Sample records for alternative phenol based

  1. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  2. Application of insoluble fibers in the fining of wine phenolics.

    PubMed

    Guerrero, Raúl F; Smith, Paul; Bindon, Keren A

    2013-05-08

    The application of animal-derived proteins as wine fining agents has been subject to increased regulation in recent years. As an alternative to protein-based fining agents, insoluble plant-derived fibers have the capacity to adsorb red wine tannins. Changes in red wine tannin were analyzed following application of fibers derived from apple and grape and protein-based fining agents. Other changes in wine composition, namely, color, monomeric phenolics, metals, and turbidity, were also determined. Wine tannin was maximally reduced by application of an apple pomace fiber and a grape pomace fiber (G4), removing 42 and 38%, respectively. Potassium caseinate maximally removed 19% of wine tannin, although applied at a lower dose. Fibers reduced anthocyanins, total phenolics, and wine color density, but changes in wine hue were minor. Proteins and apple fiber selectively removed high molecular mass phenolics, whereas grape fibers removed those of both high and low molecular mass. The results show that insoluble fibers may be considered as alternative fining agents for red wines.

  3. Alternate nozzle ablative materials program

    NASA Technical Reports Server (NTRS)

    Kimmel, N. A.

    1984-01-01

    Four subscale solid rocket motor tests were conducted successfully to evaluate alternate nozzle liner, insulation, and exit cone structural overwrap components for possible application to the Space Shuttle Solid Rocket Motor (SRM) nozzle asasembly. The 10,000 lb propellant motor tests were simulated, as close as practical, the configuration and operational environment of the full scale SRM. Fifteen PAN based and three pitch based materials had no filler in the phenolic resin, four PAN based materials had carbon microballoons in the resin, and the rest of the materials had carbon powder in the resin. Three nozzle insulation materials were evaluated; an aluminum oxide silicon oxide ceramic fiber mat phenolic material with no resin filler and two E-glass fiber mat phenolic materials with no resin filler. It was concluded by MTI/WD (the fabricator and evaluator of the test nozzles) and NASA-MSFC that it was possible to design an alternate material full scale SRM nozzle assembly, which could provide an estimated 360 lb increased payload capability for Space Shuttle launches over that obtainable with the current qualified SRM design.

  4. Evaluation of SRB phenolic TPS material made by an alternate vendor

    NASA Technical Reports Server (NTRS)

    Karu, Z. S.

    1982-01-01

    Tests conducted to evaluate the adequacy of solid rocket booster (SRB) phenolic thermal protection system (TPS) material supplied by an alternate vendor chosen by United Space Boosters, Inc. (USBI), to replace the current phenolic TPS sections used thus far on the first four Shuttle flights. The phenolic TPS is applied mainly to the attach and kick rings of the solid rocket booster (SRB). Full-scale sectional models of both the attach and kick ring structure were made up with 0.0265 in. thick stainless steel thin skin covers with thermocouples on them to determine the heating rates. Such models were made up for both the forward and rear faces of the kick ring which has a different configuration on each side. The thin skins were replaced with the alternate phenolic TPS sections cut from flight hardware configuration phenolic parts as supplied by the new vendor. Two tests were performed for each configuration of the attach and kick rings and the samples were exposed to the flow for a duration that gave a heat load equivalent to that obtained in the series of runs made for the current line of phenolic TPS. The samples performed very well with no loss of any phenolic layers. The post-test samples looked better than those used to verify the current phenolic TPS.

  5. Bio-phenolic resin from oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Zakaria, Zuhaili; Zakaria, Sarani; Roslan, Rasidi; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Amran, Umar Adli

    2018-04-01

    Utilization of oil palm empty fruit bunches (EFB) in the production of bio-phenolic resin is an alternative way to reduce the dependency of petroleum-based phenol. In this study, resol type bio-phenolic resin (BPR) was synthesized from EFB fibers using sulfuric acid as the catalyst to produce liquefied empty fruit bunches (LEFB) followed by resinification reaction with formaldehyde in alkaline condition. The SEM image of LEFB residue showed separation of fiber bundles into individual fibers. This indicate that lignin was destroyed during the liquefaction process. The increased of formaldehyde/LEFB molar ratio has resulted an increase of viscosity, solid content and pH of the resin. The obtained FTIR spectra confirmed that functional groups of BPR resins was almost similar with commercial resin.

  6. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    PubMed

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative or complementary processing methods must be developed before this nutritional resource can be utilized.

  7. Predicting the reactivity of adhesive starting materials

    Treesearch

    Anthony H. Conner

    1999-01-01

    Phenolic compounds are important in the production of bonded-wood products. Phenolic compounds in addition to phenol and resorcinol are potential alternative feedstocks for producing adhesives. The reactivity of a wide variety of phenolic compounds with formaldehyde was investigated using semi-empirical and ab initio computational chemistry methods...

  8. Reaction of formaldehyde with phenols: a computational chemistry study.

    Treesearch

    Tohru Mitsunaga; Anthony H. Conner; Charles G. Hill

    2001-01-01

    Phenolic resins are important adhesives used by the forest products industry. The phenolic compounds in these resins are derived primarily from petrochemical sources. Alternate sources of phenolic compounds include tannins, lignins, biomass pyrolysis products, and coal gasification products. Because of variations in their chemical structures, the reactivities of these...

  9. 2-Chloro-2,2-difluoroacetophenone: a non-ODS-based difluorocarbene precursor and its use in the difluoromethylation of phenol derivatives.

    PubMed

    Zhang, Laijun; Zheng, Ji; Hu, Jinbo

    2006-12-22

    A novel and non-ODS-based (ODS = ozone-depleting substance) preparation of 2-chloro-2,2-difluoroacetophenone (1) was achieved in high yield by using 2,2,2-trifluoroacetophenone as the starting material. Compound 1 was found to act as a good difluorocarbene reagent, which readily reacts with a variety of structurally diverse phenol derivatives 4 in the presence of potassium hydroxide or potassium carbonate to produce aryl difluoromethyl ethers 5 in good yields. This new and easy-to-handle synthetic methodology offers an environmentally friendly alternative to other Freon- or Halon-based difluoromethylating approaches.

  10. Modulation of the phenolic composition and colour of red wines subjected to accelerated ageing by controlling process variables.

    PubMed

    González-Sáiz, J M; Esteban-Díez, I; Rodríguez-Tecedor, S; Pérez-Del-Notario, N; Arenzana-Rámila, I; Pizarro, C

    2014-12-15

    The aim of the present work was to evaluate the effect of the main factors conditioning accelerated ageing processes (oxygen dose, chip dose, wood origin, toasting degree and maceration time) on the phenolic and chromatic profiles of red wines by using a multivariate strategy based on experimental design methodology. The results obtained revealed that the concentrations of monomeric anthocyanins and flavan-3-ols could be modified through the application of particular experimental conditions. This fact was particularly remarkable since changes in phenolic profile were closely linked to changes observed in chromatic parameters. The main strength of this study lies in the possibility of using its conclusions as a basis to make wines with specific colour properties based on quality criteria. To our knowledge, the influence of such a large number of alternative ageing parameters on wine phenolic composition and chromatic attributes has not been studied previously using a comprehensive experimental design methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Downstream valorization and comprehensive two-dimensional liquid chromatography-based chemical characterization of bioactives from black chokeberries (Aronia melanocarpa) pomace.

    PubMed

    Brazdauskas, T; Montero, L; Venskutonis, P R; Ibañez, E; Herrero, M

    2016-10-14

    In this work, a new alternative for the downstream processing and valorization of black chokeberry pomace (Aronia melanocarpa) which could be potentially coupled to a biorefinery process is proposed. This alternative is based on the application of pressurized liquid extraction (PLE) to the residue obtained after the supercritical fluid extraction of the berry pomace. An experimental design is employed to study and optimize the most relevant extraction conditions in order to attain extracts with high extraction yields, total phenols content and antioxidant activity. Moreover, the PLE extracts were characterized by using a new method based on the application of comprehensive two-dimensional liquid chromatography in order to correlate their activity with their chemical composition. Thanks to the use of this powerful analytical tool, 61 compounds could be separated being possible the tentative identification of different anthocyanins, proanthocyanidins, flavonoids and phenolic acids. By using the optimized PLE approach (using pressurized 46% ethanol in water at 165°C containing 1.8% formic acid), extracts with high total phenols content (236.6mg GAE g -1 extract) and high antioxidant activities (4.35mmol TE g -1 extract and EC 50 5.92μgmL -1 ) could be obtained with high yields (72.5%). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Comparison of adsorption and photo-Fenton processes for phenol and paracetamol removing from aqueous solutions: Single and binary systems

    NASA Astrophysics Data System (ADS)

    Rad, Leila Roshanfekr; Haririan, Ismaeil; Divsar, Faten

    2015-02-01

    In the present study, adsorption and photo-Fenton processes have been compared for the removal of phenol and paracetamol from aqueous solutions in a single and binary systems. NaX nanozeolites and cobalt ferrite nanoparticles were used during adsorption and photo-Fenton processes, respectively. Both nanoparticles were synthesized using microwave heating method. The synthesized nanoparticles were characterized using powder X-ray diffraction (XRD) and scanning electronic microscopy (SEM) analysis. Based on results, more than 99% removing percentages of phenol and paracetamol were obtained during photo-Fenton process at initial concentrations of 10, 20, 50, 100 and 200 mg/L of phenol and paracetamol. Moreover, the complete removing of phenol and paracetamol was only achieved at lower initial concentrations than 10 mg/L for phenol and paracetamol during adsorption process. The results showed a significant dependence of the phenol and paracetamol removing on the initial concentrations of phenol and paracetamol for selection of process. The photo-Fenton process could be considered an alternative method in higher initial concentrations of phenol and paracetamol. However, the adsorption process due to economical issue was preferred for phenol and paracetamol removing at lower initial concentrations. The kinetic data of photo-Fenton and adsorption processes were well described using first-order and pseudo-second-order kinetic models. The results of phenol and paracetamol removing in a binary system confirmed the obtained results of single removing of phenol and paracetamol in selection of process.

  13. Analytical Determinations of the Phenolic Content of Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Pagano, T.; Kenny, J. E.

    2010-12-01

    Indicators suggest that the amount of dissolved organic matter (DOM) in natural waters is increasing. Climate Change has been proposed as a potential contributor to the trend, and under this mechanism, the phenolic content of DOM may also be increasing. We have explored the possibility of assessing the phenolic character of DOM using fluorescence spectroscopy as a more convenient alternative to wet chemistry methods. In this work, parallel factor analysis (PARAFAC) was applied to fluorescence excitation emission matrices (EEMs) of humic samples in an attempt to analyze their phenolic content. The PARAFAC results were correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method showed that the phenolic content of five International Humic Substance Society (IHSS) DOM samples vary from approximately 5 to 22 ppm Tannic Acid Equivalents (TAE) in phenol concentration. A five-component PARAFAC fit was applied to the EEMs of the IHSS sample dataset and it was determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C1 (R2=0.78), C4 (R2=0.82), and C5 (R2=0.88) have the highest probability of containing phenolic groups. Furthermore, when the scores of components C4 and C5 were summed, the correlation improved (R2=0.99). Likewise, when the scores of C1, C4, and C5 were summed, their correlations were stronger than their individual parts (R2=0.89). Since the reagent-based method is providing an indicator of “total phenol” amount, regardless of the exact molecular structure of C1, C4, and C5, it seems reasonable that each of these components individually contributes a portion to the summed “total phenol” profile, and that the sum of their phenol-related spectral parts represents a larger portion of the “total phenol” index. However, when the sum of all five components were plotted against the reagent-based phenol concentrations, due to the considerable impact of largely non-phenolic components C2 (R2=0.23) and C3 (R2=0.35), the correlation was quite poor (or no correlation at all with R2=0.10). The results show the potential for PARAFAC analysis of multidimensional fluorescence data to be a tool for monitoring the phenolic content of DOM. Applications include assessing the potential for formation of disinfection byproducts in the treatment of drinking water and monitoring the impact of Climate Change on the phenolic character of DOM.

  14. Identification of the Phenol Functionality in Deprotonated Monomeric and Dimeric Lignin Degradation Products via Tandem Mass Spectrometry Based on Ion-Molecule Reactions with Diethylmethoxyborane

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Max, Joann P.; Marcum, Christopher L.; Luo, Hao; Abu-Omar, Mahdi M.; Kenttämaa, Hilkka I.

    2016-11-01

    Conversion of lignin into smaller molecules provides a promising alternate and sustainable source for the valuable chemicals currently derived from crude oil. Better understanding of the chemical composition of the resulting product mixtures is essential for the optimization of such conversion processes. However, these mixtures are complex and contain isomeric molecules with a wide variety of functionalities, which makes their characterization challenging. Tandem mass spectrometry based on ion-molecule reactions has proven to be a powerful tool in functional group identification and isomer differentiation for previously unknown compounds. This study demonstrates that the identification of the phenol functionality, the most commonly observed functionality in lignin degradation products, can be achieved via ion-molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions. The above mass spectrometry method was successfully coupled with high-performance liquid chromatography for the analysis of a complex biomass degradation mixture.

  15. Predicting the reactivity of phenolic compounds with formaldehyde. II, continuation of an ab initio study.

    Treesearch

    Tohru Mitsunaga; Anthony H. Conner; Charles G. Jr. Hill

    2002-01-01

    Phenol–formaldehyde resins are important adhesives used by the forest products industry. The phenolic compounds in these resins are derived primarily from petrochemical sources. Alternate sources of phenolic compounds include tannins, lignins, biomass pyrolysis products, and coal gasification products. Because of variations in their chemical structures, the...

  16. Spectroscopic Investigation of the Electrosynthesis of Diphenyl Carbonate from CO and Phenol on Gold Electrodes

    PubMed Central

    2018-01-01

    In this work, we study the synthesis of diphenyl carbonate (DPC) from phenol and CO on gold electrodes studied by means of in situ Fourier transform infrared spectroscopy (FTIR). The results show that, on gold electrodes, the formation of DPC is observed at potentials as low as 0.4 V vs Ag/AgCl, together with the formation of dimethyl carbonate (DMC) from the carbonylation of methanol that was used as a solvent. The spectroelectrochemical results also suggest that the formation of DPC occurs via the replacement of the methoxy groups from DMC with phenoxy groups from phenol and not directly by the carbonylation of phenol. Although this transesterification process is known to occur with heterogeneous catalysts, it has not been reported under electrochemical conditions. These are interesting findings, since the direct DPC production by carbonylation of phenol to DPC is usually performed with Pd-based catalysts. With this reaction scheme of transesterification happening under electrochemical conditions, other non-Pd catalysts could be used as well for one-step DPC production from phenol and CO. These findings give important mechanistic insights into this reaction and open up possibilities to an alternative process for the production of DPC. PMID:29657886

  17. Efficacy of topical phenol decontamination strategies on severity of acute phenol chemical burns and dermal absorption: in vitro and in vivo studies in pig skin.

    PubMed

    Monteiro-Riviere, N A; Inman, A O; Jackson, H; Dunn, B; Dimond, S

    2001-05-01

    Pure phenol is colorless and used in the manufacture of phenolic resins, plastics, explosives, fertilizers, paints, rubber, textiles, adhesives, pharmaceuticals, paper, soap, and wood preservatives. The purpose of this study was to compare the efficacy of several phenol decontamination strategies following dermal exposure using the pig as a model for human exposure, and then assess the effect of the two best treatments on phenol absorption in the isolated perfused porcine skin flap (IPPSF). Six anesthetized Yorkshire pigs were exposed to 89% aqueous phenol for 1 min using Hilltop chambers (10 skin sites/pig; 400 microl/site). Exposure to phenol was followed by one of 10 different decontamination procedures: 1-, 5-, 15-, and 30-min water wash; Ivory soap solution; polyethylene glycol (PEG 400); PEG 400/industrial methylated spirits (IMS); PEG 400/ethanol (EtOH); polyvinyl pyrrolidone (PVP)/70% isopropanol (IPA); and 70% IPA. For each of the last five strategies, 1-min treatment washes were repeatedly alternated with 1-min water washes for a total of 15 min. Evaluation was based on scoring of erythema, edema, and histological parameters such as intracellular and intercellular epidermal edema, papillary dermal edema, perivascular infiltrates, pyknotic stratum basale cells, and epidermal-dermal separation. It was concluded that PEG 400 and 70% IPA were superior to the other treatments investigated and equally efficacious in the reduction of phenol-induced skin damage. In addition, phenol absorption was assessed utilizing the two most effective in vivo treatments in the IPPSF. The assessment of percutaneous absorption of phenol found the PEG 400, 70% IPA, and 15-min water treatments significantly (P < 0.05) reduced phenol absorption relative to no treatment.

  18. Copper-catalyzed oxidative C-O bond formation of 2-acyl phenols and 1,3-dicarbonyl compounds with ethers: direct access to phenol esters and enol esters.

    PubMed

    Park, Jihye; Han, Sang Hoon; Sharma, Satyasheel; Han, Sangil; Shin, Youngmi; Mishra, Neeraj Kumar; Kwak, Jong Hwan; Lee, Cheong Hoon; Lee, Jeongmi; Kim, In Su

    2014-05-16

    A copper-catalyzed oxidative coupling of 2-carbonyl-substituted phenols and 1,3-dicarbonyl compounds with a wide range of dibenzyl or dialkyl ethers is described. This protocol provides an efficient preparation of phenol esters and enol esters in good yields with high chemoselectivity. This method represents an alternative protocol for classical esterification reactions.

  19. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    PubMed

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Development of Low Density, Flexible Carbon Phenolic Ablators

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  1. Green extraction of grape skin phenolics by using deep eutectic solvents.

    PubMed

    Cvjetko Bubalo, Marina; Ćurko, Natka; Tomašević, Marina; Kovačević Ganić, Karin; Radojčić Redovniković, Ivana

    2016-06-01

    Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  3. Effects of the traditional method and an alternative parboiling process on the fatty acids, vitamin E, γ-oryzanol and phenolic acids of glutinous rice.

    PubMed

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2016-03-01

    The impacts of traditional and alternative parboiling processes on the concentrations of fatty acids, tocopherol, tocotrienol, γ-oryzanol and phenolic acids in glutinous rice were investigated. Differences between the two methods were the soaking temperatures and the steaming methods. Results showed that parboiling processes significantly increased the concentrations of saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), γ-oryzanol, γ-tocotrienol and total phenolic acids (TPA) in glutinous rice, while α-tocopherol, γ-tocopherol and polyunsaturated fatty acids (PUFA) decreased (p<0.05). Both the traditional and alternative parboiling methods increased the levels of γ-oryzanol by three or fourfold compared with the level of γ-oryzanol in raw rice. Parboiling caused both adverse and favorable effects on phenolic acids content (p<0.05). We found that glutinous rice, parboiled using our newly developed method, had higher levels of PUFA, total vitamin E, γ-oryzanol, hydrobenzoic acid, hydroxycinnamic acid and TPA compared to the traditional method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of dietary sweet potato leaf meal on the growth, non-specific immune responses, total phenols and antioxidant capacity in channel catfish (Ictalurus punctatus).

    PubMed

    Lochmann, Rebecca T; Islam, Shahidul; Phillips, Harold; Adam, Zelalem; Everette, Jace

    2013-04-01

    Traditional energy sources in catfish diets have become costly, and economical alternatives are needed. Sweet potato leaves are underutilised agricultural by-products that provide energy and substantial amounts of phenols, which affect animal and human health. There is little information on the effects of these compounds on catfish, or the capacity of catfish to accumulate dietary phenols. Catfish enriched with phenols have marketing potential as functional foods. This study investigated the effects of diets with sweet potato leaf meal (SPLM) on growth performance, health and total phenolic compounds in catfish. SPLM was substituted for wheat middlings in three diets fed to groups of juvenile catfish for 10 weeks. Weight gain, feed conversion, survival, alternative complement activity and lysozyme activity were similar among diets. Haematocrit was lower in fish fed diets with SPLM, but within the normal range. Total phenols and antioxidant capacity in the whole body were similar among treatments. SPLM was an effective energy source for catfish up to the maximum level tested (230 g kg(-1) diet). SPLM did not enhance total phenols in catfish, but there were no apparent antinutritional effects of the meal on catfish growth, health or survival. © 2012 Society of Chemical Industry.

  5. Carbonyl-Phenol Adducts: An Alternative Sink for Reactive and Potentially Toxic Lipid Oxidation Products.

    PubMed

    Zamora, Rosario; Hidalgo, Francisco J

    2018-02-14

    Different from the well-characterized function of phenolics as antioxidants, their function as lipid-derived carbonyl scavengers is mostly unknown. However, phenolics react with lipid-derived carbonyls as a function of the nucleophilicity of their reactive groups and the electronic effects and steric hindrances present in the reactive carbonyls. Furthermore, the reaction produces a wide variety of carbonyl-phenol adducts, some of which are stable and have been isolated and characterized but others polymerize spontaneously. This perspective updates present knowledge about the lipid-derived carbonyl trapping ability of phenolics, its competition with carbonyl-amine reactions produced in foods, and the presence of carbonyl-phenol adducts in food products.

  6. Theoretical and experimental evidence of the photonitration pathway of phenol and 4-chlorophenol: a mechanistic study of environmental significance.

    PubMed

    Bedini, Andrea; Maurino, Valter; Minero, Claudio; Vione, Davide

    2012-02-01

    Light-induced nitration pathways of phenols are important processes for the transformation of pesticide-derived secondary pollutants into toxic derivatives in surface waters and for the formation of phytotoxic compounds in the atmosphere. Moreover, phenols can be used as ˙NO(2) probes in irradiated aqueous solutions. This paper shows that the nitration of 4-chlorophenol (4CP) into 2-nitro-4-chlorophenol (NCP) in the presence of irradiated nitrate and nitrite in aqueous solution involves the radical ˙NO(2). The experimental data allow exclusion of an alternative nitration pathway by ˙OH + ˙NO(2). Quantum mechanical calculations suggest that the nitration of both phenol and 4CP involves, as a first pathway, the abstraction of the phenolic hydrogen by ˙NO(2), which yields HNO(2) and the corresponding phenoxy radical. Reaction of phenoxyl with another ˙NO(2) follows to finally produce the corresponding nitrated phenol. Such a pathway also correctly predicts that 4CP undergoes nitration more easily than phenol, because the ring Cl atom increases the acidity of the phenolic hydrogen of 4CP. This favours the H-abstraction process to give the corresponding phenoxy radical. In contrast, an alternative nitration pathway that involves ˙NO(2) addition to the ring followed by H-abstraction by oxygen (or by ˙NO(2) or ˙OH) is energetically unfavoured and erroneously predicts faster nitration for phenol than for 4CP. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  7. Rationalization and in vitro modeling of the chemical mechanisms of the enzymatic oxidation of phenolic compounds in planta: from flavonols and stilbenoids to lignins.

    PubMed

    Cottyn, Betty; Kollmann, Albert; Waffo-Teguo, Pierre; Ducrot, Paul-Henri

    2011-06-20

    Enzymatic oxidation of phenolic compounds is a widespread phenomenon in plants. It is responsible for the formation of many oligomers and polymers, which are generally described as the result of a combinatorial coupling of the different radicals formed through oxidation of the phenol group and delocalization of the radical. We focused our interest on several phenolic compounds that are present in plants and known to form, under enzymatic oxidation, oligomers with different type of linkages between monomers. To explain this diversity of inter-monomer linkages and their variation according to the experimental procedure used for the enzymatic oxidation, we report an alternative mechanistic pathway involving dismutation of the radicals, leading to the formation of carbocations which, thereafter, react with nucleophilic species present in the medium. This alternative pathway allows the understanding of peculiar linkages between monomeric units in the oligomer and offers new insights for understanding the formation of phenolic biopolymers in plants. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bio-Based Nanocomposites: An Alternative to Traditional Composites

    ERIC Educational Resources Information Center

    Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri

    2009-01-01

    Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…

  9. Biosorption of phenol onto bionanoparticles from Spirulina sp. LEB 18.

    PubMed

    Dotto, G L; Gonçalves, J O; Cadaval, T R S; Pinto, L A A

    2013-10-01

    The biosorption of phenol onto bionanoparticles from Spirulina sp. LEB 18 was studied. Firstly, the bionanoparticles were prepared from Spirulina sp. strain LEB 18 and characterized. After, response surface methodology was employed to optimize the biosorption process as a function of pH (3.2-8.8) and bionanoparticles dosage (0.15-1.85 g L(-1)). Finally, equilibrium and thermodynamic studies were performed at different temperatures (298-328 K). The bionanoparticles presented hydrodynamic diameter of 232±3 nm and polydispersity index of 0.150. It was found that the more adequate condition for the phenol biosorption was pH of 6.0 and bionanoparticles dosage of 1.85 g L(-1). The Langmuir model presented satisfactory fit with the equilibrium experimental data. The maximum biosorption capacity was 159.33 mg g(-1), obtained at 298 K. The thermodynamic parameters showed that the biosorption was a spontaneous, favorable and exothermic process. Based on these results, it can be affirmed that the bionanoparticles are an alternative, renewable and eco-friendly biosorbent to removal phenol from aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effect of natural phenolics on the thermal and processing behaviour of poly(3-hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Auriemma, Maria; Piscitelli, Amodio; Pasquino, Rossana; Cerruti, Pierfrancesco; Angelini, Stefania; Scarinzi, Gennaro; Malinconico, Mario; Grizzuti, Nino

    2015-12-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its relatively poor mechanical properties and narrow processing window. In this paper, different natural phenol-based additives, including tannic acid (TA), grape bagasse extract (EP), and a lignocellulosic biomass (LC) were used as thermal and processing stabilizers for PHB. The thermal stability of both neat and doped PHB samples was studied by rheology and calorimetry. The experimental results showed that neat PHB massively degrades and that the addition of phenol additives enhances the thermal stability of PHB, preserving the polymer molecular weight after processing. This finding was in agreement with the slower decay in viscosity observed through rheological tests. Physical and chemical interactions between polymer and additive were considered as key factors to interpret the experimental data. LC affected the melt crystallization kinetics of PHB enhancing crystallization upon cooling. This finding suggests that LC was a heterogeneous nucleating agent, potentially able to control the physical aging of PHB. The described results are of interest for the development of sustainable alternatives to synthetic polymer additives, by increasing the applicability of bio-based materials.

  11. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    PubMed

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  12. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y.

    1993-04-01

    Methanogeneic conditions can promote the biodegradation of a number of halogenated aromatic compounds. This study, using sediments from freshwater and estuarine sites, is an evaluation of the anaerobic biodegradability of monochlorinated phenols and benzoic acids coupled to denitrification, sulfidogenesis, and methanogenesis. The results indicate that chlorinated phenols and benzoic acids are biodegradable under at least one set of anaerobic conditions. Metabolism depends both on the electron acceptor available and on the position of the chlorine substituent. Presence of alternative electron acceptors, nitrate, sulfate, and carbonate, can affect degradation rates and substrate specificities. Since contaminated sites usually have mixtures of wastes,more » bioremediation efforts may need to consider the activities of diverse anaerobic communities to carry out effective treatment of all components. 37 refs., 4 figs., 4 tabs.« less

  13. Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water.

    PubMed

    Caetano, F R; Carneiro, E A; Agustini, D; Figueiredo-Filho, L C S; Banks, C E; Bergamini, M F; Marcolino-Junior, L H

    2018-01-15

    Microfluidic devices constructed using low cost materials presents as alternative for conventional flow analysis systems because they provide advantages as low consumption of reagents and samples, high speed of analysis, possibility of portability and the easiness of construction and maintenance. Herein, is described for the first time the use of an electrochemical biosensor for phenol detection combined with a very simple and efficient microfluidic device based on commercial textile threads. Taking advantages of capillary phenomena and gravity forces, the solution transportation is promoted without any external forces or injection pump. Screen printed electrodes were modified with carbon nanotubes/gold nanoparticles followed by covalent binding of tyrosinase. After the biosensor electrochemical characterization by cyclic voltammetry technique, the optimization of relevant parameters such as pH, potential of detection and linear range for the biosensor performance was carried out; the system was evaluated for analytical phenol detection presenting limit of detection and limit of quantification 2.94nmolL -1 and 8.92nmolL -1 respectively. The proposed system was applied on phenol addition and recovery studies in drinking water, obtaining recoveries rates between 90% and 110%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf.

    PubMed

    Silinsin, Muzaffer; Bursal, Ercan

    2018-06-01

    Inula graveolens (L.) Desf. is an annual aromatic herb which has various uses on alternative medicine in many region of the world. In this study, antioxidant activities of ethanol and water extracts of the plant leaves were determined by in vitro DPPH method and phenolic composition of the plant sample was determined by LC-MS/MS analysis. The results showed that chlorogenic acid, quinic acid, hyperoside, protocatechuic acid and quercetin were the major phenolic compounds among the 27 standard compounds. The significant antioxidant capacity of the plant might be related with the high abundance of phenolic compounds.

  15. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health

    PubMed Central

    Duthie, Garry; Campbell, Fiona; Bestwick, Charles; Stephen, Sylvia; Russell, Wendy

    2013-01-01

    Lipid and protein oxidation decreases the shelf-life of foods and may result in formation of end-products potentially detrimental for health. Consumer pressure to decrease the use of synthetic phenolic antioxidants has encouraged identification of alternative compounds or extracts from natural sources. We have assessed whether inclusion of dried vegetable powders improves the oxidative stability of turkey meat patties. Such powders are not only potentially-rich sources of phenolic antioxidants, but also may impart additional health benefits, as inadequate vegetable consumption is a risk factor for heart disease and several cancers. In an accelerated oxidation system, six of eleven vegetable powders significantly (p < 0.05) improved oxidative stability of patties by 20%–30% (spinach < yellow pea < onion < red pepper < green pea < tomato). Improved lipid oxidative stability was strongly correlated with the decreased formation of protein carbonyls (r = 0.747, p < 0.01). However, improved lipid stability could not be ascribed to phenolic acids nor recognized antioxidants, such as α- and γ-tocopherol, despite their significant (p < 0.01) contribution to the total antioxidant capacity of the patties. Use of chemically complex vegetable powders offers an alternative to individual antioxidants for increasing shelf-life of animal-based food products and may also provide additional health benefits associated with increased vegetable intake. PMID:23595133

  16. Phenol-Urea-Formaldehyde (PUF) co-condensed wood adhesives

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1998-01-01

    The reaction of urea with methylolphenol under acidic conditions was investigated. The alternating copolymer of urea and phenol could be synthesized by the reaction of urea and 2,4,6-trimethylolphenol. The reactions of urea with polymethylolphenol mixtures also were investigated by changing the reaction conditions, such as the molar ratio and acidity. The co-...

  17. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  18. Fruit wastes fermentation for phenolic antioxidants production and their application in manufacture of edible coatings and films.

    PubMed

    Martinez-Avila, G C G; Aguilera, A F; Saucedo, S; Rojas, R; Rodriguez, R; Aguilar, C N

    2014-01-01

    Agro-industrial by-products are important sources of potent bioactive phenolic compounds. These compounds are of extreme relevance for food and pharmacological industries due to their great variety of biological activities. Fermentation represents an environmentally clean technology for production and extraction of these bioactive compounds, providing high quality and high activity extracts, which can be incorporated in foods using coatings/films wax-based in order to avoid alterations in their quality. In this document is presented an overview about importance and benefits of solid-state fermentation, pointing out this bioprocess as an alternative technology for use agro-industrial by-products as substrates to produce valuable secondary metabolites and their applications as food quality conservatives.

  19. Simultaneous biodegradation of a phenol and 3,4-dimethylphenol mixture under denitrifying conditions.

    PubMed

    Puig-Grajales, L; Rodríguez-Nava, O; Razo-Flores, E

    2003-01-01

    Denitrification is a feasible alternative for the treatment of phenolic bearing-wastewaters. The aim of this study was to evaluate the biodegradability of phenolic compounds, as the only carbon and energy source in batch and continuous experiments, using nitrate as a final electron acceptor. Experiments in a continuous upward anaerobic sludge bed reactor demonstrated the possibility of biodegrading a mixture of phenol and 3,4-dimethylphenol at organic loads of 251.6 and 39.5 mg/L-d, respectively, at a COD/NO3(-)-N ratio of 2.57. A nitrogen production efficiency of 86% was obtained according to the nitrate consumption. GC-MS analyses demonstrated that m-cresol was an intermediate of 3,4-dimethylphenol degradation in batch conditions, and had an inhibitory effect on phenol degradation.

  20. Understanding the Science Behind How Methylene Chloride/Phenolic Chemical Paint Strippers Remove Coatings

    DTIC Science & Technology

    2011-10-01

    general terms the use of alternative paint strippers formulated with water, formic acids, benzyl alcohol, and peroxides . Facilities testing these...based on benzyl alcohol and peroxide .6 In this system the benzyl alcohol serves as a carrier to penetrate and soften the coating while the peroxide ...34 27. FTIR spectrum of the epoxy primer exposed to 20% benzyl alcohol in methylene chloride

  1. Teaching Sustainable Development Concepts in the Laboratory: A Solid-Liquid Extraction Experiment

    ERIC Educational Resources Information Center

    Parajo, Juan Carlos; Dominguez, Herminia; Santos, Valentin; Alonso, Jose Luis; Garrote, Gil

    2008-01-01

    One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. For example, phenol and phenol derivatives currently used in the manufacture of wood adhesives can be replaced (at least in part) by biopolymers extracted from biomass. In this work, pine bark (a renewable…

  2. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review.

    PubMed

    Martínková, L; Kotik, M; Marková, E; Homolka, L

    2016-04-01

    The phylum Basidiomycota include organisms with enormous bioremediation potential. A variety of processes were proposed at the lab scale for using these fungi and their phenol oxidases in the degradation of phenolics. Here we present a survey of this topic using literature published mostly over the last 10 years. First, the sources of the enzymes are summarized. The laccase and tyrosinase were mainly from Trametes versicolor and Agaricus bisporus, respectively. Recently, however, new promising wild-type producers of the enzymes have emerged and a number of recombinant strains were also constructed, based mainly on yeasts or Aspergillus strains as hosts. The next part of the study summarizes the enzyme and whole-cell applications for the degradation of phenols, polyphenols, cresols, alkylphenols, naphthols, bisphenols and halogenated (bis)phenols in model mixtures or real wastewaters from the food, paper and coal industries, or municipal and hospital sewage. The enzymes were applied as free (crude or purified) enzymes or as enzymes immobilized in various supports or CLEAs, and optionally recycled or used in continuous mode. Alternatively, growing cultures or harvested mycelia were used instead. The products, which were characterized as quinones and their polymers in some cases, could be eliminated by filtration, flocculation or adsorption onto chitosan. The purity of a treated wastewater was monitored using a sensitive aquatic organism. It is concluded that low-cost sources of these enzymes should be searched for and the benefits of enzymatic, biological and physico-chemical methods could be combined to make the processes fit for industrial use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Extraction of phenol using trialkylphosphine oxides (Cyanex 923) in kerosene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urtiaga, A.M.; Ortiz, I.

    1997-04-01

    A group of extractants based on phosphine oxides have been reported as an alternative to conventional polar solvents for phenol-liquid-liquid extraction. Among phosphoryl extractants, Cyanex 923 (a mixture of four trialkylphosphine oxides, alkyl = normal, C{sub 6}, C{sub 8}) has proved to combine high extraction efficiency and low water solubility, obviating the necessity of removing the solvent from the aqueous raffinate, a need associated with the use of methyl isobutyl ketone and isopropyl ether, the solvents most widely employed for this application. Phosphoryl extractants are solvating extractants, and are known to form relatively strong and reversible hydrogen bonds with phenols.more » The fact that most of these systems show a strong nonideality in the organic phase makes a general theoretical treatment of the equilibria almost impossible, leading to the necessity of obtaining a large number of data in order to describe the equilibria for design purposes. In this work the effect of the concentration of phenol in the aqueous phase on the partition coefficient for phenol in Cyanex 923-kerosene/water systems is investigated at six different concentrations of the extractant in the organic phase: 1, 5, 10, 20, 50, and 70% v/v of Cyanex 923-kerosene/water systems is investigated at six different concentrations of the extractant in the organic phase: 1, 5, 10, 20, 50, and 70% v/v of Cyanex 923 in kerosene. The initial concentrations of phenol in the aqueous phase were in the 1000 mg/L < C{sub PhOH} < 50,000 mg/L range.« less

  4. Peroxidase extraction from jicama skin peels for phenol removal

    NASA Astrophysics Data System (ADS)

    Chiong, T.; Lau, S. Y.; Khor, E. H.; Danquah, M. K.

    2016-06-01

    Phenol and its derivatives exist in various types of industrial effluents, and are known to be harmful to aquatic lives even at low concentrations. Conventional treatment technologies for phenol removal are challenged with long retention time, high energy consumption and process cost. Enzymatic treatment has emerged as an alternative technology for phenol removal from wastewater. These enzymes interact with aromatic compounds including phenols in the presence of hydrogen peroxide, forming free radicals which polymerize spontaneously to produce insoluble phenolic polymers. This work aims to extract peroxidase from agricultural wastes materials and establish its application for phenol removal. Peroxidase was extracted from jicama skin peels under varying extraction conditions of pH, sample-to-buffer ratio (w/v %) and temperature. Experimental results showed that extraction process conducted at pH 10, 40% w/v and 25oC demonstrated a peroxidase activity of 0.79 U/mL. Elevated temperatures slightly enhanced the peroxidase activities. Jicama peroxidase extracted at optimum extraction conditions demonstrated a phenol removal efficiency of 87.5% at pH 7. Phenol removal efficiency was ∼ 97% in the range of 30 - 40oC, and H2O2 dosage has to be kept below 100 mM for maximum removal under phenol concentration tested.

  5. Barrel maturation, oak alternatives and micro-oxygenation: influence on red wine aging and quality.

    PubMed

    Oberholster, A; Elmendorf, B L; Lerno, L A; King, E S; Heymann, H; Brenneman, C E; Boulton, R B

    2015-04-15

    The impact of micro-oxygenation (MOX) in conjunction with a variety of oak alternatives on phenolic composition and red wine aging was investigated and compared with traditional barrel aging. Although several studies concluded that MOX give similar results to barrel aging, few have compared them directly and none directly compared MOX with and without wood alternatives and barrel aging. Results confirmed that MOX had a positive effect on colour density, even after 5 months of bottle aging. This is supported by an increase in polymeric phenol and pigment content not only with aging but in the MOX compared to barrel matured wine treatments. Descriptive analysis showed that MOX in combination with wood alternatives such as oak chips and staves could mimic short term (six months) barrel aging in new American and French oak barrels in regards to sensory characteristics. Published by Elsevier Ltd.

  6. Removal of phenol from synthetic wastewater using carbon-mineral composite: Batch mechanisms and composition study

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Alrozi, Rasyidah; Aziz, Hamidi Abdul; Han, Tan Yong; Yusoff, Mohd Suffian

    2017-09-01

    This study investigates the treatability of composite adsorbent made from waste materials and minerals which is widely available in Malaysia. The composite adsorbent was prepared based on wet attrition method which focuses on the determination of optimum dosage of each of raw materials amount by conventional design of experiment work. Zeolite, activated carbon, rice husk and limestone were ground to obtained particle size of 150 µm. 45.94% zeolite, 15.31% limestone, 4.38% activated carbon, 4.38% rice husk carbon and 30% of ordinary Portland cement (OPC). The mixture was mixed together under pre-determined mixing time. About 60% (by weight) of water was added and the mixture paste was allowed to harden for 24 hours and then submersed in water for three days for curing. Batch experimental study was performed on synthetic dissolving a known amount of solid crystal phenol with distilled water into the volumetric flasks. From the batch experimental study, it was revealed that the optimum shaking speed for removal of phenol was 200 rpm. The removal efficiency was 65%. The optimum shaking time for removing phenol was 60 minutes; the percentage achieved was 55%. The removal efficiency increased with the increased of the amount of composite adsorbent. The removal efficiency for optimum adsorbent dosage achieved 86%. Furthermore, the influence of pH solution was studied. The optimum pH for removing phenol was pH 6, with the removal percentage of 95%. The results implies that carbon-mineral based composite adsorbent is promising replacement for commercial adsorbent that provides alternative source for industrial adsorption application in various types of effluent treatment system.

  7. The replacement of alkyl-phenol ethoxylates to improve the environment acceptability of drilling fluid additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getliff, J.M.; James, S.G.

    1996-12-31

    Alkyl-phenol ethoxylates (APEO) are a class of surfactants which have been used widely in the drilling fluid industry. The popularity of these surfactants is based on their cost effectiveness, availability and the range of hydrophilic-lipophilic balance values obtainable. Studies have shown that APEOs exhibit oestrogenic effects, and can cause sterility in some male aquatic species. This may have subsequent human consequences and such problems have lead to a banning of their use in some countries and agreements to phase out their use e.g. PARCOM recommendation 92/8. The use of APEOs as additives in detergents, lubricants and stuck-pipe release agents formore » drilling fluid applications is discussed. The effectiveness of products formulated with APEOs are directly compared with alternative products which are non-persistent and less damaging to aquatic species. Lubricity measurements using standard and in-house designed equipment and washing tests to compare the efficiency of surfactants are explained and product performance results presented. The results show that alternatives to products containing APEOs are available and that in some cases they show a better technical performance. In addition to the improved environmental acceptability of the base chemicals, the better performance enables lower concentrations to be used, hence reducing the environmental impact even further.« less

  8. Microdialysis as a New Technique for Extracting Phenolic Compounds from Extra Virgin Olive Oil.

    PubMed

    Bazzu, Gianfranco; Molinu, Maria Giovanna; Dore, Antonio; Serra, Pier Andrea

    2017-03-01

    The amount and composition of the phenolic components play a major role in determining the quality of olive oil. The traditional liquid-liquid extraction (LLE) method requires a time-consuming sample preparation to obtain the "phenolic profile" of extra virgin olive oil (EVOO). This study aimed to develop a microdialysis extraction (MDE) as an alternative to the LLE method to evaluate the phenolic components of EVOO. To this purpose, a microdialysis device and dialysis procedure were developed. "Dynamic-oil" microdialysis was performed using an extracting solution (80:20 methanol/water) flow rate of 2 μL min -1 and a constant EVOO stream of 4 μL min -1 . The results indicated a strong positive correlation between MDE and the LLE method, providing a very similar phenolic profile obtained with traditional LLE. In conclusion, the MDE approach, easier and quicker in comparison to LLE, provided a reliable procedure to determine the phenolic components used as a marker of the quality and traceability of EVOO.

  9. Binding of alkylphenols and alkylated non-phenolics to the rainbow trout (Oncorhynchus mykiss) plasma sex steroid-binding protein.

    PubMed

    Tollefsen, K-E

    2007-09-01

    Alkylphenols are well-known endocrine disrupters, mediating effects through the estrogen receptor (ER). Although the estrogenic properties of the alkylphenols are well documented, alternative mechanisms of action are poorly described. In the present work, the interaction of a range of alkyl-substituted phenols and alkyl-substituted non-phenolics with the rainbow trout (Oncorhynchus mykiss) sex steroid-binding protein (rtSBP) were determined by competitive ligand-binding studies. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure were assessed. The results showed that the rtSBP binds to most chemical structures tested, although the highest affinity was obtained for mono-substituted alkylphenols with a chain length of four to eight methyl groups. Interestingly, rtSBP binding was also observed for non-phenolic compounds such as 4-t-butylcyclohexanol and 4-t-butylnitrobenzene suggesting that the rtSBP has a broad binding specificity for alkylphenols and alkylated non-phenolics.

  10. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  11. Emerging role of phenolic compounds as natural food additives in fish and fish products.

    PubMed

    Maqsood, Sajid; Benjakul, Soottawat; Shahidi, Fereidoon

    2013-01-01

    Chemical and microbiological deteriorations are principal causes of quality loss of fish and fish products during handling, processing, and storage. Development of rancid odor and unpleasant flavor, changes of color and texture as well as lowering nutritional value in fish can be prevented by appropriate use of additives. Due to the potential health hazards of synthetic additives, natural products, especially antioxidants and antimicrobial agents, have been intensively examined as safe alternatives to synthetic compounds. Polyphenols (PP) are the natural antioxidants prevalent in fruits, vegetables, beverages (tea, wine, juices), plants, seaweeds, and some herbs and show antioxidative and antimicrobial activities in different fish and fish products. The use of phenolic compounds also appears to be a good alternative for sulphiting agent for retarding melanosis in crustaceans. Phenolic compounds have also been successfully employed as the processing aid for texture modification of fish mince and surimi. Thus, plant polyphenolic compounds can serve as potential additives for preventing quality deterioration or to retain the quality of fish and fish products.

  12. Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L.

    PubMed

    Sircar, Debabrata; Cardoso, Hélia G; Mukherjee, Chiranjit; Mitra, Adinpunya; Arnholdt-Schmitt, Birgit

    2012-05-01

    Methyl-jasmonate (MJ)-treated hairy roots of Daucus carota L. were used to study the influence of alternative oxidase (AOX) in phenylpropanoid metabolism. Phenolic acid accumulation, as well as total flavonoids and lignin content of the MJ-treated hairy roots were decreased by treatment with salicylhydroxamic acid (SHAM), a known inhibitor of AOX. The inhibitory effect of SHAM was concentration dependent. Treatment with propyl gallate (PG), another inhibitor of AOX, also had a similar inhibitory effect on accumulation of phenolic acid, total flavonoids and lignin. The transcript levels of two DcAOX genes (DcAOX2a and DcAOX1a) were monitored at selected post-elicitation time points. A notable rise in the transcript levels of both DcAOX genes was observed preceding the MJ-induced enhanced accumulation of phenolics, flavonoids and lignin. An appreciable increase in phenylalanine ammonia-lyase (PAL) transcript level was also observed prior to enhanced phenolics accumulation. Both DcAOX genes showed differential transcript accumulation patterns after the onset of elicitation. The transcript levels of DcAOX1a and DcAOX2a attained peak at 6hours post elicitation (hpe) and 12hpe, respectively. An increase in the transcript levels of both DcAOX genes preceding the accumulation of phenylpropanoid-derivatives and lignin showed a positive correlation between AOX activity and phenylpropanoid biosynthesis. The results provide important new insight about the influence of AOX in phenylpropanoid biosynthesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Evaluation of FTA paper and phenol for storage, extraction and molecular characterization of infectious bursal disease virus.

    PubMed

    Purvis, Linda B; Villegas, Pedro; Perozo, Francisco

    2006-12-01

    Infectious bursal disease virus (IBDV) is an important poultry pathogen and is distributed world wide that can cause immune suppression and lesions of the bursa of Fabricius. The main component of the virus, VP2, is not only responsible for the bird's immune response, but is important for the molecular identification of this virus as well. The nucleic acid of the virus must be adequately preserved to be analyzed by reverse-transcriptase PCR (RT-PCR) and sequenced for the molecular characterization of the field strain. Phenol inactivation has been the standard for IBDV tissue collection and international shipment; however, there have been some reports of interference with molecular detection capabilities when using phenol. Phenol is also a hazardous chemical and must be handled and shipped carefully. The ability to use the Flinders Technology Associates filter paper (FTA card) for inactivation of several avian pathogens has been proven previously, however no work has been published on its use in IBDV nucleic acid detection. Bursas from experimentally infected birds was imprinted on FTA cards, and then placed in phenol. Samples were evaluated and compared based on molecular detection capabilities between the two inactivation methods. The nucleic acid of the virus was detected in 85% of the FTA card inactivated samples compared to 71% in the phenol inactivated samples. Sequence analysis was performed on samples inactivated by both methods and no differences were found. When comparing the RNA stability at different temperatures, euthanized IBDV infected birds were held at two different temperatures before sampling. No differences were detected for FTA sampling; however, for tissues in phenol the nucleic acid was only detectable up to 2 h post-mortem in the tissues held at 4 degrees C prior to sampling. These findings indicate that the FTA card is an efficient and reliable alternative collection method for molecular detection and characterization of IBDV.

  14. The Extent of Fermentative Transformation of Phenolic Compounds in the Bioanode Controls Exoelectrogenic Activity in a Microbial Electrolysis Cell

    DOE PAGES

    Zeng, Xiaofei; Collins, Maya; Borole, Abhijeet P.; ...

    2016-11-27

    Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in themore » highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed exoelectrogenic activity in batch runs conducted with SA, VA and HBA was controlled by the extent of fermentative transformation of the three phenolic compounds in the bioanode, which is related to the number and position of the methoxy and hydroxyl substituents.« less

  15. Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens

    PubMed Central

    Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A.; Bain, Timothy S.; Lovley, Derek R.

    2013-01-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation. PMID:24096430

  16. 40 CFR 464.16 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d) Dust Collection Scrubber...) 0.343 0.129 Total Phenols 0.258 0.09 TTO 0.613 0.2 Oil and grease (for alternate monitoring) 9.01 3...) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring) 330 110 (g) Melting Furnace...

  17. 40 CFR 464.16 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d) Dust Collection Scrubber...) 0.343 0.129 Total Phenols 0.258 0.09 TTO 0.613 0.2 Oil and grease (for alternate monitoring) 9.01 3...) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring) 330 110 (g) Melting Furnace...

  18. 40 CFR 464.16 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d) Dust Collection Scrubber...) 0.343 0.129 Total Phenols 0.258 0.09 TTO 0.613 0.2 Oil and grease (for alternate monitoring) 9.01 3...) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring) 330 110 (g) Melting Furnace...

  19. 40 CFR 464.16 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d) Dust Collection Scrubber...) 0.343 0.129 Total Phenols 0.258 0.09 TTO 0.613 0.2 Oil and grease (for alternate monitoring) 9.01 3...) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring) 330 110 (g) Melting Furnace...

  20. Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive.

    PubMed

    Hazwan Hussin, M; Samad, Noraini Abdul; Latif, Nur Hanis Abd; Rozuli, Nurul Adilla; Yusoff, Siti Baidurah; Gambier, François; Brosse, Nicolas

    2018-07-01

    Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Oxidative Reactions with Nonaqueous Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan S. Dordick; Douglas Clark; Brian H Davison

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with lessmore » waste.« less

  2. The Performance of Four Different Mineral Liners on the Transportation of Chlorinated Phenolic Compounds to Groundwater in Landfills

    PubMed Central

    Adar, Elanur; Bilgili, Mehmet Sinan

    2015-01-01

    The aim of this study was to investigate the efficiency of four different mineral liners (clay, bentonite, kaoline, and zeolite) which could be utilized to prevent the transport of phenolic compounds to groundwater through alternative liner systems. Four laboratory-scale HDPE reactors with 80 cm height and 40 cm inner diameter were operated for a period of 180 days. Results indicated that the transport of mono- or dichlorophenols is significantly prevented by the liner systems used, while the transport of highly chlorinated phenolic compounds cannot be prevented by the landfill liner system effectively. Highly chlorinated phenolic compounds in groundwater can be found in higher concentrations than the leachate, as a result of the degradation and transformation of these compounds. Thus, the analysis of highly chlorinated phenolic compounds such as 2,4,6-TCP, 2,3,6-TCP, 3,4,5-TCP, and PCP is of great significance for the studies to be conducted on the contamination of groundwater around landfills. PMID:26759828

  3. Paint removal activities in the US Navy

    NASA Astrophysics Data System (ADS)

    Kozol, Joseph

    1993-03-01

    Use of methylene chloride and phenol based chemical strippers for aircraft paint removal generates large quantities of hazardous waste and creates health and safety problems for operating personnel. This paper presents an overview of the U.S. Navy's activities in the investigation and implementation of alternate paint stripping methods which will minimize or eliminate hazardous waste and provide a safe operating environment. Alternate paint removal methods under investigation by the Navy at the present time include use of non-hazardous chemical paint removers, xenon flashlamp/CO2 pellets, lasers and plastic media. Plastic media blasting represents a mature technology in current usage for aircraft paint stripping and is being investigated for determination of its effects on Navy composite aircraft configurations.

  4. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....0095 Oil and grease (for alternate monitoring) 0.363 0.121 (c) Die Casting Operations. PSES Pollutant... Total phenols 0.0074 0.0026 TTO 0.0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d...) 8.48 4.63 Lead (T) 8.7 4.3 Zinc (T) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring...

  5. 40 CFR 464.46 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (T) 0.0339 0.0129 TTO 0.093 0.0304 Oil and grease (for alternate monitoring) 1.34 0.446 (b) Die....29 Oil and grease (for alternate monitoring) 60.8 20.3 (d) Mold Cooling Operations. PSNS Pollutant or....0022 Zinc (T) 0.0066 0.0025 Total phenols 0.0074 0.0026 TTO 0.0196 0.0064 Oil and grease (for alternate...

  6. 40 CFR 464.46 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (T) 0.0339 0.0129 TTO 0.093 0.0304 Oil and grease (for alternate monitoring) 1.34 0.446 (b) Die....29 Oil and grease (for alternate monitoring) 60.8 20.3 (d) Mold Cooling Operations. PSNS Pollutant or....0022 Zinc (T) 0.0066 0.0025 Total phenols 0.0074 0.0026 TTO 0.0196 0.0064 Oil and grease (for alternate...

  7. 40 CFR 464.46 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (T) 0.0339 0.0129 TTO 0.093 0.0304 Oil and grease (for alternate monitoring) 1.34 0.446 (b) Die....29 Oil and grease (for alternate monitoring) 60.8 20.3 (d) Mold Cooling Operations. PSNS Pollutant or....0022 Zinc (T) 0.0066 0.0025 Total phenols 0.0074 0.0026 TTO 0.0196 0.0064 Oil and grease (for alternate...

  8. A weight-of-evidence approach to assess chemicals: case study on the assessment of persistence of 4,6-substituted phenolic benzotriazoles in the environment.

    PubMed

    Brandt, Marc; Becker, Eva; Jöhncke, Ulrich; Sättler, Daniel; Schulte, Christoph

    2016-01-01

    One important purpose of the European REACH Regulation (EC No. 1907/2006) is to promote the use of alternative methods for assessment of hazards of substances in order to avoid animal testing. Experience with environmental hazard assessment under REACH shows that efficient alternative methods are needed in order to assess chemicals when standard test data are missing. One such assessment method is the weight-of-evidence (WoE) approach. In this study, the WoE approach was used to assess the persistence of certain phenolic benzotriazoles, a group of substances including also such of very high concern (SVHC). For phenolic benzotriazoles, assessment of the environmental persistence is challenging as standard information, i.e. simulation tests on biodegradation are not available. Thus, the WoE approach was used: overall information resulting from many sources was considered, and individual uncertainties of each source analysed separately. In a second step, all information was aggregated giving an overall picture of persistence to assess the degradability of the phenolic benzotriazoles under consideration although the reliability of individual sources was incomplete. Overall, the evidence suggesting that phenolic benzotriazoles are very persistent in the environment is unambiguous. This was demonstrated by a WoE approach considering the prerequisites of REACH by combining several limited information sources. The combination enabled a clear overall assessment which can be reliably used for SVHC identification. Finally, it is recommended to include WoE approaches as an important tool in future environmental risk assessments.

  9. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds.

    PubMed

    Tripodo, Giusy; Ibáñez, Elena; Cifuentes, Alejandro; Gilbert-López, Bienvenida; Fanali, Chiara

    2018-01-03

    Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A comparison of the phenolic profile and antioxidant activity of different Cichorium spinosum L. ecotypes.

    PubMed

    Petropoulos, Spyridon A; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel Cfr

    2018-01-01

    Wild greens are considered a rich source of phenolic compounds and antioxidants and an essential part of the so-called Mediterranean diet. In the present study, Cichorium spinosum L. ecotypes, cultivated or collected in situ from wild plants from the eastern Mediterranean, were evaluated regarding their phenolic composition and antioxidant activity. Significant differences were observed among the various studied ecotypes regarding their phenolic compound content and profile, especially between wild and cultivated ecotypes, as well as the phenolic acid content between commercial products and cultivated plants. The antioxidant activity also varied among the various studied ecotypes and growing conditions, with commercial products having the highest antioxidant activity, whereas wild ecotypes showed lower antioxidant activity. Cichorium spinosum leaves are a rich source of chicoric and 5-O-caffeoylquinic acid, while significant differences in total phenolic acids, flavonoids and phenolic compound content and in antioxidant activity were observed among the studied ecotypes, as well as between the tested growing conditions. According to the results of the present study, further valorization of C. spinosum species has great potential, since it could be used as a new alternative species in the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Development of Low Density Flexible Carbon Phenolic Ablators

    NASA Technical Reports Server (NTRS)

    Stackpole, Mairead; Thornton, Jeremy; Fan, Wendy; Agrawal, Parul; Doxtad, Evan; Gasch, Matt

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (0.27g/cm3) coupled with efficient ablative capability at high heat fluxes. Under the Orion program, PICA was also shown to be capable of both ISS and lunar return missions however some unresolved issues remain for its application in a tiled configuration for the Orion-specific design. In particular, the problem of developing an appropriate gap filler resulted in the Orion program selecting AVCOAT as the primary heatshield material over PICA. We are currently looking at alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA that will address some of the design issues faced in the application of a tiled PICA heat shield. These new materials are viable TPS candidates for upcoming NASA missions and as material candidates for private sector Commercial Orbital Transportation Services (COTS). This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as arc jet and LHMEL screening test results.

