioremediation system.

  18. Whole Hillslope Irrigation Reveals Differential Interflow Behavior of Dye Tracers, Conservative Solutes and Nutrients

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.; Du, E.; Klaus, J.; Griffiths, N. A.; McDonnell, J. J.; Blake, J. I.

    2012-12-01

    Previous investigations of perching and interflow behavior in low angle hillslopes in the SC Coastal Plain have suggested a high threshold for interflow occurrence. Here we report a new irrigation experiment designed to quantify interflow thresholds and reveal subsurface mixing processes during steady state flow conditions over a 12m x 16.5m plot draining to an interflow interception trench. Dye tracers were applied on surface transects prior to irrigation, and bromide (conservative tracer), nitrate, ammonium, and phosphorus (reactive tracers) were added at constant concentrations to the irrigation water drawn from a deep aquifer with a distinct isotopic signature. 417mm of water were applied over 51 hours, and drainage conditions were monitored for a week following irrigation. Interflow in the two drains commenced after 131 and 178mm, and flow rates diminished immediately after irrigation ceased, although interflow continued for four more days. Over the experiment, 199mm of water (49% of applied water) appeared as interflow. Dye tracers moved rapidly with the wetting front, with peak concentrations measured shortly after flow commencement, suggesting saturated topsoil conductivities of 0.5 to 1.5 m/hr. No preferential flow was observed during this experiment or previously during rainfall events at the trench face. Bromide concentrations and the new water fraction rose steadily throughout irrigation, peaking about 16 hours after irrigation ceased. Ammonium and phosphorus concentrations at the trench face were low, suggesting rapid uptake or sorption, while nitrate concentrations were higher, suggesting more conservative transport. Our two collection drains showed identical temporal variation in bromide concentrations but consistently different new/old water fractions, indicating differences in flow paths and storages within the plot. These data suggest that tightly bound soil water exchanged with new water throughout the experiment, and that a significant portion

  19. Feather isotope analysis reveals differential patterns of habitat and resource use in populations of white-winged doves

    USGS Publications Warehouse

    Carleton, Scott A.; Martinez Del Rio, Carlos; Robinson, Timothy J.

    2015-01-01

    The white-winged dove (Zenaida asiatica) serves an important ecological role as a diurnal pollinator of the saguaro cactus in the Sonoran desert and an economic role as a highly sought after game bird in North America. White-winged doves are intimately linked to anthropogenic changes on the landscape and because of this, have experienced dramatic population fluctuations over the last 75 years in response, both positively and negatively, to anthropogenic changes on the landscape. To understand the factors driving population growth and decline of migratory species like the white-winged dove, it is imperative we study resource use on both their breeding and wintering grounds. To understand how populations are distributed on the wintering grounds, we tested an alternative to band recovery approaches by using stable isotope analysis. Before we could use isotope analysis to link breeding and wintering locations for this species, we first needed to determine if hydrogen (δ2H) and carbon (δ13C) stable isotopes in feather tissue (δ2Hf and δ13Cf, respectively) could differentiate among populations of white-winged doves across their breeding range in Texas, New Mexico, and Arizona. δ2Hf and δ13Cf not only differentiated between populations of white-winged doves that breed in the United States, but δ2Hf also provided further differentiation in white-winged doves that breed in native Sonoran Desert and agricultural habitats in the western portion of their range. Ecological processes associated with desert resources and anthropogenic influences, specifically saguaro cacti and irrigated crops, largely determined δ2Hf in some white-winged doves in Arizona whereas δ2H of precipitation (δ2Hp) largely determined δ2Hfof doves in New Mexico and Texas. This study highlights the usefulness of stable isotope analysis to differentiate populations of animals across the landscape and the insight isotopes can provide into habitat and resource use. Published 2015. This article

  20. Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development.

    PubMed

    Hogenkamp, David G; Arakane, Yasuyuki; Zimoch, Lars; Merzendorfer, Hans; Kramer, Karl J; Beeman, Richard W; Kanost, Michael R; Specht, Charles A; Muthukrishnan, Subbaratnam

    2005-06-01

    Chitin, the linear homopolymer of beta-1,4-linked N-acetylglucosamine, is produced by the enzyme chitin synthase (CHS). In general, this insoluble polysaccharide is found in two major extracellular structures in insects, the cuticle that overlays the epidermis and the peritrophic membrane (PM) that lines the midgut. Based on amino acid sequence similarities, insect CHSs are divided into two classes, A and B, and to date no more than two CHS genes have been identified in any single insect species. In species where both CHSs have been identified, one class A CHS and one class B CHS are always present. This finding suggests that these two genes may encode enzymes that synthesize chitin in different epithelial tissues. In our laboratory, we previously characterized transcripts for a class A CHS gene (MsCHS1) from the tobacco hornworm, Manduca sexta. We observed the expression of this gene in the larval epidermis, suggesting that the encoded enzyme functions to synthesize cuticular chitin. In this paper, we characterize a second chitin synthase gene (MsCHS2) belonging to class B and its cDNA from Manduca and show that it is expressed only in the midgut. This cDNA contains an open reading frame of 4575 nucleotides, which encodes a conceptual protein that is 1524 amino acids in length and is predicted to contain 16 transmembrane spans. Northern blot analysis of RNA isolated from anterior, medial, and posterior sections of the midgut from feeding larvae indicate that MsCHS2 is primarily expressed in the anterior midgut, with transcript levels tapering off in the medial and posterior midgut. Analysis of the MsCHS2 gene sequence indicates the absence of an alternate exon in contrast to the MsCHS1 gene, which yields two transcripts, MsCHS1a and MsCHS1b. RT-PCR analysis of the differential expression of these alternately spliced transcripts reveals that both splice variants are present in the epidermis. However, the ratio of the two alternately spliced transcripts varies

  1. RNA-sequencing analysis reveals the hepatotoxic mechanism of perfluoroalkyl alternatives, HFPO2 and HFPO4, following exposure in mice.

    PubMed

    Wang, Jianshe; Wang, Xiaoyang; Sheng, Nan; Zhou, Xiujuan; Cui, Ruina; Zhang, Hongxia; Dai, Jiayin

    2017-04-01

    The toxicological impact of traditional perfluoroalkyl chemicals has led to the elimination and restriction of these substances. However, many novel perfluoroalkyl alternatives remain unregulated and little is known about their potential effects on environmental and human health. Daily administration of two alternative perfluoroalkyl substances, HFPO2 and HFPO4 (1 mg kg(-1) body weight), for 28 days resulted in hepatomegaly and hepatic histopathological injury in mice, particularly in the HFPO4 group. We generated and compared high-throughput RNA-sequencing data from hepatic tissues in control and treatment group mice to clarify the mechanism of HFPO2 and HFPO4 hepatotoxicity. We identified 146 (101 upregulated, 45 downregulated) and 1295 (716 upregulated, 579 downregulated) hepatic transcripts that exhibited statistically significant changes (fold change ≥2 or ≤0.5, false discovery rate < 0.05) after HFPO2 and HFPO4 treatment, respectively. Among them, 111 (82 upregulated, 29 downregulated) transcripts were changed in both groups, and lipid metabolism associated genes were dominant. Thus, similar to their popular predecessors, HFPO2 and HFPO4 exposure exerted hepatic effects, including hepatomegaly and injury, and altered lipid metabolism gene levels in the liver, though HFPO4 exerted greater hepatotoxicity than HFPO2. The unregulated use of these emerging perfluoroalkyl alternatives may affect environmental and human health, and their biological effects need further exploration. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A conserved alternative splicing event in plants reveals an ancient exonization of 5S rRNA that regulates TFIIIA.

