Science.gov

Sample records for alternative phylogenetic hypotheses

  1. How reliable are human phylogenetic hypotheses?

    PubMed Central

    Collard, Mark; Wood, Bernard

    2000-01-01

    Cladistic analysis of cranial and dental evidence has been widely used to generate phylogenetic hypotheses about humans and their fossil relatives. However, the reliability of these hypotheses has never been subjected to external validation. To rectify this, we applied identical methods to equivalent evidence from two groups of extant higher primates for whom reliable molecular phylogenies are available, the hominoids and papionins. We found that the phylogenetic hypotheses based on the craniodental data were incompatible with the molecular phylogenies for the groups. Given the robustness of the molecular phylogenies, these results indicate that little confidence can be placed in phylogenies generated solely from higher primate craniodental evidence. The corollary of this is that existing phylogenetic hypotheses about human evolution are unlikely to be reliable. Accordingly, new approaches are required to address the problem of hominin phylogeny. PMID:10781112

  2. Synergistic epistasis and alternative hypotheses.

    PubMed

    Trouve, S; Ding, A; Goudet, J

    2004-11-01

    Inbreeding generally results in deleterious shifts in mean fitness. If the fitness response to increasing inbreeding coefficient is non-linear, this suggests a contribution of epistasis to inbreeding depression. In a cross-breeding experiment, Salathe & Ebert (2003. J. Evol. Biol. 16: 976-985) tested and found the presence of this non-linearity in Daphnia magna. They argue that epistatic interactions cause this non-linearity. We argue here that their experimental protocol does not allow disentangling the effect of synergistic epistasis from two alternative hypotheses, namely hybrid vigour and statistical non-independence of data.

  3. Placing the mountain goat: a total evidence approach to testing alternative hypotheses.

    PubMed

    Shafer, Aaron B A; Hall, Jocelyn C

    2010-04-01

    The interpretation of a group's evolutionary history can be altered based on the phylogenetic placement of problematic taxa. Mountain goats (Oreamnos americanus) epitomize a 'rogue taxon' as many placements within the Caprini tribe have been suggested. Using a total evidence approach, we reconstructed the Caprini phylogeny using parsimony, likelihood, and Bayesian methods. Bayesian and likelihood methods placed mountain goats as an independent lineage sister to all Caprini except muskox and goral. Maximum parsimony placed mountain goats in a derived Caprini clade. Closer examination revealed that parsimony analysis failed to integrate over phylogenetic uncertainty. We then tested our mountain goat placement against nine published alternatives using non-parametric tests, and the parametric SOWH test. Non-parametric tests returned ambiguous results, but the SOWH test rejected all alternative hypotheses. Our study represents the first explicit testing of all hypotheses for the placement of mountain goats and supports a relatively basal position for the taxon. PMID:20097296

  4. Placing the mountain goat: a total evidence approach to testing alternative hypotheses.

    PubMed

    Shafer, Aaron B A; Hall, Jocelyn C

    2010-04-01

    The interpretation of a group's evolutionary history can be altered based on the phylogenetic placement of problematic taxa. Mountain goats (Oreamnos americanus) epitomize a 'rogue taxon' as many placements within the Caprini tribe have been suggested. Using a total evidence approach, we reconstructed the Caprini phylogeny using parsimony, likelihood, and Bayesian methods. Bayesian and likelihood methods placed mountain goats as an independent lineage sister to all Caprini except muskox and goral. Maximum parsimony placed mountain goats in a derived Caprini clade. Closer examination revealed that parsimony analysis failed to integrate over phylogenetic uncertainty. We then tested our mountain goat placement against nine published alternatives using non-parametric tests, and the parametric SOWH test. Non-parametric tests returned ambiguous results, but the SOWH test rejected all alternative hypotheses. Our study represents the first explicit testing of all hypotheses for the placement of mountain goats and supports a relatively basal position for the taxon.

  5. An algorithm for constructing and searching spaces of alternative hypotheses.

    PubMed

    Griffin, Christopher; Testa, Kelly; Racunas, Stephen

    2011-06-01

    In this paper, we develop techniques for automated hypothesis-space exploration over data sets that may contain contradictions. To do so, we make use of the equivalence between two formulations: those of first-order predicate logic with prefix modal quantifiers under the finite-model hypothesis and those of mixed-integer linear programming (MILP) problems. Unlike other approaches, we do not assume that all logical assertions are true without doubt. Instead, we look for alternative hypotheses about the validity of the claims by identifying alternative optimal solutions to a corresponding MILP. We use a collection of slack variables in the derived linear constraints to indicate the presence of contradictory data or assumptions. The objective is to minimize contradictions between data and assertions represented by the presence of nonzero slack in the set of linear constraints. In this paper, we present the following: 1) a correspondence between first-order predicate logic with modal quantifier prefixes under the finite-model hypothesis and MILP problems and 2) an implicit enumeration algorithm for exploring the contradiction hypothesis space. PMID:21147596

  6. An Algorithm for Constructing and Searching Spaces of Alternative Hypotheses

    SciTech Connect

    Testa, Kelly M; Griffin, Christopher H

    2010-01-01

    In this paper we develop techniques for automated hypothesis generation over data sets that maycontain contradictions. To do so, we make use of the equivalence between two formulations: those offirst order predicate logic with prefix modal quantifiers under the finite model hypothesis and those ofMixed Integer Linear Programming (MILP) problems. The equivalence between integer programming and logical satisfiability has been known since Karp'sseminal work in NP-completeness. Other authors have made use of this equivalence to explore efficientmethods of solving the satisfiability problem in the propositional calculus for specific problem types.The work presented here differentiates itself from previous work in that we do not assume that alllogical assertions are true without doubt. Instead we look for alternative hypotheses about the validityof the claims by identifying alternative optimal solutions to a corresponding MILP. We use a collectionof slack variables in the derived linear constraints to indicate the presence of contradictory data orassumptions. The objective is to minimize contradictions between data and assertions represented bythe presence of non-zero slack in the set of linear constraints.

  7. An Algorithm for Constructing and Searching Spaces of Alternative Hypotheses

    SciTech Connect

    Testa, Kelly M; Griffin, Christopher H

    2011-01-01

    In this paper, we develop techniques for automated hypothesis-space exploration over data sets that may contain contradictions. To do so, we make use of the equivalence between two formulations: those of first-order predicate logic with prefix modal quantifiers under the finite-model hypothesis and those of mixed-integer linear programming (MILP) problems. Unlike other approaches, we do not assume that all logical assertions are true without doubt. Instead, we look for alternative hypotheses about the validity of the claims by identifying alternative optimal solutions to a corresponding MILP. We use a collection of slack variables in the derived linear constraints to indicate the presence of contradictory data or assumptions. The objective is to minimize contradictions between data and assertions represented by the presence of nonzero slack in the set of linear constraints. In this paper, we present the following: 1) a correspondence between first-order predicate logic with modal quantifier prefixes under the finite-model hypothesis and MILP problems and 2) an implicit enumeration algorithm for exploring the contradiction hypothesis space.

  8. A chain is no stronger than its weakest link: double decay analysis of phylogenetic hypotheses.

    PubMed

    Wilkinson, M; Thorley, J L; Upchurch, P

    2000-12-01

    In decay analyses the support for a particular split in most-parsimonious trees is its decay index, that is, the extra steps required of the shortest trees that do not include the split. By focusing solely on the support for splits, traditional decay analysis may provide an incomplete and potentially misleading summary of the support for phylogenetic relationships common to the most-parsimonious tree or trees. Here, we introduce double decay analysis, a new approach to assessing support for phylogenetic relationships. Double decay analysis is the determination of the decay indices of all n-taxon statements/partitions common to the most-parsimonious tree. The results of double decay analyses are presented in a partition table, but various approaches to graphical representation of the results, including the use of reduced consensus support trees, are also discussed. Double decay analysis provides a more comprehensive summary and facilitates a better understanding of the strengths and weaknesses of complex phylogenetic hypotheses than does traditional decay analysis. The limitations of traditional decay analyses and the utility of double decay analyses are illustrated with both contrived data and real data for sauropod dinosaurs.

  9. Advances in the phylogenesis of Agaricales and its higher ranks and strategies for establishing phylogenetic hypotheses§

    PubMed Central

    Zhao, Rui-lin; Desjardin, Dennis E.; Soytong, Kasem; Hyde, Kevin D.

    2008-01-01

    We present an overview of previous research results on the molecular phylogenetic analyses in Agaricales and its higher ranks (Agaricomycetes/Agaricomycotina/Basidiomycota) along with the most recent treatments of taxonomic systems in these taxa. Establishing phylogenetic hypotheses using DNA sequences, from which an understanding of the natural evolutionary relationships amongst clades may be derived, requires a robust dataset. It has been recognized that single-gene phylogenies may not truly represent organismal phylogenies, but the concordant phylogenetic genealogies from multiple-gene datasets can resolve this problem. The genes commonly used in mushroom phylogenetic research are summarized. PMID:18837104

  10. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  11. Chaos Versus Noisy Periodicity: Alternative Hypotheses for Childhood Epidemics

    NASA Astrophysics Data System (ADS)

    Olsen, L. F.; Schaffer, W. M.

    1990-08-01

    Whereas case rates for some childhood diseases (chickenpox) often vary according to an almost regular annual cycle, the incidence of more efficiently transmitted infections such as measles is more variable. Three hypotheses have been proposed to account for such fluctuations. (i) Irregular dynamics result from random shocks to systems with stable equilibria. (ii) The intrinsic dynamics correspond to biennial cycles that are subject to stochastic forcing. (iii) Aperiodic fluctuations are intrinsic to the epidemiology. Comparison of real world data and epidemiological models suggests that measles epidemics are inherently chaotic. Conversely, the extent to which chickenpox outbreaks approximate a yearly cycle depends inversely on the population size.

  12. Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses

    PubMed Central

    2013-01-01

    Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting

  13. How the mainstream limits the spreading of alternative hypotheses

    NASA Astrophysics Data System (ADS)

    Kalenda, Pavel

    2014-05-01

    that prof. Djuric had tried for more than 10 years to publish this article in various peer-reviewed journals. So, prof. Djuric got into the official book (list) of "scientific dissidents" among hundreds of other professors and doctors of science (De Climont 2012). These "scientific dissidents" do not have access to established journals and may possibly publish privately or at best on the web in marginal journals whose list was published by De Climont (2012). Such a marginal journal in the field of geophysics and geology is New Concepts in Global Tectonics. This journal has been established because the current hypothesis about the movement of the continents due to convection currents in the mantle becomes under the weight of new observation quite untenable. 4) Scientific consensus History has known many hypotheses that were accepted as proven truth but later, in the light of new knowledge, they completely failed. - No one has the right to decide which scientific hypotheses will be accepted and which will not get into print. Perhaps the worst situation is in climatology (due to global effects and impacts), when the plenary session of IPCC consensually stated that the current global warming was mainly due to the human activity. References De Climont, J. (2012): The worldwide list of dissident scientists. http://astrojan.hostei.com/droa.htm. Djurič, J. (2006): Unification Of Gravitation And Electromagnetism. http://jovandjuric.tripod.com/ David H. Douglass, John R. Christy, Benjamin D. Pearson and S. Fred Singer (2007): A comparison of tropical temperature trends with model predictions. International Journal of Climatology, Volume 28, Issue 13, 15 November 2008, Pages: 1693-1701. http://onlinelibrary.wiley.com/doi/10.1002/joc.1651/pdf. Einstein, A. : List of scientific publications by Albert Einstein. /wiki/List_of_scientific_publications_by_Albert_Einstein. Kolínský, P., Valenta, J. and Gaždová, R. (2012): Seismicity, groundwater level variations and earth tides in

  14. How the mainstream limits the spreading of alternative hypotheses

    NASA Astrophysics Data System (ADS)

    Kalenda, Pavel

    2014-05-01

    that prof. Djuric had tried for more than 10 years to publish this article in various peer-reviewed journals. So, prof. Djuric got into the official book (list) of "scientific dissidents" among hundreds of other professors and doctors of science (De Climont 2012). These "scientific dissidents" do not have access to established journals and may possibly publish privately or at best on the web in marginal journals whose list was published by De Climont (2012). Such a marginal journal in the field of geophysics and geology is New Concepts in Global Tectonics. This journal has been established because the current hypothesis about the movement of the continents due to convection currents in the mantle becomes under the weight of new observation quite untenable. 4) Scientific consensus History has known many hypotheses that were accepted as proven truth but later, in the light of new knowledge, they completely failed. - No one has the right to decide which scientific hypotheses will be accepted and which will not get into print. Perhaps the worst situation is in climatology (due to global effects and impacts), when the plenary session of IPCC consensually stated that the current global warming was mainly due to the human activity. References De Climont, J. (2012): The worldwide list of dissident scientists. http://astrojan.hostei.com/droa.htm. Djurič, J. (2006): Unification Of Gravitation And Electromagnetism. http://jovandjuric.tripod.com/ David H. Douglass, John R. Christy, Benjamin D. Pearson and S. Fred Singer (2007): A comparison of tropical temperature trends with model predictions. International Journal of Climatology, Volume 28, Issue 13, 15 November 2008, Pages: 1693-1701. http://onlinelibrary.wiley.com/doi/10.1002/joc.1651/pdf. Einstein, A. : List of scientific publications by Albert Einstein. /wiki/List_of_scientific_publications_by_Albert_Einstein. Kolínský, P., Valenta, J. and Gaždová, R. (2012): Seismicity, groundwater level variations and earth tides in

  15. Middle-School Students' Reasoning about Alternative Hypotheses in a Scaffolded, Software-Based Inquiry Investigation

    ERIC Educational Resources Information Center

    Kyza, Eleni A.

    2009-01-01

    The examination of alternative hypotheses can initiate students into scientific practices and equip them with scientific literacy skills that will help them participate in ongoing debates involving complex socio-scientific problems. Hypothesis testing, in which the examination of alternative hypotheses is situated, has received much attention in…

  16. Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing.

    PubMed

    Sánchez, Rubén; Serra, François; Tárraga, Joaquín; Medina, Ignacio; Carbonell, José; Pulido, Luis; de María, Alejandro; Capella-Gutíerrez, Salvador; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2011-07-01

    Phylemon 2.0 is a new release of the suite of web tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. It has been designed as a response to the increasing demand of molecular sequence analyses for experts and non-expert users. Phylemon 2.0 has several unique features that differentiates it from other similar web resources: (i) it offers an integrated environment that enables evolutionary analyses, format conversion, file storage and edition of results; (ii) it suggests further analyses, thereby guiding the users through the web server; and (iii) it allows users to design and save phylogenetic pipelines to be used over multiple genes (phylogenomics). Altogether, Phylemon 2.0 integrates a suite of 30 tools covering sequence alignment reconstruction and trimming; tree reconstruction, visualization and manipulation; and evolutionary hypotheses testing.

  17. Consider the Alternative: The Effects of Causal Knowledge on Representing and Using Alternative Hypotheses in Judgments under Uncertainty

    ERIC Educational Resources Information Center

    Hayes, Brett K.; Hawkins, Guy E.; Newell, Ben R.

    2016-01-01

    Four experiments examined the locus of impact of causal knowledge on consideration of alternative hypotheses in judgments under uncertainty. Two possible loci were examined; overcoming neglect of the alternative when developing a representation of a judgment problem and improving utilization of statistics associated with the alternative…

  18. Testing nested phylogenetic and phylogeographic hypotheses in the Plethodon vandykei species group.

    PubMed

    Carstens, Bryan C; Stevenson, Angela L; Degenhardt, Jeremiah D; Sullivan, Jack

    2004-10-01

    Mesic forests in the North American Pacific Northwest occur in two disjunct areas: along the coastal and Cascade ranges of Oregon, Washington, and British Columbia as well as the Northern Rocky Mountains of Idaho, Montana, and British Columbia. Over 150 species or species complexes have disjunct populations in each area, and a priori hypotheses based on phytogeography and geology potentially explain the disjunction via either dispersal or vicariance. Here, we test these hypotheses in the disjunct salamander complex Plethodon vandykei and P. idahoensisby collecting genetic data (669 bp of Cyt b) from 262 individuals. Maximum likelihood analysis indicated reciprocal monophyly of these species, supporting the ancient vicariance hypothesis, whereas parametric bootstrap and Bayesian hypothesis testing allow rejection of the dispersal hypothesis. The coalescent estimate of the time since population divergence (estimated using MDIV) is 3.75 x 106 years, and the 95%credibility interval of this value overlaps with the geological estimate of vicariance, but not the hypothesized dispersal. These results are congruent with the pattern seen in other mesic forest amphibian lineages and suggest disjunction in amphibians may be a concerted response to a geological/climatological event. WithinP. idahoensis, we tested the corollary hypothesis of an inland Pleistocene refugium in the Clearwater drainage with nested clade analysis and coalescent estimates of population growth rate (g). Both analyses support post-Pleistocene expansion from the Clearwater refugium. We corroborated this result by calculating Tajima's Dand mismatch distribution within each drainage, showing strong evidence for recent population expansion within most drainages. This work demonstrates the utility of statistical phylogeography and contributes two novel analytical tools: tests of stationarity with respect to topology in the Bayesian estimation, and the use of coalescent simulations to test the significance of

  19. The interrelationships of metazoan parasites: a review of phylum-and higher-level hypotheses from recent morphological and molecular phylogenetic analyses.

    PubMed

    Zrzavý, J

    2001-01-01

    Phylogeny of seven groups of metazoan parasitic groups is reviewed, based on both morphological and molecular data. The Myxozoa (=Malacosporea + Myxosporea) are most probably related to the egg-parasitic cnidarian Polypodium (Hydrozoa?: Polypodiozoa); the other phylogenetic hypotheses are discussed and the possible non-monophyly of the Cnidaria (with the Polypodiozoa-Myxozoa clade closest to the Triploblastica) is suggested. The Mesozoa is a monophyletic group, possibly closely related to the (monophyletic) Acoelomorpha; whether the Acoelomorpha and Mesozoa represent the basalmost triploblast clade(s) or a derived platyhelminth subclade may depend on rooting the tree of the Triploblastica. Position of the monophyletic Neodermata (=Trematoda + Cercomeromorpha) within the rhabditophoran flatworms is discussed, with two major alternative hypotheses about the neodermatan sister-group relationships (viz., the "neoophoran" and "revertospermatan"). The Myzostomida are not annelids but belong among the Platyzoa, possibly to the clade of animals with anterior sperm flagella (=Prosomastigozoa). The Acanthocephala represent derived syndermates ("rotifers"), possibly related to Seison (the name Pararotatoria comb. n. is proposed for Seisonida + Acanthocephala). The crustacean origin of the Pentastomida based on spermatological and molecular evidence (Pentastomida + Branchiura = Ichthyostraca) is confronted with palaeontological views favouring the pre-arthropod derivation of the pentastomids. Phylogenetic position of the nematodes within the Ecdysozoa and evolution of nematode parasitism are discussed, and the lack of relevant information about the enigmatic ectoproctan parasite Buddenbrockia is emphasised.

  20. Testing Alternative Hypotheses Regarding the Association between Behavioral Inhibition and Language Development in Toddlerhood

    ERIC Educational Resources Information Center

    Watts, Ashley K. Smith; Patel, Deepika; Corley, Robin P.; Friedman, Naomi P.; Hewitt, John K.; Robinson, JoAnn L.; Rhee, Soo H.

    2014-01-01

    Studies have reported an inverse association between language development and behavioral inhibition or shyness across childhood, but the direction of this association remains unclear. This study tested alternative hypotheses regarding this association in a large sample of toddlers. Data on behavioral inhibition and expressive and receptive…

  1. Evaluating multiple alternative hypotheses for the origin of Bilateria: An analysis of 18S rRNA molecular evidence

    PubMed Central

    Collins, Allen G.

    1998-01-01

    Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians. PMID:9860990

  2. New Metacentric Populations and Phylogenetic Hypotheses Involving Whole-Arm Reciprocal Translocation in Mus musculus domesticus from Sicily, Southern Italy.

    PubMed

    Castiglia, Riccardo; Capanna, Ernesto; Bezerra, Alexandra M R; Bizzoco, Domenico; Zambigli, Emanuela; Solano, Emanuela

    2015-01-01

    The house mouse Mus musculus domesticus is characterized by more than 100 metacentric populations, due to the occurrence of Robertsonian (Rb) fusions, together with the standard all-telocentric karyotype (2n = 40). We examined G-banded karyotypes of 18 mice from 10 localities in Sicily and describe 3 new metacentric populations: 'Ragusa Ibla' (IRAG), 2n = 33-36, Rb(2.4), Rb(5.6), Rb(9.16), Rb(13.17); 'Piana degli Albanesi' (IPIA), 2n = 23, Rb(1.18), Rb(2.15), Rb(3.5), Rb(4.12), Rb(6.11), Rb(7.8), Rb(9.16), Rb(10.14), Rb(13.17); 'Trapani' (ITRA), 2n = 22, Rb(1.18), Rb(2.15), Rb(3.7), Rb(4.12), Rb(5.9), Rb(6.11), Rb(8.16), Rb(10.14), Rb(13.17). Three mice belonged to the previously reported 'Castelbuono' race (ICAS), 2n = 24, which is very similar to the nearby 'Palermo' (IPAL) race, 2n = 26. Three Rb fusions not yet observed in wild mouse populations were identified: Rb(3.5), Rb(3.7) and Rb(5.9). Rb fusions shared among 4 races (IPIA, IRAG, ICAS, and IPAL) allowed us to describe their potential phylogenetic relationships. We obtained 2 alternative phylogenetic trees. The differences between them are mainly due to various modes of formation of IPIA and ITRA. In the first hypothesis, the specific Rb fusions occurred independently. In the second, those of IRAG originated from those of IPIA via whole-arm reciprocal translocations.

  3. Habitat structure mediates predation risk for sedentary prey: Experimental tests of alternative hypotheses

    USGS Publications Warehouse

    Chalfoun, A.D.; Martin, T.E.

    2009-01-01

    Predation is an important and ubiquitous selective force that can shape habitat preferences of prey species, but tests of alternative mechanistic hypotheses of habitat influences on predation risk are lacking. 2. We studied predation risk at nest sites of a passerine bird and tested two hypotheses based on theories of predator foraging behaviour. The total-foliage hypothesis predicts that predation will decline in areas of greater overall vegetation density by impeding cues for detection by predators. The potential-prey-site hypothesis predicts that predation decreases where predators must search more unoccupied potential nest sites. 3. Both observational data and results from a habitat manipulation provided clear support for the potential-prey-site hypothesis and rejection of the total-foliage hypothesis. Birds chose nest patches containing both greater total foliage and potential nest site density (which were correlated in their abundance) than at random sites, yet only potential nest site density significantly influenced nest predation risk. 4. Our results therefore provided a clear and rare example of adaptive nest site selection that would have been missed had structural complexity or total vegetation density been considered alone. 5. Our results also demonstrated that interactions between predator foraging success and habitat structure can be more complex than simple impedance or occlusion by vegetation. ?? 2008 British Ecological Society.

  4. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability.

    PubMed

    McKechnie, Iain; Lepofsky, Dana; Moss, Madonna L; Butler, Virginia L; Orchard, Trevor J; Coupland, Gary; Foster, Fredrick; Caldwell, Megan; Lertzman, Ken

    2014-03-01

    Pacific herring (Clupea pallasii), a foundation of coastal social-ecological systems, is in decline throughout much of its range. We assembled data on fish bones from 171 archaeological sites from Alaska, British Columbia, and Washington to provide proxy measures of past herring distribution and abundance. The dataset represents 435,777 fish bones, dating throughout the Holocene, but primarily to the last 2,500 y. Herring is the single-most ubiquitous fish taxon (99% ubiquity) and among the two most abundant taxa in 80% of individual assemblages. Herring bones are archaeologically abundant in all regions, but are superabundant in the northern Salish Sea and southwestern Vancouver Island areas. Analyses of temporal variability in 50 well-sampled sites reveals that herring exhibits consistently high abundance (>20% of fish bones) and consistently low variance (<10%) within the majority of sites (88% and 96%, respectively). We pose three alternative hypotheses to account for the disjunction between modern and archaeological herring populations. We reject the first hypothesis that the archaeological data overestimate past abundance and underestimate past variability. We are unable to distinguish between the second two hypotheses, which both assert that the archaeological data reflect a higher mean abundance of herring in the past, but differ in whether variability was similar to or less than that observed recently. In either case, sufficient herring was consistently available to meet the needs of harvesters, even if variability is damped in the archaeological record. These results provide baseline information prior to herring depletion and can inform modern management.

  5. Alternative hypothese for the origin of the ultra-low velocity zones

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, J.; Hrubiak, R.; Smith, J.

    2015-12-01

    Decades ago seismic tomography revealed peculiar patches known as the ultra-low-velocity zones (ULVZ), located just above the Earth's core-mantle boundary. Typically 5 to 40 km in height, and 100 km in lateral extent, the ULVZs are denser than the surrounding mantle by about 10%, and slower in shear and compressional wave velocities by roughly 30% and 10%, respectively. Elucidating the origin of ULVZs is a key issue in understanding mantle heterogeneity and unraveling the history of chemical differentiation in deep Earth. Existing models invoking partial melting of silicate lithology require specific solidus temperatures to produce isolated melt regions, and they may not be able to account for the large density excess.The scenarios involving iron-rich post-bridgmanite or ferropericlase have been questioned by recent theoretical results showing that iron enrichment in crystalline phases cannot simultaneously explain the observed density and velocity anomalies. Thus the nature of the ULVZs has remained enigmatic. Here we show that the eutectic melting curve of the iron-carbon binary system intersects with the present-day geotherm near the base of the Earth's mantle, suggesting the presence of metallic melt in the D" layer. Using an established model for solid-liquid compositions and approximate values of density and elastic parameters, we found that introducing a suitable fraction of metallic melt could match all the seismic observations, and the fraction depends on the wetting behavior of the melt. We propose a number of alternative hypotheses for the origin of the ultra-low velocity zones, including short-lived ULVZs with metallic melt that are supplied by subducted slabs, long-lasting ULVZs involving both metallic and silicate melts, and ULVZs containing iron-rich solids and residual metallic melt. These hypotheses can be tested by future studies on surface tension, element partitioning, elastic properties, and dynamic modeling.