  12. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus The development of catalytic enantioselective transformations has been the focus of many research groups over the past half century and is of paramount importance to the pharmaceutical and agrochemical industries. Since the award of the Nobel Prize in 2001, the field of enantioselective transition metal catalysis has soared to new heights, with the development of more efficient catalysts and new catalytic transformations at increasing frequency. Furthermore, catalytic reactions that allow higher levels of redox- and step-economy are being developed. Thus, alternatives to asymmetric alkene dihydroxylation and the enantioselective reduction of α,β-unsaturated ketones can invoke more strategic C–C bond forming reactions, such as asymmetric aldol reactions of an aldehyde with α-hydroxyketone donors or enantioselective alkynylation of an aldehyde, respectively. To facilitate catalytic enantioselective addition reactions, including the aforementioned aldol and alkynylation reactions, our lab has developed the ProPhenol ligand. In this Account, we describe the development and application of the ProPhenol ligand for asymmetric additions of both carbon- and heteroatom-based nucleophiles to various electrophiles. The ProPhenol ligand spontaneously forms chiral dinuclear metal complexes when treated with an alkyl metal reagent, such as Et2Zn or Bu2Mg. The resulting complex contains both a Lewis acidic site to activate an electrophile and a Brønsted basic site to deprotonate a pronucleophile. Initially, our research focused on the use of Zn-ProPhenol complexes to facilitate the direct aldol reaction. Fine tuning of the reaction through ligand modification and the use of additives enabled the direct aldol reaction to proceed in high yields and stereoselectivities with a broad range of donor substrates, including acetophenones, methyl ynones, methyl vinyl ketone, acetone, α-hydroxy carbonyl compounds, and glycine Schiff bases. Additionally, an analogous magnesium ProPhenol complex was used to facilitate enantioselective diazoacetate aldol reactions with aryl, α,β-unsaturated, and aliphatic aldehydes. The utility of bimetallic ProPhenol catalysts was extended to asymmetric additions with a wide range of substrate combinations. Effective pronucleophiles include oxazolones, 2-furanone, nitroalkanes, pyrroles, 3-hydroxyoxindoles, alkynes, meso-1,3-diols, and dialkyl phosphine oxides. These substrates were found to be effective with a number of electrophiles, including aldehydes, imines, nitroalkenes, acyl silanes, vinyl benzoates, and α,β-unsaturated carbonyls. A truly diverse range of enantioenriched compounds have been prepared using the ProPhenol ligand, and the commercial availability of both ligand enantiomers makes it ideally suited for the synthesis of complex molecules. To date, enantioselective ProPhenol-catalyzed reactions have been used in the synthesis of more than 20 natural products. PMID:25650587

  13. Development and UFLC-MS/MS Characterization of a Product-Specific Standard for Phenolic Quantification of Maple-Derived Foods.

    PubMed

    Liu, Yongqiang; Ma, Hang; Seeram, Navindra P

    2016-05-04

    The phenolic contents of plant foods are commonly quantified by the Folin-Ciocalteu assay based on gallic acid equivalents (GAEs). However, this may lead to inaccuracies because gallic acid is not always representative of the structural heterogeneity of plant phenolics. Therefore, product-specific standards have been developed for the phenolic quantification of several foods. Currently, maple-derived foods (syrup, sugar, sap/water, and extracts) are quantified for phenolic contents based on GAEs. Because lignans are the predominant phenolics present in maple, herein, a maple phenolic lignan-enriched standard (MaPLES) was purified (by chromatography) and characterized (by UFLC-MS/MS with lignans previously isolated from maple syrup). Using MaPLES and secoisolariciresinol (a commercially available lignan), the phenolic contents of the maple-derived foods increased 3-fold compared to GAEs. Therefore, lignan-based standards are more appropriate for phenolic quantification of maple-derived foods versus GAEs. Also, MaPLES can be utilized for the authentication and detection of fake label claims on maple products.

  14. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y.

    1993-01-01

    Nitrate, sulfate, and carbonate were used as electron acceptors to examine the anaerobic biodegradability of chlorinated aromatic compounds in estuarine and freshwater sediments. The respective denitrifying, sulfidogenic, and methanogenic enrichment cultures were established on each of the monochlorinated phenol and monochlorinated benzoic acid isomers, using sediment from the upper (freshwater) and lower (estuarine) Hudson River and the East River (estuarine) as source materials. (Copyright (c) 1993 American Society for Microbiology.)

  15. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses.

    PubMed

    Ribeiro, L F; Ribani, R H; Francisco, T M G; Soares, A A; Pontarolo, R; Haminiuk, C W I

    2015-12-15

    The aim of this study was to characterize grape pomace (GP) from winemaking byproducts of different grape samples (Cabernet Sauvignon-CS; Merlot-ME; Mix composed of 65% Bordeaux, 25% Isabel and 10% BRS Violet-MI and Terci-TE) with a view to exploiting its potential as a source of bioactive compounds and an alternative to the reuse of waste. Bioactive compounds such as individual phenolic compounds and polyunsaturated fatty acids (PUFA) were identified and quantified by spectrophotometric, chromatographic and spectral analyses. The sample of MI had the highest concentrations for total phenolic compounds and total flavonoids, while TE had the highest content for total monomeric anthocyanins. For all samples it was possible to identify 13 different anthocyanins by high performance liquid chromatography (HPLC) and mass spectrometry (MS). Moreover, the GP samples showed phenolic acids; flavan-3-ols such as catechin; flavonols such as quercetin, rutin and kaempferol; and stilbenes such as trans-resveratrol. Therefore, grape pomace can be considered a source for the recovery of phenolic compounds having antioxidant activity as well as a rich source of PUFA. Thus it can be used as an ingredient in the development of new food products, since it is suitable for human consumption, and a viable alternative both to adding nutritional value to food and to reduce environmental contamination. Copyright © 2015. Published by Elsevier B.V.

  16. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.029 0.0095 Oil and grease (for alternate monitoring) 0.363 0.121 (c) Die Casting Operations. PSES... Total phenols 0.0074 0.0026 TTO 0.0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d...) 8.48 4.63 Lead (T) 8.7 4.3 Zinc (T) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring...

  17. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.029 0.0095 Oil and grease (for alternate monitoring) 0.363 0.121 (c) Die Casting Operations. PSES... Total phenols 0.0074 0.0026 TTO 0.0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d...) 8.48 4.63 Lead (T) 8.7 4.3 Zinc (T) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring...

  18. 40 CFR 464.45 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Total phenols 1.74 0.608 TTO 3.95 1.29 Oil and grease for alternate monitoring) 60.8 20.3 (d) Mold... Zinc (T) 0.3 0.114 TTO 0.821 0.268 Oil and grease for alternate monitoring) 11.8 3.94 ....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 TTO 0.093 0.0304 Oil and grease (for alternate...

  19. 40 CFR 464.45 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Total phenols 1.74 0.608 TTO 3.95 1.29 Oil and grease for alternate monitoring) 60.8 20.3 (d) Mold... Zinc (T) 0.3 0.114 TTO 0.821 0.268 Oil and grease for alternate monitoring) 11.8 3.94 ....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 TTO 0.093 0.0304 Oil and grease (for alternate...

  20. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.029 0.0095 Oil and grease (for alternate monitoring) 0.363 0.121 (c) Die Casting Operations. PSES... Total phenols 0.0074 0.0026 TTO 0.0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d...) 8.48 4.63 Lead (T) 8.7 4.3 Zinc (T) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring...

  1. 40 CFR 464.45 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Total phenols 1.74 0.608 TTO 3.95 1.29 Oil and grease for alternate monitoring) 60.8 20.3 (d) Mold... Zinc (T) 0.3 0.114 TTO 0.821 0.268 Oil and grease for alternate monitoring) 11.8 3.94 ....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 TTO 0.093 0.0304 Oil and grease (for alternate...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Collins, Maya; Borole, Abhijeet P.

    Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in themore » highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed exoelectrogenic activity in batch runs conducted with SA, VA and HBA was controlled by the extent of fermentative transformation of the three phenolic compounds in the bioanode, which is related to the number and position of the methoxy and hydroxyl substituents.« less

  3. Pre-fermentative cold maceration, saignée, and various thermal treatments as options for modulating volatile aroma and phenol profiles of red wine.

    PubMed

    Lukić, Igor; Budić-Leto, Irena; Bubola, Marijan; Damijanić, Kristijan; Staver, Mario

    2017-06-01

    The effects of six maceration treatments on volatile aroma and phenol composition of Teran red wine were studied: standard maceration (control C), cold pre-fermentation maceration (CPM), saignée (S), pre-fermentation heating with extended maceration (PHT) or juice fermentation (PHP), and post-fermentation heating (POH). PHP wine contained the highest amounts of esters, fatty acids and anthocyanins, and the lowest content of other phenols. Alternative treatments decreased higher alcohols in relation to control C. CPM treatment lowered the extraction of seed tannins, exhibited the highest acetaldehyde, ethyl acetate and C 6 -compounds levels, and had increased ester levels in relation to control C. POH wine contained the highest concentration of total phenols, flavonoids, monomeric, oligomeric and polymeric flavanols, and color intensity and hue. S and PHT wines contained lower amount of total phenols, but higher than in C and CPM wines. The calculated Odor Activity Values were used to establish significant differences between the treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Boosting effect of ortho-propenyl substituent on the antioxidant activity of natural phenols.

    PubMed

    Marteau, Clémentine; Guitard, Romain; Penverne, Christophe; Favier, Dominique; Nardello-Rataj, Véronique; Aubry, Jean-Marie

    2016-04-01

    Seven new antioxidants derived from natural or synthetic phenols have been designed as alternatives to BHT and BHA antioxidants. Influence of various substituents at the ortho, meta and para positions of the aromatic core of phenols on the bond dissociation enthalpy of the ArO-H bond was evaluated using a DFT method B3LYP/6-311++G(2d,2p)//B3LYP/6-311G(d,p). This prediction highlighted the ortho-propenyl group as the best substituent to decrease the bond dissociation enthalpy (BDE) value. The rate constants of hydrogen transfer from these phenols to DPPH radical in a non-polar and non-protic solvent have been measured and were found to be in agreement with the BDE calculations. For o-propenyl derivatives from 2-tert-butyl-4-methylphenol, BHA, creosol, isoeugenol and di-o-propenyl p-cresol, fewer radicals were trapped by a single phenol molecule, i.e. a lower stoichiometric number. Reaction mechanisms involving the evolution of the primary phenoxyl radical ArO are proposed to rationalise these effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Chemical composition of rosehips from different Rosa species: an alternative source of antioxidants for the food industry.

    PubMed

    Jiménez, Sandra; Jiménez-Moreno, Nerea; Luquin, Asunción; Laguna, Mariano; Rodríguez-Yoldi, María Jesús; Ancín-Azpilicueta, Carmen

    2017-07-01

    It is important to explore new sources of natural additives because the demand for these compounds by consumers is increasing. These products also provide health benefits and help in food preservation. An unexplored source of nutrients and antioxidant compounds is rosehip, the fleshy fruit of roses. This work compares the antioxidant compound (vitamin C, neutral phenols and acidic phenols) content of four Rosa species rosehips: R. pouzinii, R. corymbifera, R. glauca and R. canina from different geographical zones. Results show quantitative variability in ascorbic acids and neutral phenols content, and quantitative and qualitative differences in acidic phenol content, depending on species. Vitamin C concentration was highly variable depending on species, R. canina being the one with the highest concentration and R. pouzinii the one with the lowest content. Variability was found in total neutral polyphenols concentration and a correlation between freshness of the rosehips and concentration of neutral polyphenols was also found. Significant differences were found in the acidic phenols content among the studied species. Generally antioxidant activity was higher in the vitamin C fraction.

  6. Phenol-Rich Compounds Sweet Gel: A Statistically More Effective Antibiotic than Cloxacillin Against Pseudomonas Aeruginosa.

    PubMed

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; Khan, Gazala Afreen; Kardi, Karima

    2016-09-01

    The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia ( Shilajit ), Castanea sativa , and Ephedra sinica stapf , with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L . (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ± standard deviations. Quantitative analyses were performed using the paired t -test. The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa ( P < 0.05). Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure.

  7. Phenol-Rich Compounds Sweet Gel: A Statistically More Effective Antibiotic than Cloxacillin Against Pseudomonas Aeruginosa

    PubMed Central

    Dashtdar, Mehrab; Dashtdar, Mohammad Reza; Dashtdar, Babak; Khan, Gazala Afreen; Kardi, Karima

    2016-01-01

    Objectives: The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. Methods: The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia (Shilajit), Castanea sativa, and Ephedra sinica stapf, with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L. (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ± standard deviations. Quantitative analyses were performed using the paired t-test. Results: The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa (P < 0.05). Conclusion: Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure. PMID:27695634

  8. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  9. Preliminary study on chicken feather protein-based wood adhesives

    Treesearch

    Zehui Jiang; Daochun Qin; Chung-Yun Hse; Monlin Kuo; Zhaohui Luo; Ge Wang; Yan Yu

    2008-01-01

    The objective of this preliminary study was to partially replace phenol in the synthesis of phenol-formaldehyde resin with feather protein. Feather protein–based resins, which contained one part feather protein and two parts phenol, were formulated under the conditions of two feather protein hydrolysis methods (with and without presence of phenol during...

  10. Pilonidal sinus disease surgery in children: the first study to compare crystallized phenol application to primary excision and closure.

    PubMed

    Ates, Ufuk; Ergun, Ergun; Gollu, Gulnur; Sozduyar, Sumeyye; Kologlu, Meltem; Cakmak, Murat; Dindar, Huseyin; Yagmurlu, Aydin

    2018-03-01

    Pilonidal sinus (PS) is an infectious and inflammatory disease of sacrococcygeal region. Current methods include; surgical excision with/without suturing the defect, rhomboid excision and flap and chemical substance application. In this study, crystallized phenol application was compared to excision and primary closure. This retrospective study included pediatric patients with PS who were treated with excision and primer closure technique and phenol application. The patients' medical data were analyzed retrospectively. This study included 117 patients with PS. There were 52 girls (44%) and 65 boys (56%). Mean age of children was 15.6 (12-20) years. Excision and primary closure were applied to 77 patients (66%) and phenol was applied to 40 patients (34%). The children in phenol group were discharged on the operation day; mean hospitalization time in the excision and primary closure group was 2.7 (1-14) days. Mean follow up was 44.6 (8-82) months for primary excision and closure group and 8.1 (1-19) months for phenol group. Although many surgical and non-surgical treatment modalities have been described for PS, the optimal one remains unknown. Limited with the retrospective nature of the data, crystallized phenol application seems a feasible minimal invasive alternative to primary closure of PS with lower recurrence and complication rates in children. Level III. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Phenol red-silk tyrosine cross-linked hydrogels.

    PubMed

    Sundarakrishnan, Aswin; Herrero Acero, Enrique; Coburn, Jeannine; Chwalek, Karolina; Partlow, Benjamin; Kaplan, David L

    2016-09-15

    Phenol red is a cytocompatible pH sensing dye that is commonly added to cell culture media, but removed from some media formulations due to its structural mimicry of estrogen. Phenol red free media is also used during live cell imaging, to avoid absorbance and fluorescence quenching of fluorophores. To overcome these complications, we developed cytocompatible and degradable phenol red-silk tyrosine cross-linked hydrogels using horseradish peroxidase (HRP) enzyme and hydrogen peroxide (H2O2). Phenol red added to silk during tyrosine crosslinking accelerated di-tyrosine formation in a concentration-dependent reaction. Phenol red diffusion studies and UV-Vis spectra of phenol red-silk tyrosine hydrogels at different pHs showed altered absorption bands, confirming entrapment of dye within the hydrogel network. LC-MS of HRP-reacted phenol red and N-acetyl-l-tyrosine reaction products confirmed covalent bonds between the phenolic hydroxyl group of phenol red and tyrosine on the silk. At lower phenol red concentrations, leak-proof hydrogels which did not release phenol red were fabricated and found to be cytocompatible based on live-dead staining and alamar blue assessments of encapsulated fibroblasts. Due to the spectral overlap between phenol red absorbance at 415nm and di-tyrosine fluorescence at 417nm, phenol red-silk hydrogels provide both absorbance and fluorescence-based pH sensing. With an average pKa of 6.8 and good cytocompatibiltiy, phenol red-silk hydrogels are useful for pH sensing in phenol red free systems, cellular microenvironments and bioreactors. Phenol red entrapped within hydrogels facilitates pH sensing in phenol red free environments. Leak-proof phenol red based pH sensors require covalent binding techniques, but are complicated due to the lack of amino or carboxyl groups on phenol red. Currently, there is no simple, reliable technique to covalently link phenol red to hydrogel matrices, for real-time pH sensing in cell culture environments. Herein, we take advantage of phenolic groups for covalent linkage of phenol red to silk tyrosine in the presence of HRP and H2O2. The novelty of the current system stems from its simplicity and the use of silk protein to create a cytocompatible, degradable sensor capable of real-time pH sensing in cell culture microenvironments. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. A comprehensive evaluation of three microfluidic chemiluminescence methods for the determination of the total phenolic contents in fruit juices.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2017-01-01

    Three recently reported microfluidic chemiluminescence (MF-CL) methods (based on reactions with acidic permanganate enhanced by formaldehyde (KMnO4-COH), acidic cerium (IV) and rhodamine B (Ce-RB), and acidic cerium (IV) and rhodamine 6G (Ce-R6G) enhanced by SDS) for the determination of the total phenolic content (TPC) in juices were critically evaluated in terms of their selectivity. The evaluation was carried out using 86 analytes, including 22 phenolic compounds (phenolic acids and polyphenols), 6 known non-phenolic antioxidants, 9 amino acids and a number of proteins, carbohydrates, nucleotide bases, inorganic salts and other compounds. Each method was sensitive toward phenolic compounds (PCs). However, the KMnO4-COH CL system showed a higher sensitivity toward phenolic acids and also responded to non-phenolic antioxidants. The other two systems showed higher sensitivity toward polyphenolic compounds than to phenolic acids and did not responded to all other compounds including non-phenolic antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations (<800 mg/L). At higher phenols loadings though, Langmuir isotherm was better suited for equilibrium prediction (R(2) > 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption.

    PubMed

    Montoya-Suarez, Sergio; Colpas-Castillo, Fredy; Meza-Fuentes, Edgardo; Rodríguez-Ruiz, Johana; Fernandez-Maestre, Roberto

    2016-01-01

    Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

  15. Inhibitory effects of benzimidazole containing new phenolic Mannich bases on human carbonic anhydrase isoforms hCA I and II.

    PubMed

    Gul, Halise Inci; Yazici, Zehra; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    New phenolic mono and bis Mannich bases incorporating benzimidazole, such as 2-(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol and 2,6-bis(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol were synthesized starting from 4-(1H-benzimidazol-2-yl)phenol. Amines used for the synthesis included dimethylamine, pyrrolidine, piperidine, N-methylpiperazine and morpholine. The CA inhibitory properties of these compounds were tested on the human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and hCA II. These new compounds, as many phenols show moderate CA inhibitory properties.

  16. Exploration of mild copper-mediated coupling of organotrifluoroborates in the synthesis of thiirane-based inhibitors of matrix metalloproteinases.

    PubMed

    Testero, Sebastian A; Bouley, Renee; Fisher, Jed F; Chang, Mayland; Mobashery, Shahriar

    2011-05-01

    The copper-mediated and non-basic oxidative cross-coupling of organotrifluoroborates with phenols was applied to elaboration of the structures of thiirane-based inhibitors of matrix metalloproteinases. By revision of the synthetic sequence to allow this cross-coupling as the final step, and taking advantage of the neutral nature of organotrifluoroborate cross-coupling, a focussed series of inhibitors showing aryloxy and alkenyloxy replacement of the phenoxy substituent was prepared. This reaction shows exceptional promise as an alternative to the classic copper-mediated but strongly basic Ullmann reaction, for the diversification of ether segments within base-labile lead structures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The influence of L-phenylalanine, methyl jasmonate and sucrose concentration on the accumulation of phenolic acids in Exacum affine Balf. f. ex Regel shoot culture.

    PubMed

    Skrzypczak-Pietraszek, Ewa; Słota, Joanna; Pietraszek, Jacek

    2014-01-01

    Phenolic acids are an important group of plant secondary metabolites with various, valuable therapeutic properties. Apart from plants growing in the open air, tissue cultures can be an alternative source of the secondary metabolites. The yield of their accumulation in in vitro cultures can be increased by different methods, including culture medium supplementation with precursors, elicitors and changing the standard amounts of the medium components. The purpose of this study was to investigate the influence of the precursor (L-phenylalanine), the elicitor (methyl jasmonate) and a higher sucrose concentration on the phenolic acids accumulation in the agitated shoot cultures of Exacum affine Balf. f. ex Regel (Gentianaceae). Qualitative and quantitative analyses of the phenolic acids in methanolic extracts from the biomass were conducted by applying the HPLC method. Fourteen phenolic acids and cinnamic acid were found in all samples. The total content of free phenolic acids increased from approximately 0.242% to 0.635% (2.6-fold) and the total content of the whole phenolic acids (free and bound) - from 0.712% to 1.160% (1.6-fold). The studies show that the best variant for the accumulation of most of the identified phenolic acids contained 6% of sucrose (double the standard amount), L-phenylalanine 1.6 gL(-1) of medium and methyl jasmonate 100 μM. The analysis of the results in the experiment presented here showed that it is possible to increase the accumulation of the phenolic acids in Exacum affine shoot cultures - by adding the precursor (L-phenylalanine), the elicitor (methyl jasmonate) and by increasing the sucrose concentration.

  18. Optimisation of an oak chips-grape mix maceration process. Influence of chip dose and maceration time.

    PubMed

    Gordillo, Belén; Baca-Bocanegra, Berta; Rodriguez-Pulído, Francisco J; González-Miret, M Lourdes; García Estévez, Ignacio; Quijada-Morín, Natalia; Heredia, Francisco J; Escribano-Bailón, M Teresa

    2016-09-01

    Oak chips-related phenolics are able to modify the composition of red wine and modulate the colour stability. In this study, the effect of two maceration techniques, traditional and oak chips-grape mix process, on the phenolic composition and colour of Syrah red wines from warm climate was studied. Two doses of oak chips (3 and 6g/L) at two maceration times (5 and 10days) during fermentation was considered. Changes on phenolic composition (HPLC-DAD-MS), copigmentation/polymerisation (spectrophotometry), and colour (Tristimulus and Differential Colorimetry) were assessed by multivariate statistical techniques. The addition of oak chips at shorter maceration times enhanced phenolic extraction, colour and its stabilisation in comparison to the traditional maceration. On contrast, increasing chip dose in extended maceration time resulted in wines with lighter and less stable colour. Results open the possibility of optimise alternative technological applications to traditional grape maceration for avoiding the common loss of colour of wines from warm climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. RP-HPTLC densitometric determination and validation of vanillin and related phenolic compounds in accelerated solvent extract of Vanilla planifolia*.

    PubMed

    Sharma, Upendra Kumar; Sharma, Nandini; Gupta, Ajai Prakash; Kumar, Vinod; Sinha, Arun Kumar

    2007-12-01

    A simple, fast and sensitive RP-HPTLC method is developed for simultaneous quantitative determination of vanillin and related phenolic compounds in ethanolic extracts of Vanilla planifolia pods. In addition to this, the applicability of accelerated solvent extraction (ASE) as an alternative to microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and Soxhlet extraction was also explored for the rapid extraction of phenolic compounds in vanilla pods. Good separation was achieved on aluminium plates precoated with silica gel RP-18 F(254S) in the mobile phase of methanol/water/isopropanol/acetic acid (30:65:2:3, by volume). The method showed good linearity, high precision and good recovery of compounds of interest. ASE showed good extraction efficiency in less time as compared to other techniques for all the phenolic compounds. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.

  20. Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures

    DTIC Science & Technology

    2010-01-01

    angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective

  1. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    PubMed

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins.

    PubMed

    Shen, Shi; Wang, Jingbo; Zhuo, Qin; Chen, Xi; Liu, Tingting; Zhang, Shuang-Qing

    2018-05-08

    Phenolics and flavonoids in honey are considered as the main phytonutrients which not only act as natural antioxidants, but can also be used as floral markers for honey identification. In this study, the chemical profiles of phenolics and flavonoids, antioxidant competences including total phenolic content, DPPH and ABTS assays and discrimination using chemometric analysis of various Chinese monofloral honeys from six botanical origins (acacia, Vitex , linden, rapeseed, Astragalus and Codonopsis ) were examined. A reproducible and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was optimized and validated for the simultaneous determination of 38 phenolics, flavonoids and abscisic acid in honey. Formononetin, ononin, calycosin and calycosin-7- O -β-d-glucoside were identified and quantified in honeys for the first time. Principal component analysis (PCA) showed obvious differences among the honey samples in three-dimensional space accounting for 72.63% of the total variance. Hierarchical cluster analysis (HCA) also revealed that the botanical origins of honey samples correlated with their phenolic and flavonoid contents. Partial least squares-discriminant analysis (PLS-DA) classification was performed to derive a model with high prediction ability. Orthogonal partial least squares-discriminant analysis (OPLS-DA) model was employed to identify markers specific to a particular honey type. The results indicated that Chinese honeys contained various and discriminative phenolics and flavonoids, as well as antioxidant competence from different botanical origins, which was an alternative approach to honey identification and nutritional evaluation.

  3. Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity

    PubMed Central

    Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2013-01-01

    To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645

  4. Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to α-tocopherol for the preservation of omega-3 oils.

    PubMed

    Guitard, Romain; Paul, Jean-François; Nardello-Rataj, Véronique; Aubry, Jean-Marie

    2016-12-15

    22 natural polyphenols are compared to 7 synthetic antioxidants including BHT, BHA, TBHQ and PG with regard to their ability to protect omega-3 oils from autoxidation. The antioxidant efficiency of phenols is assessed using the DPPH test and the measurement of oxygen consumption during the autoxidation of oils rich in omega-3 fatty acids. Also, the bond dissociation enthalpies (BDE) of the Ar-OH bonds are calculated and excellent correlations between thermodynamic, kinetic and oxidation data are obtained. It is shown that kinetic rates of hydrogen transfer, number of radicals scavenged per antioxidant molecule, BDE and formation of antioxidant dimers from the primary radicals play an important role regarding the antioxidant activity of phenols. Based on this, it is finally shown that myricetin, rosmarinic and carnosic acids are more efficient than α-tocopherol and synthetic antioxidants for the preservation of omega-3 oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Virgin olive oil rich in phenolic compounds modulates the expression of atherosclerosis-related genes in vascular endothelium.

    PubMed

    Meza-Miranda, Eliana R; Rangel-Zúñiga, Oriol A; Marín, Carmen; Pérez-Martínez, Pablo; Delgado-Lista, Javier; Haro, Carmen; Peña-Orihuela, Patricia; Jiménez-Morales, Ana I; Malagón, María M; Tinahones, Francisco J; López-Miranda, José; Pérez-Jiménez, Francisco; Camargo, Antonio

    2016-03-01

    Previous studies have shown the anti-inflammatory and antioxidant properties of phenolic compounds of virgin olive oil (VOO). However, the effect of bioavailable phenolic compounds on the vascular endothelium is unknown. We aimed to evaluate the effect of the consumption of virgin olive oil rich in phenolic compounds on the vascular endothelium. We treated HUVEC with human serum obtained in fasting state and after the intake of a breakfast prepared with VOO with a high or low content of phenolic compounds. Treatment of HUVEC with serum obtained 2 h after the intake of the high-phenol VOO-based breakfast decreased p65 and MCP-1 gene expression (p < 0.001 and p = 0.002, respectively) and increased MT-CYB, SDHA and SOD1 gene expression (p = 0.004, p = 0.012 and p = 0.001, respectively), as compared with the treatment of HUVEC with the serum obtained 2 h after the intake of the low-phenol VOO-based breakfast. The treatment with serum obtained 4 h after the intake of the high-phenol VOO-based breakfast decreased MCP-1 and CAT gene expression (p < 0.001 and p = 0.003, respectively) and increased MT-CYB gene expression (p < 0.001), as compared to the treatment with serum obtained 4 h after the intake of the low-phenol VOO-based breakfast. Our results suggest that the consumption of virgin olive oil rich in phenolic compounds may reduce the risk of atherosclerosis development by decreasing inflammation and improving the antioxidant profile in the vascular endothelium.

  6. Binary solvent extraction system and extraction time effects on phenolic antioxidants from kenaf seeds (Hibiscus cannabinus L.) extracted by a pulsed ultrasonic-assisted extraction.

    PubMed

    Wong, Yu Hua; Lau, Hwee Wen; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry.

  7. Continuous tank reactors in series: an improved alternative in the removal of phenolic compounds with immobilized peroxidase.

    PubMed

    Gómez, E; Máximo, M F; Montiel, M C; Gómez, M; Murcia, M D; Ortega, S

    2012-01-01

    Immobilized derivatives of soybean peroxidase, covalently bound to a glass support, were used in a continuous stirred tank reactor in series, in order to study the removal of two phenolic compounds: phenol and 4-chlorophenol. The use of two reactors in series, rather than one continuous tank, improved the removal efficiencies of phenol and 4-chlorophenol. The distribution of different amounts of enzyme between the two tanks showed that the relative distributions influenced the removal efficiency reached and the degree of the enzyme deactivation. The highest removal percentages were reached at the outlet of the second tank for a distribution of 50% of the enzyme in each tank. However, with a distribution of 75% in the first tank and 25% in the second, the elimination percentage in the second tank was slightly lower than in the previous case, and the effects of deactivation of the enzyme in the first tank were less pronounced. In all the distributions assayed it was observed that the first tank acts as a filter for the second one, which receives a feed with a smaller load of phenolic compounds, thus diminishing enzyme deactivation in the second tank.

  8. Binary Solvent Extraction System and Extraction Time Effects on Phenolic Antioxidants from Kenaf Seeds (Hibiscus cannabinus L.) Extracted by a Pulsed Ultrasonic-Assisted Extraction

    PubMed Central

    Lau, Hwee Wen; Nyam, Kar Lin

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β-carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry. PMID:24592184

  9. Predicting the hydroxymethylation rate of phenols with formaldehyde by molecular orbital calculation.

    Treesearch

    Tohru Mitsunaga; Anthony H. Conner; Charles G. Hill

    2002-01-01

    The rates (k) of hydroxymethylation of phenol, resorcinol. phloroglucinol, and several methylphenols in diluted 10% dimethylformamide aqueous alkaline solution were calculated based on the consumption of phenols and formaldehyde. The k values of phloroglucinol and resorcinol relative to that of phenol were about 62000 and 1200 times, respectively. The phenols that have...

  10. Isolation and identification of plant phenolic compounds in birch leaves: Air pollution stress and leaf phenolics

    NASA Astrophysics Data System (ADS)

    Loponen, Jyrki Mikael

    Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV, 1H NMR, 13C NMR and MS) techniques proved to be suitable tools for the structure identification of plant phenolic compounds. More than 30 individual phenolic compounds were detected and quantified. Detailed information of the structures of individual compounds was determined after isolation from birch leaves. Ten flavonoid glycosides were identified. Two of them, myricetin-3-O-α-L-(acetyl)-rhamnopyranoside and quercetin-3-O-α-L-(4/prime'-O-acetyl)- rhamnopyranoside, have been rarely found in birch leaves. Further, some characterized major phenolics with non- flavonoid structures in our study were 1-O-galloyl- β-D-(2-O-acetyl)-glucopyranose, gallic, chlorogenic, neochlorogenic, cis- and trans-forms of 3- and 5-p-coumaroylquinic acids. The presence of gallotannin group was evidenced by strong positive correlations between concentrations of these gallotannins (preliminary identified by HPLC and UV spectra) and the protein precipitation capacity of extracts. Content of gallotannins decreased with leaf growth and maturation. It is known that concentrations of phenolic compounds regularly increase in slowly growing stressed plants and therefore, it is natural that they are also sensitive to different forms of air pollution. Total content and the contents of some individual phenolics correlated negatively with the distance from the pollution source in our study area. In addition to comparing absolute concentrations of compounds in question, the within-tree correlations or within-tree variations of the relevant compounds between polluted and control areas were an alternative approach. Differences in pairwise correlations between the investigated leaf phenolic compounds indicated the competition between some gallotannins and p-coumaroylquinic acids on the polluted but not on the control site. Air pollution seems to be a stress factor for birch trees associated with accumulation, variability, as well as between-compound correlations of individual phenolics in leaves. Effects of atmospheric stress factors on phenolics with different structures result from the activation of the shikimate pathway.

  11. Comparative Clinical Efficacy between Electrodesiccation with Curettage and Application of 80% Phenol Solution in Treatment of Common Warts

    PubMed Central

    Dalimunthe, Dina Arwina; Siregar, Remenda; Tanjung, Chairiyah

    2018-01-01

    BACKGROUND: Common warts are skin diseases caused by human papillomavirus. Several treatment modalities available for common warts, two of them are electrodesiccation with curettage and application of 80% phenol solution. AIM: This study aims to compare clinical efficacy between these two modalities. MATERIAL AND METHODS: Open clinical trial was conducted at Dr Pirngadi General Hospital Medan and H. Adam Malik General Hospital Medan from February to June 2013 on 17 patients with multiple common warts. Both treatments began and applied simultaneously on the same day on each patient. RESULTS: Cure rate was higher in electrodesiccation with curettage (76.5%, 100%) compared to the application of 80% phenol solution (11.8%, 64.7%) on three weeks and six weeks of follow up. Statistical analysis showed a significant difference of common warts cure rate between electrodesiccation with curettage and application of 80% phenol solution after three weeks (p < 0.001) and six weeks (p = 0.018) of treatment. CONCLUSION: As a conclusion, electrodesiccation with curettage has higher cure rate than the application of 80% phenol solution on the treatment of common warts. Further study is needed to find out the best concentration and time interval for application of phenol solution to improve its clinical efficacy as an alternative treatment of choice for common warts. PMID:29531597

  12. Comparison of surgical Limberg flap technique and crystallized phenol application in the treatment of pilonidal sinus disease: a retrospective study

    PubMed Central

    Akan, Kaan; Tihan, Deniz; Duman, Uğur; Özgün, Yiğit; Erol, Fatih; Polat, Murat

    2013-01-01

    Objective: This study was designed to compare the efficacy of crystallized phenol method with Limberg flap in pilonidal sinus treatment. Material and Methods: Patients with a diagnosis of pilonidal sinus disease treated with surgical excision + Limberg rhomboid flap technique and crystallized phenol method between 2010–2011 in the Şevket Yılmaz Training and Research Hospital, Department of General Surgery were evaluated retrospectively. Patients’ age, sex, length of hospital stay, complications and recurrence rates were evaluated. Results: Eighty eight percent of patients were male and mean age was 26.84±6.41 in the Limberg group, and 24.72±5.00 in the crystallized phenol group. Sinus orifice locations and nature, and duration of symptoms before surgery were similar in the two groups. Length of hospital stay in the Limberg group was 1.46±0.61 days; whereas all patients in the crystallized phenol group were discharged on the same day. Infection, hematoma, wound dehiscence, and cosmetic problems were significantly higher in the Limberg group. There was no difference between the two groups in terms of recurrence and seroma formation. Conclusion: The less invasive method of crystallized phenol application may be an alternative approach to rhomboid excision and Limberg flap in patients with non-complicated pilonidal sinus disease, yielding acceptable recurrence rates. PMID:25931870

  13. Antifungal effect of phenolic extract of fermented rice bran with Rhizopus oryzae and its potential use in loaf bread shelf life extension.

    PubMed

    Denardi-Souza, Taiana; Luz, Carlos; Mañes, Jordi; Badiale-Furlong, Eliana; Meca, Giuseppe

    2018-03-30

    In this study the antifungal potential of a phenolic extract obtained from rice bran fermented with Rhizopus oryzae CECT 7560 and its application in the elaboration of bread was assessed. Eighteen compounds with antifungal potential were identified by LC-ESI-qTOF-MS in the extract: organic acids, gallates and gallotannins, flavonoids, ellagic acid and benzophenone derivatives. The extract was active against strains of Fusarium, Aspergillus and Penicillium, with minimum inhibitory concentration ranging from 390 to 3100 µg mL -1 and minimum fungicidal concentration variable from 780 to 6300 µg mL -1 . The strains that were most sensitive to the phenolic extract were F. graminearum, F. culmorum, F. poae, P. roqueforti, P. expansum and A. niger. The phenolic extract added at 5 and 1 g kg -1 concentrations in the preparation of bread loaves contaminated with P. expansum produced a reduction of 0.6 and 0.7 log CFU g -1 . The bread loaves treated with calcium propionate and 10 g kg -1 of the phenolic extract evidenced an improvement in their shelf lives of 3 days. The phenolic extract assessed in this study could be considered as an alternative for inhibiting toxigenic fungi and as a substitute for synthetic compounds in food preservation. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids.

    PubMed

    Ferruz, Elena; Loran, Susana; Herrera, Marta; Gimenez, Isabel; Bervis, Noemi; Barcena, Carmen; Carramiñana, Juan Jose; Juan, Teresa; Herrera, Antonio; Ariño, Agustin

    2016-10-01

    The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium . The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae . However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.

  15. Equilibrium isotherm and kinetic studies for the simultaneous removal of phenol and cyanide by use of S. odorifera (MTCC 5700) immobilized on coconut shell activated carbon

    NASA Astrophysics Data System (ADS)

    Singh, Neetu; Balomajumder, Chandrajit

    2017-10-01

    In this study, simultaneous removal of phenol and cyanide by a microorganism S. odorifera (MTCC 5700) immobilized onto coconut shell activated carbon surface (CSAC) was studied in batch reactor from mono and binary component aqueous solution. Activated carbon was derived from coconut shell by chemical activation method. Ferric chloride (Fecl3), used as surface modification agents was applied to biomass. Optimum biosorption conditions were obtained as a function of biosorbent dosage, pH, temperature, contact time and initial phenol and cyanide concentration. To define the equilibrium isotherms, experimental data were analyzed by five mono component isotherm and six binary component isotherm models. The higher uptake capacity of phenol and cyanide onto CSAC biosorbent surface was 450.02 and 2.58 mg/g, respectively. Nonlinear regression analysis was used for determining the best fit model on the basis of error functions and also for calculating the parameters involved in kinetic and isotherm models. The kinetic study results revealed that Fractal-like mixed first second order model and Brouser-Weron-Sototlongo models for phenol and cyanide were capable to offer accurate explanation of biosorption kinetic. According to the experimental data results, CSAC with immobilization of bacterium S. odorifera (MTCC 5700) seems to be an alternative and effective biosorbent for the elimination of phenol and cyanide from binary component aqueous solution.

  16. Importance of phenols structure on their activity as antinitrosating agents: A kinetic study

    PubMed Central

    Pessêgo, Márcia; Rosa da Costa, Ana M; Moreira, José A.

    2011-01-01

    Objective: Nitrosative deamination of DNA bases induced by reaction with reactive nitrogen species (RNS) has been pointed out as a probable cause of mutagenesis. (Poly)phenols, present in many food items from the Mediterranean diet, are believed to possess antinitrosating properties due to their RNS scavenging ability, which seems to be related to their structure. It has been suggested that phenolic compounds will react with the above-mentioned species more rapidly than most amino compounds, thus preventing direct nitrosation of the DNA bases and their transnitrosation from endogenous N-nitroso compounds, or most likely from the transient N-nitrosocompounds formed in vivo. Materials and Methods: In order to prove that assumption, a kinetic study of the nitroso group transfer from a N-methyl-N-nitrosobenzenesulfonamide (N-methyl-N-nitroso-4-methylbenzenesulfonamide, MeNMBS) to the DNA bases bearing an amine group and to a series of phenols was carried out. In the transnitrosation of phenols, the formation of nitrosophenol was monitored by Ultraviolet (UV) / Visible spectroscopy, and in the reactions of the DNA bases, the consumption of MeNMBS was followed by high performance liquid chromatography (HPLC). Results: The results obtained point to the transnitrosation of DNA bases being negligible, as well as that of phenols bearing electron-withdrawing groups. Phenols with methoxy substituents in positions 2, 4, and / or 6, although they seemed to react, did not afford the expected product. Phenols with electron-releasing substituents, unless these blocked the oxygen atom, reacted with our model compound at an appreciable rate. O-nitrosation of the phenolate ion followed by rearrangement of the C-nitrosophenol seemed to be involved. Conclusion: This study provided evidence that the above compounds might actually act as antinitrosating agents in vivo. PMID:21430963

  17. Multicommuted flow injection method for fast photometric determination of phenolic compounds in commercial virgin olive oil samples.

    PubMed

    Lara-Ortega, Felipe J; Sainz-Gonzalo, Francisco J; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-01-15

    A multicommuted flow injection method has been developed for the determination of phenolic species in virgin olive oil samples. The method is based on the inhibitory effect of antioxidants on a stable and colored radical cation formation from the colorless compound N,N-dimethyl-p-phenylenediamine (DMPD(•+)) in acidic medium in the presence of Fe(III) as oxidant. The signal inhibition by phenolic species and other antioxidants is proportional to their concentration in the olive oil sample. Absorbance was recorded at 515nm by means of a modular fiber optic spectrometer. Oleuropein was used as the standard for phenols determination and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox) was the reference standard used for total antioxidant content calculation. Linear response was observed within the range of 250-1000mg/kg oleuropein, which was in accordance with phenolic contents observed in commercial extra virgin olive oil in the present study. Fast and low-volume liquid-liquid extraction of the samples using 60% MeOH was made previous to their insertion in the flow multicommuted system. The five three-way solenoid valves used for multicommuted liquid handling were controlled by a homemade electronic interface and Java-written software. The proposed approach was applied to different commercial extra virgin olive oil samples and the results were consistent with those obtained by the Folin Ciocalteu (FC) method. Total time for the sample preparation and the analysis required in the present approach can be drastically reduced: the throughput of the present analysis is 8 samples/h in contrast to 1sample/h of the conventional FC method. The present method is easy to implement in routine analysis and can be regarded as a feasible alternative to FC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis

    PubMed Central

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. PMID:27145837

  19. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis.

    PubMed

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-05-05

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3',4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3'-hydroxylation of 2,4,6-trihydroxybenzophenone and C-O phenol coupling of the resulting 2,3',4,6-tetrahydroxybenzophenone. Relative to the inserted 3'-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C-O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs.

  20. 1H and 13C-NMR studies on phenol-formaldehyde prepolymers for tannin-based adhesives

    Treesearch

    Gerald W. McGraw; Lawerence L. Lanucci; Seiji Ohara; Richard W. Hemingway

    1989-01-01

    The number average structure and the molecular weight distribution of phenol-formaldehyde prepolymers for use in synthesis of tannin-based adhesive resins were determined with 1H and 13C-NMR spectroscopy and gel permeation chromatography of acetylated resins. These methods were used to determine differences in phenol-...

  1. Isolation of genomic DNA using magnetic cobalt ferrite and silica particles.

    PubMed

    Prodelalová, Jana; Rittich, Bohuslav; Spanová, Alena; Petrová, Katerina; Benes, Milan J

    2004-11-12

    Adsorption separation techniques as an alternative to laborious traditional methods (e.g., based on phenol extraction procedure) have been applied for DNA purification. In this work we used two types of particles: silica and cobalt ferrite (unmodified or modified with a reagent containing weakly basic aminoethyl groups, aminophenyl groups, or alginic acid). DNA from chicken erythrocytes and DNA isolated from bacteria Lactococcus lactis were used for testing of adsorption/desorption properties of particles. The cobalt ferrite particles modified with different reagents were used for isolation of PCR-ready bacterial DNA from different dairy products.

  2. TBDPS and Br-TBDPS Protecting Groups as Efficient Aryl Group Donors in Pd-Catalyzed Arylation of Phenols and Anilines

    PubMed Central

    Huang, Chunhui; Gevorgyan, Vladimir

    2009-01-01

    It was shown that the TBDPS protecting group can serve as an efficient phenyl group donor for o-bromophenols via the Pd-catalyzed C—H arylation, followed by a routine TBAF deprotection of the forming silacycles. Employment of the newly designed Br-TBDPS protecting group in the same sequence allows for a facile introduction of a phenyl group in the ortho-position of phenols and anilines. Alternatively, switching desilylation to oxidation at the last step allows converting the forming silacycles into valuable ortho-biphenols. PMID:19722665

  3. Influence of prefermentative cold maceration on the color and anthocyanic copigmentation of organic Tempranillo wines elaborated in a warm climate.

    PubMed

    Gordillo, Belen; López-Infante, M Isabel; Ramírez-Pérez, Pilar; González-Miret, M Lourdes; Heredia, Francisco J

    2010-06-09

    The stabilization of red wine color by the copigmentation phenomenon is a crucial process that does not always proceed favorably under natural conditions during the first stages of vinification. The impact of the prefermentative cold maceration technique on the phenolic composition and magnitude of the copigmentation level of organic Tempranillo wines elaborated in a warm climate have been studied as an enological alternative to the traditional maceration for obtaining highly colored wines. Tristimulus colorimetry was applied to study the color of wines during vinification, and a high-performance liquid chromatography (HPLC) procedure was used for the analysis of phenolic compounds. Spectrophotometric and colorimetric analyses were also performed to evaluate the copigmentation level of the wines. Significant chemical and color differences were found depending on the maceration technique applied. Prefermentative cold macerated wines were richer in those compounds accounting directly for the color of red wine (anthocyanins) and those involved in anthocyanin stabilization through copigmentation reactions (phenols), which was in accordance with the higher copigmentation degree and darker, more saturated and vivid bluish colors. The evaluation of the copigmentation based on colorimetric parameters in the CIELAB color space showed that prefermentative cold maceration caused greater effectiveness of copigmentation than traditional maceration since it induces more important and hence more easily perceptible color changes.

  4. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS(2).

    PubMed

    Taamalli, Amani; Arráez-Román, David; Ibañez, Elena; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2012-01-25

    In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.

  5. An integrated high resolution mass spectrometric and informatics approach for the rapid identification of phenolics in plant extract

    USDA-ARS?s Scientific Manuscript database

    An integrated approach based on high resolution MS analysis (orbitrap), database (db) searching and MS/MS fragmentation prediction for the rapid identification of plant phenols is reported. The approach was firstly validated by using a mixture of phenolic standards (phenolic acids, flavones, flavono...

  6. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    PubMed Central

    Poontawee, Warut; Natakankitkul, Surapol; Wongmekiat, Orawan

    2015-01-01

    Supercritical fluid extraction (SFE) has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae), or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae) were extracted using supercritical carbon dioxide (SC-CO2) and conventional solvents (ethanol, water). The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP) assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD) revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae), with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant. PMID:25977832

  7. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Venkatapathy, Ethiraj; Feldman, Jay

    2013-01-01

    Woven Thermal Protection Systems (WTPS) is a new TPS concept that is funded by NASAs Office of the Chief Technologist (OCT) Game Changing Division. The WTPS project demonstrates the potential for manufacturing many TPS architectures capable of performances demanded by the many potential solar system exploration missions. Currently, missions that encounter heat fluxes in the range of 1500 4000 W/sq cm and pressures greater than 1.5 atm have very limited TPS options - only one proven material, fully dense Carbon Phenolic, is currently available for these missions. However, fully dense carbon phenolic is only mass efficient at heat fluxes greater than 4000 W/sq cm, and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will introduce some woven TPS architectures considered in this project and summarize some recent arc jet testing to evaluate the performance of fully dense and mid density WTPS. Performance comparisons to heritage carbon phenolic will be drawn where applicable.

  8. Combining bar adsorptive microextraction with capillary electrophoresis--application for the determination of phenolic acids in food matrices.

    PubMed

    da Rosa Neng, Nuno; Sequeiros, Rute C P; Florêncio Nogueira, José Manuel

    2014-09-01

    In this contribution, bar adsorptive microextraction coated with a mixed-mode anion exchange/RP followed by liquid desorption was combined for the first time with a capillary electrophoresis-diode array detection system (BAμE(MAX)-LD/CE-DAD), for the determination of phenolic acids in food matrices, using chlorogenic, ferulic, cumaric, and caffeic acids as model compounds. Assays performed in aqueous media spiked at the 0.8 mg/L level yielded average recoveries up to 40% for all four phenolic acids, under optimized experimental conditions. The analytical performance showed also good precision (RSD < 15%), convenient LODs (18.0-85.0 μg/L) and linear dynamic ranges (0.8-8.0 mg/L) with convenient determination coefficients (r(2) > 0.9900). By using the standard addition method, the application to food matrices such as green tea, red fruit juice, and honey allowed very good performances for the determination of minor amounts of phenolic acids. The proposed methodology proved to be a suitable alternative for the analysis of polar to ionic compounds, showing to be easy to implement, reliable, sensitive, and requiring a low sample volume to determine phenolic acids in food samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm
(Melissa officinalis L.) Tea with Symbiotic Consortium 
of Bacteria and Yeasts.

    PubMed

    Velićanski, Aleksandra S; Cvetković, Dragoljub D; Markov, Siniša L; Šaponjac, Vesna T Tumbas; Vulić, Jelena J

    2014-12-01

    Kombucha is a fermented tea beverage which is traditionally prepared by fermenting sweetened black or green tea ( Camellia sinensis L.) with symbiotic consortium of bacteria and yeasts (SCOBY). In this study, lemon balm ( Melissa officinalis L.) was used as the only nitrogen source for kombucha fermentation. During the seven-day fermentation process, pH value, titratable acidity (TA), total phenolic content, phenolic compounds, and antioxidant activity against hydroxyl ( ˙ OH) and 1,1-diphenyl-2-picrylhydrazil (DPPH) radicals were measured to detect the connection between the fermentation time and antioxidant and antibacterial activities of lemon balm kombucha. Antibacterial activity of finished beverages with optimum acidity (TA=4-4.5 g/L), the value which is confirmed by long-time kombucha consumers, and enhanced acidity (TA=8.12 g/L) was tested against eleven wild bacterial strains. The results showed that lemon balm could be successfully used as an alternative to C. sinensis L. for kombucha fermentation. Total phenolic content and antioxidant activity against DPPH radicals of lemon balm fermentation broth were higher than those of traditional kombucha. Rosmarinic acid is the main phenolic compound of the lemon balm-based kombucha that probably provides biological activity of the beverage. Judging from the EC 50 values, kombucha beverages exhibited higher antioxidant activities compared with C. sinensis L. and M. officinalis L. infusions, which can probably be ascribed to SCOBY metabolites. Lemon balm kombucha with both optimum and enhanced acidity showed antibacterial activity, which can be primarily ascribed to acetic acid, but also to some other tea components and SCOBY metabolites.

  10. Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm
(Melissa officinalis L.) Tea with Symbiotic Consortium 
of Bacteria and Yeasts

    PubMed Central

    Cvetković, Dragoljub D.; Markov, Siniša L.; Šaponjac, Vesna T. Tumbas; Vulić, Jelena J.

    2014-01-01

    Summary Kombucha is a fermented tea beverage which is traditionally prepared by fermenting sweetened black or green tea (Camellia sinensis L.) with symbiotic consortium of bacteria and yeasts (SCOBY). In this study, lemon balm (Melissa officinalis L.) was used as the only nitrogen source for kombucha fermentation. During the seven-day fermentation process, pH value, titratable acidity (TA), total phenolic content, phenolic compounds, and antioxidant activity against hydroxyl (˙OH) and 1,1-diphenyl-2-picrylhydrazil (DPPH) radicals were measured to detect the connection between the fermentation time and antioxidant and antibacterial activities of lemon balm kombucha. Antibacterial activity of finished beverages with optimum acidity (TA=4–4.5 g/L), the value which is confirmed by long-time kombucha consumers, and enhanced acidity (TA=8.12 g/L) was tested against eleven wild bacterial strains. The results showed that lemon balm could be successfully used as an alternative to C. sinensis L. for kombucha fermentation. Total phenolic content and antioxidant activity against DPPH radicals of lemon balm fermentation broth were higher than those of traditional kombucha. Rosmarinic acid is the main phenolic compound of the lemon balm-based kombucha that probably provides biological activity of the beverage. Judging from the EC50 values, kombucha beverages exhibited higher antioxidant activities compared with C. sinensis L. and M. officinalis L. infusions, which can probably be ascribed to SCOBY metabolites. Lemon balm kombucha with both optimum and enhanced acidity showed antibacterial activity, which can be primarily ascribed to acetic acid, but also to some other tea components and SCOBY metabolites. PMID:27904315

  11. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development of karanja oil based offset printing ink in comparison with linseed oil.

    PubMed

    Bhattacharjee, Moumita; Roy, Ananda Sankar; Ghosh, Santinath; Dey, Munmun

    2011-01-01

    The conventional offset lithographic printing ink is mainly based on linseed oil. But in recent years, due to stiff competition from synthetic substitutes mainly from petroleum products, the crop production shrinks down to an unsustainable level, which increases the price of linseed oil. Though soyabean oil has replaced a major portion of linseed oil, it is also necessary to develop alternate cost effective vegetable oils for printing ink industry. The present study aims to evaluate the performance of karanja oil (Pongamia glabra) as an alternative of linseed oil in the formulation of offset printing ink because karanja oil is easily available in rural India. Physical properties of raw karanja oil are measured and compared with that of alkali refined linseed oil. Rosin modified phenolic resin based varnishes were made with linseed oil as well as with karanja oil and their properties are compared. Sheetfed offset inks of process colour yellow and cyan is chosen to evaluate the effect of karanja oil in ink properties. In conclusion, karanja oil can be accepted as an alternate vegetable oil source with its noticeable effect on print and post print properties with slower drying time on paper. However, the colour and odour of the oil will restrict its usage on offset inks.

  13. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    PubMed

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  14. Sulfur free red wines through the use of grapevine shoots: Impact on the wine quality.

    PubMed

    Raposo, Rafaela; Chinnici, Fabio; Ruiz-Moreno, María José; Puertas, Belén; Cuevas, Francisco J; Carbú, María; Guerrero, Raúl F; Ortíz-Somovilla, Víctor; Moreno-Rojas, José Manuel; Cantos-Villar, Emma

    2018-03-15

    Following a preliminary study to determine the possibility of using a grapevine shoot extract (VIN) as a sustainable alternative to sulfur dioxide (SO 2 ), in this study, the chromatic features, phenolic composition, and sensory analysis of wines treated with VIN at two concentrations were studied during storage in bottle for the first time. The highest differences were found in phenolic compounds after 12months of storage in bottle. The VIN wines had a low content of free anthocyanins and were high in vinyl-pyranoanthocyanins, and B-type vitisins. Consequently, they showed better chromatic characteristics. Moreover VIN, especially at high dose, preserved non-anthocyanin phenolic compounds better than SO 2 . However, at this high dose some organoleptic properties were affected. VIN, when used at a low dose, is able to preserve wine composition without loss of quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Substrate inhibition kinetics of phenol biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudar, C.T.; Ganji, S.H.; Pujar, B.G.

    Phenol biodegradation was studied in batch experiments using an acclimated inoculum and initial phenol concentrations ranging from 0.1 to 1.3 g/L. Phenol depletion an associated microbial growth were monitored over time to provide information that was used to estimate the kinetics of phenol biodegradation. Phenol inhibited biodegradation at high concentrations, and a generalized substrate inhibition model based on statistical thermodynamics was used to describe the dynamics of microbial growth in phenol. For experimental data obtained in this study, the generalized substrate inhibition model reduced to a form that is analogous to the Andrews equation, and the biokinetic parameters {micro}{sub max},more » maximum specific growth; K{sub s}, saturation constant; and K{sub i}, inhibition constant were estimated as 0.251 h{sup {minus}1}, 0.011 g/L, and 0.348 g/L, respectively, using a nonlinear least squares technique. Given the wide variability in substrate inhibition models used to describe phenol biodegradation, an attempt was made to justify selection of particular model based on theoretical considerations. Phenol biodegradation data from nine previously published studies were used in the generalized substrate inhibition model to determine the appropriate form of the substrate inhibition model. In all nine cases, the generalized substrate inhibition model reduced to a form analogous to the Andrews equation suggesting the suitability of the Andrews equation to describe phenol biodegradation data.« less

  16. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    PubMed

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  17. Exploring the potential of high resolution mass spectrometry for the investigation of lignin-derived phenol substitutes in phenolic resin syntheses.

    PubMed

    Dier, Tobias K F; Fleckenstein, Marco; Militz, Holger; Volmer, Dietrich A

    2017-05-01

    Chemical degradation is an efficient method to obtain bio-oils and other compounds from lignin. Lignin bio-oils are potential substitutes for the phenol component of phenol formaldehyde (PF) resins. Here, we developed an analytical method based on high resolution mass spectrometry that provided structural information for the synthesized lignin-derived resins and supported the prediction of their properties. Different model resins based on typical lignin degradation products were analyzed by electrospray ionization in negative ionization mode. Utilizing enhanced mass defect filter techniques provided detailed structural information of the lignin-based model resins and readily complemented the analytical data from differential scanning calorimetry and thermogravimetric analysis. Relative reactivity and chemical diversity of the phenol substitutes were significant determinants of the outcome of the PF resin synthesis and thus controlled the areas of application of the resulting polymers. Graphical abstract ᅟ.