    PubMed

    Barbazuk, W Brad

    2010-01-01

    Uncovering conserved alternative splicing (AS) events can identify AS events that perform important functions. This is especially useful for identifying premature stop codon containing (PTC) AS isoforms that may regulate protein expression by being targets for nonsense mediated decay. This report discusses the identification of a PTC containing splice isoform of the TFIIIA gene that is highly conserved in land plants. TFIIIA is essential for RNA Polymerase III-based transcription of 5S rRNA in eukaryotes. Two independent groups have determined that the PTC containing alternative exon is ultraconserved and is coupled with nonsense-mediated mRNA decay. The alternative exon appears to have been derived by the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA. This provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized non-coding element.

  3. New gene models and alternative splicing in the maize pathogen Colletotrichum graminicola revealed by RNA-Seq analysis.

    PubMed

    Schliebner, Ivo; Becher, Rayko; Hempel, Marcus; Deising, Holger B; Horbach, Ralf

    2014-10-02

    An annotated genomic sequence of the corn anthracnose fungus Colletotrichum graminicola has been published previously, but correct identification of gene models by means of automated gene annotation remains a challenge. RNA-Seq offers the potential for substantially improved gene annotations and for the identification of posttranscriptional RNA modifications, such as alternative splicing and RNA editing. Based on the nucleotide sequence information of transcripts, we identified 819 novel transcriptionally active regions (nTARs) and revised 906 incorrectly predicted gene models, including revisions of exon-intron structure, gene orientation and sequencing errors. Among the nTARs, 146 share significant similarity with proteins that have been identified in other species suggesting that they are hitherto unidentified genes in C. graminicola. Moreover, 5'- and 3'-UTR sequences of 4378 genes have been retrieved and alternatively spliced variants of 69 genes have been identified. Comparative analysis of RNA-Seq data and the genome sequence did not provide evidence for RNA editing in C. graminicola. We successfully employed deep sequencing RNA-Seq data in combination with an elaborate bioinformatics strategy in order to identify novel genes, incorrect gene models and mechanisms of transcript processing in the corn anthracnose fungus C. graminicola. Sequence data of the revised genome annotation including several hundreds of novel transcripts, improved gene models and candidate genes for alternative splicing have been made accessible in a comprehensive database. Our results significantly contribute to both routine laboratory experiments and large-scale genomics or transcriptomic studies in C. graminicola.

  4. Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form

    PubMed Central

    Boggavarapu, Nageswara Rao; Lalitkumar, Sujata; Joshua, Vijay; Kasvandik, Sergo; Salumets, Andres; Lalitkumar, Parameswaran Grace; Gemzell-Danielsson, Kristina

    2016-01-01

    The complexity of endometrial receptivity at the molecular level needs to be explored in detail to improve the management of infertility. Here, differential expression of transcriptomes in receptive endometrial glands and stroma revealed Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 (ENPP3) as a progesterone regulated factor and confirmed by various methods, both at mRNA and protein level. The involvement of ENPP3 in embryo attachment was tested in an in vitro model for human embryo implantation. Interestingly, there was high expression of ENPP3 mRNA in stroma but not protein. Presence of N-glycosylated ENPP3 in receptive phase uterine fluid in women confirms its regulation by progesterone and makes it possible to use in a non-invasive test of endometrial receptivity. PMID:27665743

  5. Nylon Filter Arrays Reveal Differential Gene Expression in Proteoid Roots of White Lupin in Response to Phosphorus Deficiency

    PubMed Central

    Uhde-Stone, Claudia; Zinn, Kelly E.; Ramirez-Yáñez, Mario; Li, Aiguo; Vance, Carroll P.; Allan, Deborah L.

    2003-01-01

    White lupin (Lupinus albus) adapts to phosphorus deficiency (−P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. In an effort to better understand the molecular events mediating these adaptive responses, we have isolated and sequenced 2,102 expressed sequence tags (ESTs) from cDNA libraries prepared with RNA isolated at different stages of proteoid root development. Determination of overlapping regions revealed 322 contigs (redundant copy transcripts) and 1,126 singletons (single-copy transcripts) that compile to a total of 1,448 unique genes (unigenes). Nylon filter arrays with these 2,102 ESTs from proteoid roots were performed to evaluate global aspects of gene expression in response to −P stress. ESTs differentially expressed in P-deficient proteoid roots compared with +P and −P normal roots include genes involved in carbon metabolism, secondary metabolism, P scavenging and remobilization, plant hormone metabolism, and signal transduction. PMID:12644659

  6. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis

    PubMed Central

    Bi, Yong-Mei; Wang, Rong-Lin; Zhu, Tong; Rothstein, Steven J

    2007-01-01

    Background A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and identifying N-responsive genes in order to manipulate their expression, thus enabling plants to use N more efficiently. No studies have yet delineated these responses at the transcriptional level when plants are grown under chronic N stress and the understanding of regulatory elements involved in N response is very limited. Results To further our understanding of the response of plants to varying N levels, a growth system was developed where N was the growth-limiting factor. An Arabidopsis whole genome microarray was used to evaluate global gene expression under different N conditions. Differentially expressed genes under mild or severe chronic N stress were identified. Mild N stress triggered only a small set of genes significantly different at the transcriptional level, which are largely involved in various stress responses. Plant responses were much more pronounced under severe N stress, involving a large number of genes in many different biological processes. Differentially expressed genes were also identified in response to short- and long-term N availability increases. Putative N regulatory elements were determined along with several previously known motifs involved in the responses to N and carbon availability as well as plant stress. Conclusion Differentially expressed genes identified provide additional insights into the coordination of the complex N responses of plants and the components of the N response mechanism. Putative N regulatory elements were identified to reveal possible new components of the regulatory network for plant N responses. A better understanding of the complex regulatory network for plant N responses will help lead to strategies to improve N use efficiency. PMID:17705847

  7. Significant genetic differentiation between Poland and Germany follows present-day political borders, as revealed by Y-chromosome analysis.

    PubMed

    Kayser, Manfred; Lao, Oscar; Anslinger, Katja; Augustin, Christa; Bargel, Grazyna; Edelmann, Jeanett; Elias, Sahar; Heinrich, Marielle; Henke, Jürgen; Henke, Lotte; Hohoff, Carsten; Illing, Anett; Jonkisz, Anna; Kuzniar, Piotr; Lebioda, Arleta; Lessig, Rüdiger; Lewicki, Slawomir; Maciejewska, Agnieszka; Monies, Dorota Marta; Pawłowski, Ryszard; Poetsch, Micaela; Schmid, Dagmar; Schmidt, Ulrike; Schneider, Peter M; Stradmann-Bellinghausen, Beate; Szibor, Reinhard; Wegener, Rudolf; Wozniak, Marcin; Zoledziewska, Magdalena; Roewer, Lutz; Dobosz, Tadeusz; Ploski, Rafal

    2005-09-01

    To test for human population substructure and to investigate human population history we have analysed Y-chromosome diversity using seven microsatellites (Y-STRs) and ten binary markers (Y-SNPs) in samples from eight regionally distributed populations from Poland (n = 913) and 11 from Germany (n = 1,215). Based on data from both Y-chromosome marker systems, which we found to be highly correlated (r = 0.96), and using spatial analysis of the molecular variance (SAMOVA), we revealed statistically significant support for two groups of populations: (1) all Polish populations and (2) all German populations. By means of analysis of the molecular variance (AMOVA) we observed a large and statistically significant proportion of 14% (for Y-SNPs) and 15% (for Y-STRs) of the respective total genetic variation being explained between both countries. The same population differentiation was detected using Monmonier's algorithm, with a resulting genetic border between Poland and Germany that closely resembles the course of the political border between both countries. The observed genetic differentiation was mainly, but not exclusively, due to the frequency distribution of two Y-SNP haplogroups and their associated Y-STR haplotypes: R1a1*, most frequent in Poland, and R1*(xR1a1), most frequent in Germany. We suggest here that the pronounced population differentiation between the two geographically neighbouring countries, Poland and Germany, is the consequence of very recent events in human population history, namely the forced human resettlement of many millions of Germans and Poles during and, especially, shortly after World War II. In addition, our findings have consequences for the forensic application of Y-chromosome markers, strongly supporting the implementation of population substructure into forensic Y chromosome databases, and also for genetic association studies.