  6. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability

    PubMed Central

    McKechnie, Iain; Lepofsky, Dana; Moss, Madonna L.; Butler, Virginia L.; Orchard, Trevor J.; Coupland, Gary; Foster, Fredrick; Caldwell, Megan; Lertzman, Ken

    2014-01-01

    Pacific herring (Clupea pallasii), a foundation of coastal social-ecological systems, is in decline throughout much of its range. We assembled data on fish bones from 171 archaeological sites from Alaska, British Columbia, and Washington to provide proxy measures of past herring distribution and abundance. The dataset represents 435,777 fish bones, dating throughout the Holocene, but primarily to the last 2,500 y. Herring is the single-most ubiquitous fish taxon (99% ubiquity) and among the two most abundant taxa in 80% of individual assemblages. Herring bones are archaeologically abundant in all regions, but are superabundant in the northern Salish Sea and southwestern Vancouver Island areas. Analyses of temporal variability in 50 well-sampled sites reveals that herring exhibits consistently high abundance (>20% of fish bones) and consistently low variance (<10%) within the majority of sites (88% and 96%, respectively). We pose three alternative hypotheses to account for the disjunction between modern and archaeological herring populations. We reject the first hypothesis that the archaeological data overestimate past abundance and underestimate past variability. We are unable to distinguish between the second two hypotheses, which both assert that the archaeological data reflect a higher mean abundance of herring in the past, but differ in whether variability was similar to or less than that observed recently. In either case, sufficient herring was consistently available to meet the needs of harvesters, even if variability is damped in the archaeological record. These results provide baseline information prior to herring depletion and can inform modern management. PMID:24550468

  7. Reconstructions of the axial muscle insertions in the occipital region of dinosaurs: evaluations of past hypotheses on marginocephalia and tyrannosauridae using the extant phylogenetic bracket approach.

    PubMed

    Tsuihiji, Takanobu

    2010-08-01

    The insertions of the cervical axial musculature on the occiput in marginocephalian and tyrannosaurid dinosaurs have been reconstructed in several studies with a view to their functional implications. Most of the past reconstructions on marginocephalians, however, relied on the anatomy of just one clade of reptiles, Lepidosauria, and lack phylogenetic justification. In this study, these past reconstructions were evaluated using the Extant Phylogenetic Bracket approach based on the anatomy of various extant diapsids. Many muscle insertions reconstructed in this study were substantially different from those in the past studies, demonstrating the importance of phylogenetically justified inferences based on the conditions of Aves and Crocodylia for reconstructing the anatomy of non-avian dinosaurs. The present reconstructions show that axial muscle insertions were generally enlarged in derived marginocephalians, apparently correlated with expansion of their parietosquamosal shelf/frill. Several muscle insertions on the occiput in tyrannosaurids reconstructed in this study using the Extant Phylogenetic Bracket approach were also rather different from recent reconstructions based on the same, phylogenetic and parsimony-based method. Such differences are mainly due to differences in initial identifications of muscle insertion areas or different hypotheses on muscle homologies in extant diapsids. This result emphasizes the importance of accurate and detailed observations on the anatomy of extant animals as the basis for paleobiological inferences such as anatomical reconstructions and functional analyses.

  8. Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses.

    PubMed

    Eckert, Andrew J; Hall, Benjamin D

    2006-07-01

    Pines comprise one of the largest coniferous genera, are distributed throughout the Northern Hemisphere, and have an abundant fossil record. Distributions of fossils have been used to derive a three-step hypothesis of early pine evolution, which postulates a Mesozoic origin for the genus, east-west expansions across Laurasia, and retraction into Eocene refugia. Here, we present phylogenetic tests of this hypothesis using chloroplast sequence data from four loci for 83 pine species. We used the fossil-based hypothesis to derive null expectations concerning monophyly of taxonomic groups, dates of cladogenesis, and patterns of diversification. Phylogenetic analyses using several algorithms subsequently provided rigorous tests of these expectations. Our inferred phylogenies illustrated broad congruence with taxonomic groups, but highlighted consistent problems within subgenus Strobus. Estimated minimum dates of divergence derived from relaxed clock methods were largely consistent with the fossil record and yielded a date for the ingroup node of Pinus of 128+/-4 mya, depending upon the calibration used for subgenus Pinus. Ancestral area reconstructions showed Pinus to have most likely originated in Eurasia. Major clades differed in biogeographic patterns, but were consistent with the fossil-based hypothesis. We found weak support, however, for a change in diversification rate in the Eocene as interpretations of fossil distributions would have predicted.

  9. A Test of Three Alternative Hypotheses regarding the Effects of Early Delinquency on Adolescent Psychosocial Functioning and Substance Involvement

    ERIC Educational Resources Information Center

    Mason, W. Alex; Hitchings, Julia E.; McMahon, Robert J.; Spoth, Richard L.

    2007-01-01

    This study compared alternative hypotheses (from general deviance, life course, and developmental psychopathology perspectives) regarding the effects of early adolescent delinquency on psychosocial functioning in family, school, and peer contexts, and on alcohol use. Analyses also examined parent-child negative affective quality, prosocial school…

  10. Confirmatory and Competitive Evaluation of Alternative Gene-Environment Interaction Hypotheses

    ERIC Educational Resources Information Center

    Belsky, Jay; Pluess, Michael; Widaman, Keith F.

    2013-01-01

    Background: Most gene-environment interaction (GXE) research, though based on clear, vulnerability-oriented hypotheses, is carried out using exploratory rather than hypothesis-informed statistical tests, limiting power and making formal evaluation of competing GXE propositions difficult. Method: We present and illustrate a new regression technique…

  11. Why Johnnie Can't Apply Neuroscience: Testing Alternative Hypotheses Using Performance-Based Assessment.

    PubMed

    Mavis, Brian E.; Lovell, Kathryn L.; Ogle, Karen S.

    1998-01-01

    When second year medical students were less successful than expected in solving an OSCE neurologic case, a subsequent performance-based assessment was modified to permit testing of four hypotheses related to knowledge application, ability decay over time, skill performance, and case complexity. Two cohorts of second year medical students were presented with neurologic cases in the context of performance-based assessment. Although many students demonstrated that they had the requisite knowledge, few were able to access the knowledge in less structured testing formats. Students had the skills necessary to conduct a physical examination but were unable to appropriately focus the examination. Case complexity also was related to some performance domains. There was evidence of knowledge and skill decay over time. In summary, it is apparent that multiple factors influence students' performance and are important considerations in designing performance assessments to evaluate competence.

  12. Is sociality required for the evolution of communicative complexity? Evidence weighed against alternative hypotheses in diverse taxonomic groups.

    PubMed

    Ord, Terry J; Garcia-Porta, Joan

    2012-07-01

    Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups--ants, frogs, lizards and birds--and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups.

  13. Is sociality required for the evolution of communicative complexity? Evidence weighed against alternative hypotheses in diverse taxonomic groups

    PubMed Central

    Ord, Terry J.; Garcia-Porta, Joan

    2012-01-01

    Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820

  14. Rheostat Re-Wired: Alternative Hypotheses for the Control of Thioredoxin Reduction Potentials

    PubMed Central

    Bewley, Kathryn D.; Dey, Mishtu; Bjork, Rebekah E.; Mitra, Sangha; Chobot, Sarah E.; Drennan, Catherine L.; Elliott, Sean J.

    2015-01-01

    Thioredoxins are small soluble proteins that contain a redox-active disulfide (CXXC). These disulfides are tuned to oxidizing or reducing potentials depending on the function of the thioredoxin within the cell. The mechanism by which the potential is tuned has been controversial, with two main hypotheses: first, that redox potential (Em) is specifically governed by a molecular ‘rheostat’—the XX amino acids, which influence the Cys pKa values, and thereby, Em; and second, the overall thermodynamics of protein folding stability regulates the potential. Here, we use protein film voltammetry (PFV) to measure the pH dependence of the redox potentials of a series of wild-type and mutant archaeal Trxs, PFV and glutathionine-equilibrium to corroborate the measured potentials, the fluorescence probe BADAN to measure pKa values, guanidinium-based denaturation to measure protein unfolding, and X-ray crystallography to provide a structural basis for our functional analyses. We find that when these archaeal thioredoxins are probed directly using PFV, both the high and low potential thioredoxins display consistent 2H+:2e- coupling over a physiological pH range, in conflict with the conventional ‘rheostat’ model. Instead, folding measurements reveals an excellent correlation to reduction potentials, supporting the second hypothesis and revealing the molecular mechanism of reduction potential control in the ubiquitous Trx family. PMID:25874934

  15. Scientifically based nurture and nature: alternative but non exclusive hypotheses on attention development.

    PubMed

    Chiappedi, Matteo; Balottin, Umberto; Baschenis, Ilaria M C; Piazza, Fausta; De Bernardi, Elisabetta; Bejor, Maurizio

    2010-11-01

    Attention is an important neuropsychological function in child development. A lot of literature has been devoted to trying to separate the role of nature (i.e. mainly the genetic basis) from that of nurture (i.e. parenting and life events). The case of preterm born children is an opportunity to try and further study this relationship. We hypothesize that children born preterm might have a reduced attention due to an interaction of factors, to be conceptualized both as nature (mainly the genetic background and the specific consequences of preterm birth and of its complications) and nurture (therapeutic techniques used, alteration in parents-child relationship and so on). The contribution of each of these factors needs to be disembodied from the raw finding of a reduced attention: this is especially important because experience-dependent learning, in which individualized experiences have neural effects, can go on throughout life and this opens interesting rehabilitative possibilities. Different research lines which could be useful to entangle the specific contributions of the above mentioned factors are discussed: the results could in turn inform clinical practice with this highly at risk and increasing in number population, with a view largely corresponding to the one founding the OMS International Classification of Disability, Functioning and Health.

  16. Phylogenetics.

    PubMed

    Sleator, Roy D

    2011-04-01

    The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects. PMID:21249334

  17. A Bayesian Approach for Discriminating Among Alternative Inheritance Hypotheses in Plant Polyploids: The Allotetraploid Origin of Genus Borderea (Dioscoreaceae)

    PubMed Central

    Catalán, Pilar; Segarra-Moragues, José Gabriel; Palop-Esteban, Marisa; Moreno, Carlos; González-Candelas, Fernando

    2006-01-01

    Polyploidy is a common phenomenon occurring in a vast number of land plants. Investigations of patterns of inheritance and the origins of plants (i.e., autopolyploidy vs. allopolyploidy) usually involve cytogenetic and molecular studies of chromosome pairing, chromosome mapping, and marker segregation analysis through experimental crosses and progeny tests. Such studies are missing for most wild species, for which artificial crosses are difficult, not feasible, or unaffordable. We report here a Bayesian method to discriminate between alternative inheritance patterns in the two extant, tetraploid species of the monocot genus Borderea (Dioscoreaceae), which does not involve progeny array tests. Our approach is based on the screening of a large number of SSR genotypes, which were obtained from successful amplifications of 17 microsatellite regions in individuals of both B. chouardii and B. pyrenaica. We tested for tetrasomic vs. disomic modes of inheritance, using the Bayes factor test. Assignment of genotypes under both alternatives could be unequivocally done for 14 and 11 of the 17 studied microsatellite regions in B. chouardii and B. pyrenaica, respectively, totaling 9502 analyzed genotypes. The comparison of posterior probabilities for the two competing hypotheses across the surveyed loci clearly favored a disomic inheritance pattern. Linkage tests indicated that none of the studied SSR loci were in linkage disequilibrium, thus representing independent samples of the Borderea genome. These results, along with previous allozyme data, support the allotetraploid origin of this paleoendemic genus and reveal the lowest reported chromosome base number for the family of the yams. PMID:16322527

  18. The complete mitochondrial genome of the enigmatic bigheadedturtle (Platysternon): description of unusual genomic features and thereconciliation of phylogenetic hypotheses based on mitochondrial andnuclear DNA

    SciTech Connect

    Parham, James F.; Feldman, Chris R.; Boore, Jeffrey L.

    2005-12-28

    The big-headed turtle (Platysternon megacephalum) from east Asia is the sole living representative of a poorly-studied turtle lineage (Platysternidae). It has no close living relatives, and its phylogenetic position within turtles is one of the outstanding controversies in turtle systematics. Platysternon was traditionally considered to be close to snapping turtles (Chelydridae) based on some studies of its morphology and mitochondrial (mt) DNA, however, other studies of morphology and nuclear (nu) DNA do not support that hypothesis. We sequenced the complete mt genome of Platysternon and the nearly complete mt genomes of two other relevant turtles and compared them to turtle mt genomes from the literature to form the largest molecular dataset used to date to address this issue. The resulting phylogeny robustly rejects the placement of Platysternon with Chelydridae, but instead shows that it is a member of the Testudinoidea, a diverse, nearly globally-distributed group that includes pond turtles and tortoises. We also discovered that Platysternon mtDNA has large-scale gene rearrangements and possesses two, nearly identical, control regions, features that distinguish it from all other studied turtles. Our study robustly determines the phylogenetic placement of Platysternon and provides a well-resolved outline of major turtle lineages, while demonstrating the significantly greater resolving power of comparing large amounts of mt sequence over that of short fragments. Earlier phylogenies placing Platysternon with chelydrids required a temporal gap in the fossil record that is now unnecessary. The duplicated control regions and gene rearrangements of the Platysternon mt DNA probably resulted from the duplication of part of the genome and then the subsequent loss of redundant genes. Although it is possible that having two control regions may provide some advantage, explaining why the control regions would be maintained while some of the duplicated genes were eroded

  19. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  20. Possible repetitive DNA markers for Eusorghum and Parasorghum and their potential use in examining phylogenetic hypotheses on the origin of Sorghum species.

    PubMed

    Hoang-Tang; Dube, S K; Liang, G H; Kung, S D

    1991-04-01

    Genomic structures of two major species in section Eusorghum (Sorghum), Sorghum bicolor and Sorghum halepense, and their phylogenetic relationships with a species in section Parasorghum, Sorghum versicolor, were studied by using cloned repetitive DNA sequences from the three species. Of the five repetitive DNA clones isolated from S. bicolor and S. halepense, four produced qualitatively similar hybridization patterns with detectable variations in copy numbers of some of the restriction fragments on the Southern blots of the two genomic DNAs. One clone was shown to be diagnostic for S. halepense. Molecular analysis at the DNA level indicates that S. bicolor and S. halepense have similar but not identical genomes, consonant with differences in karyotypes, meiotic chromosome behaviors, morphology, and physiology of the species. In addition to five repetitive clones isolated from S. bicolor and S. halepense, eight more sequences were cloned from S. versicolor. Nine clones were found to be specific for either S. bicolor and S. halepense or S. versicolor. The remaining four had a moderate to strong homology with sequences present in all Sorghum species studied. We speculate that the genome in the common ancestor of Sorghum has differentiated to give rise to genomes of at least three major chromosome sizes; large, medium, and small, as seen at present. Amplifications, eliminations, rearrangements, and new syntheses of repetitive sequences may have been involved in genome differentiation of these species. The results also suggest that the S. versicolor genome has strongly diverged from the genomes of the two species in section Eusorghum.

  1. Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads

    PubMed Central

    Chunco, Amanda J.; Jobe, Todd; Pfennig, Karin S.

    2012-01-01

    Areas of co-occurrence between two species (sympatry) are often thought to arise in regions where abiotic conditions are conducive to both species and are therefore intermediate between regions where either species occurs alone (allopatry). Depending on historical factors or interactions between species, however, sympatry might not differ from allopatry, or, alternatively, sympatry might actually be more extreme in abiotic conditions relative to allopatry. Here, we evaluate these three hypothesized patterns for how sympatry compares to allopatry in abiotic conditions. We use two species of congeneric spadefoot toads, Spea multiplicata and S. bombifrons, as our study system. To test these hypotheses, we created ecological niche models (specifically using Maxent) for both species to create a map of the joint probability of occurrence of both species. Using the results of these models, we identified three types of locations: two where either species was predicted to occur alone (i.e., allopatry for S. multiplicata and allopatry for S. bombifrons) and one where both species were predicted to co-occur (i.e., sympatry). We then compared the abiotic environment between these three location types and found that sympatry was significantly hotter and drier than the allopatric regions. Thus, sympatry was not intermediate between the alternative allopatric sites. Instead, sympatry occurred at one extreme of the conditions occupied by both species. We hypothesize that biotic interactions in these extreme environments facilitate co-occurrence. Specifically, hybridization between S. bombifrons females and S. multiplicata males may facilitate co-occurrence by decreasing development time of tadpoles. Additionally, the presence of alternative food resources in more extreme conditions may preclude competitive exclusion of one species by the other. This work has implications for predicting how interacting species will respond to climate change, because species interactions may

  2. Molecular Evolution of Alternative Oxidase Proteins: A Phylogenetic and Structure Modeling Approach.

    PubMed

    Pennisi, Rosa; Salvi, Daniele; Brandi, Valentina; Angelini, Riccardo; Ascenzi, Paolo; Polticelli, Fabio

    2016-05-01

    Alternative oxidases (AOXs) are mitochondrial cyanide-resistant membrane-bound metallo-proteins catalyzing the oxidation of ubiquinol and the reduction of oxygen to water bypassing two sites of proton pumping, thus dissipating a major part of redox energy into heat. Here, the structure of Arabidopsis thaliana AOX 1A has been modeled using the crystal structure of Trypanosoma brucei AOX as a template. Analysis of this model and multiple sequence alignment of members of the AOX family from all kingdoms of Life indicate that AOXs display a high degree of conservation of the catalytic core, which is formed by a four-α-helix bundle, hosting the di-iron catalytic site, and is flanked by two additional α-helices anchoring the protein to the membrane. Plant AOXs display a peculiar covalent dimerization mode due to the conservation in the N-terminal region of a Cys residue forming the inter-monomer disulfide bond. The multiple sequence alignment has also been used to infer a phylogenetic tree of AOXs whose analysis shows a polyphyletic origin for the AOXs found in Fungi and a monophyletic origin of the AOXs of Eubacteria, Mycetozoa, Euglenozoa, Metazoa, and Land Plants. This suggests that AOXs evolved from a common ancestral protein in each of these kingdoms. Within the Plant AOX clade, the AOXs of monocotyledon plants form two distinct clades which have unresolved relationships relative to the monophyletic clade of the AOXs of dicotyledonous plants. This reflects the sequence divergence of the N-terminal region, probably due to a low selective pressure for sequence conservation linked to the covalent homo-dimerization mode.

  3. Molecular Evolution of Alternative Oxidase Proteins: A Phylogenetic and Structure Modeling Approach.

    PubMed

    Pennisi, Rosa; Salvi, Daniele; Brandi, Valentina; Angelini, Riccardo; Ascenzi, Paolo; Polticelli, Fabio

    2016-05-01

    Alternative oxidases (AOXs) are mitochondrial cyanide-resistant membrane-bound metallo-proteins catalyzing the oxidation of ubiquinol and the reduction of oxygen to water bypassing two sites of proton pumping, thus dissipating a major part of redox energy into heat. Here, the structure of Arabidopsis thaliana AOX 1A has been modeled using the crystal structure of Trypanosoma brucei AOX as a template. Analysis of this model and multiple sequence alignment of members of the AOX family from all kingdoms of Life indicate that AOXs display a high degree of conservation of the catalytic core, which is formed by a four-α-helix bundle, hosting the di-iron catalytic site, and is flanked by two additional α-helices anchoring the protein to the membrane. Plant AOXs display a peculiar covalent dimerization mode due to the conservation in the N-terminal region of a Cys residue forming the inter-monomer disulfide bond. The multiple sequence alignment has also been used to infer a phylogenetic tree of AOXs whose analysis shows a polyphyletic origin for the AOXs found in Fungi and a monophyletic origin of the AOXs of Eubacteria, Mycetozoa, Euglenozoa, Metazoa, and Land Plants. This suggests that AOXs evolved from a common ancestral protein in each of these kingdoms. Within the Plant AOX clade, the AOXs of monocotyledon plants form two distinct clades which have unresolved relationships relative to the monophyletic clade of the AOXs of dicotyledonous plants. This reflects the sequence divergence of the N-terminal region, probably due to a low selective pressure for sequence conservation linked to the covalent homo-dimerization mode. PMID:27090422

  4. Alternative hypotheses to explain why biodiversity-ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments

    NASA Astrophysics Data System (ADS)

    Mora, Camilo; Danovaro, Roberto; Loreau, Michel

    2014-06-01

    Recent studies of the relationship between biodiversity and functioning in marine ecosystems have yielded non-saturating patterns that contrast sharply with the results of experimental studies, where ecosystem functioning rapidly saturates with increases in biodiversity. Here we provide a simple theoretical framework of three alternative hypotheses that, individually or combined, are likely to explain this contrast: i) the use of functional richness instead of species richness, ii) an increased production efficiency of species in producing biomass when more ecological interactions are present, and iii) the fact that communities are likely assembled in an ordered succession of species from low to high ecological efficiency. Our results provide theoretical support for concave-up biodiversity-ecosystem functioning relationships in natural ecosystems and confirm that the loss of species can have substantially larger effects on the functioning of natural ecosystems than anticipated from controlled manipulative experiments.

  5. Alternative hypotheses to explain why biodiversity-ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments.

    PubMed

    Mora, Camilo; Danovaro, Roberto; Loreau, Michel

    2014-06-25

    Recent studies of the relationship between biodiversity and functioning in marine ecosystems have yielded non-saturating patterns that contrast sharply with the results of experimental studies, where ecosystem functioning rapidly saturates with increases in biodiversity. Here we provide a simple theoretical framework of three alternative hypotheses that, individually or combined, are likely to explain this contrast: i) the use of functional richness instead of species richness, ii) an increased production efficiency of species in producing biomass when more ecological interactions are present, and iii) the fact that communities are likely assembled in an ordered succession of species from low to high ecological efficiency. Our results provide theoretical support for concave-up biodiversity-ecosystem functioning relationships in natural ecosystems and confirm that the loss of species can have substantially larger effects on the functioning of natural ecosystems than anticipated from controlled manipulative experiments.

  6. Higher-level crustacean phylogeny: consensus and conflicting hypotheses.

    PubMed

    Jenner, Ronald A

    2010-01-01

    This paper presents an overview of current hypotheses of higher-level crustacean phylogeny in order to assist and help focus further research. It concentrates on hypotheses proposed or debated in the recent literature based on morphological, molecular and combined evidence phylogenetic analyses. It can be concluded that crustacean phylogeny remains essentially unresolved. Conflict is rife, irrespective of whether one compares different morphological studies, molecular studies, or both. Using the number of recently proposed alternative sister group hypotheses for each of the major tetraconatan taxa as a rough estimate of phylogenetic uncertainty, it can be concluded that the phylogenetic position of Malacostraca remains the most problematic, closely followed by Branchiopoda, Cephalocarida, Remipedia, Ostracoda, Branchiura, Copepoda and Hexapoda. Future progress will depend upon a broader taxon sampling in molecular analyses, and the further exploration of new molecular phylogenetic markers. However, the need for continued revision and expansion of morphological datasets remains undiminished given the conspicuous lack of agreement between molecules and morphology for positioning several taxa. In view of the unparalleled morphological diversity of Crustacea, and the likely nesting of Hexapoda somewhere within Crustacea, working out a detailed phylogeny of Tetraconata is a crucial step towards understanding arthropod body plan evolution.

  7. Representation of research hypotheses

    PubMed Central

    2011-01-01

    Background Hypotheses are now being automatically produced on an industrial scale by computers in biology, e.g. the annotation of a genome is essentially a large set of hypotheses generated by sequence similarity programs; and robot scientists enable the full automation of a scientific investigation, including generation and testing of research hypotheses. Results This paper proposes a logically defined way for recording automatically generated hypotheses in machine amenable way. The proposed formalism allows the description of complete hypotheses sets as specified input and output for scientific investigations. The formalism supports the decomposition of research hypotheses into more specialised hypotheses if that is required by an application. Hypotheses are represented in an operational way – it is possible to design an experiment to test them. The explicit formal description of research hypotheses promotes the explicit formal description of the results and conclusions of an investigation. The paper also proposes a framework for automated hypotheses generation. We demonstrate how the key components of the proposed framework are implemented in the Robot Scientist “Adam”. Conclusions A formal representation of automatically generated research hypotheses can help to improve the way humans produce, record, and validate research hypotheses. Availability http://www.aber.ac.uk/en/cs/research/cb/projects/robotscientist/results/ PMID:21624164

  8. Testing New Hypotheses Regarding Ebolavirus Reservoirs

    PubMed Central

    Leendertz, Siv Aina Jensen

    2016-01-01

    Despite a relatively long search for the origin of ebolaviruses, their reservoirs remain elusive. Researchers might have to consider testing alternative hypotheses about how these viruses persist and emerge to advance ebolavirus research. This article aims to encourage researchers to bring forward such hypotheses, to discuss them scientifically and to open alternative research avenues regarding the origin and ecology of ebolaviruses.

  9. Phylogenetic analysis of ligninolytic peroxidases: preliminary insights into the alternation of white-rot and brown-rot fungi in their lineage

    PubMed Central

    Zhou, Li-Wei; Wei, Yu-Lian; Dai, Yu-Cheng

    2014-01-01

    White-rot and brown-rot fungi employ different mechanisms to degrade lignocellulose. These fungi are not monophyletic and even alternate in their common lineage. To explore the reason for this, seventy-six ligninolytic peroxidases (LPs), including 14 sequences newly identified from available basidiomycetous whole-genome and EST databases in this study, were utilized for phylogenetic and selective pressure analyses. We demonstrate that LPs were subjected to the mixed process of concerted and birth-and-death evolution. After the duplication events of original LPs, various LP types may originate from mutation events of several key residues driven by positive selection, which may change LP types and even rot types in a small fraction of wood-decaying fungi. Our findings provide preliminary insights into the cause for the alternation of the two fungal rot types within the same lineage. PMID:24772372

  10. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.