  18. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-06-29

    A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3

  19. A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction.

    PubMed

    Pinelo, Manuel; Laurie, V Felipe; Waterhouse, Andrew L

    2006-04-19

    Simple polyphenols and tannins differ in the way that they contribute to the organoleptic profile of wine and their effects on human health. Very few straightforward techniques to separate red wine nonpolymeric phenols from the polymeric fraction are available in the literature. In general, they are complex, time-consuming, and generate large amounts of waste. In this procedure, the separation of these compounds was achieved using C18 cartridges, three solvents with different elution strengths, and pH adjustments of the experimental matrices. Two full factorial 2(3) experimental designs were performed to find the optimal critical variables and their values, allowing for the maximization of tannin recovery and separation efficiency (SE). Nonpolymeric phenols such as phenolic acids, monomers, and oligomers of flavonol and flavan-3-ols and anthocyanins were removed from the column by means of an aqueous solvent followed by ethyl acetate. The polymeric fraction was then eluted with a combination of methanol/acetone/water. The best results were attained with 1 mL of wine sample, a 10% methanol/water solution (first eluant), ethyl acetate (second eluant), and 66% acetone/water as the polymeric phenols-eluting solution (third eluant), obtaining a SE of ca. 90%. Trials with this method on fruit juices also showed high separation efficiency. Hence, this solid-phase extraction method has been shown to be a simple and efficient alternative for the separation of nonpolymeric phenolic fractions and the polymeric ones, and this method could have important applications to sample purification prior to biological testing due to the nonspecific binding of polymeric phenolics to nearly all enzymes and receptor sites.

  20. Plants as natural antioxidants for meat products

    NASA Astrophysics Data System (ADS)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  1. Preparation and Characterization of Novolak Phenol Formaldehyde Resin from Liquefied Brown-Rotted Wood

    Treesearch

    Gai-Yun Li; Chung-Yun Hse; Te-Fu Qin

    2012-01-01

    The brown-rotted wood was liquefied in phenol with phosphoric acid as catalyst and the resulting liquefied products were condensed with formaldehyde to yield novolak liquefied wood-based phenol formaldehyde resin (LWPF). The results showed that brown-rotted wood could be more easily liquefied than sound wood in phenol. The residue content of liquefied wood decreased...

  2. [Rapid analysis on phenolic compounds in Rheum palmatum based on UPLC-Q-TOF/MSE combined with diagnostic ions filter].

    PubMed

    Wang, Qing; Lu, Zhi-Wei; Liu, Yue-Hong; Wang, Ming-Ling; Fu, Shuang; Zhang, Qing-Qing; Zhao, Hui-Zhen; Zhang, Zhi-Xin; Xie, Zi-Ye; Huang, Zheng-Hai; Yu, Hong-Hong; Zhou, Wen-Juan; Gao, Xiao-Yan

    2017-05-01

    Diagnostic ions filter method was used to rapidly detect and identify the phenolic compounds in Rheum palmatum based on ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The representative authentic standards of phenolic compounds, including gallic acid, (+)-catechin, (-)-epicatechin, (-)-epicatechin-3-O-gallate and procyanidin B2, were subjected to analysis by UPLC-Q-TOF/MSE system with negative ion mode. Fragmentation patterns of each standard were summarized based on assigned fragment ions. The prominent product ions were selected as diagnostic ions. Subsequently, diagnostic ions filter was employed to rapidly recognize analogous skeletons. Combined with retention time, accurate mass, characteristic fragments and previous literature data, the structures of the filtered compounds were identified or tentatively characterized. A total 63 phenolic compounds (36 phenolic acid derivatives, 8 flavonoid derivatives and 19 tennis derivatives) in R. palmatum were identified, including 6 potential new compounds. The method of diagnostic ions filter could rapidly detect and identify phenolic compounds in R. palmatum This study provides a method for rapid detection of phenolic compounds in R. palmatum and is expected to complete the material basis of rhubarb. Copyright© by the Chinese Pharmaceutical Association.

  3. Discovery of benzotriazole-azo-phenol/aniline derivatives as antifungal agents.

    PubMed

    Lv, Min; Ma, Jingchun; Li, Qin; Xu, Hui

    2018-01-15

    A series of benzotriazole-azo-phenol/aniline derivatives were prepared and evaluated for their antifungal activities against six phytopathogenic fungi such as Fusarium graminearum, Fusarium solani, Alternaria alternate, Valsa mali, Botrytis cinerea, and Curvularia lunata. Among them, compounds IIf, IIn, and IIr showed a broad-spectrum of potent antifungal activities. Especially some compounds displayed 3.5-10.8 folds more potent activities than carbendazim against A. alternata and C. lunata. Notably, compounds IIc, IIm, and IIr exhibited good protective and therapeutic effects against B. cinerea at 200 μg/mL. Their structure-activity relationships were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fixed bed column study for water defluoridation using neem oil-phenolic resin treated plant bio-sorbent.

    PubMed

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Adhikari, Basudam; Das, Papita

    2018-04-15

    Fluoride has both detrimental and beneficial effects on living beings depending on the concentration and consumption periods. The study presented in this article investigated the feasibility of using neem oil phenolic resin treated lignocellulosic bio-sorbents for fluoride removal from water through fixed bed column study. Results indicated that treated bio-sorbents could remove fluoride both from synthetic and groundwater with variable bed depth, flow rate, fluoride concentration and column diameter. Data obtained from this study indicated that columns with the thickest bed, lowest flow rate, and fluoride concentration showed best column performance. Bio-sorbents used in this study are regenerable and reusable for more than five cycles. The initial materials cost needed to remove one gram of fluoride also found to be lower than the available alternatives. This makes the process more promising candidate to be used for fluoride removal. In addition, the process is also technically advantageous over the available alternatives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Red (anthocyanic) leaf margins do not correspond to increased phenolic content in New Zealand Veronica spp.

    PubMed Central

    Hughes, Nicole M.; Smith, William K.; Gould, Kevin S.

    2010-01-01

    Background and Aims Red or purple coloration of leaf margins is common in angiosperms, and is found in approx. 25 % of New Zealand Veronica species. However, the functional significance of margin coloration is unknown. We hypothesized that anthocyanins in leaf margins correspond with increased phenolic content in leaf margins and/or the leaf entire, signalling low palatability or leaf quality to edge-feeding insects. Methods Five species of Veronica with red leaf margins, and six species without, were examined in a common garden. Phenolic content in leaf margins and interior lamina regions of juvenile and fully expanded leaves was quantified using the Folin–Ciocalteu assay. Proportions of leaf margins eaten and average lengths of continuous bites were used as a proxy for palatability. Key Results Phenolic content was consistently higher in leaf margins compared with leaf interiors in all species; however, neither leaf margins nor more interior tissues differed significantly in phenolic content with respects to margin colour. Mean phenolic content was inversely correlated with the mean length of continuous bites, suggesting effective deterrence of grazing. However, there was no difference in herbivore consumption of red and green margins, and the plant species with the longest continuous grazing patterns were both red-margined. Conclusions Red margin coloration was not an accurate indicator of total phenolic content in leaf margins or interior lamina tissue in New Zealand Veronica. Red coloration was also ineffective in deterring herbivory on the leaf margin, though studies controlling for variations in leaf structure and biochemistry (e.g. intra-specific studies) are needed before more precise conclusions can be drawn. It is also recommended that future studies focus on the relationship between anthocyanin and specific defence compounds (rather than general phenolic pools), and evaluate possible alternative functions of red margins in leaves (e.g. antioxidants, osmotic adjustment). PMID:20145003

  6. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  7. Use of Field-Based Stable Isotope Probing To Identify Adapted Populations and Track Carbon Flow through a Phenol-Degrading Soil Microbial Community

    PubMed Central

    DeRito, Christopher M.; Pumphrey, Graham M.; Madsen, Eugene L.

    2005-01-01

    The goal of this field study was to provide insight into three distinct populations of microorganisms involved in in situ metabolism of phenol. Our approach measured 13CO2 respired from [13C]phenol and stable isotope probing (SIP) of soil DNA at an agricultural field site. Traditionally, SIP-based investigations have been subject to the uncertainties posed by carbon cross-feeding. By altering our field-based, substrate-dosing methodologies, experiments were designed to look beyond primary degraders to detect trophically related populations in the food chain. Using gas chromatography-mass spectrometry (GC/MS), it was shown that 13C-labeled biomass, derived from primary phenol degraders in soil, was a suitable growth substrate for other members of the soil microbial community. Next, three dosing regimes were designed to examine active members of the microbial community involved in phenol metabolism in situ: (i) 1 dose of [13C]phenol, (ii) 11 daily doses of unlabeled phenol followed by 1 dose of [13C]phenol, and (iii) 12 daily doses of [13C]phenol. GC/MS analysis demonstrated that prior exposure to phenol boosted 13CO2 evolution by a factor of 10. Furthermore, imaging of 13C-treated soil using secondary ion mass spectrometry (SIMS) verified that individual bacteria incorporated 13C into their biomass. PCR amplification and 16S rRNA gene sequencing of 13C-labeled soil DNA from the 3 dosing regimes revealed three distinct clone libraries: (i) unenriched, primary phenol degraders were most diverse, consisting of α-, β-, and γ-proteobacteria and high-G+C-content gram-positive bacteria, (ii) enriched primary phenol degraders were dominated by members of the genera Kocuria and Staphylococcus, and (iii) trophically related (carbon cross-feeders) were dominated by members of the genus Pseudomonas. These data show that SIP has the potential to document population shifts caused by substrate preexposure and to follow the flow of carbon through terrestrial microbial food chains. PMID:16332760

  8. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, M.; Feldman, J.; Venkatapathy, E.

    2013-01-01

    WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes greater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.

  9. A different approach for the analysis of grapes: Using the skin as sensing element.

    PubMed

    Muñoz, Raquel; García-Hernández, Celia; Medina-Plaza, Cristina; García-Cabezón, Cristina; Fernández-Escudero, J A; Barajas, Enrique; Medrano, Germán; Rodriguez-Méndez, María Luz

    2018-05-01

    In this work, an alternative method to monitor the phenolic maturity of grapes was developed. In this approach, the skins of grapes were used to cover the surface of carbon paste electrodes and the voltammetric signals obtained with the skin-modified sensors were used to obtain information about the phenolic content of the skins. These sensors could easily detect differences in the phenolic composition of different Spanish varieties of grapes (Mencía, Prieto Picudo and Juan García). Moreover, sensors were able to monitor changes in the phenolic content throughout the ripening process from véraison until harvest. Using PLS-1 (Partial Least Squares), correlations were established between the voltammetric signals registered with the skin-modified sensors and the phenolic content measured by classical methods (Glories or Total Polyphenol Index). PLS-1 models provided additional information about Brix degree, density or sugar content, which usually used to establish the harvesting date. The quality of the correlations was influenced by the maturation process and the structural and mechanical skin properties. Thus the skin sensors fabricated with Juan García and Prieto Picudo grapes (that showed faster polyphenolic maturation and a higher amount of extractable polyphenols than Mencía), showed good correlations and therefore could be used to monitor the ripening. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Development of Refined Natural Resin based Cashew Nut Shell Oil Liquid (CNSL) for Brake Pads Composite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Rahmawati, P.; Tamtama, B. P. N.; Sari, P. P.; Sari, P. L.; Ichsan, S.; Kristiawan, Y. R.; Aini, F. N.

    2017-02-01

    Brake is one of the most important components in the vehicle. One type of brake that widely used is brake-based composites. One of the manufacture of composite material is resin. Cashew Nut Shell Liquid (CNSL) is a natural material which has chemical structure similar to synthetic phenol so it can be an alternative as a resin. Brake pads manufacture using CNSL as resin composites made to obtain the brake which is strong, wear-resistant, and environmentally friendly. The composite made using powder metallurgy techniques by mixing ingredients such as rubber, fibre glass, carbon, mineral sands and phenolic resin. Two formulas were composed by varying the resin and iron mineral sands in 5 grams. Composites were tested using Universal Testing Machine (UTM). The tensile strength result of those formulas are 600 N and 900 N and the elongations are 1.98 mm and 2.59 mm respectively. Formula 2 has a better tensile strength due to the addition of more resin is 15%. Since the better properties, formula 2 was derivated to 4 extended formulas and showed excellent pressure strength reached 20.000 N. It indicates that the addition of the resin can improve the mechanical properties of a composite.

  11. Dereplication of plant phenolics using a mass-spectrometry database independent method.

    PubMed

    Borges, Ricardo M; Taujale, Rahil; de Souza, Juliana Santana; de Andrade Bezerra, Thaís; Silva, Eder Lana E; Herzog, Ronny; Ponce, Francesca V; Wolfender, Jean-Luc; Edison, Arthur S

    2018-05-29

    Dereplication, an approach to sidestep the efforts involved in the isolation of known compounds, is generally accepted as being the first stage of novel discoveries in natural product research. It is based on metabolite profiling analysis of complex natural extracts. To present the application of LipidXplorer for automatic targeted dereplication of phenolics in plant crude extracts based on direct infusion high-resolution tandem mass spectrometry data. LipidXplorer uses a user-defined molecular fragmentation query language (MFQL) to search for specific characteristic fragmentation patterns in large data sets and highlight the corresponding metabolites. To this end, MFQL files were written to dereplicate common phenolics occurring in plant extracts. Complementary MFQL files were used for validation purposes. New MFQL files with molecular formula restrictions for common classes of phenolic natural products were generated for the metabolite profiling of different representative crude plant extracts. This method was evaluated against an open-source software for mass-spectrometry data processing (MZMine®) and against manual annotation based on published data. The targeted LipidXplorer method implemented using common phenolic fragmentation patterns, was found to be able to annotate more phenolics than MZMine® that is based on automated queries on the available databases. Additionally, screening for ascarosides, natural products with unrelated structures to plant phenolics collected from the nematode Caenorhabditis elegans, demonstrated the specificity of this method by cross-testing both groups of chemicals in both plants and nematodes. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate.

    PubMed

    Du, Juanshan; Sun, Bo; Zhang, Jing; Guan, Xiaohong

    2012-08-21

    Oxidation of phenols by permanganate in the pH range of 5.0-9.0 generally exhibits a parabola-like shape with the maximum reaction rate obtained at pH close to phenols' pK(a). However, a monotonic increase or decrease is observed if phenols' pK(a) is beyond the pH range of 5.0-9.0. A proton transfer mechanism is proposed in which the undissociated phenol is directly oxidized by permanganate to generate products while a phenolate-permanganate adduct, intermediate, is formed between dissociated phenol and permanganate ion and this is the rate-limiting step for phenolates oxidation by permanganate. The intermediate combines with H(+) and then decomposes to products. Rate equations derived based on the steady-state approximation can well simulate the experimentally derived pH-rate profiles. Linear free energy relationships (LFERs) were established among the parameters obtained from the modeling, Hammett constants, and oxygen natural charges in phenols and phenolates. LFERs reveal that chlorine substituents have opposite influence on the susceptibility of phenols and phenolates to permanganate oxidation and phenolates are not necessarily more easily oxidized than their neutral counterparts. The chlorine substituents regulate the reaction rate of chlorophenolates with permanganate mainly by influencing the natural charges of the oxygen atoms of dissociated phenols while they influence the oxidation of undissociated chlorophenols by permanganate primarily by forming intramolecular hydrogen bonding with the phenolic group.

  13. DC water plasma at atmospheric pressure for the treatment of aqueous phenol.

    PubMed

    Yuan, Min-Hao; Narengerile; Watanabe, Takayuki; Chang, Ching-Yuan

    2010-06-15

    This study investigated the decomposition of aqueous phenol by direct current (DC) water plasma. The operation of DC water plasma was carried out in the absence of inert gases or air injected and cooling-controlled and pressure-controlled devices. The results indicated that 1 mol.% (52.8 g L(-1)) phenol was drastically decomposed by DC water plasma touch with energy efficiencies of 1.9 x 10(-8)-2.2 x 10(-8) mol J(-1). Also, the value of chemical oxygen demand (COD) was reduced from 100 000 mg L(-1) down to 320 mg L(-1) over a short retention time. The maximum decomposition rate of the COD was 258 mg COD min(-1) for the arc power of 0.91 kW. In the effluent analysis, H(2) (63-68%), CO (3.6-6.3%), CO(2) (25.3-28.1%) were major products in the exhaust gas and CH(4), C(2)H(2), HCOOH and C(6)H(6) in trace level. Further, HCOOH and HCHO were observed in the liquid effluents. Within the current paper, the results indicated that the DC water plasma torch is capable of an alternative green technology for phenol wastewater containing high COD.

  14. Aerothermal Testing of Woven TPS Ablative Materials

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Feldman, Jay; Olson, Michael; Venkatapathy, Ethiraj

    2012-01-01

    Woven Thermal Protection Systems (WTPS) is a new TPS concept that is funded by NASAs Office of the Chief Technologist (OCT) Game Changing Division. The WTPS project demonstrates the potential for manufacturing a variety of TPS materials capable of wide ranging performances demanded by a spectrum of solar system exploration missions. Currently, missions anticipated to encounter heat fluxes in the range of 1500 4000 Watts per square centimeter are limited to using one proven material fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at heat fluxes greater than 4000 Watts per square centimeter, and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This poster will summarize some recent arc jet testing to evaluate the performance of WTPS. Both mid density and fully dense WTPS test results will be presented and results compared to heritage carbon phenolic where applicable.

  15. A Comparison between Characterization and Biological Properties of Brazilian Fresh and Aged Propolis

    PubMed Central

    Schmidt, Eduardo Morgado; Stock, Daniele; Chada, Fabio José Garcia; Finger, Daiane; Christine Helena Frankland Sawaya, Alexandra; Eberlin, Marcos Nogueira; Felsner, Maria Lurdes; Quináia, Sueli Pércio; Torres, Yohandra Reyes

    2014-01-01

    Objective. As propolis is a highly valued bee product, we aimed to verify the quality of aged propolis, investigating their phenolic and flavonoid composition, levels of toxic metals, radical scavenging and antimicrobial activities. Material and Methods. Samples of fresh and aged propolis of six different beekeepers, from the same geographical location, were investigated in terms of their phenolic and flavonoid composition and levels of Pb, Cd, and Cr, as well as radical scavenging and antimicrobial activities. Results. The two groups of propolis had similar qualitative composition by HPLC-PDA and ESI(-)-MS. Fresh propolis and aged propolis show no differences when average values of extraction yield, flavonoids, EC50, or MIC were compared and both types of propolis showed good antimicrobial activity at low concentrations. Only levels of phenolic compounds were higher in fresh propolis. Conclusion. The propolis samples considered in this study, aged or fresh, had similar qualitative composition, although they were collected in different periods. Samples only differed in their levels of total phenolic content. Moreover, aged propolis conserves significant radical scavenging and antimicrobial properties. We suggest that aged propolis should not be discarded but explored for alternative applications. PMID:25530958

  16. Determination of aminophenols and phenol in hair colorants by ultrasound-assisted solid-phase dispersion extraction coupled with ion chromatography.

    PubMed

    Zhong, Zhixiong; Li, Gongke; Wu, Rong; Zhu, Binghui; Luo, Zhibin

    2014-08-01

    A simple and reliable ultrasound-assisted solid-phase dispersion extraction coupled with ion chromatography was developed for the determination of aminophenols and phenol. The highly viscous hair colorant was dispersed in solvents using anhydrous sodium sulfite having dual functions of dispersant and antioxidant. The use of anhydrous sodium sulfite did not change the sample volume because it could completely dissolve in solution after matrix dispersion. The extraction and cleanup were combined in one single step for simplifying operation. The extraction process could be rapidly accomplished within 9 min with high sample throughput under the synergistic effects of vibration, ultrasound, and heating. Satisfactory linearity was observed with correlation coefficients higher than 0.9992, and the limits of detection varied from 0.02 to 0.09 mg/L. The applicability of the proposed method was demonstrated by measuring the concentrations of aminophenols and phenol in 32 different commercial hair color products. The recoveries ranged from 86.4-101.2% with the relative standard deviations in the range of 0.52-4.3%. The method offers an attractive alternative for the analysis of trace phenols in complex matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Antifungal effect of phenolic and carotenoids extracts from chiltepin (Capsicum annum var. glabriusculum) on Alternaria alternata and Fusarium oxysporum].

    PubMed

    Rodriguez-Maturino, Alfonso; Troncoso-Rojas, Rosalba; Sánchez-Estrada, Alberto; González-Mendoza, Daniel; Ruiz-Sanchez, Esau; Zamora-Bustillos, Roberto; Ceceña-Duran, Carlos; Grimaldo-Juarez, Onecimo; Aviles-Marin, Mónica

    2015-01-01

    The effect of phenolic and carotenoid extracts from chiltepin fruits on mycelial growth and the inhibition of conidial germination of Alternaria alternata and Fusarium oxysporum were investigated in the present work. Phenolic extracts inhibited mycelial growth of A.alternata by 38.46%, and significantly reduced conidial germination on the fifth day after treatment to 92% in relation to control. No significant changes were observed in the inhibition of mycelial growth in Fusarium oxysporum; however, the number of germinated conidia was reduced, showing 85% inhibition five days after treatment in relation to control. Moreover, carotenoid extracts showed 38.5% inhibition of mycelial growth and 85.3% inhibition of conidial germination of A.alternata, five days after treatment. Carotenoid extracts showed less inhibition of mycelial growth (20.3%) in F.oxysporum, with respect to A.alternata; while there was greater inhibition of conidial germination (96%) on the fifth day after treatment. Phenolic and carotenoid extracts from chiltepin may be a promising alternative as a natural fungicide against fungi of agricultural importance. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Undesirable Enzymatic Browning in Crustaceans: Causative Effects and Its Inhibition by Phenolic Compounds.

    PubMed

    Nirmal, Nilesh Prakash; Benjakul, Soottawat; Ahmad, Mehraj; Arfat, Yasir Ali; Panichayupakaranant, Pharkphoom

    2015-01-01

    Undesirable enzymatic browning mediated by polyphenol oxidase (E.C. 1.14.18.1) on the surface of seafood from crustaceans have been a great concern to food processors, causing quality losses of seafood products. Seafoods especially from crustaceans are worldwide consumed due to their delicacy and nutritional value. However, black spot formation (melanosis) is the major problem occurring in crustaceans during postmortem handling and refrigerated storage induce deleterious changes in organoleptic properties and, therefore, decreases commercial value. Polyphenoloxidase (PPO), the copper-containing metalloprotein involved in oxidation of phenol to quinone is the major biochemical reaction of melanosis formation. This enzymatic mechanism causes unappealing blackening in postharvest crustaceans. To alleviate the melanosis formation in crustaceans, use of phenolic compounds from plant extract can serve as antimelanotics and appears to be a good alternative to the conventional sulfites which are associated with health-related disorders. In this review, we focuses on the unique features about the structure, distribution, and properties of PPO as well as mechanism of melanosis formation and provide a comprehensive deeper insight on the factors affecting melanosis formation and its inhibition by various antimelanotics including newly discovered plant phenolic compounds.

  19. Phenolic Composition and Evaluation of the Antimicrobial Activity of Free and Bound Phenolic Fractions from a Peruvian Purple Corn (Zea mays L.) Accession.

    PubMed

    Gálvez Ranilla, Lena; Christopher, Ashish; Sarkar, Dipayan; Shetty, Kalidas; Chirinos, Rosana; Campos, David

    2017-12-01

    Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography. Anthocyanins were the major phenolic compounds (310.04 mg cyanidin-3-glucoside equivalents/100 g dry weight, DW) in the free phenolic fraction along with hydroxycinnamic acids such as p-coumaric acid derivatives, followed by caffeic and ferulic acid derivatives. The bound phenolic form had only hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and a ferulic acid derivative with ferulic acid being the major phenolic compound (156.30 mg/100 g DW). These phenolic compounds were compatible with beneficial probiotic lactic acid bacteria such as L. helveticus and B. longum as these bacteria were not inhibited by the free and bound phenolic fractions at 10 to 50 mg/mL and 10 mg/mL of sample doses, respectively. However, the pathogenic H. pylori was also not inhibited by both purple corn phenolic forms at same above sample doses. This study provides the preliminary base for the characterization of phenolic compounds of Peruvian purple corn biodiversity and its potential health benefits relevant to improving human gut health. This study provides insights that Peruvian purple corn accession AREQ-084 can be targeted as a potential source of health-relevant phenolic compounds such as anthocyanins along with hydroxycinnamic acids linked to its dietary fiber fraction. Additionally, these phenolic fractions did not affect the gut health associated beneficial bacteria nor the pathogenic H. pylori. Purple corn can be targeted for design of probiotic functional foods integrated with their anthocyanin linked-coloring properties. © 2017 Institute of Food Technologists®.

  20. Phenolic Wastewater Treatment Alternatives.

    DTIC Science & Technology

    1980-06-01

    15 Potassium Permanganate ................ 19 Iron (VI) Ferrate ..................... 22 Catalytic Oxidation ..................... 22...carbon dioxide, potassium hydroxide, and manganese dioxide which were readily handled by the existing system. d. Iron (VI) Ferrate Ferrate is iron in...the following systems/processes: Granular Activated Carbon (GAC) adsorption, ozone oxidation, hydrogen peroxide oxidation, potassium permanganate

  1. Discovery of Plant Phenolic Compounds That Act as Type III Secretion System Inhibitors or Inducers of the Fire Blight Pathogen, Erwinia amylovora

    PubMed Central

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan

    2013-01-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens. PMID:23770912

  2. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    PubMed

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    PubMed

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  4. Magnetocaloric effect and corrosion resistance of La(Fe, Si)13 composite plates bonded by different fraction of phenolic resin

    NASA Astrophysics Data System (ADS)

    Zhang, K. S.; Xue, J. N.; Wang, Y. X.; Sun, H.; Long, Y.

    2018-04-01

    La(Fe, Si)13-based composite plates were successfully fabricated using different amount of phenolic resin. The introduction of phenolic resin as binder increased the corrosion resistance and maintained giant magnetocaloric effect for La(Fe, Si)13-based composite plates. It was found that corroded spots were firstly observed on the boundaries between resin and La(Fe, Si)13 particles, rather than in La(Fe, Si)13-based particles, after being immersed in static distilled water. The corrosion rate decreased significantly with the increase of resin content. And the increase of the content of phenolic resin leads to the reduction of corrosion current density. Meanwhile, the volumetric magnetic entropy change ΔSM decreases slightly as the content of phenolic resin increases. The ΔSM of the plates with 3 wt.%, 5 wt.% and 8 wt.% resin are 63.1, 61.2 and 59.8 mJ/cm3 K under a low magnetic field change of 1 T, respectively.

  5. Catalytic, Enantioselective, Intramolecular Sulfenofunctionalization of Alkenes with Phenols

    PubMed Central

    2017-01-01

    The catalytic, enantioselective, cyclization of phenols with electrophilic sulfenophthalimides onto isolated or conjugated alkenes affords 2,3-disubstituted benzopyrans and benzoxepins. The reaction is catalyzed by a BINAM-based phosphoramide Lewis base catalyst which assists in the highly enantioselective formation of a thiiranium ion intermediate. The influence of nucleophile electron density, alkene substitution pattern, tether length and Lewis base functional groups on the rate, enantio- and site-selectivity for the cyclization is investigated. The reaction is not affected by the presence of substituents on the phenol ring. In contrast, substitutions around the alkene strongly affect the reaction outcome. Sequential lengthening of the tether results in decreased reactivity, which necessitated increased temperatures for reaction to occur. Sterically bulky aryl groups on the sulfenyl moiety prevented erosion of enantiomeric composition at these elevated temperatures. Alcohols and carboxylic acids preferentially captured thiiranium ions in competition with phenolic hydroxyl groups. An improved method for the selective C(2) allylation of phenols is also described. PMID:28257203

  6. Coupling HPLC-SPE-NMR with a microplate-based high-resolution antioxidant assay for efficient analysis of antioxidants in food--validation and proof-of-concept study with caper buds.

    PubMed

    Wiese, Stefanie; Wubshet, Sileshi G; Nielsen, John; Staerk, Dan

    2013-12-15

    This work describes the coupling of a microplate-based antioxidant assay with a hyphenated system consisting of high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HPLC-SPE-NMR/high-resolution antioxidant assay, for the analysis of complex food extracts. The applicability of the microplate-based antioxidant assay for high-resolution screening of common food phenolics as well as parameters related to their trapping efficiency, elution behavior, and recovery on/from SPE cartridges are described. It was found that the microplate-based high-resolution antioxidant assay is an attractive and easy implementable alternative to direct on-line screening methods. Furthermore, it was shown that Resin SH and Resin GP SPE material are superior to RP C18HD for trapping of phenolic compounds. Proof-of-concept study was performed with caper bud extract, revealing the most important antioxidants to be quercetin, kaempferol, rutin, kaempferol-3-O-β-rutinoside and N(1),N(5),N(10)-triphenylpropenoyl spermidine amides. Targeted isolation of the latter, and comprehensive NMR experiments showed them to be N(1),N(10)-di-(E)-caffeoyl-N(5)-p-(E)-coumaroyl spermidine, N(1)-(E)-caffeoyl-N(5),N(10)-di-p-(E)-coumaroyl spermidine, N(10)-(E)-caffeoyl-N(1),N(5)-di-p-(E)-coumaroyl spermidine, and N(1),N(5),N(10)-tri-p-(E)-coumaroyl spermidine amides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Yields of potato and alternative crops impacted by humic product application

    USDA-ARS?s Scientific Manuscript database

    Humic substance (HA—humic acid, fulvic acid, and humin) are a family of organic molecules made up of long carbon chains and numerous active functional groups such as phenols and other aromatics. Humic substances play dynamic roles in soil physical, chemical biological functions essential to soil he...

  8. New phenolic components and chromatographic profiles of green and fermented teas

    USDA-ARS?s Scientific Manuscript database

    A standardized profiling method based on liquid chromatography with diode array and electrospray ionization/mass spectrometric detection (LC-DAD-ESI/MS) was applied to establish the phenolic profiles of 41 green teas and 25 fermented teas. More than 80 phenolic compounds were either identified that ...

  9. Phenolic composition of pomegranate peel extracts using an LC-MS approach with silica hydride columns

    USDA-ARS?s Scientific Manuscript database

    The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride-based stationary phases: phenyl and undecenoic acid columns. Quantitation was ...

  10. DEVELOPMENT OF FLEXIBLE INSULATION FOR SOLID PROPELLANT ROCKET MOTOR CASES

    DTIC Science & Technology

    acrylonitrile-phenol furfural -asbestos composition. Other promising materials which are reported are based on two types of liquid butadiene/styrene cbers. The...This material was based on a butadiene/acrylonitrile-phenol furfural -asbestos composition. Other promising materials which are reported are based on two

  11. Emissions of fine particulate nitrated phenols from the burning of five common types of biomass.

    PubMed

    Wang, Xinfeng; Gu, Rongrong; Wang, Liwei; Xu, Wenxue; Zhang, Yating; Chen, Bing; Li, Weijun; Xue, Likun; Chen, Jianmin; Wang, Wenxing

    2017-11-01

    Nitrated phenols are among the major constituents of brown carbon and affect both climates and ecosystems. However, emissions from biomass burning, which comprise one of the most important primary sources of atmospheric nitrated phenols, are not well understood. In this study, the concentrations and proportions of 10 nitrated phenols, including nitrophenols, nitrocatechols, nitrosalicylic acids, and dinitrophenol, in fine particles from biomass smoke were determined under three different burning conditions (flaming, weakly flaming, and smoldering) with five common types of biomass (leaves, branches, corncob, corn stalk, and wheat straw). The total abundances of fine nitrated phenols produced by biomass burning ranged from 2.0 to 99.5 μg m -3 . The compositions of nitrated phenols varied with biomass types and burning conditions. 4-nitrocatechol and methyl nitrocatechols were generally most abundant, accounting for up to 88-95% of total nitrated phenols in flaming burning condition. The emission ratios of nitrated phenols to PM 2.5 increased with the completeness of combustion and ranged from 7 to 45 ppmm and from 239 to 1081 ppmm for smoldering and flaming burning, respectively. The ratios of fine nitrated phenols to organic matter in biomass burning aerosols were comparable to or lower than those in ambient aerosols affected by biomass burning, indicating that secondary formation contributed to ambient levels of fine nitrated phenols. The emission factors of fine nitrated phenols from flaming biomass burning were estimated based on the measured mass fractions and the PM 2.5 emission factors from literature and were approximately 0.75-11.1 mg kg -1 . According to calculations based on corn and wheat production in 31 Chinese provinces in 2013, the total estimated emission of fine nitrated phenols from the burning of corncobs, corn stalks, and wheat straw was 670 t. This work highlights the apparent emission of methyl nitrocatechols from biomass burning and provides basic data for modeling studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  13. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit.

    PubMed

    Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2015-04-15

    Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Development of molecularly imprinted polymer in porous film format for binding of phenol and alkylphenols from water.

    PubMed

    Gryshchenko, Andriy O; Bottaro, Christina S

    2014-01-20

    Molecularly imprinted polymers (MIPs) were fabricated on glass slides with a "sandwich" technique giving ~20 µm thick films. Methanol/water as a solvent, and polyethyleneglycol and polyvinylacetate as solvent modifiers, were used to give a porous morphology, which was studied with scanning electron microscopy and gravimetric analysis. Various MIPs were synthesized through non-covalent imprinting with phenol as the template; itaconic acid, 4-vinylpyridine, and styrene as monomers; ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and pentaerythritol triacrylate (PETA) as cross-linkers. Binding and imprinting properties of the MIPs were evaluated based on phenol adsorption isotherms. Since phenol has only one weakly acidic hydroxyl group and lacks unique structural characteristics necessary for binding specificity, the preparation of selective MIPs was challenging. The recognition of phenol via hydrogen bonding is suppressed in water, while hydrophobic interactions, though promoted, are not specific enough for highly-selective phenol recognition. Nevertheless, the styrene-PETA MIP gave modest imprinting effects, which were higher at lower concentrations (Imprinting Factor (IF) = 1.16 at 0.5 mg·L(-1)). The isotherm was of a Freundlich type over 0.1-40 mg·L(-1) and there was broad cross-reactivity towards other structurally similar phenols. This shows that phenol MIPs or simple adsorbents can be developed based on styrene for hydrophobic binding, and PETA to form a tighter, hydrophilic network.

  15. A two-step electrodialysis method for DNA purification from polluted metallic environmental samples.

    PubMed

    Rodríguez-Mejía, José Luis; Martínez-Anaya, Claudia; Folch-Mallol, Jorge Luis; Dantán-González, Edgar

    2008-08-01

    Extracting DNA from samples of polluted environments using standard methods often results in low yields of poor-quality material unsuited to subsequent manipulation and analysis by molecular biological techniques. Here, we report a novel two-step electrodialysis-based method for the extraction of DNA from environmental samples. This technique permits the rapid and efficient isolation of high-quality DNA based on its acidic nature, and without the requirement for phenol-chloroform-isoamyl alcohol cleanup and ethanol precipitation steps. Subsequent PCR, endonuclease restriction, and cloning reactions were successfully performed utilizing DNA obtained by electrodialysis, whereas some or all of these techniques failed using DNA extracted with two alternative methods. We also show that his technique is applicable to purify DNA from a range of polluted and nonpolluted samples.

  16. Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties.

    PubMed

    Mocan, Andrei; Diuzheva, Alina; Carradori, Simone; Andruch, Vasil; Massafra, Chiara; Moldovan, Cadmiel; Sisea, Cristian; Petzer, Jacobus P; Petzer, Anél; Zara, Susi; Marconi, Guya Diletta; Zengin, Gokhan; Crișan, Gianina; Locatelli, Marcello

    2018-04-21

    In the present work, fourteen cultivars of Prunus domestica were analysed to investigate their phenolic pattern with the purpose of using the leaves as potential resources of bioactive compounds in the pharmaceutical and food industry. Microwave-assisted extraction (MAE), dispersive liquid-liquid microextraction and sugaring-out liquid-liquid extraction techniques were optimized in order to obtain an exhaustive multi-component panel of phenolic compounds. The best phenolic-enriched recovery was achieved using MAE in water:methanol (30:70), and this procedure was further applied for quantitative analysis of phenolic compounds in real samples. In order to prove the safeness of these extracts, the biological potential of the Prunus cultivars was tested by several in vitro antioxidant and enzyme inhibitory assays. Moreover, their cytotoxicity was evaluated on human gingival fibroblasts (HGFs), and in most of the cases the treatment with different concentrations of extracts didn't show cytotoxicity up to 500 μg/mL. Only 'Carpatin' and 'Minerva' cultivars, at 250 and 500 μg/mL, reduced partially cell viability of HGFs population. Noteworthy, Centenar cultivar was the most active for the α-glucosidase inhibition (6.77 mmolACAE/g extract), whereas Ialomița cultivar showed the best antityrosinase activity (23.07 mgKAE/g extract). Overall, leaves of P. domestica represent a rich alternative source of bioactive compounds. Copyright © 2018. Published by Elsevier Ltd.

  17. Phenolic compounds and antioxidant properties of arabinoxylan hydrolysates from defatted rice bran.

    PubMed

    Yuwang, Prachit; Sulaeva, Irina; Hell, Johannes; Henniges, Ute; Böhmdorfer, Stefan; Rosenau, Thomas; Chitsomboon, Benjamart; Tongta, Sunanta

    2018-01-01

    The water unextractable arabinoxylans (WUAX) contain beneficial phenolic compounds that can be used for food rather than for animal feed. The antioxidant activities of defatted rice bran obtained by xylanase-aided extraction is reported herein. The chemical and molecular characteristics of extracted fractions were investigated. The WUAX hydrolysate precipitated by 0-60% ethanol (F60), 60-90% ethanol (F6090), and more than 90% ethanol (F90) had decreased molar masses with increasing ethanol concentration. The fractions of interest, F60 and F6090, contained 75% arabinoxylans with ferulic acid as the major bound phenolic acid, followed by p-coumaric acid. According to chemical-based antioxidant assays F60 and F6090 exhibited higher diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric iron reducing ability than F90 which contained minor contents of small sugars and free phenolic acids. In cell-based antioxidant assays, using the fluorescent 2',7'-dichlorofluorescein diacetate probe, all three fractions were potent intracellular scavengers. The high molar mass of WUAX hydrolysates with high amount of bound phenolics contributes to the chemical-based antioxidant activity. All fractions of WUAX hydrolysates showed high potent intracellular scavenging activity regardless of molar mass, content and the component of bound phenolics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters

    PubMed Central

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources. PMID:27148185

  19. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters.

    PubMed

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources.

  20. Changes of hydrogen peroxide and radical-scavenging activity of raspberry during osmotic, convective, and freeze-drying.

    PubMed

    Novaković, Miroslav M; Stevanović, Snežana M; Gorjanović, Stanislava Ž; Jovanovic, Predrag M; Tešević, Vele V; Janković, Miodrag A; Sužnjević, Desanka Ž

    2011-05-01

    This study was conducted to investigate the influence of different drying treatments on antioxidant (AO) activity and phenolic content of raspberry (Rubus idaeus), cultivar Willamette. Whole raspberry fruits were dried convectively (air-drying), osmotically, and freeze-dried. Acetone-water extracts of fresh and dried raspberries were assessed for total phenolic content by standard Folin-Ciocalteau method. Two AO assays were applied, a recently developed direct current (DC) polarographic assay based on decrease of anodic oxidation current of hydrogen peroxide and widely used radical scavenge against the 1,1-diphenyl-2-picrylhydrazyl (DPPH). Strong correlation has been obtained between both AO assays and total phenolic content. In addition, some individual phenolic compounds present in raspberry have been assessed using DPPH and DC polarographic assay. Comparison and evaluation of drying methods has been based on preservation of AO activity and total phenolic content. Obtained results confirmed superiority of freeze-drying; convective drying caused slight changes while osmotic dehydration showed a significant decrease of phenolic compounds and AO activity. © 2011 Institute of Food Technologists®

  1. Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage.

    PubMed

    Flores, Gema; Blanch, Gracia Patricia; Del Castillo, María Luisa Ruiz

    2017-07-01

    The nutritional effects of both table olives and olive oil are attributed not only to their fatty acids but also to antioxidant phenolics such as phenolic acids. Delays in oil processing usually result in undesirable oxidation and hydrolysis processes leading to formation of free fatty acids. These alterations create the need to process oil immediately after olive harvest. However, phenolic content decreases drastically during olive storage resulting in lower quality oil. In the present study we propose postharvest methyl jasmonate treatment as a mean to avoid changes in fatty acid composition and losses of phenolic acids during olive storage. Contents of fatty acids and phenolic acids were estimated in methyl jasmonate treated olives throughout 30-day storage, as compared with those of untreated olives. Significant decreases of saturated fatty acids were observed in treated samples whereas increases of oleic, linoleic and linolenic acids were respectively measured (i.e. from 50.8% to 64.5%, from 7.2% to 9.1% and from 1.5% to 9.3%). Also, phenolic acid contents increased significantly in treated olives. Particularly, increases of gallic acid from 1.35 to 6.29 mg kg -1 , chlorogenic acid from 9.18 to 16.21 mg kg -1 , vanillic acid from 9.61 to 16.99 mg kg -1 , caffeic acid from 5.12 to 12.55 mg kg -1 , p-coumaric acid from 0.96 to 5.31 mg kg -1 and ferulic acid from 4.05 to 10.43 mg kg -1 were obtained. Methyl jasmonate treatment is proposed as an alternative postharvest technique to traditional methods to guarantee olive oil quality when oil processing is delayed and olive fruits have to necessarily to be stored. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. In-Depth Two-Year Study of Phenolic Profile Variability among Olive Oils from Autochthonous and Mediterranean Varieties in Morocco, as Revealed by a LC-MS Chemometric Profiling Approach.

    PubMed

    Bajoub, Aadil; Medina-Rodríguez, Santiago; Olmo-García, Lucía; Ajal, El Amine; Monasterio, Romina P; Hanine, Hafida; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

    2016-12-28

    Olive oil phenolic fraction considerably contributes to the sensory quality and nutritional value of this foodstuff. Herein, the phenolic fraction of 203 olive oil samples extracted from fruits of four autochthonous Moroccan cultivars ("Picholine Marocaine", "Dahbia", "Haouzia" and "Menara"), and nine Mediterranean varieties recently introduced in Morocco ("Arbequina", "Arbosana", "Cornicabra", "Frantoio", "Hojiblanca", "Koroneiki", "Manzanilla", "Picholine de Languedoc" and "Picual"), were explored over two consecutive crop seasons (2012/2013 and 2013/2014) by using liquid chromatography-mass spectrometry. A total of 32 phenolic compounds (and quinic acid), belonging to five chemical classes (secoiridoids, simple phenols, flavonoids, lignans and phenolic acids) were identified and quantified. Phenolic profiling revealed that the determined phenolic compounds showed variety-dependent levels, being, at the same time, significantly affected by the crop season. Moreover, based on the obtained phenolic composition and chemometric linear discriminant analysis, statistical models were obtained allowing a very satisfactory classification and prediction of the varietal origin of the studied oils.

  3. Interrelations between the mesomeric and electronegativity effects in para-substituted derivatives of phenol/phenolate and aniline/anilide H-bonded complexes: a DFT-based computational study.

    PubMed

    Szatyłowicz, Halina; Krygowski, Tadeusz M; Jezierska, Aneta; Panek, Jarosław J

    2009-05-14

    We were able to test the Bent-Walsh rule by examining geometric parameters in the vicinity of the ipso-carbon atom of H-bonded complexes of para-substituted phenol/phenolate and aniline/anilide derivatives for the three cases (i) a versus alpha, (ii) alpha versus d(CO) or d(CN), and (iii) a versus d(CO) or d(CN), where alpha is the ring valence angle at the ipso-carbon atom (C1 substituted by OH or O(-) or NH(2) or NH(-)) and a is the arithmetic mean of the two C(ipso)-C(ortho) bond lengths. The data for nonequilibrium H-bonded complexes of unsubstituted phenol/phenolate and aniline/anilide with the respective bases F(-) and CN(-) and acids HF and HCN showed the same dependence of a on d(CX) (X = O, N) as the data for equilibrium complexes of para-Y-substituted phenol/phenolate and aniline/anilide derivatives (Y = NO, NO(2), CHO, COMe, CONH(2), Cl, F, H, Me, OMe, OH) with the same bases and acids. The slope of these dependencies was negative, as expected. In the remaining cases (a versus alpha and alpha versus d(CO) or d(CN)), the slopes for simulated complexes followed the Bent-Walsh rule. Finally, for the equilibrium complexes in which the substituent effect was included, the slopes of the trend lines for the substituted systems were opposite. This is because in the a versus alpha relationships, electonegativity and the resonance effect act in the same direction, whereas for the other two cases, these effects are opposite, and the resonance effect dominates.

  4. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50-500 W/sq cm. The recession and temperature profile for these materials were comparable to PICA proving them to be viable alternatives for TPS technology development for future missions.

  6. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  7. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  8. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    PubMed Central

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET). PMID:22593694

  9. Phenolic compounds analysis of root, stalk, and leaves of nettle.

    PubMed

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET).

  10. Plant secondary metabolites and gut health: the case for phenolic acids.

    PubMed

    Russell, Wendy; Duthie, Garry

    2011-08-01

    Plant-based diets contain a plethora of secondary metabolites that may impact on health and disease prevention. Much attention has been focused on the potential bioactivity and nutritional relevance of several classes of phytochemicals such as flavonoids, carotenoids, phyto-oestrogens and glucosinolates. Less attention has been paid to simple phenolic acids that are widely found in fruit, vegetables, herbs, spices and beverages. Daily intakes may exceed 100 mg. In addition, bacteria in the gut can perform reactions that transform more complex plant phenolics such as anthocyanins, procyanidins, flavanones, flavonols, tannins and isoflavones into simple phenolic metabolites. The colon is thus a rich source of potentially active phenolic acids that may impact both locally and systemically on gut health. Both the small and large intestine (colon) contain absorption sites for phenolic acids but low post-prandial concentrations in plasma indicate minimal absorption early in the gastrointestinal tract and/or rapid hepatic metabolism and excretion. Therefore, any bioactivity that contributes to gut health may predominantly occur in the colon. Several phenolic acids affect the expression and activity of enzymes involved in the production of inflammatory mediators of pathways thought to be important in the development of gut disorders including colon cancer. However, at present, we remain largely ignorant as to which of these compounds are beneficial to gut health. Until we can elucidate which pro-inflammatory and potentially carcinogenetic changes in gene expression can be moderated by simple phenolic acids, it is not possible to recommend specific plant-based foods rich in particular phenolics to optimise gut health.

  11. Selenium and sulphur derivatives of hydroxytyrosol: inhibition of lipid peroxidation in liver microsomes of vitamin E-deficient rats.

    PubMed

    Rodríguez-Gutiérrez, Guillermo; Rubio-Senent, Fátima; Gómez-Carretero, Antonio; Maya, Inés; Fernández-Bolaños, Juan; Duthie, Garry G; de Roos, Baukje

    2018-05-28

    The objective of this study was to evaluate the capacity of modified phenols synthesized from hydroxytyrosol, a natural olive oil phenol, specifically those containing a selenium or sulphur group, to inhibit lipid peroxidation. The compounds' abilities to inhibit lipid peroxidation in liver microsomes obtained from vitamin E-deficient rats were compared to hydroxytyrosol. All synthetic compounds had a significant higher ability to inhibit lipid peroxidation than hydroxytyrosol. Selenium derivates displayed a higher antioxidant activity than sulphur derivatives. In addition, the antioxidant activity increased with a higher number of heteroatoms in the hydroxytyrosol molecular structure. The study shows, for the first time, the ability of synthetic compounds, derived from the most active phenol present in olives in free form (hydroxytyrosol), and containing one or two atoms of sulphur or selenium, to inhibit the lipid peroxidation of vitamin E-deficient microsomes. The antioxidant activity of five thioureas, a disulfide, a thiol, three selenoureas, a diselenide, and a selenonium were evaluated and the results showed a higher inhibition of lipid peroxidation than the natural phenol. Selenium and sulphur derivatives of hydroxytyrosol are novel antioxidants with the potential to supplement the lack of vitamin E in the diet as natural alternatives for the prevention of diseases related to oxidative damage.

  12. Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load.

    PubMed

    Silva, Cynthia C; Viero, Aline F; Dias, Ana Carolina F; Andreote, Fernando D; Jesus, Ederson C; De Paula, Sergio O; Torres, Ana Paula R; Santiago, Vania M J; Oliveira, Valeria M

    2010-01-01

    The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

  13. Fe1-xZnxS ternary solid solution as an efficient Fenton-like catalyst for ultrafast degradation of phenol.

    PubMed

    Gao, Jing; Liu, Yutang; Xia, Xinnian; Wang, Longlu; Dong, Wanyue

    2018-07-05

    Heterogeneous Fenton-like system has been proved to be an promising alternative to Fenton system due to its easy separation. However, it's a challenge to design heterogeneous Fenton-like catalysts with high activity and great durability. Here, ternary solid solution Fe 1-x Zn x S were prepared via hydrothermal synthesis as heterogeneous Fenton-like catalysts. The Fe 0.7 Zn 0.3 S sample exhibited state of the art activity for yielding OH by H 2 O 2 decomposition, and the ultrafast degradation of phenol was achieved in 4 min at initial acidic condition under room temperature. The phenol degradation rate constant of Fe 0.7 Zn 0.3 S was 99 and 70 times of ZnS and FeS, respectively. Further, we show that the unique structural configuration of iron atoms, the formation of FeS 2 -pyrite with (200) plane, are responsible for the excellent activity. The intermediate products were identified by LC-MS and a possible pathway was accordingly proposed to elucidate the mechanism of phenol degradation by OH. Overall, this work provides an idea for the rational design of the relevant heterogeneous Fenton-like catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Preliminary studies of bio-oil from fast pyrolysis of coconut fibers.

    PubMed

    Almeida, Tarciana M; Bispo, Mozart D; Cardoso, Anne R T; Migliorini, Marcelo V; Schena, Tiago; de Campos, Maria Cecilia V; Machado, Maria Elisabete; López, Jorge A; Krause, Laiza C; Caramão, Elina B

    2013-07-17

    This work studied fast pyrolysis as a way to use the residual fiber obtained from the shells of coconut ( Cocos nucifera L. var. Dwarf, from Aracaju, northeastern Brazil). The bio-oil produced by fast pyrolysis and the aqueous phase (formed during the pyrolysis) were characterized by GC/qMS and GC×GC/TOF-MS. Many oxygenated compounds such as phenols, aldehydes, and ketones were identified in the extracts obtained in both phases, with a high predominance of phenolic compounds, mainly alkylphenols. Eighty-one compounds were identified in the bio-oil and 42 in the aqueous phase using GC/qMS, and 95 and 68 in the same samples were identified by GC×GC/TOF-MS. The better performance of GC×GC/TOF-MS was due to the possibility of resolving some coeluted peaks in the one-dimension gas chromatography. Semiquantitative analysis of the samples verified that 59% of the area on the chromatogram of bio-oil is composed by phenols and 12% by aldehydes, mainly furfural. Using the same criterion, 77% of the organic compounds in the aqueous phase are phenols. Therefore, this preliminary assessment indicates that coconut fibers have the potential to be a cost-effective and promising alternative to obtain new products and minimize environmental impact.

  15. Simultaneous determination of six synthetic phenolic antioxidants in edible oils using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with diode array detection.

    PubMed

    Xu, Shuangjiao; Liu, Liangliang; Wang, Yanqin; Zhou, Dayun; Kuang, Meng; Fang, Dan; Yang, Weihua; Wei, Shoujun; Xiao, Aiping; Ma, Lei

    2016-08-01

    A simple, rapid, organic-solvent- and sample-saving pretreatment technique, called dispersive liquid-liquid microextraction, was developed for the determination of six synthetic phenolic antioxidants from edible oils before high-performance liquid chromatography with diode array detection. The entire procedure was composed of a two-step microextraction and a centrifugal process and could be finished in about 5 min, only consuming only 25 mg of sample and 1 mL of the organic solvent for each extraction. The influences of several important parameters on the microextraction efficiency were thoroughly investigated. Recovery assays for oil samples were spiked at three concentration levels, 50, 100 and 200 mg/kg, and provided recoveries in the 86.3-102.5% range with a relative standard deviation below 3.5%. The intra-day and inter-day precisions for the analysis were less than 3.8%. The proposed method was successfully applied for the determination of synthetic phenolic antioxidants in different oil samples, and satisfactory results were obtained. Thus, the developed method represents a viable alternative for the quality control of synthetic phenolic antioxidant concentrations in edible oils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation.

    PubMed

    Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth

    2014-08-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.

  17. Geosynthesis of organic compounds: I. Alkylphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioppolo-Armanios, M.; Alexander, R.; Kagi, R.I.

    1995-07-01

    Methylation, isopropylation, and sec-butylation are proposed as geosynthetic processes to account for the alkylphenol compositions of crude oils with phenol distributions dominated by ortho and para substituted compounds. Phenol distributions in eleven crude oils and four kerogen pyrolysates were analysed using GC-MS (gas chromatography-mass spectrometry). Ten of the crude oils show high relative abundances of ortho and para substituted phenol isomers and some were also enriched in C{sub 3}-C{sub 5} alkylphenols compared to the kerogen pyrolysates. Because the distributions of products obtained from the laboratory alkylation of cresols closely resemble those of phenols in these crude oils, we propose thatmore » similar alkylation processes occur in source rocks. Alkylation ratios reflecting the degree of methylation, isopropylation, and sec-butylation, which were based on the relative abundance of the dominant alkylation products compared to their likely precursor ortho-cresol, indicate that high levels of methylation occurred in crude oils over a wide range of maturities, whereas high levels of isopropylation and sec-butylation were observed only in mature samples. Dissolution of the phenols in crude oils by water contact was discounted as an explanation for the observed phenol distributions based on the relative distribution coefficients of phenols between a hydrocarbon phase and water.« less

  18. Ethanol-Glycerin Fixation with Thymol Conservation: A Potential Alternative to Formaldehyde and Phenol Embalming

    ERIC Educational Resources Information Center

    Hammer, Niels; Loffler, Sabine; Feja, Christine; Sandrock, Mara; Schmidt, Wolfgang; Bechmann, Ingo; Steinke, Hanno

    2012-01-01

    Anatomical fixation and conservation are required to prevent specimens from undergoing autolysis and decomposition. While fixation is the primary arrest of the structures responsible for autolysis and decomposition, conservation preserves the state of fixation. Although commonly used, formaldehyde has been classified as carcinogenic to humans. For…

  19. Bisphenol A and alternatives in thermal paper receipts - a German market analysis from 2015 to 2017.

    PubMed

    Eckardt, Martin; Simat, Thomas J

    2017-11-01

    Bisphenol A (BPA) was commonly used as color developer for thermal paper such as cash register receipts, labels or tickets. Therefore, thermal paper was considered by the European Food Safety Authority (EFSA) as the main source of human exposure to BPA beside epoxy based food contact materials. In this study, a German market analysis on the use of BPA and alternative color developers in thermal paper receipts is provided for the years 2015, 2016 and 2017.114 (2015), 98 (2016) and 99 (2017) samples were randomly collected and analyzed by HPLC-DAD. In summary, BPA was still the most frequently found color developer (48.2% in 2015, 46.9% in 2016 and 52.5% in 2017). The most commonly used alternative was the phenol-free substance Pergafast ® 201 (34.2%, 33.7%, 40.4%). The bisphenol analogs bisphenol S (BPS; 11.4%, 9.2%, 6.1%) and D8 (6.1%, 7.1%, 1.0%) were less common. Another phenol-free substituent, a urea urethane compound (UU), was also detected (3.1% in 2016). Concentrations of color developers in thermal paper ranged from 1.4 to 32.4 mg/g (median values between 2.5 and 15.9 mg/g). Concentrations of BPA were found to be highest followed by BPS, UU, Pergafast ® 201 and D8. In addition, two pharmacologically active substances, dapsone (6.0 mg/g) and tolbutamide (5.5 mg/g), were detected in a non-marketed thermal paper, that was supposed to use ascorbic acid as initial color developer. Different release experiments of the detected color developers were performed. Sensitizers 1,2-diphenoxy-ethane, 1-phenylmethoxy-naphthalene and diphenylsulfone, used frequently in the thermal paper processes, were quantified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane.

    PubMed

    Ren, Long-Fei; Adeel, Mister; Li, Jun; Xu, Cong; Xu, Zheng; Zhang, Xiaofan; Shao, Jiahui; He, Yiliang

    2018-05-15

    Phenol recovery from phenol-laden saline wastewater plays an important role in the waste reclamation and pollution control. A membrane aromatic recovery system-like membrane contactor (MARS-like membrane contactor) was set up in this study using electrospun polydimethylsiloxane/polymethyl methacrylate (PDMS/PMMA) membrane with 0.0048 m 2 effective area to separate phenol from saline wastewater. Phenol and water contact angles of 0° and 162° were achieved on this membrane surface simultaneously, indicating its potential in the separation of phenol and water-soluble salt. Feed solution (500 mL) of 0.90 L/h and receiving solution (500 mL) of 1.26 L/h were investigated to be the optimum conditions for phenol separation, which corresponds to the employed Reynolds number of 14.6 and 20.5. During 108-h continuous separation for feed solution (2.0 g/L phenol, 10.0 g/L NaCl) under room temperature (20 °C), 42.6% of phenol was recycled in receiving solution with a salt rejection of 99.95%. Meanwhile, the mean phenol mass transfer coefficient (K ov ) was 6.7 × 10 -7  m s -1 . As a membrane-based process, though the permeated phenol increased with the increase of phenol concentration in feed solution, the phenol recovery ratio was determined by the membrane properties rather than the pollutant concentrations. Phenol was found to permeate this membrane via adsorption, diffusion and desorption, and therefore, the membrane fouling generated from pore blockage in other membrane separation processes was totally avoided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. 76 FR 81437 - Proposed Significant New Use Rule for Phenol, 2,4-dimethyl-6-(1-methylpentadecyl)-

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... Activity Relationships (EcoSAR) dataset for phenols has been significantly updated to include 203 chemicals... result, when the most recent version of EcoSAR was run for phenol, 2,4-dimethyl-6-(1-methylpentadecyl... the new EcoSAR prediction of no expected acute or chronic adverse ecological effects. Therefore, based...