  8. Reference proteome of highly purified human Th1 cells reveals strong effects on metabolism and protein ubiquitination upon differentiation.

    PubMed

    Pagani, Massimiliano; Rockstroh, Maxie; Schuster, Maj; Rossetti, Grazisa; Moro, Monica; Crosti, Mariacristina; Tomm, Janina M

    2015-11-01

    The differentiation of human CD4(+) T cells into T helper cell subtypes and regulatory T cells is crucial to the immune response. Among subtypes, Th1 cells are dominant, representing approximately 50% of all lymphocytes. Thus far, most global proteomic studies have used only partially purified T helper cell subpopulations and/or have employed artificial protocols for inducing specific T helper cell subtypes and/or used gel-based approaches. These studies have shed light on molecular details of certain aspects of the proteome; nevertheless a global analysis of high purity primary naïve and Th1 cells by LC-MS/MS is required to provide a reference dataset for proteome-based T cell subtype characterization. The utilization of highly purified Th1 cells for a global proteome assessment and the bioinformatic comparison to naïve cells reveals changes in cell metabolism and the ubiquitination pathway upon T cell differentiation. All MS data have been deposited in the ProteomeXchange with identifier PXD001066 (http://proteomecentral.proteomexchange.org/dataset/PXD001066). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Differential proteome analysis of tonsils from children with chronic tonsillitis or with hyperplasia reveals disease-associated protein expression differences.

    PubMed

    Just, Tino; Gafumbegete, Evariste; Gramberg, Jan; Prüfer, Ines; Mikkat, Stefan; Ringel, Bruno; Pau, Hans Wilhelm; Glocker, Michael O

    2006-03-01

    A proteomic approach has been used to establish a proteome map and differentiate between the protein composition of tonsils from patients with chronic tonsillitis (CT) and that of tonsils with hyperplasia (HPL). Two-dimensional gel analysis was performed with material from four patients with HPL and five patients with CT. An average of approximately 600 spots were detected in each gel. A total of 127 different proteins were identified in 158 spots analyzed by mass spectrometry. Our study revealed disease-associated differences between protein abundance for two protein spots, an HSP27 isoform and UMP-CMP kinase. Both protein spots were more abundant in the CT group. HSP27 ELISA was performed for 32 patients, 12 belonging to the HPL group and 20 to the CT group. ELISA could not be used to differentiate HSP27 isoforms nor to distinguish CT from HPL. HSP27 was found to migrate to two further protein spots in the 2D gels. The differently expressed HSP27 isoform migrated as the most acidic of all the HSP27 isoforms detected, indicating the highest degree of phosphorylation. The sum of all three HSP27 abundances in the gels from the CT group was not different from that of the HPL group, consistent with the ELISA results. Our results suggest that phosphorylation differences caused the observed migration differences of HSP27. Together with the UMP-CMP kinase abundance differences, we conclude that kinase and/or phosphatase activity are different in CT and HPL.

  10. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  11. Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone.

    PubMed

    Hamilton, Jill A; Lexer, Christian; Aitken, Sally N

    2013-02-01

    Differential patterns of introgression between species across ecological gradients provide a fine-scale depiction of extrinsic and intrinsic factors that contribute to the maintenance of species barriers and adaptation across heterogeneous environments. Introgression was examined for 721 individuals collected from the ecological transition zone spanning maritime to continental climates within the Picea sitchensis-Picea glauca contact zone using a panel of 268 candidate gene single nucleotide polymorphisms. Geographic clines showed a strong spatial relationship between allele frequencies and both distance from the ocean along major rivers and mean annual precipitation, indicating a strong role for environmental selection. Interspecific patterns of differentiation using outlier tests revealed three candidate genes that may be targets of long-term divergent selection between the parental species, although contemporary genomic clines within the hybrid zone suggested neutral patterns of introgression for these genes. This study provides a fine-scale analysis of locus-specific introgression, identifying a suite of candidate loci that may be targets of extrinsic or intrinsic selection, with broad application in understanding local adaptation to climate.

  12. Microarray and Degradome Sequencing Reveal MicroRNA Differential Expression Profiles and Their Targets in Pinellia pedatisecta

    PubMed Central

    Lang, Qiulei; Zhou, Wei; Xu, Shaowei; Xu, Tao

    2013-01-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs which play a critical role in gene regulation in plants. Pinelliapedatisecta is one of the most important herbs in traditional Chinese medicine, but there are no microRNAs of Pinelliapedatisecta were deposited in miRBase and the research of the related miRNA biological functions is still insufficient. To detect Pinelliapedatisecta miRNAs and discover their expression difference with Pinelliaternata, we carried out a microarray profiling. A total of 101 miRNAs belonging to 22 miRNA families were detected both in Pinelliapedatisecta and Pinelliaternata respectively, among them 21 miRNAs showed their differentially expression. GO (gene ontology) term enrichment analysis of the target genes of differential expression miRNAs reveal that these miRNAs mainly affect the reproduction, transcription factor activity and plant developmental process. To elucidate the target function of miRNAs, we constructed a degradome library from Pinellia pedatisecta leaf. The result showed that a total of 18 transcript were identified as targets of miRNAs and further analysis indicated that miR156 and miR529 may function together to repress SPL14. PMID:24086673

  13. Thermal stability and molecular microstructure of heat-induced cereal grains, revealed with Raman molecular microspectroscopy and differential scanning calorimetry.

    PubMed

    Khan, Md Majibur Rahman; Yu, Peiqiang

    2013-07-03

    The objectives of the present study were to use Raman molecular microspectroscopy and differential scanning calorimetry (DSC) to reveal molecular thermal stability and thermal degradation behavior of heat-induced cereal grains and reveal the molecular chemistry of the protein structures of cereal grain tissues affected by heat processing and to quantify the protein secondary structures using multicomponent peak modeling Gaussian and Lorentzian methods. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were also conducted to identify molecular differences in the Raman spectra. Three cereal grain seeds, wheat, triticale, and corn, were used as the model for feed protein in the experiment. The specimens were autoclaved (moist heating) and dry-heated (roasted) at 121 °C for 80 min, respectively. Raman spectroscopy results revealed that there are marked differences in the secondary structures of the proteins subjected to various heating treatments of different cereals. The sensitivity of cereals to moist heating was much higher than the sensitivity to dry heating. The multivariate analyses (CLA and PCA) showed that heat treatment was significantly isolated between the different Raman raw spectra. The DSC study revealed that the thermal degradation behavior of cereals was significantly changed after moist- and dry-heat treatments. The position of the major endothermic peak of dry-heated cereals shifted toward a higher temperature, from 131.7 to 134.0 °C, suggesting the high thermal stability of dry-heated cereals. In contrast, the endothermic peak position was slightly decreased to 132.1 °C in the case of moist autoclaved heating. The digestive behavior and nutritive value of rumen-undegradable protein in animals may be related to the changes of the protein secondary molecular structure and thermal stability of the cereal grain materials, which is attributed by Raman microspectroscopy and DSC endotherm profiles.

  14. Gene expression profiling reveals epithelial mesenchymal transition (EMT) genes can selectively differentiate eribulin sensitive breast cancer cells.