    PubMed

    Nozaki, Hisayoshi; Matsuzaki, Motomichi; Takahara, Manabu; Misumi, Osami; Kuroiwa, Haruko; Hasegawa, Masami; Shin-i, Tadasu; Kohara, Yuji; Ogasawara, Naotake; Kuroiwa, Tsuneyoshi

    2003-04-01

    Red algae are one of the main photosynthetic eukaryotic lineages and are characterized by primitive features, such as a lack of flagella and the presence of phycobiliproteins in the chloroplast. Recent molecular phylogenetic studies using nuclear gene sequences suggest two conflicting hypotheses (monophyly versus non-monophyly) regarding the relationships between red algae and green plants. Although kingdom-level phylogenetic analyses using multiple nuclear genes from a wide-range of eukaryotic lineages were very recently carried out, they used highly divergent gene sequences of the cryptomonad nucleomorph (as the red algal taxon) or incomplete red algal gene sequences. In addition, previous eukaryotic phylogenies based on nuclear genes generally included very distant archaebacterial sequences (designated as the outgroup) and/or amitochondrial organisms, which may carry unusual gene substitutions due to parasitism or the absence of mitochondria. Here, we carried out phylogenetic analyses of various lineages of mitochondria-containing eukaryotic organisms using nuclear multigene sequences, including the complete sequences from the primitive red alga Cyanidioschyzon merolae. Amino acid sequence data for two concatenated paralogous genes (alpha- and beta-tubulin) from mitochondria-containing organisms robustly resolved the basal position of the cellular slime molds, which were designated as the outgroup in our phylogenetic analyses. Phylogenetic analyses of 53 operational taxonomic units (OTUs) based on a 1525-amino-acid sequence of four concatenated nuclear genes (actin, elongation factor-1alpha, alpha-tubulin, and beta-tubulin) reliably resolved the phylogeny only in the maximum parsimonious (MP) analysis, which indicated the presence of two large robust monophyletic groups (Groups A and B) and the basal eukaryotic lineages (red algae, true slime molds, and amoebae). Group A corresponded to the Opisthokonta (Metazoa and Fungi), whereas Group B included various

  11. Transplantation psychoneuroimmunology: building hypotheses.

    PubMed

    Klapheke, M M

    2000-06-01

    The research findings of psychoneuroimmunology have not yet been fully applied to the field of transplantation psychiatry. Though much study has been devoted to the impact of psychiatric disease on the immunosuppressed state and disease progression in HIV-related illness, little has yet been written on the immunology implications of psychiatric disturbances in the immunosuppressed post-transplant patient. Utilizing Medline literature searches to review relevant research data in psychoneuroimmunology and transplantation immunology, the author formulates and examines four transplantation psychoneuroimmunology hypotheses involving the potential impact of depression on post-transplant organ rejection, cancer, coronary artery disease, and infections. The author concludes that though major questions remain, it appears reasonable to include the impact of depression, and possibly other psychological states, among factors that may affect the net state of immunosuppression in transplant patients.

  12. Testing hypotheses in macroevolution.

    PubMed

    Bromham, Lindell

    2016-02-01

    Experimental manipulation of microevolution (changes in frequency of heritable traits in populations) has shed much light on evolutionary processes. But many evolutionary processes occur on scales that are not amenable to experimental manipulation. Indeed, one of the reasons that macroevolution (changes in biodiversity over time, space and lineages) has sometimes been a controversial topic is that processes underlying the generation of biological diversity generally operate at scales that are not open to direct observation or manipulation. Macroevolutionary hypotheses can be tested by using them to generate predictions then asking whether observations from the biological world match those predictions. Each study that identifies significant correlations between evolutionary events, processes or outcomes can generate new predictions that can be further tested with different datasets, allowing a cumulative process that may narrow down on plausible explanations, or lead to rejection of other explanations as inconsistent or unsupported. A similar approach can be taken even for unique events, for example by comparing patterns in different regions, lineages, or time periods. I will illustrate the promise and pitfalls of these approaches using a range of examples, and discuss the problems of inferring causality from significant evolutionary associations. PMID:26774069

  13. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense.

    PubMed

    Jijón-Moreno, Saúl; Marcos-Jiménez, Cynthia; Pedraza, Raúl O; Ramírez-Mata, Alberto; de Salamone, I García; Fernández-Scavino, Ana; Vásquez-Hernández, Claudia A; Soto-Urzúa, Lucia; Baca, Beatriz E

    2015-06-01

    Plant growth-promoting bacteria of the genus Azospirillum are present in the rhizosphere and as endophytes of many crops. In this research we studied 40 Azospirillum strains isolated from different plants and geographic regions. They were first characterized by 16S rDNA restriction analysis, and their phylogenetic position was established by sequencing the genes 16S rDNA, ipdC, hisC1, and hisC2. The latter three genes are involved in the indole-3-pyruvic acid (IPyA) biosynthesis pathway of indole-3-acetic acid (IAA). Furthermore, the suitability of the 16S-23S rDNA intergenic spacer sequence (IGS) for the differentiation of closely related Azospirillum taxa and development of PCR protocols allows for specific detection of strains. The IGS-RFLP analysis enabled intraspecies differentiation, particularly of Azospirillum brasilense and Azospirillum lipoferum strains. Results demonstrated that the ipdC, hisC1, and hisC2 genes are highly conserved in all the assessed A. brasilense isolates, suggesting that these genes can be used as an alternative phylogenetic marker. In addition, IAA production determined by HPLC ranged from 0.17 to 98.2 μg mg(-1) protein. Southern hybridization with the A. brasilense ipdC gene probe did not show, a hybridization signal with A. lipoferum, Azospirillum amazonense, Azospirillum halopreferans and Azospirillum irakense genomic DNA. This suggests that these species produce IAA by other pathways. Because IAA is mainly synthesized via the IPyA pathway in A. brasilense strains, a species that is used worldwide in agriculture, the identification of ipdC, hisC1, and hisC2 genes by PCR may be suitable for selecting exploitable strains.

  14. Continental monophyly of cichlid fishes and the phylogenetic position of Heterochromis multidens.

    PubMed

    Keck, Benjamin P; Hulsey, C Darrin

    2014-04-01

    The incredibly species-rich cichlid fish faunas of both the Neotropics and Africa are generally thought to be reciprocally monophyletic. However, the phylogenetic affinity of the African cichlid Heterochromis multidens is ambiguous, and this distinct lineage could make African cichlids paraphyletic. In past studies, Heterochromis has been variously suggested to be one of the earliest diverging lineages within either the Neotropical or the African cichlid radiations, and it has even been hypothesized to be the sister lineage to a clade containing all Neotropical and African cichlids. We examined the phylogenetic relationships among a representative sample of cichlids with a dataset of 29 nuclear loci to assess the support for the different hypotheses of the phylogenetic position of Heterochromis. Although individual gene trees in some instances supported alternative relationships, a majority of gene trees, integration of genes into species trees, and hypothesis testing of putative topologies all supported Heterochromis as belonging to the clade of African cichlids. PMID:24472673

  15. Continental monophyly of cichlid fishes and the phylogenetic position of Heterochromis multidens.

    PubMed

    Keck, Benjamin P; Hulsey, C Darrin

    2014-04-01

    The incredibly species-rich cichlid fish faunas of both the Neotropics and Africa are generally thought to be reciprocally monophyletic. However, the phylogenetic affinity of the African cichlid Heterochromis multidens is ambiguous, and this distinct lineage could make African cichlids paraphyletic. In past studies, Heterochromis has been variously suggested to be one of the earliest diverging lineages within either the Neotropical or the African cichlid radiations, and it has even been hypothesized to be the sister lineage to a clade containing all Neotropical and African cichlids. We examined the phylogenetic relationships among a representative sample of cichlids with a dataset of 29 nuclear loci to assess the support for the different hypotheses of the phylogenetic position of Heterochromis. Although individual gene trees in some instances supported alternative relationships, a majority of gene trees, integration of genes into species trees, and hypothesis testing of putative topologies all supported Heterochromis as belonging to the clade of African cichlids.

  16. The more, the better: the use of multiple landmark configurations to solve the phylogenetic relationships in musteloids.

    PubMed

    Catalano, Santiago A; Ercoli, Marcos D; Prevosti, Francisco J

    2015-03-01

    Although the use of landmark data to study shape changes along a phylogenetic tree has become a common practice in evolutionary studies, the role of this sort of data for the inference of phylogenetic relationships remains under debate. Theoretical issues aside, the very existence of historical information in landmark data has been challenged, since phylogenetic analyses have often shown little congruence with alternative sources of evidence. However, most analyses conducted in the past were based upon a single landmark configuration, leaving it unsettled whether the incorporation of multiple configurations may improve the rather poor performance of this data source in most previous phylogenetic analyses. In the present study, we present a phylogenetic analysis of landmark data that combines information derived from several skeletal structures to derive a phylogenetic tree for musteloids. The analysis includes nine configurations representing different skeletal structures for 24 species. The resulting tree presents several notable concordances with phylogenetic hypotheses derived from molecular data. In particular, Mephitidae, Procyonidae, and Lutrinae plus the genera Martes, Mustela, Galictis, and Procyon were retrieved as monophyletic. In addition, other groupings were in agreement with molecular phylogenies or presented only minor discordances. Complementary analyses have also indicated that the results improve substantially when an increasing number of landmark configurations are included in the analysis. The results presented here thus highlight the importance of combining information from multiple structures to derive phylogenetic hypotheses from landmark data. PMID:25516268

  17. The phylogenetic position and diversity of the enigmatic mongrel frog Nothophryne Poynton, 1963 (Amphibia, Anura).

    PubMed

    Bittencourt-Silva, Gabriela B; Conradie, Werner; Siu-Ting, Karen; Tolley, Krystal A; Channing, Alan; Cunningham, Michael; Farooq, Harith M; Menegon, Michele; Loader, Simon P

    2016-06-01

    The phylogenetic relationships of the African mongrel frog genus Nothophryne are poorly understood. We provide the first molecular assessment of the phylogenetic position of, and diversity within, this monotypic genus from across its range-the Afromontane regions of Malawi and Mozambique. Our analysis using a two-tiered phylogenetic approach allowed us to place the genus in Pyxicephalidae. Within the family, Nothophryne grouped with Tomopterna, a hypothesis judged significantly better than alternative hypotheses proposed based on morphology. Our analyses of populations across the range of Nothophryne suggest the presence of several cryptic species, at least one species per mountain. Formal recognition of these species is pending but there is a major conservation concern for these narrowly distributed populations in an area impacted by major habitat change. The phylogenetic tree of pyxicephalids is used to examine evolution of life history, ancestral habitat, and biogeography of this group. PMID:27001603

  18. The phylogenetic position and diversity of the enigmatic mongrel frog Nothophryne Poynton, 1963 (Amphibia, Anura).

    PubMed

    Bittencourt-Silva, Gabriela B; Conradie, Werner; Siu-Ting, Karen; Tolley, Krystal A; Channing, Alan; Cunningham, Michael; Farooq, Harith M; Menegon, Michele; Loader, Simon P

    2016-06-01

    The phylogenetic relationships of the African mongrel frog genus Nothophryne are poorly understood. We provide the first molecular assessment of the phylogenetic position of, and diversity within, this monotypic genus from across its range-the Afromontane regions of Malawi and Mozambique. Our analysis using a two-tiered phylogenetic approach allowed us to place the genus in Pyxicephalidae. Within the family, Nothophryne grouped with Tomopterna, a hypothesis judged significantly better than alternative hypotheses proposed based on morphology. Our analyses of populations across the range of Nothophryne suggest the presence of several cryptic species, at least one species per mountain. Formal recognition of these species is pending but there is a major conservation concern for these narrowly distributed populations in an area impacted by major habitat change. The phylogenetic tree of pyxicephalids is used to examine evolution of life history, ancestral habitat, and biogeography of this group.

  19. [Foundations of the new phylogenetics].

    PubMed

    Pavlinov, I Ia

    2004-01-01

    Evolutionary idea is the core of the modern biology. Due to this, phylogenetics dealing with historical reconstructions in biology takes a priority position among biological disciplines. The second half of the 20th century witnessed growth of a great interest to phylogenetic reconstructions at macrotaxonomic level which replaced microevolutionary studies dominating during the 30s-60s. This meant shift from population thinking to phylogenetic one but it was not revival of the classical phylogenetics; rather, a new approach emerged that was baptized The New Phylogenetics. It arose as a result of merging of three disciplines which were developing independently during 60s-70s, namely cladistics, numerical phyletics, and molecular phylogenetics (now basically genophyletics). Thus, the new phylogenetics could be defined as a branch of evolutionary biology aimed at elaboration of "parsimonious" cladistic hypotheses by means of numerical methods on the basis of mostly molecular data. Classical phylogenetics, as a historical predecessor of the new one, emerged on the basis of the naturphilosophical worldview which included a superorganismal idea of biota. Accordingly to that view, historical development (the phylogeny) was thought an analogy of individual one (the ontogeny) so its most basical features were progressive parallel developments of "parts" (taxa), supplemented with Darwinian concept of monophyly. Two predominating traditions were diverged within classical phylogenetics according to a particular interpretation of relation between these concepts. One of them (Cope, Severtzow) belittled monophyly and paid most attention to progressive parallel developments of morphological traits. Such an attitude turned this kind of phylogenetics to be rather the semogenetics dealing primarily with evolution of structures and not of taxa. Another tradition (Haeckel) considered both monophyletic and parallel origins of taxa jointly: in the middle of 20th century it was split into

  20. Phylogenetic methods in drug discovery.

    PubMed

    Ashton, John C

    2013-12-01

    In recent decades, growth of computing power has facilitated powerful techniques for reconstructing evolutionary relationships from online genetic and proteomic databases. These methods are useful tools for pharmacologists for analyzing relationships between receptors and associated enzymes. Phylogenetic analysis can help generate hypotheses and leads for experimentation. Reconstruction of molecular phylogenies for the nonspecialist is described in this article using the example of the orphaned g protein coupled receptor GPR18.

  1. Assessing evidence and testing appropriate hypotheses.

    PubMed

    Fenton, Norman

    2014-12-01

    It is crucial to identify the most appropriate hypotheses if one is to apply probabilistic reasoning to evaluate and properly understand the impact of evidence. Subtle changes to the choice of a prosecution hypothesis can result in drastically different posterior probabilities to a defence hypothesis from the same evidence. To illustrate the problem we consider a real case in which probabilistic arguments assumed that the prosecution hypothesis "both babies were murdered" was the appropriate alternative to the defence hypothesis "both babies died of Sudden Infant Death Syndrome (SIDS)". Since it would have been sufficient for the prosecution to establish just one murder, a more appropriate alternative hypothesis was "at least one baby was murdered". Based on the same assumptions used by one of the probability experts who examined the case, the prior odds in favour of the defence hypothesis over the double murder hypothesis are 30 to 1. However, the prior odds in favour of the defence hypothesis over the alternative 'at least one murder' hypothesis are only 5 to 2. Assuming that the medical and other evidence has a likelihood ratio of 5 in favour of the prosecution hypothesis results in very different conclusions about the posterior probability of the defence hypothesis.

  2. Do we need many genes for phylogenetic inference?

    PubMed

    Aleshin, V V; Konstantinova, A V; Mikhailov, K V; Nikitin, M A; Petrov, N B

    2007-12-01

    Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales+Spizellomycetales+Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis) and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha+Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize

  3. Nigeria`s oil production behavior: Tests of alternative hypotheses

    SciTech Connect

    Awokuse, T.O.; Jones, C.T.

    1994-12-31

    The sudden quadrupling of world oil prices in 1973-1974 marked the beginning of several formal inquiries by economists into the production behavior of members of the Organization of the Petroleum Exporting Countries (OPEC). Interest in the organization was further heightened in 1979 when nominal oil prices further doubled. However, oil market analysts have differed in their evaluation of OPEC`s role in the determination of world oil prices. Most energy economists have modeled OPEC as a cartel. Morris Adelman has suggested that OPEC`s true nature lies somewhere between two polar cases of a dominant-firm industry and an imperfect, market-sharing cartel. In the former case, one large, dominant firm (i.e., Saudi Arabia) serves as the {open_quotes}swing producer,{close_quotes} allowing other cartel members and non-OPEC oil producers to produce whatever they wished, controlling the market price by itself through its own output adjustments. The latter case of an imperfect market-sharing cartel is a loose collusive arrangement in which all members agree on an acceptable price level and individual output shares for each producer. Adelman believes that OPEC wobbles between these two cases, depending upon market conditions.

  4. Testing hypotheses of earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.

    2003-12-01

    We present a relatively straightforward likelihood method for testing those earthquake hypotheses that can be stated as vectors of earthquake rate density in defined bins of area, magnitude, and time. We illustrate the method as it will be applied to the Regional Earthquake Likelihood Models (RELM) project of the Southern California Earthquake Center (SCEC). Several earthquake forecast models are being developed as part of this project, and additional contributed forecasts are welcome. Various models are based on fault geometry and slip rates, seismicity, geodetic strain, and stress interactions. We would test models in pairs, requiring that both forecasts in a pair be defined over the same set of bins. Thus we offer a standard "menu" of bins and ground rules to encourage standardization. One menu category includes five-year forecasts of magnitude 5.0 and larger. Forecasts would be in the form of a vector of yearly earthquake rates on a 0.05 degree grid at the beginning of the test. Focal mechanism forecasts, when available, would be also be archived and used in the tests. The five-year forecast category may be appropriate for testing hypotheses of stress shadows from large earthquakes. Interim progress will be evaluated yearly, but final conclusions would be made on the basis of cumulative five-year performance. The second category includes forecasts of earthquakes above magnitude 4.0 on a 0.05 degree grid, evaluated and renewed daily. Final evaluation would be based on cumulative performance over five years. Other types of forecasts with different magnitude, space, and time sampling are welcome and will be tested against other models with shared characteristics. All earthquakes would be counted, and no attempt made to separate foreshocks, main shocks, and aftershocks. Earthquakes would be considered as point sources located at the hypocenter. For each pair of forecasts, we plan to compute alpha, the probability that the first would be wrongly rejected in favor of

  5. Alzheimer--certitudes and hypotheses.

    PubMed

    Amihăesei, Ioana Cristina; Cojocarut, Elena; Mungiu, O C

    2013-01-01

    Alzheimer's disease is a degenerative, progressive and irreversible condition, which affects cognitive functions. It was first described in 1907, by the German physician Alois Alzheimer. Although at the time, it was considered a rare disease, in 2010 in the world were estimated 35.6 million cases of dementia, most of these with the diagnosis of Alzheimer's disease. Typical neuropathologic lesions are represented by the amyloid plaques, neurofibrilar tangles and synapses and neurons losses. It was hypothesized that the amyloid protein has prion-like properties. Even from the first descriptions of the disease, atypical features were observed - the second case described by the physician Alois Alzheimer, had only plaques, the tangles were missing. About 19 % of the healthy old subjects present in the brain the same lesions as Alzheimer's cases, while in 10 % of the cases of disease, in necropsy are present only the plaques or only the tangles. These aspects are even more paradoxical, as the certain diagnosis is established only at necropsy, on anatomopathological lesions. Even so, the international diagnosis criteria, based on clinical aspects, can establish a certain, probable or a possible diagnosis. It exist an early-onset form, as well as a late-onset form of disease (which appears after 80-85 years of life); genes are involved in the genesis of the disease. A lot of money are spent to find an efficient medication in the treatment of the disease (tramiprosate--an amyloid-antagonist, Dimebon, gamma-secretase inhibitors or a vaccine--a synthetic form of the amyloid protein); for the moment the used medication may at its best only to temporary improve the symptoms. Some scientists believe that approx. 30 % of the cases are wrongly diagnosed with Alzheimer, being in fact other forms of dementia, or that we deal with several biologic processes, generating rather an Alzheimer's syndrome, meanwhile others are unsatisfied by a poor diagnosed disease and its popular receipt

  6. Phylogenetic Signal Dissection Identifies the Root of Starfishes

    PubMed Central

    Feuda, Roberto; Smith, Andrew B.

    2015-01-01

    Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors - Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution – have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented. PMID:25955729

  7. Phylogenetic signal dissection identifies the root of starfishes.

    PubMed

    Feuda, Roberto; Smith, Andrew B

    2015-01-01

    Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors--Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution--have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented.

  8. Phylogenetic signal dissection identifies the root of starfishes.

    PubMed

    Feuda, Roberto; Smith, Andrew B

    2015-01-01

    Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors--Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution--have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented. PMID:25955729

  9. The World Hypotheses Scale: Rationale, Reliability and Validity

    ERIC Educational Resources Information Center

    Harris, Maxine; And Others

    1977-01-01

    Four alternative cognitive assumptions concerning the fundamental meaning of events are presented: formism, or everyday thinking; mechanism, or experimental scientist's thinking; organicism, or systems thinking; and contextualism, or relational thinking. The measurement of individual preferences for these hypotheses and behavioral correlates of…

  10. Deficiency in the Opioid Hypotheses of Self-Injurious Behavior.

    ERIC Educational Resources Information Center

    King, Bryan H.; And Others

    1991-01-01

    This commentary critiques two papers by Curt Sandman, pointing out interpretive problems in models explaining self-injurious behavior in terms of opioids. Withdrawal effects are emphasized as an alternative to hypotheses asserting congenital opioid excess as a cause of sensory depression or an addiction to a relative excess of opioid activity in…

  11. Molecular Phylogenetic Information on the Identity of the Closest Living Relative(s) of Land Vertebrates

    NASA Astrophysics Data System (ADS)

    Zardoya, Rafael; Meyer, Axel

    The phylogenetic position of tetrapods relative to the other two living sarcopterygian lineages (lungfishes and the coelacanth) has been subject to debate for many decades, yet remains unresolved. There are three possible alternatives for the phylogenetic relationships among these three living lineages of sarcopterygians, i.e., lungfish as living sister group of tetrapods, the coelacanth as closest living relative of tetrapods, and lungfish and coelacanth equally closely related to tetrapods. To resolve this important evolutionary question several molecular data sets have been collected in recent years, the largest being the almost complete 28S rRNA gene sequences (about 3500bp) and the complete mitochondrial genomes of the coelacanth and a lungfish (about 16500bp each). Phylogenetic analyses of several molecular data sets had not provided unequivocal support for any of the three hypotheses. However, a lungfish+tetrapod or a lungfish+coelacanth clade were predominantly favored over a coelacanth+tetrapod grouping when the entire mitochondrial genomes alone or in combination with the nuclear 28S rRNA gene data were analyzed with maximum parsimony, neighbor-joining, and maximum likelihood phylogenetic methods. Also, current paleontological and morphological data seem to concur with these molecular results. Therefore the currently available molecular data seems to rule out a coelacanth+tetrapod relationship, the traditional textbook hypothesis. These tentative molecular phylogenetic results point to the inherent difficulty in resolving relationships among lineages which apparently originated in rapid succession during the Devonian.

  12. Molecular phylogenetic information on the identity of the closest living relative(s) of land vertebrates.

    PubMed

    Zardoya, R; Meyer, A

    1997-09-01

    The phylogenetic position of tetrapods relative to the other two living sarcopterygian lineages (lungfishes and the coelacanth) has been subject to debate for many decades, yet remains unresolved. There are three possible alternatives for the phylogenetic relationships among these three living lineages of sarcopterygians, i.e., lungfish as living sister group of tetrapods, the coelacanth as closest living relative of tetrapods, and lungfish and coelacanth equally closely related to tetrapods. To resolve this important evolutionary question several molecular data sets have been collected in recent years, the largest being the almost complete 28S rRNA gene sequences (about 3500 bp) and the complete mitochondrial genomes of the coelacanth and a lungfish (about 16,500 bp each). Phylogenetic analyses of several molecular data sets had not provided unequivocal support for any of the three hypotheses. However, a lungfish + tetrapod or a lungfish + coelacanth clade were predominantly favored over a coelacanth + tetrapod grouping when the entire mitochondrial genomes alone or in combination with the nuclear 28S rRNA gene data were analyzed with maximum parsimony, neighbor-joining, and maximum likelihood phylogenetic methods. Also, current paleontological and morphological data seem to concur with these molecular results. Therefore the currently available molecular data seems to rule out a coelacanth + tetrapod relationship, the traditional textbook hypothesis. These tentative molecular phylogenetic results point to the inherent difficulty in resolving relationships among lineages which apparently originated in rapid succession during the Devonian.

  13. Indel reliability in indel-based phylogenetic inference.

    PubMed

    Ashkenazy, Haim; Cohen, Ofir; Pupko, Tal; Huchon, Dorothée

    2014-12-01

    It is often assumed that it is unlikely that the same insertion or deletion (indel) event occurred at the same position in two independent evolutionary lineages, and thus, indel-based inference of phylogeny should be less subject to homoplasy compared with standard inference which is based on substitution events. Indeed, indels were successfully used to solve debated evolutionary relationships among various taxonomical groups. However, indels are never directly observed but rather inferred from the alignment and thus indel-based inference may be sensitive to alignment errors. It is hypothesized that phylogenetic reconstruction would be more accurate if it relied only on a subset of reliable indels instead of the entire indel data. Here, we developed a method to quantify the reliability of indel characters by measuring how often they appear in a set of alternative multiple sequence alignments. Our approach is based on the assumption that indels that are consistently present in most alternative alignments are more reliable compared with indels that appear only in a small subset of these alignments. Using simulated and empirical data, we studied the impact of filtering and weighting indels by their reliability scores on the accuracy of indel-based phylogenetic reconstruction. The new method is available as a web-server at http://guidance.tau.ac.il/RELINDEL/.

  14. How does cognition evolve? Phylogenetic comparative psychology

    PubMed Central

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  15. Phylogenetic analysis of adenovirus sequences.

    PubMed

    Harrach, Balázs; Benko, Mária

    2007-01-01

    Members of the family Adenoviridae have been isolated from a large variety of hosts, including representatives from every major vertebrate class from fish to mammals. The high prevalence, together with the fairly conserved organization of the central part of their genomes, make the adenoviruses one of (if not the) best models for studying viral evolution on a larger time scale. Phylogenetic calculation can infer the evolutionary distance among adenovirus strains on serotype, species, and genus levels, thus helping the establishment of a correct taxonomy on the one hand, and speeding up the process of typing new isolates on the other. Initially, four major lineages corresponding to four genera were recognized. Later, the demarcation criteria of lower taxon levels, such as species or types, could also be defined with phylogenetic calculations. A limited number of possible host switches have been hypothesized and convincingly supported. Application of the web-based BLAST and MultAlin programs and the freely available PHYLIP package, along with the TreeView program, enables everyone to make correct calculations. In addition to step-by-step instruction on how to perform phylogenetic analysis, critical points where typical mistakes or misinterpretation of the results might occur will be identified and hints for their avoidance will be provided. PMID:17656792

  16. Phylogenetic analysis of adenovirus sequences.

    PubMed

    Harrach, Balázs; Benko, Mária

    2007-01-01

    Members of the family Adenoviridae have been isolated from a large variety of hosts, including representatives from every major vertebrate class from fish to mammals. The high prevalence, together with the fairly conserved organization of the central part of their genomes, make the adenoviruses one of (if not the) best models for studying viral evolution on a larger time scale. Phylogenetic calculation can infer the evolutionary distance among adenovirus strains on serotype, species, and genus levels, thus helping the establishment of a correct taxonomy on the one hand, and speeding up the process of typing new isolates on the other. Initially, four major lineages corresponding to four genera were recognized. Later, the demarcation criteria of lower taxon levels, such as species or types, could also be defined with phylogenetic calculations. A limited number of possible host switches have been hypothesized and convincingly supported. Application of the web-based BLAST and MultAlin programs and the freely available PHYLIP package, along with the TreeView program, enables everyone to make correct calculations. In addition to step-by-step instruction on how to perform phylogenetic analysis, critical points where typical mistakes or misinterpretation of the results might occur will be identified and hints for their avoidance will be provided.