  2. Designing of phenol-based β-carbonic anhydrase1 inhibitors through QSAR, molecular docking, and MD simulation approach.

    PubMed

    Ahamad, Shahzaib; Hassan, Md Imtaiyaz; Dwivedi, Neeraja

    2018-05-01

    Tuberculosis (Tb) is an airborne infectious disease caused by Mycobacterium tuberculosis. Beta-carbonic anhydrase 1 ( β-CA1 ) has emerged as one of the potential targets for new antitubercular drug development. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulation approaches were performed on a series of natural and synthetic phenol-based β-CA1 inhibitors. The developed 3D-QSAR model ( r 2  = 0.94, q 2  = 0.86, and pred_r 2  = 0.74) indicated that the steric and electrostatic factors are important parameters to modulate the bioactivity of phenolic compounds. Based on this indication, we designed 72 new phenolic inhibitors, out of which two compounds (D25 and D50) effectively stabilized β-CA1 receptor and, thus, are potential candidates for new generation antitubercular drug discovery program.

  3. PtCu substrates subjected to AC and DC electric fields in a solution of benzene sulfonic acid-phenol as novel batteries and their use in glucose biofuel cells

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Fransaer, Jan

    2013-11-01

    We describe how bi-metal PtCu connected wires, immersed in a solution of benzene sulfonic acid (BSA)-phenol (P) or 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-phenol (P), then subjected to simultaneous alternating current (AC) and direct current (DC) electric fields generate power. We discovered that PtCu substrate covered by the deposit containing (BSA-PP-Pt-Cu), abbreviated as PtCu(BSA-PP-Pt-Cu) electrode, plays the role of a substantial anode and cathode. The latter was related to the formation of micro-batteries in the deposited film (BSA-PP-Pt-Cu) that are able to take or deliver electrons from the deposited Pt and Cu, respectively. PP-BSA plays probably the role of bridge for proton conduction in the formed micro-batteries. The power density of the fuel cell (FC)-based PtCu(BSA-PP-Pt-Cu) anode and PtCu(BSA-PP-Pt-Cu) cathode in phosphate buffer solution pH 7.4 at room temperature reaches ˜10.8 μW mm-2. Addition of enzymes, glucose oxidase at the anode and laccase at the cathode and, replacement of BSA by ABTS at the cathode in the deposited films increases the power density to 13.3 μW mm-2. This new procedure might be of great relevance for construction of a new generation of FCs operating at mild conditions or boost the power outputs of BFCs and make them suitable for diverse applications.

  4. Foliar phenolic compounds of ten wild species of Verbenacea as antioxidants and specific chemomarkers.

    PubMed

    Ávila-Reyes, J A; Almaraz-Abarca, N; Chaidez-Ayala, A I; Ramírez-Noya, D; Delgado-Alvarado, E A; Torres-Ricario, R; Naranjo-Jiménez, N; Alanís-Bañuelos, R E

    2018-02-01

    The family Verbenaceae hosts important species used in traditional medicine of many countries. The taxonomic controversies concerning the specific delimitation of several of its species make it difficult to guarantee the botanical origin of herbal preparations based on species of this family. To contribute to the development of both specific chemomarkers and a quality control tool to authenticate the botanical origin of herbal preparations of Verbenacea species, we determined the foliar HPLC-DAD phenolic profiles and the antioxidant properties of 10 wild species of this family occurring in Mexico. The contents of phenols and flavonoids varied significantly among species. Priva mexicana showed the highest levels of total phenolics (53.4 mg g-1 dry tissue) and Verbena carolina had the highest levels of flavonoids (17.89 mg g-1 dry tissue). Relevant antioxidant properties revealed by antiradical and reducing power were found for the analyzed species. These properties varied significantly in a species-dependent manner. The phenolic compounds accumulated were flavones and phenolic acids. Flavones were the only type of flavonoids found. The results of a cluster analysis showed that the compounds were accumulated in species-specific profiles. The phenolic profiles are proposed as valuable chemomarkers that can become a useful tool for the quality control concerning the botanical origin of herbal medicinal preparations based on the species analyzed. In addition, phenolic profiles could contribute importantly to solve the taxonomic controversies concerning species delimitation in the family Verbenaceae.

  5. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.

    PubMed

    Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J

    2004-01-01

    Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.

  6. Selection of reference standard during method development using the analytical hierarchy process.

    PubMed

    Sun, Wan-yang; Tong, Ling; Li, Dong-xiang; Huang, Jing-yi; Zhou, Shui-ping; Sun, Henry; Bi, Kai-shun

    2015-03-25

    Reference standard is critical for ensuring reliable and accurate method performance. One important issue is how to select the ideal one from the alternatives. Unlike the optimization of parameters, the criteria of the reference standard are always immeasurable. The aim of this paper is to recommend a quantitative approach for the selection of reference standard during method development based on the analytical hierarchy process (AHP) as a decision-making tool. Six alternative single reference standards were assessed in quantitative analysis of six phenolic acids from Salvia Miltiorrhiza and its preparations by using ultra-performance liquid chromatography. The AHP model simultaneously considered six criteria related to reference standard characteristics and method performance, containing feasibility to obtain, abundance in samples, chemical stability, accuracy, precision and robustness. The priority of each alternative was calculated using standard AHP analysis method. The results showed that protocatechuic aldehyde is the ideal reference standard, and rosmarinic acid is about 79.8% ability as the second choice. The determination results successfully verified the evaluation ability of this model. The AHP allowed us comprehensive considering the benefits and risks of the alternatives. It was an effective and practical tool for optimization of reference standards during method development. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions

    NASA Astrophysics Data System (ADS)

    Ertel, John R.; Hedges, John I.

    1984-10-01

    Vanillyl, syringyl and cinnamyl phenols occur as CuO oxidation products of humic, fulvic and base-insoluble residual fractions from soils, peat and nearshore marine sediments. However, none of these lignin-derived phenols were released by CuO oxidation of deepsea sediment or its base-extractable organic fractions. Lignin analysis indicated that peat and coastal marine sediments contained significantly higher levels of recognizable vascular plant carbon (20-50%) than soils and offshore marine sediments (0-10%). Although accounting for less than 20% of the total sedimentary (bulk) lignin, lignin components of humic acid fractions compositionally and quantitatively resembled the corresponding bulk samples and baseinsoluble residues. Recognizable lignin, presumably present as intact phenylpropanoid units, accounted for up to 5% of the carbon in peat and coastal humic acids but less than 1% in soil humic acids. Fulvic acid fractions uniformly yielded less lignin-derived phenols in mixtures that were depleted in syringyl and cinnamyl phenols relative to the corresponding humic acid fractions. Within the vanillyl and syringyl families the relative distribution of acidic and aldehydic phenols is a sensitive measure of the degree of oxidative alteration of the lignin component The high acid/aldehyde ratios and the low phenol yields of soils and their humic fractions compared to peat and coastal sediments indicate extensive degradation of the lignin source material. Likewise, the progressively higher acid/aldehyde ratios and lower phenol yields along the sequence: plant tissues (plant debris)-humic acids-fulvic acids suggest that this pattern represents the diagenetic sequence for the aerobic degradation of lignin biopolymers.

  8. Effect of nutrients on Chlorella pyrenoidosa for treatment of phenolic effluent of coal gasification plant.

    PubMed

    Stephen, Dayana Priyadharshini; Ayalur, Bakthavatsalam Kannappan

    2017-05-01

    The ability of Chlorella pyrenoidosa, a freshwater microalga, to degrade phenolic effluent of coal-based producer gas plant under ambient conditions was investigated. C. pyrenoidosa was able to grow in high-strength phenolic effluent. Major contaminant present in the effluent was phenol (C 6 H 5 OH). The effluent has 1475.3 ± 68 mg/L of initial total phenolic concentration. The effect of nutrients used for algal cultivation in phenol degradation was analyzed by inoculating four different concentrations, viz.,1, 2, 3, and 4 g of wet biomass/L of raw effluent of C. pyrenoidosa mixed with effluent into two batches (with and without nutrients). C. pyrenoidosa was able to degrade more than 95% of the phenol (C 6 H 5 OH) concentration with the algal concentrations of 3 and 4 g/L when supplemented with nutrients. With effluent devoid of nutrients, the average percent reduction in total phenolic compounds was observed to a maximum of 46%. No physical changes in the C. pyrenoidosa were observed during degradation. C. pyrenoidosa was able to consume the organic carbon present in the phenolic compounds as carbon source for its growth despite the inorganic carbon supplemented externally.

  9. In-Depth Two-Year Study of Phenolic Profile Variability among Olive Oils from Autochthonous and Mediterranean Varieties in Morocco, as Revealed by a LC-MS Chemometric Profiling Approach

    PubMed Central

    Bajoub, Aadil; Medina-Rodríguez, Santiago; Olmo-García, Lucía; Ajal, El Amine; Monasterio, Romina P.; Hanine, Hafida; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

    2016-01-01

    Olive oil phenolic fraction considerably contributes to the sensory quality and nutritional value of this foodstuff. Herein, the phenolic fraction of 203 olive oil samples extracted from fruits of four autochthonous Moroccan cultivars (“Picholine Marocaine”, “Dahbia”, “Haouzia” and “Menara”), and nine Mediterranean varieties recently introduced in Morocco (“Arbequina”, “Arbosana”, “Cornicabra”, “Frantoio”, “Hojiblanca”, “Koroneiki”, “Manzanilla”, “Picholine de Languedoc” and “Picual”), were explored over two consecutive crop seasons (2012/2013 and 2013/2014) by using liquid chromatography-mass spectrometry. A total of 32 phenolic compounds (and quinic acid), belonging to five chemical classes (secoiridoids, simple phenols, flavonoids, lignans and phenolic acids) were identified and quantified. Phenolic profiling revealed that the determined phenolic compounds showed variety-dependent levels, being, at the same time, significantly affected by the crop season. Moreover, based on the obtained phenolic composition and chemometric linear discriminant analysis, statistical models were obtained allowing a very satisfactory classification and prediction of the varietal origin of the studied oils. PMID:28036024

  10. Isolation and characterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in Palestine.

    PubMed

    Ereqat, Suheir I; Abdelkader, Ahmad A; Nasereddin, Abedelmajeed F; Al-Jawabreh, Amer O; Zaid, Taher M; Letnik, Ilya; Abdeen, Ziad A

    2018-01-02

    This study aimed at isolation of phenol degrading bacteria from olive mill wastes in Palestine. The efficiency of phenol removal and factors affecting phenol degradation were investigated. A bacterial strain (J20) was isolated from solid olive mill waste and identified as Bacillus thuringiensis based on standard morphological, biochemical characteristics and 16SrRNA sequence analysis. The strain was able to grow in a phenol concentration of 700 mg/L as the sole carbon and energy source. The culture conditions showed a significant impact on the ability of these cells to remove phenol. This strain exhibited optimum phenol degradation performance at pH 6.57 and 30 °C . Under the optimized conditions, this strain could degrade 88.6% of phenol (700 mg/L) within 96 h when the initial cell density was OD 600 0.2. However, the degradation efficiency could be improved from about 88% to nearly 99% by increasing the cell density. Immobilization of J20 was carried out using 4% sodium alginate. Phenol degradation efficiency of the immobilized cells of J20 was higher than that of the free cells, 100% versus 88.6% of 700 mg/L of phenol in 120 h, indicating the improved tolerance of the immobilized cells toward phenol toxicity. The J20 was used in detoxifying crude OMWW, phenolic compounds levels were reduced by 61% compared to untreated OMWW after five days of treatment. Hence, B. thuringiensis-J20 can be effectively used for bioremediation of phenol-contaminated sites in Palestine. These findings may lead to new biotechnological applications for the degradation of phenol, related to olive oil production.

  11. Enzymatic electrochemical detection coupled to multivariate calibration for the determination of phenolic compounds in environmental samples.

    PubMed

    Hernandez, Silvia R; Kergaravat, Silvina V; Pividori, Maria Isabel

    2013-03-15

    An approach based on the electrochemical detection of the horseradish peroxidase enzymatic reaction by means of square wave voltammetry was developed for the determination of phenolic compounds in environmental samples. First, a systematic optimization procedure of three factors involved in the enzymatic reaction was carried out using response surface methodology through a central composite design. Second, the enzymatic electrochemical detection coupled with a multivariate calibration method based in the partial least-squares technique was optimized for the determination of a mixture of five phenolic compounds, i.e. phenol, p-aminophenol, p-chlorophenol, hydroquinone and pyrocatechol. The calibration and validation sets were built and assessed. In the calibration model, the LODs for phenolic compounds oscillated from 0.6 to 1.4 × 10(-6) mol L(-1). Recoveries for prediction samples were higher than 85%. These compounds were analyzed simultaneously in spiked samples and in water samples collected close to tanneries and landfills. Published by Elsevier B.V.

  12. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review

    PubMed Central

    Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen

    2014-01-01

    This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275

  13. Antioxidant capacity of different fractions of vegetables and correlation with the contents of ascorbic acid, phenolics, and flavonoids.

    PubMed

    Ji, Linlin; Wu, Jianquan; Gao, Weina; Wei, Jingyu; Yang, Jijun; Guo, Changjiang

    2011-01-01

    The antioxidant capacity of different fractions of 17 vegetables were analyzed using ferric reducing antioxidant power assay (FRAP assay) after water and acetone extractions. The contents of ascorbic acid, phenolics, and flavonoids were determined and their correlations with FRAP value were investigated. The results showed that the peel or leaf fractions of vegetables were stronger than the pulp or stem fractions in antioxidant capacity based on total FRAP value. Lotus root peel was the highest and cucumber pulp the lowest in total FRAP value among the vegetable fractions analyzed. All water extracts were higher in FRAP value than the acetone extracts. The FRAP value was significantly correlated with the contents of ascorbic acid, phenolics, or flavonoids in water extracts, in which the phenolics contributed most based on multivariate regression analysis. We conclude that different vegetable fractions were remarkably different in antioxidant capacity. The phenolics are responsible mostly for the antioxidant capacity of vegetables in vitro. © 2011 Institute of Food Technologists®

  14. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.

    PubMed

    Kim, Seon-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2010-12-01

    Palm kernel shells were pyrolyzed in a pyrolysis plant equipped with a fluidized-bed reactor and a char-separation system. The influence of reaction temperature, feed size and feed rate on the product spectrum was also investigated. In addition, the effect of reaction temperature on the yields of phenol and phenolic compounds in the bio-oil was examined. The maximum bio-oil yield was 48.7 wt.% of the product at 490 degrees C. The maximum yield of phenol plus phenolic compounds amounted to about 70 area percentage at 475 degrees C. The yield of pyrolytic lignin after its isolation from the bio-oil was approximately 46 wt.% based on the water and ash free oil. The pyrolytic lignin was mainly composed of phenol, phenolic compounds and oligomers of coniferyl, sinapyl and p-coumaryl alcohols. From the result of a GPC analysis, the number average molecular weight and the weight average molecular weight were 325 and 463 g/mol, respectively. 2010 Elsevier Ltd. All rights reserved.

  15. Assay of phenolic compounds from four species of Ber (Ziziphus mauritiana L.) Fruits: Comparision of three base hydrolysis procedure for quantification of total phenolic acids

    USDA-ARS?s Scientific Manuscript database

    The present study was undertaken to investigate the flavonoids profile in four species of ber (Ziziphus mauritiana Lamk) fruit and to compare various techniques for the analysis of total phenolic acids. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, querceti...

  16. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, Foster A.

    1998-01-01

    A process for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400.degree. C. to about 600.degree. C. at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1-3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof.

  17. In vitro bioaccessibility, transepithelial transport and antioxidant activity of Urtica dioica L. phenolic compounds in nettle based food products.

    PubMed

    Bonetti, Gianpiero; Tedeschi, Paola; Meca, Giuseppe; Bertelli, Davide; Mañes, Jordi; Brandolini, Vincenzo; Maietti, Annalisa

    2016-10-12

    Nettle (Urtica dioica L.) is a well-known plant with a wide historical background use of stems, roots and leaves. Nettle leaves are an excellent source of phenolic compounds, principally 3-caffeoylquinic acid (3-CQA), caffeoylmalic acid (CMA) and rutin. The aim of this work was to evaluate the bioaccessibility (BAC), the bioavailability (BAV) and the antioxidant activity of nettle phenolic compounds present in foods and supplements. The BAC of nettle phenolics was evaluated with an in vitro dynamic digestion of real food matrices: the type of food matrix and chemical characteristic affected the kinetics of release and solubilization, with the highest BAC after duodenal digestion. A study of duodenal trans epithelial transport evidenced low bioavailability of native forms of 3-CQA, CMA and rutin. Simulation of colonic metabolism confirmed that phenolic compounds are fermented by gut microflora, confirming the need for further investigations on the impact of phenolic compounds at the large intestine level. Photochemiluminescence assay of the simulated digestion fluids demonstrated that ingestion of Urtica based foods contributes to create an antioxidant environment against superoxide anion radicals in the entire gastrointestinal tract (GIT).

  18. Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study

    PubMed Central

    Lugemwa, Fulgentius Nelson; Snyder, Amanda L.; Shaikh, Koonj

    2013-01-01

    Thirty eight bottles of red wine (Carbanet Sauvignon) were randomly selected based on vintage, region, price, and age (number of months in a barrel). The total phenolic content of each wine was determined using Folin-Ciocalteau assay. The radical scavenging activity was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Apart from a few bottles that exhibited above average radical scavenging activity and phenolic content, there was no good correlation of those two quantities with region, price or vintage. The average phenolic amount was 2874 mg/L. The lowest phenolic content was found to be 1648 mg/L for an eight dollar wine. Wine with the highest amount of phenol of 4495 mg/L was a 2007, nine dollar bottle from South America. High amount of phenols did not translate into high radical scavenging activity. Barrel-aging did not increase the amount of phenols or the radical scavenging activity of wine. In order to discover new and potent sources of antioxidants from plants, the following spices were studied: ginger, cilantro, cumin, anise, linden, eucalyptus, marjoram, oregano, sage, thyme and rosemary. Whole spices were crushed and extracted for 96 h at room temperature using a combination of ethyl acetate, ethyl alcohol and water in the ratio of 4.5:4.5:1 (v/v/v). The radical scavenging activity of extracts was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. The total phenolic content of each spice was also determined using the Folin-Ciocalteau assay. Eucalyptus was found to be the most potent antioxidant with an LC50 of 324.1 mg of phenol/L, followed by marjoram with an LC50 of 407.5 mg of phenol/L, and rosemary with an LC50 of 414.0 mg/L. The least potent antioxidants were ginger and cilantro with LC50 of 7604 mg/L of phenol and 7876 mg of phenol/L, respectively. PMID:26784340

  19. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Feldman, Jay D.

    2013-01-01

    NASAs Office of the Chief Technologist (OCT) Game Changing Division recently funded an effort to advance a Woven TPS (WTPS) concept. WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes g(reater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.

  20. Effects of different culture conditions on biological potential and metabolites production in three Penicillium isolates.

    PubMed

    Reis, Filipa S; Ćirić, Ana; Stojković, Dejan; Barros, Lillian; Ljaljević-Grbić, Milica; Soković, Marina; Ferreira, Isabel C F R

    2015-02-01

    The genus Penicillium is well known for its importance in drug and food production. Certain species are produced on an industrial scale for the production of antibiotics (e.g. penicillin) or for insertion in food (e.g. cheese). In the present work, three Penicillium species, part of the natural mycobiota growing on various food products were selected - P. ochrochloron, P. funiculosum and P. verrucosum var. cyclopium. The objective of our study was to value these species from the point of view of production of bioactive metabolites. The species were obtained after inoculation and growth in Czapek and Malt media. Both mycelia and culture media were analyzed to monitor the production of different metabolites by each fungus and their release to the culture medium. The concentrations of sugars, organic acids, phenolic acids and tocopherols were determined. Antioxidant activity of the phenolic extracts was evaluated, as also the antimicrobial activity of phenolic acids, organic acids and tocopherols extracts. Rhamnose, xylose, fructose and trehalose were found in all the mycelia and culture media; the prevailing organic acids were oxalic and fumaric acids, and protocatechuic and p-hydroxybenzoic acids were the most common phenolic acids; γ-tocopherol was the most abundant vitamin E isoform. Generally, the phenolic extracts corresponding to the mycelia samples revealed higher antioxidant activity. Concerning the antimicrobial activity there were some fluctuations, however all the studied species revealed activity against the tested strains. Therefore, the in-vitro bioprocesses can be an alternative for the production of bioactive metabolites that can be used by pharmaceutical industry.

  1. Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics.

    PubMed

    Ju, Feng; Wang, Yubo; Zhang, Tong

    2018-01-01

    Methanogenic biodegradation of aromatic compounds depends on syntrophic metabolism. However, metabolic enzymes and pathways of uncultured microorganisms and their ecological interactions with methanogenic consortia are unknown because of their resistance to isolation and limited genomic information. Genome-resolved metagenomics approaches were used to reconstruct and dissect 23 prokaryotic genomes from 37 and 20 °C methanogenic phenol-degrading reactors. Comparative genomic evidence suggests that temperature difference leads to the colonization of two distinct cooperative sub-communities that can respire sulfate/sulfite/sulfur or nitrate/nitrite compounds and compete for uptake of methanogenic substrates (e.g., acetate and hydrogen). This competition may differentiate methanogenesis. The uncultured ε - Proteobacterium G1, whose close relatives have broad ecological niches including the deep-sea vents, aquifers, sediment, limestone caves, spring, and anaerobic digesters, is implicated as a Sulfurovum -like facultative anaerobic diazotroph with metabolic versatility and remarkable environmental adaptability. We provide first genomic evidence for butyrate, alcohol, and carbohydrate utilization by a Chloroflexi T78 clade bacterium, and phenol carboxylation and assimilatory sulfite reduction in a Cryptanaerobacter bacterium. Genome-resolved metagenomics enriches our view on the differentiation of microbial community composition, metabolic pathways, and ecological interactions in temperature-differentiated methanogenic phenol-degrading bioreactors. These findings suggest optimization strategies for methanogenesis on phenol, such as temperature control, protection from light, feed desulfurization, and hydrogen sulfide removal from bioreactors. Moreover, decoding genome-borne properties (e.g., antibiotic, arsenic, and heavy metal resistance) of uncultured bacteria help to bring up alternative schemes to isolate them.

  2. Natural Phenol Polymers: Recent Advances in Food and Health Applications.

    PubMed

    Panzella, Lucia; Napolitano, Alessandra

    2017-04-14

    Natural phenol polymers are widely represented in nature and include a variety of classes including tannins and lignins as the most prominent. Largely consumed foods are rich sources of phenol polymers, notably black foods traditionally used in East Asia, but other non-edible, easily accessible sources, e.g., seaweeds and wood, have been considered with increasing interest together with waste materials from agro-based industries, primarily grape pomace and other byproducts of fruit and coffee processing. Not in all cases were the main structural components of these materials identified because of their highly heterogeneous nature. The great beneficial effects of natural phenol-based polymers on human health and their potential in improving the quality of food were largely explored, and this review critically addresses the most interesting and innovative reports in the field of nutrition and biomedicine that have appeared in the last five years. Several in vivo human and animal trials supported the proposed use of these materials as food supplements and for amelioration of the health and production of livestock. Biocompatible and stable functional polymers prepared by peroxidase-catalyzed polymerization of natural phenols, as well as natural phenol polymers were exploited as conventional and green plastic additives in smart packaging and food-spoilage prevention applications. The potential of natural phenol polymers in regenerative biomedicine as additives of biomaterials to promote growth and differentiation of osteoblasts is also discussed.

  3. Natural Phenol Polymers: Recent Advances in Food and Health Applications

    PubMed Central

    Panzella, Lucia; Napolitano, Alessandra

    2017-01-01

    Natural phenol polymers are widely represented in nature and include a variety of classes including tannins and lignins as the most prominent. Largely consumed foods are rich sources of phenol polymers, notably black foods traditionally used in East Asia, but other non-edible, easily accessible sources, e.g., seaweeds and wood, have been considered with increasing interest together with waste materials from agro-based industries, primarily grape pomace and other byproducts of fruit and coffee processing. Not in all cases were the main structural components of these materials identified because of their highly heterogeneous nature. The great beneficial effects of natural phenol-based polymers on human health and their potential in improving the quality of food were largely explored, and this review critically addresses the most interesting and innovative reports in the field of nutrition and biomedicine that have appeared in the last five years. Several in vivo human and animal trials supported the proposed use of these materials as food supplements and for amelioration of the health and production of livestock. Biocompatible and stable functional polymers prepared by peroxidase-catalyzed polymerization of natural phenols, as well as natural phenol polymers were exploited as conventional and green plastic additives in smart packaging and food-spoilage prevention applications. The potential of natural phenol polymers in regenerative biomedicine as additives of biomaterials to promote growth and differentiation of osteoblasts is also discussed. PMID:28420078

  4. (Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis.

    PubMed

    Macedo, Diana; Jardim, Carolina; Figueira, Inês; Almeida, A Filipa; McDougall, Gordon J; Stewart, Derek; Yuste, Jose E; Tomás-Barberán, Francisco A; Tenreiro, Sandra; Outeiro, Tiago F; Santos, Cláudia N

    2018-05-03

    Parkinson's disease (PD) is an age-related neurodegenerative disease associated with the misfolding and aggregation of alpha-synuclein (aSyn). The molecular underpinnings of PD are still obscure, but nutrition may play an important role in the prevention, onset, and disease progression. Dietary (poly)phenols revert and prevent age-related cognitive decline and neurodegeneration in model systems. However, only limited attempts were made to evaluate the impact of digestion on the bioactivities of (poly)phenols and determine their mechanisms of action. This constitutes a challenge for the development of (poly)phenol-based nutritional therapies. Here, we subjected (poly)phenols from Arbutus unedo to in vitro digestion and tested the products in cell models of PD based on the cytotoxicity of aSyn. The (poly)phenol-digested metabolites from A. unedo leaves (LPDMs) effectively counteracted aSyn and H 2 O 2 toxicity in yeast and human cells, improving viability by reducing aSyn aggregation and inducing its clearance. In addition, LPDMs modulated pathways associated with aSyn toxicity, such as oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial impairment, and SIR2 expression. Overall, LPDMs reduced aSyn toxicity, enhanced the efficiency of ER-associated protein degradation by the proteasome and autophagy, and reduced oxidative stress. In total, our study opens novel avenues for the exploitation of (poly)phenols in nutrition and health.

  5. Effects of koji fermented phenolic compounds on the oxidative stability of fish miso.

    PubMed

    Giri, Anupam; Osako, Kazufumi; Okamoto, Akira; Okazaki, Emiko; Ohshima, Toshiaki

    2012-02-01

    In the present study, Aspergillus oryzae-inoculated koji inhibited lipid oxidation in fermented fish paste rich in polyunsaturated fatty acids following a long fermentation period. The fermentation of koji by A. oryzae liberated several bioactive phenolic compounds, including kojic acid and ferulic acid, which were the most abundant. A linear correlation between several phenolic compounds and their bioactive properties, including their radical-scavenging activity, reducing power, metal-chelating activity, and ability to inhibit linoleic acid oxidation was observed. This suggested an important role of koji phenolics in the oxidative stability of fermented fish paste. The activities of different carbohydrate-cleaving enzymes, including α-amylase, cellulase, and β-glucosidase, were positively correlated with the liberation of several phenolic compounds through koji fermentation. Thus, the application of koji offers a novel strategy to enhance the oxidative stability of newly developed fermented fish miso. Application of traditional Japanese koji fermentation technique to develop an aroma enriched fish meat bases seasoning has been established. Aspergillus oryzae-inoculated koji releases several carbohydrate-cleaving enzymes, including α-amylase, cellulose, and β-glucosidase, which led to the liberation of several phenolic compounds during fermentation. Improvement of oxidative stability of the fermented fish meat paste by koji phenolics suggests a useful strategy to uplift the value of different trash fish meat-based seasoning through proper utilization of the present technique. © 2012 Institute of Food Technologists®

  6. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    EPA Science Inventory

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  7. TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR FOR DETECTION OF PHENOLS: BINDER AND PRE-OXIDATION EFFECTS

    EPA Science Inventory

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil or paraffin wax oil yielded a greater response to phenol and catechol than those using the hi...

  8. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    EPA Science Inventory

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  9. Spectroscopic study of 2-, 4- and 5-substituents on p Ka values of imidazole heterocycles prone to intramolecular proton-electrons transfer

    NASA Astrophysics Data System (ADS)

    Eseola, Abiodun O.; Obi-Egbedi, Nelson O.

    2010-02-01

    New 2-(1H-imidazol-2-yl)phenols ( L1Et- L8tBuPt) bearing a phenolic proton in the vicinity of the imidazole base were prepared and characterized. Experimental studies of the dependence of their protonation/deprotonation equilibrium on substituent identities and intramolecular hydrogen bonding tendencies were carried out using electronic absorption spectroscopy at varying pH values. In order to make comparison, 2-(anthracen-10-yl)-4,5-diphenyl-1H-imidazole ( L9Anthr) bearing no phenolic proton and 4,5-diphenyl-2-(4,5-diphenyl-1H-imidazol-2-yl)-1H-imidazole ( L10BisIm) bearing two symmetrical imidazole base fragments were also prepared and experimentally investigated. DFT calculations were carried out to study frontier orbitals of the investigated molecules. While electron-releasing substituents produced increase in protonation-deprotonation p Kas for the hydroxyl group, values for the imidazole base were mainly affected by polarization of the imidazole ring aromaticity across the 2-imidazole carbon and the 4,5-imidazole carbons axis of the imidazole ring. It was concluded that electron-releasing substituents on the phenol ring and/or electron-withdrawing substituents on 4,5-imidazole carbons negatively affects donor strengths/coordination chemistries of 2-(1H-imidazol-2-yl)phenols, and vice versa. Change of substituents on the phenol ring significantly altered the donor strength of the imidazole base. The understanding of p Ka variation on account of electronic effects of substituents in this work should aid the understanding of biochemical properties and substituent environments of imidazole-containing biomacromolecules.

  10. Recycling

    NASA Astrophysics Data System (ADS)

    Goto, Junya; Santorelli, Michael

    Recycling systems are classified into those employing typically three methods, and the progress of each method is described. In mechanical recycling, powders of phenolic materials are recovered via a mechanical process and reused as fillers or additives in virgin materials. The effects to flowability, curability, and mechanical properties of the materials are explained. In feedstock recycling, monomers, oligomers, or oils are recovered via chemical processes and reused as feedstock. Pyrolysis, solvolysis or hydrolysis, and supercritical or subcritical fluid technology will also be introduced. When using a subcritical fluid of phenol, the recycled material maintains excellent properties similar to the virgin material, and a demonstration plant has been constructed to carry out mass production development. In energy recovery, wastes of phenolic materials are used as an alternative solid fuel to coal because they are combustible and have good calorific value. Industrial wastes of these have been in practical use in a cement plant. Finally, it is suggested that the best recycling method should be selected according to the purpose or situation, because every recycling method has both strengths and weaknesses. Therefore, quantitative and objective evaluation methods in recycling are desirable and should be established.

  11. Preparation of black soybean (Glycine max L) extract with enhanced levels of phenolic compound and estrogenic activity using high hydrostatic pressure and pre-germination

    NASA Astrophysics Data System (ADS)

    Kim, Min Young; Jang, Gwi Yeong; Lee, Sang Hoon; Kim, Kyung Mi; Lee, Junsoo; Jeong, Heon Sang

    2018-04-01

    We investigated the influence of high hydrostatic pressure (HHP) treatment on the estrogenic properties and conversion of the phenolic compounds in germinated black soybean. The black soybean was germinated for two- or four-days, and then subjected to HHP at 0.1, 50, 100, or 150 MPa for 12 or 24 h. The highest total polyphenol content (3.9 mg GAE/g), flavonoid content (0.8 mg CE/g), phenolic acid content (940 ± 18.96 μg/g), and isoflavonone content (2600 μg/g) were observed after germination for four days and HHP treatment at 100 MPa for 24 h. In terms of isoflavone composition, the malonyl, acetyl and β-glycoside contents decreased, while the aglycone content increased with HHP. The highest proliferative effect (150%) is observed at four days germination and HHP treatment at 100 MPa. These results suggest that application of HHP may provide useful information regarding the utility of black soybean as alternative hormone replacement therapy.

  12. Phenolic extracts from Sorbus aucuparia (L.) and Malus baccata (L.) berries: antioxidant activity and performance in rapeseed oil during frying and storage.

    PubMed

    Aladedunye, Felix; Matthäus, Bertrand

    2014-09-15

    In the present study, phenolic extracts and fractions from Canadian rowanberry (Sorbus aucuparia) and crabapple (Malus baccata) were screened for antioxidant activity using DPPH radical scavenging activity, and β-carotene bleaching assays. Furthermore, rapeseed oil was supplemented with extracts/fractions and performance was assessed during accelerated storage at 65°C, under Rancimat at 120°C, and during frying at 180°C. A number of phenolic fractions showed significantly higher radical scavenging and antioxidant activity in the oil than the synthetic antioxidant, butylated hydroxytoluene (BHT). At the end of the 7-day storage, the peroxide value was reduced by up to 42% in the presence of extracts. The extent of thermooxidative degradation was significantly lower in oils fortified with the fruit extracts, with fractions from Sorbus species being more effective. Results from the present study suggested that polyphenolic extracts from these fruits can offer effective alternative to synthetic antioxidants during frying and storage of vegetable oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Simultaneous determination of the migrations of bisphenol A and phenol in polycarbonate bottles based on subcritical water extraction and high performance liquid chromatography].

    PubMed

    Bai, Weiwei; Liu, Shuhui; Cao, Jiangping; Fan, Yingying; Xie, Qilong

    2013-03-01

    A new method was established for the simultaneous determination of the migration amounts of bisphenol A (BPA) and phenol from polycarbonate (PC) bottles based on subcritical water extraction (SWE) and high performance liquid chromatography. The optimum extraction conditions included an extraction temperature of 120 degree C, a pressure of 6.89 MPa (1000 psi), a static extraction time of 1 h and one cycle. Under the conditions, the migration amounts of the BPA ranged from 6.81 to 1116 micro g/g in 11 samples. Phenol was not detectable in 5 samples, and in other ones the migration amounts of phenol varied in the range of 3.25 -6. 08 micro g/g. The traditional soaking extraction experiments showed that PC was subjected to weak hydrolysis after long-time leaching. The BPA and phenol were separated in 8 min. Good linearities were obtained in the range of 0. 05 - 20 mg/L for BPA and 0.02 - 20 mg/L for phenol ( r > 0.999 7). The limits of detection were 7.6 micro g/L for BPA and 2.0 micro g/L for phenol. Intra-day and inter-day repeatabilities (expressed as RSD) were less than 5.21% and 11.63%, respectively. Compared with traditional water soaking extraction, the extraction efficiencies increased 49 - 106 times using this developed SWE method. The procedure is simple, rapid and environment friendly, and can be utilized to determine the migration amounts of BPA and phenol in PC bottles.

  14. Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles.

    PubMed

    Gatselou, Vasiliki; Christodouleas, Dionysios C; Kouloumpis, Antonios; Gournis, Dimitrios; Giokas, Dimosthenis L

    2016-08-17

    This work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e., catechins, gallates, cinnamates, and dihydroxybenzoic acids) were found to cause changes in the size and localized surface plasmon resonance of rhodium nanoparticles, and therefore, give rise to analyte-specific spectral and color transitions in the rhodium nanoparticle suspensions. Upon reaction with phenolic compounds (mainly dithydroxybenzoate derivatives, and trihydroxybenzoate derivatives), new absorbance peaks at 350 nm and 450 nm were observed. Upon reaction with trihydroxybenzoate derivatives, however, an additional absorbance peak at 580 nm was observed facilitating the speciation of phenolic compounds in the sample. Both absorbance peaks at 450 nm and 580 nm increased with increasing concentration of phenolic compounds over a linear range of 0-500 μM. Detection limits at the mid-micromolar levels were achieved, depending on the phenolic compound involved, and with satisfactory reproducibility (<7.3%). On the basis of these findings, two rhodium nanoparticles-based assays for the determination of the total phenolic content and total catechin content were developed and applied in tea samples. The obtained results correlated favorably with commonly used methods (i.e., Folin-Ciocalteu and aluminum complexation assay). Not the least, the finding that rhodium nanoparticles can react with analytes and exhibit unique localized surface plasmon resonance bands in the visible region, can open new opportunities for developing new optical and sensing analytical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Experimental Investigation on the Specific Heat of Carbonized Phenolic Resin-Based Ablative Materials

    NASA Astrophysics Data System (ADS)

    Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin

    2017-10-01

    As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by inversion, enabling the prediction of the specific heat of the carbonized ablators with different constituent mass fractions by means of the weighted average method in engineering.

  16. Oxidative stability, phenolic compounds and antioxidant potential of a virgin olive oil enriched with natural bioactive compounds.

    PubMed

    Delgado-Adámez, Jonathan; Baltasar, M Nieves Franco; Yuste, María Concepción Ayuso; Martín-Vertedor, Daniel

    2014-01-01

    The aim of this research was to evaluate strategies for the development of a virgin olive oil (VOO) enriched with aqueous extracts of olive leaf and cake to increase the necessary dose in the diet of phenolic compounds with a natural product, as phenolic compounds are involved on the healthy properties of olive oil. Different extraction procedures were evaluated with the aim of increasing the phenol content and antioxidant potential of extracts of olive leaf and cake. As leaves extract presented a higher total phenolic content, it was characterized in order to determine its phenolic profile, and was employed to enrich VOO. Diverse procedures were used to prepare enriched VOO with the leaves extract, and finally the effects of phenol enrichment were evaluated based on the antioxidant potential and oxidative stability of the prepared phenol-enriched virgin olive oils. These enriched VOOs increased significantly the content in phenolic compounds, antioxidant potential and oxidative stability 40, 4 and 1.5 fold more, respectively, than the Control oil. Furthermore, the addition of lecithin had a positive effect both on the phenolic compounds content, and on the antioxidant potential of the oils. Besides, the use of the olive leaves extract, with and without lecithin respectively, supposes a strategy potential for reducing the harmful effects that inflicts long-term preservation of VOOs and its possible deterioration.

  17. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  18. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE PAGES

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; ...

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  19. Phenolic cutter for machining foam insulation

    NASA Technical Reports Server (NTRS)

    Blair, T. A.; Miller, A. C.; Price, B. W.; Stiles, W. S.

    1970-01-01

    Pre-pregged fiber glass is an efficient abrasive for machining polystyrene and polyurethane foams. It bonds easily to any cutter base made of aluminum, steel, or phenolic, is inexpensive, and is readily available.

  20. The impact of large river system on the signal of dissolved organic matter: a case study on the Changjiang (Yangtze River), China

    NASA Astrophysics Data System (ADS)

    xiaona, W.; Bao, H.; Wu, Y.

    2013-12-01

    As one of the largest river in the world, studying the properties of dissolved organic matter in Changjiang can help us reveal the change of terrestrial organic matter in typical large subtropical river system. Samples collected from mid-lower reaches of Changjiang and its main tributaries/lakes in July 2010 and August 2012 were analysed for dissolved organic carbon (DOC), dissolved lignin phenols and chromophoric dissolved organic carbon (CDOM). Based on the hydrological condition, both of the two cruises are in flood season, while the latter is extremely flood season. The hydrological condition can impact the signal of dissolved lignin phenols as well as DOC. The DOC concentration is similar for both the cruises, with an average of 139×21 μM in 2010 and 130×36 μM in 2012. But the dissolved lignin phenols show obvious difference, the concentration is 13.6×3.4 μg/L and 12.7×5.2 μg/L for the main stream and tributaries/lakes in 2010 respectively, but it decreases to 8.7×2.5 μg/L and 6.5×3.5 μg/L in 2012.The dissolved lignin phenols show positive correlation with DOC in August 2012, but no similar trend is observed in 2010. Excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEMs-PARAFAC) decomposes the fluorescence matrices of CDOM into three humic-like (H1: 315(250)/400 nm, H2: 350(280)/460 nm, H3: 250/450~485 nm) and two protein-like (P1: 270/315 nm, P2: 285/350 nm) components. Good linear correlations are observed within three humic-like components and two protein-like components, indicating that the same types of components (humic-like or protein-like) have similar origin and geochemical behaviors. However, these two kinds of components show different tendency. The total content of dissolved lignin phenols is correlated with the absorption in 280 nm, indicating the optical property of CDOM is related to its structure. There are many factors impacting the composition of dissolved organic matter in large river system like Changjiang. We find the biomarkers have mutative geochemical behaviors in different hydrological conditions. The variation of biomarkers can reveal the alternation in hydrological factor.

  1. Statistical optimization of process parameters for the simultaneous adsorption of Cr(VI) and phenol onto Fe-treated tea waste biomass

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Balomajumder, Chandrajit

    2017-12-01

    In this study, simultaneous removal of Cr(VI) and phenol from binary solution was carried out using Fe-treated tea waste biomass. The effect of process parameters such as adsorbent dose, pH, initial concentration of Cr(VI) (mg/L), and initial concentration of phenol (mg/L) was optimized. The analysis of variance of the quadratic model demonstrates that the experimental results are in good agreement with the predicted values. Based on experimental design at an initial concentration of 55 mg/L of Cr(VI), 27.50 mg/L of phenol, pH 2.0, 15 g/L adsorbent dose, 99.99% removal of Cr(VI), and phenol was achieved.

  2. Antioxidant capacity and phenolic acids of virgin coconut oil.

    PubMed

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  3. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates.

    PubMed

    Pool, B L; Lin, P Z

    1982-08-01

    Smokehouse smoke, which is used for flavouring meat products, was investigated for its mutagenic activity in the Salmonella typhimurium assay. We were chiefly concerned with the fractions free of polycyclic aromatic hydrocarbons but containing phenol compounds, which are responsible for the preservative and aromatizing properties of the smoke. The most abundantly occurring phenol compounds (phenol, cresols, 2,4-dimethylphenol, brenzcatechine, syringol, eugenol, vanilline and guaiacol) gave negative results when they were tested for mutagenicity at five concentrations up to 5000 micrograms/plate, with and without S-9 mix, using five strains of S. typhimurium. Even when phenol was further investigated in a variety of test conditions, no induction of his+ revertants was observed. When smokehouse smoke was condensed and fractionated the majority of the various phenolic fractions also gave negative results when tested at five concentrations using five strains of S. typhimurium. However there was a slight increase in the number of revertants in a few cases. The presence in the phenolic fractions of very small amounts of mutagenic impurities, the nature of which needs further investigation, cannot be excluded. These results support the further development of non-hazardous smoke-aroma preparations, based on the phenolic components of smokehouse smoke.

  4. Long-Term Uptake of Phenol-Water Vapor Follows Similar Sigmoid Kinetics on Prehydrated Organic Matter- and Clay-Rich Soil Sorbents.

    PubMed

    Borisover, Mikhail; Bukhanovsky, Nadezhda; Lado, Marcos

    2017-09-19

    Typical experimental time frames allowed for equilibrating water-organic vapors with soil sorbents might lead to overlooking slow chemical reactions finally controlling a thermodynamically stable state. In this work, long-term gravimetric examination of kinetics covering about 4000 h was performed for phenol-water vapor interacting with four materials pre-equilibrated at three levels of air relative humidity (RHs 52, 73, and 92%). The four contrasting sorbents included an organic matter (OM)-rich peat soil, an OM-poor clay soil, a hydrophilic Aldrich humic acid salt, and water-insoluble leonardite. Monitoring phenol-water vapor interactions with the prehydrated sorbents, as compared with the sorbent samples in phenol-free atmosphere at the same RH, showed, for the first time, a sigmoid kinetics of phenol-induced mass uptake typical for second-order autocatalytic reactions. The apparent rate constants were similar for all the sorbents, RHs and phenol activities studied. A significant part of sorbed phenol resisted extraction, which was attributed to its abiotic oxidative coupling. Phenol uptake by peat and clay soils was also associated with a significant enhancement of water retention. The delayed development of the sigmoidal kinetics in phenol-water uptake demonstrates that long-run abiotic interactions of water-organic vapor with soil may be overlooked, based on short-term examination.

  5. Influence of pressure cooking on antioxidant activity of wild (Ensete superbum) and commercial banana (Musa paradisiaca var. Monthan) unripe fruit and flower.

    PubMed

    Sasipriya, Gopalakrishnan; Maria, Cherian Lintu; Siddhuraju, Perumal

    2014-10-01

    Banana is a highly nutritious fruit crop consumed by many people's worldwide while endangered species are consumed by limited peoples and their health benefits are not explored. The unripe fruits and flowers of wild and commercial banana are consumed by peoples after cooking only. Hence, the present study was undertaken to evaluate and compare the effect of pressure cooking on antioxidant activity of wild and commercial banana species. The raw and processed samples were extracted with 70 % acetone. Except wild flower, thermal processing enhanced the content of phenolics, tannins, flavonoids, DPPH, ABTS, FRAP, hydroxyl and peroxidation activity than raw. Wild species presented higher phenolics, tannins, DPPH, ABTS and FRAP activity than commercial ones. Except few samples, wild species and commercial species exhibit similar activity in superoxide, hydroxyl and peroxidation activity. FRAP (r (2)  = 0.922; 0.977) and hydroxyl (r (2)  = 0.773; 0.744) activities were dependent on phenolics and tannin content whereas tannins may be responsible for DPPH scavenging activity (r (2)  = 0.745). Thermal processing enhanced the antioxidant activity might be due to the release of bound phenolics from cell wall and oxidation and polymerisation of compounds present in it. This wild species may be an alternative to commercial ones and will be valuable to consumers for protecting from chronic diseases.

  6. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity.

    PubMed

    A V, Vipin; K, Raksha Rao; Kurrey, Nawneet Kumar; K A, Anu Appaiah; G, Venkateswaran

    2017-07-01

    Aflatoxin B 1 (AFB 1 ) is one of the predominant mycotoxin contaminant in food and feed, causing oxidative stress and hepatotoxicity. Ginger phenolics have been reported for its antioxidant potential and hepatoprotective activity. The present study investigated the protective effects of phenolics rich ginger extract (GE) against AFB 1 induced oxidative stress and hepatotoxicity, in vitro and in vivo. The phenolic acid profiles of GE showed 6-gingerol and 6-shogaol as predominant components. Pretreatment of HepG2 cells with GE significantly inhibited the production of intracellular reactive oxygen species (ROS), DNA strand break, and cytotoxicity induced by AFB 1 . A comparable effect was observed in in vivo. Male Wistar rats were orally treated with GE (100 and 250mg/kg) daily, with the administration of AFB 1 (200μg/kg) every alternative day for 28days. Treatment with GE significantly reduced AFB 1 induced toxicity on the serum markers of liver damage. In addition, GE also showed significant hepatoprotective effect by reducing the lipid peroxidation and by enhancing the antioxidant enzymes activities. These results combined with liver histopathological observations indicated that GE has potential protective effect against AFB 1 induced hepatotoxicity. Additionally, administration of GE up-regulated Nrf2/HO-1 pathway, which further proved the efficiency of GE to inhibit AFB 1 induced hepatotoxicity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. High temperature performance of soy-based adhesives

    Treesearch

    Jane L. O’Dell; Christopher G. Hunt; Charles R. Frihart

    2013-01-01

    We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phenol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour...

  8. A Quantum Chemical and Statistical Study of Phenolic Schiff Bases with Antioxidant Activity against DPPH Free Radical

    PubMed Central

    Anouar, El Hassane

    2014-01-01

    Phenolic Schiff bases are known as powerful antioxidants. To select the electronic, 2D and 3D descriptors responsible for the free radical scavenging ability of a series of 30 phenolic Schiff bases, a set of molecular descriptors were calculated by using B3P86 (Becke’s three parameter hybrid functional with Perdew 86 correlation functional) combined with 6-31 + G(d,p) basis set (i.e., at the B3P86/6-31 + G(d,p) level of theory). The chemometric methods, simple and multiple linear regressions (SLR and MLR), principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to reduce the dimensionality and to investigate the relationship between the calculated descriptors and the antioxidant activity. The results showed that the antioxidant activity mainly depends on the first and second bond dissociation enthalpies of phenolic hydroxyl groups, the dipole moment and the hydrophobicity descriptors. The antioxidant activity is inversely proportional to the main descriptors. The selected descriptors discriminate the Schiff bases into active and inactive antioxidants. PMID:26784873

  9. Tannins and extracts of fruit byproducts: antibacterial activity against foodborne bacteria and antioxidant capacity.

    PubMed

    Widsten, Petri; Cruz, Cristina D; Fletcher, Graham C; Pajak, Marta A; McGhie, Tony K

    2014-11-19

    The shelf life of fresh fish and meat transported over long distances could be extended by using plant-based extracts to control spoilage bacteria. The goals of the present study were to identify plant-based extracts that effectively suppress the main spoilage bacteria of chilled fish and lamb and to assess their antioxidant capacity. The phenolic compounds in wood-based tannins and extracts isolated from byproducts of the fruit processing industry were identified and/or quantified. The total phenol content, but not the flavonoid to total phenol ratio, was strongly associated with higher antibacterial activity against several fish and lamb spoilage bacteria in zone of inhibition and minimum inhibitory concentration assays as well as greater antioxidant capacity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical assay. The most promising compounds in both cases, and thus good candidates for antibacterial packaging or antioxidant dietary supplements, were mango seed extract and tannic acid containing mostly polygalloyl glucose type phenols.

  10. Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor.

    PubMed

    Moghaddam, Hadi Mahmoudi; Beitollahi, Hadi; Tajik, Somayeh; Malakootian, Mohammad; Maleh, Hassan Karimi

    2014-11-01

    The electrochemical oxidation of hydroxylamine on the surface of a carbon paste electrode modified with carbon nanotubes and 2,7-bis(ferrocenyl ethyl)fluoren-9-one is studied. The electrochemical response characteristics of the modified electrode toward hydroxylamine and phenol were investigated. The results showed an efficient catalytic activity of the electrode for the electro-oxidation of hydroxylamine, which leads to lowering its overpotential. The modified electrode exhibits an efficient electron-mediating behavior together with well-separated oxidation peaks for hydroxylamine and phenol. Also, the modified electrode was used for determination of hydroxylamine and phenol in some real samples.

  11. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, F.A.

    1998-09-15

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  12. Turnover capacity of Coprinus cinereus peroxidase for phenol and monosubstituted phenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitken, M.D.; Heck, P.E.

    Coprinus cinereus peroxidase (CIP) and other peroxidases are susceptible to mechanism-based inactivation during the oxidation of phenolic substrates. The turnover capacity of CIP was quantified for phenol and 11 monosubstituted phenols under conditions in which enzyme inactivation by mechanisms involving hydrogen peroxide alone were minimized. Turnover capacities varied by nearly 2 orders of magnitude, depending on the substituent. On a mass basis, the enzyme consumption corresponding to the lowest turnover capacities is considerable and may influence the economic feasibility of proposed industrial applications of peroxidases. Within a range of substituent electronegativity values, molar turnover capacities correlated well (r{sup 2} =more » 0.89) with substituent effects quantified by radical {sigma} values and semiquantitatively with homolytic O-H bond dissociation energies of the phenolic substrates, suggesting that phenoxyl radical intermediates are probably involved in the suicide inactivation of CIP. The correlation range in each case did not include phenols with highly electron-withdrawing (nitro and cyano) substituents because they are not oxidized by CIP, nor phenols with highly electron-donating (hydroxy and amino) substituents because they led to virtually complete inactivation of the enzyme with minimal substrate removal.« less

  13. Liquefaction of the Used Creosote-Treated Wood in the Presence of Phenol and Its Application to Phenolic Resin

    Treesearch

    Nubuo Shiraishi; Chung-Yun Hse

    2000-01-01

    A limited initial study was made to evaluate liquefaction of creosote-treated southern pine wood sawdust with liquefaction of birch wood powder as a control. The objective was to assess the feasibility of using creosote-treated southern pine wood as a raw material for the-formulation-of-phenol-based resin adhesives. The liquefaction was conducted in the presence of...

  14. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.

    PubMed

    Mohamed, E F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2011-01-01

    Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge-based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p-nitrophenol, p-chlorophenol, p-hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single-solute isotherms. Moreover, the Langmuir-Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi-solute system was in the following order: p-nitrophenol > p-chlorophenol > PHBA > phenol.

  15. Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles.

    PubMed

    Ni, Li; Zheng, Weichao; Zhang, Qiang; Cao, Wei; Li, Baoming

    2016-10-01

    The effectiveness of slightly acidic electrolyzed water (SAEW) in reducing Escherichia coli, Salmonella typhimurim, Staphylococcus aureus or bacterial mixtures on stainless steel surfaces was evaluated and compared its efficacy with composite phenol solution for reducing total aerobic bacteria in animal transport vehicles. Stainless steel surfaces were inoculated with these strains individually or in a mixture, and sprayed with SAEW, composite phenol, or alkaline electrolyzed water for 0.5, 1, 1.5 and 2min. The bactericidal activity of SAEW increased with increasing available chlorine concentration and spraying duration. The SAEW solution of 50mgl -1 of available chlorine concentration showed significantly higher effectiveness than composite phenol in reducing the pathogens on stainless steel surfaces (P<0.05). Complete inactivation of pathogens on stainless steel surfaces were observed after treatment with alkaline electrolyzed water followed by SAEW at 50mgl -1 of available chlorine concentration for 2min or alkaline electrolyzed water treatment followed by SAEW treatment at 90mgl -1 of available chlorine concentration for 0.5min. The efficacy of SAEW in reducing total aerobic bacteria in animal transport vehicles was also determined. Vehicles in the disinfection booth were sprayed with the same SAEW, alkaline electrolyzed water and composite phenol solutions using the automatic disinfection system. Samples from vehicle surfaces were collected with sterile cotton swabs before and after each treatment. No significant differences in bactericidal efficiency were observed between SAEW and composite phenol for reducing total aerobic bacteria in the vehicles (P>0.05). SAEW was also found to be more effective when used in conjunction with alkaline electrolyzed water. Results suggest that the bactericidal efficiency of SAEW was higher than or equivalent to that of composite phenol and SAEW may be used as effective alternative for reducing microbial contamination of animal transport vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal.

    PubMed

    Wang, Lifeng; Chen, Chao; Su, Anxiang; Zhang, Yiyi; Yuan, Jian; Ju, Xingrong

    2016-04-01

    The current study aims to investigate the antioxidant activities of various extracts from defatted adlay seed meal (DASM) based on the oxygen radical absorbance capacity (ORAC) assay, peroxyl radical scavenging capacity (PSC) assay and cellular antioxidant activity (CAA) assay. Of all the fractions, the n-butanol fraction exhibited the highest antioxidant activity, followed by crude acetone extract and aqueous fractions. Of the three sub-fractions obtained by Sephadex LH-20 chromatography, sub-fraction 3 possessed the highest antioxidant activity and total phenolic content. There was a strong positive correlation between the total phenolic content and the antioxidant activity. Based on HPLC-DAD-ESI-MS/MS analysis, the most abundant phenolic acid in sub-fraction 3 of DASM was ferulic acid at 67.28 mg/g, whereas the predominant flavonoid was rutin at 41.11 mg/g. Of the major individual compounds in sub-fraction 3, p-coumaric acid exhibited the highest ORAC values, and quercetin exhibited the highest PSC values and CAA values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 40 CFR 464.45 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory...) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 TTO 0.093 0.0304 Oil and grease (for alternate monitoring) 1.34... Lead (T) 0.0046 0.0022 Zinc (T) 0.0066 0.0025 Total phenols 0.0074 0.0026 TTO 0.0196 0.0064 Oil and...

  18. 40 CFR 464.45 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory...) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 TTO 0.093 0.0304 Oil and grease (for alternate monitoring) 1.34... Lead (T) 0.0046 0.0022 Zinc (T) 0.0066 0.0025 Total phenols 0.0074 0.0026 TTO 0.0196 0.0064 Oil and...

  19. CO2 enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models?

    Treesearch

    W.J. Mattson; R. Julkunen-Tiitto; D.A. Herms

    2005-01-01

    Rising levels of atmospheric CO2 can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDBe) are similar but alternative models that address ontogenetic and environmental effects on whole-plant carbon partitioning to the...

  20. Proceedings: Nozzle Initiative Industry Advisory Committee on Standardization of Carbon-Phenolic Test Methods and Specifications

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the meeting is presented in conversational form. Some areas of discussion are as follow: resin advancement at NASA Marshall new technologies studies; NMR studies; SPIP/PAN development summary; computer modeling support; composite testing; carbon assay testing; activity and aerospace computer database; alternate rayon yarn sizing; fiber morphology; and carbon microballoons specifications.