    PubMed

    Dezső, Zoltán; Oestreicher, Judith; Weaver, Amy; Santiago, Stephanie; Agoulnik, Sergei; Chow, Jesse; Oda, Yoshiya; Funahashi, Yasuhiro

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a mechanistically unique inhibitor of microtubule dynamics. In this study, we investigated whether selective signal pathways were associated with eribulin activity compared to paclitaxel, which stabilizes microtubules, based on gene expression profiling of cell line panels of breast, endometrial, and ovarian cancer in vitro. We determined the sets of genes that were differentially altered between eribulin and paclitaxel treatment in breast, endometrial, and ovarian cancer cell line panels. Our unsupervised clustering analyses revealed that expression profiles of gene sets altered with treatments were correlated with the in vitro antiproliferative activities of the drugs. Several tubulin isotypes had significantly lower expression in cell lines treated with eribulin compared to paclitaxel. Pathway enrichment analyses of gene sets revealed that the common pathways altered between treatments in the 3 cancer panels were related to cytoskeleton remodeling and cell cycle regulation. The epithelial-mesenchymal transition (EMT) pathway was enriched in genes with significantly altered expression between the two drugs for breast and endometrial cancers, but not for ovarian cancer. Expression of genes from the EMT pathway correlated with eribulin sensitivity in breast cancer and with paclitaxel sensitivity in endometrial cancer. Alteration of expression profiles of EMT genes between sensitive and resistant cell lines allowed us to predict drug sensitivity for breast and endometrial cancers. Gene expression analysis showed that gene sets that were altered between eribulin and paclitaxel correlated with drug in vitro antiproliferative activities in breast and endometrial cancer cell line panels. Among the panels, breast cancer provided the strongest differentiation between eribulin and paclitaxel sensitivities based on gene expression. In addition, EMT

  15. Comparative genomic and transcriptomic analyses reveal habitat differentiation and different transcriptional responses during pectin metabolism in Alishewanella species.

    PubMed

    Jung, Jaejoon; Park, Woojun

    2013-10-01

    Alishewanella species are expected to have high adaptability to diverse environments because they are isolated from different natural habitats. To investigate how the evolutionary history of Alishewanella species is reflected in their genomes, we performed comparative genomic and transcriptomic analyses of A. jeotgali, A. aestuarii, and A. agri, which were isolated from fermented seafood, tidal flat sediment, and soil, respectively. Genomic islands with variable GC contents indicated that invasion of prophage and transposition events occurred in A. jeotgali and A. agri but not in A. aestuarii. Habitat differentiation of A. agri from a marine environment to a terrestrial environment was proposed because the species-specific genes of A. agri were similar to those of soil bacteria, whereas those of A. jeotgali and A. aestuarii were more closely related to marine bacteria. Comparative transcriptomic analysis with pectin as a sole carbon source revealed different transcriptional responses in Alishewanella species, especially in oxidative stress-, methylglyoxal detoxification-, membrane maintenance-, and protease/chaperone activity-related genes. Transcriptomic and experimental data demonstrated that A. agri had a higher pectin degradation rate and more resistance to oxidative stress under pectin-amended conditions than the other 2 Alishewanella species. However, expression patterns of genes in the pectin metabolic pathway and of glyoxylate bypass genes were similar among all 3 Alishewanella species. Our comparative genomic and transcriptomic data revealed that Alishewanella species have evolved through horizontal gene transfer and habitat differentiation and that pectin degradation pathways in Alishewanella species are highly conserved, although stress responses of each Alishewanella species differed under pectin culture conditions.

  16. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation

    PubMed Central

    Weng, Lingjie; Li, Yi; Xie, Xiaohui; Shi, Yongsheng

    2016-01-01

    mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over 600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular mechanisms. PMID:27095026

  17. Revisit of a dipropargyl rhodamine probe reveals its alternative ion sensitivity in both a solution and live cells.

    PubMed

    Li, Kai-Bin; Wei, Xiao-Li; Zang, Yi; He, Xiao-Peng; Chen, Guo-Rong; Li, Jia; Chen, Kaixian

    2013-12-07

    This study reveals that a dipropargyl rhodamine B derivative previously described as a reaction-based irreversible palladium probe responds, however, more sensitively to mercury with a reversible "turn-on" fluorescence. The probe also shows a much better imaging ability for mercury than for palladium in live cells.

  18. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf1[OPEN

    PubMed Central

    Cheung, C.Y. Maurice; Ratcliffe, R. George; Sweetlove, Lee J.

    2015-01-01

    Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture. PMID:26265776

  19. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf.

    PubMed

    Cheung, C Y Maurice; Ratcliffe, R George; Sweetlove, Lee J

    2015-11-01

    Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture.

  20. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression

    PubMed Central

    Batut, Philippe; Dobin, Alexander; Plessy, Charles; Carninci, Piero; Gingeras, Thomas R.

    2013-01-01

    Many eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, comprehensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression profiling applications and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter activity profiling approach that combines extremely specific 5′-complete cDNA sequencing with an integrated data analysis workflow, to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, generates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity information through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive data set that represents the first available developmental time-course of promoter usage. We found that >40% of developmentally expressed genes have at least two promoters and that alternative promoters generally implement distinct regulatory programs. Transposable elements, long proposed to play a central role in the evolution of their host genomes through their ability to regulate gene expression, contribute at least 1300 promoters shaping the developmental transcriptome of D. melanogaster. Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes. PMID:22936248

  1. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression.

    PubMed

    Batut, Philippe; Dobin, Alexander; Plessy, Charles; Carninci, Piero; Gingeras, Thomas R

    2013-01-01

    Many eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, comprehensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression profiling applications and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter activity profiling approach that combines extremely specific 5'-complete cDNA sequencing with an integrated data analysis workflow, to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, generates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity information through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive data set that represents the first available developmental time-course of promoter usage. We found that >40% of developmentally expressed genes have at least two promoters and that alternative promoters generally implement distinct regulatory programs. Transposable elements, long proposed to play a central role in the evolution of their host genomes through their ability to regulate gene expression, contribute at least 1300 promoters shaping the developmental transcriptome of D. melanogaster. Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes.

  2. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts.

    PubMed

    Calsa, Tercilio; Figueira, Antonio

    2007-04-01

    Sugarcane (Saccharum spp.) is a highly efficient biomass and sugar producing crop. Leaf reactions have been considered as potential rate-limiting step for sucrose accumulation in sugarcane stalks. To characterize the sugarcane leaf transcriptome, field-grown mature leaves from cultivar "SP80-3280" were analyzed using Serial Analysis of Gene Expression (SAGE). From 480 sequenced clones, 9,482 valid tags were extracted, with 5,227 unique sequences, from which 3,659 (70%) matched at least a sugarcane assembled sequence (SAS) with putative function; while 872 tags (16.7%) matched SAS with unknown function; 523 (10%) matched SAS without a putative annotation; and only 173 (3.3%) did not match any sugarcane ESTs. Based on gene ontology (GO), photosystem (PS) I reaction center was identified as the most frequent gene product location, followed by the remaining sites of PS I, PS II and thylakoid complexes. For metabolic processes, photosynthesis light harvesting complexes; carbon fixation; and chlorophyll biosynthesis were the most enriched GO-terms. Considering the alternative photosynthetic C(4) cycles, tag frequencies related to phosphoenolpyruvate carboxykinase (PEPCK) and aspartate aminotransferase compared to those for NADP(+)-malic enzyme (NADP-ME) and NADP-malate dehydrogenase, suggested that PEPCK-type decarboxylation appeared to predominate over NADP-ME in mature leaves, although both may occur, opposite to currently assumed in sugarcane. From the unique tag set, 894 tags (17.1%) were assigned as potentially derived from antisense transcripts, while 73 tags (1.4%) were assigned to more than one SAS, suggesting the occurrence of alternative processing. The occurrence of antisense was validated by quantitative reverse transcription amplification. Sugarcane leaf transcriptome provided new insights for functional studies associated with sucrose synthesis and accumulation.