  17. Testing Distributed Parameter Hypotheses for the Detection of Climate Change.

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; White, Benjamin S.

    2001-08-01

    A general statistical methodology, based on testing alternative distributed parameter hypotheses, is proposed as a method for deciding whether or not anthropogenic influences are causing climate change. This methodology provides a framework for including known uncertainties in the definition of the hypotheses by allowing model parameters to be specified by probability distributions and thereby allowing the definition of more realistic hypotheses. The method can be used to derive the unique statistical test that minimizes errors in test conclusions. The method is applied to illustrative detection problems by first defining alternative hypotheses for global mean temperature; second, deriving the most powerful test and calculating its statistics; third, applying the test to observed temperature records; and finally, illustrating the test statistics and results on a receiver or relative operating characteristic curve showing the relation between false positive and false negative test errors. It is demonstrated, with an illustrative example, that proper accounting for the uncertainty in all the parameters can produce very different statistical conclusions than the conclusions that would be obtained by simply fixing some parameters at nominal values.

  18. Furious Frederich: Nietzsche's neurosyphilis diagnosis and new hypotheses.

    PubMed

    André, Charles; Rios, André Rangel

    2015-12-01

    The causes of Friedrich Nietzsche's mental breakdown in early 1889 and of the subsequent slow decay to end-stage dementia along ten years will possibly remain open to debate. The diagnosis of syphilitic dementia paralytica, based only on medical anamnesis and physical examination, was considered indisputable by Otto Binswanger. On the other hand, taking into account recently described diseases, selectively collected evidence lend some support to alternative hypotheses: basal forebrain meningioma, CADASIL, MELAS and frontotemporal dementia.

  19. Furious Frederich: Nietzsche's neurosyphilis diagnosis and new hypotheses.

    PubMed

    André, Charles; Rios, André Rangel

    2015-12-01

    The causes of Friedrich Nietzsche's mental breakdown in early 1889 and of the subsequent slow decay to end-stage dementia along ten years will possibly remain open to debate. The diagnosis of syphilitic dementia paralytica, based only on medical anamnesis and physical examination, was considered indisputable by Otto Binswanger. On the other hand, taking into account recently described diseases, selectively collected evidence lend some support to alternative hypotheses: basal forebrain meningioma, CADASIL, MELAS and frontotemporal dementia. PMID:26465288

  20. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa.

    PubMed

    Herrera, Santiago; Shank, Timothy M

    2016-07-01

    Species delimitations is problematic in many cases due to the difficulty of evaluating predictions from species hypotheses. In many cases delimitations rely on subjective interpretations of morphological and/or DNA data. Species with inadequate genetic resources needed to answer questions regarding evolutionary relatedness and genetic uniqueness are particularly problematic. In this study, we demonstrate the utility of restriction site associated DNA sequencing (RAD-seq) to objectively resolve unambiguous phylogenetic relationships in a recalcitrant group of deep-sea corals with divergences >80 million years. We infer robust species boundaries in the genus Paragorgia by testing alternative delimitation hypotheses using a Bayes Factors delimitation method. We present substantial evidence rejecting the current morphological species delimitation model for the genus and infer the presence of cryptic species associated with environmental variables. We argue that the suitability limits of RAD-seq for phylogenetic inferences cannot be assessed in terms of absolute time, but are contingent on taxon-specific factors. We show that classical taxonomy can greatly benefit from integrative approaches that provide objective tests to species delimitation hypotheses. Our results lead the way for addressing further questions in marine biogeography, community ecology, population dynamics, conservation, and evolution. PMID:26993764

  1. Exploring hypotheses in attitude control fault diagnosis

    NASA Technical Reports Server (NTRS)

    Bell, Benjamin

    1987-01-01

    A system which analyzes telemetry and evaluates hypotheses to explain any anomalies that are observed is described. Results achieved from a sample set of failure cases are presented, followed by a brief discussion of the benefits derived from this approach.

  2. Teaching Rival Hypotheses in Experimental Psychology.

    ERIC Educational Resources Information Center

    Howard, George S.; Engelhardt, Jean L.

    1984-01-01

    Students critiqued research contained in the book "Rival Hypotheses" (Huck and Sandler, 1979), which contains studies dealing with knowledge claims of practical importance, e.g., the evidence that saccharine causes cancer. (RM)

  3. OBSERVABLE CHANGES OF HYPOTHESES UNDER POSITIVE REINFORCEMENT.

    PubMed

    SUPPES, P; SCHLAG-REY, M

    1965-04-30

    In mathematical models of concept learning it has consistently been assumed that positive reinforcement cannot lead to a change of the hypothesis determining the overt response. When hypotheses are experimentally identified and recorded along with positive and negative reinforcements of stimulus-response pairs, it can be shown that hypotheses may change after a positive reinforcement. Positive reinforcement has an information content for subjects that has not yet been adequately recognized in concept formation studies.

  4. Global Biodiversity and Phylogenetic Evaluation of Remipedia (Crustacea)

    PubMed Central

    Neiber, Marco T.; Hartke, Tamara R.; Stemme, Torben; Bergmann, Alexandra; Rust, Jes; Iliffe, Thomas M.; Koenemann, Stefan

    2011-01-01

    Remipedia is one of the most recently discovered classes of crustaceans, first described in 1981 from anchialine caves in the Bahamas Archipelago. The class is divided into the order Enantiopoda, represented by two fossil species, and Nectiopoda, which contains all known extant remipedes. Since their discovery, the number of nectiopodan species has increased to 24, half of which were described during the last decade. Nectiopoda exhibit a disjunct global distribution pattern, with the highest abundance and diversity in the Caribbean region, and isolated species in the Canary Islands and in Western Australia. Our review of Remipedia provides an overview of their ecological characteristics, including a detailed list of all anchialine marine caves, from which species have been recorded. We discuss alternative hypotheses of the phylogenetic position of Remipedia within Arthropoda, and present first results of an ongoing molecular-phylogenetic analysis that do not support the monophyly of several nectiopodan taxa. We believe that a taxonomic revision of Remipedia is absolutely essential, and that a comprehensive revision should include a reappraisal of the fossil record. PMID:21625553

  5. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses.

    PubMed

    Pyron, R Alexander; Burbrink, Frank T

    2013-12-01

    Phylogenies are used to estimate rates of speciation and extinction, reconstruct historical diversification scenarios, and link these to ecological and evolutionary factors, such as climate or organismal traits. Recent models can now estimate the effects of binary, multistate, continuous, and biogeographic characters on diversification rates. Others test for diversity dependence (DD) in speciation and extinction, which has become recognized as an important process in numerous clades. A third class incorporates flexible time-dependent functions, enabling reconstruction of major periods of both expanding and contracting diversity. Although there are some potential problems (particularly for estimating extinction), these methods hold promise for answering many classic questions in ecology and evolution, such as the origin of adaptive radiations, and the latitudinal gradient in species richness.

  6. Testing hypotheses in ecoimmunology using mixed models: disentangling hierarchical correlations.

    PubMed

    Downs, C J; Dochtermann, N A

    2014-09-01

    Considerable research in ecoimmunology focuses on investigating variation in immune responses and linking this variation to physiological trade-offs, ecological traits, and environmental conditions. Variation in immune responses exists within and among individuals, among populations, and among taxonomic groupings. Understanding how variation and covariation are distributed and how they differ across these levels is necessary for drawing appropriate ecological and evolutionary inferences. Moreover, variation at the among-individual level directly connects to underlying quantitative genetic parameters. In order to fully understand immune responses in evolutionary and ecological contexts and to reveal phylogenetic constraints on evolution, statistical approaches must allow (co)variance to be partitioned among levels of individual, population, and phylogenetic organization (e.g., population, species, genera, and various higher taxa). Herein, we describe how multi-response mixed-effects models can be used to partition variation in immune responses among different hierarchical levels, specifically within-individuals, among-individuals, and among-species. We use simulated data to demonstrate that mixed models allow for proper partitioning of (co)variances. Importantly, these simulations also demonstrate that conventional statistical tools grossly misestimate relevant parameters, which urges caution in relating ecoimmunological hypotheses to existing empirical research. We conclude by discussing the advantages and caveats of a mixed-effects modeling approach.

  7. Cnidarian phylogenetic relationships as revealed by mitogenomics

    PubMed Central

    2013-01-01

    Background Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that

  8. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications.

    PubMed

    Goremykin, Vadim V; Holland, Barbara; Hirsch-Ernst, Karen I; Hellwig, Frank H

    2005-09-01

    Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.

  9. Nearly complete 28S rRNA gene sequences confirm new hypotheses of sponge evolution.

    PubMed

    Thacker, Robert W; Hill, April L; Hill, Malcolm S; Redmond, Niamh E; Collins, Allen G; Morrow, Christine C; Spicer, Lori; Carmack, Cheryl A; Zappe, Megan E; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C; Bangalore, Purushotham V

    2013-09-01

    The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges. PMID:23748742

  10. Nearly Complete 28S rRNA Gene Sequences Confirm New Hypotheses of Sponge Evolution

    PubMed Central

    Thacker, Robert W.; Hill, April L.; Hill, Malcolm S.; Redmond, Niamh E.; Collins, Allen G.; Morrow, Christine C.; Spicer, Lori; Carmack, Cheryl A.; Zappe, Megan E.; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C.; Bangalore, Purushotham V.

    2013-01-01

    The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges. PMID:23748742

  11. Under the Skin: On the Impartial Treatment of Genetic and Environmental Hypotheses of Racial Differences

    ERIC Educational Resources Information Center

    Rowe, David C.

    2005-01-01

    Environmental and genetic explanations have been given for Black-White racial differences in intelligence and other traits. In science, viable, alternative hypotheses are ideally given equal Bayesian prior weights; but this has not been true in the study of racial differences. This article advocates testing environmental and genetic hypotheses of…

  12. Estimating Bayesian Phylogenetic Information Content

    PubMed Central

    Lewis, Paul O.; Chen, Ming-Hui; Kuo, Lynn; Lewis, Louise A.; Fučíková, Karolina; Neupane, Suman; Wang, Yu-Bo; Shi, Daoyuan

    2016-01-01

    Measuring the phylogenetic information content of data has a long history in systematics. Here we explore a Bayesian approach to information content estimation. The entropy of the posterior distribution compared with the entropy of the prior distribution provides a natural way to measure information content. If the data have no information relevant to ranking tree topologies beyond the information supplied by the prior, the posterior and prior will be identical. Information in data discourages consideration of some hypotheses allowed by the prior, resulting in a posterior distribution that is more concentrated (has lower entropy) than the prior. We focus on measuring information about tree topology using marginal posterior distributions of tree topologies. We show that both the accuracy and the computational efficiency of topological information content estimation improve with use of the conditional clade distribution, which also allows topological information content to be partitioned by clade. We explore two important applications of our method: providing a compelling definition of saturation and detecting conflict among data partitions that can negatively affect analyses of concatenated data. [Bayesian; concatenation; conditional clade distribution; entropy; information; phylogenetics; saturation.] PMID:27155008

  13. Formative Assessment Probes: To Hypothesize or Not

    ERIC Educational Resources Information Center

    Keeley, Page

    2010-01-01

    Formative assessment probes are used not only to uncover the ideas students bring to their learning, they can also be used to reveal teachers' common misconceptions. Consider a process widely used in inquiry science--developing hypotheses. In this article, the author features the probe "Is It a Hypothesis?", which serves as an example of how…

  14. Phylogenetic effective sample size.

    PubMed

    Bartoszek, Krzysztof

    2016-10-21

    In this paper I address the question-how large is a phylogenetic sample? I propose a definition of a phylogenetic effective sample size for Brownian motion and Ornstein-Uhlenbeck processes-the regression effective sample size. I discuss how mutual information can be used to define an effective sample size in the non-normal process case and compare these two definitions to an already present concept of effective sample size (the mean effective sample size). Through a simulation study I find that the AICc is robust if one corrects for the number of species or effective number of species. Lastly I discuss how the concept of the phylogenetic effective sample size can be useful for biodiversity quantification, identification of interesting clades and deciding on the importance of phylogenetic correlations. PMID:27343033

  15. Phylogenetic lineages in Entomophthoromycota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomophthoromycota Humber is one of five major phylogenetic lineages among the former phylum Zygomycota. These early terrestrial fungi share evolutionarily ancestral characters such as coenocytic mycelium and gametangiogamy as a sexual process resulting in zygospore formation. Previous molecular st...

  16. Evaluation of seven hypotheses for metamemory performance in rhesus monkeys

    PubMed Central

    Basile, Benjamin M.; Schroeder, Gabriel R.; Brown, Emily Kathryn; Templer, Victoria L.; Hampton, Robert R.

    2014-01-01

    Knowing the extent to which nonhumans and humans share mechanisms for metacognition will advance our understanding of cognitive evolution and will improve selection of model systems for biomedical research. Some nonhuman species avoid difficult cognitive tests, seek information when ignorant, or otherwise behave in ways consistent with metacognition. There is agreement that some nonhuman animals “succeed” in these metacognitive tasks, but little consensus about the cognitive mechanisms underlying performance. In one paradigm, rhesus monkeys visually searched for hidden food when ignorant of the location of the food, but acted immediately when knowledgeable. This result has been interpreted as evidence that monkeys introspectively monitored their memory to adaptively control information seeking. However, convincing alternative hypotheses have been advanced that might also account for the adaptive pattern of visual searching. We evaluated seven hypotheses using a computerized task in which monkeys chose either to take memory tests immediately or to see the answer again before proceeding to the test. We found no evidence to support the hypotheses of behavioral cue association, rote response learning, expectancy violation, response competition, generalized search strategy, or postural mediation. In contrast, we repeatedly found evidence to support the memory monitoring hypothesis. Monkeys chose to see the answer when memory was poor, either from natural variation or experimental manipulation. We found limited evidence that monkeys also monitored the fluency of memory access. Overall, the evidence indicates that rhesus monkeys can use memory strength as a discriminative cue for information seeking, consistent with introspective monitoring of explicit memory. PMID:25365530

  17. Evaluation of seven hypotheses for metamemory performance in rhesus monkeys.

    PubMed

    Basile, Benjamin M; Schroeder, Gabriel R; Brown, Emily Kathryn; Templer, Victoria L; Hampton, Robert R

    2015-02-01

    Knowing the extent to which nonhumans and humans share mechanisms for metacognition will advance our understanding of cognitive evolution and will improve selection of model systems for biomedical research. Some nonhuman species avoid difficult cognitive tests, seek information when ignorant, or otherwise behave in ways consistent with metacognition. There is agreement that some nonhuman animals "succeed" in these metacognitive tasks, but little consensus about the cognitive mechanisms underlying performance. In one paradigm, rhesus monkeys visually searched for hidden food when ignorant of the location of the food, but acted immediately when knowledgeable. This result has been interpreted as evidence that monkeys introspectively monitored their memory to adaptively control information seeking. However, convincing alternative hypotheses have been advanced that might also account for the adaptive pattern of visual searching. We evaluated seven hypotheses using a computerized task in which monkeys chose either to take memory tests immediately or to see the answer again before proceeding to the test. We found no evidence to support the hypotheses of behavioral cue association, rote response learning, expectancy violation, response competition, generalized search strategy, or postural mediation. In contrast, we repeatedly found evidence to support the memory monitoring hypothesis. Monkeys chose to see the answer when memory was poor, either from natural variation or experimental manipulation. We found limited evidence that monkeys also monitored the fluency of memory access. Overall, the evidence indicates that rhesus monkeys can use memory strength as a discriminative cue for information seeking, consistent with introspective monitoring of explicit memory.

  18. The basal ganglia optimize decision making over general perceptual hypotheses.

    PubMed

    Lepora, Nathan F; Gurney, Kevin N

    2012-11-01

    The basal ganglia are a subcortical group of interconnected nuclei involved in mediating action selection within cortex. A recent proposal is that this selection leads to optimal decision making over multiple alternatives because the basal ganglia anatomy maps onto a network implementation of an optimal statistical method for hypothesis testing, assuming that cortical activity encodes evidence for constrained gaussian-distributed alternatives. This letter demonstrates that this model of the basal ganglia extends naturally to encompass general Bayesian sequential analysis over arbitrary probability distributions, which raises the proposal to a practically realizable theory over generic perceptual hypotheses. We also show that the evidence in this model can represent either log likelihoods, log-likelihood ratios, or log odds, all leading proposals for the cortical processing of sensory data. For these reasons, we claim that the basal ganglia optimize decision making over general perceptual hypotheses represented in cortex. The relation of this theory to cortical encoding, cortico-basal ganglia anatomy, and reinforcement learning is discussed.

  19. Resolution of the phylogenetic position of the Congo peafowl, Afropavo congensis: a biogeographic and evolutionary enigma.

    PubMed

    Kimball, R T; Braun, E L; Ligon, J D

    1997-10-22

    Afropavo congensis, the Congo peafowl, has long fascinated ornithologists because of its uncertain phylogenetic position and unusual geographic distribution. While some researchers have placed Afropavo as a sister taxon to the true peafowl, Pavo species, others have suggested relationships with the guineafowl or an Old World partridge, Francolinus. These divergent opinions are due, at least in part, to (i) the unique morphological characteristics, lack of elaborate ornamentation, and monogamous mating system in Afropavo which differentiates it from Pavo; and (ii) the restricted distribution of Afropavo in Zaire, which is far removed from the Asian distribution of all other pheasant species. We obtained complete cytochrome b and partial D-loop sequences of Afropavo and compared them to Pavo, guineafowl, Francolinus and other galliform taxa. Our results strongly support a close relationship between Afropavo and Pavo, and we were able to reject alternative phylogenetic hypotheses. Molecular clock estimates of the divergence time place the separation of Afropavo and Pavo in the late Miocene. We also discuss other relatives of Afropavo and Pavo and use this information to propose hypotheses regarding the evolution of ornamentation and sexual dimorphism within this group of pheasants.

  20. Resolution of the phylogenetic position of the Congo peafowl, Afropavo congensis: a biogeographic and evolutionary enigma.

    PubMed

    Kimball, R T; Braun, E L; Ligon, J D

    1997-10-22

    Afropavo congensis, the Congo peafowl, has long fascinated ornithologists because of its uncertain phylogenetic position and unusual geographic distribution. While some researchers have placed Afropavo as a sister taxon to the true peafowl, Pavo species, others have suggested relationships with the guineafowl or an Old World partridge, Francolinus. These divergent opinions are due, at least in part, to (i) the unique morphological characteristics, lack of elaborate ornamentation, and monogamous mating system in Afropavo which differentiates it from Pavo; and (ii) the restricted distribution of Afropavo in Zaire, which is far removed from the Asian distribution of all other pheasant species. We obtained complete cytochrome b and partial D-loop sequences of Afropavo and compared them to Pavo, guineafowl, Francolinus and other galliform taxa. Our results strongly support a close relationship between Afropavo and Pavo, and we were able to reject alternative phylogenetic hypotheses. Molecular clock estimates of the divergence time place the separation of Afropavo and Pavo in the late Miocene. We also discuss other relatives of Afropavo and Pavo and use this information to propose hypotheses regarding the evolution of ornamentation and sexual dimorphism within this group of pheasants. PMID:9364791

  1. Phylogenetically resolving epidemiologic linkage

    DOE PAGES

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-02-22

    The use of phylogenetic trees in epidemiological investigations has become commonplace, but their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the truemore » transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. Moreover, we confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.« less

  2. The phylogenetic likelihood library.

    PubMed

    Flouri, T; Izquierdo-Carrasco, F; Darriba, D; Aberer, A J; Nguyen, L-T; Minh, B Q; Von Haeseler, A; Stamatakis, A

    2015-03-01

    We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL).

  3. Phylogenetically resolving epidemiologic linkage.

    PubMed

    Romero-Severson, Ethan O; Bulla, Ingo; Leitner, Thomas

    2016-03-01

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals' HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results. PMID:26903617

  4. Phylogenetically resolving epidemiologic linkage

    PubMed Central

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-01-01

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results. PMID:26903617

  5. Poisson's ratio over two centuries: challenging hypotheses

    PubMed Central

    Greaves, G. Neville

    2013-01-01

    This article explores Poisson's ratio, starting with the controversy concerning its magnitude and uniqueness in the context of the molecular and continuum hypotheses competing in the development of elasticity theory in the nineteenth century, moving on to its place in the development of materials science and engineering in the twentieth century, and concluding with its recent re-emergence as a universal metric for the mechanical performance of materials on any length scale. During these episodes France lost its scientific pre-eminence as paradigms switched from mathematical to observational, and accurate experiments became the prerequisite for scientific advance. The emergence of the engineering of metals followed, and subsequently the invention of composites—both somewhat separated from the discovery of quantum mechanics and crystallography, and illustrating the bifurcation of technology and science. Nowadays disciplines are reconnecting in the face of new scientific demands. During the past two centuries, though, the shape versus volume concept embedded in Poisson's ratio has remained invariant, but its application has exploded from its origins in describing the elastic response of solids and liquids, into areas such as materials with negative Poisson's ratio, brittleness, glass formation, and a re-evaluation of traditional materials. Moreover, the two contentious hypotheses have been reconciled in their complementarity within the hierarchical structure of materials and through computational modelling. PMID:24687094

  6. Phylogenetic system and zoogeography of the Plecoptera.

    PubMed

    Zwick, P

    2000-01-01

    Information about the phylogenetic relationships of Plecoptera is summarized. The few characters supporting monophyly of the order are outlined. Several characters of possible significance for the search for the closest relatives of the stoneflies are discussed, but the sister-group of the order remains unknown. Numerous characters supporting the presently recognized phylogenetic system of Plecoptera are presented, alternative classifications are discussed, and suggestions for future studies are made. Notes on zoogeography are appended. The order as such is old (Permian fossils), but phylogenetic relationships and global distribution patterns suggest that evolution of the extant suborders started with the breakup of Pangaea. There is evidence of extensive recent speciation in all parts of the world.

  7. Payment for Environmental Services: Hypotheses and Evidence.

    PubMed

    Alston, Lee J; Andersson, Krister; Smith, Steven M

    2013-06-01

    The use of payment for environmental services (PES) is not a new type of contract, but PES programs have become more in vogue because of the potential for sequestering carbon by paying to prevent deforestation and degradation of forestlands. We provide a framework utilizing transaction costs to hypothesize which services are more likely to be provided effectively. We then interpret the literature on PES programs to see the extent to which transaction costs vary as predicted across the type of service and to assess the performance of PES programs. As predicted, we find that transaction costs are the least for club goods like water and greatest for pure public goods like carbon reduction. Actual performance is difficult to measure and varies across the examples. More work and experimentation are needed to gain a better outlook on what elements support effective delivery of environmental services.

  8. Payment for Environmental Services: Hypotheses and Evidence

    PubMed Central

    Alston, Lee J.; Andersson, Krister; Smith, Steven M.

    2014-01-01

    The use of payment for environmental services (PES) is not a new type of contract, but PES programs have become more in vogue because of the potential for sequestering carbon by paying to prevent deforestation and degradation of forestlands. We provide a framework utilizing transaction costs to hypothesize which services are more likely to be provided effectively. We then interpret the literature on PES programs to see the extent to which transaction costs vary as predicted across the type of service and to assess the performance of PES programs. As predicted, we find that transaction costs are the least for club goods like water and greatest for pure public goods like carbon reduction. Actual performance is difficult to measure and varies across the examples. More work and experimentation are needed to gain a better outlook on what elements support effective delivery of environmental services. PMID:25143798

  9. Assessing hypotheses about nesting site occupancy dynamics

    USGS Publications Warehouse

    Bled, Florent; Royle, J. Andrew; Cam, Emmanuelle

    2011-01-01

    Hypotheses about habitat selection developed in the evolutionary ecology framework assume that individuals, under some conditions, select breeding habitat based on expected fitness in different habitat. The relationship between habitat quality and fitness may be reflected by breeding success of individuals, which may in turn be used to assess habitat quality. Habitat quality may also be assessed via local density: if high-quality sites are preferentially used, high density may reflect high-quality habitat. Here we assessed whether site occupancy dynamics vary with site surrogates for habitat quality. We modeled nest site use probability in a seabird subcolony (the Black-legged Kittiwake, Rissa tridactyla) over a 20-year period. We estimated site persistence (an occupied site remains occupied from time t to t + 1) and colonization through two subprocesses: first colonization (site creation at the timescale of the study) and recolonization (a site is colonized again after being deserted). Our model explicitly incorporated site-specific and neighboring breeding success and conspecific density in the neighborhood. Our results provided evidence that reproductively "successful'' sites have a higher persistence probability than "unsuccessful'' ones. Analyses of site fidelity in marked birds and of survival probability showed that high site persistence predominantly reflects site fidelity, not immediate colonization by new owners after emigration or death of previous owners. There is a negative quadratic relationship between local density and persistence probability. First colonization probability decreases with density, whereas recolonization probability is constant. This highlights the importance of distinguishing initial colonization and recolonization to understand site occupancy. All dynamics varied positively with neighboring breeding success. We found evidence of a positive interaction between site-specific and neighboring breeding success. We addressed local

  10. Relaxed Phylogenetics and Dating with Confidence

    PubMed Central

    Ho, Simon Y. W; Phillips, Matthew J

    2006-01-01

    In phylogenetics, the unrooted model of phylogeny and the strict molecular clock model are two extremes of a continuum. Despite their dominance in phylogenetic inference, it is evident that both are biologically unrealistic and that the real evolutionary process lies between these two extremes. Fortunately, intermediate models employing relaxed molecular clocks have been described. These models open the gate to a new field of “relaxed phylogenetics.” Here we introduce a new approach to performing relaxed phylogenetic analysis. We describe how it can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times. Our approach also provides a means for measuring the clocklikeness of datasets and comparing this measure between different genes and phylogenies. We find no significant rate autocorrelation among branches in three large datasets, suggesting that autocorrelated models are not necessarily suitable for these data. In addition, we place these datasets on the continuum of clocklikeness between a strict molecular clock and the alternative unrooted extreme. Finally, we present analyses of 102 bacterial, 106 yeast, 61 plant, 99 metazoan, and 500 primate alignments. From these we conclude that our method is phylogenetically more accurate and precise than the traditional unrooted model while adding the ability to infer a timescale to evolution. PMID:16683862

  11. A Universal Phylogenetic Tree.

    ERIC Educational Resources Information Center

    Offner, Susan

    2001-01-01

    Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)

  12. Understanding phylogenetic incongruence: lessons from phyllostomid bats

    PubMed Central

    Dávalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B

    2012-01-01

    All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive

  13. Telocytes and Their Extracellular Vesicles—Evidence and Hypotheses

    PubMed Central

    Cretoiu, Dragos; Xu, Jiahong; Xiao, Junjie; Cretoiu, Sanda M.