  1. Multiligand Metal-Phenolic Assembly from Green Tea Infusions.

    PubMed

    Rahim, Md Arifur; Björnmalm, Mattias; Bertleff-Zieschang, Nadja; Ju, Yi; Mettu, Srinivas; Leeming, Michael G; Caruso, Frank

    2018-03-07

    The synthesis of hybrid functional materials using the coordination-driven assembly of metal-phenolic networks (MPNs) is of interest in diverse areas of materials science. To date, MPN assembly has been explored as monoligand systems (i.e., containing a single type of phenolic ligand) where the phenolic components are primarily obtained from natural sources via extraction, isolation, and purification processes. Herein, we demonstrate the fabrication of MPNs from a readily available, crude phenolic source-green tea (GT) infusions. We employ our recently introduced rust-mediated continuous assembly strategy to prepare these GT MPN systems. The resulting hollow MPN capsules contain multiple phenolic ligands and have a shell thickness that can be controlled through the reaction time. These multiligand MPN systems have different properties compared to the analogous MPN systems reported previously. For example, the Young's modulus (as determined using colloidal-probe atomic force microscopy) of the GT MPN system presented herein is less than half that of MPN systems prepared using tannic acid and iron salt solutions, and the disassembly kinetics are faster (∼50%) than other, comparable MPN systems under identical disassembly conditions. Additionally, the use of rust-mediated assembly enables the formation of stable capsules under conditions where the conventional approach (i.e., using iron salt solutions) results in colloidally unstable dispersions. These differences highlight how the choice of phenolic ligand and its source, as well as the assembly protocol (e.g., using solution-based or solid-state iron sources), can be used to tune the properties of MPNs. The strategy presented herein expands the toolbox of MPN assembly while also providing new insights into the nature and robustness of metal-phenolic interfacial assembly when using solution-based or solid-state metal sources.

  2. Phenolic composition of pomegranate peel extracts using an liquid chromatography-mass spectrometry approach with silica hydride columns.

    PubMed

    Young, Joshua E; Pan, Zhongli; Teh, Hui Ean; Menon, Veena; Modereger, Brent; Pesek, Joseph J; Matyska, Maria T; Dao, Lan; Takeoka, Gary

    2017-04-01

    The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride based stationary phases: phenyl and undecanoic acid columns. Quantitation was accomplished by developing a liquid chromatography with mass spectrometry approach for separating different phenolic analytes, initially in the form of reference standards and then with pomegranate extracts. The high-performance liquid chromatography columns used in the separations had the ability to retain a wide polarity range of phenolic analytes, as well as offering beneficial secondary selectivity mechanisms for resolving the isobaric compounds, catechin and epicatechin. The Vkunsyi peel extract had the highest concentration of phenolics (as determined by liquid chromatography with mass spectrometry) and was the only cultivar to contain the important compound punicalagin. The liquid chromatography with mass spectrometry data were compared to the standard total phenolics content as determined by using the Folin-Ciocalteu assay. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    PubMed

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  4. Anticancer Potential of Nutraceutical Formulations in MNU-induced Mammary Cancer in Sprague Dawley Rats.

    PubMed

    Pitchaiah, Gummalla; Akula, Annapurna; Chandi, Vishala

    2017-01-01

    Nutraceuticals help in combating some of the major health problems of the century including cancer, and 'nutraceutical formulations' have led to the new era of medicine and health. To develop different nutraceutical formulations and to assess the anticancer potential of nutraceutical formulations in N-methyl-N-nitrosourea (MNU)-induced mammary cancer in Sprague Dawley rats. Different nutraceutical formulations were prepared using fine powders of amla, apple, garlic, onion, papaya, turmeric, and wheat grass with and without cow urine distillate. Total phenolic content, acute oral toxicity, and microbial load of nutraceutical formulations were assessed. The anticancer potential of nutraceutical formulations was evaluated against MNU-induced mammary cancer in female Sprague Dawley rats. Improvement in total phenolic content was significant ( P < 0.001) after self-fortification process. Toxicity studies showed that the nutraceutical formulations were safe to use in animals. Microbial load was within the limits. Significant longer tumor-free days ( P < 0.01), lower tumor incidence ( P < 0.01), lower tumor multiplicity ( P < 0.05) and tumor burden ( P < 0.01) were observed for nutraceutical formulation-treated groups. Combination of whole food-based nutraceuticals acted synergistically in the prevention of mammary cancer. Further, the process of fortification is novel and enhanced the anticancer potential of nutraceutical formulations. Nutraceuticals help in combating some of the major health problems of the century including cancer, and 'nutraceutical formulations' have led to the new era of medicine and health. In this study, different nutraceutical formulations using fine powders of amla, apple, garlic, onion, papaya, turmeric, and wheat grass with and without cow urine distillate. Total phenolic content, acute oral toxicity, and microbial load of nutraceutical formulations were assessed. The anticancer potential of nutraceutical formulations was evaluated against MNU-induced mammary cancer in female Sprague Dawley rats. Improvement in total phenolic content was observed after self-fortification process. Toxicity studies showed that the nutraceutical formulations were safe to use in animals. Microbial load was within the limits. Longer tumor-free days, lower tumor incidence, lower tumor multiplicity and tumor burden were observed for nutraceutical formulation-treated groups. This suggests that combination of whole food-based nutraceuticals acted synergistically in the prevention of mammary cancer. Further, the process of fortification enhanced the anticancer potential of nutraceutical formulations. Abbreviations used: HMNU: N-methyl-N-nitrosourea, CAM: Complementary and Alternative Medicine, NF: Nutraceutical Formulation, SFNF: Self-Fortitfied Nutraceutical Formulation, NFCUD: Nutraceutical Formulation fortified with Cow Urine Disstillate, SFNFCUD: Self-Fortified Nutraceutical Formulation fortified with Cow Urine Disstillate, CPCSEA: Committee for the Purpose of Control and Supervision of Experiments on Animals, OECD: Organisation for Economic Co-operation and Development, TPC: Total Phenolic Content, ANOVA: Analysis of Variance, GAE: Gallic Acid Equivalent, cfu/g: Colony forming unit per g.

  5. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE PAGES

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; ...

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  6. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  7. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil

    PubMed Central

    2010-01-01

    Background Previous studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic markers compared with low phenols virgin olive oil, but it still remains unclear whether effects attributed to its phenolic fraction are exerted at transcriptional level in vivo. To achieve this goal, we aimed at identifying expression changes in genes which could be mediated by virgin olive oil phenol compounds in the human. Results Postprandial gene expression microarray analysis was performed on peripheral blood mononuclear cells during postprandial period. Two virgin olive oil-based breakfasts with high (398 ppm) and low (70 ppm) content of phenolic compounds were administered to 20 patients suffering from metabolic syndrome following a double-blinded, randomized, crossover design. To eliminate the potential effect that might exist in their usual dietary habits, all subjects followed a similar low-fat, carbohydrate rich diet during the study period. Microarray analysis identified 98 differentially expressed genes (79 underexpressed and 19 overexpressed) when comparing the intake of phenol-rich olive oil with low-phenol olive oil. Many of these genes seem linked to obesity, dyslipemia and type 2 diabetes mellitus. Among these, several genes seem involved in inflammatory processes mediated by transcription factor NF-κB, activator protein-1 transcription factor complex AP-1, cytokines, mitogen-activated protein kinases MAPKs or arachidonic acid pathways. Conclusion This study shows that intake of virgin olive oil based breakfast, which is rich in phenol compounds is able to repress in vivo expression of several pro-inflammatory genes, thereby switching activity of peripheral blood mononuclear cells to a less deleterious inflammatory profile. These results provide at least a partial molecular basis for reduced risk of cardiovascular disease observed in Mediterranean countries, where virgin olive oil represents a main source of dietary fat. Admittedly, other lifestyle factors are also likely to contribute to lowered risk of cardiovascular disease in this region. PMID:20406432

  8. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components.

    PubMed

    Xie, Hong; Li, Xican; Ren, Zhenxing; Qiu, Weimin; Chen, Jianlan; Jiang, Qian; Chen, Ban; Chen, Dongfeng

    2018-01-24

    Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea ( LATT ) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (-)-catechin gallate ( CG ), (-)-epicatechin gallate ( ECG ), and (-)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG . Gallic acid and the four catechins were also suggested to chelate Fe 2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H⁺-transfer, and Fe 2+ -chelating pathways to exhibit antioxidative or cytoprotective effects. In these effects, two diastereoisomeric CG and ECG showed differences to which a steric effect from the 2-carbon may contribute. Phenolic component decay may cause RAF in the antioxidant process.

  9. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato.

    PubMed

    Krauss, Sandra; Schnitzler, Wilfried H; Grassmann, Johanna; Woitke, Markus

    2006-01-25

    Irrigation with saline water affects tomato fruit quality. While total fruit yield decreases with salinity, inner quality characterized by taste and health-promoting compounds can be improved. For a detailed description of this relationship, the influence of three different salt levels [electrical conductivity (EC) 3, 6.5, and 10] in hydroponically grown tomatoes was investigated. Rising salinity levels in the nutrient solution significantly increased vitamin C, lycopene, and beta-carotene in fresh fruits up to 35%. The phenol concentration was tendentiously enhanced, and the antioxidative capacity of phenols and carotenoids increased on a fresh weight basis. Additionally, the higher EC values caused an increase of total soluble solids and organic acids, parameters determining the taste of tomatoes. Total fruit yield, single fruit weight, and firmness significantly decreased with rising EC levels. Regression analyses revealed significant correlations between the EC level and the dependent variables single fruit weight, total soluble solids, titrable acids, lycopene, and antioxidative capacities of carotenoids and phenols, whereas vitamin C and phenols correlated best with truss number, and beta-carotene correlated best with temperature. Only pressure firmness showed no correlation with any of the measured parameters. As all desirable characteristics in the freshly produced tomato increased when exposed to salinity, salinity itself constitutes an alternative method of quality improvement. Moreover, it can compensate for the loss of yield by the higher inner quality due to changing demands by the market and the consumer. This investigation is to our knowledge the first comprehensive overview regarding parameters of outer quality (yield and firmness), taste (total soluble solids and acids), nutritional value (vitamin C, carotenoids, and phenolics), as well as antioxidative capacity in tomatoes grown under saline conditions.

  10. Tris{2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolate-κ2 O,O′}tris­(thio­cyanato-κN)europium(III)

    PubMed Central

    Liu, Jian-Feng; Liu, Jia-Lu; Zhao, Guo-Liang

    2009-01-01

    The metal center in the structure of the title compound, [Eu(NCS)3(C15H15NO2)3], is coordinated by three Schiff base 2-meth­oxy-6-[(4-methyl­phen­yl)iminiometh­yl]phenolate (L) ligands and three independent thio­cyanate ions. In the crystal structure, the acidic H atom is located on the Schiff base N atom and hydrogen bonded to the phenolate O atom. The coordination environment of the EuIII ion is nine-coordinate by three chelating methoxy­phenolate pairs of O atoms and three N-atom terminals of the thio­cyanate ions. The compound is isostructural with the CeIII analogue [Liu et al. (2009 ▶). Acta Cryst. E65, m650]. PMID:21578663

  11. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins.

    PubMed

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-08-12

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures.

  12. Development of aircraft lavatory compartments with improved fire resistance characteristics. Phase 2: Sandwich panel resin system development

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Arnold, D. B.; Johnson, G. A.

    1979-01-01

    A NASA-funded program is described which aims to develop a resin system for use in the construction of lavatory wall panels, sidewall panels, and ceiling panels possessing flammability, smoke and gas emission, and toxicity (FS&T) characteristics superior to the existing epoxy resin. Candidate resins studied were phenolic, polyimide, and bismaleimide. Based on the results of a series of FS&T as well as mechanical and aesthetic property tests, a phenolic resin was chosen as the superior material. Material and process specifications covering the phenolic resin based materials were prepared and a method of rating sandwich panel performance was developed.

  13. Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking.

    PubMed

    Ren, Jun; Tian, Kaikai; Jia, Lingyun; Han, Xiuyou; Zhao, Mingshan

    2016-10-19

    A strategy for photoinduced covalent immobilization of proteins on phenol-functionalized surfaces is described. Under visible light irradiation, the reaction can be completed within seconds at ambient temperature, with high yields in aqueous solution of physiological conditions. Protein immobilization is based on a ruthenium-catalyzed radical cross-linking reaction between proteins and phenol-modified surfaces, and the process has proven mild enough for lipase, Staphylococcus aureus protein A, and streptavidin to preserve their bioactivity. This strategy was successfully applied to antibody immobilization on different material platforms, including agarose beads, cellulose membranes, and glass wafers, thus providing a generic procedure for rapid biomodification of surfaces.

  14. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs

    PubMed Central

    Pérez, Ana G.; León, Lorenzo; Sanz, Carlos; de la Rosa, Raúl

    2018-01-01

    Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO) although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties (“Picual” and “Arbequina”) used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the simplified procedure of the proposed methodology for fruit phenol evaluation seems to be convenient for breeding programs aiming at obtaining new cultivars with improved phenolic profile. PMID:29535752

  15. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs.

    PubMed

    Pérez, Ana G; León, Lorenzo; Sanz, Carlos; de la Rosa, Raúl

    2018-01-01

    Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO) although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties ("Picual" and "Arbequina") used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the simplified procedure of the proposed methodology for fruit phenol evaluation seems to be convenient for breeding programs aiming at obtaining new cultivars with improved phenolic profile.

  16. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater.

    PubMed

    Wu, Hao; Fu, Yu; Guo, Chunyu; Li, Yanbo; Jiang, Nanzhe; Yin, Chengri

    2018-07-01

    The microbial fuel cell (MFC) has emerged as a promising technology for wastewater treatment and energy recovery, but the expensive cost of proton exchange membranes (PEMs) is a problem that need to be solved. In this study, a two-chamber MFC based on our self-made PEM sulfonated poly (ether ether ketone) membrane was set up to treat phenol/acetone wastewater and synchronously generate power. The maximum output voltage was 240-250 mV. Using phenol and acetone as substrates, the power generation time in an operation cycle was 289 h. The MFC exhibited good removal performance, with no phenol or acetone detected, respectively, when the phenol concentration was lower than 50 mg/L and the acetone concentration was lower than 100 mg/L. This study provides a cheap and eco-friendly way to treat phenol/acetone wastewater and generate useful energy by MFC technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy.

    PubMed

    Han, Zhigang; Cai, Shengguan; Zhang, Xuelei; Qian, Qiufeng; Huang, Yuqing; Dai, Fei; Zhang, Guoping

    2017-07-15

    Barley grains are rich in phenolic compounds, which are associated with reduced risk of chronic diseases. Development of barley cultivars with high phenolic acid content has become one of the main objectives in breeding programs. A rapid and accurate method for measuring phenolic compounds would be helpful for crop breeding. We developed predictive models for both total phenolics (TPC) and p-coumaric acid (PA), based on near-infrared spectroscopy (NIRS) analysis. Regressions of partial least squares (PLS) and least squares support vector machine (LS-SVM) were compared for improving the models, and Monte Carlo-Uninformative Variable Elimination (MC-UVE) was applied to select informative wavelengths. The optimal calibration models generated high coefficients of correlation (r pre ) and ratio performance deviation (RPD) for TPC and PA. These results indicated the models are suitable for rapid determination of phenolic compounds in barley grains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alternation of light/dark period priming enhances clomazone tolerance by increasing the levels of ascorbate and phenolic compounds and ROS detoxification in tobacco (Nicotiana tabacum L.) plantlets.

    PubMed

    Darwish, Majd; Lopez-Lauri, Félicie; Vidal, Véronique; El Maâtaoui, Mohamed; Sallanon, Huguette

    2015-07-01

    The effect of the alternation of light/dark periods (AL) (16/8 min light/dark cycles and a photosynthetic photon flux density (PPFD) of 50 μmol photons m(-2) s(-1) for three days) to clarify the mechanisms involved in the clomazone tolerance of tobacco plantlets primed with AL was studied. Clomazone decreased PSII activity, the net photosynthetic rate (Pn), and the ascorbate and total polyphenol contents and increased H2O2 and starch grain accumulation and the number of the cells that underwent programmed cell death (PCD). The pretreatment with AL reduced the inhibitory effect of clomazone on the PSII activity and photosynthesis, as indicated by the decreases in the H2O2 and starch grain accumulation and the PCD levels, and increased the content of ascorbate and certain phenolic compounds, such as chlorogenic acid, neochlorogenic acid and rutin. The AL treatment could promote photorespiration via post-illumination burst (PIB) effects. This alternative photorespiratory electron pathway may reduce H2O2 generation via the consumption of photochemical energy, such as NADH+H(+). At 10 days (D10) of AL treatment, this process induced moderate stress which stimulates H2O2 detoxification systems by increasing the activity of antioxidant enzymes and the biosynthesis of antioxidant components. Therefore, the PCD levels provoked by clomazone were noticeably decreased. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Phenolic acids of the two major blueberry species in the US Market and their antioxidant and anti-inflammatory activities.

    PubMed

    Kang, Jie; Thakali, Keshari M; Jensen, Gitte S; Wu, Xianli

    2015-03-01

    Highbush (cultivated) and lowbush (wild) are the two major blueberry species in the US market. Eight phenolic acids were detected and quantified from these two species by HPLC-MS. Chlorogenic acid was found to be the predominant phenolic acid in both species, with 0.44 mg/g fresh weight in lowbush blueberries and 0.13 mg/g fresh weight in highbush blueberries. Total phenolic content in lowbush blueberries is over three times higher than that of highbush blueberries. The phenolic acid mixtures representing those in the two species were prepared by using authentic standards to assess their contribution to total antioxidant and anti-inflammatory activities of the whole berries. Neither lowbush nor highbush blueberry phenolic acid mixture contributed significantly to the total antioxidant capacity of their relevant whole berries measured by oxygen radical absorbance capacity (ORAC). Both phenolic acid mixtures were able to enter the cell and showed in cell antioxidant activities from the cell based antioxidant protection of erythrocytes (CAP-e) assay. Lowbush blueberry phenolic acid mixture was found to show anti-inflammatory activities by inhibiting the nuclear factor-κB (NF-κB) activation and the production of inflammatory cytokines (TNF-α and IL-6) at the high dose.

  20. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm.

    PubMed

    Kurzbaum, Eyal; Kirzhner, Felix; Sela, Shlomo; Zimmels, Yoram; Armon, Robert

    2010-09-01

    In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent. In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10(-9) mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10(-11)-2.04 × 10(-10) and 8.04 × 10(-11)-4.39 × 10(-10) (mg phenol/CFU/h), respectively. In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μ(max) = 1.15/h, K(s) = 35.4 mg/L and K(i) = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes. Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass. Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Green technology approach towards herbal extraction method

    NASA Astrophysics Data System (ADS)

    Mutalib, Tengku Nur Atiqah Tengku Ab; Hamzah, Zainab; Hashim, Othman; Mat, Hishamudin Che

    2015-05-01

    The aim of present study was to compare maceration method of selected herbs using green and non-green solvents. Water and d-limonene are a type of green solvents while non-green solvents are chloroform and ethanol. The selected herbs were Clinacanthus nutans leaf and stem, Orthosiphon stamineus leaf and stem, Sesbania grandiflora leaf, Pluchea indica leaf, Morinda citrifolia leaf and Citrus hystrix leaf. The extracts were compared with the determination of total phenolic content. Total phenols were analyzed using a spectrophotometric technique, based on Follin-ciocalteau reagent. Gallic acid was used as standard compound and the total phenols were expressed as mg/g gallic acid equivalent (GAE). The most suitable and effective solvent is water which produced highest total phenol contents compared to other solvents. Among the selected herbs, Orthosiphon stamineus leaves contain high total phenols at 9.087mg/g.

  2. Antiproliferative activities and phenolic acid content of water and ethanolic extracts of the powdered formula of Houttuynia cordata Thunb. fermented broth and Phyllanthus emblica Linn. fruit.

    PubMed

    Kumnerdkhonkaen, Piyawan; Saenglee, Somprasong; Asgar, Md Ali; Senawong, Gulsiri; Khongsukwiwat, Kanoknan; Senawong, Thanaset

    2018-04-11

    Houttuynia cordata Thunb. and Phyllanthus emblica Linn. are native plants with medicinal and nutritive significance in Asia. The present study was aimed at evaluating antiproliferative effects on human cancer cell lines and identifying the phenolic acid composition of water and ethanolic extracts of the powdered formula of H. cordata fermented broth and P. emblica fruit. Anticancer activity of the extracts was evaluated against HeLa, HT29, HCT116, MCF7 and Jurkat cells using an MTT assay and flow cytometric analysis of apoptosis induction and cell cycle arrest. Reverse phase HPLC was exploited for identification and quantification of some phenolic acids. MTT assay showed that both water and ethanolic extracts significantly decreased the viability of cancer cells in a dose- and time-dependent fashion. Based on the IC 50 values, ethanolic extract (IC 50 values = 0.12-0.65 mg/mL) was more cytotoxic than water extract (IC 50 values = 0.22-0.85 mg/mL) and Jurkat cells were the most sensitive to both extracts (IC 50 values = 0.12-0.69 mg/mL). The underlying mechanism for antiproliferative activity was apoptosis induction, especially in HT29, HCT116, MCF7 and Jurkat cells. HT29 cells were the most sensitive to extract-induced apoptosis. Ethanolic extract was more effective at inducing apoptosis than water extract. Moreover, cell cycle arrest was found to be another mechanism behind growth inhibition in Jurkat and HCT116 cells. However, these extracts were relatively less toxic to non-cancer Vero cells. HPLC analysis demonstrated that the powder mix extracts contained seven identified phenolic acids namely gallic, p-hydroxybenzoic, vanillic, syringic, p-coumaric, ferulic and sinapinic acids, where p-coumaric acid was detected in the highest concentration followed by ferulic acid. Overall, the results of this study suggest the powdered formula of H. cordata fermented broth and P. emblica fruit as an alternative medicine for cancer prevention and treatment.

  3. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis

    PubMed Central

    Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  4. Effect of Damage on Strength and Durability

    DTIC Science & Technology

    2010-05-01

    sheets and different core materials. The HRP core has a phenolic resin matrix, the NP core has nylon modified phenolic base resin matrix and TPC core...core are 25% to 65% higher than those of NP or TPC cores. The phenolic resin of the HRP makes core stiff and brittle, resulting in cracking on impact...characteristics of graphite laminates can be improved by inserting glass or Kevlar fibers to form a hybrid laminate system. However, since glass and

  5. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    PubMed

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  6. Removal of phenol from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA

    NASA Astrophysics Data System (ADS)

    Benosmane, Nadjib; Boutemeur, Baya; Hamdi, Safouane M.; Hamdi, Maamar

    2018-03-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. In the present work, the removal of phenol from aqueous solution across polymer inclusion membrane (PIM), based on mixture of cellulose triacetate and cellulose acetate as support (75/25%), calix[4]resorcinarene derivative as a carrier and 2-nitrophenyl octyl ether (2-NPOE) as plasticizer was investigated. The experimental part of this investigation involved the influence of carrier nature, plasticizer concentration, pH phases, and phenol initial concentration on the removal efficiency of phenol from synthetic wastewater. A PIM containing 0.1 g (of mixture polymer), (0.15 g/g mixture of polymer) of carrier and (0.03 ml/g mixture of polymer) of 2-NPOE provided the highest percentage of phenol removal efficiency over a 6-day transport; the removal was found to be about 95%, indeed the removal was found to be highly dependent of pH phases. The feed solution in these transport experiments was at pH 2, while the stripping solution contained 0.20 M NaOH. This study claims that the PIM with a mixture of cellulose derivatives can be used effectively to remove phenols from wastewaters.

  7. Multicentre patch testing with a resol resin based on phenol and formaldehyde.

    PubMed

    Isaksson, Marléne; Inerot, Annica; Lidén, Carola; Matura, Mihaly; Stenberg, Berndt; Möller, Halvor; Bruze, Magnus

    2011-07-01

    Contact allergy to phenol-formaldehyde resins (PFRs) based on phenol and formaldehyde is not detected by a p-tertiary-butylphenol-formaldehyde resin (PTBP-FR) included in most baseline patch test series. To investigate the rate of contact allergy to PFR-2 (a mixture of monomers and dimers from a resol resin based on phenol and formaldehyde) in a Swedish population, and to investigate associated simultaneous allergic reactions. Five centres representing the Swedish Contact Dermatitis Research Group included PFR-2 in their patch test baseline series for a period of 1.5 years. Of 2504 patients tested, 27 (1.1%) reacted to PFR-2. Of those 27 individuals, 2 had a positive reaction to formaldehyde and 2 to PTBP-FR. Simultaneous allergic reactions were noted to colophonium in 6, to Myroxylon pereirae in 14, and to fragrance mix I in 15. The contact allergy frequency in the tested population (1.1%) merits its inclusion in the Swedish baseline series and possibly also in other baseline series. Simultaneous allergic reactions were noted to colophonium, M. pereirae, and fragrance mix I. © 2011 John Wiley & Sons A/S.

  8. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    PubMed

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An improved quasi-diabatic representation of the 1, 2, 3{sup 1}A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Malbon, Christopher L., E-mail: clmalbon@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu

    2016-03-28

    In a recent work we constructed a quasi-diabatic representation, H{sup d}, of the 1, 2, 3{sup 1}A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H{sup d} accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H{sup d} for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accuratemore » H{sup d} compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λ{sub phot} ∼ 248 nm.« less

  10. Evaluation of antioxidant properties, elemental and phenolic contents composition of wild nettle (Urtica dioica L.) from Tunceli in Turkey.

    PubMed

    Yildirim, N C; Turkoglu, S; Ince, O K; Ince, M

    2013-11-03

    Wild nettle (Urtica dioica L.) types were sampled from different geographical regions in Tunceli (Turkey) to determine their mineral, vitamin, phenolic contents and their antioxidant properties. The total phenol varied from 37.419 ± 0.380 to 19.182 ± 1.00 mg of GAEs g(-1) of dry nettle. The highest radical scavenging effect was observed in Mazgirt parting of the ways 7.5 km with 33.70 ± 0.849 mg mL(-1). The highest reducing power was observed in the nettles from Mazgirt parting of the ways 7.5 km. Among the various macronutrients estimated in the plant samples, potassium was present in the highest quantity followed by calcium and phosphate. Kaempferol and resveratrol were not determined in some nettle samples but rutin levels were determined in all samples. Vitamin A concentrations were ranged between 13.64 ± 1.90 and 5.74 ± 1.00 (mg kg(-1) dry weight). These results show that Urtica dioica L. collected from Tunceli in Turkey could be considered as a natural alternative source for food, pharmacology and medicine sectors.

  11. Chemical characterization of oak heartwood from Spanish forests of Quercus pyrenaica (Wild.). Ellagitannins, low molecular weight phenolic, and volatile compounds.

    PubMed

    Fernandez de Simón, Brígida; Sanz, Miriam; Cadahía, Estrella; Poveda, Pilar; Broto, Miguel

    2006-10-18

    The need for new sources of quality wood supply for cooperage has led to looking into the possibility of utilizing Quercus pyrenaica Wild. oak, a species native to the Iberian peninsula, as an alternative to other European (Quercus robur and Qurecus petraea) and American (Quercus alba) oaks. The low molecular weight phenolic composition, ellagitannins, and volatile compounds (including a wide range of compound families such as volatile phenols, furanic compounds, lactones, phenyl ketones, other lignin-derived compounds, and volatile compounds related to off-flavors) of green heartwood from Spanish forest regions were studied by HPLC and GC, in order to know its enological characteristics. The chemical composition of Q. pyrenaica is similar to that of other species commonly used in cooperage to make barrels, showing only quantitative differences that were more significant with respect to American than to French species. The four provenance regions studied showed similar chemical composition, with high variability among individuals, often higher than the variability among regions of provenance, but in line with that described in other European and American oak woods. Therefore, this species must be considered to be suitable for aging wine.

  12. Biochemical and Molecular Analysis of Some Commercial Samples of Chilli Peppers from Mexico

    PubMed Central

    Troconis-Torres, Ivonne Guadalupe; Rojas-López, Marlon; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes; Maldonado-Mendoza, Ignacio Eduardo; Dorantes-Álvarez, Lidia; Tellez-Medina, Darío; Jaramillo-Flores, María Eugenia

    2012-01-01

    The genus Capsicum provides antioxidant compounds, such as phenolics and carotenoids, into the diet. In Mexico, there is a wide diversity of species and varieties of chilli peppers, a fruit which has local cultural and gastronomic importance. In the present study, the relationship of the carotenoid and phenolic profiles with the RAPD fingerprint of three different commercial cultivars of chilli peppers of seven regions of Mexico was investigated. Through RAPD, the species of chilli were differentiated by means of different primers (OPE-18, MFG-17, MFG-18, C51, and C52). The genetic distance found with OPE 18 was in the order of 2.6. The observed differences were maintained when the chromatographic profile of carotenoids, and the molecular markers were analyzed, which suggest a close relationship between carotenoids and the genetic profile. While the chromatographic profile of phenols and the molecular markers were unable to differentiate between genotypes of chilli peppers. In addition, by using infrared spectroscopy and statistical PCA, differences explained by geographic origin were found. Thus, this method could be an alternative for identification of chilli species with respect to their geographic origin. PMID:22665993

  13. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L'Hér and their antioxidant and anti-cholinesterase potential.

    PubMed

    Costa, Patrícia; Gonçalves, Sandra; Valentão, Patrícia; Andrade, Paula B; Romano, Anabela

    2013-07-01

    In this study, we evaluated the phenolic profile, antioxidant and anti-cholinesterase potential of different extracts from wild plants and in vitro cultures of Lavandula viridis L'Hér. The HPLC-DAD analysis allowed the identification and quantification of 3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and rosmarinic acids, and luteolin and pinocembrin. Water/ethanol extract from in vitro cultures contained the highest amount of the identified phenolic compounds (51652.92 mg/kg). To investigate the antioxidant activity we used Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, Fe(2+) chelation activity and the inhibition of Fe(2+)-induced lipid peroxidation in mouse brain homogenates (in vitro). Overall, all the extracts from both wild plants and in vitro cultures exhibited ability to scavenge free radicals, to chelate Fe(2+) and to protect against lipid peroxidation. In addition, the extracts from L. viridis were active in inhibiting both acetylcholinesterase and butyrylcholinesterase (Ellman's method). Our findings suggest that L. viridis in vitro cultures represent a promising alternative for the production of active metabolites with antioxidant and anti-cholinesterase activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Dual cloud point extraction coupled with hydrodynamic-electrokinetic two-step injection followed by micellar electrokinetic chromatography for simultaneous determination of trace phenolic estrogens in water samples.

    PubMed

    Wen, Yingying; Li, Jinhua; Liu, Junshen; Lu, Wenhui; Ma, Jiping; Chen, Lingxin

    2013-07-01

    A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic-electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE-two-step injection-MEKC conditions, detection limits of 7.9-8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R(2) ≥ 0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108% were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n = 6) of 1.3-3.1%. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.

  15. Total Phenolics and Total Flavonoids Contents and Hypnotic Effect in Mice of Ziziphus mauritiana Lam. Seed Extract.

    PubMed

    San, Aye Moh Moh; Thongpraditchote, Suchitra; Sithisarn, Pongtip; Gritsanapan, Wandee

    2013-01-01

    The seeds of Ziziphus mauritiana Lam. have been traditionally used for treatment of various complications including insomnia and anxiety. They are popularly used as sedative and hypnotic drugs in China, Korea, Myanmar, Vietnam, and other Asian countries. However, no scientific proof on hypnotic activity of Z. mauritiana seeds (ZMS) was reported. In this study, the hypnotic activity of 50% ethanolic extract from ZMS was observed on the loss of righting reflex in mice using pentobarbital-induced sleep mice method. The contents of total phenolics and total flavonoids in the extract were also determined. The results showed that the 50% ethanolic extract from ZMS contained total phenolics 27.62 ± 1.43 mg gallic acid equivalent (GAE)/g extract and total flavonoids 0.74 ± 0.03 mg quercetin equivalent (QE)/g extract. Oral administration of the extract at the dose of 200 mg/kg significantly increased the sleeping time in mice intraperitoneally administered with sodium pentobarbital (50 mg/kg body weight). These results supported the traditional use of ZMS for the treatment of insomnia. The seeds of Z. mauritiana should be further developed as an alternative sedative and/or hypnotic product.

  16. Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico.

    PubMed

    Troconis-Torres, Ivonne Guadalupe; Rojas-López, Marlon; Hernández-Rodríguez, César; Villa-Tanaca, Lourdes; Maldonado-Mendoza, Ignacio Eduardo; Dorantes-Álvarez, Lidia; Tellez-Medina, Darío; Jaramillo-Flores, María Eugenia

    2012-01-01

    The genus Capsicum provides antioxidant compounds, such as phenolics and carotenoids, into the diet. In Mexico, there is a wide diversity of species and varieties of chilli peppers, a fruit which has local cultural and gastronomic importance. In the present study, the relationship of the carotenoid and phenolic profiles with the RAPD fingerprint of three different commercial cultivars of chilli peppers of seven regions of Mexico was investigated. Through RAPD, the species of chilli were differentiated by means of different primers (OPE-18, MFG-17, MFG-18, C51, and C52). The genetic distance found with OPE 18 was in the order of 2.6. The observed differences were maintained when the chromatographic profile of carotenoids, and the molecular markers were analyzed, which suggest a close relationship between carotenoids and the genetic profile. While the chromatographic profile of phenols and the molecular markers were unable to differentiate between genotypes of chilli peppers. In addition, by using infrared spectroscopy and statistical PCA, differences explained by geographic origin were found. Thus, this method could be an alternative for identification of chilli species with respect to their geographic origin.

  17. Effect of propolis in gastric disorders: inhibition studies on the growth of Helicobacter pylori and production of its urease.

    PubMed

    Baltas, Nimet; Karaoglu, Sengul Alpay; Tarakci, Cemre; Kolayli, Sevgi

    2016-01-01

    There is considerable interest in alternative approaches to inhibit Helicobacter pylori (H. pylori) and thus treat many stomach diseases. Propolis is a pharmaceutical mixture containing many natural bioactive substances. The aim of this study was to use propolis samples to treat H. pylori. The anti-H. pylori and anti-urease activities of 15 different ethanolic propolis extracts (EPEs) were tested. The total phenolic contents and total flavonoid contents of the EPE were also measured. The agar-well diffusion assay was carried out on H. pylori strain J99 and the inhibition zones were measured and compared with standards. All propolis extracts showed high inhibition of H. pylori J99, with inhibition diameters ranging from 31.0 to 47.0 mm. Helicobacter pylori urease inhibitory activity was measured using the phenol-hypochlorite assay; all EPEs showed significant inhibition against the enzyme, with inhibition concentrations (IC 50 ; mg/mL) ranging from 0.260 to 1.525 mg/mL. The degree of inhibition was related to the phenolic content of the EPE. In conclusion, propolis extract was found to be a good inhibitor that can be used in H. pylori treatment to improve human health.

  18. The inhibitory potential of Thai mango seed kernel extract against methicillin-resistant Staphylococcus aureus.

    PubMed

    Jiamboonsri, Pimsumon; Pithayanukul, Pimolpan; Bavovada, Rapepol; Chomnawang, Mullika T

    2011-07-25

    Plant extracts are a valuable source of novel antibacterial compounds to combat pathogenic isolates of methicillin-resistant Staphylococcus aureus (MRSA), a global nosocomial infection. In this study, the alcoholic extract from Thai mango (Mangifera indica L. cv. 'Fahlun') seed kernel extract (MSKE) and its phenolic principles (gallic acid, methyl gallate and pentagalloylglucopyranose) demonstrated potent in vitro antibacterial activity against Staphylococcus aureus and 19 clinical MRSA isolates in studies of disc diffusion, broth microdilution and time-kill assays. Electron microscopy studies using scanning electron microscopy and transmission electron microscopy revealed impaired cell division and ultra-structural changes in bacterial cell morphology, including the thickening of cell walls, of microorganisms treated with MSKE; these damaging effects were increased with increasing concentrations of MSKE. MSKE and its phenolic principles enhanced and intensified the antibacterial activity of penicillin G against 19 clinical MRSA isolates by lowering the minimum inhibitory concentration by at least 5-fold. The major phenolic principle, pentagalloylglucopyranose, was demonstrated to be the major contributor to the antibacterial activity of MSKE. These results suggest that MSKE may potentially be useful as an alternative therapeutic agent or an adjunctive therapy along with penicillin G in the treatment of MRSA infections.

  19. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    PubMed

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  20. Phenolic and physicochemical stability of a functional beverage powder mixture during storage: effect of the microencapsulant inulin and food ingredients.

    PubMed

    de Beer, Dalene; Pauck, Claire E; Aucamp, Marique; Liebenberg, Wilna; Stieger, Nicole; van der Rijst, Marieta; Joubert, Elizabeth

    2018-06-01

    The need for a convenience herbal iced tea product with reduced kilojoules merited investigation of the shelf-life of powder mixtures containing a green Cyclopia subternata Vogel (honeybush) extract with proven blood glucose-lowering activity and alternative sweetener mixture. Prior to long-term storage testing, the wettability of powder mixtures containing food ingredients and the compatibility of their components were confirmed using the static sessile drop method and isothermal microcalorimetry, respectively. The powders packed in semi-sealed containers remained stable during storage at 25 °C/60% relative humidity (RH) for 6 months, except for small losses of specific phenolic compounds, namely mangiferin, isomangiferin, 3-β-d-glucopyranosyliriflophenone, vicenin-2 and 3',5'-di-β-d-glucopyranosylphloretin, especially when both citric acid and ascorbic acid were present. These acids drastically increased the degradation of phenolic compounds under accelerated storage conditions (40 °C/75% RH). Accelerated storage also caused changes in the appearance of powders and the colour of the reconstituted beverage solutions. Increased moisture content and a w of the powders, as well as moisture released due to dehydration of citric acid monohydrate, contributed to these changes. A low-kilojoule honeybush iced tea powder mixture will retain its functional phenolic compounds and physicochemical properties during shelf-life storage at 25 °C for 6 months. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Inhibition of foodborne bacteria by antibacterial coatings printed onto food packaging films.

    PubMed

    Widsten, P; Mesic, B B; Cruz, C D; Fletcher, G C; Chycka, M A

    2017-07-01

    Films containing antibacterial compounds could be used for packaging perishable foods such as fresh fish and meat for sea freighting over long distances. However, existing commercialised options (films with nanosilver zeolites or wasabi extract) are only permitted for food contact in certain regions and films containing alternative antibacterial ingredients are required e.g. for exports to Europe. Certain non-volatile phenolic plant extracts have shown promising antibacterial activity against a wide range of foodborne bacteria in in vitro assays and when integrated in coatings for perishable foods such as fish and meat. Extracts rich in gallotannins tend to show stronger antibacterial effects than other phenols such as flavonoids. Such extracts could be coated onto commercial barrier films by means of flexographic printing-a more industrially feasible option than rod coating or solvent casting typically used in antibacterial coating research. The goal of the present work was to investigate the antibacterial effect of printed latex coatings containing extracts rich in gallotannins and other types of phenolic compounds against 16 common spoilage and pathogenic bacteria of fish and meat. The largest zones of inhibition in disk diffusion assays were obtained with plastic films with coatings containing tannic acid alone, followed by tannic acid with phenolic-rich extracts of feijoa skin or mango seed. Significant inhibition was seen for all bacteria. This study shows that coatings with gallotannins as the main active ingredient can be printed onto commercial barrier films to control the bacteria that limit the shelf-life of fresh fish and meat.

  2. Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration

    NASA Astrophysics Data System (ADS)

    Shoufeng, TANG; Na, LI; Jinbang, QI; Deling, YUAN; Jie, LI

    2018-05-01

    A combined method of granular activated carbon (GAC) adsorption and bipolar pulse dielectric barrier discharge (DBD) plasma regeneration was employed to degrade phenol in water. After being saturated with phenol, the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters. The results showed that different peak voltages, air flow rates, and GAC content can affect phenol decomposition and its major degradation intermediates, such as catechol, hydroquinone, and benzoquinone. The higher voltage and air support were conducive to the removal of phenol, and the proper water moisture of the GAC was 20%. The amount of H2O2 on the GAC was quantitatively determined, and its laws of production were similar to phenol elimination. Under the optimized conditions, the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy, and the total removal of organic carbons achieved 50.4%. Also, a possible degradation mechanism was proposed based on the HPLC analysis. Meanwhile, the regeneration efficiency of the GAC was improved with the discharge treatment time, which attained 88.5% after 100 min of DBD processing.

  3. Phenolic characterisation of red wines from different grape varieties cultivated in Mendoza province (Argentina).

    PubMed

    Fanzone, Martín; Zamora, Fernando; Jofré, Viviana; Assof, Mariela; Gómez-Cordovés, Carmen; Peña-Neira, Álvaro

    2012-02-01

    Knowledge of the chemical composition of wine and its association with the grape variety/cultivar is of paramount importance in oenology and a necessary tool for marketing. Phenolic compounds are very important quality parameters of wines because of their impact on colour, taste and health properties. The aim of the present work was to study and describe the non-flavonoid and flavonoid composition of wines from the principal red grape varieties cultivated in Mendoza (Argentina). Sixty phenolic compounds, including phenolic acids/derivatives, stilbenes, anthocyanins, flavanols, flavonols and dihydroflavonols, were identified and quantified using high-performance liquid chromatography with diode array detection coupled with electrospray ionisation mass spectrometry (HPLC-DAD/ESI-MS). Marked quantitative differences could be seen in the phenolic profile among varieties, especially in stilbenes, acylated anthocyanins and other flavonoids. The polyphenolic content of Malbec wines was higher compared with the other red varieties. Dihydroflavonols represent a significant finding from the chemotaxonomic point of view, especially for Malbec variety. This is the first report on the individual phenolic composition of red wines from Mendoza (Argentina) and suggests that anthocyanins, flavanols and phenolic acids exert a great influence on cultivar-based differentiation. Copyright © 2011 Society of Chemical Industry.

  4. Structural insights into the function of the nicotinate mononucleotide:phenol/p-cresol phosphoribosyltransferase (ArsAB) enzyme from Sporomusa ovata†‡

    PubMed Central

    Newmister, Sean A.; Chan, Chi Ho; Escalante-Semerena, Jorge C.; Rayment, Ivan

    2012-01-01

    Cobamides (Cbas) are cobalt (Co) containing tetrapyrrole-derivatives involved in enzyme-catalyzed carbon skeleton rearrangements, methyl-group transfers, and reductive dehalogenation. The biosynthesis of cobamides is complex and is only performed by some bacteria and achaea. Cobamides have an upper (Coβ) ligand (5′-deoxyadenosyl or methyl) and a lower (Coα) ligand base that contribute to the axial Co coordinations. The identity of the lower Coα ligand varies depending on the organism synthesizing the Cbas. The homoacetogenic bacterium Sporomusa ovata synthesizes two unique phenolic cobamides (i.e., Coα-(phenolyl/p-cresolyl)cobamide), which are used in the catabolism of methanol and 3,4-dimethoxybenzoate by this bacterium. The S. ovata ArsAB enzyme activates a phenolic lower ligand prior to its incorporation into the cobamide. ArsAB consists of two subunits, both of which are homologous (~35% identity) to the well-characterized Salmonella enterica CobT enzyme, which transfers nitrogenous bases such as 5,6-dimethylbenzimidazole (DMB) and adenine, but cannot utilize phenolics. Here we report the three-dimensional structure of ArsAB ,which shows that the enzyme forms a psuedosymmetric heterodimer, provides evidence that only the ArsA subunit has base:phosphoribosyl-transferase activity, and propose a mechanism by which phenolic transfer is facilitated by an activated water molecule. PMID:23039029

  5. Biotechnology to harness the benefits of dietary phenolics; focus on Lamiaceae.

    PubMed

    Shetty, K

    1997-09-01

    Phytochemicals from herbs and fermented legumes are excellent dietary sources of phenolic metabolites. These phenolics have importance not only as food preservatives but increasingly have therapeutic and pharmaceutical applications. The long-term research objecitves of the food biotechnology program at the University of Massachusetts are to elucidate the molecular and physiological mechanisms associated with synthesis of important health-related, therapeutic phenolic metabolites in food-related plants and fermented plant foods. Current efforts focus on elucidation of the role of the proline-linked pentose phosphate pathway in regulating the synthesis of anti-inflammatory compound, rosmarinic acid (RA). Specific aims of the current research efforts are: (i) To develop novel tissue culture-based selection techniques to isolate high RA-producing, shoot-based clonal lines from genetically heterogeneous, cross-pollinating species in the family Lamiaceae; (ii) To target genetically uniform, regenerated shoot-based clonal lines for: (a) preliminary characterization of key enzymes associated with the pentose phosphate pathway and linked to RA synthesis; (b) development of genetic transformation techniques for subsequent engineering of metabolic pathways associated with RA synthesis. These research objectives have substantial implications for harnessing the genetic and biochemical potential of genetically heterogeneous, food-related medicinal plant species. The success of this research also provides novel methods and strategies to gain access to metabolic pathways of pharmaceutically important metabolites from ginger, curcuma, chili peppers, melon or other food-related species with novel phenolics.

  6. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins

    PubMed Central

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-01-01

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures. PMID:27529232

  7. Interactions between wine phenolic compounds and human saliva in astringency perception.

    PubMed

    García-Estévez, Ignacio; Ramos-Pineda, Alba María; Escribano-Bailón, María Teresa

    2018-03-01

    Astringency is a complex perceptual phenomenon involving several sensations that are perceived simultaneously. The mechanism leading to these sensations has been thoroughly and controversially discussed in the literature and it is still not well understood since there are many contributing factors. Although we are still far from elucidating the mechanisms whereby astringency develops, the interaction between phenolic compounds and proteins (from saliva, oral mucosa or cells) seems to be most important. This review summarizes the recent trends in the protein-phenol interaction, focusing on the effect of the structure of the phenolic compound on the interaction with salivary proteins and on methodologies based on these interactions to determine astringency.

  8. Laser photolysis studies of the phenolic H-atom transfer mechanism for a triplet π,π ∗ ketone in solution revisited

    NASA Astrophysics Data System (ADS)

    Yamaji, Minoru; Aoyama, Yutaka; Furukawa, Takashi; Itoh, Takao; Tobita, Seiji

    2006-03-01

    The mechanism of the H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-naphthacenequinone (5,12-NQ) has been examined by means of laser flash photolysis at 295 K. Based on the Hammett plots and the Rehm-Weller equation for the quenching rate constants, the phenolic H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-NQ is shown to proceed via the electron transfer followed by proton transfer. The previously proposed mechanism for H-atom transfer of π,π ∗ triplets, that proton transfer is followed by electron transfer, was not verified in the present systems.

  9. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: characterization by high-performance liquid chromatography-diode array detection-electrospray tandem mass spectrometry.

    PubMed

    Magalhães, Paulo J; Vieira, Joana S; Gonçalves, Luís M; Pacheco, João G; Guido, Luís F; Barros, Aquiles A

    2010-05-07

    The aim of the present work was the development of a suitable methodology for the separation and determination of phenolic compounds in the hop plant. The developed methodology was based on the sample purification by adsorption of phenolic compounds from the matrix to polyvinylpolypyrrolidone (PVPP) and subsequent desorption of the adsorbed polyphenols with acetone/water (70:30, v/v). At last, the extract was analyzed by HPLC-DAD and HPLC-ESI-MS/MS. The first phase of this work consisted of the study of the adsorption behavior of several classes of phenolic compounds (e.g. phenolic acids, flavonols, and flavanols) by PVPP in model solutions. It has been observed that the process of adsorption of the different phenolic compounds to PVPP (at low concentrations) is differentiated, depending on the structure of the compound (number of OH groups, aromatic rings, and stereochemistry hindrance). For example, within the phenolic acids class (benzoic, p-hydroxybenzoic, protocatechuic and gallic acids) the PVPP adsorption increases with the number of OH groups of the phenolic compound. On the other hand, the derivatization of OH groups (methylation and glycosylation) resulted in a greatly diminished binding. The use of PVPP revealed to be very efficient for adsorption of several phenolic compounds such as catechin, epicatechin, xanthohumol and quercetin, since high adsorption and recovery values were obtained. The methodology was further applied for the extraction and isolation of phenolic compounds from hops. With this methodology, it was possible to obtain high adsorption values (>or=80%) and recovery yield values (>or=70%) for the most important phenolic compounds from hops such as xanthohumol, catechin, epicatechin, quercetin and kaempferol glycosides, and in addition it allows the identification of about 30 phenolic compounds by HPLC-DAD and HPLC-ESI-MS/MS. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. A new photostabilizer: Hydrogenated benzoin derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, K.; Ohkatsu, Y.

    1993-12-31

    It is found that synergistic effects based on combined use of HALS (hindered Amine Light Stabilizers) with phenolic antioxidants consist of the action of HALS as hydrogen donor to quinones, derived from the phenol in autoxidation, excited by uv light. The finding has been realized as a new photostabilizer of hydrogenated benzoin derivatives. They are generally characterized by multifunctions. The o,o`-dihydroxyl-substituted derivatives inter alia extend the life of a phenolic antioxidant co-used, as hydrogen donor, as well as ultimately act as uv absorber.

  11. A simple, fast, and inexpensive CTAB-PVP-silica based method for genomic DNA isolation from single, small insect larvae and pupae.

    PubMed

    Huanca-Mamani, W; Rivera-Cabello, D; Maita-Maita, J

    2015-07-17

    In this study, we report a modified CTAB-PVP method combined with silicon dioxide (silica) treatment for the extraction of high quality genomic DNA from a single larva or pupa. This method efficiently obtains DNA from small specimens, which is difficult and challenging because of the small amount of starting tissue. Maceration with liquid nitrogen, phenol treatment, and the ethanol precipitation step are eliminated using this methodology. The A260/A280 absorbance ratios of the isolated DNA were approximately 1.8, suggesting that the DNA is pure and can be used for further molecular analysis. The quality of the isolated DNA permits molecular applications and represents a fast, cheap, and effective alternative method for laboratories with low budgets.

  12. Development and Validation of an Analytical Methodology Based on Liquid Chromatography-Electrospray Tandem Mass Spectrometry for the Simultaneous Determination of Phenolic Compounds in Olive Leaf Extract.

    PubMed

    Cittan, Mustafa; Çelik, Ali

    2018-04-01

    A simple method was validated for the analysis of 31 phenolic compounds using liquid chromatography-electrospray tandem mass spectrometry. Proposed method was successfully applied to the determination of phenolic compounds in an olive leaf extract and 24 compounds were analyzed quantitatively. Olive biophenols were extracted from olive leaves by using microwave-assisted extraction with acceptable recovery values between 78.1 and 108.7%. Good linearities were obtained with correlation coefficients over 0.9916 from calibration curves of the phenolic compounds. The limits of quantifications were from 0.14 to 3.2 μg g-1. Intra-day and inter-day precision studies indicated that the proposed method was repeatable. As a result, it was confirmed that the proposed method was highly reliable for determination of the phenolic species in olive leaf extracts.

  13. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection.

    PubMed

    Ferreira Garcia, Luane; Ribeiro Souza, Aparecido; Sanz Lobón, Germán; Dos Santos, Wallans Torres Pio; Alecrim, Morgana Fernandes; Fontes Santiago, Mariângela; de Sotomayor, Rafael Luque Álvarez; de Souza Gil, Eric

    2016-08-13

    The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0). Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0) was linear in a broad concentration range, 1 to 120 µM (r = 0.99), showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  14. Thermal degradation of cloudy apple juice phenolic constituents.

    PubMed

    De Paepe, D; Valkenborg, D; Coudijzer, K; Noten, B; Servaes, K; De Loose, M; Voorspoels, S; Diels, L; Van Droogenbroeck, B

    2014-11-01

    Although conventional thermal processing is still the most commonly used preservation technique in cloudy apple juice production, detailed knowledge on phenolic compound degradation during thermal treatment is still limited. To evaluate the extent of thermal degradation as a function of time and temperature, apple juice samples were isothermally treated during 7,200s over a temperature range of 80-145 °C. An untargeted metabolomics approach based on liquid chromatography-high resolution mass spectrometry was developed and applied with the aim to find out the most heat labile phenolic constituents in cloudy apple juice. By the use of a high resolution mass spectrometer, the high degree of in-source fragmentation, the quality of deconvolution and the employed custom-made database, it was possible to achieve a high degree of structural elucidation for the thermolabile phenolic constituents. Procyanidin subclass representatives were discovered as the most heat labile phenolic compounds of cloudy apple juice. Copyright © 2014. Published by Elsevier Ltd.

  15. Effect of Low and Very Low Doses of Simple Phenolics on Plant Peroxidase Activity

    PubMed Central

    Malarczyk, Elżbieta; Kochmańska-Rdest, Janina; Paździoch-Czochra, Marzanna

    2004-01-01

    Changes in the activity of horseradish peroxidase resulting from an addition of ethanol water dilutions of 19 phenolic compounds were observed. For each compound, the enzyme activity was plotted against the degree of dilution expressed as n = –log100 (mol/L) in the range 0 ≤ n ≥ 20. All the curves showed sinusoidal activity, more or less regular, with two to four peaks on average. Each analyzed compound had a characteristic sinusoidal shape, which was constant for samples of peroxidase from various commercial firms. This was clearly visible after function fitting to experimental results based on the Marquadt–Levenberg algorithm using the least-squares method. Among the 19 phenolics, the highest amplitudes were observed for phenol and iso- and vanillate acids and aldehydes. The specific character of each of the analyzed curves offers a possibility of choosing proper dilutions of phenolic compound for activating or inhibiting of peroxidase activity. PMID:19330128

  16. The influence of beverage composition on delivery of phenolic compounds from coffee and tea.

    PubMed

    Ferruzzi, Mario G

    2010-04-26

    Epidemiological data suggest that consumption of coffee and tea is associated with a reduced risk of several chronic and degenerative diseases including cardiovascular disorders, diabetes, obesity and neurodegenerative disorders. Both coffee and tea are a rich source of phenolic compounds including chlorogenic acids in coffee; and flavan-3-ols as well as complex theaflavins and thearubigens in tea. Coffee and tea are two of the most commonly consumed beverages in the world and thus represent a significant opportunity to positively affect disease risk and outcomes globally. Central to this opportunity is a need to better understand factors that may affect the bioavailability of specific phenolic components from coffee and tea based beverages. An overview of the phenolic composition of coffee and tea is discussed in the context of how processing and composition might influence phenolic profiles and bioavailability of individual phenolic components. Specifically, the impact of beverage formulation, the extent and type of processing and the influence of digestion on stability, bioavailability and metabolism of bioactive phenolics from tea and coffee are discussed. The impact of co-formulation with ascorbic acid and other phytochemicals are discussed as strategies to improve absorption of these health promoting phytochemicals. A better understanding of how the beverage composition impacts phenolic profiles and their bioavailability is critical to development of beverage products designed to deliver specific health benefits. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids.

    PubMed

    Jing, Pu; Zhao, Shu-Juan; Jian, Wen-Jie; Qian, Bing-Jun; Dong, Ying; Pang, Jie

    2012-11-01

    Phenolic acids are potent antioxidants, yet the quantitative structure-activity relationships of phenolic acids remain unclear. The purpose of this study was to establish 3D-QSAR models able to predict phenolic acids with high DPPH• scavenging activity and understand their structure-activity relationships. The model has been established by using a training set of compounds with cross-validated q2 = 0.638/0.855, non-cross-validated r2 = 0.984/0.986, standard error of estimate = 0.236/0.216, and F = 139.126/208.320 for the best CoMFA/CoMSIA models. The predictive ability of the models was validated with the correlation coefficient r2(pred) = 0.971/0.996 (>0.6) for each model. Additionally, the contour map results suggested that structural characteristics of phenolics acids favorable for the high DPPH• scavenging activity might include: (1) bulky and/or electron-donating substituent groups on the phenol ring; (2) electron-donating groups at the meta-position and/or hydrophobic groups at the meta-/ortho-position; (3) hydrogen-bond donor/electron-donating groups at the ortho-position. The results have been confirmed based on structural analyses of phenolic acids and their DPPH• scavenging data from eight recent publications. The findings may provide deeper insight into the antioxidant mechanisms and provide useful information for selecting phenolic acids for free radical scavenging properties.

  18. Composites

    NASA Astrophysics Data System (ADS)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  19. Immobilization of tyrosinase in carboxylic and carbonyl group-modified MWNT electrode and its application for sensing phenolics in red wines.

    PubMed

    Kim, Kyo-Il; Lee, Jae-Chan; Robards, Kevin; Choi, Seong-Ho

    2010-06-01

    Tyrosinase-immobilized biosensor was fabricated based on PAAc-g-MWNT and PMAn-g-MWNT, respectively. The poly(acrylic acid)-grafted multi-wall carbon nanotubes, PAAc-g-MWNT, and poly(maleic anhydride)-grafted multi-wall carbon nanotube, PMAn-g-MWNT, were prepared by radiation-induced graft polymerization of acrylic acid (AAc) and maleic anhydride (MAn) on the surface of MWNT. The biosensor was prepared on ITO glass electrode by coating of chitosan solution with tyrosinase-immobilized PAAc-g-MWNT and PMAn-g-MWNT, respectively. The sensing ranges of the tyrosinase-immobilized biosensor based on PAAc-g-MWNT and PMAn were in the range of 0.2-0.9 mM concentration and in the range of 0.1-0.5 mM for phenol in phosphate buffer solution, respectively. Optimal pH and temperature conditions for sensing various phenolic compounds with tyrosinase-immobilized biosensor were determined. Total phenolic content for three commercial red wines on tyrosinase-immobilized biosensor were also determined.

  20. Electroanalysis and laccase-based biosensor on the determination of phenolic content and antioxidant power of honey samples.