  3. Gait analysis at multiple speeds reveals differential functional and structural outcomes in response to graded spinal cord injury.

    PubMed

    Krizsan-Agbas, Dora; Winter, Michelle K; Eggimann, Linda S; Meriwether, Judith; Berman, Nancy E; Smith, Peter G; McCarson, Kenneth E

    2014-05-01

    Open-field behavioral scoring is widely used to assess spinal cord injury (SCI) outcomes, but has limited usefulness in describing subtle changes important for posture and locomotion. Additional quantitative methods are needed to increase the resolution of locomotor outcome assessment. This study used gait analysis at multiple speeds (GAMS) across a range of mild-to-severe intensities of thoracic SCI in the rat. Overall, Basso, Beattie, and Bresnahan (BBB) scores and subscores were assessed, and detailed automated gait analysis was performed at three fixed walking speeds (3.5, 6.0, and 8.5 cm/sec). Variability in hindpaw brake, propel, and stance times were analyzed further by integrating across the stance phase of stepping cycles. Myelin staining of spinal cord sections was used to quantify white matter loss at the injury site. Varied SCI intensity produced graded deficits in BBB score, BBB subscores, and spinal cord white matter and total volume loss. GAMS measures of posture revealed decreased paw area, increased limb extension, altered stance width, and decreased values for integrated brake, propel, and stance. Measures of coordination revealed increased stride frequency concomitant with decreased stride length, resulting in deviation from consistent forelimb/hindlimb coordination. Alterations in posture and coordination were correlated to impact severity. GAMS results correlated highly with functional and histological measures and revealed differential relationships between sets of GAMS dynamics and cord total volume loss versus epicenter myelin loss. Automated gait analysis at multiple speeds is therefore a useful tool for quantifying nuanced changes in gait as an extension of histological and observational methods in assessing SCI outcomes.

  4. Gait Analysis at Multiple Speeds Reveals Differential Functional and Structural Outcomes in Response to Graded Spinal Cord Injury

    PubMed Central

    Krizsan-Agbas, Dora; Winter, Michelle K.; Eggimann, Linda S.; Meriwether, Judith; Berman, Nancy E.; McCarson, Kenneth E.

    2014-01-01

    Abstract Open-field behavioral scoring is widely used to assess spinal cord injury (SCI) outcomes, but has limited usefulness in describing subtle changes important for posture and locomotion. Additional quantitative methods are needed to increase the resolution of locomotor outcome assessment. This study used gait analysis at multiple speeds (GAMS) across a range of mild-to-severe intensities of thoracic SCI in the rat. Overall, Basso, Beattie, and Bresnahan (BBB) scores and subscores were assessed, and detailed automated gait analysis was performed at three fixed walking speeds (3.5, 6.0, and 8.5 cm/sec). Variability in hindpaw brake, propel, and stance times were analyzed further by integrating across the stance phase of stepping cycles. Myelin staining of spinal cord sections was used to quantify white matter loss at the injury site. Varied SCI intensity produced graded deficits in BBB score, BBB subscores, and spinal cord white matter and total volume loss. GAMS measures of posture revealed decreased paw area, increased limb extension, altered stance width, and decreased values for integrated brake, propel, and stance. Measures of coordination revealed increased stride frequency concomitant with decreased stride length, resulting in deviation from consistent forelimb/hindlimb coordination. Alterations in posture and coordination were correlated to impact severity. GAMS results correlated highly with functional and histological measures and revealed differential relationships between sets of GAMS dynamics and cord total volume loss versus epicenter myelin loss. Automated gait analysis at multiple speeds is therefore a useful tool for quantifying nuanced changes in gait as an extension of histological and observational methods in assessing SCI outcomes. PMID:24405378

  5. X-ray Crystallographic Studies Reveal That the Incorporation of Spacer Groups in Carbonic Anhydrase Inhibitors Causes Alternate Binding Modes

    SciTech Connect

    Fisher,S.; Govindasamy, L.; Boyle, N.; Agbandje-McKenna, M.; Silverman, D.; Blackburn, G.; McKenna, R.

    2006-01-01

    Human carbonic anhydrases (CAs) are well studied targets for the development of inhibitors for pharmaceutical applications. The crystal structure of human CA II has been determined in complex with two CA inhibitors (CAIs) containing conventional sulfonamide and thiadiazole moieties separated by a -CF{sub 2}- or -CHNH{sub 2}- spacer group. The structures presented here reveal that these spacer groups allow novel binding modes for the thiadiazole moiety compared with conventional CAIs.

  6. Id-1B, an alternatively spliced isoform of the inhibitor of differentiation-1, impairs cancer cell malignancy through inhibition of proliferation and angiogenesis.

    PubMed

    Nguewa, P; Manrique, I; Díaz, R; Redrado, M; Parrondo, R; Perez-Stable, C; Calvo, A

    2014-01-01

    Id-1 is a member of the helix-loop-helix family of proteins that regulates the activity of transcription factors to suppress cellular differentiation and to promote cell growth. Overexpression of Id-1 in tumor cells correlates with increased malignancy and resistance to chemotherapy and radiotherapy. Id-1B is an isoform generated by alternative splicing that differs from the classical Id-1 in the 13-C-terminal amino acids, whose function is at present unknown. We have studied the role of Id-1B in cancer and its expression in healthy/malignant lung tissues. Overexpression of Id-1B in A549 lung and PC3 prostate cancer cells reduced anchorage-dependent and independent proliferation and clonogenic potential. Moreover, it increased the proportion of cells in the G0/G1 phase of the cell cycle and p27 levels, while reduced phospho-Erk and cyclin A levels. Through microarray analysis, we identified genes involved in cell growth and proliferation that are specifically deregulated as a consequence of Id-1B overexpression, including IGF2, BMP4, Id2, GATA3, EREG and AREG. Id-1B overexpressing cells that were treated with 4Gy irradiation dose were significantly less resistant to cell death. In vivo assays demonstrated that tumors with high Id-1B levels exhibited less growth (p<0.01), metabolic activity (glucose uptake) and angiogenesis (p<0.05) compared to tumors with low Id-1B expression; mice survival was significantly extended (p<0.05). Quantification by qRT-PCR revealed that expression of Id-1B was significantly lower (p<0.01) in human lung tumors compared to their matched nonmalignant counterparts. In conclusion, our results demonstrate that Id-1B decreases the malignancy of lung and prostate cancer cells, sensitizes them to radiotherapy-induced cell death, and counteracts the protumorigenic role of the classical form of Id-1.

  7. Differential replication of two chloroplast genome forms in heteroplasmic Chlamydomonas reinhardtii gametes contributes to alternative inheritance patterns.

    PubMed

    Nishimura, Yoshiki; Stern, David B

    2010-08-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS-. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only approximately 25% of tetrads, whereas the PS- genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS- genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS- genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies.

  8. Differential Replication of Two Chloroplast Genome Forms in Heteroplasmic Chlamydomonas reinhardtii Gametes Contributes to Alternative Inheritance Patterns

    PubMed Central

    Nishimura, Yoshiki; Stern, David B.

    2010-01-01

    Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS−. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only ∼25% of tetrads, whereas the PS− genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS− genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS− genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies. PMID:20519744

  9. Alternative relay domains of Drosophila melanogaster myosin differentially affect ATPase activity, in vitro motility, myofibril structure and muscle function.