    2016-01-01

    Entering the new millennium, nobody believed that there was the possibility of discovering a new cellular type. Nevertheless, telocytes (TCs) were described as a novel kind of interstitial cell. Ubiquitously distributed in the extracellular matrix of any tissue, TCs are regarded as cells with telopodes involved in intercellular communication by direct homo- and heterocellular junctions or by extracellular vesicle (EVs) release. Their discovery has aroused the interest of many research groups worldwide, and many researchers regard them as potentially regenerative cells. Given the experience of our laboratory, where these cells were first described, we review the evidence supporting the fact that TCs release EVs, and discuss alternative hypotheses about their future implications. PMID:27529228

  14. Telocytes and Their Extracellular Vesicles-Evidence and Hypotheses.

    PubMed

    Cretoiu, Dragos; Xu, Jiahong; Xiao, Junjie; Cretoiu, Sanda M

    2016-01-01

    Entering the new millennium, nobody believed that there was the possibility of discovering a new cellular type. Nevertheless, telocytes (TCs) were described as a novel kind of interstitial cell. Ubiquitously distributed in the extracellular matrix of any tissue, TCs are regarded as cells with telopodes involved in intercellular communication by direct homo- and heterocellular junctions or by extracellular vesicle (EVs) release. Their discovery has aroused the interest of many research groups worldwide, and many researchers regard them as potentially regenerative cells. Given the experience of our laboratory, where these cells were first described, we review the evidence supporting the fact that TCs release EVs, and discuss alternative hypotheses about their future implications. PMID:27529228

  15. Perceptions as Hypotheses: Saccades as Experiments

    PubMed Central

    Friston, Karl; Adams, Rick A.; Perrinet, Laurent; Breakspear, Michael

    2012-01-01

    If perception corresponds to hypothesis testing (Gregory, 1980); then visual searches might be construed as experiments that generate sensory data. In this work, we explore the idea that saccadic eye movements are optimal experiments, in which data are gathered to test hypotheses or beliefs about how those data are caused. This provides a plausible model of visual search that can be motivated from the basic principles of self-organized behavior: namely, the imperative to minimize the entropy of hidden states of the world and their sensory consequences. This imperative is met if agents sample hidden states of the world efficiently. This efficient sampling of salient information can be derived in a fairly straightforward way, using approximate Bayesian inference and variational free-energy minimization. Simulations of the resulting active inference scheme reproduce sequential eye movements that are reminiscent of empirically observed saccades and provide some counterintuitive insights into the way that sensory evidence is accumulated or assimilated into beliefs about the world. PMID:22654776

  16. Testable Hypotheses for Unbalanced Neuroimaging Data

    PubMed Central

    McFarquhar, Martyn

    2016-01-01

    Unbalanced group-level models are common in neuroimaging. Typically, data for these models come from factorial experiments. As such, analyses typically take the form of an analysis of variance (ANOVA) within the framework of the general linear model (GLM). Although ANOVA theory is well established for the balanced case, in unbalanced designs there are multiple ways of decomposing the sums-of-squares of the data. This leads to several methods of forming test statistics when the model contains multiple factors and interactions. Although the Type I–III sums of squares have a long history of debate in the statistical literature, there has seemingly been no consideration of this aspect of the GLM in neuroimaging. In this paper we present an exposition of these different forms of hypotheses for the neuroimaging researcher, discussing their derivation as estimable functions of ANOVA models, and discussing the relative merits of each. Finally, we demonstrate how the different hypothesis tests can be implemented using contrasts in analysis software, presenting examples in SPM and FSL. PMID:27378839

  17. Empirical evaluation of partitioning schemes for phylogenetic analyses of mitogenomic data: an avian case study.

    PubMed

    Powell, Alexis F L A; Barker, F Keith; Lanyon, Scott M

    2013-01-01

    Whole mitochondrial genome sequences have been used in studies of animal phylogeny for two decades, and current technologies make them ever more available, but methods for their analysis are lagging and best practices have not been established. Most studies ignore variation in base composition and evolutionary rate within the mitogenome that can bias phylogenetic inference, or attempt to avoid it by excluding parts of the mitogenome from analysis. In contrast, partitioned analyses accommodate heterogeneity, without discarding data, by applying separate evolutionary models to differing portions of the mitogenome. To facilitate use of complete mitogenomic sequences in phylogenetics, we (1) suggest a set of categories for dividing mitogenomic datasets into subsets, (2) explore differences in evolutionary dynamics among those subsets, and (3) apply a method for combining data subsets with similar properties to produce effective and efficient partitioning schemes. We demonstrate these procedures with a case study, using the mitogenomes of species in the grackles and allies clade of New World blackbirds (Icteridae). We found that the most useful categories for partitioning were codon position, RNA secondary structure pairing, and the coding/noncoding distinction, and that a scheme with nine data groups outperformed all of the more complex alternatives (up to 44 data groups) that we tested. As hoped, we found that analyses using whole mitogenomic sequences yielded much better-resolved and more strongly-supported hypotheses of the phylogenetic history of that locus than did a conventional 2-kilobase sample (i.e. sequences of the cytochrome b and ND2 genes). Mitogenomes have much untapped potential for phylogenetics, especially of birds, a taxon for which they have been little exploited except in investigations of ordinal-level relationships. PMID:23000817

  18. Vertical nystagmus: clinical facts and hypotheses.

    PubMed

    Pierrot-Deseilligny, C; Milea, D

    2005-06-01

    hypoactive after pontine or caudal medullary lesions, thereby eliciting UBN, and hyperactive after floccular lesions, thereby eliciting DBN. Lastly, since gravity influences UBN and DBN and may facilitate the downward vestibular system and restrain the upward vestibular system, it is hypothesized that the excitatory SVN-VTT pathway, along with its specific floccular inhibition, has developed to counteract the gravity pull. This anatomical hyperdevelopment is apparently associated with a physiological upward velocity bias, since the gain of all upward slow eye movements is greater than that of downward slow eye movements in normal human subjects and in monkeys.

  19. PAML 4: phylogenetic analysis by maximum likelihood.

    PubMed

    Yang, Ziheng

    2007-08-01

    PAML, currently in version 4, is a package of programs for phylogenetic analyses of DNA and protein sequences using maximum likelihood (ML). The programs may be used to compare and test phylogenetic trees, but their main strengths lie in the rich repertoire of evolutionary models implemented, which can be used to estimate parameters in models of sequence evolution and to test interesting biological hypotheses. Uses of the programs include estimation of synonymous and nonsynonymous rates (d(N) and d(S)) between two protein-coding DNA sequences, inference of positive Darwinian selection through phylogenetic comparison of protein-coding genes, reconstruction of ancestral genes and proteins for molecular restoration studies of extinct life forms, combined analysis of heterogeneous data sets from multiple gene loci, and estimation of species divergence times incorporating uncertainties in fossil calibrations. This note discusses some of the major applications of the package, which includes example data sets to demonstrate their use. The package is written in ANSI C, and runs under Windows, Mac OSX, and UNIX systems. It is available at -- (http://abacus.gene.ucl.ac.uk/software/paml.html).

  20. Phylogenetic targeting of research effort in evolutionary biology.

    PubMed

    Arnold, Christian; Nunn, Charles L

    2010-11-01

    Many questions in comparative biology require that new data be collected, either to build a comparative database for the first time or to augment existing data. Given resource limitations in collecting data, the question arises as to which species should be studied to increase the size of comparative data sets. By taking hypotheses, existing data relevant to the hypotheses, and a phylogeny, we show that a method of “phylogenetic targeting” can systematically guide data collection while taking into account potentially confounding variables and competing hypotheses. Phylogenetic targeting selects potential candidates for future data collection, using a flexible scoring system based on differences in pairwise comparisons. We used simulations to assess the performance of phylogenetic targeting, as compared with the less systematic approach of randomly selecting species (as might occur when data have been collected without regard to phylogeny and variation in the traits of interest). The simulations revealed that phylogenetic targeting increased the statistical power to detect correlations and that power increased with the number of species in the tree, even when the number of species studied was held constant. We also developed a Web‐based computer program called PhyloTargeting to implement the approach ( http://phylotargeting.fas.harvard.edu ).

  1. Phylogenetic analyses of a combined data set suggest that the Attheya lineage is the closest living relative of the pennate diatoms (Bacillariophyceae).

    PubMed

    Sorhannus, Ulf; Fox, Martin G

    2012-03-01

    A Bayesian analysis of a seven gene data set was conducted to reconstruct phylogenetic relationships among a sample of centric and pennate diatoms and to test alternative hypotheses about the closest living relative of Bacillariophyceae. A lineage, composed of two Attheya species, was inferred to share the most recent common ancestor with Bacillariophyceae--a relationship that was also corroborated by the combined parsimony analysis. All competing hypotheses about the closest living relative of Bacillariophyceae were rejected because 100% of the trees in the post-burn-in sample in the Bayesian analysis supported the Attheya-Bacillariophyceae clade. According to a partitioned Bremer support analysis, the majority of the genes in the combined data matrix supported the Attheya--Bacillariophyceae relationship. The global topology of the phylogenetic tree indicated that a monophyletic group consisting of Thalassiosirales and Toxarium undulatum formed the deepest branch followed by a node uniting a clade composed of Bacillariophyceae/Attheya species and a lineage made up of Eucampia zoodiacus, Chaetocerotales, Lithodesmiales, Triceratiales, Biddulphiales and Cymatosirales. Except for the phylogenetic positions of Lithodesmiales, Thalassiosira sp and Skeletonema costatum, the optimal tree obtained from the combined parsimony analysis showed the same branching order of taxa as those seen in the consensus tree inferred from three independent Markov chain Monte Carlo analyses. Noteworthy findings are that Toxarium undulatum shares a strongly supported node with Thalassiosirales and that the genus Attheya is not a member of the Chaetocerotales lineage. PMID:21723193

  2. Complete mitochondrial genome sequences of the South american and the Australian lungfish: testing of the phylogenetic performance of mitochondrial data sets for phylogenetic problems in tetrapod relationships.

    PubMed

    Brinkmann, Henner; Denk, Angelika; Zitzler, Jürgen; Joss, Jean J; Meyer, Axel

    2004-12-01

    different reconstruction methods applied and cannot significantly rule out any of the three alternative hypotheses. Nuclear protein-coding genes, which might be better phylogenetic markers for this question, support the lungfish-tetrapod sister-group relationship (Brinkmann et al. 2004).

  3. About hypotheses and paradigms: exploring the Discreetness-Chance Paradigm.

    PubMed

    Kaellis, Eugene

    2006-01-01

    Hypotheses generally conform to paradigms which, over time, change, usually tardily, after they have become increasingly difficult to sustain under the impact of non-conforming evidence and alternative hypotheses, but more important, when they no longer are comfortably ensconced in the surrounding social-economic-political-cultural milieu. It is asserted that this milieu is the most important factor in shaping scientific theorizing. Some examples are cited: the rejection of the evidence that the world orbits around the sun (suspected by Pythagoras) in favor of centuries-long firm adherence to the Ptolemaic geocentric system; the early acceptance of Natural Selection in spite of its tautological essence and only conjectural supporting evidence, because it justified contemporaneous social-political ideologies as typified by, e.g., Spencer and Malthus. Economic, social, and cultural factors are cited as providing the ground, i.e., ideational substrate, for what is cited as the Discreetness-Chance Paradigm (DCP), that has increasingly dominated physics, biology, and medicine for over a century and which invokes small, discrete packets of energy/matter (quanta, genes, microorganisms, aberrant cells) functioning within an environment of statistical, not determined, causality. There is speculation on a possible paradigmatic shift from the DCP, which has fostered the proliferation, parallel with ("splitting") taxonomy, of alleged individual disease entities, their diagnoses, and, when available, their specific remedies, something particularly prominent in, e.g., psychiatry's Diagnostic and Statistical Manual, a codified compendium of alleged mental and behavioral disorders, but evident in any textbook of diagnosis and treatment of physical ailments. This presumed paradigm shift may be reflected in Western medicine, presently increasingly empirical and atomized, towards a growing acceptance of a more generalized, subject-oriented, approach to health and disease, a non

  4. About hypotheses and paradigms: exploring the Discreetness-Chance Paradigm.

    PubMed

    Kaellis, Eugene

    2006-01-01

    Hypotheses generally conform to paradigms which, over time, change, usually tardily, after they have become increasingly difficult to sustain under the impact of non-conforming evidence and alternative hypotheses, but more important, when they no longer are comfortably ensconced in the surrounding social-economic-political-cultural milieu. It is asserted that this milieu is the most important factor in shaping scientific theorizing. Some examples are cited: the rejection of the evidence that the world orbits around the sun (suspected by Pythagoras) in favor of centuries-long firm adherence to the Ptolemaic geocentric system; the early acceptance of Natural Selection in spite of its tautological essence and only conjectural supporting evidence, because it justified contemporaneous social-political ideologies as typified by, e.g., Spencer and Malthus. Economic, social, and cultural factors are cited as providing the ground, i.e., ideational substrate, for what is cited as the Discreetness-Chance Paradigm (DCP), that has increasingly dominated physics, biology, and medicine for over a century and which invokes small, discrete packets of energy/matter (quanta, genes, microorganisms, aberrant cells) functioning within an environment of statistical, not determined, causality. There is speculation on a possible paradigmatic shift from the DCP, which has fostered the proliferation, parallel with ("splitting") taxonomy, of alleged individual disease entities, their diagnoses, and, when available, their specific remedies, something particularly prominent in, e.g., psychiatry's Diagnostic and Statistical Manual, a codified compendium of alleged mental and behavioral disorders, but evident in any textbook of diagnosis and treatment of physical ailments. This presumed paradigm shift may be reflected in Western medicine, presently increasingly empirical and atomized, towards a growing acceptance of a more generalized, subject-oriented, approach to health and disease, a non

  5. Sticky Genomes: Using NGS Evidence to Test Hybrid Speciation Hypotheses

    PubMed Central

    Morgan-Richards, Mary; Hills, Simon F. K.; Biggs, Patrick J.; Trewick, Steven A.

    2016-01-01

    Hypotheses of hybrid origin are common. Here we use next generation sequencing to test a hybrid hypothesis for a non-model insect with a large genome. We compared a putative hybrid triploid stick insect species (Acanthoxyla geisovii) with its putative paternal diploid taxon (Clitarchus hookeri), a relationship that provides clear predictions for the relative genetic diversity within each genome. The parental taxon is expected to have comparatively low allelic diversity that is nested within the diversity of the hybrid daughter genome. The scale of genome sequencing required was conveniently achieved by extracting mRNA and sequencing cDNA to examine expressed allelic diversity. This allowed us to test hybrid-progenitor relationships among non-model organisms with large genomes and different ploidy levels. Examination of thousands of independent loci avoids potential problems produced by the silencing of parts of one or other of the parental genomes, a phenomenon sometimes associated with the process of stabilisation of a hybrid genome. Transcript assembles were assessed for evidence of paralogs and/or alternative splice variants before proceeding. Comparison of transcript assemblies was not an appropriate measure of genetic variability, but by mapping reads back to clusters derived from each species we determined levels of allelic diversity. We found greater cDNA sequence diversity among alleles in the putative hybrid species (Acanthoxyla geisovii) than the non-hybrid. The allelic diversity within the putative paternal species (Clitachus hookeri) nested within the hybrid-daughter genome, supports the current view of a hybrid-progenitor relationship for these stick insect species. Next generation sequencing technology provides opportunities for testing evolutionary hypotheses with non-model organisms, including, as here, genomes that are large due to polyploidy. PMID:27187689

  6. Phylogenetic placement of Trichonympha.

    PubMed

    Dacks, J B; Redfield, R J

    1998-01-01

    Flagellated protists of the Class Hypermastigida have previously been classified on morphology alone, since no molecular sequences have been available. We have isolated DNA from 350 cells of the hypermastigote Trichonympha, manually collected from the hindgut of Zootermopsis angusticollis, and used this DNA as template for polymerase chain reaction amplification of the small-subunit ribosomal RNA gene. The DNA sequence of the amplified fragment is closely related to that of a previously-unidentified gut symbiont from the termite Reticulitermes flavipes, and phylogenetic analysis places both sequences as a sister group to the known trichomonads, in agreement with the morphological classification.

  7. Phylogenetic Comparative Assembly

    NASA Astrophysics Data System (ADS)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  8. A novel approach to generating CER hypotheses based on mining clinical data.

    PubMed

    Zhang, Shuo; Li, Lin; Yu, Yiqin; Sun, Xingzhi; Xu, Linhao; Zhao, Wei; Teng, Xiaofei; Pan, Yue

    2013-01-01

    Comparative effectiveness research (CER) is a scientific method of investigating the effectiveness of alternative intervention methods. In a CER study, clinical researchers typically start with a CER hypothesis, and aim to evaluate it by applying a series of medical statistical methods. Traditionally, the CER hypotheses are defined manually by clinical researchers. This makes the task of hypothesis generation very time-consuming and the quality of hypothesis heavily dependent on the researchers' skills. Recently, with more electronic medical data being collected, it is highly promising to apply the computerized method for discovering CER hypotheses from clinical data sets. In this poster, we proposes a novel approach to automatically generating CER hypotheses based on mining clinical data, and presents a case study showing that the approach can facilitate clinical researchers to identify potentially valuable hypotheses and eventually define high quality CER studies.

  9. Testing evolutionary hypotheses about human biological adaptation using cross-cultural comparison.

    PubMed

    Mace, Ruth; Jordan, Fiona; Holden, Clare

    2003-09-01

    Physiological data from a range of human populations living in different environments can provide valuable information for testing evolutionary hypotheses about human adaptation. By taking into account the effects of population history, phylogenetic comparative methods can help us determine whether variation results from selection due to particular environmental variables. These selective forces could even be due to cultural traits-which means that gene-culture co-evolution may be occurring. In this paper, we outline two examples of the use of these approaches to test adaptive hypotheses that explain global variation in two physiological traits: the first is lactose digestion capacity in adults, and the second is population sex-ratio at birth. We show that lower than average sex ratio at birth is associated with high fertility, and argue that global variation in sex ratio at birth has evolved as a response to the high physiological costs of producing boys in high fertility populations. PMID:14527632

  10. Bayesian phylogenetic estimation of fossil ages

    PubMed Central

    Drummond, Alexei J.; Stadler, Tanja

    2016-01-01

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences

  11. Bayesian phylogenetic estimation of fossil ages.

    PubMed

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  12. Bayesian phylogenetic estimation of fossil ages.

    PubMed

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  13. Are Victoria West cores "proto-Levallois"? A phylogenetic assessment.

    PubMed

    Lycett, Stephen J

    2009-02-01

    Cores from South Africa assigned to the "Victoria West" industry have long been purported as a "proto-Levallois" core form, and thus regarded as ancestral to the Levallois prepared core technologies of the Middle Paleolithic and African Middle Stone Age. Similarities in form between Victoria West cores, in terms of surface morphology and the removal of large flakes from a prepared surface, led to hypothesized schemes of technological evolution from Victoria West cores through to fully developed Levallois cores. However, the phylogenetic basis of this Victoria West "proto-Levallois" hypothesis, and the assumptions of phylogenetic homology upon which it rests, have never been tested formally. In recent years, archaeologists have begun to use phylogenetic methods drawn from biology to test hypotheses of technological and cultural evolution. Here, the phylogenetic assumptions of the Victoria West "proto-Levallois" hypothesis are tested directly using a cladistic (maximum parsimony) protocol. The cladistic analyses indicate that Victoria West cores are not the basal sister taxon of a Levallois clade, as predicted by the proto-Levallois hypothesis. Moreover, character analyses demonstrate that several characters relating to core surfaces and flake scar morphology are not phylogenetically homologous, but result from convergent technological evolution within the Acheulean techno-complex. Post hoc analyses further determine that these results are not confounded by choice of outgroup or raw material factors. The results were also shown to be robust on the basis of the ensemble retention index statistic, bootstrap analyses, and permutation tests. Hence, it is concluded that Victoria West cores do not represent a "proto-Levallois" core form, and that the term "para-Levallois" should more correctly be applied on phylogenetic grounds. It is further argued that even in cases where different technologies are found to share phylogenetically homologous features, use of the term

  14. Phylogenetic trees in bioinformatics

    SciTech Connect

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  15. Entanglement, Invariants, and Phylogenetics

    NASA Astrophysics Data System (ADS)

    Sumner, J. G.

    2007-10-01

    This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.

  16. Evolutionary relationships of the Critically Endangered frog Ericabatrachus baleensis Largen, 1991 with notes on incorporating previously unsampled taxa into large-scale phylogenetic analyses

    PubMed Central

    2014-01-01

    Background The phylogenetic relationships of many taxa remain poorly known because of a lack of appropriate data and/or analyses. Despite substantial recent advances, amphibian phylogeny remains poorly resolved in many instances. The phylogenetic relationships of the Ethiopian endemic monotypic genus Ericabatrachus has been addressed thus far only with phenotypic data and remains contentious. Results We obtained fresh samples of the now rare and Critically Endangered Ericabatrachus baleensis and generated DNA sequences for two mitochondrial and four nuclear genes. Analyses of these new data using de novo and constrained-tree phylogenetic reconstructions strongly support a close relationship between Ericabatrachus and Petropedetes, and allow us to reject previously proposed alternative hypotheses of a close relationship with cacosternines or Phrynobatrachus. Conclusions We discuss the implications of our results for the taxonomy, biogeography and conservation of E. baleensis, and suggest a two-tiered approach to the inclusion and analyses of new data in order to assess the phylogenetic relationships of previously unsampled taxa. Such approaches will be important in the future given the increasing availability of relevant mega-alignments and potential framework phylogenies. PMID:24612655

  17. Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes).

    PubMed

    Golombek, Anja; Tobergte, Sarah; Struck, Torsten H

    2015-05-01

    Gnathostomulida is a taxon of small marine worms, which exclusively inhabit the interstitium. The evolution of Gnathostomulida has been discussed for decades. Originally regarded as primitive animals with affinities to flatworms, the phylogenetic position of Gnathostomulida has been debated. Given the lack of an anus a close relationship to Platyhelminthes has been maintained (i.e., Plathelminthomorpha hypothesis). Alternative hypotheses proposed Gnathostomulida as being close to Gastrotricha due to the presence of a monociliary epidermis (i.e., Monokonta/Neotrichozoa hypothesis) or to Syndermata based on the complicated jaw apparatus (i.e., Gnathifera hypothesis). Molecular analyses using only few genes were inconclusive. Recent phylogenomic studies brought some progress by placing Gnathostomulida as sister to Syndermata, but support for this relationship was low and depended on the analytical strategy. Herein we present the first data of complete or nearly complete mitochondrial genomes for two gnathostomulids (Gnathostomula paradoxa &G. armata), one gastrotrich (Lepidodermella squamata) and one polyclad flatworm (Stylochoplana maculata) to address the uncertain phylogenetic affinity of Gnathostomulida. Our analyses found Gnathostomulida as sister to Syndermata (Gnathifera hypothesis). Thorough sensitivity analyses addressing taxon instability, branch length heterogeneity (also known as long branch attraction) and base composition heterogeneity showed that the position of Gnathostomulida is consistent across the different analyses and, hence, independent of potential misleading biases. Moreover, by ameliorating these different biases nodal support values could be increased to maximum values. Thus, our data support the hypothesis that the different jaw apparatuses of Syndermata and Gnathostomulida are indeed homologous structures as proposed by the Gnathifera hypothesis.

  18. Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae

    PubMed Central

    2011-01-01

    Background Previous DNA-based phylogenetic studies of the Delphinidae family suggest it has undergone rapid diversification, as characterised by unresolved and poorly supported taxonomic relationships (polytomies) for some of the species within this group. Using an increased amount of sequence data we test between alternative hypotheses of soft polytomies caused by rapid speciation, slow evolutionary rate and/or insufficient sequence data, and hard polytomies caused by simultaneous speciation within this family. Combining the mitogenome sequences of five new and 12 previously published species within the Delphinidae, we used Bayesian and maximum-likelihood methods to estimate the phylogeny from partitioned and unpartitioned mitogenome sequences. Further ad hoc tests were then conducted to estimate the support for alternative topologies. Results We found high support for all the relationships within our reconstructed phylogenies, and topologies were consistent between the Bayesian and maximum-likelihood trees inferred from partitioned and unpartitioned data. Resolved relationships included the placement of the killer whale (Orcinus orca) as sister taxon to the rest of the Globicephalinae subfamily, placement of the Risso's dolphin (Grampus griseus) within the Globicephalinae subfamily, removal of the white-beaked dolphin (Lagenorhynchus albirostris) from the Delphininae subfamily and the placement of the rough-toothed dolphin (Steno bredanensis) as sister taxon to the rest of the Delphininae subfamily rather than within the Globicephalinae subfamily. The additional testing of alternative topologies allowed us to reject all other putative relationships, with the exception that we were unable to reject the hypothesis that the relationship between L. albirostris and the Globicephalinae and Delphininae subfamilies was polytomic. Conclusion Despite their rapid diversification, the increased sequence data yielded by mitogenomes enables the resolution of a strongly

  19. The Phylogenetic Diversity of Metagenomes

    PubMed Central

    Kembel, Steven W.; Eisen, Jonathan A.; Pollard, Katherine S.; Green, Jessica L.

    2011-01-01

    Phylogenetic diversity—patterns of phylogenetic relatedness among organisms in ecological communities—provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context. PMID:21912589

  20. Student interpretations of phylogenetic trees in an introductory biology course.

    PubMed

    Dees, Jonathan; Momsen, Jennifer L; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge.

  1. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    PubMed Central

    Dees, Jonathan; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge. PMID:25452489

  2. Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest

    PubMed Central

    Staggemeier, Vanessa Graziele; Diniz-Filho, José Alexandre Felizola; Forest, Félix; Lucas, Eve

    2015-01-01

    Background and Aims Myrcia section Aulomyrcia includes ∼120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classification systems and to test alternative hypotheses associated with the history of this clade. Methods Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, ‘geographic state speciation and extinction’, was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas. Key Results Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south-eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining diversity in the Atlantic forest biodiversity hotspot. Conclusions This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversification of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside

  3. Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells.