    PubMed

    de Oliveira Neto, Jerônimo Raimundo; Rezende, Stefani Garcia; Lobón, Gérman Sanz; Garcia, Telma Alves; Macedo, Isaac Yves Lopes; Garcia, Luane Ferreira; Alves, Virgínia Farias; Torres, Ieda Maria Sapateiro; Santiago, Mariângela Fontes; Schmidt, Fernando; de Souza Gil, Eric

    2017-12-15

    Honey is a functional food widely consumed. Thus, the evaluation of honey samples to determine its phenolic content and antioxidant capacity (AOC) is relevant to determine its quality. Usually AOC is performed by spectrophotometric methods, which lacks reproducibility and practicality. In this context, the electroanalytical methods offer higher simplicity and accuracy. Hence, the aim of this work was to use of electroanalytical tools and laccase based biosensor on the evaluation of AOC and total phenol content (TPC) of honey samples from different countries. The antioxidant power established by electrochemical index presented good correlation with the spectrophotometric FRAP (Ferric Reducing Ability of Plasma) and DPPH (2,2-Diphenyl-1-Picrylhydrazyl) radical scavenging assays. Also, TPC results obtained by the biosensor agreed with the Folin-Ciocalteu (FC) assay. In addition to the semi quantitative results, the electroanalysis offered qualitative parameters, which were useful to indicate the nature of major phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fabrication of Glass Fiber Reinforced Composites Based on Bio-Oil Phenol Formaldehyde Resin

    PubMed Central

    Cui, Yong; Chang, Jianmin; Wang, Wenliang

    2016-01-01

    In this study, bio-oil from fast pyrolysis of renewable biomass was added by the mass of phenol to synthesize bio-oil phenol formaldehyde (BPF) resins, which were used to fabricate glass fiber (GF) reinforced BPF resin (GF/BPF) composites. The properties of the BPF resin and the GF/BPF composites prepared were tested. The functional groups and thermal property of BPF resin were thoroughly investigated by Fourier transform infrared (FTIR) spectra and dynamic thermomechanical analysis (DMA). Results indicated that the addition of 20% bio-oil exhibited favorable adaptability for enhancing the stiffness and heat resistance of phenol formaldehyde (PF) resin. Besides, high-performance GF/BPF composites could be successfully prepared with the BPF resin based on hand lay-up process. The interface characteristics of GF/BPF composites were determined by the analysis of dynamic wettability (DW) and scanning electron microscopy (SEM). It exhibited that GF could be well wetted and embedded in the BPF resin with the bio-oil addition of 20%. PMID:28774009

  2. Degradation of Malaysian peatlands decreases levels of phenolics in soil and in leaves of Macaranga pruinosa

    NASA Astrophysics Data System (ADS)

    Yule, Catherine; Lim, Yau; Lim, Tse

    2016-04-01

    Indo-Malaysian tropical peat swamp forests (PSF) sequester enormous stores of carbon in the form of phenolic compounds, particularly lignin as well as tannins. These phenolic compounds are crucial for ecosystem functioning in PSF through their inter-related roles in peat formation and plant defenses. Disturbance of PSF causes destruction of the peat substrate, but the specific impact of disturbance on phenolic compounds in peat and its associated vegetation has not previously been examined. A scale was developed to score peatland degradation based on the three major human impacts that affect tropical PSF - logging, drainage and fire. The objectives of this study were to compare the amount of phenolic compounds in Macaranga pruinosa, a common PSF tree, and in the peat substrate along a gradient of peatland degradation from pristine peat swamp forest to cleared, drained and burnt peatlands. We examined phenolic compounds in M. pruinosa and in peat and found that levels of total phenolic compounds and total tannins decrease in the leaves of M.pruinosa and also in the surface peat layers with an increase in peatland degradation. We conclude that waterlogged conditions preserve the concentration of phenolic compounds in peat, and that even PSF that has been previously logged but which has recovered a full canopy cover will have high levels of total phenolic content (TPC) in peat. High levels of TPC in peat and in the flora are vital for the inhibition of decomposition of organic matter and this is crucial for the accretion of peat and the sequestration of carbon. Thus regional PSF flourish despite the phenolic rich, toxic, waterlogged, nutrient poor, conditions, and reversal of such conditions is a sign of degradation.

  3. Pendant acid-base groups in molecular catalysts: H-bond promoters or proton relays? Mechanisms of the conversion of CO2 to CO by electrogenerated iron(0)porphyrins bearing prepositioned phenol functionalities.

    PubMed

    Costentin, Cyrille; Passard, Guillaume; Robert, Marc; Savéant, Jean-Michel

    2014-08-20

    Two derivatives of iron tetraphenylporphyrin bearing prepositioned phenolic functionalities on two of the opposed phenyl groups prove to be remarkable catalysts for the reduction of CO2 to CO when generated electrochemically at the Fe(0) oxidation state. In one case, the same substituents are present on the two other phenyls, whereas in the other the two other phenyls are perfluorinated. They are taken as examples of the possible role of pendant acid-base groups in molecular catalysis. The prepositioned phenol groups incorporated into the catalyst molecule induce strong stabilization of the initial Fe(0)CO2 adduct through H-bonding, confirmed by DFT calculations. This positive factor is partly counterbalanced by the necessity, resulting from the same stabilization, to inject an additional electron to trigger catalysis. Thanks to the preprotonation of the initial Fe(0)CO2 adduct, the potential required for this second electron transfer is not very distant from the potential at which the adduct is generated by addition of CO2 to the Fe(0) complex. The protonation step involves an internal phenolic group and the reprotonation of the phenoxide ion thus generated by added phenol. The prepositioned phenol groups thus play both the role of H-bonding stabilizers and high-concentration proton donors. They play the same role in the second electron transfer step which closes the catalytic loop concertedly with the breaking of one of the two C-O bonds of CO2 and with proton transfer. It is also remarkable that reprotonation by added phenol is concerted with the three other events.

  4. Structure-affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity.

    PubMed

    Wu, Simin; Zhang, Yunyue; Ren, Fazheng; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Zhang, Hao

    2018-04-15

    In this study, 71 phenolic acids and their derivatives were used to investigate the structure-affinity relationship of β-lactoglobulin binding, and the effect of this interaction on antioxidant activity. Based on a fluorescence quenching method, an improved mathematical model was adopted to calculate the binding constants, with a correction for the inner-filter effect. Hydroxylation at the 3-position increased the affinity of the phenolic acids for β-lactoglobulin, while hydroxylation at the 2- or 4-positions had a negative effect. Complete methylation of all hydroxy groups, except at the 3-position, enhanced the binding affinity. Replacing the hydroxy groups with methyl groups at the 2-position also had a positive effect. Hydrogen bonding was one of the binding forces for the interaction. The antioxidant activity of phenolic acid-β-lactoglobulin complexes was higher than that of phenolic acids alone. These findings provide an understanding of the structure-activity relationship of the interaction between β-lactoglobulin and phenolic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phenolic contents and antioxidant activities of major Australian red wines throughout the winemaking process.

    PubMed

    Ginjom, Irine R; D'Arcy, Bruce R; Caffin, Nola A; Gidley, Michael J

    2010-09-22

    Three Australian red wine types (Shiraz, Cabernet Sauvignon, and Merlot) were analyzed for antioxidant activity and a range of phenolic component contents using various spectral methods. More than half of the total phenolic compounds were tannins, whereas monomeric anthocyanins and flavonols were present in much lesser amounts (<10%). The evolution of phenolic contents and the respective antioxidant activities in wine samples from all stages of winemaking showed progressive changes toward those of commercial wines. The antioxidant activity of the wines in DPPH and ABTS assays was positively correlated with total phenolic contents and tannins. Comparisons of the three wine varieties based on their individual phenolic component groups and antioxidant activities showed limited differences between the different varieties. However, when all of the variables were combined in a principal component analysis, variety differentiation was observed. The three varieties of red wines all contained similar and high concentrations of antioxidants despite differences in grape variety/maturity and winemaking process, suggesting that related health benefits would accrue from all of the red wines studied.

  6. Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time

    NASA Astrophysics Data System (ADS)

    Widi, R. K.; Budhyantoro, A.; Christianto, A.

    2017-11-01

    The present work reflects the study of the phenol hydroxylation reactions to synthesize hydroquinone and catechol on Al-Fe modified-bentonite. This study started with synthesizes the catalyst material based on the modified bentonite. Natural bentonite from Pacitan, Indonesia was intercalated with Cetyl-TetramethylammoniumBromida (CTMA-Br) followed by pillarization using Alumina. The pillared bentonite was then impregnated with Fe solution (0.01 M, 0.05 M, and 0.1 M). The solid material obtained was calcined at 723 K for 4 hours. All the materials were characterized using BET N2 adsorption. Their catalytic activity and selectivity were studied for phenol hydroxylation using H2O2 (30%). The reaction conditions of this reaction were as follows: ratio of phenol/H2O2 = 1:1 (molar ratio), concentration of phenol = 1 M and ratio of catalyst/phenol was 1:10. Reaction temperatures were varied at 333, 343 and 353 K. The reaction time was also varied at 3, 4 and 5 hours. The result shows that the materials have potential catalyst activity.

  7. Investigation of optimum conditions and costs estimation for degradation of phenol by solar photo-Fenton process

    NASA Astrophysics Data System (ADS)

    Gar Alalm, Mohamed; Tawfik, Ahmed; Ookawara, Shinichi

    2017-03-01

    In this study, solar photo-Fenton reaction using compound parabolic collectors reactor was assessed for removal of phenol from aqueous solution. The effect of irradiation time, initial concentration, initial pH, and dosage of Fenton reagent were investigated. H2O2 and aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. Complete degradation of phenol was achieved after 45 min of irradiation when the initial concentration was 100 mg/L. However, increasing the initial concentration up to 500 mg/L inhibited the degradation efficiency. The dosage of H2O2 and Fe+2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 3.1. Phenol degradation at different concentration was fitted to the pseudo-first order kinetic according to Langmuir-Hinshelwood model. Costs estimation for a large scale reactor based was performed. The total costs of the best economic condition with maximum degradation of phenol are 2.54 €/m3.

  8. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    PubMed

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Fisk, William J.; Shendell, Derek G.

    Relocatable classrooms (RCs) are widely employed by California school districts to satisfy rapidly expanding space requirements due to population growth and class size reduction policies. There is public concern regarding indoor environmental quality (IEQ) in schools, particularly in RCs, but very little data to support or dispel these concerns. Several studies are investigating various aspects of IEQ in California schools. This laboratory-based study focused on evaluating the emissions of toxic and/or odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, from materials used to finish the interiors of new RCs. Furthermore, the study implemented a procedure for VOC source reductionmore » by testing and selecting lower-emitting materials as substitutes for standard materials. In total, 17 standard and alternate floor coverings, wall panels and ceiling panels were quantitatively tested for emissions of VOCs using smallscale environmental chambers. Working with the largest northern California manufacturer of conventional RCs and two school districts, specifications were developed for four new RCs to be produced in early summer 2001. Two of these will be predominantly finished with standard materials. Alternate carpet systems, an alternate wall panel covering and an alternate ceiling panel were selected for the two other RCs based on the results of the laboratory study and considerations of cost and anticipated performance and maintenance. Particular emphasis was placed on reducing the concentrations of VOCs on California agency lists of toxic compounds. Indoor concentrations of toxic and odorous VOCs were estimated for the four classrooms by mass balance using the measured VOC emission factors, exposed surface areas of the materials in the RCs, and three ventilation rate scenarios. Results indicate that reductions in the concentrations of formaldehyde, acetaldehyde phenol, di(ethylene glycol) butyl ether, vinyl acetate, 1,2,4-trimethylbenzene and 1-methyl-2-pyrrolidinone should be achieved as the result of the source reduction procedure.« less

  10. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.

    PubMed

    Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H

    2018-01-14

    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.

  11. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation.

    PubMed

    Peters, Sonja; Kaal, Erwin; Horsting, Iwan; Janssen, Hans-Gerd

    2012-02-24

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing 'Micro-extraction in packed sorbent' (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve extraction yields of the more polar analytes and as the methyl donor in the automated in-liner derivatisation method. In this way, a fully automated procedure for the extraction, derivatisation and injection of a wide range of phenolic acids in plasma samples has been obtained. An extensive optimisation of the extraction and derivatisation procedure has been performed. The entire method showed excellent repeatabilities of under 10% and linearities of 0.99 or better for all phenolic acids. The limits of detection of the optimised method for the majority of phenolic acids were 10ng/mL or lower with three phenolic acids having less-favourable detection limits of around 100 ng/mL. Finally, the newly developed method has been applied in a human intervention trial in which the bioavailability of polyphenols from wine and tea was studied. Forty plasma samples could be analysed within 24h in a fully automated method including sample extraction, derivatisation and gas chromatographic analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review

    PubMed Central

    Hidalgo, Gádor-Indra; Almajano, María Pilar

    2017-01-01

    Red fruits, as rich antioxidant foods, have gained over recent years capital importance for consumers and manufacturers. The industrial extraction of the phenolic molecules from this source has been taking place with the conventional solvent extraction method. New non-conventional extraction methods have been devised as environmentally friendly alternatives to the former method, such as ultrasound, microwave, and pressure assisted extractions. The aim of this review is to compile the results of recent studies using different extraction methodologies, identify the red fruits with higher antioxidant activity, and give a global overview of the research trends regarding this topic. As the amount of data available is overwhelming, only results referring to berries are included, leaving aside other plant parts such as roots, stems, or even buds and flowers. Several researchers have drawn attention to the efficacy of non-conventional extraction methods, accomplishing similar or even better results using these new techniques. Some pilot-scale trials have been performed, corroborating the applicability of green alternative methods to the industrial scale. Blueberries (Vaccinium corymbosum L.) and bilberries (Vaccinium myrtillus L.) emerge as the berries with the highest antioxidant content and capacity. However, several new up and coming berries are gaining attention due to global availability and elevated anthocyanin content. PMID:28106822

  13. Spatial distribution and ecological risk assessment of phthalic acid esters and phenols in surface sediment from urban rivers in Northeast China.

    PubMed

    Li, Bin; Liu, Ruixia; Gao, Hongjie; Tan, Ruijie; Zeng, Ping; Song, Yonghui

    2016-12-01

    Concentration and spatial distribution of six phthalic acid esters (PAEs) and eight phenols in sediments of urban rivers, namely the Xi River (XR) and Pu River (PR) in Shenyang city, Northeast China were investigated and the ecological risk of these target pollutants was assessed based on the risk quotient (RQ) approach. Target PAEs and phenols were detected in most of sediment samples collected from the XR and PR. The concentrations of total PAEs in sediments varied from 22.4 to 369 μg/g dw in the XR and 3.71-46.9 μg/g dw in the PR. The levels of phenols ranged from 2.72 to 106 μg/g dw in the XR and 0.811-25.0 μg/g dw in the PR, respectively. The dominant pollutants in both XR and PR were DEHP, phenol and 4-methylphnol. The sampling locations XR1-3 in the XR suffered severe contamination from PAEs and phenols. The sites PR1 and PR6 were heavily polluted by phenols and PAEs, respectively. Almost all target PAEs and phenolic compounds in sediment of the XR exhibited medium or high ecological risk to organisms and the ecological risk in the PR mainly originated from PEAs, phenol and 4-methylphenol. These results would provide guidance for individual pollutant control and indicate that it is imperative to take some effective measures to reduce the pollution of those contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. PICA Variants with Improved Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.

  15. Electron transfer properties of peat organic matter: from electrochemical analysis to redox processes in peatlands

    NASA Astrophysics Data System (ADS)

    Sander, Michael; Getzinger, Gordon; Walpen, Nicolas

    2017-04-01

    Peat organic matter contains redox-active functional groups that can accept and/or donate electrons from and to biotic and abiotic reaction partners present in peatlands. Several studies have provided evidence that electron accepting quinone moieties in the peat organic matter may act as terminal electron acceptors for anaerobic microbial respiration. This respiration pathway may competitively suppress methanogenesis and thereby lead to excess carbon dioxide to methane formation in peatlands. Electron donating phenolic moieties in peat organic matter have long been considered to inhibit microbial and enzymatic activities in peatlands, thereby contributing to carbon stabilization and accumulation in these systems. Phenols are expected to be comparatively stable in anoxic parts of the peats as phenoloxidases, a class of enzymes capable of oxidatively degrading phenols, require molecular oxygen as co-substrate. Despite the general recognition of the importance of redox-active moieties in peat organic matter, the abundance, redox properties and reactivities of these moieties remain poorly studied and understood, in large part due to analytical challenges. This contribution will, in a first part, summarize recent advances in our research group on the analytical chemistry of redox-active moieties in peat organic matter. We will show how mediated electrochemical analysis can be used to quantify the capacities of electron accepting and donating moieties in both dissolved and particulate peat organic matter. We will link these capacities to the physicochemical properties of peat organic matter and provide evidence for quinones and phenols as major electron accepting and donating moieties, respectively. The second part of this contribution will highlight how these electroanalytical techniques can be utilized to advance a more fundamental understanding of electron transfer processes involving peat organic matter. These processes include the redox cycling (i.e., repeated reduction and re-oxidation) of peat organic matter under alternating anoxic-oxic conditions as well as the oxidation of phenolic moieties in peat organic matter by phenol oxidases in the presence of molecular oxygen. Overall, this contribution will attempt to link molecular-level insights into the redox properties of peat organic matter to larger scale redox processes that are important to carbon cycling in peatlands.

  16. In vitro enzymic hydrolysis of chlorogenic acids in coffee.

    PubMed

    da Encarnação, Joana Amarante; Farrell, Tracy L; Ryder, Alexandra; Kraut, Nicolai U; Williamson, Gary

    2015-02-01

    Coffee is rich in quinic acid esters of phenolic acids (chlorogenic acids) but also contains some free phenolic acids. A proportion of phenolic acids appear in the blood rapidly after coffee consumption due to absorption in the small intestine. We investigated in vitro whether this appearance could potentially be derived from free phenolic acids in instant coffee or from hydrolysis of chlorogenic acids by pancreatic or brush border enzymes. We quantified six free phenolic acids in instant coffees using HPLC-DAD-mass spectrometry. The highest was caffeic acid, but all were present at low levels compared to the chlorogenic acids. Roasting and decaffeination significantly reduced free phenolic acid content. We estimated, using pharmacokinetic modelling with previously published data, that the contribution of these compounds to small intestinal absorption is minimal. Hydrolysis of certain chlorogenic acids was observed with human-differentiated Caco-2 cell monolayers and with porcine pancreatin, which showed maximal rates on 3- and 5-O-caffeoylquinic acids, respectively. The amounts of certain free phenolic acids in coffee could only minimally account for small intestinal absorption based on modelling. The hydrolysis of caffeoylquinic, but not feruloylquinic acids, by enterocyte and pancreatic esterases is potentially a contributing mechanism to small intestinal absorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cross-reactivity of antibodies with phenolic compounds in pistachios during quantification of ochratoxin A by commercial enzyme-linked immunosorbent assay kits.

    PubMed

    Lee, Hyun Jung; Meldrum, Alexander D; Rivera, Nicholas; Ryu, Dojin

    2014-10-01

    Ochratoxin A (OTA), a nephrotoxic mycotoxin, naturally occurs in wide range of agricultural commodities. Typical screening of OTA involves various enzyme-linked immunosorbent assay (ELISA) methods. Pistachio (Pistacia vera L.) is a rich source of phenolic compounds that may result in a false positive due to structural similarities to OTA. The present study investigated the cross-reactivity profiles of phenolic compounds using two commercial ELISA test kits. High-performance liquid chromatography was used to confirm the concentration of OTA in the pistachio samples and compared with the results obtained from ELISA. When the degree of interaction and 50 % inhibitory concentration of phenolic compounds were determined, the cross-reactivity showed a pattern similar to that observed with the commercial ELSIA kits, although quantitatively different. In addition, the degree of interaction increased with the increasing concentration of phenolic compounds. The ELISA value had stronger correlations with the content of total phenolic compound, gallic acid, and catechin (R(2) = 0.757, 0.732, and 0.729, respectively) compared with epicatechin (R(2) = 0.590). These results suggest that phenolic compounds in pistachio skins may cross-react with the OTA antibody and lead to a false positive or to an overestimation of OTA concentration in ELISA-based tests.

  18. Development and optimisation of an HPLC-DAD-ESI-Q-ToF method for the determination of phenolic acids and derivatives.

    PubMed

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2014-01-01

    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects.

  19. Bioaccessibility and bioavailability of phenolic compounds in bread: a review.

    PubMed

    Angelino, Donato; Cossu, Marta; Marti, Alessandra; Zanoletti, Miriam; Chiavaroli, Laura; Brighenti, Furio; Del Rio, Daniele; Martini, Daniela

    2017-07-19

    Cereal-based products, like breads, are a vehicle for bioactive compounds, including polyphenols. The health effects of polyphenols like phenolic acids (PAs) are dependent on their bioaccessibility and bioavailability. The present review summarizes the current understanding of potential strategies to improve phenolic bioaccessibility and bioavailability and the main findings of in vitro and in vivo studies investigating these strategies applied to breads, including the use of raw ingredients with greater phenolic content and different pre-processing technologies, such as fermentation and enzymatic treatment of ingredients. There is considerable variability between in vitro studies, mainly resulting from the use of different methodologies, highlighting the need for standardization. Of the few in vivo bioavailability studies identified, acute, single-dose studies demonstrate that modifications to selected raw materials and bioprocessing of bran could increase the bioavailability, but not necessarily the net content, of bread phenolics. The two medium-term identified dietary interventions also demonstrated greater phenolic content, resulting from the modification of the raw materials used. Overall, the findings suggest that several strategies can be used to develop new bread products with greater phenolic bioaccessibility and bioavailability. However, due to the large variability and the few studies available, further investigations are required to determine better the usefulness of these innovative processes.

  20. Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line.

    PubMed

    Kellett, Mary E; Greenspan, Phillip; Pegg, Ronald B

    2018-04-01

    In vitro assays are widely used to analyze the antioxidant potential of compounds, but they cannot accurately predict antioxidant behavior in living systems. Cell-based assays, like the cellular antioxidant activity (CAA) assay, are gaining importance as they provide a biological perspective. When the CAA assay was employed to study phenolic antioxidants using hepatocarcinoma (HepG2) cells, quercetin showed antioxidant activity in HepG2 cells; 25 and 250μM quercetin reduced fluorescence by 17.1±0.9% and 58.6±2.4%, respectively. (+)-Catechin, a phenolic antioxidant present in many foods, bestowed virtually no CAA in HepG2 cells. When Caco-2 cells were employed, more robust antioxidant activity was observed; 50μM (+)-catechin and quercetin reduced fluorescence by 54.1±1.4% and 63.6±0.9%, respectively. Based on these results, likely due to differences in active membrane transport between the cell types, the Caco-2-based CAA assay appears to be a more appropriate method for the study of certain dietary phenolics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparison of five agro-industrial waste-based composts as growing media for lettuce: Effect on yield, phenolic compounds and vitamin C.

    PubMed

    Santos, Francielly T; Goufo, Piebiep; Santos, Cátia; Botelho, Donzilia; Fonseca, João; Queirós, Aurea; Costa, Mônica S S M; Trindade, Henrique

    2016-10-15

    Overall phenolic content in plants is on average higher in organic farming, including when renewable resources such as composts are used as soil amendments. In most cases, however, the composting process needs to be optimized to reach the desired outcome. Using composts obtained from chestnut, red and white grapes, olive and broccoli wastes, the relative antioxidative abilities of lettuces cultivated in greenhouse were examined. Results clearly coupled high phenolic levels with high yield in lettuce grown on the chestnut-based compost. A huge accumulation of phenolics was observed with the white grape-based compost, but this coincided with low yield. Three compounds were identified as discriminating factors between treated samples, namely quercetin 3-O-glucoside, luteolin 7-O-glucoside, and cyanidin 3-O-(6″-malonyl)-β-d-glucoside; these are also some of the compounds receiving health claims on lettuce consumption. On a negative note, all composts led to decreased vitamin C levels. Collectively, the data suggest that compost amendments can help add value to lettuce by increasing its antioxidant activity as compared to other organic resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mechanistic Effects of Water on the Fe-Catalyzed Hydrodeoxygenation of Phenol. The Role of Brønsted Acid Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Alyssa J. R.; Wang, Yong; Mei, Donghai

    A mechanistic understanding of the roles of water is essential for developing highly active and selective catalysts for hydrodeoxygenation (HDO) reactions since water is ubiquitous in such reaction systems. Here, we present a study for phenol HDO on Fe catalysts using density functional theory which examines the effect of water on three elementary pathways for phenol HDO using an explicit solvation model. The presence of water is found to significantly decrease activation barriers required by hydrogenation reactions via two pathways. First, the proton transfer in the hydrogen bonding network of the liquid water phase is nearly barrierless, which significantly promotesmore » the direct through space tautomerization of phenol. Second, due to the high degree of oxophilicity on Fe, liquid water molecules are found to be easily dissociated into surface hydroxyl groups that can act as Brønsted acid sites. These sites dramatically promote hydrogenation reactions on the Fe surface. As a result, the hydrogen assisted dehydroxylation becomes the dominant phenol HDO pathway. This work provides new fundamental insights into aqueous phase HDO of biomass-derived oxygenates over Fe-based catalysts; e.g., the activity of Fe-based catalysts can be optimized by tuning the surface coverage of Brønsted acid sites via surface doping.« less

  3. Use of image analysis to estimate anthocyanin and UV-excited fluorescent phenolic compound levels in strawberry fruit

    PubMed Central

    Yoshioka, Yosuke; Nakayama, Masayoshi; Noguchi, Yuji; Horie, Hideki

    2013-01-01

    Strawberry is rich in anthocyanins, which are responsible for the red color, and contains several colorless phenolic compounds. Among the colorless phenolic compounds, some, such as hydroxycinammic acid derivatives, emit blue-green fluorescence when excited with ultraviolet (UV) light. Here, we investigated the effectiveness of image analyses for estimating the levels of anthocyanins and UV-excited fluorescent phenolic compounds in fruit. The fruit skin and cut surface of 12 cultivars were photographed under visible and UV light conditions; colors were evaluated based on the color components of images. The levels of anthocyanins and UV-excited fluorescent compounds in each fruit were also evaluated by spectrophotometric and high performance liquid chromatography (HPLC) analyses, respectively and relationships between these levels and the image data were investigated. Red depth of the fruits differed greatly among the cultivars and anthocyanin content was well estimated based on the color values of the cut surface images. Strong UV-excited fluorescence was observed on the cut surfaces of several cultivars, and the grayscale values of the UV-excited fluorescence images were markedly correlated with the levels of those fluorescent compounds as evaluated by HPLC analysis. These results indicate that image analyses can select promising genotypes rich in anthocyanins and fluorescent phenolic compounds. PMID:23853516

  4. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries

    PubMed Central

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-01-01

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs. PMID:28245627

  5. Absorption Profile of (Poly)Phenolic Compounds after Consumption of Three Food Supplements Containing 36 Different Fruits, Vegetables, and Berries.

    PubMed

    Bresciani, Letizia; Martini, Daniela; Mena, Pedro; Tassotti, Michele; Calani, Luca; Brigati, Giacomo; Brighenti, Furio; Holasek, Sandra; Malliga, Daniela-Eugenia; Lamprecht, Manfred; Del Rio, Daniele

    2017-02-26

    The market of plant-based nutraceuticals and food supplements is continuously growing due to the increased consumer demand. The introduction of new products with relevant nutritional characteristics represents a new way of providing bioactive compounds and (poly)phenols to consumers, becoming a strategy to ideally guarantee the health benefits attributed to plant foodstuffs and allowing the increase of daily bioactive compound intake. A paramount step in the study of nutraceuticals is the evaluation of the bioavailability and metabolism of their putatively active components. Therefore, the aim of the present study was to investigate the absorption profile of the (poly)phenolic compounds contained in three different plant-based food supplements, made of 36 different plant matrices, which were consumed by 20 subjects in an open one-arm study design. Blood samples were collected at baseline and 1, 2, 5, and 10 h after capsule intake. Twenty quantifiable metabolites deriving from different (poly)phenolic compounds were identified. Results showed that the consumption of the three capsules allowed the effective absorption of several (poly)phenolic compounds and metabolites appearing at different times in plasma, thereby indicating different absorption profiles. The capsules thus ensured potential health-promoting molecules to be potentially available to target tissues and organs.

  6. Thermosonication and optimization of stingless bee honey processing.

    PubMed

    Chong, K Y; Chin, N L; Yusof, Y A

    2017-10-01

    The effects of thermosonication on the quality of a stingless bee honey, the Kelulut, were studied using processing temperature from 45 to 90 ℃ and processing time from 30 to 120 minutes. Physicochemical properties including water activity, moisture content, color intensity, viscosity, hydroxymethylfurfural content, total phenolic content, and radical scavenging activity were determined. Thermosonication reduced the water activity and moisture content by 7.9% and 16.6%, respectively, compared to 3.5% and 6.9% for conventional heating. For thermosonicated honey, color intensity increased by 68.2%, viscosity increased by 275.0%, total phenolic content increased by 58.1%, and radical scavenging activity increased by 63.0% when compared to its raw form. The increase of hydroxymethylfurfural to 62.46 mg/kg was still within the limits of international standards. Optimized thermosonication conditions using response surface methodology were predicted at 90 ℃ for 111 minutes. Thermosonication was revealed as an effective alternative technique for honey processing.

  7. Rosmarinus eriocalyx: An alternative to Rosmarinus officinalis as a source of antioxidant compounds.

    PubMed

    Bendif, Hamdi; Boudjeniba, Messaoud; Djamel Miara, Mohamed; Biqiku, Loreta; Bramucci, Massimo; Caprioli, Giovanni; Lupidi, Giulio; Quassinti, Luana; Sagratini, Gianni; Vitali, Luca A; Vittori, Sauro; Maggi, Filippo

    2017-03-01

    Rosmarinus eriocalyx is an aromatic evergreen bush endemic to Algeria where it is used as a condiment to flavour soups and meat and as a traditional remedy. In the present work we have analyzed for the first time the phenolic composition of polar extracts obtained from stems, leaves and flowers of R. eriocalyx by HPLC, and determined the antioxidant and antimicrobial effects by DPPH, ABTS, FRAP, ORAC and agar disc diffusion methods, respectively. Results showed that ethanolic extracts of leaves and flowers are a rich source of phenolic compounds, mainly rosmarinic acid, carnosic acid and carnosol that are the main responsible for the noteworthy antioxidant activity observed in the assays. This study showed that R. eriocalyx might be a spice to be included in the European food additive list and used as a preservative agent besides R. officinalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessing chemical constituents of Mimosa caesalpiniifolia stem bark: possible bioactive components accountable for the cytotoxic effect of M. caesalpiniifolia on human tumour cell lines.

    PubMed

    Monção, Nayana Bruna Nery; Araújo, Bruno Quirino; Silva, Jurandy do Nascimento; Lima, Daisy Jereissati Barbosa; Ferreira, Paulo Michel Pinheiro; Airoldi, Flavia Pereira da Silva; Pessoa, Cláudia; Citó, Antonia Maria das Graças Lopes

    2015-03-05

    Mimosa caesalpiniifolia is a native plant of the Brazilian northeast, and few studies have investigated its chemical composition and biological significance. This work describes the identification of the first chemical constituents in the ethanolic extract and fractions of M. caesalpiniifolia stem bark based on NMR, GC-qMS and HRMS analyses, as well as an assessment of their cytotoxic activity. GC-qMS analysis showed fatty acid derivatives, triterpenes and steroid substances and confirmed the identity of the chemical compounds isolated from the hexane fraction. Metabolite biodiversity in M. caesalpiniifolia stem bark revealed the differentiated accumulation of pentacyclic triterpenic acids, with a high content of betulinic acid and minor amounts of 3-oxo and 3β-acetoxy derivatives. Bioactive analysis based on total phenolic and flavonoid content showed a high amount of these compounds in the ethanolic extract, and ESI-(-)-LTQ-Orbitrap-MS identified caffeoyl hexose at high intensity, as well as the presence of phenolic acids and flavonoids. Furthermore, the evaluation of the ethanolic extract and fractions, including betulinic acid, against colon (HCT-116), ovarian (OVCAR-8) and glioblastoma (SF-295) tumour cell lines showed that the crude extract, hexane and dichloromethane fractions possessed moderate to high inhibitory activity, which may be related to the abundance of betulinic acid. The phytochemical and biological study of M. caesalpiniifolia stem bark thus revealed a new alternative source of antitumour compounds, possibly made effective by the presence of betulinic acid and by chemical co-synergism with other compounds.

  9. Synthesis and antioxidant activity of star-shape phenolic antioxidants catalyzed by acidic nanocatalyst based on reduced graphene oxide.

    PubMed

    Golestanzadeh, Mohsen; Naeimi, Hossein; Zahraie, Zohreh

    2017-02-01

    Phenolic antioxidants play important role in prevention of oxidation in different industrials. The research objective in the current study was synthesis and evaluate of antioxidant activity of star-shape phenolic antioxidants. The synthetic compounds were prepared in the presence of sulfonated reduced graphene oxide. The antioxidant activity of synthesized compounds was investigated by spectrophotometrically method according to the DPPH assay. Overall, these compounds are potentially important antioxidant and also to limit activity of reactive oxygen species. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Structure-Stability Relationships of Polymers Based on Thermogravimetric Analysis Data. Part 1. Polyaliphatics, Polyalicyclics, Spiro Polymers and Phenylene-R-Polymers

    DTIC Science & Technology

    1974-12-01

    Polymerization 13 9. Polymers with Bridged Ring Systems 14 10. Spiro Polymers 14 11. Polyphenylene s 16 12. Phenol - Formaldehyde Resins 17 13. Polyphenylene... Formaldehyde Resins A wide variety of phenol- formaldehyde resins , cured with various curing agents, has been evaluated. The Tdec’s (N 2 ), which...415 0 570 415 540C 2- 410 0 -CHI - 0- c-Ci.f-CCH = 1-eC.- 390 540 0 (Phenol- Formaldehyde Resins ) -CVH- (aliph.) 390 / F_ 535 0 - CHL" (epoxy

  11. Properties Of Carbon/Carbon and Carbon/Phenolic Composites

    NASA Technical Reports Server (NTRS)

    Mathis, John R.; Canfield, A. R.

    1993-01-01

    Report presents data on physical properties of carbon-fiber-reinforced carbon-matrix and phenolic-matrix composite materials. Based on tests conducted on panels, cylinders, blocks, and formed parts. Data used by designers to analyze thermal-response and stress levels and develop structural systems ensuring high reliability at minimum weight.

  12. Selective extraction of high-value phenolic compounds from distillation wastewater of basil (Ocimum basilicum L.) by pressurized liquid extraction.

    PubMed

    Pagano, Imma; Sánchez-Camargo, Andrea Del Pilar; Mendiola, Jose Antonio; Campone, Luca; Cifuentes, Alejandro; Rastrelli, Luca; Ibañez, Elena

    2018-01-31

    During the essential oil steam distillation from aromatic herbs, huge amounts of distillation wastewaters (DWWs) are generated. These by-products represent an exceptionally rich source of phenolic compounds such as rosmarinic acid (RA) and caffeic acid (CA). Herein, the alternative use of dried basil DWWs (dDWWs) to perform a selective extraction of RA and CA by pressurized liquid extraction (PLE) employing bio-based solvent was studied. To select the most suitable solvent for PLE, the theoretical modelling of Hansen solubility parameters (HSP) was carried out. This approach allows reducing the list of candidate to two solvents: ethanol and ethyl lactate. Due to the composition of the sample, mixtures of water with those solvents were also tested. An enriched PLE extract in RA (23.90 ± 2.06 mg/g extract) with an extraction efficiency of 75.89 ± 16.03% employing a water-ethanol mixture 25:75 (% v/v) at 50°C was obtained. In the case of CA, a PLE extract with 2.42 ± 0.04 mg/g extract, having an extraction efficiency of 13.86 ± 4.96% using ethanol absolute at 50°C was achieved. DWWs are proposed as new promising sources of natural additives and/or functional ingredients for cosmetic, nutraceutical, and food applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antioxidant and antimicrobial capacities of ethanolic extract of Pergularia daemia leaves: a possible substitute in diabetic management.

    PubMed

    Sarkodie, Joseph Adusei; Squire, Sylvia Afriyie; Oppong Bekoe, Emelia; Fosu Domozoro, Charles Yaw; Kretchy, Irene Awo; Ahiagbe, Mariesta Kurukulasuriya Jayaroshini; Frimpong-Manso, Samuel; Oboba Kwakyi, Nana Akua; Edoh, Dominic Adotei; Sakyiama, Maxwel; Lamptey, Vida Korkor; Affedzi-Obresi, Seigfried; Duncan, John Lee; Debrah, Philip; N'guessa, Benoit Banga; Asiedu-Gyekye, Julius Isaac; Kwadwo Nyarko, Alexander

    2016-09-01

    The leaves of Pergularia daemia Forsk (family Asclepidaceae) provide alternative plant-based treatments for the management of diabetes mellitus and diarrhoea in both humans and indigenous poultry species like the Guinea fowls (Numida meleagris). However, no scientific investigations to validate its usefulness in Ghana have been established. This study therefore sought to investigate the anti-hyperglycaemic activity of the 70 % ethanolic extract of P. daemia using streptozotocin (STZ)-induced diabetic male Sprague-Dawley rats. Additionally, the antioxidant and antimicrobial properties of the extract were investigated. The total phenolic content, total flavonoids content, radical scavenging activity and reducing power assays were estimated using Folin-Ciocalteu method, aluminium chloride colorimetric assay, Fe3+ reduction assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays, respectively. The results showed that P. daemia extract caused anti-hyperglycaemic activity in the STZ-induced rats at doses of 30, 60 and 90 mg/kg body weight with significant reduction in blood glucose levels. The phytosterols, saponins, phenols, alkaloids, tannins and triterpenes found in the extract may be responsible for the observed anti-hyperglycaemia and antioxidant activities. The extract also showed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. These findings justify the folkloric use of P. daemia as an anti-diabetic and antibacterial agents for susceptible species.

  14. Effect of Different Solvents on the Measurement of Phenolics and the Antioxidant Activity of Mulberry (Morus atropurpurea Roxb.) with Accelerated Solvent Extraction.

    PubMed

    Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan

    2017-03-01

    The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.

  15. A Fe3O4/FeAl2O4 composite coating via plasma electrolytic oxidation on Q235 carbon steel for Fenton-like degradation of phenol.

    PubMed

    Wang, Jiankang; Yao, Zhongping; Yang, Min; Wang, Yajing; Xia, Qixing; Jiang, Zhaohua

    2016-08-01

    The Fe3O4/FeAl2O4 composite coatings were successfully fabricated on Q235 carbon steel by plasma electrolytic oxidation technique and used to degrade phenol by Fenton-like system. XRD, SEM, and XPS indicated that Fe3O4 and FeAl2O4 composite coating had a hierarchical porous structure. The effects of various parameters such as pH, phenol concentration, and H2O2 dosage on catalytic activity were investigated. The results indicated that with increasing of pH and phenol content, the phenol degradation efficiency was reduced significantly. However, the degradation rate was improved with the addition of H2O2, but dropped with further increasing of H2O2. Moreover, 100 % removal efficiency with 35 mg/L phenol was obtained within 60 min at 303 K and pH 4.0 with 6.0 mmol/L H2O2 on 6-cm(2) iron oxide coating. The degradation process consisted of induction period and rapid degradation period; both of them followed pseudo-first-order reaction. Hydroxyl radicals were the mainly oxidizing species during phenol degradation by using n-butanol as hydroxyl radical scavenger. Based on Fe leaching and the reaction kinetics, a possible phenol degradation mechanism was proposed. The catalyst exhibited excellent stability.

  16. Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms.

    PubMed

    Oh, Seok-Young; Seo, Yong-Deuk

    2016-01-01

    The feasibility of using biochar as a sorbent to remove nine halogenated phenols (2,4-dichlorophenol, 2,4-dibromophenol, 2,4-difluorophenol, 2-chlorophenol, 4-chlorophenol, 2-bromophenol, 4-bromophenol, 2-fluorophenol, and 4-fluorophenol) and two pharmaceuticals (triclosan and ibuprofen) from water was examined through a series of batch experiments. Types of biochar, synthesized using various biomasses including fallen leaves, rice straw, corn stalk, used coffee grounds, and biosolids, were evaluated. Compared to granular activated carbon (GAC), most of the biochar samples did not effectively remove halogenated phenols or pharmaceuticals from water. The increase in pH and deprotonation of phenols in biochar systems may be responsible for its ineffectiveness at this task. When pH was maintained at 4 or 7, the sorption capacity of biochar was markedly increased. Considering maximum sorption capacity and properties of sorbents and sorbates, it appears that the sorption capacity of biochar for halogenated phenols is related to the surface area and carbon content of the biochar and the hydrophobicity of halogenated phenols. In the cases of triclosan and ibuprofen, the sorptive capacities of GAC, graphite, and biochars were also significantly affected by pH, according to the point of zero charge (PZC) of sorbents and deprotonation of the pharmaceuticals. Pyrolysis temperature did not affect the sorption capacity of halogenated phenols or pharmaceuticals. Based on the experimental observations, some biochars are good candidates for removal of halogenated phenols, triclosan, and ibuprofen from water and soil.

  17. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L.

    PubMed Central

    Sankhalkar, Sangeeta; Vernekar, Vrunda

    2016-01-01

    Background: Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. Objective: To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Materials and Methods: Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Results: Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. Conclusions: In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. SUMMARY Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids, anthraquinones revealed that both the plant extracts were rich sources of secondary metabolites and thus tested positive for the above tests. Various flavanoids and Phenolics were identified by paper chromatography based on their Rf values and significant colors. From the above study we conclude that Moringa and Ocimum are rich in natural antioxidants hence are potent source in pharmaceutical industry. PMID:26941531

  18. Quantitative and Qualitative Analysis of Phenolic and Flavonoid Content in Moringa oleifera Lam and Ocimum tenuiflorum L.

    PubMed

    Sankhalkar, Sangeeta; Vernekar, Vrunda

    2016-01-01

    Number of secondary compounds is produced by plants as natural antioxidants. Moringa oleifera Lam. and Ocimum tenuiflorum L. are known for their wide applications in food and pharmaceutical industry. To compare phenolic and flavonoid content in M. oleifera Lam and O. tenuiflorum L. by quantitative and qualitative analysis. Phenolic and flavonoid content were studied spectrophotometrically and by paper chromatography in M. oleifera Lam. and O. tenuiflorum L. Higher phenolic and flavonoid content were observed in Moringa leaf and flower. Ocimum flower showed higher phenolic content and low flavonoid in comparison to Moringa. Flavonoids such as biflavonyl, flavones, glycosylflavones, and kaempferol were identified by paper chromatography. Phytochemical analysis for flavonoid, tannins, saponins, alkaloids, reducing sugars, and anthraquinones were tested positive for Moringa and Ocimum leaf as well as flower. In the present study higher phenolic and flavonoid content, indicated the natural antioxidant nature of Moringa and Ocimum signifying their medicinal importance. Moringa oleifera Lam. and Ocimum tenuiflorum L. are widly grown in India and are known for their medicinal properties. Number of secondary metabolites like phenolics and flavonoids are known to be present in both the plants. The present study was conducted with an objective to qualitatively and quantitatively compare the phenolics and flavanoids in these two medicinally important plants.Quantitation of total phenolics and flavanoids was done by spectrophotometrically while qualitative analysis was perfomed by paper chromatography and by phytochemical tests. Our results have shown higher phenolics and flavanoid content in Moringa leaf and flower. However, higher phenolic content was absent in Ocimum flower compared to that of Moringa. Phytochemical analysis of various metabolites such as flavonoids, tanins, sapponins, alkaloids, anthraquinones revealed that both the plant extracts were rich sources of secondary metabolites and thus tested positive for the above tests. Various flavanoids and Phenolics were identified by paper chromatography based on their Rf values and significant colors. From the above study we conclude that Moringa and Ocimum are rich in natural antioxidants hence are potent source in pharmaceutical industry.

  19. Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species.

    PubMed

    Bianchi, Sauro; Kroslakova, Ivana; Janzon, Ron; Mayer, Ingo; Saake, Bodo; Pichelin, Frédéric

    2015-12-01

    Condensed tannins extracted from European softwood bark are recognized as alternatives to synthetic phenolics. The extraction is generally performed in hot water, leading to simultaneous extraction of other bark constituents such as carbohydrates, phenolic monomers and salts. Characterization of the extract's composition and identification of the extracted tannins' molecular structure are needed to better identify potential applications. Bark from Silver fir (Abies alba [Mill.]), European larch (Larix decidua [Mill.]), Norway spruce (Picea abies [Karst.]), Douglas fir (Pseudotsuga menziesii [Mirb.]) and Scots pine (Pinus sylvestris [L.]) were extracted in water at 60°C. The amounts of phenolic monomers, condensed tannins, carbohydrates, and inorganic compounds in the extract were determined. The molecular structures of condensed tannins and carbohydrates were also investigated (HPLC-UV combined with thiolysis, MALDI-TOF mass spectrometry, anion exchange chromatography). Distinct extract compositions and tannin structures were found in each of the analysed species. Procyanidins were the most ubiquitous tannins. The presence of phenolic glucosides in the tannin oligomers was suggested. Polysaccharides such as arabinans, arabinogalactans and glucans represented an important fraction of all extracts. Compared to traditionally used species (Mimosa and Quebracho) higher viscosities as well as faster chemical reactivities are expected in the analysed species. The most promising species for a bark tannin extraction was found to be larch, while the least encouraging results were detected in pine. A better knowledge of the interaction between the various extracted compounds is deemed an important matter for investigation in the context of industrial applications of such extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Probing the electronic structure of platinum(II) chromophores: crystal structures, NMR structures, and photophysical properties of six new bis- and di- phenolate/thiolate Pt(II)diimine chromophores.

    PubMed

    Weinstein, Julia A; Tierney, Mark T; Davies, E Stephen; Base, Karel; Robeiro, Anthony A; Grinstaff, Mark W

    2006-05-29

    A general route for synthesis of six structurally similar Pt(II) diimine thiolate/phenolates chromophores possessing bulky phenolate or thiolate ligands is reported. The Pt chromophores were characterized using an array of techniques including 1H, 13C, and 195Pt NMR, absorption, emission, (spectro)electrochemistry, and EPR spectroscopy. Systematic variation of the electronic structure of the Pt(II) chromophores studied was achieved by (i) changing solvent polarity; (ii) substituting oxygen for sulfur in the donor ligand; (iii) alternating donor ligands from bis- to di-coordination; and (iv) changing the electron donating/withdrawing properties of the ligand(s). The lowest excited state in these new chromophores was assigned to a [charge-transfer-to-diimine] transition from the HOMO of mixed Pt/S (or Pt/O) character on the basis of absorption and emission spectroscopy, UV/vis (spectro)electrochemistry, and EPR spectroscopy. One of the chromophores, Pt(dpphen)(3,5-di-tert-butyl-catecholate) represents an example of a Pt(II) diimine phenolate chromophore that possesses a reversible oxidation centered predominantly on the donor ligand. Results from EPR spectroscopy indicate participation of the Pt(II) orbitals in the HOMO. There is a dramatic difference in the photophysical properties of carborane complexes compared to other mixed-ligand Pt(II) compounds, which includes room-temperature emission and photostability. The charge-transfer character of the lowest excited state in this series of chromophores is maintained throughout. Moreover, the absorption and emission energies and the redox properties of the excited state can be significantly tuned.

  1. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay.

    PubMed

    Vallverdú-Queralt, Anna; Regueiro, Jorge; Martínez-Huélamo, Miriam; Rinaldi Alvarenga, José Fernando; Leal, Leonel Neto; Lamuela-Raventos, Rosa M

    2014-07-01

    Herbs and spices have long been used to improve the flavour of food without being considered as nutritionally significant ingredients. However, the bioactive phenolic content of these plant-based products is currently attracting interest. In the present work, liquid chromatography coupled to high-resolution/accurate mass measurement LTQ-Orbitrap mass spectrometry was applied for the comprehensive identification of phenolic constituents of six of the most widely used culinary herbs (rosemary, thyme, oregano and bay) and spices (cinnamon and cumin). In this way, up to 52 compounds were identified in these culinary ingredients, some of them, as far as we know, for the first time. In order to establish the phenolic profiles of the different herbs and spices, accurate quantification of the major phenolics was performed by multiple reaction monitoring in a triple quadrupole mass spectrometer. Multivariate statistical treatment of the results allowed the assessment of distinctive features among the studied herbs and spices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Analysis of phenolic choline esters from seeds of Arabidopsis thaliana and Brassica napus by capillary liquid chromatography/electrospray- tandem mass spectrometry.

    PubMed

    Böttcher, Christoph; von Roepenack-Lahaye, Edda; Schmidt, Jürgen; Clemens, Stephan; Scheel, Dierk

    2009-04-01

    Total phenolic choline ester fractions prepared from seeds of Arabidopsis thaliana and Brassica napus were analyzed by capillary LC/ESI-QTOF-MS and direct infusion ESI-FTICR-MS. In addition to the dominating sinapoylcholine, 30 phenolic choline esters could be identified based on accurate mass measurements, interpretation of collision-induced dissociation (CID) mass spectra, and synthesis of selected representatives. The compounds identified so far include substituted hydroxycinnamoyl- and hydroxybenzoylcholines, respective monohexosides as well as oxidative coupling products of phenolic choline esters and monolignols. Phenolic choline esters are well separable by reversed-phase liquid chromatography and sensitively detectable using electrospray ionization mass spectrometry in positive ion mode. CID mass spectra obtained from molecular ions facilitate the characterization of both the type and substitution pattern of such compounds. Therefore, LC/ESI-MS/MS represents a valuable tool for comprehensive qualitative and quantitative analysis of this compound class. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Removal of phenols from water accompanied with synthesis of organobentonite in one-step process.

    PubMed

    Ma, Jianfeng; Zhu, Lizhong

    2007-08-01

    A novel technology of wastewater treatment was proposed based on simultaneously synthesis of organobentonite and removal of organic pollutants such as phenols from water in one-step, which resulted that both surfactants and organic pollutants were removed from water by bentonite. The effects of contact time, pH and inorganic salt on the removal of phenols were investigated. Kinetic results showed that phenols and cetyltrimethylammonium bromide (CTMAB) could be removed by bentonite in 25 min. The removal efficiencies were achieved at 69%, 92% and 99%, respectively, for phenol, p-nitrophenol and beta-naphthol at the initial amount of CTMAB at about 120% cation exchange capacity of bentonite. Better dispersion property and more rapid bentonite sedimentation were observed in the process. The results indicated that the one-step process is an efficient, simple and low cost technology for removal of organic pollutants and cationic surfactants from water. The proposed technology made it possible that bentonite was applied as sorbent for wastewater treatment in industrial scale.

  4. Punctuated 88% Phenol Peeling for the Treatment of Facial Photoaging: A Clinical and Histopathological Study.

    PubMed

    de Mendonça, Maria Cristina C; Segheto, Natália N; Aarestrup, Fernando M; Aarestrup, Beatriz J V

    2018-02-01

    Phenol peeling is considered an important agent in the treatment of facial rejuvenation; however, its use has limitations due to its high potential for side effects. This article proposes a new peeling application technique for the treatment of photoaging, aiming to evaluate, clinically and histopathologically, the efficacy of a new way of applying 88% phenol, using a punctuated pattern. The procedure was performed in an outpatient setting, with female patients, on static wrinkles and high flaccidity areas of the face. Accompanying photographs and skin samples were taken for histopathological analysis before and after treatment. It was shown that 88% phenol applied topically using a punctuated technique is effective in skin rejuvenation. The authors thus suggest, based on this new proposal, that further studies be conducted with a larger group of patients to better elucidate the action mechanisms of 88% phenol. This new form of application considerably reduced patients' withdrawal from their regular activities, besides reducing the cost, compared with the conventional procedure.

  5. Comparative antioxidant activity of edible Japanese brown seaweeds.

    PubMed

    Airanthi, M K Widjaja-Adhi; Hosokawa, Masashi; Miyashita, Kazuo

    2011-01-01

    Japanese edible brown seaweeds, Eisenia bicyclis (Arame), Kjellmaniella crassifolia (Gagome), Alaria crassifolia (Chigaiso), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) were assayed for total phenolic content (TPC), fucoxanthin content, radical scavenging activities (DPPH, peroxyl radical, ABTS, and nitric oxide), and antioxidant activity in a liposome system. Among the solvents used for extraction, methanol was the most effective to extract total phenolics (TPC) from brown seaweeds. Among 5 kinds of brown seaweeds analyzed, methanol extract from C. hakodatensis was the best source for antioxidants. The high antioxidant activity of the extract was based not only on the high content of phenolics, but on the presence of fucoxanthin. No significant correlation (P > 0.05) was observed between TPC per gram extract with DPPH radical scavenging activity of the methanol extracts. These observed discrepancy would be due to structural variations in the phenolic compounds, and different levels of fucoxanthin in the extracts. The present study also demonstrated the synergy in the antioxidant activity of the combination of brown seaweed phenolics and fucoxanthin.

  6. Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation.

    PubMed

    Guadalupe, Zenaida; Soldevilla, Alberto; Sáenz-Navajas, María-Pilar; Ayestarán, Belén

    2006-04-21

    A multiple-step analytical method was developed to improve the analysis of polymeric phenolics in red wines. With a common initial step based on the fractionation of wine phenolics by gel permeation chromatography (GPC), different analytical techniques were used: high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-mass spectrometry (MS), capillary zone electrophoresis (CZE) and spectrophotometry. This method proved to be valid for analyzing different families of phenolic compounds, such as monomeric phenolics and their derivatives, polymeric pigments and proanthocyanidins. The analytical characteristics of fractionation by GPC were studied and the method was fully validated, yielding satisfactory statistical results. GPC fractionation substantially improved the analysis of polymeric pigments by CZE, in terms of response, repeatability and reproducibility. It also represented an improvement in the traditional vanillin assay used for proanthocyanidin (PA) quantification. Astringent proanthocyanidins were also analyzed using a simple combined method that allowed these compounds, for which only general indexes were available, to be quantified.

  7. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    PubMed

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m 2 and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Apple variety and maturity profiling of base ciders using UV spectroscopy.

    PubMed

    Girschik, Lachlan; Jones, Joanna E; Kerslake, Fiona L; Robertson, Mark; Dambergs, Robert G; Swarts, Nigel D

    2017-08-01

    Varietal base ciders were produced from three varieties of dessert apples ('Pink Lady®', 'Royal Gala' and 'Red Delicious') at pre-commercial, commercial and post-commercial harvest timings. Rapid analytical methods were used to categorise the base ciders, and data analysed using principal component analysis (PCA). The titratable acidity of apple must was significantly higher for the pre-commercial harvest fruit for both the 'Royal Gala' and 'Red Delicious' varieties. The base cider phenolic content was highest in the pre-commercial harvest fruit for all varieties. 'Red Delicious' had the highest total phenolics as determined by spectral analysis and supported by the classification provided by the PCA analysis. The spectral fingerprints of the ciders showed two main peaks at approximately 280nm and 320nm indicating phenolic concentrations. Studies analysing characteristics of dessert apple varieties with relevance for cider production will allow for informed decision making for both apple producers and cider makers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy.

    PubMed

    Ramakrishna, Ramnarain; Sarkar, Dipayan; Manduri, Avani; Iyer, Shreyas Ganesan; Shetty, Kalidas

    2017-10-01

    Sprouts of cereal grains, such as barley ( Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

  10. Structural characterization of phenolics and betacyanins in Gomphrena globosa by high-performance liquid chromatography-diode array detection/electrospray ionization multi-stage mass spectrometry.

    PubMed

    Ferreres, Federico; Gil-Izquierdo, Angel; Valentão, Patrícia; Andrade, Paula B

    2011-11-30

    The metabolite profiling of Gomphrena globosa inflorescences was performed by high-performance liquid chromatography-diode array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)). Based on the fragmentation patterns, 24 phenolic compounds were characterized. The identified phenolics include p-coumaric and ferulic acids, quercetin, kaempferol, isorhamnetin, and hydroxylated 6,7-methylenedioxyflavone derivatives, as well as their aglycones, none of them reported before in the species. This is also the first time that tetrahydroxy-methylenedioxyflavone derivatives and acetylglycosides are described in nature. Betacyanins were also found. This study significantly extends the knowledge of the G. globosa metabolome, by providing further insights into its phenolic composition. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Laminates

    NASA Astrophysics Data System (ADS)

    Lepedat, Karin; Wagner, Robert; Lang, Jürgen

    The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.

  12. Anaerobic degradation of increased phenol concentrations in batch assays.

    PubMed

    Wirth, Benjamin; Krebs, Maria; Andert, Janet

    2015-12-01

    Phenol is a wastewater contaminant depicting an environmental hazard. It can be found in effluents from various industrial processes and becomes even more common as a waste by-product of biomass-based bioenergy concepts. Because of its toxicity to anaerobic microorganisms, it can be recalcitrant during biogas production and anaerobic wastewater treatment. This study tested increased phenol loads (100 to 5000 mg L(-1)) as the sole carbon source in a semi-continuous mesophilic anaerobic adaption experiment using an unadapted microbial community from a standard biogas plant. Phenol was completely degraded at starting concentrations of up to 2000 mg L(-1). At 5000 mg L(-1), complete inhibition of the anaerobic community was observed. Lag times were reduced down to less than a day treating 2000 mg L(-1) after 16 weeks of adaption to gradually increased phenol concentrations. Specific degradation rates increased consecutively up to 7.02 mg gVS (-1) day(-1) at 2000 mg L(-1). This concentration was completely degraded within less than 12 days. The microbial community composition was assessed using 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analysis. In the bacterial community, no clear shift was visible. Clostridia were with the highest relative abundance of 27 %, the most prominent bacterial class. T-RFs representing Clostridia, Anaerolinaceae, Flavobacteria, and Bacteroidea appeared at similar relative abundance level throughout the experiment. The archaeal community, however, changed from a Methanosarcinales-dominated community (57%) to a community with a nearly even distribution of Methanobacteriales (21%) and Methanosarcinales (34%) with increasing starting phenol concentration.