    PubMed

    Kronert, William A; Dambacher, Corey M; Knowles, Aileen F; Swank, Douglas M; Bernstein, Sanford I

    2008-06-06

    The relay domain of myosin is hypothesized to function as a communication pathway between the nucleotide-binding site, actin-binding site and the converter domain. In Drosophila melanogaster, a single myosin heavy chain gene encodes three alternative relay domains. Exon 9a encodes the indirect flight muscle isoform (IFI) relay domain, whereas exon 9b encodes one of the embryonic body wall isoform (EMB) relay domains. To gain a better understanding of the function of the relay domain and the differences imparted by the IFI and the EMB versions, we constructed two transgenic Drosophila lines expressing chimeric myosin heavy chains in indirect flight muscles lacking endogenous myosin. One expresses the IFI relay domain in the EMB backbone (EMB-9a), while the second expresses the EMB relay domain in the IFI backbone (IFI-9b). Our studies reveal that the EMB relay domain is functionally equivalent to the IFI relay domain when it is substituted into IFI. Essentially no differences in ATPase activity, actin-sliding velocity, flight ability at room temperature or muscle structure are observed in IFI-9b compared to native IFI. However, when the EMB relay domain is replaced with the IFI relay domain, we find a 50% reduction in actin-activated ATPase activity, a significant increase in actin affinity, abolition of actin sliding, defects in myofibril assembly and rapid degeneration of muscle structure compared to EMB. We hypothesize that altered relay domain conformational changes in EMB-9a impair intramolecular communication with the EMB-specific converter domain. This decreases transition rates involving strongly bound actomyosin states, leading to a reduced ATPase rate and loss of actin motility.

  10. Communication is key: Reducing DEK1 activity reveals a link between cell-cell contacts and epidermal cell differentiation status.

    PubMed

    Galletti, Roberta; Ingram, Gwyneth C

    2015-01-01

    Plant epidermis development requires not only the initial acquisition of tissue identity, but also the ability to differentiate specific cell types over time and to maintain these differentiated states throughout the plant life. To set-up and maintain differentiation, plants activate specific transcriptional programs. Interfering with these programs can prevent differentiation and/or force differentiated cells to lose their identity and re-enter a proliferative state. We have recently shown that the Arabidopsis Defective Kernel 1 (DEK1) protein is required both for the differentiation of epidermal cells and for the maintenance of their fully differentiated state. Defects in DEK1 activity lead to a deregulation of the expression of epidermis-specific differentiation-promoting HD-ZIP IV transcription factors. Here we propose a working model in which DEK1, by maintaining cell-cell contacts, and thus communication between neighboring cells, influences HD-ZIP IV gene expression and epidermis differentiation.

  11. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells

    PubMed Central

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-01-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL. Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  12. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    SciTech Connect

    Teyssedre, G. Laurent, C.; Vu, T. T. N.

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  13. Latitudinal gradients in tree ring stable carbon and oxygen isotopes reveal differential climate influences of the North American Monsoon System

    NASA Astrophysics Data System (ADS)

    Szejner, Paul; Wright, William E.; Babst, Flurin; Belmecheri, Soumaya; Trouet, Valerie; Leavitt, Steven W.; Ehleringer, James R.; Monson, Russell K.

    2016-07-01

    The arrival of the North American Monsoon System (NAMS) terminates a presummer hyperarid period in the southwestern United States (U.S.), providing summer moisture that is favorable for forest growth. Montane forests in this region rely on winter snowpack to drive much of their growth; the extent to which they use NAMS moisture is uncertain. We addressed this by studying stable carbon and oxygen isotopes in earlywood and latewood from 11 sites along a latitudinal gradient extending from Arizona and New Mexico to Utah. This study provides the first regional perspective on the relative roles of winter versus summer precipitation as an ecophysiological resource. Here we present evidence that Ponderosa pine uses NAMS moisture differentially across this gradient. 13C/12C ratios suggest that photosynthetic water use efficiency during latewood formation is more sensitive to summer precipitation at the northern than at the southern sites. This is likely due to the fact that NAMS moisture provides sufficiently favorable conditions for tree photosynthesis and growth during most years in the southern sites, whereas the northern sites experience larger summer moisture variability, which in some years is limiting growth. Cellulose δ18O and δ13C values revealed that photoassimilates in the southern sites were produced under higher vapor pressure deficit conditions during spring compared to summer, demonstrating a previously underappreciated effect of seasonal differences in atmospheric humidity on tree ring isotope ratios. Our findings suggest that future changes in NAMS will potentially alter productivity and photosynthetic water use dynamics differentially along latitudinal gradients in southwestern U.S. montane forests.

  14. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds.

  15. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns.

    PubMed

    Li, Qin; Xiao, Guanghui; Zhu, Yu-Xian

    2014-05-01

    Alternative splicing (AS) is a vital genetic mechanism that enhances the diversity of eukaryotic transcriptomes. Here, we generated 8.3 Gb high-quality RNA-sequencing data from cotton (Gossypium raimondii) and performed a systematic, comparative analysis of AS events. We mapped 85% of the RNA-sequencing data onto the reference genome and identified 154368 splice junctions with 16437 as events in 10197 genes. Intron retention constituted the majority (40%) of all AS events in G. raimondii. Comparison across 11 eukaryote species showed that intron retention is the most common AS type in higher plants. Although transposable elements (TEs) were found in only 2.9% of all G. raimondii introns, they are present in 43% of the retained introns, suggesting that TE-insertion may be an important mechanism for intron retention during AS. The majority of the TE insertions are concentrated 0-40 nt upstream of the 3'-splice site, substantially altering the distribution of branch points from preferred positions and reducing the efficiency of intron splicing by decreasing RNA secondary structure flexibility. Our data suggest that TE-insertion-induced changes in branch point-site distribution are important for intron retention-type AS. Our findings may help explain the vast differences in intron-retention frequencies between vertebrates and higher plants.

  16. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation

    PubMed Central

    Schmidt, Ute; Robert, Marie-Cécile; Yoshida, Minoru; Villemin, Jean-Philippe; Auboeuf, Didier; Aitken, Stuart

    2011-01-01

    Splicing is a key process that expands the coding capacity of genomes. Its kinetics remain poorly characterized, and the distribution of splicing time caused by the stochasticity of single splicing events is expected to affect regulation efficiency. We conducted a small-scale survey on 40 introns in human cells and observed that most were spliced cotranscriptionally. Consequently, we constructed a reporter system that splices cotranscriptionally and can be monitored in live cells and in real time through the use of MS2–GFP. All small nuclear ribonucleoproteins (snRNPs) are loaded on nascent pre-mRNAs, and spliceostatin A inhibits splicing but not snRNP recruitment. Intron removal occurs in minutes and is best described by a model where several successive steps are rate limiting. Each pre-mRNA molecule is predicted to require a similar time to splice, reducing kinetic noise and improving the regulation of alternative splicing. This model is relevant to other kinetically controlled processes acting on few molecules. PMID:21624952

  17. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii

    PubMed Central

    Chapman, Stephen P.; Paget, Caroline M.; Johnson, Giles N.; Schwartz, Jean-Marc

    2015-01-01

    Cells of the green alga Chlamydomonas reinhardtii cultured in the presence of acetate perform mixotrophic growth, involving both photosynthesis and organic carbon assimilation. Under such conditions, cells exhibit a reduced capacity for photosynthesis but a higher growth rate, compared to phototrophic cultures. Better understanding of the down regulation of photosynthesis would enable more efficient conversion of carbon into valuable products like biofuels. In this study, Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) have been used with a genome scale model of C. reinhardtii to examine changes in intracellular flux distribution in order to explain their changing physiology. Additionally, a reaction essentiality analysis was performed to identify which reaction subsets are essential for a given growth condition. Our results suggest that exogenous acetate feeds into a modified tricarboxylic acid (TCA) cycle, which bypasses the CO2 evolution steps, explaining increases in biomass, consistent with experimental data. In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions. Importantly, acetate addition leads to an increased flux through cyclic electron flow (CEF), but results in a repression of CO2 fixation via Rubisco, explaining the down regulation of photosynthesis. However, although CEF enhances growth on acetate, it is not essential—impairment of CEF results in alternative metabolic pathways being increased. We have demonstrated how the reactions of photosynthesis interconnect with carbon metabolism on a global scale, and how systems approaches play a viable tool in understanding complex relationships at the scale of the organism. PMID:26175742

  18. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii.