    PubMed

    Smith, Ursula E; Hendricks, Jonathan R

    2013-05-01

    . In 33-45% of the test cases (depending upon the approach used for measuring success), it was possible to place the pseudofossil taxon into the correct regions of the phylogeny using only the morphometric characters. This suggests that the incorporation of extinct Conus taxa into phylogenetic hypotheses will be possible, permitting a wide range of macroevolutionary questions to be addressed within this genus. This methodology also has potential to contribute to phylogenetic reconstructions for other major components of the fossil record that lack numerous discrete characters. PMID:23325808

  4. Quartets and unrooted phylogenetic networks.

    PubMed

    Gambette, Philippe; Berry, Vincent; Paul, Christophe

    2012-08-01

    Phylogenetic networks were introduced to describe evolution in the presence of exchanges of genetic material between coexisting species or individuals. Split networks in particular were introduced as a special kind of abstract network to visualize conflicts between phylogenetic trees which may correspond to such exchanges. More recently, methods were designed to reconstruct explicit phylogenetic networks (whose vertices can be interpreted as biological events) from triplet data. In this article, we link abstract and explicit networks through their combinatorial properties, by introducing the unrooted analog of level-k networks. In particular, we give an equivalence theorem between circular split systems and unrooted level-1 networks. We also show how to adapt to quartets some existing results on triplets, in order to reconstruct unrooted level-k phylogenetic networks. These results give an interesting perspective on the combinatorics of phylogenetic networks and also raise algorithmic and combinatorial questions.

  5. Quartets and unrooted phylogenetic networks.

    PubMed

    Gambette, Philippe; Berry, Vincent; Paul, Christophe

    2012-08-01

    Phylogenetic networks were introduced to describe evolution in the presence of exchanges of genetic material between coexisting species or individuals. Split networks in particular were introduced as a special kind of abstract network to visualize conflicts between phylogenetic trees which may correspond to such exchanges. More recently, methods were designed to reconstruct explicit phylogenetic networks (whose vertices can be interpreted as biological events) from triplet data. In this article, we link abstract and explicit networks through their combinatorial properties, by introducing the unrooted analog of level-k networks. In particular, we give an equivalence theorem between circular split systems and unrooted level-1 networks. We also show how to adapt to quartets some existing results on triplets, in order to reconstruct unrooted level-k phylogenetic networks. These results give an interesting perspective on the combinatorics of phylogenetic networks and also raise algorithmic and combinatorial questions. PMID:22809417

  6. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods.

    PubMed

    McGowen, Michael R; Clark, Clay; Gatesy, John

    2008-08-01

    The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are

  7. Testing allele homogeneity: the problem of nested hypotheses

    PubMed Central

    2012-01-01

    Background The evaluation of associations between genotypes and diseases in a case-control framework plays an important role in genetic epidemiology. This paper focuses on the evaluation of the homogeneity of both genotypic and allelic frequencies. The traditional test that is used to check allelic homogeneity is known to be valid only under Hardy-Weinberg equilibrium, a property that may not hold in practice. Results We first describe the flaws of the traditional (chi-squared) tests for both allelic and genotypic homogeneity. Besides the known problem of the allelic procedure, we show that whenever these tests are used, an incoherence may arise: sometimes the genotypic homogeneity hypothesis is not rejected, but the allelic hypothesis is. As we argue, this is logically impossible. Some methods that were recently proposed implicitly rely on the idea that this does not happen. In an attempt to correct this incoherence, we describe an alternative frequentist approach that is appropriate even when Hardy-Weinberg equilibrium does not hold. It is then shown that the problem remains and is intrinsic of frequentist procedures. Finally, we introduce the Full Bayesian Significance Test to test both hypotheses and prove that the incoherence cannot happen with these new tests. To illustrate this, all five tests are applied to real and simulated datasets. Using the celebrated power analysis, we show that the Bayesian method is comparable to the frequentist one and has the advantage of being coherent. Conclusions Contrary to more traditional approaches, the Full Bayesian Significance Test for association studies provides a simple, coherent and powerful tool for detecting associations. PMID:23176636

  8. Species names in phylogenetic nomenclature.

    PubMed

    Cantino, P D; Bryant, H N; de Queiroz, K; Donoghue, M J; Eriksson, T; Hillis, D M; Lee, M S

    1999-12-01

    Linnaean binomial nomenclature is logically incompatible with the phylogenetic nomenclature of de Queiroz and Gauthier (1992, Annu. Rev. Ecol. Syst. 23:449-480): The former is based on the concept of genus, thus making this rank mandatory, while the latter is based on phylogenetic definitions and requires the abandonment of mandatory ranks. Thus, if species are to receive names under phylogenetic nomenclature, a different method must be devised to name them. Here, 13 methods for naming species in the context of phylogenetic nomenclature are contrasted with each other and with Linnaean binomials. A fundamental dichotomy among the proposed methods distinguishes those that retain the entire binomial of a preexisting species name from those that retain only the specific epithet. Other relevant issues include the stability, uniqueness, and ease of pronunciation of species names; their capacity to convey phylogenetic information; and the distinguishability of species names that are governed by a code of phylogenetic nomenclature both from clade names and from species names governed by the current codes. No method is ideal. Each has advantages and drawbacks, and preference for one option over another will be influenced by one's evaluation of the relative importance of the pros and cons for each. Moreover, sometimes the same feature is viewed as an advantage by some and a drawback by others. Nevertheless, all of the proposed methods for naming species in the context of phylogenetic nomenclature provide names that are more stable than Linnaean binomials. PMID:12066299

  9. Using climate, energy, and spatial-based hypotheses to interpret macroecological patterns of North America chelonians

    USGS Publications Warehouse

    Ennen, Joshua R.; Agha, Mickey; Matamoros, Wilfredo A.; Hazzard, Sarah C.; Lovich, Jeffrey E.

    2016-01-01

    Our study investigates how factors, such as latitude, productivity, and several environmental variables, influence contemporary patterns of the species richness in North American turtles. In particular, we test several hypotheses explaining broad-scale species richness patterns on several species richness data sets: (i) total turtles, (ii) freshwater turtles only, (iii) aquatic turtles, (iv) terrestrial turtles only, (v) Emydidae, and (vi) Kinosternidae. In addition to spatial data, we used a combination of 25 abiotic variables in spatial regression models to predict species richness patterns. Our results provide support for multiple hypotheses related to broad-scale patterns of species richness, and in particular, hypotheses related to climate, productivity, water availability, topography, and latitude. In general, species richness patterns were positively associated with temperature, precipitation, diversity of streams, coefficient of variation of elevation, and net primary productivity. We also found that North America turtles follow the general latitudinal diversity gradient pattern (i.e., increasing species richness towards equator) by exhibiting a negative association with latitude. Because of the incongruent results among our six data sets, our study highlights the importance of considering phylogenetic constraints and guilds when interpreting species richness patterns, especially for taxonomic groups that occupy a myriad of habitats.

  10. Head size, weaponry, and cervical adaptation: Testing craniocervical evolutionary hypotheses in Ceratopsia.

    PubMed

    VanBuren, Collin S; Campione, Nicolás E; Evans, David C

    2015-07-01

    The anterior cervical vertebrae form the skeletal connection between the cranial and postcranial skeletons in higher tetrapods. As a result, the morphology of the atlas-axis complex is likely to be shaped by selection pressures acting on either the head or neck. The neoceratopsian (Reptilia:Dinosauria) syncervical represents one of the most highly modified atlas-axis regions in vertebrates, being formed by the complete coalescence of the three most anterior cervical vertebrae. In ceratopsids, the syncervical has been hypothesized to be an adaptation to support a massive skull, or to act as a buttress during intraspecific head-to-head combat. Here, we test these functional/adaptive hypotheses within a phylogenetic framework and critically examine the previously proposed methods for quantifying relative head size in the fossil record for the first time. Results indicate that neither the evolution of cranial weaponry nor large head size correlates with the origin of cervical fusion in ceratopsians, and we, therefore, reject both adaptive hypotheses for the origin of the syncervical. Anterior cervical fusion has evolved independently in a number of amniote clades, and further research on extant groups with this peculiar anatomy is needed to understand the evolutionary basis for cervical fusion in Neoceratopsia.

  11. Bayesian phylogenetic analysis of Semitic languages identifies an Early Bronze Age origin of Semitic in the Near East

    PubMed Central

    Kitchen, Andrew; Ehret, Christopher; Assefa, Shiferaw; Mulligan, Connie J.

    2009-01-01

    The evolution of languages provides a unique opportunity to study human population history. The origin of Semitic and the nature of dispersals by Semitic-speaking populations are of great importance to our understanding of the ancient history of the Middle East and Horn of Africa. Semitic populations are associated with the oldest written languages and urban civilizations in the region, which gave rise to some of the world's first major religious and literary traditions. In this study, we employ Bayesian computational phylogenetic techniques recently developed in evolutionary biology to analyse Semitic lexical data by modelling language evolution and explicitly testing alternative hypotheses of Semitic history. We implement a relaxed linguistic clock to date language divergences and use epigraphic evidence for the sampling dates of extinct Semitic languages to calibrate the rate of language evolution. Our statistical tests of alternative Semitic histories support an initial divergence of Akkadian from ancestral Semitic over competing hypotheses (e.g. an African origin of Semitic). We estimate an Early Bronze Age origin for Semitic approximately 5750 years ago in the Levant, and further propose that contemporary Ethiosemitic languages of Africa reflect a single introduction of early Ethiosemitic from southern Arabia approximately 2800 years ago. PMID:19403539

  12. Phylogenetic lineages in Pseudocercospora

    PubMed Central

    Crous, P.W.; Braun, U.; Hunter, G.C.; Wingfield, M.J.; Verkley, G.J.M.; Shin, H.-D.; Nakashima, C.; Groenewald, J.Z.

    2013-01-01

    Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general

  13. Introducing First-Year Medical Students to Early Diagnostic Hypotheses

    ERIC Educational Resources Information Center

    Taylor, P. J.; And Others

    1978-01-01

    A method of instruction in gynecology is described that encouraged the formulation of early diagnostic hypotheses, an important part of clinical problem-solving. Students were given a set of clinical clues to help them make broad diagnostic hypotheses. Student ability, results, and student perceptions of the course are provided. (Author/LBH)

  14. Revising Segmentation Hypotheses in First and Second Language Listening

    ERIC Educational Resources Information Center

    Field, John

    2008-01-01

    Any on-line processing that takes place while an utterance is unfolding is extremely tentative, with early-formed hypotheses having to be revised as the utterance proceeds. The hypotheses in question relate not only to the words that are present but also to where their boundaries fall. This study examines how first and second language listeners…

  15. Phylogenetics and the Human Microbiome

    PubMed Central

    Matsen, Frederick A.

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work. PMID:25102857

  16. Phylogenetic Interrelationships of Ginglymodian Fishes (Actinopterygii: Neopterygii)

    PubMed Central

    López-Arbarello, Adriana

    2012-01-01

    The Ginglymodi is one of the most common, though poorly understood groups of neopterygians, which includes gars, macrosemiiforms, and “semionotiforms.” In particular, the phylogenetic relationships between the widely distributed “semionotiforms,” and between them and other ginglymodians have been enigmatic. Here, the phylogenetic relationships between eight of the 11 “semionotiform” genera, five genera of living and fossil gars and three macrosemiid genera, are analysed through cladistic analysis, based on 90 morphological characters and 37 taxa, including 7 out-group taxa. The results of the analysis show that the Ginglymodi includes two main lineages: Lepisosteiformes and †Semionotiformes. The genera †Pliodetes, †Araripelepidotes, †Lepidotes, †Scheenstia, and †Isanichthys are lepisosteiforms, and not semionotiforms, as previously thought, and these taxa extend the stratigraphic range of the lineage leading to gars back up to the Early Jurassic. A monophyletic †Lepidotes is restricted to the Early Jurassic species, whereas the strongly tritoral species previously referred to †Lepidotes are referred to †Scheenstia. Other species previously referred to †Lepidotes represent other genera or new taxa. The macrosemiids are well nested within semionotiforms, together with †Semionotidae, here restricted to †Semionotus, and a new family including †Callipurbeckia n. gen. minor (previously referred to †Lepidotes), †Macrosemimimus, †Tlayuamichin, †Paralepidotus, and †Semiolepis. Due to the numerous taxonomic changes needed according to the phylogenetic analysis, this article also includes formal taxonomic definitions and diagnoses for all generic and higher taxa, which are new or modified. The study of Mesozoic ginglymodians led to confirm Patterson’s observation that these fishes show morphological affinities with both halecomorphs and teleosts. Therefore, the compilation of large data sets including the Mesozoic

  17. Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida).

    PubMed

    Hausdorf, Bernhard; Helmkampf, Martin; Nesnidal, Maximilian P; Bruchhaus, Iris

    2010-06-01

    We produced two new EST datasets of so far uncovered clades of ectoprocts to investigate the phylogenetic relationships within the lophophorate lineages, Ectoprocta, Brachiopoda and Phoronida. Maximum-likelihood analyses based on 78 ribosomal proteins of 62 metazoan taxa support the monophyly of Ectoprocta and a sister group relationship of Phylactolaemata living in freshwater and the mainly marine Gymnolaemata. Hypotheses suggesting that Ectoprocta is diphyletic with phylactolaemates forming a clade with phoronids or paraphyletic with respect to Entoprocta could be rejected by topology tests. The hypotheses that Stenolaemata are the sister group of all other ectoprocts, that Stenolaemata constitutes a monophyletic group with Cheilostomata, and that Phylactolaemata have been derived from Ctenostomata could also be excluded. However, the hypothesis that Phylactolaemata and Stenolaemata form a monophyletic group could not be rejected. Brachiopoda and Phoronida constitute a monophylum, Brachiozoa. The hypotheses that phoronids are the sister group of articulate or inarticulate brachiopods could be rejected by topology tests, thus confirming the monophyly of Brachiopoda.

  18. Sound and faulty arguments generated by preservice biology teachers when testing hypotheses involving unobservable entities

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    2002-03-01

    A sample of preservice biology teachers (biology majors) enrolled in a teaching methods course formulated and attempted to test six hypotheses to answer a causal question about why water rose in a jar inverted over a burning candle placed in a pan of water. The students submitted a lab report in which arguments and evidence for testing each hypothesis were presented in an if/then/therefore hypothetico-predictive form. Analysis of written arguments revealed considerable success when students were able to manipulate observable hypothesized causes. However, when the hypothesized causes were unobservable, such that they could be only indirectly tested, performance dropped, as shown by use of three types of faulty arguments: (a) arguments that had missing or confused elements, (b) arguments whose predictions did not follow from hypotheses and planned tests, and (c) arguments that failed to consider alternative hypotheses. Science is an enterprise in which unobservable theoretical entities and processes (e.g., atoms, genes, osmosis, and photosynthesis) are often used to explain observable phenomena. Consequently, if it is assumed that effective teaching requires prior understanding, then it follows that these future teachers have yet to develop adequate hypothesis-testing skills and sufficient awareness of the nature of science to teach science in the inquiry mode advocated by reform guidelines.

  19. Phylogenetics: bats united, microbats divided.

    PubMed

    Springer, Mark S

    2013-11-18

    Phylogenetic analyses on four new bat genomes provide convincing support for the placement of bats relative to other placental mammals, suggest that microbats are an unnatural group, and have important implications for understanding the evolution of echolocation.

  20. Application of the phylogenetic informativeness method to chloroplast markers: a test case of closely related species in tribe Hydrangeeae (Hydrangeaceae).

    PubMed

    Granados Mendoza, Carolina; Wanke, Stefan; Salomo, Karsten; Goetghebeur, Paul; Samain, Marie-Stéphanie

    2013-01-01

    In evolutionary biology appropriate marker selection for the reconstruction of solid phylogenetic hypotheses is fundamental. One of the most challenging tasks addresses the appropriate choice of genomic regions in studies of closely related species. Robust phylogenetic frameworks are central to studies dealing with questions ranging from evolutionary and conservation biology, biogeography to plant breeding. Phylogenetic informativeness profiles provide a quantitative measure of the phylogenetic signal in markers and therefore a method for locus prioritization. The present work profiles phylogenetic informativeness of mostly non-coding chloroplast regions in an angiosperm lineage of closely related species: the popular ornamental tribe Hydrangeeae (Hydrangeaceae, Cornales, Asterids). A recent phylogenetic study denoted a case of resolution contrast between the two strongly supported clades within tribe Hydrangeeae. We evaluate the phylogenetic signal of 13 highly variable plastid markers for estimating relationships within and among the currently recognized monophyletic groups of this tribe. A selection of combined loci based on their phylogenetic informativeness retrieved more robust phylogenetic hypotheses than simply combining individual markers performing best with respect to resolution, nodal support and accuracy or those presenting the highest number of parsimony informative characters. We propose the rpl32-ndhF intergenic spacer (IGS), trnV-ndhC IGS, trnL-rpl32 IGS, psbT-petB region and ndhA intron as the best candidates for future phylogenetic studies in Hydrangeeae and potentially in other Asterids. We also contrasted the phylogenetic informativeness of coded indels against substitutions concluding that, despite their low phylogenetic informativeness, coded indels provide additional phylogenetic signal that is nearly free of noise. Phylogenetic relationships obtained from our total combined analyses showed improved resolution and nodal support with respect

  1. Complex phylogenetic distribution of a non-canonical genetic code in green algae

    PubMed Central

    2010-01-01

    Background A non-canonical nuclear genetic code, in which TAG and TAA have been reassigned from stop codons to glutamine, has evolved independently in several eukaryotic lineages, including the ulvophycean green algal orders Dasycladales and Cladophorales. To study the phylogenetic distribution of the standard and non-canonical genetic codes, we generated sequence data of a representative set of ulvophycean green algae and used a robust green algal phylogeny to evaluate different evolutionary scenarios that may account for the origin of the non-canonical code. Results This study demonstrates that the Dasycladales and Cladophorales share this alternative genetic code with the related order Trentepohliales and the genus Blastophysa, but not with the Bryopsidales, which is sister to the Dasycladales. This complex phylogenetic distribution whereby all but one representative of a single natural lineage possesses an identical deviant genetic code is unique. Conclusions We compare different evolutionary scenarios for the complex phylogenetic distribution of this non-canonical genetic code. A single transition to the non-canonical code followed by a reversal to the canonical code in the Bryopsidales is highly improbable due to the profound genetic changes that coincide with codon reassignment. Multiple independent gains of the non-canonical code, as hypothesized for ciliates, are also unlikely because the same deviant code has evolved in all lineages. Instead we favor a stepwise acquisition model, congruent with the ambiguous intermediate model, whereby the non-canonical code observed in these green algal orders has a single origin. We suggest that the final steps from an ambiguous intermediate situation to a non-canonical code have been completed in the Trentepohliales, Dasycladales, Cladophorales and Blastophysa but not in the Bryopsidales. We hypothesize that in the latter lineage an initial stage characterized by translational ambiguity was not followed by final

  2. Does Ease to Block a Ball Affect Perceived Ball Speed? Examination of Alternative Hypotheses

    ERIC Educational Resources Information Center

    Witt, Jessica K.; Sugovic, Mila

    2012-01-01

    According to an action-specific account of perception, the perceived speed of a ball can be a function of the ease to block the ball. Balls that are easier to stop look like they are moving slower than balls that are more difficult to stop. This was recently demonstrated with a modified version of the classic computer game Pong (Witt & Sugovic,…

  3. Phylogenetic lineages in Pseudocercospora

    PubMed Central

    Crous, P.W.; Braun, U.; Hunter, G.C.; Wingfield, M.J.; Verkley, G.J.M.; Shin, H.-D.; Nakashima, C.; Groenewald, J.Z.

    2013-01-01

    Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general

  4. The world hypotheses scale: rationale, reliability and validity.

    PubMed

    Harris, M; Fontana, A F; Dowds, B N

    1977-10-01

    Theoretical descriptions are presented for four different sets cognitive assumptions concerning the fundamental meaning of events. These cognitive assumptions or world hypotheses are called formism, mechanism, organicism, and contextualism. The development of a 12-item scale to measure individual preferences for these world hypotheses is described. Finally, several empirical studies are reported in which diverse behavioral correlates have been found for individuals preferences among world hypotheses. Specifically, significant results have been obtained for choice of careers, stability of friendships, and success in both group and individual therapies. PMID:16367206

  5. Use of spectral analysis to test hypotheses on the origin of pinnipeds.

    PubMed

    Lento, G M; Hickson, R E; Chambers, G K; Penny, D

    1995-01-01

    The evolutionary origin of the pinnipeds (seals, sea lions, and walruses) is still uncertain. Most authors support a hypothesis of a monophyletic origin of the pinnipeds from a caniform carnivore. A minority view suggests a diphyletic origin with true seals being related to the mustelids (otters and ferrets). The phylogenetic relationships of the walrus to other pinniped and carnivore families are also still particularly problematic. Here we examined the relative support for mono- and diphyletic hypotheses using DNA sequence data from the mitochondrial small subunit (12S) rRNA and cytochrome b genes. We first analyzed a small group of taxa representing the three pinniped families (Phocidae, Otariidae, and Odobenidae) and caniform carnivore families thought to be related to them. We inferred phylogenetic reconstructions from DNA sequence data using standard parsimony and neighbor-joining algorithms for phylogenetic inference as well as a new method called spectral analysis (Hendy and Penny) in which phylogenetic information is displayed independently of any selected tree. We identified and compensated for potential sources of error known to lead to selection of incorrect phylogenetic trees. These include sampling error, unequal evolutionary rates on lineages, unequal nucleotide composition among lineages, unequal rates of change at different sites, and inappropriate tree selection criteria. To correct for these errors, we performed additional transformations of the observed substitution patterns in the sequence data, applied more stringent structural constraints to the analyses, and included several additional taxa to help resolve long, unbranched lineages in the tree. We find that there is strong support for a monophyletic origin of the pinnipeds from within the caniform carnivores, close to the bear/raccoon/panda radiation. Evidence for a diphyletic origin was very weak and can be partially attributed to unequal nucleotide compositions among the taxa analyzed

  6. Phylogenetic review of tonal sound production in whales in relation to sociality

    PubMed Central

    May-Collado, Laura J; Agnarsson, Ingi; Wartzok, Douglas

    2007-01-01

    Background It is widely held that in toothed whales, high frequency tonal sounds called 'whistles' evolved in association with 'sociality' because in delphinids they are used in a social context. Recently, whistles were hypothesized to be an evolutionary innovation of social dolphins (the 'dolphin hypothesis'). However, both 'whistles' and 'sociality' are broad concepts each representing a conglomerate of characters. Many non-delphinids, whether solitary or social, produce tonal sounds that share most of the acoustic characteristics of delphinid whistles. Furthermore, hypotheses of character correlation are best tested in a phylogenetic context, which has hitherto not been done. Here we summarize data from over 300 studies on cetacean tonal sounds and social structure and phylogenetically test existing hypotheses on their co-evolution. Results Whistles are 'complex' tonal sounds of toothed whales that demark a more inclusive clade than the social dolphins. Whistles are also used by some riverine species that live in simple societies, and have been lost twice within the social delphinoids, all observations that are inconsistent with the dolphin hypothesis as stated. However, cetacean tonal sounds and sociality are intertwined: (1) increased tonal sound modulation significantly correlates with group size and social structure; (2) changes in tonal sound complexity are significantly concentrated on social branches. Also, duration and minimum frequency correlate as do group size and mean minimum frequency. Conclusion Studying the evolutionary correlation of broad concepts, rather than that of their component characters, is fraught with difficulty, while limits of available data restrict the detail in which component character correlations can be analyzed in this case. Our results support the hypothesis that sociality influences the evolution of tonal sound complexity. The level of social and whistle complexity are correlated, suggesting that complex tonal sounds play an

  7. Ancient phylogenetic relationships.

    PubMed

    Gribaldo, Simonetta; Philippe, Hervé

    2002-06-01

    Traditional views on deep evolutionary events have been seriously challenged over the last few years, following the identification of major pitfalls affecting molecular phylogeny reconstruction. Here we describe the principally encountered artifacts, notably long branch attraction, and their causes (i.e., difference in evolutionary rates, mutational saturation, compositional biases). Additional difficulties due to phenomena of biological nature (i.e., lateral gene transfer, recombination, hidden paralogy) are also discussed. Moreover, contrary to common beliefs, we show that the use of rare genomic events can also be misleading and should be treated with the same caution as standard molecular phylogeny. The universal tree of life, as described in most textbooks, is partly affected by tree reconstruction artifacts, e.g. (i) the bacterial rooting of the universal tree of life; (ii) the early emergence of amitochondriate lineages in eukaryotic phylogenies; and (iii) the position of hyperthermophilic taxa in bacterial phylogenies. We present an alternative view of this tree, based on recent evidence obtained from reanalyses of ancient data sets and from novel analyses of large combination of genes.

  8. Testing "species pair" hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes.

    PubMed

    Buschbom, Jutta; Mueller, Gregory M

    2006-03-01

    Pairs of taxa are commonly found in lichen-forming ascomycetes that differ primarily in their reproductive modes: one taxon reproduces sexually, the other vegetatively. The evolutionary processes underlying such "species pairs" are unknown. The species pair formed by Porpidia flavocoerulescens (sexual) and Porpidia melinodes (vegetative) was chosen to investigate four previously proposed hypotheses. These hypotheses posit that species pairs are either two monophyletic, independently evolving species with contrasting reproductive mode; a single outcrossing species polymorphic with regard to its reproductive modes; a sexual mother lineage frequently giving rise to asexual spin-offs; or a complex of cryptic species. The phylogenetic patterns observed within the species pair in the present study were analyzed using stringent hypothesis testing and visualizations of relationships and conflict based on tree and network reconstructions. DNA sequences at the three analyzed loci revealed the same four to five deeply divergent lineages. A detailed analysis of DNA-sequence variability revealed closely linked gene loci, but high levels of conflict within each of the gene fragments, as well as between observed genetic lineages. The observed patterns of phylogenetic relationships, linkage, and conflict are not congruent with any of the previously proposed species pair hypotheses. Rather, it is proposed that the observed results can be explained by conflicting reproductive and nutritional requirements imposed by an obligate symbiotic lifestyle. These interacting constraints produce recurring selective sweeps within predominantly vegetatively reproducing lineages and are the main forces that shape the evolution within the investigated species pair.

  9. Phylogenetic relationship among horseshoe crab species: effect of substitution models on phylogenetic analyses.

    PubMed

    Xia, X

    2000-03-01

    The horseshoe crabs, known as living fossils, have maintained their morphology almost unchanged for the past 150 million years. The little morphological differentiation among horseshoe crab lineages has resulted in substantial controversy concerning the phylogenetic relationship among the extant species of horseshoe crabs, especially among the three species in the Indo-Pacific region. Previous studies suggest that the three species constitute a phylogenetically unresolvable trichotomy, the result of a cladogenetic process leading to the formation of all three Indo-Pacific species in a short geological time. Data from two mitochondrial genes (for 16S ribosomal rRNA and cytochrome oxidase subunit I) and one nuclear gene (for coagulogen) in the four species of horseshoe crabs and outgroup species were used in a phylogenetic analysis with various substitution models. All three genes yield the same tree topology, with Tachypleus-gigas and Carcinoscorpius-rotundicauda grouped together as a monophyletic taxon. This topology is significantly better than all the alternatives when evaluated with the RELL (resampling estimated log-likelihood) method.