  13. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters.

    PubMed

    Pinela, José; Barros, Lillian; Antonio, Amilcar L; Carvalho, Ana Maria; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-04-08

    This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.

  14. Determination of phenol compounds in surface water matrices by bar adsorptive microextraction-high performance liquid chromatography-diode array detection.

    PubMed

    Neng, Nuno R; Nogueira, José M F

    2014-07-03

    Bar adsorptive microextraction combined with liquid desorption followed by high performance liquid chromatography with diode array detection (BAµE-LD/HPLC-DAD) is proposed for the determination of trace levels of five phenol compounds (3-nitrophenol, 4-nitrophenol, bisphenol-A, 4-n-octylphenol and 4-n-nonylphenol) in surface water matrices. By using a polystyrene-divinylbenzene copolymer (PS-DVB) sorbent phase, high selectivity and efficiency is achieved even against polydimethylsiloxane through stir bar sorptive extraction. Assays performed by BAµE(PS-DVB)-LD/HPLC-DAD on 25 mL water samples spiked at the 10.0 µg/L levels yielded recoveries over 88.0%±5.7% for all five analytes, under optimized experimental conditions. The analytical performance showed good precision (RSD<15%), detection limits of 0.25 µg/L and linear dynamic ranges (1.0-25.0 μg/L) with determination coefficient higher than 0.9904. By using the standard addition method, the application of the present method to surface water matrices allowed very good performances at the trace level. The proposed methodology proved to be a suitable alternative to monitor phenol compounds in surface water matrices, showing to be easy to implement, reliable, sensitive and requiring a low sample volume.

  15. Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Liggio, J.; Wentzell, J.; Li, S.-M.; Stark, H.; Roberts, J. M.; Gilman, J.; Lerner, B.; Warneke, C.; Li, R.; Leithead, A.; Osthoff, H. D.; Wild, R.; Brown, S. S.; de Gouw, J. A.

    2015-10-01

    We describe the results from online measurements of nitrated phenols using a time of flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP) and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding of the evolution of primary VOCs in the atmosphere.

  16. Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Liggio, John; Wentzell, Jeremy; Li, Shao-Meng; Stark, Harald; Roberts, James M.; Gilman, Jessica; Lerner, Brian; Warneke, Carsten; Li, Rui; Leithead, Amy; Osthoff, Hans D.; Wild, Robert; Brown, Steven S.; de Gouw, Joost A.

    2016-02-01

    We describe the results from online measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP), and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding on the evolution of primary VOCs in the atmosphere.

  17. Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics.

    PubMed

    Baiano, Antonietta; Terracone, Carmela

    2011-09-28

    Seven table grape cultivars grown in Apulia region were considered: Italia, Baresana, Pizzutello, Red Globe, Michele Palieri, Crimson Seedless, and Thompson Seedless. Seeds, skins and pulps were extracted and analyzed for their phenolic profiles and antioxidant activities. The hierarchy in the phenolic contents was seeds, skins, and pulps. These results indicate that the intake of the whole berries (seeds included) must be strongly recommended. The highest phenolic contents were detected on Italia and Michele Palieri cv., respectively within the white and the red/black table grapes. Seeds gave a high contribution to the berry antioxidant activity, as they had higher phenolic content than skins and contained high quantities of proanthocyanidines, but the strongest antioxidant activity was shown by the pulp juices due to their content in hydroxycinnamyl acids. The principal component analysis applied to the phenolic composition and antioxidant activity of skins, pulps, and seeds allowed a good separation of Italia and Michele Palieri cultivars. According to the cluster analysis, cultivars were grouped into two clusters, one including Michele Palieri and the other one including Italia, Baresana, Pizzutello, and Thompson Seedless.

  18. Tea and coffee time with bacteria - Investigation of uptake of key coffee and tea phenolics by wild type E. coli.

    PubMed

    Hakeem Said, Inamullah; Gencer, Selin; Ullrich, Matthias S; Kuhnert, Nikolai

    2018-06-01

    Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modulate their biological activities. Many fundamental questions still need to be addressed to understand how the gut microbiota-diet interactions affect human health. Herein, a UHPLC-QTOF mass spectrometry-based method for the quantification of uptake and determination of intracellular bacterial concentrations of dietary phenolics from coffee and tea was developed. Quantitative uptake data for selected single purified phenolics were determined. The specific uptake from mixtures containing up to four dietary relevant compounds was investigated to assess changes of uptake parameters in a mixture model system. Indeed, perturbation of bacteria by several compounds alters uptake parameter in particular t max . Finally, model bacteria were dosed with complex dietary mixtures such as diluted tea or coffee extracts. The uptake kinetics of the twenty most abundant phenolics was quantified and the findings are discussed. For the first time, quantitative data on in-vitro uptake of dietary phenolics from food matrices were obtained indicating a time-dependent differential uptake of nutritional compounds. Copyright © 2018. Published by Elsevier Ltd.

  19. Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in Sophora flavescens Aiton.

    PubMed

    Lee, Jeongyeo; Jung, Jaeeun; Son, Seung-Hyun; Kim, Hyun-Bi; Noh, Young-Hee; Min, Sung Ran; Park, Kun-Hyang; Kim, Dae-Soo; Park, Sang Un; Lee, Haeng-Soon; Kim, Cha Young; Kim, Hyun-Soon; Lee, Hyeong-Kyu; Kim, HyeRan

    2018-01-01

    Sophorae Radix ( Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p -coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.

  20. Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in Sophora flavescens Aiton

    PubMed Central

    Son, Seung-Hyun; Kim, Hyun-Bi; Noh, Young-Hee; Min, Sung Ran; Park, Kun-Hyang; Kim, Dae-Soo; Lee, Haeng-Soon; Kim, Cha Young; Lee, Hyeong-Kyu

    2018-01-01

    Sophorae Radix (Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally. PMID:29686587

  1. Evaluation by latent class analysis of a magnetic capture based DNA extraction followed by real-time qPCR as a new diagnostic method for detection of Echinococcus multilocularis in definitive hosts.

    PubMed

    Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke

    2016-10-30

    A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phenol-Catalyzed Discharge in the Aprotic Lithium-Oxygen Battery.

    PubMed

    Gao, Xiangwen; Jovanov, Zarko P; Chen, Yuhui; Johnson, Lee R; Bruce, Peter G

    2017-06-01

    Discharge in the lithium-O 2 battery is known to occur either by a solution mechanism, which enables high capacity and rates, or a surface mechanism, which passivates the electrode surface and limits performance. The development of strategies to promote solution-phase discharge in stable electrolyte solutions is a central challenge for development of the lithium-O 2 battery. Here we show that the introduction of the protic additive phenol to ethers can promote a solution-phase discharge mechanism. Phenol acts as a phase-transfer catalyst, dissolving the product Li 2 O 2 , avoiding electrode passivation and forming large particles of Li 2 O 2 product-vital requirements for high performance. As a result, we demonstrate capacities of over 9 mAh cm -2 areal , which is a 35-fold increase in capacity compared to without phenol. We show that the critical requirement is the strength of the conjugate base such that an equilibrium exists between protonation of the base and protonation of Li 2 O 2 . © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    PubMed

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  4. Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti.

    PubMed

    Gautam, Keerti; Kumar, Padma; Poonia, Sawitri

    2013-09-01

    Development of insect resistance to synthetic pesticides, high operational cost and environmental pollution have created the need for developing alternative approaches to control vector-borne diseases. In the present study, larvicidal activity of flavonoid extracts of different parts of Vitex negundo (Linnaeus) and Andrographis paniculata (Nees) have been studied against the late III or early IV instar larvae of Aedes aegypti and Anopheles stephensi (Liston). Flavonoids were extracted from different parts of the selected plants using standard method. Bioassay test was carried out by WHO method for determination of larvicidal activity against mosquitoes. Different compounds of the most active extract were identified by the gas chromatography-mass spectrometry (GC-MS) analysis. Flavonoid extract of whole aerial part of A. paniculata was found to be inactive against the selected larvae of Ae. aegypti even at the concentration of 600 ppm, whereas it caused 70% mortality in An. stephensi at the concentration of 200 ppm. Flavonoid extract of flower-buds produced highest mortality (100%) at the concentration of 600 ppm for the late III or early IV instar larvae of Ae. aegypti and at the concentration of 200 ppm for the larvae of An. stephensi. GC-MS analysis of the most active flavonoid extract from flower-buds of Vitex showed 81 peaks. Phenol (26.83% area), naphthalene (4.95% area), 2,3-dihydrobenzofuran (6.79% area), Phenol-2,4-Bis (1,1-dimethyl) (4.49% area), flavones 4'-OH,5-OH,7-di-O-glucoside (0.25% area) and 5-hydroxy- 3,6,7,3',4'-pentamethoxy flavones (0.80% area) were present in major amount. Flavonoid extracts from different parts of two selected plants possess larvicidal activity against two selected mosquito species, hence, could be utilized for developing flavonoid-based, eco-friendly insecticide as an alternative to synthetic insecticides.

  5. Development and Optimisation of an HPLC-DAD-ESI-Q-ToF Method for the Determination of Phenolic Acids and Derivatives

    PubMed Central

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2014-01-01

    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects. PMID:24551158

  6. Chemical Peeling with a Modified Phenol Formula for the Treatment of Facial Freckles on Asian Skin.

    PubMed

    Sun, Hua-Feng; Lu, Hai-Shan; Sun, Le-Qi; Ping, Wei-Dong; Mao, Dong-Sheng; Li, Dan

    2018-04-01

    Chemical peeling is an efficient method for the treatment of pigment disorders. For freckles, medium-depth to deep peeling using a phenol solution is one of the most effective chemical peels, and modifications of facial skin can be observed up to 20 years after peeling. However, applying phenol to the skin may cause serious side effects. Phenol peeling has been rarely used in Asia due to its tendency to cause permanent pigmentary changes and hypertrophic scars. In total, 896 Chinese inpatients with facial freckles were enrolled in this study. The phenol formula was modified with crystalline phenol, dyclonine, camphor, anhydrous alcohol and glycerin and adjusted to a concentration of 73.6-90.0%. The entire peeling treatment was divided into two procedures performed separately on 2 days. All patients exhibited 26% or greater improvement, and 99.66% of patients exhibited 51% or greater improvement (good and excellent). Scarring and systemic complications were not observed in any patient. The modified phenol formula is very effective and safe for the treatment of facial freckles in Asian patients. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  7. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges.

    PubMed

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Zhou, Minghua; Zhang, Yi

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone>oxygen>argon>nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  8. Ultrastrong Graphene-Based Fibers with Increased Elongation.

    PubMed

    Li, Mochen; Zhang, Xiaohong; Wang, Xiang; Ru, Yue; Qiao, Jinliang

    2016-10-12

    A new method to prepare graphene-based fibers with ultrahigh tensile strength, conductivity, and increased elongation is reported. It includes wet-spinning the mixture of GO aqueous dispersion with phenolic resin solution in a newly developed coagulation bath, followed by annealing. The introduced phenolic carbon increased densification of graphene fibers through reducing defects and increased interfacial interaction among graphene sheets by forming new C-C bonds, thus resulting in the increasing of stiffness, toughness, and conductivity simultaneously.

  9. pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery.

    PubMed

    Ping, Yuan; Guo, Junling; Ejima, Hirotaka; Chen, Xi; Richardson, Joseph J; Sun, Huanli; Caruso, Frank

    2015-05-06

    A new class of pH-responsive capsules based on metal-phenolic networks (MPNs) for anticancer drug loading, delivery and release is reported. The fabrication of drug-loaded MPN capsules, which is based on the formation of coordination complexes between natural polyphenols and metal ions over a drug-coated template, represents a rapid strategy to engineer robust and versatile drug delivery carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Process modeling for carbon-phenolic nozzle materials

    NASA Technical Reports Server (NTRS)

    Letson, Mischell A.; Bunker, Robert C.; Remus, Walter M., III; Clinton, R. G.

    1989-01-01

    A thermochemical model based on the SINDA heat transfer program is developed for carbon-phenolic nozzle material processes. The model can be used to optimize cure cycles and to predict material properties based on the types of materials and the process by which these materials are used to make nozzle components. Chemical kinetic constants for Fiberite MX4926 were determined so that optimization of cure cycles for the current Space Shuttle Solid Rocket Motor nozzle rings can be determined.

  11. Structure-activity relationship of ortho- and meta-phenol based LFA-1 ICAM inhibitors.

    PubMed

    Lin, Edward Yin-Shiang; Guckian, Kevin M; Silvian, Laura; Chin, Donovan; Boriack-Sjodin, P Ann; van Vlijmen, Herman; Friedman, Jessica E; Scott, Daniel M

    2008-10-01

    LFA-1 ICAM inhibitors based on ortho- and meta-phenol templates were designed and synthesized by Mitsunobu chemistry. The selection of targets was guided by X-ray co-crystal data, and led to compounds which showed an up to 30-fold increase in potency over reference compound 1 in the LFA-1/ICAM1-Ig assay. The most active compound exploited a new hydrogen bond to the I-domain and exhibited subnanomolar potency.

  12. Scientific Basis for Paint Stripping: Elucidated Combinatorial Mechanism of Methylene Chloride and Phenol Based Paint Removers

    DTIC Science & Technology

    2014-01-22

    Methylene Chloride and Phenol Based Paint Removers January 22, 2014 Approved for public release; distribution is unlimited. James H. Wynne Grant C...DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 3. DATES COVERED (From - To) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Public ... public release; distribution is unlimited. *Stony Brook University, Department of Materials Science and Engineering, 2275 SUNY Engineering Bldg 314, Stony

  13. Construction of an evaluation and selection system of emergency treatment technology based on dynamic fuzzy GRA method for phenol spill

    NASA Astrophysics Data System (ADS)

    Zhao, Jingjing; Yu, Lean; Li, Lian

    2017-05-01

    There is often a great deal of complexity, fuzziness and uncertainties of the chemical contingency spills. In order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs, the technique evaluation system was developed based on dynamic fuzzy GRA method, and the feasibility of the proposed methods has been tested by using a emergency phenol spill accidence occurred in highway.

  14. Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives.

    PubMed

    Lee, Soo Jung; Kim, Hyun Joo; Cho, Eun Jin; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Lignin was isolated from the residue of bioethanol production with oak wood via alkaline and catalyzed organosolv treatments at ambient temperature to improve the purity of lignin for the materials application. The isolated lignins were analyzed for their chemical composition by nitrobenzene oxidation method and their functionality was characterized via wet chemistry method, element analysis, (1)H NMR, GPC and FTIR-ATR. The isolated lignin by acid catalyzed organosolv treatment (Acid-OSL) contained a higher lignin content, aromatic proton, phenolic hydroxyl group and a lower nitrogen content that is more reactive towards chemical modification. The lignin-based adhesives were prepared and the bond strength was measured to evaluate the enhanced reactivity of lignin by the isolation. Two steps of phenolation and methylolation were applied for the modification of the isolated lignins and their tensile strengths were evaluated for the use as an adhesive. The acid catalyzed organosolv lignin-based adhesives had comparable bond strength to phenol-formaldehyde adhesives. The analysis of lignin-based adhesives by FTIR-ATR and TGA showed structural similarity to phenol adhesive. The results demonstrate that the reactivity of lignin was enhanced by isolation from hardwood bioethanol production residues at ambient temperature and it could be used in a value-added application to produce lignin-based adhesives. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers.

    PubMed

    Omar, Nur Faezah; Hassan, Siti Aishah; Yusoff, Umi Kalsom; Abdullah, Nur Ashikin Psyquay; Wahab, Puteri Edaroyati Megat; Sinniah, Umarani

    2012-02-27

    A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.

  16. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    NASA Technical Reports Server (NTRS)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing failure modes because z-fibers in the through-thickness direction provided extra reinforcement to hold material layers together. Therefore, the benefit of using a 3D weave architecture was shown to alleviate failure modes experienced by a 2D laminate sample of similar material composition. In summary this poster reviews the thermal response performance comparisons drawn between a 3D Woven TPS sample and 2D Carbon Phenolic samples after performing rigorous heating experiments in the mARC facility at NASA Ames. Although the mARC Facility is still in its developmental stages, researchers expect similar trends in failure modes observed from large scale arc jet facilities. This work helps demonstrate the viability of 3D Woven TPSs as a new TPS option for future atmospheric entry missions.

  17. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity.

    PubMed

    Yang, Lingguang; Yin, Peipei; Fan, Hang; Xue, Qiang; Li, Ke; Li, Xiang; Sun, Liwei; Liu, Yujun

    2017-02-04

    This study is the first to report the use of response surface methodology to improve phenolic yield and antioxidant activity of Acer truncatum leaves extracts (ATLs) obtained by ultrasonic-assisted extraction. The phenolic composition in ATLs extracted under the optimized conditions were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration ( X ₁), material-to-liquid ratio ( X ₂), ultrasonic temperature ( X ₃) and power ( X ₄) for an optimal total phenol yield ( Y ₁) and DPPH• antioxidant activity ( Y ₂). The results showed that the optimal combination was ethanol:water ( v : v ) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic bath temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent/100 g d.w. and a maximal DPPH• antioxidant activity of 74,241.61 μmol Trolox equivalent/100 g d.w. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic components in ATL. What's more, a gallotannins pathway existing in ATL from gallic acid to penta- O -galloylglucoside was proposed. All these results provide practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

  18. The inhibitory effects of phenolic Mannich bases on carbonic anhydrase I and II isoenzymes.

    PubMed

    Yamali, Cem; Tugrak, Mehtap; Gul, Halise Inci; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    Phenolic mono Mannich bases [2-[4-hydroxy-3-(aminomethyl)benzylidene]-2,3-dihydro-1H-inden-1-one (8-15)] and bis Mannich bases [2-[4-hydroxy-3,5-bis(aminomethyl)benzylidene]-2, 3-dihydro-1H-inden-1-one (2-7)] were synthesized starting from 2-(4-hydroxybenzylidene)-2, 3-dihydro-inden-1-one (1). This study was designed in order to investigate the carbonic anhydrase (CA, EC 4.2.1.1) inhibitory properties of a library of compounds incorporating the phenol functional group. All prepared compounds showed a low inhibition percentages on both human (h) isoforms hCA I and hCA II compared to the reference sulfonamide acetazolamide. Mannich bases 2-15 had lower inhibition percentages than the compound 1 on hCA I and hCA II, except compound 14, which is a Mannich base derivative of dipropylamine, which had a similar inhibitory power as compound 1 on hCA II. All compounds synthesized 1-15 were 1.3-1.9 times more effective on hCA II comparing with the effectivenes of the compounds on hCA I.

  19. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites.

    PubMed

    Karmee, Sanjib Kumar

    2018-02-01

    Spent coffee grounds are composed of lipid, carbohydrates, carbonaceous, and nitrogen containing compounds among others. Using n-hexane and n-hexane/isopropanol mixture highest oil yield was achived during soxhlet extraction of oil from spent coffee grounds. Alternatively, supercritical carbon dioxide can be employed as a green solvent for the extraction of oil. Using advanced chemical and biotechnological methods, spent coffee grounds are converted to various biofuels such as, biodiesel, renewable diesel, bioethanol, bioethers, bio-oil, biochar, and biogas. The in-situ transesterification of spent coffee grounds was carried out in a large scale (4 kg), which led to 80-83% biodiesel yield. In addition, a large number of value added and diversified products viz. polyhydroxyalkanoates, biosorbent, activated carbon, polyol, polyurethane foam, carotenoid, phenolic antioxidants, and green composite are obtained from spent coffee grounds. The principles of circular economy are applied to develop a sustanaible biorefinery based on valorisation of spent coffee grounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures.

    PubMed

    Zuin, Vânia G; Budarin, Vitaliy L; De Bruyn, Mario; Shuttleworth, Peter S; Hunt, Andrew J; Pluciennik, Camille; Borisova, Aleksandra; Dodson, Jennifer; Parker, Helen L; Clark, James H

    2017-09-21

    The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.

  1. Surfactant-based ionic liquids for extraction of phenolic compounds combined with rapid quantification using capillary electrophoresis.

    PubMed

    Huang, Fangzhi; Berton, Paula; Lu, Chengfei; Siraj, Noureen; Wang, Chun; Magut, Paul K S; Warner, Isiah M

    2014-09-01

    A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Flow injection chemiluminescence determination of the total phenolics levels in plant-derived beverages using soluble manganese(IV).

    PubMed

    Nalewajko-Sieliwoniuk, Edyta; Tarasewicz, Iwona; Kojło, Anatol

    2010-05-23

    This study established a flow injection (FI) methodology for the determination of the total phenolic content in plant-derived beverages based on soluble manganese(IV) chemiluminescence (CL) detection. It was found that mixing polyphenols with acidic soluble manganese(IV) in the presence of formaldehyde evoked chemiluminescence. Based on this finding, a new FI-CL method was developed for the estimation of the total content of phenolic compounds (expressed as milligrams of gallic acid equivalent per litre of drink) in a variety of wine, tea and fruit juice samples. The proposed method is sensitive with a detection limit of 0.02 ng mL(-1) (gallic acid), offers a wide linear dynamic range (0.5-400 ng mL(-1)) and high sample throughput (247 samples h(-1)). The relative standard deviation for 15 measurements was 3.8% for 2 ng mL(-1) and 0.45% for 10 ng mL(-1) of gallic acid. Analysis of 36 different samples showed that the results obtained by the proposed FI-CL method correlate highly with those obtained by spectrophotometric methods commonly used for the evaluation of the total phenolic/antioxidant level. However, the FI-CL method was found to be far simpler, more rapid and selective, with almost no interference from non-phenolic components of the samples examined. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Effect of ultrasonic treatment on total phenolic extraction from Lavandula pubescens and its application in palm olein oil industry.

    PubMed

    Rashed, Marwan M A; Tong, Qunyi; Abdelhai, Mandour H; Gasmalla, Mohammed A A; Ndayishimiye, Jean B; Chen, Long; Ren, Fei

    2016-03-01

    The aims of the current study were to evaluate the best technique for total phenolic extraction from Lavandula pubescens (Lp) and its application in vegetable oil industries as alternatives of synthetic food additives (TBHQ and BHT). To achieve these aims, three techniques of extraction were used: ultrasonic-microwave (40 kHz, 50 W, microwave power 480 W, 5 min), ultrasonic-homogenizer (20 kHz, 150 W, 5 min) and conventional maceration as a control. By using the Folin-Ciocalteu method, the total phenolic contents (TPC) (mg gallic acid equivalent/g dry matter) were found to be 253.87, 216.96 and 203.41 for ultrasonic-microwave extract, ultrasonic-homogenizer extract and maceration extract, respectively. The ultrasonic-microwave extract achieved the higher scavenger effect of DPPH (90.53%) with EC50 (19.54 μg/mL), and higher inhibition of β-carotene/linoleate emulsion deterioration (94.44%) with IC50 (30.62 μg/mL). The activity of the ultrasonic-microwave treatment could prolong the induction period (18.82 h) and oxidative stability index (1.67) of fresh refined, bleached and deodorized palm olein oil (RBDPOo) according to Rancimat assay. There was an important synergist effect between citric acid and Lp extracts in improving the oxidative stability of fresh RBDPOo. The results of this work also showed that the ultrasonic-microwave assisted extract was the most effective against Gram-positive and Gram-negative strains that were assessed in this study. The uses of ultrasonic-microwave could induce the acoustic cavitation and rupture of plant cells, and this facilitates the flow of solvent into the plant cells and enhances the desorption from the matrix of solid samples, and thus would enhance the efficiency of extraction based on cavitation phenomenon. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Fabrication of a Microbial Biosensor Based on QD-MWNT Supports by a One-Step Radiation Reaction and Detection of Phenolic Compounds in Red Wines

    PubMed Central

    Kim, Seul-Ki; Kwen, Hai-Doo; Choi, Seong-Ho

    2011-01-01

    An Acaligense sp.-immobilized biosensor was fabricated based on QD-MWNT composites as an electron transfer mediator and a microbe immobilization support by a one-step radiation reaction and used for sensing phenolic compounds in commercial red wines. First, a quantum dot-modified multi-wall carbon nanotube (QD-MWNT) composite was prepared in the presence of MWNT by a one-step radiation reaction in an aqueous solution at room temperature. The successful preparation of the QD-MWNT composite was confirmed by XPS, TEM, and elemental analysis. Second, the microbial biosensor was fabricated by immobilization of Acaligense sp. on the surface of the composite thin film of a glassy carbon (GC) electrode, which was prepared by a hand casting method with a mixture of the previously obtained composite and Nafion solution. The sensing ranges of the microbial biosensor based on CdS-MWNT and Cu2S-MWNT supports were 0.5–5.0 mM and 0.7–10 mM for phenol in a phosphate buffer solution, respectively. Total concentration of phenolic compounds contained in commercial red wines was also determined using the prepared microbial immobilized biosensor. PMID:22319395

  5. Polyphenolic composition and antioxidant capacity of legume based swards are affected by light intensity in a Mediterranean agroforestry system.

    PubMed

    Re, Giovanni Antonio; Piluzza, Giovanna; Sanna, Federico; Molinu, Maria Giovanna; Sulas, Leonardo

    2018-06-01

    In Mediterranean grazed woodlands, microclimate changes induced by trees influence the growth and development of the understory, but very little is known about its polyphenolic composition in relation to light intensity. We investigated the bioactive compounds and antioxidant capacity of different legume-based swards and variations due to full sunlight and partial shade. The research was carried out in a cork oak agrosilvopastoral system in Sardinia. The highest values of DPPH reached 7 mmol TEAC 100 g -1 DW, total phenolics 67.1 g GAE kg -1 DW and total flavonoids 7.5 g CE kg -1 DW. Compared to full sunlight, partial shade reduced DPPH values by 29 and 42%, and the total phenolic content by 23 and 53% in 100% legume mixture and semi natural pasture. Twelve phenolic compounds were detected: chlorogenic acid in 80% legume mixture (partial shade) and verbascoside in pure sward of bladder clover (full sunlight) were the most abundant. Light intensity significantly affected antioxidant capacity, composition and levels of phenolic compounds. Our results provide new insights into the effects of light intensity on plant secondary metabolites from legume based swards, underlining the important functions provided by agroforestry systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Evaluation of antihyperglycemia and antihypertension potential of native Peruvian fruits using in vitro models.

    PubMed

    Pinto, Marcia Da Silva; Ranilla, Lena Galvez; Apostolidis, Emmanouil; Lajolo, Franco Maria; Genovese, Maria Inés; Shetty, Kalidas

    2009-04-01

    Local food diversity and traditional crops are essential for cost-effective management of the global epidemic of type 2 diabetes and associated complications of hypertension. Water and 12% ethanol extracts of native Peruvian fruits such as Lucuma (Pouteria lucuma), Pacae (Inga feuille), Papayita arequipeña (Carica pubescens), Capuli (Prunus capuli), Aguaymanto (Physalis peruviana), and Algarrobo (Prosopis pallida) were evaluated for total phenolics, antioxidant activity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay, and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension linked to type 2 diabetes. The total phenolic content ranged from 3.2 (Aguaymanto) to 11.4 (Lucuma fruit) mg/g of sample dry weight. A significant positive correlation was found between total phenolic content and antioxidant activity for the ethanolic extracts. No phenolic compound was detected in Lucuma (fruit and powder) and Pacae. Aqueous extracts from Lucuma and Algarrobo had the highest alpha-glucosidase inhibitory activities. Papayita arequipeña and Algarrobo had significant ACE inhibitory activities reflecting antihypertensive potential. These in vitro results point to the excellent potential of Peruvian fruits for food-based strategies for complementing effective antidiabetes and antihypertension solutions based on further animal and clinical studies.

  7. Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: Thermal stability, conductivity and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Yılmaz Baran, Nuray; Saçak, Mehmet

    2017-10-01

    A novel Schiff base polymer containing phenol group, Poly(3-[[4-(dimethylamino)benzylidene]amino]phenol) P(3-DBAP), was prepared by oxidative polycondensation reaction of 3-[[4-(dimethylamino)benzylidene]amino]phenol (3-DBAP) using NaOCl, H2O2, O2 oxidants in aqueous alkaline medium. Yield and molecular weight distribution of P(3-DBAP) were monitored depending on oxidant types and concentration, monomer concentration and as well as polymerization temperature and time. UV-Vis, FTIR and 1HNMR techniques were used to identify the structures of Schiff base monomer and polymer. Thermal behavior of P(3-DBAP), which was determined to be thermally stable up to 1200 °C via TG-DTG techniques, was illuminated by Thermo-IR spectra recorded in the temperature range of 25-800 °C. It was determined that the electrical conductivity value of the P(3-DBAP) increased 108 fold after doped with iodine for 24 h at 60 °C according to undoped form and it was measured 4.6 × 10-4 S/cm. Also, antibacterial and antifungal activities of the monomer and polymer were assayed against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans, Saccharomyces cerevisiae fungi.

  8. A comparative study on the antioxidant activity of methanolic extracts from different parts of Morus alba L. (Moraceae)

    PubMed Central

    2013-01-01

    Background Antioxidants play an important role to protect damage caused by oxidative stress (OS). Plants having phenolic contents are reported to possess antioxidant properties. The present study was designed to investigate the antioxidant properties and phenolic contents (total phenols, flavonoids, flavonols and proanthrocyanidins) of methanolic extracts from Morus alba (locally named as Tut and commonly known as white mulberry) stem barks (TSB), root bark (TRB), leaves (TL) and fruits (TF) to make a statistical correlation between phenolic contents and antioxidant potential. Methods The antioxidant activities and phenolic contents of methanolic extractives were evaluated by in vitro standard method using spectrophotometer. The antioxidant activities were determined by total antioxidant capacity, DPPH (1,1-diphenyl-2-picrylhydrazine) radical scavenging assay, hydroxyl radical scavenging assay, ferrous reducing antioxidant capacity and lipid peroxidation inhibition assay methods. Results Among the extracts, TSB showed the highest antioxidant activity followed by TRB, TF and TL. Based on DPPH and hydroxyl radical scavenging activity, the TSB extract was the most effective one with IC50 37.75 and 58.90 μg/mL, followed by TRB, TF and TL with IC50 40.20 and 102.03; 175.01 and 114.63 and 220.23 and 234.63 μg/mL, respectively. The TSB extract had the most potent inhibitory activity against lipid peroxidation with IC50 145.31 μg/mL. In addition, the reducing capacity on ferrous ion was in the following order: TSB > TRB > TL > TF. The content of phenolics, flavonoids, flavonols and proanthocyanidins of TSB was found to be higher than other extractives. Conclusion The results indicate high correlation and regression (p-value <0 .001) between phenolic contents and antioxidant potentials of the extracts, hence the Tut plant could serve as effective free radical inhibitor or scavenger which may be a good candidate for pharmaceutical plant-based products. However, further exploration is necessary for effective use in both modern and traditional system of medicines. PMID:23331970

  9. Investigation on Antibacterial and Antioxidant Activities, Phenolic and Flavonoid Contents of Some Thai Edible Plants as an Alternative for Antibiotics

    PubMed Central

    Lee, J. H.; Cho, S.; Paik, H. D.; Choi, C. W.; Nam, K. T.; Hwang, S. G.; Kim, S. K.

    2014-01-01

    This study was aimed to examine the antibacterial and antioxidative properties of seven edible plants from Thailand to develop alternative antibiotics as feed additives. The plants include Citrus aurantifolia Swingle (Lime) fruits and its leaves, Sesbania grandiflora L. (Agati sesbania) leaves, Piper sarmentosum Roxb (Wild betal) leaves, Curcuma domestica Valeton (Turmeric) roots, Morinda citrifolia L. (Beach mulberry) leaves, Cassia siamea britt (Siamea cassia) leaves, and Cocos nucifera L. (Coconut) peels. The plants were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. Antibacterial activities with minimum inhibitory concentration (MIC) were determined by agar diffusion assay against Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, and Clostridium perfringens that were considered pathogenic strains in livestock infection. Methanol extracts of C. aurantifolia Swingle fruits and leaves showed the broadest spectrum of antibacterial activities except for C. perfringens. Butanol extract of S. grandiflora L. leaves showed the strongest activity against Burkholderia sp. with MIC, 135 μg/mL. P. sarmentosum Roxb leaves showed antibacterial activities against E. coli, Burkholderia sp. and H. parasuis. Ethyl acetate and water extracts from C. domesitca Valeton roots showed MIC of 306 μg/mL and 183 μg/mL, respectively against only C. perfringens. Antioxidative activity was determined by 2-diphenyl-2-picryl hydrazyl photometric assay. The methanol extracts of C. aurantifolia Swingle fruits and P. sarmentosum Roxb leaves showed the highest antioxidant activity among all the extracts with 3.46 mg/mL and 2.70 mg/mL effective concentration 50% (EC50) values, respectively. Total contents of phenolics and flavonoids were measured from the plant extracts. Methanol extracts of S. grandiflora L. and chloroform extracts of C. domestica Valeton were found to have the highest amount of total phenolics, 41.7 and 47.8 μg/mL, respectively. Flavonoid content of methanol extracts in S. grandiflora L. T was 22.5 μg/mL and the highest among plant extracts tested. These results indicated that C. aurantifolia Swingle, S. grandiflora L., P. sarmentosum Roxb, and C. domestica Valeton have antibacterial and antioxidant activities and can be used as alternative antibiotics or potential feed additives for the control of animal pathogenic bacteria. PMID:25178298

  10. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy.

    PubMed

    Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H

    2014-03-01

    The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability.

  11. Dimensional stability of pineapple leaf fibre reinforced phenolic composites

    NASA Astrophysics Data System (ADS)

    Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M. R.

    2017-12-01

    In this research, pineapple leaves fibre (PALF)/phenolic resin (PF) composites were fabricated by hand lay-up method. The aim of this work is to investigate the physical properties (water absorption and thickness swelling) of PALF reinforced phenolic resin composites. Long-term water absorption (WA) and thickness swelling (TS) behaviours of the PALF/PF composites were investigated at several water immersion times. The effects of different fibre loading on WA and TS of PALF/PF composites were also analyzed. Obtained results indicated that the WA and TS of PALF/PF composites vary with fibres content and water immersion time before reaching to equilibrium. WA and TS of PALF/PF composites were increased by increasing fibre loading. Results obtained in this study will be used for further study on hybridization of PALF and Kenaf fibre based phenolic composites.

  12. Lignin-based Phenol-Formaldehyde Resins from Purified CO2 Precipitated Kraft lignin (PCO2KL)

    Treesearch

    Yao Chen; Charles R. Frihart; Zhiyong Cai; Linda F. Lorenz; Nicole M. Stark

    2013-01-01

    To investigate the potential for using purified CO2-precipitated Kraft lignin (PCO2KL) with phenol-formaldehyde (PF) for application as an adhesive in plywood production, two lignin replacement procedures were examined to assess lignin’s effect on bond quality. Methylolation and oxidation with hydrogen peroxide (H

  13. Lignin-based Phenol-Formalehyde Resins from Purified CO2 Precipitated Kraft Lignin (PCO2KL)

    Treesearch

    Yao Chen; Charles R. Frihart; Zhiyong Cai; Linda F. Lorenz; Nicole M. Stark

    2013-01-01

    To investigate the potential for using purified CO2-precipitated Kraft lignin (PCO2KL) with phenol-formaldehyde (PF) for application as an adhesive in plywood production, two lignin replacement procedures were examined to assess lignin’s effect on bond quality. Methylolation and oxidation with hydrogen peroxide (H

  14. Dispersion adhesives from soy flour and phenol formaldehyde

    Treesearch

    Charles R. Frihart; James M. Wescott; Amy E. Traska

    2007-01-01

    Higher petroleum prices and greater interest in bio-based adhesives have stimulated a considerable amount of research on incorporating soybean flour into wood adhesives in recent years. In some cases, soy was used at low levels as an extender for phenol-formaldehyde (PF) adhesives; in other cases, highly hydrolyzed soy flour was used. Although progress was made in...

  15. Statistical characterization of carbon phenolic prepreg materials, volume 1

    NASA Technical Reports Server (NTRS)

    Beckley, Don A.; Stites, John, Jr.

    1988-01-01

    The objective was to characterize several lots of materials used for carbon/carbon and carbon/phenol product manufacture. Volume one is organized into testing categories based on raw material of product form. Each category contains a discussion of the sampling plan, comments and observations on each test method utilized, and a summary of the results obtained each category.

  16. Bond quality of phenol-based adhesives containing liquefied creosote-treated wood

    Treesearch

    Chung-Yun Hse; Feng Fu; Hui Pan

    2009-01-01

    Liquefaction of spent creosote-treated wood was studied to determine the technological practicability of its application in converting treated wood waste into resin adhesives. A total of 144 plywood panels were fabricated with experimental variables included 2 phenol to wood (P/W) ratios in liquefaction, 6 resin formulations (3 formaldehyde/liquefied wood (F/...

  17. Phenolic compounds and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood (Quercus pyrenaica Willd.).

    PubMed

    Gallego, L; Del Alamo, M; Nevares, I; Fernández, J A; Fernández de Simón, B; Cadahía, E

    2012-04-01

    Wood of Quercus pyrenaica has suitable properties for the wine ageing process. However, the forest available for the barrel making from this particular type of tree is very limited. Nevertheless, it is highly advisable to use this kind of wood in order to manufacture alternative oak products. This study presents the results of ageing the same red wine using different pieces of wood (chips and staves) of Spanish oak (Q. pyrenaica), American oak (Quercus alba) and French oak (Quercus petraea) in conjunction with small, controlled amounts of oxygen. In addition, the phenolic parameters, colour and sensory analysis point out that wines aged with Q. pyrenaica pieces have similar enological characteristics to those aged with American or French oak pieces of wood (chips and staves). Furthermore, the total oxygen consumed and its relation with sensory properties also has been studied in this article in order to know how the oxygen behaves in these processes. Besides, it is going to put forward the fact that chips and staves from Q. pyrenaica oak are suitable for the ageing of red wines and better considered than American or French ones, showing higher aromatic intensity, complexity, woody, balsamic and cocoa. Finally, the tasters valued highly the wines with staves, pointing out its flavour and roundness in mouth.

  18. Treatment and disposal of refinery sludges: Indian scenario.

    PubMed

    Bhattacharyya, J K; Shekdar, A V

    2003-06-01

    Crude oil is a major source of energy and feedstock for petrochemicals. Oily sludge, bio-sludge and chemical sludge are the major sludges generated from the processes and effluent treatment plants of the refineries engaged in crude oil refining operations. Refineries in India generate about 28,220 tons of sludge per annum. Various types of pollutants like phenols, heavy metals, etc. are present in the sludges and they are treated as hazardous waste. Oily sludge, which is generated in much higher amount compared to other sludges, contains phenol (90-100 mg/kg), nickel (17-25 mg/kg), chromium (27-80 mg/kg), zinc (7-80 mg/kg), manganese (19-24 mg/kg), cadmium (0.8-2 mg/kg), copper (32-120 mg/kg) and lead (0.001-0.12 mg/ kg). Uncontrolled disposal practices of sludges in India cause degradation of environmental and depreciation of aesthetic quality. Environmental impact due to improper sludge management has also been identified. Salient features of various treatment and disposal practices have been discussed. Findings of a case study undertaken by the authors for Numaligarh Refinery in India have been presented. Various system alternatives have been identified for waste management in Numaligarh Refinery. A ranking exercise has been carried out to evaluate the alternatives and select the appropriate one. A detailed design of the selected waste management system has been presented.

  19. Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia

    PubMed Central

    Read, Jennifer; Sanson, Gordon D.; Caldwell, Elizabeth; Clissold, Fiona J.; Chatain, Alex; Peeters, Paula; Lamont, Byron B.; De Garine-Wichatitsky, Michel; Jaffré, Tanguy; Kerr, Stuart

    2009-01-01

    Background and Aims Plants are likely to invest in multiple defences, given the variety of sources of biotic and abiotic damage to which they are exposed. However, little is known about syndromes of defence across plant species and how these differ in contrasting environments. Here an investigation is made into the association between carbon-based chemical and mechanical defences, predicting that species that invest heavily in mechanical defence of leaves will invest less in chemical defence. Methods A combination of published and unpublished data is used to test whether species with tougher leaves have lower concentrations of phenolics, using 125 species from four regions of Australia and the Pacific island of New Caledonia, in evergreen vegetation ranging from temperate shrubland and woodland to tropical shrubland and rainforest. Foliar toughness was measured as work-to-shear and specific work-to-shear (work-to-shear per unit leaf thickness). Phenolics were measured as ‘total phenolics’ and by protein precipitation (an estimate of tannin activity) per leaf dry mass. Key Results Contrary to prediction, phenolic concentrations were not negatively correlated with either measure of leaf toughness when examined across all species, within regions or within any plant community. Instead, measures of toughness (particularly work-to-shear) and phenolics were often positively correlated in shrubland and rainforest (but not dry forest) in New Caledonia, with a similar trend suggested for shrubland in south-western Australia. The common feature of these sites was low concentrations of soil nutrients, with evidence of P limitation. Conclusions Positive correlations between toughness and phenolics in vegetation on infertile soils suggest that additive investment in carbon-based mechanical and chemical defences is advantageous and cost-effective in these nutrient-deficient environments where carbohydrate may be in surplus. PMID:19098067

  20. Thermostructural responses of carbon phenolics in a restrained thermal growth test

    NASA Technical Reports Server (NTRS)

    Wang, C. Jeff

    1992-01-01

    The thermostructural response of carbon phenolic components in a solid rocket motor (SRM) is a complex process. It involves simultaneous heat and mass transfer along with chemical reactions in a multiphase system with time-dependent material properties and boundary conditions. In contrast to metals, the fracture of fiber-reinforced composites is characterized by the initiation and progression of multiple failures of different modes such as matrix cracks, interfacial debonding, fiber breaks, and delamination. The investigation of thermostructural responses of SRM carbon phenolics is further complicated by different failure modes under static and dynamic load applications. Historically, there have been several types of post-firing anomalies found in the carbon phenolic composites of the Space Shuttle SRM nozzle. Three major failure modes which have been observed on SRM nozzles are pocketing (spallation), ply-lift, and wedge-out. In order to efficiently control these anomalous phenomena, an investigation of fracture mechanisms under NASA/MSFC RSRM (Redesigned Solid Rocket Motor) and SPIP (Solid Propulsion Integrity Program) programs have been conducted following each anomaly. This report reviews the current progress in understanding the effects of the thermostructural behavior of carbon phenolics on the failure mechanisms of the SRM nozzle. A literature search was conducted and a technical bibliography was developed to support consolidation and assimilation of learning from the RSRM and SPIP investigation efforts. Another important objective of this report is to present a knowledge-based design basis for carbon phenolics that combines the analyses of thermochemical decomposition, pore pressure stresses, and thermostructural properties. Possible areas of application of the knowledge-based design include critical material properties development, nozzle component design, and SRM materials control.

  1. Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins

    PubMed Central

    Cádiz-Gurrea, María De La Luz; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Joven, Jorge; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio

    2017-01-01

    Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin–Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured. PMID:28208630

  2. Effects of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle).

    PubMed

    Cortez-García, Rosa María; Ortiz-Moreno, Alicia; Zepeda-Vallejo, Luis Gerardo; Necoechea-Mondragón, Hugo

    2015-03-01

    Xoconostle, the acidic cactus pear fruit of Opuntia joconostle of the Cactaceae family, is the source of several phytochemicals, such as betalain pigments and numerous phenolic compounds. The aim of the present study was to analyze the effect of four cooking procedures (i.e., boiling, grilling, steaming and microwaving) on the total phenolic content (TPC) and antioxidant activity (measured by ABTS, DPPH, reducing power, and BCBA) of xoconostle. In addition, HPLC-DAD analyses were performed to identify and quantify individual phenolic compounds. After microwaving and steaming xoconostle, the TPC remained the same that in fresh samples, whereas both grilling and boiling produced a significant, 20% reduction (p ≤ 0.05). Total flavonoids remained unchanged in boiled and grilled xoconostle, but steaming and microwaving increased the flavonoid content by 13 and 20%, respectively. Steaming and microwaving did not produce significant changes in the antioxidant activity of xoconostle, whereas boiling and grilling result in significant decreases. The phenolic acids identified in xoconostle fruits were gallic, vanillic, 4-hydroxybenzoic, syringic, ferulic and protocatechuic acids; the flavonoids identified were epicatechin, catechin, rutin, quercitrin, quercetin and kaempferol. Based on the results, steaming and microwaving are the most suitable methods for retaining the highest level of phenolic compounds and flavonoids in xoconostle.

  3. Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins.

    PubMed

    Cádiz-Gurrea, María De La Luz; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Joven, Jorge; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio

    2017-02-10

    Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin-Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured.

  4. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f.

    PubMed

    Kumar, Sandeep; Yadav, Amita; Yadav, Manila; Yadav, Jaya Parkash

    2017-01-25

    The aim of the present study was to analyse the effect of climate change on phytochemicals, total phenolic content (TPC) and antioxidant potential of methanolic extracts of Aloe vera collected from different climatic zones of the India. Crude methanolic extracts of A. vera from the different states of India were screened for presence of various phytochemicals, total phenolic content and in vitro antioxidant activity. Total phenolic content was tested by Folin-Ciocalteau reagent based assay whilst DPPH free radical scavenging assay, metal chelating assay, hydrogen peroxide scavenging assay, reducing power assay and β carotene-linoleic assay were used to assess the antioxidant potential of A. vera methanolic leaf extracts. Alkaloids, phenols, flavonoids, saponins, and terpenes were the main phytochemicals presents in all accessions. A significant positive correlation was found between TPC and antioxidant activity of different accessions. Extracts of highland and semi-arid zones possessed maximum antioxidant potential. Accessions from tropical zones showed the least antioxidant activity in all assays. It could be concluded that different agro-climatic conditions have effects on the phytochemicals, total phenolic content (TPC) and antioxidant potential of the A. vera plant. The results reveal that A. vera can be a potential source of novel natural antioxidant compounds.

  5. Molecular modeling studies of substrate binding by penicillin acylase.

    PubMed

    Chilov, G G; Stroganov, O V; Svedas, V K

    2008-01-01

    Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework.

  6. Antioxidant and anti-inflammatory activities of freeze-dried grapefruit phenolics as affected by gum arabic and bamboo fibre addition and microwave pretreatment.

    PubMed

    García-Martínez, Eva; Andújar, Isabel; Yuste Del Carmen, Alberto; Prohens, Jaime; Martínez-Navarrete, Nuria

    2018-06-01

    Recent epidemiological studies have suggested that phenolic compounds present in grapefruit play an important role in the bioactive properties of this fruit. However, the consumption of fresh grapefruit is low. Freeze-dried powdered grapefruit can be an alternative to promote this fruit consumption. To improve the quality and stability of the powdered fruit, encapsulating and anticaking agents can be added. In the present study, different grapefruit powders obtained by freeze-drying with the addition of gum arabic (1.27 g per 100 g) and bamboo fibre (0.76 g per 100 g) with and without a pre-drying microwave treatment were compared with the fresh and freeze-dried fruit with no carriers added, aiming to evaluate the effect of these preservation processes on phenolics content and on its antioxidant [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing ability of plasma (FRAP)] and anti-inflamatory (evaluated in RAW 264.7 macrophages) capacities. Freeze-drying and gum arabic and bamboo fibre addition significantly increased total phenolics, as well as the antioxidant and anti-inflammatory activities (by inhibiting nitric oxide production of lipopolysaccharide activated RAW 264.7 macrophages), of grapefruit. An additional increase in these parameters was obtained with microwave pretreatment before freeze-drying. The combined addition of gum arabic and bamboo fibre to grapefruit puree and the application of a microwave pretreatment improve the functional properties of the fruit without showing cytotoxicity in vitro. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Manuka honey protects middle-aged rats from oxidative damage

    PubMed Central

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-01-01

    OBJECTIVE: This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. METHOD: Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. RESULTS: Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. CONCLUSIONS: Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status. PMID:24270958

  8. Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius Raddi that occurs in the coast of Bahia, Brazil.

    PubMed

    D'Sousa' Costa, Cinara Oliveira; Ribeiro, Paulo Roberto; Loureiro, Marta Bruno; Simões, Rafael Conceição; de Castro, Renato Delmondez; Fernandez, Luzimar Gonzaga

    2015-01-01

    Schinus terebinthifolius is widely used in traditional medicine by Brazilian quilombola and indigenous communities for treatment of several diseases. Extracts from different tissues are being used to produce creams to treat cervicitis and cervicovaginitis. However, most studies are limited to the assessment of the essential oils and extracts obtained from the leaves. The aim was to evaluate antioxidant and antibacterial activities, to assess the phytochemical profile and to quantify total phenolic compounds of various extracts prepared from S. terebinthifolius grown in the coast of Bahia, Brazil. Extracts were obtained by hot continuous extraction (soxhlet) and by maceration. Quantification of phenolic compounds was performed using the Folin-Ciocalteu method and antioxidant properties were assessed by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Phytochemical screening was performed as described by in the literature and antibacterial activity against Enterococcus faecalis (ATCC 29212) was determined by the microdilution broth assay. Extraction method greatly affected the metabolite profile of the extracts. Antioxidant activity varied between 21.92% and 85.76%, while total phenols ranged between 5.44 and 309.03 mg EAG/g of extract. Leaf extract obtained with soxhlet showed minimum inhibitory concentration (MIC) of 15.62 μg/mL, while stem extract obtained by maceration was able to inhibit the growth of E. faecalis at 62.5 μg/mL. Stem bark extracts showed a MIC of 500 μg/mL for both extraction methods, while no inhibition was observed for fruit extracts. In general, total phenolic content, antioxidant and antibacterial activities were higher in samples obtained by soxhlet. Our results provide important clues in order to identify alternative sources of bioactive compounds that can be used to develop new drugs.

  9. Manuka honey protects middle-aged rats from oxidative damage.

    PubMed

    Jubri, Zakiah; Rahim, Noor Baitee Abdul; Aan, Goon Jo

    2013-11-01

    This study aimed to determine the effect of manuka honey on the oxidative status of middle-aged rats. Twenty-four male Sprague-Dawley rats were divided into young (2 months) and middle-aged (9 months) groups. They were further divided into two groups each, which were either fed with plain water (control) or supplemented with 2.5 g/kg body weight of manuka honey for 30 days. The DNA damage level was determined via the comet assay, the plasma malondialdehyde level was determined using high performance liquid chromatography, and the antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione peroxidase and catalase) were determined spectrophotometrically in the erythrocytes and liver. The antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl and ferric reducing/antioxidant power assays, and the total phenolic content of the manuka was analyzed using UV spectrophotometry and the Folin-Ciocalteu method, respectively. Supplementation with manuka honey reduced the level of DNA damage, the malondialdehyde level and the glutathione peroxidase activity in the liver of both the young and middle-aged groups. However, the glutathione peroxidase activity was increased in the erythrocytes of middle-aged rats given manuka honey supplementation. The catalase activity was reduced in the liver and erythrocytes of both young and middle-aged rats given supplementation. Manuka honey was found to have antioxidant activity and to have a high total phenolic content. These findings showed a strong correlation between the total phenolic content and antioxidant activity. Manuka honey reduces oxidative damage in young and middle-aged rats; this effect could be mediated through the modulation of its antioxidant enzyme activities and its high total phenolic content. Manuka honey can be used as an alternative supplement at an early age to improve the oxidative status.

  10. Enhancement of Calibrachoa growth, secondary metabolites and bioactivity using seaweed extracts.

    PubMed

    Elansary, Hosam O; Norrie, Jeff; Ali, Hayssam M; Salem, Mohamed Z M; Mahmoud, Eman A; Yessoufou, Kowiyou

    2016-09-02

    Calibrachoa x hybrida (Solanaceae) cultivars are widely used in North and South America as ornamental plants. Their potential as a source of antimicrobial compounds might be enhanced by seaweed extract (SWE) applications. SWE of Ascophyllum nodosum were applied at 5 and 7 ml/L as a soil drench or foliar spray on Calibrachoa cultivars of Superbells® 'Dreamsicle' (CHSD) and Superbells® 'Frost Fire' (CHSF). The total phenolics, tannins and antioxidants composition as well as specific flavonols in leaf extracts were determined. Further, the chemical composition of SWE was assessed. The drench and foliar SWE treatments significantly enhanced Calibrachoa cultivars leaf number and area, dry weight, plant height, antioxidant capacity as well as phenolic, flavonols and tannin content. The increased growth and composition of phenols, flavonols and tannins was attributed to the stimulatory effects of SWE mineral composition. The antifungal activity of Calibrachoa cultivars was significantly enhanced following SWE treatments and the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were in the range of 0.07-0.31 mg/ml and from 0.16 to 0.56 mg/ml, respectively. Moreover, antibacterial activity was significantly increased and the MIC and minimum bactericidal concentration (MBC) measurements were in the range of 0.06-0.23 mg/ml and from 0.10 to 0.44 mg/ml, respectively. The most sensitive fungus to SWE treatments was C. albicans and the most sensitive bacterium was E. cloacae. The results suggest that enhanced antifungal and antibacterial activities might be attributed to significant increases of phenolic, flavonols and tannin contents, which ultimately enhance the potential of Calibrachoa as a natural source of alternative antibiotics.

  11. Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging.

    PubMed

    Zhang, Ni; Liu, Xu; Jin, Xiaoduo; Li, Chen; Wu, Xuan; Yang, Shuqin; Ning, Jifeng; Yanne, Paul

    2017-12-15

    Phenolics contents in wine grapes are key indicators for assessing ripeness. Near-infrared hyperspectral images during ripening have been explored to achieve an effective method for predicting phenolics contents. Principal component regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR) models were built, respectively. The results show that SVR behaves globally better than PLSR and PCR, except in predicting tannins content of seeds. For the best prediction results, the squared correlation coefficient and root mean square error reached 0.8960 and 0.1069g/L (+)-catechin equivalents (CE), respectively, for tannins in skins, 0.9065 and 0.1776 (g/L CE) for total iron-reactive phenolics (TIRP) in skins, 0.8789 and 0.1442 (g/L M3G) for anthocyanins in skins, 0.9243 and 0.2401 (g/L CE) for tannins in seeds, and 0.8790 and 0.5190 (g/L CE) for TIRP in seeds. Our results indicated that NIR hyperspectral imaging has good prospects for evaluation of phenolics in wine grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection.

    PubMed

    Orčić, Dejan; Francišković, Marina; Bekvalac, Kristina; Svirčev, Emilija; Beara, Ivana; Lesjak, Marija; Mimica-Dukić, Neda

    2014-01-15

    A method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method. Twenty-one of the investigated compounds were present at levels above the reliable quantification limit, with 5-O-caffeoylquinic acid, rutin and isoquercitrin as the most abundant. The inflorescence extracts were by far the richest in phenolics, with the investigated compounds amounting 2.5-5.1% by weight. As opposed to this, the root extracts were poor in phenolics, with only several acids and derivatives being present in significant amounts. The results obtained by the developed method represent the most detailed U. dioica chemical profile so far. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    PubMed

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp.

    PubMed

    Espada-Bellido, Estrella; Ferreiro-González, Marta; Carrera, Ceferino; Palma, Miguel; Barroso, Carmelo G; Barbero, Gerardo F

    2017-03-15

    New ultrasound-assisted extraction methods for the determination of anthocyanins and total phenolic compounds present in mulberries have been developed. Several extraction variables, including methanol composition (50-100%), temperature (10-70°C), ultrasound amplitude (30-70%), cycle (0.2-0.7s), solvent pH (3-7) and solvent-solid ratio (10:1.5-20:1.5) were optimized. A Box-Behnken design in conjunction with a response surface methodology was employed to optimize the conditions for the maximum response based on 54 different experiments. Two response variables were considered: total anthocyanins and total phenolic compounds. Extraction temperature and solvent composition were found to be the most influential parameters for anthocyanins (48°C and 76%) and phenolic compounds (64°C and 61%). The developed methods showed high reproducibility and repeatability (RSD<5%). Finally, the new methods were successfully applied to real samples in order to investigate the presence of anthocyanins and total phenolic compounds in several mulberry jams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification and quantification of antioxidant components of honeys from various floral sources.