    PubMed

    Chapman, Stephen P; Paget, Caroline M; Johnson, Giles N; Schwartz, Jean-Marc

    2015-01-01

    Cells of the green alga Chlamydomonas reinhardtii cultured in the presence of acetate perform mixotrophic growth, involving both photosynthesis and organic carbon assimilation. Under such conditions, cells exhibit a reduced capacity for photosynthesis but a higher growth rate, compared to phototrophic cultures. Better understanding of the down regulation of photosynthesis would enable more efficient conversion of carbon into valuable products like biofuels. In this study, Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) have been used with a genome scale model of C. reinhardtii to examine changes in intracellular flux distribution in order to explain their changing physiology. Additionally, a reaction essentiality analysis was performed to identify which reaction subsets are essential for a given growth condition. Our results suggest that exogenous acetate feeds into a modified tricarboxylic acid (TCA) cycle, which bypasses the CO2 evolution steps, explaining increases in biomass, consistent with experimental data. In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions. Importantly, acetate addition leads to an increased flux through cyclic electron flow (CEF), but results in a repression of CO2 fixation via Rubisco, explaining the down regulation of photosynthesis. However, although CEF enhances growth on acetate, it is not essential-impairment of CEF results in alternative metabolic pathways being increased. We have demonstrated how the reactions of photosynthesis interconnect with carbon metabolism on a global scale, and how systems approaches play a viable tool in understanding complex relationships at the scale of the organism.

  19. Genetic evidence reveals density-dependent mediated success of alternative mating behaviours in the European bitterling (Rhodeus sericeus).

    PubMed

    Reichard, M; Smith, C; Jordan, W C

    2004-06-01

    The reproductive success of alternative mating behaviours may vary within and among populations in relation to environmental factors and demographic parameters. We used behavioural and genetic data to investigate how male density affects reproductive success of territoriality and sneaking in the European bitterling (Rhodeus sericeus, Cyprinidae), a freshwater fish that spawns on the gills of living freshwater mussels. Keeping the number of spawning sites constant, we manipulated male densities in laboratory and mesocosm experiments. We showed that sneaked fertilizations were common in R. sericeus, and that they increased significantly with male density. Territorial mating was almost 17 times more successful than sneaking at the lowest male density treatment, and still 2-3 times more successful at intermediate densities. However, both behaviours conferred the same fitness pay-off at the highest male density. While the success of territorial males declined with male density, the success of individual sneaking males remained constant across densities. Notably, the capacity of territorial males to outcompete sneakers by preoviposition sperm loading was the best predictor of male reproductive success, rather than aggression, body size or postoviposition ejaculation.

  20. "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses".

    PubMed

    Eveno, Emmanuelle; Collada, Carmen; Guevara, M Angeles; Léger, Valérie; Soto, Alvaro; Díaz, Luis; Léger, Patrick; González-Martínez, Santiago C; Cervera, M Teresa; Plomion, Christophe; Garnier-Géré, Pauline H

    2008-02-01

    The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed

  1. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea

    PubMed Central

    2013-01-01

    Background Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. Results We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. Conclusion The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that

  2. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype

    PubMed Central

    2014-01-01

    Background Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes. Results We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event. Conclusions As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures. PMID:24739459

  3. Genome-wide regulatory analysis reveals T-bet controls Th17 lineage differentiation through direct suppression of IRF41

    PubMed Central

    Gökmen, M. Refik; Dong, Rong; Kanhere, Aditi; Powell, Nick; Perucha, Esperanza; Jackson, Ian; Howard, Jane K.; Hernandez-Fuentes, Maria; Jenner, Richard G.; Lord, Graham M.

    2013-01-01

    The complex relationship between Th1 and Th17 cells is incompletely understood. The transcription factor T-bet is best known as the master regulator of Th1 lineage commitment. However, attention is now focused on the repression of alternate T cell subsets mediated by T-bet, particularly the Th17 lineage. It has recently been suggested that pathogenic Th17 cells express T-bet and are dependent on IL-23. However, T-bet has previously been shown to be a negative regulator of Th17 cells. We have taken an unbiased approach to determine the functional impact of T-bet on Th17 lineage commitment. Genome-wide analysis of functional T-bet binding sites provides an improved understanding of the transcriptional regulation mediated by T-bet, and suggests novel mechanisms by which T-bet regulates T helper cell differentiation. Specifically, we show that T-bet negatively regulates Th17 lineage commitment via direct repression of the transcription factor interferon regulatory factor-4 (IRF4). An in vivo analysis of the pathogenicity of T-bet deficient T cells demonstrated that mucosal Th17 responses were augmented in the absence of T-bet, and we have demonstrated that the role of T-bet in enforcing Th1 responses and suppressing Th17 responses are separable. The interaction of the two key transcription factors T-bet and IRF4 during the determination of T cell fate choice significantly advances our understanding of the mechanisms underlying the development of pathogenic T cells. PMID:24249732

  4. A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms.

    PubMed

    Costa, José Hélio; McDonald, Allison E; Arnholdt-Schmitt, Birgit; Fernandes de Melo, Dirce

    2014-11-01

    A classification scheme based on protein phylogenies and sequence harmony method was used to clarify the taxonomic distribution and evolutionary history of the alternative oxidase (AOX) in angiosperms. A large data set analyses showed that AOX1 and AOX2 subfamilies were distributed into 4 phylogenetic clades: AOX1a-c/1e, AOX1d, AOX2a-c and AOX2d. High diversity in AOX family compositions was found. While the AOX2 subfamily was not detected in monocots, the AOX1 subfamily has expanded (AOX1a-e) in the large majority of these plants. In addition, Poales AOX1b and 1d were orthologous to eudicots AOX1d and then renamed as AOX1d1 and 1d2. AOX1 or AOX2 losses were detected in some eudicot plants. Several AOX2 duplications (AOX2a-c) were identified in eudicot species, mainly in the asterids. The AOX2b originally identified in eudicots in the Fabales order (soybean, cowpea) was divergent from AOX2a-c showing some specific amino acids with AOX1d and then it was renamed as AOX2d. AOX1d and AOX2d seem to be stress-responsive, facultative and mutually exclusive among species suggesting a complementary role with an AOX1(a) in stress conditions. Based on the data collected, we present a model for the evolutionary history of AOX in angiosperms and highlight specific areas where further research would be most beneficial.

  5. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum

    PubMed Central

    Vega, Andrea; Canessa, Paulo; Hoppe, Gustavo; Retamal, Ignacio; Moyano, Tomas C.; Canales, Javier; Gutiérrez, Rodrigo A.; Rubilar, Joselyn

    2015-01-01

    Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants. PMID:26583019

  6. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi

    PubMed Central

    Fiorilli, Valentina; Vallino, Marta; Biselli, Chiara; Faccio, Antonella; Bagnaresi, Paolo; Bonfante, Paola

    2015-01-01

    Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM) symbiosis, has both host and non-host roots. Large lateral (LLR) and fine lateral (FLR) roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR. We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant. PMID:26322072

  7. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    PubMed

    Fiorilli, Valentina; Vallino, Marta; Biselli, Chiara; Faccio, Antonella; Bagnaresi, Paolo; Bonfante, Paola

    2015-01-01

    Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM) symbiosis, has both host and non-host roots. Large lateral (LLR) and fine lateral (FLR) roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR. We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  8. Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes.