  10. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA.

    PubMed

    Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H

    1999-10-01

    The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species. PMID:10508542

  11. Your place or mine? A phylogenetic comparative analysis of marital residence in Indo-European and Austronesian societies.

    PubMed

    Fortunato, Laura; Jordan, Fiona

    2010-12-12

    Accurate reconstruction of prehistoric social organization is important if we are to put together satisfactory multidisciplinary scenarios about, for example, the dispersal of human groups. Such considerations apply in the case of Indo-European and Austronesian, two large-scale language families that are thought to represent Neolithic expansions. Ancestral kinship patterns have mostly been inferred through reconstruction of kin terminologies in ancestral proto-languages using the linguistic comparative method, and through geographical or distributional arguments based on the comparative patterns of kin terms and ethnographic kinship 'facts'. While these approaches are detailed and valuable, the processes through which conclusions have been drawn from the data fail to provide explicit criteria for systematic testing of alternative hypotheses. Here, we use language trees derived using phylogenetic tree-building techniques on Indo-European and Austronesian vocabulary data. With these trees, ethnographic data and Bayesian phylogenetic comparative methods, we statistically reconstruct past marital residence and infer rates of cultural change between different residence forms, showing Proto-Indo-European to be virilocal and Proto-Malayo-Polynesian uxorilocal. The instability of uxorilocality and the rare loss of virilocality once gained emerge as common features of both families.

  12. [Phylogenetic analysis of Pleurotus species].

    PubMed

    Shnyreva, A A; Shnyreva, A V

    2015-02-01

    We performed phylogenetic analysis for ten Pleurotus species, based on internal transcribed spacer (ITS) sequences of rDNA. A phylogenetic tree was constructed on the basis of 31 oyster fungi strains of different origin and 10 reference sequences from GenBank. Our analysis demonstrates that the tested Pleurotus species are of monophyletic origin. We evaluated the evolutionary distances between these species. Classic genetic analysis of sexual compatibility based on monocaryon (mon)-mon crosses showed no reproductive barriers within the P. cornucopiae-P. euosmus species complex. Thus, despite the divergence (subclustering) between commercial strains and natural isolates of P. ostreatus revealed by phylogenetic analysis, there is no reproductive isolation between these groups. A common allele of the matB locus was identified for the commercial strains Sommer and L/4, supporting the common origin of these strains. PMID:25966583

  13. High-resolution phylogenetic microbial community profiling

    PubMed Central

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; Bowman, Brett; Bowers, Robert M; Levy, Asaf; Gies, Esther A; Cheng, Jan-Fang; Copeland, Alex; Klenk, Hans-Peter; Hallam, Steven J; Hugenholtz, Philip; Tringe, Susannah G; Woyke, Tanja

    2016-01-01

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential. PMID:26859772

  14. Delinquency and peer acceptance in adolescence: a within-person test of Moffitt's hypotheses.

    PubMed

    Rulison, Kelly L; Kreager, Derek A; Osgood, D Wayne

    2014-11-01

    We tested 2 hypotheses derived from Moffitt's (1993) taxonomic theory of antisocial behavior, both of which are central to her explanation for the rise in delinquency during adolescence. We tested whether persistently delinquent individuals become more accepted by their peers during adolescence and whether individuals who abstain from delinquent behavior become less accepted. Participants were 4,359 adolescents from 14 communities in the PROSPER study, which assessed friendship networks and delinquency from 6th (M = 11.8 years) to 9th (M = 15.3 years) grade. We operationalized peer acceptance as number of nominations received (indegree centrality), attractiveness as a friend (adjusted indegree centrality), and network bridging potential (betweenness centrality) and tested the hypotheses with multilevel modeling. Contrary to Moffitt's hypothesis, persistently delinquent youths did not become more accepted between early and middle adolescence, and although abstainers were less accepted in early adolescence, they became more accepted over time. Results were similar for boys and girls; when differences occurred, they provided no support for Moffitt's hypotheses for boys and were opposite of her hypotheses for girls. Sensitivity analyses in which alternative strategies and additional data were used to identify persistently delinquent adolescents produced similar results. We explore the implications of these results for Moffitt's assertions that social mimicry of persistently antisocial adolescents leads to increases in delinquency and that social isolation leads to abstention. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:25243328

  15. Delinquency and Peer Acceptance in Adolescence: A Within-Person Test of Moffitt’s Hypotheses

    PubMed Central

    Rulison, Kelly L; Kreager, Derek A.; Osgood, D. Wayne

    2015-01-01

    We tested two hypotheses derived from Moffitt’s (1993) taxonomic theory of antisocial behavior, both of which are central to her explanation for the rise in delinquency during adolescence. Specifically, we tested whether persistently delinquent individuals become more accepted by their peers during adolescence and whether individuals who abstain from delinquent behavior become less accepted. Participants were 4,359 adolescents from 14 communities in the PROSPER study, which assessed friendship networks and delinquency from 6th (M = 11.8 years) to 9th (M = 15.3 years) grade. We operationalized peer acceptance as: number of nominations received (indegree centrality), attractiveness as a friend (adjusted indegree centrality), and network bridging potential (betweenness centrality) and tested the hypotheses using multilevel modeling. Contrary to Moffitt’s hypothesis, persistently delinquent youth did not become more accepted between early and middle adolescence, and although abstainers were less accepted in early adolescence, they became more accepted over time. Results were similar for boys and girls; when differences occurred, they provided no support for Moffitt’s hypotheses for boys and were opposite of her hypotheses for girls. Sensitivity analyses using alternative strategies and additional data to identify persistently delinquent adolescents produced similar results. We explore the implications of these results for Moffitt’s assertions that social mimicry of persistently antisocial adolescents leads to increases in delinquency and that social isolation leads to abstention. PMID:25243328

  16. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  17. Expanded phylogenetic analyses of the class Heterotrichea (Ciliophora, Postciliodesmatophora) using five molecular markers and morphological data.

    PubMed

    Fernandes, Noemi M; Paiva, Thiago da Silva; da Silva-Neto, Inácio D; Schlegel, Martin; Schrago, Carlos G

    2016-02-01

    Most studies of the molecular evolution of Heterotrichea have been based solely on the 18S-rDNA gene, which were inconsistent with morphological classification. Because of the limitations of single locus phylogenies and the recurring problem of lack of resolution of deeper nodes found in previous studies, we present hypotheses of the evolution of internal groups of the class Heterotrichea based on multi-loci analyses (18S-rDNA, 28S-rDNA, ITS1-5.8S-ITS2 region, COI and alpha-tubulin) and morphological data. Phylogenetic trees from protein coding gene data are presented for Heterotrichea for the first time. Phylogenetic analyses included Bayesian inference, maximum likelihood, maximum parsimony methods, and optimal trees were statistically compared to alternative topologies from the literature. Additionally, the Bayesian concordance approach (BCA algorithm) was used to assess the concordance factor between topologies obtained from isolated analyses. Because different loci may evolve at different rates, resulting in different gene topologies, we also estimated a species tree for Heterotrichea using the STAR coalescence-based method. The results show that: (1) single gene trees are inconsistent regarding the position of some heterotrichean families; (2) the concatenation of all data in a total-evidence tree improved the resolution of deep nodes among the heterotrichean families and genera; (3) the coalescent-based species tree is consistent with phylogenies based on the 18S-rDNA gene and shows Spirostomidae as the stem group of Heterotrichea; (4) however, the total-evidence tree suggests that the large Heterotrichea cluster is divided into nine lineages in which Peritromidae diverges at the base of the Heterotrichea tree.

  18. Elucidating the phylogenetic position of Gnathostomulida and first mitochondrial genomes of Gnathostomulida, Gastrotricha and Polycladida (Platyhelminthes).

    PubMed

    Golombek, Anja; Tobergte, Sarah; Struck, Torsten H

    2015-05-01

    Gnathostomulida is a taxon of small marine worms, which exclusively inhabit the interstitium. The evolution of Gnathostomulida has been discussed for decades. Originally regarded as primitive animals with affinities to flatworms, the phylogenetic position of Gnathostomulida has been debated. Given the lack of an anus a close relationship to Platyhelminthes has been maintained (i.e., Plathelminthomorpha hypothesis). Alternative hypotheses proposed Gnathostomulida as being close to Gastrotricha due to the presence of a monociliary epidermis (i.e., Monokonta/Neotrichozoa hypothesis) or to Syndermata based on the complicated jaw apparatus (i.e., Gnathifera hypothesis). Molecular analyses using only few genes were inconclusive. Recent phylogenomic studies brought some progress by placing Gnathostomulida as sister to Syndermata, but support for this relationship was low and depended on the analytical strategy. Herein we present the first data of complete or nearly complete mitochondrial genomes for two gnathostomulids (Gnathostomula paradoxa &G. armata), one gastrotrich (Lepidodermella squamata) and one polyclad flatworm (Stylochoplana maculata) to address the uncertain phylogenetic affinity of Gnathostomulida. Our analyses found Gnathostomulida as sister to Syndermata (Gnathifera hypothesis). Thorough sensitivity analyses addressing taxon instability, branch length heterogeneity (also known as long branch attraction) and base composition heterogeneity showed that the position of Gnathostomulida is consistent across the different analyses and, hence, independent of potential misleading biases. Moreover, by ameliorating these different biases nodal support values could be increased to maximum values. Thus, our data support the hypothesis that the different jaw apparatuses of Syndermata and Gnathostomulida are indeed homologous structures as proposed by the Gnathifera hypothesis. PMID:25796325

  19. Expanded phylogenetic analyses of the class Heterotrichea (Ciliophora, Postciliodesmatophora) using five molecular markers and morphological data.

    PubMed

    Fernandes, Noemi M; Paiva, Thiago da Silva; da Silva-Neto, Inácio D; Schlegel, Martin; Schrago, Carlos G

    2016-02-01

    Most studies of the molecular evolution of Heterotrichea have been based solely on the 18S-rDNA gene, which were inconsistent with morphological classification. Because of the limitations of single locus phylogenies and the recurring problem of lack of resolution of deeper nodes found in previous studies, we present hypotheses of the evolution of internal groups of the class Heterotrichea based on multi-loci analyses (18S-rDNA, 28S-rDNA, ITS1-5.8S-ITS2 region, COI and alpha-tubulin) and morphological data. Phylogenetic trees from protein coding gene data are presented for Heterotrichea for the first time. Phylogenetic analyses included Bayesian inference, maximum likelihood, maximum parsimony methods, and optimal trees were statistically compared to alternative topologies from the literature. Additionally, the Bayesian concordance approach (BCA algorithm) was used to assess the concordance factor between topologies obtained from isolated analyses. Because different loci may evolve at different rates, resulting in different gene topologies, we also estimated a species tree for Heterotrichea using the STAR coalescence-based method. The results show that: (1) single gene trees are inconsistent regarding the position of some heterotrichean families; (2) the concatenation of all data in a total-evidence tree improved the resolution of deep nodes among the heterotrichean families and genera; (3) the coalescent-based species tree is consistent with phylogenies based on the 18S-rDNA gene and shows Spirostomidae as the stem group of Heterotrichea; (4) however, the total-evidence tree suggests that the large Heterotrichea cluster is divided into nine lineages in which Peritromidae diverges at the base of the Heterotrichea tree. PMID:26549427

  20. Testing species-level diversification hypotheses in Madagascar: the case of microendemic Brookesia leaf chameleons.

    PubMed

    Townsend, Ted M; Vieites, David R; Glaw, Frank; Vences, Miguel

    2009-12-01

    Madagascar's flora and fauna are remarkable both for their diversity and supraspecific endemism. Moreover, many taxa contain large numbers of species with limited distributions. Several hypotheses have been proposed to explain this high level of microendemism, including 1) riverine barrier, 2) mountain refuge, and 3) watershed contraction hypotheses, the latter 2 of which center on fragmentation due to climatic shifts associated with Pliocene/Pleistocene glaciations. The Malagasy leaf chameleon genus Brookesia is a speciose group with a high proportion of microendemic taxa, thus making it an excellent candidate to test these vicariance scenarios. We used mitochondrial and nuclear sequence data to construct a Brookesia phylogeny, and temporal concordance with Pliocene/Pleistocene speciation scenarios was tested by estimating divergence dates using a relaxed-clock Bayesian method. We strongly reject a role for Pliocene/Pleistocene climatic fluctuations in species-level diversification of Brookesia. We also used simulations to test the spatial predictions of the watershed contraction model in a phylogenetic context, independent of its temporal component, and found no statistical support for this model. The riverine barrier model is likewise a qualitatively poor fit to our data, but some relationships support a more ancient mountain refuge effect. We assessed support for the 3 hypotheses in a nonphylogenetic context by examining altitude and species richness and found a significant positive correlation between these variables. This is consistent with a mountain refuge effect but does not support the watershed contraction or riverine barrier models. Finally, we find repeated higher level east-west divergence patterns 1) between the 2 sister clades comprising the Brookesia minima group and 2) within the clade of larger leaf chameleons, which shows a basal divergence between western and eastern/northern sister clades. Our results highlight the central role of phylogeny in

  1. The life cycle of Phaeocystis (Prymnesiophycaea): evidence and hypotheses

    NASA Astrophysics Data System (ADS)

    Rousseau, V.; Vaulot, D.; Casotti, R.; Cariou, V.; Lenz, J.; Gunkel, J.; Baumann, M.

    1994-04-01

    The present paper reviews the literature related to the life cycle of the prymnesiophyte Phaeocystis and its controlling factors and proposes novel hypotheses based on unpublished observations in culture and in the field. We chiefly refer to P. globosa Scherffel as most of the observations concern this species. P. globosa exhibits a complex alternation between several types of free-living cells (non-motile, flagellates, microzoopores and possibly macrozoospores) and colonies for which neither forms nor pathways have been completely identified and described. The different types of Phaeocystis cells were reappraised on the basis of existing microscopic descriptions complemented by unpublished flow cytometric investigations. This analysis revealed the existence of at least three different types of free-living cells identified on the basis of a combination of size, motility and ploidy characteristics: non-motile cells, flagellates and microzoospores. Their respective function within Phaeocystis life cycle, and in particular their involvement in colony formation is not completely understood. Observational evidence shows that Phaeocystis colonies are initiated at the early stage of their bloom each by one free-living cell. The mechanisms controlling this cellular transformation are still uncertain due to the lack of information on the overwintering Phaeocystis fomms and on the cell type responsible for colony induction. The existence of haploid microzoospores released from senescent colonies gives however some support to sexuality involvement at some stages of colony formation. Once colonies are formed, at least two mechanisms were identified as responsible of the spreading of colony form: colony multiplication by colonial division or budding and induction of new colony from colonial cells released in the external medium after colony disruption. The latter mechanism was clearly identified, involving at least two successive cell differentiations in the following sequence

  2. Phylogenetic and Epidemiologic Evidence of Multiyear Incubation in Human Rabies

    PubMed Central

    Boland, Torrey A.; McGuone, Declan; Jindal, Jenelle; Rocha, Marcelo; Cumming, Melissa; Rupprecht, Charles E.; Barbosa, Taciana Fernandes Souza; de Novaes Oliveira, Rafael; Chu, Catherine J.; Cole, Andrew J.; Kotait, Ivanete; Kuzmina, Natalia A.; Yager, Pamela A.; Kuzmin, Ivan V.; Hedley-Whyte, E. Tessa; Brown, Catherine M.; Rosenthal, Eric S.

    2014-01-01

    Eight years after emigrating from Brazil, an otherwise healthy man developed rabies. An exposure prior to immigration was reported. Genetic analysis revealed a canine rabies virus variant found only in the patient’s home country, and the patient had not traveled internationally since immigrating to the United States. We describe how epidemiological, phylogenetic, and viral sequencing data provided confirmation that rabies encephalomyelitis may present after a long, multiyear incubation period, a consideration that previously has been hypothesized without the ability to exclude a more recent exposure. Accordingly, rabies should be considered in the diagnosis of any acute encephalitis, myelitis, or encephalomyelitis. PMID:24038455

  3. Modelling Analysis of Students' Processes of Generating Scientific Explanatory Hypotheses

    ERIC Educational Resources Information Center

    Park, Jongwon

    2006-01-01

    It has recently been determined that generating an explanatory hypothesis to explain a discrepant event is important for students' conceptual change. The purpose of this study is to investigate how students' generate new explanatory hypotheses. To achieve this goal, questions are used to identify students prior ideas related to electromagnetic…

  4. Addressing Moderated Mediation Hypotheses: Theory, Methods, and Prescriptions

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Rucker, Derek D.; Hayes, Andrew F.

    2007-01-01

    This article provides researchers with a guide to properly construe and conduct analyses of conditional indirect effects, commonly known as moderated mediation effects. We disentangle conflicting definitions of moderated mediation and describe approaches for estimating and testing a variety of hypotheses involving conditional indirect effects. We…

  5. Toward Valid Measurement of Stephen Pepper's World Hypotheses.

    ERIC Educational Resources Information Center

    Johnson, John A.

    Two measures of the "world hypotheses" of Stephen Pepper were mailed to 100 sociobiologists, 87 behaviorists, 79 personality psychologists, and 45 human developmentalists. The World Hypothesis Scale (WHS) was designed to measure Pepper's four world views: (1) formism; (2) mechanism; (3) organicism; and (4) contextualism. The Organicism-Mechanism…

  6. Bayes Factor Approaches for Testing Interval Null Hypotheses

    ERIC Educational Resources Information Center

    Morey, Richard D.; Rouder, Jeffrey N.

    2011-01-01

    Psychological theories are statements of constraint. The role of hypothesis testing in psychology is to test whether specific theoretical constraints hold in data. Bayesian statistics is well suited to the task of finding supporting evidence for constraint, because it allows for comparing evidence for 2 hypotheses against each another. One issue…

  7. Landscape moderation of biodiversity patterns and processes - eight hypotheses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding how landscape characteristics affect local biodiversity patterns and ecological processes is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest the following seven hypotheses, which we hope w...

  8. Can Scientifically Useful Hypotheses Be Tested with Correlations?

    ERIC Educational Resources Information Center

    Bentler, Peter M.

    2007-01-01

    Historically, interesting psychological theories have been phrased in terms of correlation coefficients, which are standardized covariances, and various statistics derived from them. Methodological practice over the last 40 years, however, has suggested it is necessary to transform such theories into hypotheses on covariances and statistics…

  9. Editorial: hypotheses about protein folding - the proteomic code and wonderfolds

    PubMed Central

    2009-01-01

    Theoretical biology journals can contribute in many ways to the progress of knowledge. They are particularly well-placed to encourage dialogue and debate about hypotheses addressing problematical areas of research. An online journal provides an especially useful forum for such debate because of the option of posting comments within days of the publication of a contentious article. PMID:20034380

  10. Causes of bat fatalities at wind turbines: Hypotheses and predictions

    USGS Publications Warehouse

    Cryan, P.M.; Barclay, R.M.R.

    2009-01-01

    Thousands of industrial-scale wind turbines are being built across the world each year to meet the growing demand for sustainable energy. Bats of certain species are dying at wind turbines in unprecedented numbers. Species of bats consistently affected by turbines tend to be those that rely on trees as roosts and most migrate long distances. Although considerable progress has been made in recent years toward better understanding the problem, the causes of bat fatalities at turbines remain unclear. In this synthesis, we review hypothesized causes of bat fatalities at turbines. Hypotheses of cause fall into 2 general categoriesproximate and ultimate. Proximate causes explain the direct means by which bats die at turbines and include collision with towers and rotating blades, and barotrauma. Ultimate causes explain why bats come close to turbines and include 3 general types: random collisions, coincidental collisions, and collisions that result from attraction of bats to turbines. The random collision hypothesis posits that interactions between bats and turbines are random events and that fatalities are representative of the bats present at a site. Coincidental hypotheses posit that certain aspects of bat distribution or behavior put them at risk of collision and include aggregation during migration and seasonal increases in flight activity associated with feeding or mating. A surprising number of attraction hypotheses suggest that bats might be attracted to turbines out of curiosity, misperception, or as potential feeding, roosting, flocking, and mating opportunities. Identifying, prioritizing, and testing hypothesized causes of bat collisions with wind turbines are vital steps toward developing practical solutions to the problem. ?? 2009 American Society of Mammalogists.

  11. Alternative security

    SciTech Connect

    Weston, B.H. )

    1990-01-01

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview.

  12. Vicariant patterns of fragmentation among gekkonid lizards of the genus Teratoscincus produced by the Indian collision: A molecular phylogenetic perspective and an area cladogram for Central Asia.

    PubMed

    Macey, J R; Wang, Y; Ananjeva, N B; Larson, A; Papenfuss, T J

    1999-08-01

    A well-supported phylogenetic hypothesis is presented for gekkonid lizards of the genus Teratoscincus. Phylogenetic relationships of four of the five species are investigated using 1733 aligned bases of mitochondrial DNA sequence from the genes encoding ND1 (subunit one of NADH dehydrogenase), tRNA(Ile), tRNA(Gln), tRNA(Met), ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr), and COI (subunit I of cytochrome c oxidase). A single most parsimonious tree depicts T. przewalskii and T. roborowskii as a monophyletic group, with T. scincus as their sister taxon and T. microlepis as the sister taxon to the clade containing the first three species. The aligned sequences contain 341 phylogenetically informative characters. Each node is supported by a bootstrap value of 100% and the shortest suboptimal tree requires 29 additional steps. Allozymic variation is presented for proteins encoded by 19 loci but these data are largely uninformative phylogenetically. Teratoscincus species occur on tectonic plates of Gondwanan origin that were compressed by the impinging Indian Subcontinent, resulting in massive montane uplifting along plate boundaries. Taxa occurring in China (Tarim Block) form a monophyletic group showing vicariant separation from taxa in former Soviet Central Asia and northern Afghanistan (Farah Block); alternative biogeographic hypotheses are statistically rejected. This vicariant event involved the rise of the Tien Shan-Pamir and is well dated to 10 million years before present. Using this date for separation of taxa occurring on opposite sides of the Tien Shan-Pamir, an evolutionary rate of 0.57% divergence per lineage per million years is calculated. This rate is similar to estimates derived from fish, bufonid frogs, and agamid lizards for the same region of the mitochondrial genome ( approximately 0.65% divergence per lineage per million years). Evolutionary divergence of the mitochondrial genome has a surprisingly stable rate across vertebrates. PMID

  13. Advantages and Disadvantages of Molecular Phylogenetics: A Case Study of Ascaridoid Nematodes

    PubMed Central

    Nadler, S. A.

    1995-01-01

    The advantages of nucleotide sequence data for studying phylogeny have been shown to include number of potential characters available for comparison, rate independence between molecular and morphological evolution, and utility of molecular data for modeling patterns of nucleotide substitution. Potential pitfalls have also been revealed and include difficulties of inferring positional homology, incongruence between organismal and gene genealogies, and low likelihood of recovering the correct phylogeny given certain patterns in the timing of speciation events. Statistical methods for comparing phylogenetic hypotheses have been used to assess the reliability of alternative trees for ascaridoid nematodes. Based on partial ribosomal RNA sequences, tree topologies inconsistent with monophyly of the Ascaridinae were significantly worse by maximum likelihood inference. The topology of the maximum parsimony tree based on full-length sequences of 18S rRNA and 300 nucleotides of Cytochrome oxidase II for 13 ascaridoid species was generally consistent with traditional taxonomic expectations at lower ranks, but inconsistent with most proposed arrangements at higher taxonomic levels. PMID:19277308

  14. Terraces in phylogenetic tree space.

    PubMed

    Sanderson, Michael J; McMahon, Michelle M; Steel, Mike

    2011-07-22

    A key step in assembling the tree of life is the construction of species-rich phylogenies from multilocus--but often incomplete--sequence data sets. We describe previously unknown structure in the landscape of solutions to the tree reconstruction problem, comprising sometimes vast "terraces" of trees with identical quality, arranged on islands of phylogenetically similar trees. Phylogenetic ambiguity within a terrace can be characterized efficiently and then ameliorated by new algorithms for obtaining a terrace's maximum-agreement subtree or by identifying the smallest set of new targets for additional sequencing. Algorithms to find optimal trees or estimate Bayesian posterior tree distributions may need to navigate strategically in the neighborhood of large terraces in tree space.

  15. The use of category and similarity information in limiting hypotheses.

    PubMed

    Kincannon, Alexandra; Spellman, Barbara A

    2003-01-01

    Previous studies have shown that adults usually select diverse evidence for generalizing hypotheses. We investigated what kind of evidence people select in another type of inductive task: limiting hypotheses. Whereas generalizing entails extending a property to all members of a category, limiting entails restricting a property to only members of a category. For example, if you know that elephants have property X, which would you test to determine whether only mammals have property X: a hippopotamus, a fox, a crocodile, or a snake? Both category and similarity information are relevant to selecting evidence to generalize or limit a hypothesis. Although 70% of participants chose diverse evidence for generalizing a hypothesis, only 25% chose the analogous evidence for limiting one. However, the percentage of participants choosing the appropriate evidence for limiting increased to 70% when they were given a rule for category membership. These results suggest that hypothesis-limiting behavior is affected by how participants establish category boundaries. PMID:12699148

  16. Generalized Sequential Probability Ratio Test for Separate Families of Hypotheses

    PubMed Central

    Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2014-01-01

    In this paper, we consider the problem of testing two separate families of hypotheses via a generalization of the sequential probability ratio test. In particular, the generalized likelihood ratio statistic is considered and the stopping rule is the first boundary crossing of the generalized likelihood ratio statistic. We show that this sequential test is asymptotically optimal in the sense that it achieves asymptotically the shortest expected sample size as the maximal type I and type II error probabilities tend to zero. PMID:27418716

  17. Phylogenetic analysis of otospiralin protein

    PubMed Central

    Torktaz, Ibrahim; Behjati, Mohaddeseh; Rostami, Amin

    2016-01-01

    Background: Fibrocyte-specific protein, otospiralin, is a small protein, widely expressed in the central nervous system as neuronal cell bodies and glia. The increased expression of otospiralin in reactive astrocytes implicates its role in signaling pathways and reparative mechanisms subsequent to injury. Indeed, otospiralin is considered to be essential for the survival of fibrocytes of the mesenchymal nonsensory regions of the cochlea. It seems that other functions of this protein are not yet completely understood. Materials and Methods: Amino acid sequences of otospiralin from 12 vertebrates were derived from National Center for Biotechnology Information database. Phylogenetic analysis and phylogeny estimation were performed using MEGA 5.0.5 program, and neighbor-joining tree was constructed by this software. Results: In this computational study, the phylogenetic tree of otospiralin has been investigated. Therefore, dendrograms of otospiralin were depicted. Alignment performed in MUSCLE method by UPGMB algorithm. Also, entropy plot determined for a better illustration of amino acid variations in this protein. Conclusion: In the present study, we used otospiralin sequence of 12 different species and by constructing phylogenetic tree, we suggested out group for some related species. PMID:27099854

  18. Ultrafast approximation for phylogenetic bootstrap.

    PubMed

    Minh, Bui Quang; Nguyen, Minh Anh Thi; von Haeseler, Arndt

    2013-05-01

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and the Shimodaira-Hasegawa-like approximate likelihood ratio test have been introduced to speed up the bootstrap. Here, we suggest an ultrafast bootstrap approximation approach (UFBoot) to compute the support of phylogenetic groups in maximum likelihood (ML) based trees. To achieve this, we combine the resampling estimated log-likelihood method with a simple but effective collection scheme of candidate trees. We also propose a stopping rule that assesses the convergence of branch support values to automatically determine when to stop collecting candidate trees. UFBoot achieves a median speed up of 3.1 (range: 0.66-33.3) to 10.2 (range: 1.32-41.4) compared with RAxML RBS for real DNA and amino acid alignments, respectively. Moreover, our extensive simulations show that UFBoot is robust against moderate model violations and the support values obtained appear to be relatively unbiased compared with the conservative standard bootstrap. This provides a more direct interpretation of the bootstrap support. We offer an efficient and easy-to-use software (available at http://www.cibiv.at/software/iqtree) to perform the UFBoot analysis with ML tree inference.