    PubMed

    Gheldof, Nele; Wang, Xiao-Hong; Engeseth, Nicki J

    2002-10-09

    Little is known about the individual components of honey that are responsible for its antioxidant activity. The present study was carried out to characterize the phenolics and other antioxidants present in honeys from seven floral sources. Chromatograms of the phenolic nonpolar fraction of the honeys indicated that most honeys have similar but quantitatively different phenolic profiles. Many of the flavonoids and phenolic acids identified have been previously described as potent antioxidants. A linear correlation between phenolic content and ORAC activity was demonstrated (R(2) = 0.963, p < 0.0001). Honeys were separated by solid-phase extraction into four fractions for sugar removal and separation based on solubility to identify the relative contribution of each fraction to the antioxidant activity of honey. Antioxidant analysis of the different honey fractions suggested that the water-soluble fraction contained most of the antioxidant components. Specific water-soluble antioxidant components were quantified, including protein; gluconic acid; ascorbic acid; hydroxymethylfuraldehyde; and the combined activities of the enzymes glucose oxidase, catalase and peroxidase. Of these components, a significant correlation could be established only between protein content and ORAC activity (R(2) = 0.674, p = 0.024). In general, the antioxidant capacity of honey appeared to be a result of the combined activity of a wide range of compounds including phenolics, peptides, organic acids, enzymes, Maillard reaction products, and possibly other minor components. The phenolic compounds contributed significantly to the antioxidant capacity of honey but were not solely responsible for it.

  17. Pervaporation of phenols

    DOEpatents

    Boddeker, Karl W.

    1989-01-01

    Aqueous phenolic solutions are separated by pervaporation to yield a phenol-depleted retentate and a phenol-enriched permeate. The separation effect is enhanced by phase segregation into two immiscible phases, "phenol in water" (approximately 10% phenol), and "water in phenol" (approximately 70% phenol). Membranes capable of enriching phenols by pervaporation include elastomeric polymers and anion exchange membranes, membrane selection and process design being guided by pervaporation performance and chemical stability towards phenolic solutions. Single- and multiple-stage procresses are disclosed, both for the enrichment of phenols and for purification of water from phenolic contamination.

  18. Pervaporation of phenols

    DOEpatents

    Boddeker, K.W.

    1989-02-21

    Aqueous phenolic solutions are separated by pervaporation to yield a phenol-depleted retentate and a phenol-enriched permeate. The separation effect is enhanced by phase segregation into two immiscible phases, phenol in water'' (approximately 10% phenol), and water in phenol'' (approximately 70% phenol). Membranes capable of enriching phenols by pervaporation include elastomeric polymers and anion exchange membranes, membrane selection and process design being guided by pervaporation performance and chemical stability towards phenolic solutions. Single- and multiple-stage processes are disclosed, both for the enrichment of phenols and for purification of water from phenolic contamination. 8 figs.

  19. An 800-year record of terrestrial organic matter from the East China Sea shelf break: Links to climate change and human activity in the Changjiang Basin

    NASA Astrophysics Data System (ADS)

    Li, Zhong Qiao; Wu, Ying; Liu, Su Mei; Du, Jin Zhou; Zhang, Jing

    2016-02-01

    The East China Sea (ECS) is a large river dominated marginal sea and receives massive volumes of terrestrial material from the Changjiang (Yangtze River). As the ECS preserves a record of terrestrial material derived from the Changjiang Basin, cores collected from this region can be used to reconstruct paleoclimate change and human disturbance in the watershed. A core (P4) was collected from the ECS shelf break and analyzed for bulk parameters (organic carbon (OC), total nitrogen (TN), and stable carbon isotopes (δ13C)), lignin phenols, and 3,5-dihydroxy benzoic acid (DHBA). The depth profiles of these parameters indicate stable and consistent marine production. The lignin source indices, cinnamyl phenols vs. vanillyl phenols (C/V) and syringyl phenols vs. vanillyl phenols (S/V), were in agreement with previously reported results from ECS surface sediments, but differed markedly from Bohai Sea surface sediments. The ratio of acid to aldehyde in vanillyl phenols ((Ad/Al)v) indicated the terrestrial OC in this core was refractory. At the same time, the variation in lignin phenols is positively correlated with the strength of the Indian Summer Monsoon (ISM) over the last 800 years (p<0.001). This is because most sediment is delivered from the upper reaches of the Changjiang Basin, where the ISM is the key control on precipitation. Two extreme drought events, around 1580 A.D. and 1770 A.D. were also identified in the core based on the extremely low C/V, S/V, lignin phenol vegetation index (LPVI), and DHBA values. Furthermore, the significant shift in C/V and S/V since 1880 A.D. is probably a reflection of increased human activity in the upper Changjiang Basin over this period.

  20. Bacterial metabolism of aromatic compounds and a complex hazardous waste under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, O.A.

    1992-01-01

    The biological fate of organic chemicals in the environment depends upon a variety of physical/chemical factors. In the absence of molecular oxygen, the importance of terminal electron acceptors has been often overlooked. Since anaerobic microbial consortia are dependent upon the availability of particular electron acceptors, these conditions can play an important role in influencing the fate of environmental pollutants. In this research, different electron acceptors were evaluated for their effects on the biodegradation of environmental toxicants. Two anaerobic bioassays, the Biochemical Methane Potential (BMP) and the Anaerobic Toxicity Assay (ATA), were used to evaluate a series of phthalic acid estersmore » (PAEs), substituted phenols and a landfill leachate, for their methanogenic biodegradability and toxicity. Many of the PAEs and phenols could be stoichiometrically mineralized. In addition, the landfill leachate was found to be inhibitory at concentrations greater than 10%, and partially mineralized in approximately 50 weeks. Based upon these assays, 6 different functional groups and their isomers were evaluated for their effect on the biodegradability and toxicity of phenol under methanogenic and denitrifying conditions. These results indicated that nitro- and chloro-substituted phenols were persistent under denitrifying conditions. Under methanogenic conditions, these compounds were metabolized to a more reduced intermediate with less toxicity. Conversely, amino-substituted phenols were not readily mineralized under methanogenic conditions, but were metabolized after minimal lag under denitrifying conditions. From active denitrifying phenol degrading cultures, a pure culture was obtained which could grow on phenol and on a variety of other alkyl-substituted aromatic compounds. Additional studies have tentatively identified several alicyclic metabolites including cyclohexanol, 2-cyclohexene-1-ol, cyclohexanone and 2-cyclohexene-1-one from phenol catabolism.« less

  1. Componential profile and amylase inhibiting activity of phenolic compounds from Calendula officinalis L. leaves.

    PubMed

    Olennikov, Daniil N; Kashchenko, Nina I

    2014-01-01

    An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6'-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6''-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase.

  2. Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies.

    PubMed

    Yammine, Sami; Brianceau, Sylène; Manteau, Sébastien; Turk, Mohammad; Ghidossi, Rémy; Vorobiev, Eugène; Mietton-Peuchot, Martine

    2018-05-24

    Grape byproducts are today considered as a cheap source of valuable compounds since existent technologies allow the recovery of target compounds and their recycling. The goal of the current article is to explore the different recovery stages used by both conventional and alternative techniques and processes. Alternative pre-treatments techniques reviewed are: ultrasounds, pulsed electric fields and high voltage discharges. In addition, nonconventional solvent extraction under high pressure, specifically, supercritical fluid extraction and subcritical water extraction are discussed. Finally alternative purification technologies, for example membrane processing were also examined. The intent is to describe the mechanisms involved by these alternative technologies and to summarize the work done on the improvement of the extraction process of phenolic compounds from winery by-products. With a focus on the developmental stage of each technology, highlighting the research need and challenges to be overcome for an industrial implementation of these unitary operations in the overall extraction process. A critical comparison of conventional and alternative techniques will be reviewed for ethe pre-treatment of raw material, the diffusion of polyphenols and the purification of these high added value compounds. This review intends to give the reader some key answers (costs, advantages, drawbacks) to help in the choice of alternative technologies for extraction purposes.

  3. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy

    PubMed Central

    Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H

    2014-01-01

    The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability. PMID:24804076

  4. Bio-based phenolic-branched-chain fatty acid isomers synthesized from vegetable oils and natural monophenols using modified h+-ferrierite zeolite

    USDA-ARS?s Scientific Manuscript database

    A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...

  5. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.

    PubMed

    Zarei, Ali Reza; Ghazanchayi, Behnam

    2016-04-01

    The present study developed a new optical chemical sensor for detection of nitroaromatic explosives in liquid phase. The method is based on the fluorescence quenching of phenol red as fluorophore in a poly(vinyl alcohol) (PVA) membrane in the presence of nitroaromatic explosives as quenchers, e.g., 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 4-nitrotoluene (4-NT), 2,4,6-trinitrobenzene (TNB), and nitrobenzene (NB). For chemical immobilization of phenol red in PVA, phenol red reacted with formaldehyde to produce hydroxymethyl groups and then attached to PVA membrane through the hydroxymethyl groups. The optical sensor showed strong quenching of nitroaromatic explosives. A Stern-Volmer graph for each explosive was constructed and showed that the range of concentration from 5.0 × 10(-6) to 2.5 × 10(-4) mol L(-1) was linear for each explosive and sensitivity varied as TNB >TNT>2,4-DNT>NB>4-NT. The response time of the sensor was within 1 min. The proposed sensor showed good reversibility and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics.

    PubMed

    Wang, Ya-Qin; Hu, Li-Ping; Liu, Guang-Min; Zhang, De-Shuang; He, Hong-Ju

    2017-07-27

    Chinese kale ( Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars and three different edible parts were evaluated, and amino acids, sugars, organic acids, glucosinolates and phenolic compounds were analysed simultaneously. We found that two cultivars, a purple-stem cultivar W1 and a yellow-flower cultivar Y1, had more health-promoting compounds than others. The multivariate statistical analysis results showed that gluconapin was the most important contributor for discriminating both cultivars and edible parts. The purple-stem cultivar W1 had higher levels of some phenolic acids and flavonoids than the green stem cultivars. Compared to stems and leaves, the inflorescences contained more amino acids, glucosinolates and most of the phenolic acids. Meanwhile, the stems had the least amounts of phenolic compounds among the organs tested. Metabolomics is a powerful approach for the comprehensive understanding of vegetable nutritional quality. The results provide the basis for future metabolomics-guided breeding and nutritional quality improvement.

  7. Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis.

    PubMed

    Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing

    2017-04-22

    An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r 2  ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials.

    PubMed

    Cui, Yong; Hou, Xiaopeng; Wang, Wenliang; Chang, Jianmin

    2017-06-18

    In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF) resin-a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.

  10. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) includingmore » 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.« less

  11. Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum: A Computational Insight into the Structure-Activity Relationship

    PubMed Central

    Pani, Giovanna; Dessì, Alessandro; Dallocchio, Roberto; Scherm, Barbara; Azara, Emanuela; Delogu, Giovanna

    2016-01-01

    A model of the trichodiene synthase (TRI5) of the wheat fungal pathogen and type-B trichothecene producer Fusarium culmorum was developed based on homology modelling with the crystallized protein of F. sporotrichioides. Eight phenolic molecules, namely ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehydrozingerone 5, eugenol dimer 6, magnolol 7, and ellagic acid 8, were selected for their ability to inhibit trichothecene production and/or fungal vegetative growth in F. culmorum. The chemical structures of phenols were constructed and partially optimised based on Molecular Mechanics (MM) studies and energy minimisation by Density Functional Theory (DFT). Docking analysis of the phenolic molecules was run on the 3D model of F. culmorum TRI5. Experimental biological activity, molecular descriptors and interacting-structures obtained from computational analysis were compared. Besides the catalytic domain, three privileged sites in the interaction with the inhibitory molecules were identified on the protein surface. The TRI5-ligand interactions highlighted in this study represent a powerful tool to the identification of new Fusarium-targeted molecules with potential as trichothecene inhibitors. PMID:27294666

  12. Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants.

    PubMed

    Kovácik, Jozef; Klejdus, Borivoj; Stork, Frantisek; Hedbavny, Josef

    2011-05-11

    The effect of nitrogen (nitrate) deficiency (-N) on the accumulation of cadmium (Cd) and nickel (Ni) in chamomile ( Matricaria chamomilla ) plants was studied. Elimination of N from the culture medium led to decreases in N-based compounds (free amino acids and soluble proteins) and increases in C-based compounds (reducing sugars, soluble phenols, coumarins, phenolic acids, and partially flavonoids and lignin), being considerably affected by the metal presence. Proline, a known stress-protective amino acid, decreased in all -N variants. The activity of phenylalanine ammonia-lyase was stimulated only in -N control plants, whereas the activities of polyphenol oxidase and guaiacol peroxidase were never reduced in -N variants in comparison with respective +N counterparts. Among detected phenolic acids, chlorogenic acid strongly accumulated in all N-deficient variants in the free fraction and caffeic acid in the cell wall-bound fraction. Mineral nutrients were rather affected by a given metal than by N deficiency. Shoot and total root Cd and Ni amounts decreased in -N variants. On the contrary, ammonium-fed plants exposed to N deficiency did not show similar changes in Cd and Ni contents. The present findings are discussed with respect to the role of phenols and mineral nutrition in metal uptake.

  13. Optimisation of olive oil phenol extraction conditions using a high-power probe ultrasonication.

    PubMed

    Jerman Klen, T; Mozetič Vodopivec, B

    2012-10-15

    A new method of ultrasound probe assisted liquid-liquid extraction (US-LLE) combined with a freeze-based fat precipitation clean-up and HPLC-DAD-FLD-MS detection is described for extra virgin olive oil (EVOO) phenol analysis. Three extraction variables (solvent type; 100%, 80%, 50% methanol, sonication time; 5, 10, 20 min, extraction steps; 1-5) and two clean-up methods (n-hexane washing vs. low temperature fat precipitation) were studied and optimised with aim to maximise extracts' phenol recoveries. A three-step extraction of 10 min with pure methanol (5 mL) resulted in the highest phenol content of freeze-based defatted extracts (667 μg GAE g(-1)) from 10 g of EVOO, providing much higher efficiency (up to 68%) and repeatability (up to 51%) vs. its non-sonicated counterpart (LLE-agitation) and n-hexane washing. In addition, the overall method provided high linearity (r(2)≥0.97), precision (RSD: 0.4-9.3%) and sensitivity with LODs/LOQs ranging from 0.03 to 0.16 μg g(-1) and 0.10-0.51 μg g(-1) of EVOO, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    PubMed Central

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul

    2016-01-01

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738

  15. Antioxidant activity and total phenolic content in Red Ginger (Zingiber officinale) based drinks

    NASA Astrophysics Data System (ADS)

    Widayat; Cahyono, B.; Satriadi, H.; Munfarida, S.

    2018-01-01

    Indonesia is a rich spices country, both as a cooking spice and medicine. One of the most abundant commodities is red ginger, where it still less in application. On the other hand, the level of pollution is higher, so antioxidants are needed to protect the body cells from the bad effects of free radicals. The body can not naturally produce antioxidants as needed, so we need to consume foods with high antioxidant content. The purpose of this study is to know the antioxidant activity and total phenolic content in red ginger (Zingiber officinale) based drinks. Research design with complete randomized design (RAL) with factorial pattern 3 x 3, as the first factor is red ginger extract and water ratio (1: 1, 1: 2 and 1: 3) and second factor is the type of sugar used (cane sugar, palm sugar and mixed sugar). The results of this study indicate that red ginger extract and water ratio of 1: 3 give higher antioxidant. The highest antioxidant obtained in red ginger extract and water ratio of 1: 3 and using mixed sugar. That antioxidants value is 88.56%, it is not significant decreased compared to the antioxidant of pure ginger extract that is 91.46%. For higher phenol total content obtained on syrup that uses palm sugar. The highest phenol total content obtained in red ginger extract and water ratio of 1: 1 and using palm sugar. That total phenol content value is 6299 ppm.

  16. Accumulation pattern of endogenous cytokinins and phenolics in different organs of 1-year-old cytokinin pre-incubated plants: implications for conservation.

    PubMed

    Aremu, A O; Plačková, L; Gruz, J; Bíba, O; Šubrtová, M; Novák, O; Doležal, K; Van Staden, J

    2015-11-01

    A better understanding of phytohormone physiology can provide an essential basis to coherently achieve a conservation drive/strategy for valuable plant species. We evaluated the distribution pattern of cytokinins (CKs) and phenolic compounds in different organs of 1-year-old greenhouse-grown Tulbaghia simmleri pre-treated (during micropropagation) with three aromatic CKs (benzyladenine = BA, meta-topolin = mT, meta-topolin riboside = mTR). The test species is highly valuable due to its medicinal and ornamental uses. Based on UHPLC-MS/MS quantification, mT and mTR pre-treated plants had the highest total CK, mostly resulting from the isoprenoid CK-type, which occurred at highest concentrations in the roots. Although occurring in much lower concentrations when compared to isoprenoid CKs, aromatic CKs were several-fold more abundant in the root of mT pre-treated plants than with other treatments. Possibly related to the enhanced aromatic CKs, free bases and ribonucleotides, plants pre-treated with mT generally displayed better morphology than the other treatments. A total of 12 bioactive phenolic compounds, including four hydroxybenzoic acids, five hydroxycinnamic acids and three flavonoids at varying concentrations, were quantified in T. simmleri. The occurrence, distribution and levels of these phenolic compounds were strongly influenced by the CK pre-treatments, thereby confirming the importance of CKs in phenolic biosynthesis pathways. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays.

    PubMed

    Tourlousse, Dieter M; Kurisu, Futoshi; Tobino, Tomohiro; Furumai, Hiroaki

    2013-05-01

    The goal of this study was to develop and validate a novel fosmid-clone-based metagenome isotope array approach - termed the community isotope array (CIArray) - for sensitive detection and identification of microorganisms assimilating a radiolabeled substrate within complex microbial communities. More specifically, a sample-specific CIArray was used to identify anoxic phenol-degrading microorganisms in activated sludge treating synthetic coke-oven wastewater in a single-sludge predenitrification-nitrification process. Hybridization of the CIArray with DNA from the (14) C-phenol-amended sample indicated that bacteria assimilating (14) C-atoms, presumably directly from phenol, under nitrate-reducing conditions were abundant in the reactor, and taxonomic assignment of the fosmid clone end sequences suggested that they belonged to the Gammaproteobacteria. The specificity of the CIArray was validated by quantification of fosmid-clone-specific DNA in density-resolved DNA fractions from samples incubated with (13) C-phenol, which verified that all CIArray-positive probes stemmed from microorganisms that assimilated isotopically labeled carbon. This also demonstrated that the CIArray was more sensitive than DNA-SIP, as the former enabled positive detection at a phenol concentration that failed to yield a 'heavy' DNA fraction. Finally, two operational taxonomic units distantly related to marine Gammaproteobacteria were identified to account for more than half of 16S rRNA gene clones in the 'heavy' DNA library, corroborating the CIArray-based identification. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Chemical Composition and Anti-Inflammatory Effect of Ethanolic Extract of Brazilian Green Propolis on Activated J774A.1 Macrophages

    PubMed Central

    Kucharska, Alicja Z.; Sokół-Łętowska, Anna; Czuba, Zenon P.; Król, Wojciech

    2013-01-01

    The aim of this study was to investigate the chemical composition and anti-inflammatory effect of ethanolic extract of Brazilian green propolis (EEP-B) on LPS + IFN-γ or PMA stimulated J774A.1 macrophages. The identification and quantification of phenolic compounds in green propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. The cell viability was evaluated by MTT and LDH assays. The radical scavenging ability was determined using DPPH• and ABTS•+. ROS and RNS generation was analyzed by chemiluminescence. NO concentration was detected by the Griess reaction. The release of various cytokines by activated J774A.1 cells was measured in the culture supernatants using a multiplex bead array system based on xMAP technology. Artepillin C, kaempferide, and their derivatives were the main phenolics found in green propolis. At the tested concentrations, the EEP-B did not decrease the cell viability and did not cause the cytotoxicity. EEP-B exerted strong antioxidant activity and significantly inhibited the production of ROS, RNS, NO, cytokine IL-1α, IL-1β, IL-4, IL-6, IL-12p40, IL-13, TNF-α, G-CSF, GM-CSF, MCP-1, MIP-1α, MIP-1β, and RANTES in stimulated J774A.1 macrophages. Our findings provide new insights for understanding the anti-inflammatory mechanism of action of Brazilian green propolis extract and support its application in complementary and alternative medicine. PMID:23840273

  19. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger.

    PubMed

    Leme, Danny Ellen Meireles; Rodrigues, Allan Belarmino; de Almeida-Apolonio, Adriana Araújo; Dantas, Fabiana Gomes da Silva; Negri, Melyssa Fernanda Norman; Svidzinski, Terezinha Inez Estivalet; Mota, Jonas da Silva; Cardoso, Claudia Andrea Lima; de Oliveira, Kelly Mari Pires

    2017-01-01

    The roots of Cochlospermum regium , popularly known as "algodãozinho-do-cerrado," are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation.

  20. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger

    PubMed Central

    Leme, Danny Ellen Meireles; Rodrigues, Allan Belarmino; de Almeida-Apolonio, Adriana Araújo; Dantas, Fabiana Gomes da Silva; Svidzinski, Terezinha Inez Estivalet; Mota, Jonas da Silva; Cardoso, Claudia Andrea Lima

    2017-01-01

    The roots of Cochlospermum regium, popularly known as “algodãozinho-do-cerrado,” are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation. PMID:29375642

  1. Effect of Extraction Method on the Oxidative Stability of Camelina Seed Oil Studied by Differential Scanning Calorimetry.

    PubMed

    Belayneh, Henok D; Wehling, Randy L; Cahoon, Edgar B; Ciftci, Ozan N

    2017-03-01

    Camelina seed is a new alternative omega-3 source attracting growing interest. However, it is susceptible to oxidation due to its high omega-3 content. The objective of this study was to improve the oxidative stability of the camelina seed oil at the extraction stage in order to eliminate or minimize the use of additive antioxidants. Camelina seed oil extracts were enriched in terms of natural antioxidants using ethanol-modified supercritical carbon dioxide (SC-CO 2 ) extraction. Oxidative stability of the camelina seed oils extracted by ethanol modified SC-CO 2 was studied by differential scanning calorimeter (DSC), and compared with cold press, hexane, and SC-CO 2 methods. Nonisothermal oxidation kinetics of the oils obtained by different extraction methods were studied by DSC at varying heating rates (2.5, 5, 10, and 15 °C/min). Increasing ethanol level in the ethanol-modified SC-CO 2 increased the oxidative stability. Based on oxidation onset temperatures (T on ), SC-CO 2 containing 10% ethanol yielded the most stable oil. Oxidative stability depended on the type and content of the polar fractions, namely, phenolic compounds and phospholipids. Phenolic compounds acted as natural antioxidants, whereas increased phospholipid contents decreased the stability. Study has shown that the oxidative stability of the oils can be improved at the extraction stage and this may eliminate the need for additive antioxidants. © 2017 Institute of Food Technologists®.

  2. Antibody biosensors for spoilage yeast detection based on impedance spectroscopy.

    PubMed

    Tubía, I; Paredes, J; Pérez-Lorenzo, E; Arana, S

    2018-04-15

    Brettanomyces is a yeast species responsible for wine and cider spoilage, producing volatile phenols that result in off-odors and loss of fruity sensorial qualities. Current commercial detection methods for these spoilage species are liable to frequent false positives, long culture times and fungal contamination. In this work, an interdigitated (IDE) biosensor was created to detect Brettanomyces using immunological reactions and impedance spectroscopy analysis. To promote efficient antibody immobilization on the electrodes' surface and to decrease non-specific adsorption, a Self-Assembled Monolayer (SAM) was developed. An impedance spectroscopy analysis, over four yeast strains, confirmed our device's increased efficacy. Compared to label-free sensors, antibody biosensors showed a higher relative impedance. The results also suggested that these biosensors could be a promising method to monitor some spoilage yeasts, offering an efficient alternative to the laborious and expensive traditional methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Natural antioxidant extracts as food preservatives.

    PubMed

    Santos-Sánchez, Norma F; Salas-Coronado, Raúl; Valadez-Blanco, Rogelio; Hernández-Carlos, Beatriz; Guadarrama-Mendoza, Paula C

    2017-01-01

    The food industry is becoming more specialized and processing methods are continuously being developed to meet consumer needs. Consumers demand products that are safe and preferably free of synthetic additives. These additives are associated with health effects, in most cases without reasonable justification. Consequently, consumers are looking for clearly labelled products that guarantee the absence of synthetic additives. This has led to the need to search for natural additives, which the food industry claims arenatural antioxidant preservatives. The sources of natural antioxidants can be extremely varied, because practically all plants contain antioxidants that allow them to protect themselves from solar radiation and pests, as well as to regulate the production of chemical energy. However, the best alternatives for the food industry are fruits and spices, because they are already foods themselves. This article will describe fruits and spices considered as important sources of phenolic antioxidants. The main medicinal properties are related to phenolic compounds and their uses as additives, depending on their chemical structure.

  4. Antioxidant, Antimicrobial Effects and Phenolic Profile of Lycium barbarum L. Flowers.

    PubMed

    Mocan, Andrei; Vlase, Laurian; Vodnar, Dan Cristian; Gheldiu, Ana-Maria; Oprean, Radu; Crișan, Gianina

    2015-08-17

    L. barbarum L. is a widely-accepted nutraceutical presenting highly advantageous nutritive and antioxidant properties. Its flowers have been previously described as a source of diosgenin, β-sitosterol and lanosterol that can be further pharmaceutically developed, but no other data regarding their composition is available. The purpose of this work was to investigate the chemical constituents, antioxidant and antimicrobial activities of L. barbarum flowers, as an alternative resource of naturally-occurring antioxidant compounds. The free radical scavenging activity of the ethanolic extract was tested by TEAC, two enzymatic assays with more physiological relevance and EPR spectroscopy. The presence of several phenolic compounds, such as chlorogenic, p-coumaric and ferulic acids, but also isoquercitrin, rutin and quercitrin, was assessed by an HPLC/MS method. The antioxidant assays revealed that the extract exhibited a moderate antioxidant potential. The antimicrobial activity was mild against Gram-positive bacteria and lacking against Escherichia coli. These findings complete the scarce existing data and offer new perspectives for further pharmaceutical valorization of L. barbarum flowers.

  5. Identification of metabolites from an active fraction of Cajanus cajan seeds by high resolution mass spectrometry.

    PubMed

    Tekale, Satishkumar S; Jaiwal, Bhimrao V; Padul, Manohar V

    2016-11-15

    Antioxidants are important food additives which prolong food storage due to their protective effects against oxidative degradation of foods by free radicals. However, the synthetic antioxidants show toxic properties. Alternative economical and eco-friendly approach is screening of plant extract for natural antioxidants. Plant phenolics are potent antioxidants. Hence, in present study Cajanus cajan seeds were analyzed for antioxidant activity, Iron chelating activity and total phenolic content. The antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showed 71.3% inhibition and 65.8% Iron chelating activity. Total 37 compounds including some short peptides and five major abundant compounds were identified in active fraction of C. cajan seeds. This study concludes that C. cajan seeds are good source of antioxidants and Iron chelating activity. Metabolites found in C. cajan seeds which remove reactive oxygen species (ROS), may help to alleviate oxidative stress associated dreaded health problem like cancer and cardiovascular diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Measurements of the effects of wine maceration with oak chips using an electronic tongue.

    PubMed

    Rudnitskaya, Alisa; Schmidtke, Leigh M; Reis, Ana; Domingues, M Rosario M; Delgadillo, Ivonne; Debus, Bruno; Kirsanov, Dmitry; Legin, Andrey

    2017-08-15

    The use of oak products as a cheaper alternative to expensive wood barrels was recently permitted in Europe, which led to a continuous increase in the use of oak chips and staves in winemaking. The feasibility of the potentiometric electronic tongue as a tool for monitoring the effects of wine maceration with oak chips was evaluated. Four types of commercially available oak chips subjected to different thermal treatments and washing procedures and their mixture were studied. Ethanolic extracts of the chips were analysed using electrospray mass spectrometry and 28 phenolic and furanic compounds were identified. The electronic tongue comprising 22 potentiometric chemical sensors could distinguish artificial wine solutions and Cabernet Sauvignon wine macerated with different types of oak chips, quantify total and non-flavonoid phenolic content, as well as the concentrations of added oak chips. Using measurements at two pH levels, 3.2 and 6.5, improved the accuracy of quantification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phytochemical screening and antioxidant capacity of the aerial parts of Thymelaea hirsuta L.

    PubMed Central

    Amari, Nesrine Ouda; Bouzouina, Mohamed; Berkani, Abdellah; Lotmani, Brahim

    2014-01-01

    Objective To assess antioxidant activities of different aerial parts of Thymelaea hirsuta (T. hirsuta) from west Algeria, and to search for new sources of safe and inexpensive antioxidants. Methods Samples of leaves, stems and flowers from T. hirsuta were tested for total phenolic content, flavonoids content, and evaluation its total antioxidant activity, were done using the spectrophotometric analyses. Results Results of preliminary phytochemical screening of leaf, flower and stem of T. hirsuta revealed the presence of tannins, alkaloids, steroids, saponins, coumarins, reducteurs compound and anthraquinones. The total phenolics and flavonoids were estimated. The aqueous extracts of the aerial parts of T. hirsuta showed potent in vitro antioxydant activities using various models viz, DPPH scavenging assay, ferric reducing antioxidant power (FRAP) and ABTS radical scavenging activity. Conclusions On the basis of the results obtained, T. hirsuta extracts are rich sources of natural antioxidants appears to be an alternative to synthetic antioxidants and this justifies its therapeutic usage.

  8. Fluorescence and physical properties of the organic salt 2-chloro-4-nitrobenzoate-3-ammonium-phenol

    NASA Astrophysics Data System (ADS)

    Mani, Rajaboopathi; Rietveld, Ivo B.; Nicolaï, Béatrice; Varadharajan, Krishnakumar; Louhi-Kultanen, Marjatta; Narasimhan, Surumbarkuzhali

    2015-09-01

    Organic salt 2-chloro-4-nitrobenzoate (CNBA-) 3-ammonium-phenol (AP+) exhibits fluorescence at 338 nm in solution and frontier molecular orbitals generated from TDDFT calculations indicate that the ground state and the excited state are physically separated on AP+ and CNBA-. The crystal structure and physical-chemical properties of the CNBA- · AP+ were investigated using X-ray single crystal and powder diffraction, SEM, FTIR, UV-Vis-NIR, and fluorescence spectrometry. X-ray diffraction demonstrates that the two molecules are linked via N+-H⋯O- ammonium-carboxylate interactions, as expected considering their interaction propensities. Proton transfer has been confirmed by FTIR analysis. The melting point of CNBA- · AP+ was observed at 186 °C, which is higher than pure CNBA (140 °C) or AP (120 °C). The observation of a spatially separated HOMO and LUMO possessing a narrow ΔEST = 73.3 meV and an emission in the blue region is promising as an alternative method for the production of OLED materials.

  9. Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study.

    PubMed

    Kasiotis, Konstantinos M; Anastasiadou, Pelagia; Papadopoulos, Antonis; Machera, Kyriaki

    2017-01-01

    Propolis is a bee product that has been extensively used in alternative medicine and recently has gained interest on a global scale as an essential ingredient of healthy foods and cosmetics. Propolis is also considered to improve human health and to prevent diseases such as inflammation, heart disease, diabetes and even cancer. However, the claimed effects are anticipated to be correlated to its chemical composition. Since propolis is a natural product, its composition is consequently expected to be variable depending on the local flora alignment. In this work, we present the development of a novel HPLC-PDA-ESI/MS targeted method, used to identify and quantify 59 phenolic compounds in Greek propolis hydroalcoholic extracts. Amongst them, nine phenolic compounds are herein reported for the first time in Greek propolis. Alongside GC-MS complementary analysis was employed, unveiling eight additional newly reported compounds. The antioxidant activity study of the propolis samples verified the potential of these extracts to effectively scavenge radicals, with the extract of Imathia region exhibiting comparable antioxidant activity to that of quercetin.

  10. Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (Araceae).

    PubMed

    Aliyu, Abubakar B; Ibrahim, Mohammed A; Musa, Aliyu M; Musa, Aisha O; Kiplimo, Joyce J; Oyewale, Adebayo O

    2013-01-01

    Antioxidants activities from plants sources have attracted a wide range of interest across the world in recent times. This is due to growing concern for safe and alternative sources of antioxidants. The free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), reducing power assay, total antioxidant capacity of the phosphomolybdenum method and the total phenolics content using the Folin-Ciocalteu reagent were carried out on the acetone, n-butanol and methanol root extracts of Anchomanes difformis. The results of the total phenolics content expressed in mg/100 g of gallic acid equivalent (GAE) showed that the n-butanol extract has significantly (p < 0.05) higher phenolics content (381 +/- 1.13) than the methanol and acetone extracts. All the extracts displayed strong concentration dependent radical scavenging activity. It was also observed that the n-butanol extract showed higher activity of 70.87% and 78.59% at low concentrations of 31.25 microg/mL and 62.5 microg/mL, respectively, than methanol and acetone extracts. The results also showed that the n-butanol extract has strongest reducing ability which is comparable to that of gallic acid at all the concentrations tested. Phytochemical screening on the extracts revealed the presence of flavonoids, saponins, and tannins. The results suggest that n-butanol extract of the plant is very rich in antioxidant compounds worthy of further investigations.

  11. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits.

    PubMed

    Mildner-Szkudlarz, Sylwia; Bajerska, Joanna; Zawirska-Wojtasiak, Renata; Górecka, Danuta

    2013-01-01

    Grapes are one of the world's staple fruit crops, with about 80% of the yield being utilised for winemaking. Since grape by-products still contain large amounts of secondary metabolites, uses other than as fertilisers might be appropriate. In this study, white grape pomace (WGP) was incorporated in wheat flour at levels of 10, 20 and 30% (w/w) to investigate its influence on rheological, nutraceutical, physical and sensory properties. Farinograph characteristics of dough with different levels of WGP showed a decrease in water absorption from 56.4% (0% WGP) to 45.9% (30% WGP). Addition of WGP reduced hardness and caused a deterioration in brightness and yellowness of all enriched samples. The smallest addition of WGP (10%) caused an approximately 88% increase in total dietary fibre content as compared with the control. The content of phenolic compounds increased from 0.11 mg g⁻¹ with 0% WGP to 1.07 mg g⁻¹ with 30% WGP. The most stable phenols were as follows: γ-resorcylic acid < gallic acid < tyrosol < catechin < isovanilic acid. An assay of radical-scavenging activity showed that WGP addition greatly enhanced the antioxidant properties of biscuits. Acceptable biscuits were obtained when incorporating 10% WGP. WGP might be utilised for the novel formulation of biscuits as an alternative source of dietary fibre and phenols. Copyright © 2012 Society of Chemical Industry.

  12. Controlled trial comparing the efficacy of 88% phenol versus 10% sodium hydroxide for chemical matricectomy in the management of ingrown toenail.

    PubMed

    Grover, Chander; Khurana, Ananta; Bhattacharya, Sambit Nath; Sharma, Arun

    2015-01-01

    Partial nail avulsion with lateral chemical matricectomy is the treatment of choice for ingrown toenails. Phenol (88%) is the most widely used chemical agent but prolonged postoperative drainage and collateral damage are common. Sodium hydroxide (NaOH) 10% has fewer side-effects. Adult, consenting patients with ingrown toenails were alternately allocated into two treatment groups in the order of their joining the study, to receive either 88% phenol (Group 1, n = 26) or 10% NaOH (Group 0, n = 23) chemical matricectomy. The patients as well as the statistician were blinded to the agent being used. Post-procedure follow-up evaluated median duration of pain, discharge, and healing along with recurrence, if any, in both the groups. The group wise data was statistically analyzed. Both the groups responded well to treatment with the median duration of postoperative pain being 7.92 days in Group 0 and 16.25 days in Group 1 (P < 0.202). Postoperative discharge continued for a median period of 15.42 days (Group 0) and 18.13 days (Group 1) (P < 0.203). The tissue condition normalized in 7.50 days (Group 0) and 15.63 days (Group 1) (P < 0.007). Limited postsurgical follow up of 6 months is a limitation of the study. Chemical matricectomy using NaOH is as efficacious as phenolisation, with the advantage of faster tissue normalization.

  13. Determination of the In Vitro and In Vivo Antimicrobial Activity on Salivary Streptococci and Lactobacilli and Chemical Characterisation of the Phenolic Content of a Plantago lanceolata Infusion

    PubMed Central

    Roberto, Lia; Ingenito, Aniello; Roscetto, Emanuela

    2015-01-01

    Introduction. Plant extracts may be suitable alternative treatments for caries. Aims. To investigate the in vitro and in vivo antimicrobial effects of Plantago lanceolata herbal tea (from flowers and leaves) on cariogenic bacteria and to identify the major constituents of P. lanceolata plant. Materials and Methods. The MIC and MBC against cariogenic bacteria were determined for P. lanceolata tea. Subsequently, a controlled random clinical study was conducted. Group A was instructed to rinse with a P. lanceolata mouth rinse, and Group B received a placebo mouth rinse for seven days. The salivary colonisation by streptococci and lactobacilli was investigated prior to treatment and on the fourth and seventh days. Finally, the P. lanceolata tea was analysed for its polyphenolic content, and major phenolics were identified. Results and Discussion. P. lanceolata teas demonstrate good in vitro antimicrobial activity. The in vivo test showed that Group A subjects presented a significant decrease in streptococci compared to Group B. The phytochemical analysis revealed that flavonoids, coumarins, lipids, cinnamic acids, lignans, and phenolic compounds are present in P. lanceolata infusions. Conclusions. P. lanceolata extract could represent a natural anticariogenic agent via an antimicrobial effect and might be useful as an ancillary measure to control the proliferation of cariogenic flora. PMID:25767805

  14. The Electrical Properties for Phenolic Isocyanate-Modified Bisphenol-Based Epoxy Resins Comprising Benzoate Group.

    PubMed

    Lee, Eun Yong; Chae, Il Seok; Park, Dongkyung; Suh, Hongsuk; Kang, Sang Wook

    2016-03-01

    Epoxy resin has been required to have a low dielectric constant (D(k)), low dissipation factor (Df), low coefficient of thermal expansion (CTE), low water absorption, high mechanical, and high adhesion properties for various applications. A series of novel phenolic isocyanate-modified bisphenol-based epoxy resins comprising benzoate group were prepared for practical electronic packaging applications. The developed epoxy resins showed highly reduced dielectric constants (D(k)-3.00 at 1 GHz) and low dissipation values (Df-0.014 at 1 GHz) as well as enhanced thermal properties.

  15. Hypercrosslinked phenolic polymers with well developed mesoporous frameworks

    DOE PAGES

    Zhang, Jinshui; Qiao, Zhenan -An; Mahurin, Shannon Mark; ...

    2015-02-12

    A soft chemistry synthetic strategy based on a Friedel Crafts alkylation reaction is developed for the textural engineering of phenolic resin (PR) with a robust mesoporous framework to avoid serious framework shrinkage and maximize retention of organic functional moieties. By taking advantage of the structural benefits of molecular bridges, the resultant sample maintains a bimodal micro-mesoporous architecture with well-preserved organic functional groups, which is effective for carbon capture. Furthermore, this soft chemistry synthetic protocol can be further extended to nanotexture other aromatic-based polymers with robust frameworks.

  16. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  17. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  18. 40 CFR 721.10238 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, potassium sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-phenol reaction products and phenol, potassium sodium salts. 721.10238 Section 721.10238 Protection of..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts. (a) Chemical substance..., polymers with acetone-phenol reaction products and phenol, potassium sodium salts (PMN P-09-147; CAS No...

  19. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD.

    PubMed

    Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C

    2008-05-12

    A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.

  20. Mechanistic considerations in benzene physiological model development.

    PubMed

    Medinsky, M A; Kenyon, E M; Seaton, M J; Schlosser, P M

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase II enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  1. Benzene: a case study in parent chemical and metabolite interactions.

    PubMed

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  2. Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pêra-Rio orange juice.

    PubMed

    Mesquita, E; Monteiro, M

    2018-04-01

    The aim of this study was to develop and validate an HPLC-DAD method to evaluate the phenolic compounds profile of organic and conventional Pêra-Rio orange juice. The proposed method was validated for 10 flavonoids and 6 phenolic acids. A wide linear range (0.01-223.4μg·g -1 ), good accuracy (79.5-129.2%) and precision (CV≤3.8%), low limits of detection (1-22ng·g -1 ) and quantification (0.7-7.4μg), and overall ruggedness were attained. Good recovery was achieved for all phenolic compounds after extraction and cleanup. The method was applied to organic and conventional Pêra-Rio orange juices from beginning, middle and end of the 2016 harvest. Flavones rutin, nobiletin and tangeretin, and flavanones hesperidin, narirutin and eriocitrin were identified and quantified in all organic and conventional juices. Identity was confirmed by mass spectrometry. Nineteen non-identified phenolic compounds were quantified based on DAD spectra characteristic of the chemical class: 7 cinnamic acid derivatives, 6 flavanones and 6 flavones. The phenolic compounds profile of Pêra-Rio orange juices changed during the harvest; levels increased in organic orange juices, and decreased or were about the same in conventional orange juices. Phenolic compounds levels were higher in organic (0.5-1143.7mg·100g -1 ) than in conventional orange juices (0.5-689.7mg·100g -1 ). PCA differentiated organic from conventional FS and NFC juices, and conventional FCOJ from conventional FS and NFC juices, thus differentiating cultivation and processing. Copyright © 2017. Published by Elsevier Ltd.

  3. Effect of Phenol Molecular Structure on Bacterial Transformation Rate Constants in Pond and River Samples

    PubMed Central

    Paris, Doris F.; Wolfe, N. Lee; Steen, William C.; Baughman, George L.

    1983-01-01

    Microbial transformation rate constants for a series of phenols were correlated with a property of the substituents, van der Waal's radius. Transformation products were the corresponding catechols, with the exception of p-hydroxybenzoic acid, the product of p-acetylphenol. A different product suggested a different pathway; p-acetylphenol, therefore, was deleted from the data base. PMID:16346236

  4. Extracting organic contaminants from water using the metal-organic framework CrIII(OH)·{O2C-C6H4-CO2}.

    PubMed

    Maes, Michael; Schouteden, Stijn; Alaerts, Luc; Depla, Diederik; De Vos, Dirk E

    2011-04-07

    The water-stable metal-organic framework MIL-53(Cr) is able to adsorb phenol and p-cresol from contaminated water as well as the monomeric sugar D-(-)-fructose. Based on the isotherm for phenol uptake from the liquid phase, it is proposed that the framework breathes to maximize the uptake.

  5. Physical and mechanical properties of bio-composites from wood particles and liquefied wood resin

    Treesearch

    Hui Pan; Todd F. Shupe; Chung-Yun Hse

    2009-01-01

    Compression molded composites were made from wood particles and a liquefied wood/phenol/formaldehyde co-condensed resin. Based on our previous research, a phenol to wood (P/W) ratio of 2/1 was chosen for this study. The two experimental variables selected were: 1) liquefaction temperature (150o and 180oC) and 2) cooking method (atmospheric and sealed). Panels were...

  6. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content

    PubMed Central

    Rothwell, Joseph A.; Perez-Jimenez, Jara; Neveu, Vanessa; Medina-Remón, Alexander; M'Hiri, Nouha; García-Lobato, Paula; Manach, Claudine; Knox, Craig; Eisner, Roman; Wishart, David S.; Scalbert, Augustin

    2013-01-01

    Polyphenols are a major class of bioactive phytochemicals whose consumption may play a role in the prevention of a number of chronic diseases such as cardiovascular diseases, type II diabetes and cancers. Phenol-Explorer, launched in 2009, is the only freely available web-based database on the content of polyphenols in food and their in vivo metabolism and pharmacokinetics. Here we report the third release of the database (Phenol-Explorer 3.0), which adds data on the effects of food processing on polyphenol contents in foods. Data on >100 foods, covering 161 polyphenols or groups of polyphenols before and after processing, were collected from 129 peer-reviewed publications and entered into new tables linked to the existing relational design. The effect of processing on polyphenol content is expressed in the form of retention factor coefficients, or the proportion of a given polyphenol retained after processing, adjusted for change in water content. The result is the first database on the effects of food processing on polyphenol content and, following the model initially defined for Phenol-Explorer, all data may be traced back to original sources. The new update will allow polyphenol scientists to more accurately estimate polyphenol exposure from dietary surveys. Database URL: http://www.phenol-explorer.eu PMID:24103452

  7. Tracing phenolic biosynthesis in Vitis vinifera via in situ C-13 labeling and liquid chromatography-diode-array detector-mass spectrometer/mass spectrometer detection.

    PubMed

    Chassy, Alexander W; Adams, Douglas O; Laurie, V Felipe; Waterhouse, Andrew L

    2012-10-17

    Phenolic compounds in Vitis vinifera contribute important flavor, functionality, and health qualities to both table and wine grapes. The plant phenolic metabolic pathway has been well characterized, however many important questions remain regarding the influence of environmental conditions on pathway regulation. As a diagnostic for this pathway's regulation, we present a technique to incorporate a stable-isotopic tracer, L-phenyl-(13)C(6)-alanine (Phe(13)), into grape berries in situ and the accompanying high throughput analytical method based on LC-DAD-MS/MS to quantify and track the label into phenylalanine metabolites. Clusters of V. vinifera cv. Cabernet Sauvignon, either near the onset of ripening or 4 weeks later, were exposed to Phe(13) in the vineyard. Phe(13) was present in berries 9 days afterwards as well as labeled flavonols and anthocyanins, all of which possessed a molecular ion shift of 6 amu. However, nearly all the label was found in anthocyanins, indicating tight regulation of phenolic biosynthesis at this stage of maturity. This method provides a framework for examining the regulation of phenolic metabolism at different stages of maturity or under different environmental conditions. Additionally, this technique could serve as a tool to further probe the metabolism/catabolism of grape phenolics. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product.

    PubMed

    Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Quirantes-Piné, Rosa; Segura-Carretero, Antonio

    2018-04-16

    The aim of the present study was to optimize the extraction of phenolic compounds in avocado peel using pressurized liquid extraction (PLE) with GRAS solvents. Response surface methodology (RSM) based on Central Composite Design 2 2 model was used in order to optimize PLE conditions. Moreover, the effect of air drying temperature on the total polyphenol content (TPC) and individual phenolic compounds concentration were evaluated. The quantification of individual compounds was performed by HPLC-DAD-ESI-TOF-MS. The optimized extraction conditions were 200°C as extraction temperature and 1:1 v/v as ethanol/water ratio. Regarding to the effect of drying, the highest TPC was obtained with a drying temperature of 85°C. Forty seven phenolic compounds were quantified in the obtained extracts, showing that phenolic acids found to be the more stables compounds to drying process, while procyanidins were the more thermolabiles analytes. To our knowledge, this is the first available study in which phenolic compounds extraction was optimized using PLE and such amount of phenolic compounds was quantified in avocado peel. These results confirm that PLE represents a powerful tool to obtain avocado peel extracts with high concentration in bioactive compounds suitable for its use in the food, cosmetic or pharmaceutical sector. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Tapping the Bioactivity Potential of Residual Stream from Its Pretreatments May Be a Green Strategy for Low-Cost Bioconversion of Rice Straw.

    PubMed

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2018-04-16

    In this study, it was found that the residual stream from pretreatments of rice straw exhibited high antioxidant activity. Assays based on the Folin-Ciocalteu colorimetric method confirmed that the residual stream contained large amounts of phenolic compounds. Three antioxidant assays were employed to evaluate the bioactivity of the residual stream. Strong linear correlations existed among the release of phenolic compounds, saccharification efficiency, and antioxidant activity. The alkaline pretreatment provided a much greater release of phenolic compounds, especially phenolic acids, compared to the acid pretreatment, and consequently, it had stronger linear correlations than the acid pretreatment. Antibacterial experiments demonstrated the ability of the phenolic compounds in the residual stream to inhibit the growth of microorganisms, indicating the potential of these compounds as antimicrobial agents. To discuss the possibility of the co-production of antimicrobial agents and biofuels/biochemicals, both acid and alkaline pretreatments were optimized using response surface methodology. Under the optimal conditions, 285.7 g glucose could be produced from 1 kg rice straw with the co-production of 3.84 g FA and 6.98 g p-CA after alkaline pretreatment. These results show that the recovery of phenolic compounds from the residual stream could be a green strategy for the low-cost bioconversion of rice straw.

  10. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.

    PubMed

    Nabais, J M Valente; Gomes, J A; Suhas; Carrott, P J M; Laginhas, C; Roman, S

    2009-08-15

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m(2)g(-1) and pore volume 0.5 cm(3)g(-1). The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 degrees C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g(-1) for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the pi-pi dispersion interaction between the phenol aromatic ring and the delocalised pi electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  11. Estimated daily intake of phenolics and antioxidants from green tea consumption in the Korean diet.

    PubMed

    Lee, Bong Han; Nam, Tae Gyu; Park, Na Young; Chun, Ock K; Koo, Sung I; Kim, Dae-Ok

    2016-01-01

    To estimate daily intake of total phenolics and flavonoids from green tea and the contribution of green tea to the antioxidant intake from the Korean diet, 24 commercial brands of green tea were selected and analyzed. Data from the Korea National Health and Nutrition Examination Survey (KNHANES) from 2008 and 2011 indicate that the green tea consumption in these 2 years was 2.8 g/tea drinker/day and 2.9 g/tea drinker/day, respectively. Based on data derived from direct measurements of green tea phenolics and the dataset of the 2008 KNHANES, we estimated the daily per tea drinker phenolics intake to be 172 mg gallic acid equivalents (GAE), the total flavonoids to be 43 mg catechin equivalents (CE) and the total antioxidants to be 267 mg vitamin C equivalents (VCE; 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay) and 401 mg VCE (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assay). In 2011, we estimated the daily per tea drinker total phenolics intake to be 246 mg GAE, the total flavonoids to be 60 mg CE and the antioxidants to be 448 mg VCE (DPPH assay) and 630 mg VCE (ABTS assay). The daily intake of total phenolics, total flavonoids and antioxidants from green tea consumption increased from 2008 to 2011.

  12. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    PubMed

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Application of ultrasound and air stripping for the removal of aromatic hydrocarbons from spent sulfidic caustic for use in autotrophic denitrification as an electron donor.

    PubMed

    Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho

    2013-01-01

    Spent sulfidic caustic (SSC) produced from petroleum industry can be reused to denitrify nitrate-nitrogen via a biological nitrogen removal process as an electron donor for sulfur-based autotrophic denitrification, because it has a large amount of dissolved sulfur. However, SSC has to be refined because it also contains some aromatic hydrocarbons, typically benzene, toluene, ethylbenzene, xylene (BTEX) and phenol that are recalcitrant organic compounds. In this study, laboratory-scale ultrasound irradiation and air stripping treatment were applied in order to remove these aromatic hydrocarbons. In the ultrasound system, both BTEX and phenol were exponentially removed by ultrasound irradiation during 60 min of reaction time to give the greatest removal efficiency of about 80%. Whereas, about 95% removal efficiency of BTEX was achieved, but not any significant phenol removal, within 30 min in the air stripping system, indicating that air stripping was a more efficient method than ultrasound irradiation. However, since air stripping did not remove any significant phenol, an additional process for degrading phenol was required. Accordingly, we applied a combined ultrasound and air stripping process. In these experiments, the removal efficiencies of BTEX and phenol were improved compared to the application of ultrasound and air stripping alone. Thus, the combined ultrasound and air stripping treatment is appropriate for refining SSC.

  14. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli.

    PubMed

    Sanhueza, Loreto; Melo, Ricardo; Montero, Ruth; Maisey, Kevin; Mendoza, Leonora; Wilkens, Marcela

    2017-01-01

    Synergy could be an effective strategy to potentiate and recover antibiotics nowadays useless in clinical treatments against multi-resistant bacteria. In this study, synergic interactions between antibiotics and grape pomace extract that contains high concentration of phenolic compounds were evaluated by the checkerboard method in clinical isolates of Staphylococcus aureus and Escherichia coli. To define which component of the extract is responsible for the synergic effect, phenolic compounds were identified by RP-HPLC and their relative abundance was determined. Combinations of extract with pure compounds identified there in were also evaluated. Results showed that the grape pomace extract combined with representatives of different classes of antibiotics as β-lactam, quinolone, fluoroquinolone, tetracycline and amphenicol act in synergy in all S. aureus and E. coli strains tested with FICI values varying from 0.031 to 0.155. The minimal inhibitory concentration (MIC) was reduced 4 to 75 times. The most abundant phenolic compounds identified in the extract were quercetin, gallic acid, protocatechuic acid and luteolin with relative abundance of 26.3, 24.4, 16.7 and 11.4%, respectively. All combinations of the extract with the components also showed synergy with FICI values varying from 0.031 to 0.5 and MIC reductions of 4 to 125 times with both bacteria strains. The relative abundance of phenolic compounds has no correlation with the obtained synergic effect, suggesting that the mechanism by which the synergic effect occurs is by a multi-objective action. It was also shown that combinations of grape pomace extract with antibiotics are not toxic for the HeLa cell line at concentrations in which the synergistic effect was observed (47 μg/mL of extract and 0.6-375 μg/mL antibiotics). Therefore, these combinations are good candidates for testing in animal models in order to enhance the effect of antibiotics of different classes and thus restore the currently unused clinical antibiotics due to the phenomenon of resistance. Moreover, the use of grape pomace is a good and low-cost alternative for this purpose being a waste residue of the wine industry.

  15. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  16. Componential Profile and Amylase Inhibiting Activity of Phenolic Compounds from Calendula officinalis L. Leaves

    PubMed Central

    Olennikov, Daniil N.; Kashchenko, Nina I.

    2014-01-01

    An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6′-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6′′-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase. PMID:24683352

  17. The effect of water on the thermal expansion behavior of FM5055 carbon phenolic

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1995-01-01

    The effect of water on the thermal expansion behavior of FM5055 carbon phenolic is studied using a theory of mixtures approach. A partial pressure expression for the water constituent was obtained based upon certain assumptions regarding the thermodynamic state of water as it resides in the free volumes of the polymer. A simple constitutive model is used to simulate the polymer strain due to the application of the partial pressure of water. The resulting theory is applied to model the effect of moisture on the thermal expansion of FM5055 carbon phenolic specimens. The application of the theory results in calculated strains which were in close agreement with the measured strains.

  18. Phenolic compounds from red wine and coffee are associated with specific intestinal microorganisms in allergic subjects.

    PubMed

    Cuervo, Adriana; Hevia, Arancha; López, Patricia; Suárez, Ana; Diaz, Carmen; Sánchez, Borja; Margolles, Abelardo; González, Sonia

    2016-01-01

    The dietary modulation of gut microbiota, suggested to be involved in allergy processes, has recently attracted much interest. While several studies have addressed the use of fibres to modify intestinal microbial populations, information about other components, such as phenolic compounds, is scarce. The aim of this work was to identify the dietary components able to influence the microbiota in 23 subjects suffering from rhinitis and allergic asthma, and 22 age- and sex-matched controls. The food intake was recorded by means of an annual food frequency questionnaire. Dietary fibre tables were obtained from Marlett et al., and the Phenol-Explorer database was used to assess the phenolic compound intake. The quantification of microbial groups was performed using an Ion Torrent 16S rRNA gene-based analysis. The results showed a direct association between the intake of red wine, a source of stilbenes, and the relative abundance of Bacteroides, and between the intake of coffee, rich in phenolic acids, and the abundance of Clostridium, Lactococcus and Lactobacillus genera. Despite epidemiological analyses not establishing causality, these results support the association between polyphenol-rich beverages and faecal microbiota in allergic patients.

  19. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers.

    PubMed

    Sinkovič, Lovro; Demšar, Lea; Žnidarčič, Dragan; Vidrih, Rajko; Hribar, Janez; Treutter, Dieter

    2015-01-01

    Chicory (Cichorium intybus L.) is a typical Mediterranean vegetable, and it shows great morphological diversity, including different leaf colours. Five cultivars commonly produced in Slovenia ('Treviso', 'Verona', 'Anivip', 'Castelfranco', 'Monivip') were grown in pots under controlled conditions in a glasshouse, with organic and/or mineral fertilizers administered to meet nitrogen requirements. HPLC analysis was carried out to study the phenolic compositions of the leaves. A total of 33 phenolic compounds were extracted from these chicory leaves and were quantitatively evaluated in an HPLC-DAD-based metabolomics study. Among the cultivars, the highest TPC was seen for 'Treviso' (300.1 mg/100 g FW), and the lowest, for 'Castelfranco' (124.9 mg/100g FW). Across the different treatments, the highest TPC was in the control samples (254.3 mg/100 g FW), and the lowest for the organic (128.6 mg/100 g FW) and mineral fertilizer (125.5 mg/100 g FW) treatments. The predominant phenolic compounds in all of the samples were hydroxycinnamic acids, including chlorogenic and cichoric acid. Fertilizer administration provides a discriminant classification of the chicory cultivars according to their phenolic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.

    PubMed

    Hilgers, Roelant; Vincken, Jean-Paul; Gruppen, Harry; Kabel, Mirjam A

    2018-02-05

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it remains unclear to what extent the presence of a mediator influences the reactions of the phenolic subunits of lignin. To get more insight in this, UHPLC-MS was used to study the reactions of a phenolic lignin dimer (GBG), initiated by a laccase from Trametes versicolor , alone or in combination with the mediators HBT and ABTS. The role of HBT was negligible, as its oxidation by laccase occurred slowly in comparison to that of GBG. Laccase and laccase/HBT oxidized GBG at a comparable rate, resulting in extensive polymerization of GBG. In contrast, laccase/ABTS converted GBG at a higher rate, as GBG was oxidized both directly by laccase but also by ABTS radical cations, which were rapidly formed by laccase. The laccase/ABTS system resulted in Cα oxidation of GBG and coupling of ABTS to GBG, rather than polymerization of GBG. Based on these results, we propose reaction pathways of phenolic lignin model compounds with laccase/HBT and laccase/ABTS.

Top