    PubMed

    Kluth, Oliver; Matzke, Daniela; Schulze, Gunnar; Schwenk, Robert W; Joost, Hans-Georg; Schürmann, Annette

    2014-12-01

    Type 2 diabetes in humans and in obese mice is polygenic. In recent genome-wide association studies, genetic markers explaining a small portion of the genetic contribution to the disease were discovered. However, functional evidence linking these genes with the pathogenesis of diabetes is scarce. We performed RNA sequencing-based transcriptomics of islets from two obese mouse strains, a diabetes-susceptible (NZO) and a diabetes-resistant (B6-ob/ob) mouse, after a short glucose challenge and compared these results with human data. Alignment of 2,328 differentially expressed genes to 106 human diabetes candidate genes revealed an overlap of 20 genes, including TCF7L2, IGFBP2, CDKN2A, CDKN2B, GRB10, and PRC1. The data provide a functional validation of human diabetes candidate genes, including those involved in regulating islet cell recovery and proliferation, and identify additional candidates that could be involved in human β-cell failure. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. High Differentiation among Eight Villages in a Secluded Area of Sardinia Revealed by Genome-Wide High Density SNPs Analysis

    PubMed Central

    Pirastu, Nicola; Persico, Ivana; Sassu, Alessandro; Picciau, Andrea; Prodi, Dionigio; Fraumene, Cristina; Mocci, Evelina; Manias, Maria Teresa; Atzeni, Rossano; Cosso, Massimiliano; Pirastu, Mario

    2009-01-01

    To better design association studies for complex traits in isolated populations it's important to understand how history and isolation moulded the genetic features of different communities. Population isolates should not “a priori” be considered homogeneous, even if the communities are not distant and part of a small region. We studied a particular area of Sardinia called Ogliastra, characterized by the presence of several distinct villages that display different history, immigration events and population size. Cultural and geographic isolation characterized the history of these communities. We determined LD parameters in 8 villages and defined population structure through high density SNPs (about 360 K) on 360 unrelated people (45 selected samples from each village). These isolates showed differences in LD values and LD map length. Five of these villages show high LD values probably due to their reduced population size and extreme isolation. High genetic differentiation among villages was detected. Moreover population structure analysis revealed a high correlation between genetic and geographic distances. Our study indicates that history, geography and biodemography have influenced the genetic features of Ogliastra communities producing differences in LD and population structure. All these data demonstrate that we can consider each village an isolate with specific characteristics. We suggest that, in order to optimize the study design of complex traits, a thorough characterization of genetic features is useful to identify the presence of sub-populations and stratification within genetic isolates. PMID:19247500

  10. Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress.

    PubMed

    Shi, Jianzhi; Chen, Yuting; Xu, Yan; Ji, Dehua; Chen, Changsheng; Xie, Chaotian

    2017-03-17

    Global warming increases sea temperature and leads to high temperature stress, which affects the yield and quality of Pyropia haitanensis. To understand the molecular mechanisms underlying high temperature stress in a high temperature tolerance strain Z-61, the iTRAQ technique was employed to reveal the global proteomic response of Z-61 under different durations of high temperature stress. We identified 151 differentially expressed proteins and classified them into 11 functional categories. The 4 major categories of these are protein synthesis and degradation, photosynthesis, defense response, and energy and carbohydrate metabolism. These findings indicated that photosynthesis, protein synthesis, and secondary metabolism are inhibited by heat to limit damage to a repairable level. As time progresses, misfolded proteins and ROS accumulate and lead to the up-regulation of molecular chaperones, proteases, and antioxidant systems. Furthermore, to cope with cells injured by heat, PCD works to remove them. Additionally, sulfur assimilation and cytoskeletons play essential roles in maintaining cellular and redox homeostasis. These processes are based on signal transduction in the phosphoinositide pathway and multiple ways to supply energy. Conclusively, Z-61 establishes a new steady-state balance of metabolic processes and survives under higher temperature stress.

  11. Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins.

    PubMed

    Alcolea, Pedro J; Alonso, Ana; García-Tabares, Francisco; Mena, María del Carmen; Ciordia, Sergio; Larraga, Vicente

    2016-06-01

    Leishmaniasis is a term that encompasses a compendium of neglected tropical diseases caused by dimorphic and digenetic protozoan parasites from the genus Leishmania (Kinetoplastida: Trypanosomatidae). The clinical manifestations of neotropical cutaneous leishmaniasis (NCL) caused by Leishmania pifanoi and other species of the "Leishmania mexicana complex" mainly correspond to anergic diffuse cutaneous leishmaniasis (ADCL), which is the origin of considerable morbidity. Despite the outstanding advances in the characterization of the trypanosomatid genomes and proteomes, the biology of this species has been scarcely explored. However, the close relation of L. pifanoi to the sequenced species L. mexicana and others included in the "L. mexicana complex" allowed us to perform a two-dimension electrophoresis (2DE) approach to the promastigote proteome at the differential expression level. Protein identifications were performed by matrix-assisted laser desorption-ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF). This insight has revealed similarities and differences between L. pifanoi and other species responsible for cutaneous and visceral leishmaniasis. Interestingly, certain proteins that were previously described as immunostimulatory (elongation factor 1β, trypanothione peroxidase, heat shock protein 70, enolase, GDP-forming succinyl-CoA and aldehyde dehydrogenase) are more abundant in the final growth stages of promastigotes (late-logarithmic and/or stationary phase) in the case of L. pifanoi.

  12. Mass spectrometric phosphoproteome analysis of HIV-infected brain reveals novel phosphorylation sites and differential phosphorylation patterns

    PubMed Central

    Uzasci, Lerna; Auh, Sungyoung; Cotter, Robert J.; Nath, Avindra

    2016-01-01

    Purpose To map the phosphoproteome and identify changes in the phosphorylation patterns in the HIV-infected and uninfected brain using high-resolution mass spectrometry. Experimental Design Parietal cortex from brain of individuals with and without HIV infection were lysed and trypsinized. The peptides were labeled with iTRAQ reagents, combined, phospho-enriched by titanium dioxide chromatography, and analyzed by LC-MS/MS with high-resolution. Results Our phosphoproteomic workflow resulted in the identification of 112 phosphorylated proteins and 17 novel phosphorylation sites in all the samples that were analyzed. The phosphopeptide sequences were searched for kinase substrate motifs which revealed potential kinases involved in important signaling pathways. The site-specific phosphopeptide quantification showed that peptides from neurofilament medium polypeptide, myelin basic protein, and 2′–3′-cyclic nucleotide-3′ phosphodiesterase have relatively higher phosphorylation levels during HIV infection. Clinical Relevance This study has enriched the global phosphoproteome knowledge of the human brain by detecting novel phosphorylation sites on neuronal proteins and identifying differentially phosphorylated brain proteins during HIV infection. Kinases that lead to unusual phosphorylations could be therapeutic targets for the treatment of HIV-associated neurocognitive disorders (HAND). PMID:26033855

  13. Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss Rhynchostegium riparioides s.l.

    PubMed

    Hutsemékers, Virginie; Vieira, Cristiana C; Ros, Rosa María; Huttunen, Sanna; Vanderpoorten, Alain

    2012-02-01

    Bryophyte floras typically exhibit extremely low levels of endemism. The interpretation, that this might reflect taxonomic shortcomings, is tested here for the Macaronesian flora, using the moss species complex of Rhynchostegium riparioides as a model. The deep polyphyly of R. riparioides across its distribution range reveals active differentiation that better corresponds to geographic than morphological differences. Morphometric analyses are, in fact, blurred by a size gradient that accounts for 80% of the variation o