  19. Phylogenetic analysis of trophic associations.

    PubMed

    Ives, A R; Godfray, H C J

    2006-07-01

    Ecologists frequently collect data on the patterns of association between adjacent trophic levels in the form of binary or quantitative food webs. Here, we develop statistical methods to estimate the roles of consumer and resource phylogenies in explaining patterns of consumer-resource association. We use these methods to ask whether closely related consumer species are more likely to attack the same resource species and whether closely related resource species are more likely to be attacked by the same consumer species. We then show how to use estimates of phylogenetic signals to predict novel consumer-resource associations solely from the phylogenetic position of species for which no other (or only partial) data are available. Finally, we show how to combine phylogenetic information with information about species' ecological characteristics and life-history traits to estimate the effects of species traits on consumer-resource associations while accounting for phylogenies. We illustrate these techniques using a food web comprising species of parasitoids, leaf-mining moths, and their host plants.

  20. Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction

    PubMed Central

    Fernández, Rosa; Edgecombe, Gregory D.; Giribet, Gonzalo

    2016-01-01

    Myriapods, including the diverse and familiar centipedes and millipedes, are one of the dominant terrestrial arthropod groups. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes from many species) or on maximizing matrix size (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed 40 Illumina transcriptomes representing 3 of the 4 myriapod classes (Diplopoda, Chilopoda, and Symphyla); 25 transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda. Ten supermatrices were constructed to explore the effect of several potential phylogenetic biases (e.g., rate of evolution, heterotachy) at 3 levels of gene occupancy per taxon (50%, 75%, and 90%). Analyses based on maximum likelihood and Bayesian mixture models retrieved monophyly of each myriapod class, and resulted in 2 alternative phylogenetic positions for Symphyla, as sister group to Diplopoda + Chilopoda, or closer to Diplopoda, the latter hypothesis having been traditionally supported by morphology. Within centipedes, all orders were well supported, but 2 deep nodes remained in conflict in the different analyses despite dense taxon sampling at the family level. Relationships among centipede orders in all analyses conducted with the most complete matrix (90% occupancy) are at odds not only with the sparser but more gene-rich supermatrices (75% and 50% supermatrices) and with the matrices optimizing phylogenetic informativeness or most conserved genes, but also with previous hypotheses based on morphology, development, or other molecular data sets. Our results indicate that a high percentage of ribosomal

  1. Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction.

    PubMed

    Fernández, Rosa; Edgecombe, Gregory D; Giribet, Gonzalo

    2016-09-01

    Myriapods, including the diverse and familiar centipedes and millipedes, are one of the dominant terrestrial arthropod groups. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes from many species) or on maximizing matrix size (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed 40 Illumina transcriptomes representing 3 of the 4 myriapod classes (Diplopoda, Chilopoda, and Symphyla); 25 transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda. Ten supermatrices were constructed to explore the effect of several potential phylogenetic biases (e.g., rate of evolution, heterotachy) at 3 levels of gene occupancy per taxon (50%, 75%, and 90%). Analyses based on maximum likelihood and Bayesian mixture models retrieved monophyly of each myriapod class, and resulted in 2 alternative phylogenetic positions for Symphyla, as sister group to Diplopoda + Chilopoda, or closer to Diplopoda, the latter hypothesis having been traditionally supported by morphology. Within centipedes, all orders were well supported, but 2 deep nodes remained in conflict in the different analyses despite dense taxon sampling at the family level. Relationships among centipede orders in all analyses conducted with the most complete matrix (90% occupancy) are at odds not only with the sparser but more gene-rich supermatrices (75% and 50% supermatrices) and with the matrices optimizing phylogenetic informativeness or most conserved genes, but also with previous hypotheses based on morphology, development, or other molecular data sets. Our results indicate that a high percentage of ribosomal

  2. Morphometric study of phylogenetic and ecologic signals in procyonid (mammalia: carnivora) endocasts.

    PubMed

    Ahrens, Heather E

    2014-12-01

    Endocasts provide a proxy for brain morphology but are rarely incorporated in phylogenetic analyses despite the potential for new suites of characters. The phylogeny of Procyonidae, a carnivoran family with relatively limited taxonomic diversity, is not well resolved because morphological and molecular data yield conflicting topologies. The presence of phylogenetic and ecologic signals in the endocasts of procyonids will be determined using three-dimensional geometric morphometrics. Endocasts of seven ingroup species and four outgroup species were digitally rendered and 21 landmarks were collected from the endocast surface. Two phylogenetic hypotheses of Procyonidae will be examined using methods testing for phylogenetic signal in morphometric data. In analyses of all taxa, there is significant phylogenetic signal in brain shape for both the morphological and molecular topologies. However, the analyses of ingroup taxa recover a significant phylogenetic signal for the morphological topology only. These results indicate support for the molecular outgroup topology, but not the ingroup topology given the brain shape data. Further examination of brain shape using principal components analysis and wireframe comparisons suggests procyonids possess more developed areas of the brain associated with motor control, spatial perception, and balance relative to the basal musteloid condition. Within Procyonidae, similar patterns of variation are present, and may be associated with increased arboreality in certain taxa. Thus, brain shape derived from endocasts may be used to test for phylogenetic signal and preliminary analyses suggest an association with behavior and ecology.

  3. Morphometric study of phylogenetic and ecologic signals in procyonid (mammalia: carnivora) endocasts.

    PubMed

    Ahrens, Heather E

    2014-12-01

    Endocasts provide a proxy for brain morphology but are rarely incorporated in phylogenetic analyses despite the potential for new suites of characters. The phylogeny of Procyonidae, a carnivoran family with relatively limited taxonomic diversity, is not well resolved because morphological and molecular data yield conflicting topologies. The presence of phylogenetic and ecologic signals in the endocasts of procyonids will be determined using three-dimensional geometric morphometrics. Endocasts of seven ingroup species and four outgroup species were digitally rendered and 21 landmarks were collected from the endocast surface. Two phylogenetic hypotheses of Procyonidae will be examined using methods testing for phylogenetic signal in morphometric data. In analyses of all taxa, there is significant phylogenetic signal in brain shape for both the morphological and molecular topologies. However, the analyses of ingroup taxa recover a significant phylogenetic signal for the morphological topology only. These results indicate support for the molecular outgroup topology, but not the ingroup topology given the brain shape data. Further examination of brain shape using principal components analysis and wireframe comparisons suggests procyonids possess more developed areas of the brain associated with motor control, spatial perception, and balance relative to the basal musteloid condition. Within Procyonidae, similar patterns of variation are present, and may be associated with increased arboreality in certain taxa. Thus, brain shape derived from endocasts may be used to test for phylogenetic signal and preliminary analyses suggest an association with behavior and ecology. PMID:25066912

  4. Phylogeography of the Western Lyresnake (Trimorphodon biscutatus): testing aridland biogeographical hypotheses across the Nearctic-Neotropical transition.

    PubMed

    Devitt, Thomas J

    2006-12-01

    The Western Lyresnake (Trimorphodon biscutatus) is a widespread, polytypic taxon inhabiting arid regions from the warm deserts of the southwestern United States southward along the Pacific versant of Mexico to the tropical deciduous forests of Mesoamerica. This broadly distributed species provides a unique opportunity to evaluate a priori biogeographical hypotheses spanning two major distinct biogeographical realms (the Nearctic and Neotropical) that are usually treated separately in phylogeographical analyses. I investigated the phylogeography of T. biscutatus using maximum likelihood and Bayesian phylogenetic analysis of mitochondrial DNA (mtDNA) from across this species' range. Phylogenetic analyses recovered five well-supported clades whose boundaries are concordant with existing geographical barriers, a pattern consistent with a model of vicariant allopatric divergence. Assuming a vicariance model, divergence times between mitochondrial lineages were estimated using Bayesian relaxed molecular clock methods calibrated using geological information from putative vicariant events. Divergence time point estimates were bounded by broad confidence intervals, and thus these highly conservative estimates should be considered tentative hypotheses at best. Comparison of mtDNA lineages and taxa traditionally recognized as subspecies based on morphology suggest this taxon is comprised of multiple independent lineages at various stages of divergence, ranging from putative secondary contact and hybridization to sympatry of 'subspecies'.

  5. Maximum Parsimony on Phylogenetic networks

    PubMed Central

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  6. Detection of Horizontal Gene Transfers from Phylogenetic Comparisons

    PubMed Central

    Pylro, Victor Satler; Vespoli, Luciano de Souza; Duarte, Gabriela Frois; Yotoko, Karla Suemy Clemente

    2012-01-01

    Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases. PMID:22675653

  7. Phylogeny and Classification of the Trapdoor Spider Genus Myrmekiaphila: An Integrative Approach to Evaluating Taxonomic Hypotheses

    PubMed Central

    Bailey, Ashley L.; Brewer, Michael S.; Hendrixson, Brent E.; Bond, Jason E.

    2010-01-01

    Background Revised by Bond and Platnick in 2007, the trapdoor spider genus Myrmekiaphila comprises 11 species. Species delimitation and placement within one of three species groups was based on modifications of the male copulatory device. Because a phylogeny of the group was not available these species groups might not represent monophyletic lineages; species definitions likewise were untested hypotheses. The purpose of this study is to reconstruct the phylogeny of Myrmekiaphila species using molecular data to formally test the delimitation of species and species-groups. We seek to refine a set of established systematic hypotheses by integrating across molecular and morphological data sets. Methods and Findings Phylogenetic analyses comprising Bayesian searches were conducted for a mtDNA matrix composed of contiguous 12S rRNA, tRNA-val, and 16S rRNA genes and a nuclear DNA matrix comprising the glutamyl and prolyl tRNA synthetase gene each consisting of 1348 and 481 bp, respectively. Separate analyses of the mitochondrial and nuclear genome data and a concatenated data set yield M. torreya and M. millerae paraphyletic with respect to M. coreyi and M. howelli and polyphyletic fluviatilis and foliata species groups. Conclusions Despite the perception that molecular data present a solution to a crisis in taxonomy, studies like this demonstrate the efficacy of an approach that considers data from multiple sources. A DNA barcoding approach during the species discovery process would fail to recognize at least two species (M. coreyi and M. howelli) whereas a combined approach more accurately assesses species diversity and illuminates speciation pattern and process. Concomitantly these data also demonstrate that morphological characters likewise fail in their ability to recover monophyletic species groups and result in an unnatural classification. Optimizations of these characters demonstrate a pattern of “Dollo evolution” wherein a complex character evolves only once

  8. Transforming phylogenetic networks: Moving beyond tree space.

    PubMed

    Huber, Katharina T; Moulton, Vincent; Wu, Taoyang

    2016-09-01

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transformed into any other such network using only these operations. This generalizes the well-known fact that any phylogenetic tree can be transformed into any other such tree using only NNI operations. It also allows us to define a generalization of tree space and to define some new metrics on unrooted phylogenetic networks. To prove our main results, we employ some fascinating new connections between phylogenetic networks and cubic graphs that we have recently discovered. Our results should be useful in developing new strategies to search for optimal phylogenetic networks, a topic that has recently generated some interest in the literature, as well as for providing new ways to compare networks.

  9. Conceptual Modeling of mRNA Decay Provokes New Hypotheses

    PubMed Central

    Somekh, Judith; Haimovich, Gal; Guterman, Adi; Dori, Dov; Choder, Mordechai

    2014-01-01

    Biologists are required to integrate large amounts of data to construct a working model of the system under investigation. This model is often informal and stored mentally or textually, making it prone to contain undetected inconsistencies, inaccuracies, or even contradictions, not much less than a representation in free natural language. Using Object-Process Methodology (OPM), a formal yet visual and humanly accessible conceptual modeling language, we have created an executable working model of the mRNA decay process in Saccharomyces cerevisiae, as well as the import of its components to the nucleus following mRNA decay. We show how our model, which incorporates knowledge from 43 articles, can reproduce outcomes that match the experimental findings, evaluate hypotheses, and predict new possible outcomes. Moreover, we were able to analyze the effects of the mRNA decay model perturbations related to gene and interaction deletions, and predict the nuclear import of certain decay factors, which we then verified experimentally. In particular, we verified experimentally the hypothesis that Rpb4p, Lsm1p, and Pan2p remain bound to the RNA 3′-untralslated region during the entire process of the 5′ to 3′ degradation of the RNA open reading frame. The model has also highlighted erroneous hypotheses that indeed were not in line with the experimental outcomes. Beyond the scientific value of these specific findings, this work demonstrates the value of the conceptual model as an in silico vehicle for hypotheses generation and testing, which can reinforce, and often even replace, risky, costlier wet lab experiments. PMID:25255440

  10. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses.

    PubMed

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the 'productivity hypothesis' and the 'productivity-based thinning hypothesis'. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the 'productivity hypothesis' for specialized seed-eaters and the 'productivity-based thinning

  11. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses

    PubMed Central

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the ‘productivity hypothesis’ and the ‘productivity-based thinning hypothesis’. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the ‘productivity hypothesis’ for specialized seed-eaters and the

  12. Pathogenesis of Bacterial Vaginosis: Discussion of Current Hypotheses.

    PubMed

    Muzny, Christina A; Schwebke, Jane R

    2016-08-15

    In April 2015, the Division of Microbiology and Infectious Diseases of the National Institute of Allergy and Infectious Diseases hosted an experts technical consultation on bacterial vaginosis (BV), where data regarding controversies over the pathogenesis of BV were discussed. The discussion on the epidemiology and pathogenesis of BV is presented here, and several hypotheses on its pathogenesis are critiqued. Rigorous hypothesis-driven studies are needed to ultimately determine the cause of BV. This information is vital for the prevention and control of this important infection and its adverse public health consequences.

  13. Generalized procedures for testing hypotheses about survival or recovery rates

    USGS Publications Warehouse

    Sauer, J.R.; Williams, B.K.

    1989-01-01

    Comparisons of survival or recovery rates from different time periods or geographic regions may be difficult to accomplish using the Z-tests suggested by Brownie et al. (1985). We propose a general Chi-square statistic that addresses an unambiguous null hypothesis of homogeneity among several survival or recovery rates. With this statistic, specific hypotheses of differences in rates can be simultaneously tested using contrasts. If necessary, a posteriori multiple comparisons can also be conducted that incorporate an adjustment for Type I error.

  14. [Hypotheses for the genesis of cancer: a historical perspective].

    PubMed

    Morange, Michel

    2014-01-01

    The explanation of cancer has always been tightly related to the state of knowledge in biology, and its transformations. The present situation is not different. New techniques, such as deep sequencing, are rapidly moving our vision of cancer in an impredictable way. Systems biology, epigenetics, and the study of stem cells are generating new hypotheses on cancer and its evolution. New roles for aleatory events in the genesis of cancer have been proposed. In the traditional opposition between holism and reductionism, organisms and molecules, an intermediary level, the cancer cell, seems to be the most appropriate to study oncogenesis. PMID:25014461

  15. Vaccines and autism: a tale of shifting hypotheses.

    PubMed

    Gerber, Jeffrey S; Offit, Paul A

    2009-02-15

    Although child vaccination rates remain high, some parental concern persists that vaccines might cause autism. Three specific hypotheses have been proposed: (1) the combination measles-mumps-rubella vaccine causes autism by damaging the intestinal lining, which allows the entrance of encephalopathic proteins; (2) thimerosal, an ethylmercury-containing preservative in some vaccines, is toxic to the central nervous system; and (3) the simultaneous administration of multiple vaccines overwhelms or weakens the immune system. We will discuss the genesis of each of these theories and review the relevant epidemiological evidence.

  16. Pathogenesis of Bacterial Vaginosis: Discussion of Current Hypotheses.

    PubMed

    Muzny, Christina A; Schwebke, Jane R

    2016-08-15

    In April 2015, the Division of Microbiology and Infectious Diseases of the National Institute of Allergy and Infectious Diseases hosted an experts technical consultation on bacterial vaginosis (BV), where data regarding controversies over the pathogenesis of BV were discussed. The discussion on the epidemiology and pathogenesis of BV is presented here, and several hypotheses on its pathogenesis are critiqued. Rigorous hypothesis-driven studies are needed to ultimately determine the cause of BV. This information is vital for the prevention and control of this important infection and its adverse public health consequences. PMID:27449868

  17. Kolmogorov's hypotheses and global energy spectrum of turbulence

    NASA Astrophysics Data System (ADS)

    Liao, Zi-Ju; Su, Wei-Dong

    2015-04-01

    We relate the justification of Kolmogorov's hypotheses on the local isotropy and small-scale universality in real turbulent flows to an observed universality of basis independence for the global energy spectrum and energy flux of small-scale turbulence. To readily examine the small-scale universality, an approach is suggested that investigates the global energy spectrum in a general spectral space for which the nonlinear interscale interaction may not be Fourier-triadic. Specific verifications are performed based on direct numerical simulations of turbulence in a spherical geometry and reexaminations of several existing results for turbulent channel flows.

  18. The use of extremal hypotheses as a means of predicting alluvial channel dimensions for river restoration

    NASA Astrophysics Data System (ADS)

    Tranmer, A.; Goodwin, P.

    2013-12-01

    In designing fluvial infrastructure and restoration projects the question often arises, what are the cross sectional characteristics of width, depth, roughness, and slope necessary to ensure no net aggradation or degradation occurs within a given reach of river? Current fluvial design utilizes empirical and numerical methods to calculate the required slope and geometry of alluvial channels; however, no solution has been proposed that fully incorporates the necessary 3-dimensional mechanics of open channels due to the complicated processes and feedbacks that occur during mobile bed conditions. This is further compounded by numerous local geologic constraints and perturbations that must be considered, which interrupt the evolution towards a balance of deposition and erosion, or the condition of dynamic-equilibrium. However, given the moderate success of power law relations, such as regime theory and hydraulic geometry, it is evident self-organizing processes are present in watersheds that scale channel size and sinuosity to some average condition in order to maintain a balance of fluid and sediment flux from the upstream catchment. Extremal hypotheses have been developed as an alternative to solving the reach scale 3-dimensional conservation laws for fluid and sediment, to provide a first order means of predicting channel dimensions in an objective and reproducible manner. This study evaluates the performance of extremal hypotheses in identifying the trend towards dynamic-equilibrium over unique spatial gradients in 2 gravel-bed river systems. Using a location-for-time-substitution approach, extremal hypotheses were examined over a longitudinal gradient of channel evolution towards reaches found to be near equilibrium in an unconfined, transport-limited river in the undisturbed rain forest of Chilean Patagonia and a supply-limited, semi-confined canyon system in Central Idaho, USA. Field data from these two sites imply alluvial systems attempt to minimize their

  19. Phylogenetic Analysis of Poliovirus Sequences.

    PubMed

    Jorba, Jaume

    2016-01-01

    Comparative genomic sequencing is a major surveillance tool in the Polio Laboratory Network. Due to the rapid evolution of polioviruses (~1 % per year), pathways of virus transmission can be reconstructed from the pathways of genomic evolution. Here, we describe three main phylogenetic methods; estimation of genetic distances, reconstruction of a maximum-likelihood (ML) tree, and estimation of substitution rates using Bayesian Markov chain Monte Carlo (MCMC). The data set used consists of complete capsid sequences from a survey of poliovirus sequences available in GenBank. PMID:26983737

  20. Phylogenetic placement of the Spirosomaceae

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Maloy, S.; Mandelco, L.; Raj, H. D.

    1990-01-01

    Comparative analysis of 16S rRNA sequences shows that the family Spirosomaceae belongs within the eubacterial phylum defined by the flavobacteria and bacteriodes. Its constituent genera, Spirosoma, Flectobacillus, and Runella form a monophyletic grouping therein. The phylogenetic assignment is based not only upon evolutionary distance analysis, but also upon sequence signatures and higher order structural synapomorphies in 16S rRNA. Another genus peripherally associated with the Spirosomaceae, Ancylobacter ("Microcyclus"), does not cluster with the flavobacteria and their relatives, but rather belongs to the alpha subdivision of the purple bacteria.

  1. Multivariate refutation of aetiological hypotheses in non-experimental epidemiology.

    PubMed

    Maclure, M

    1990-12-01

    Extension of Karl Popper's logic of refutation from the realm of contingency tables to multivariate modelling leads to the conclusion that rigorously scientific multivariate analysis in non-experimental epidemiology differs from the traditional quasi-scientific approach. Instead of aiming for high sensitivity in detecting aetiological agents, the goal in refutation is high specificity--to give the best defence of the 'innocence' of every exposure hypothesized as being a cause. Instead of 'forward selection' or 'backward elimination', multivariate refutation uses the method of 'forward elimination'. This entails a likelihood approach (which may be complemented by, but should be demarcated from, Bayesian methods) not only for statistical inference but also, by analogy, for study design and conduct: one starts with the conclusion (the estimate or hypothesis) and works backwards to the observations (the likelihood of the data or the design of the study). Differences in practice can sometimes be large, as illustrated by a study of hypothesized triggers of myocardial infarction. Multivariate refutation should replace the concept of multivariate modelling in non-experimental epidemiology.

  2. Current hypotheses for the evolution of sex and recombination.

    PubMed

    Hartfield, Matthew; Keightley, Peter D

    2012-06-01

    The evolution of sex is one of the most important and controversial problems in evolutionary biology. Although sex is almost universal in higher animals and plants, its inherent costs have made its maintenance difficult to explain. The most famous of these is the twofold cost of males, which can greatly reduce the fecundity of a sexual population, compared to a population of asexual females. Over the past century, multiple hypotheses, along with experimental evidence to support these, have been put forward to explain widespread costly sex. In this review, we outline some of the most prominent theories, along with the experimental and observational evidence supporting these. Historically, there have been 4 classes of theories: the ability of sex to fix multiple novel advantageous mutants (Fisher-Muller hypothesis); sex as a mechanism to stop the build-up of deleterious mutations in finite populations (Muller's ratchet); recombination creating novel genotypes that can resist infection by parasites (Red Queen hypothesis); and the ability of sex to purge bad genomes if deleterious mutations act synergistically (mutational deterministic hypothesis). Current theoretical and experimental evidence seems to favor the hypothesis that sex breaks down selection interference between new mutants, or it acts as a mechanism to shuffle genotypes in order to repel parasitic invasion. However, there is still a need to collect more data from natural populations and experimental studies, which can be used to test different hypotheses.

  3. How a visual surveillance system hypothesizes how you behave.

    PubMed

    Micheloni, C; Piciarelli, C; Foresti, G L

    2006-08-01

    In the last few years, the installation of a large number of cameras has led to a need for increased capabilities in video surveillance systems. It has, indeed, been more and more necessary for human operators to be helped in the understanding of ongoing activities in real environments. Nowadays, the technology and the research in the machine vision and artificial intelligence fields allow one to expect a new generation of completely autonomous systems able to reckon the behaviors of entities such as pedestrians, vehicles, and so forth. Hence, whereas the sensing aspect of these systems has been the issue considered the most so far, research is now focused mainly on more newsworthy problems concerning understanding. In this article, we present a novel method for hypothesizing the evolution of behavior. For such purposes, the system is required to extract useful information by means of low-level techniques for detecting and maintaining track of moving objects. The further estimation of performed trajectories, together with objects classification, enables one to compute the probability distribution of the normal activities (e.g., trajectories). Such a distribution is defined by means of a novel clustering technique. The resulting clusters are used to estimate the evolution of objects' behaviors and to speculate about any intention to act dangerously. The provided solution for hypothesizing behaviors occurring in real environments was tested in the context of an outdoor parking lot

  4. Ovarian aging and menopause: current theories, hypotheses, and research models.

    PubMed

    Wu, Julie M; Zelinski, Mary B; Ingram, Donald K; Ottinger, Mary Ann

    2005-12-01

    Aging of the reproductive system has been studied in numerous vertebrate species. Although there are wide variations in reproductive strategies and hormone cycle components, many of the fundamental changes that occur during aging are similar. Evolutionary hypotheses attempt to explain why menopause occurs, whereas cellular hypotheses attempt to explain how it occurs. It is commonly believed that a disruption in the hypothalamic-pituitary-gonadal axis is responsible for the onset of menopause. Data exist to demonstrate that the first signs of menopause occur at the level of the brain or the ovary. Thus, finding an appropriate and representative animal model is especially important for the advancement of menopause research. In primates, there is a gradual decline in the function of the hypothalamic-pituitary-gonadal (HPG) axis ultimately resulting in irregularities in menstrual cycles and increasingly sporadic incidence of ovulation. Rodents also exhibit a progressive deterioration in HPG axis function; however, they also experience a period of constant estrus accompanied by intermittent ovulations, reduced progesterone levels, and elevated circulating estradiol levels. It is remarkable to observe that females of other classes also demonstrate deterioration in HPG axis function and ovarian failure. Comparisons of aging in various taxa provide insight into fundamental biological mechanisms of aging that could underlie reproductive decline.

  5. Seed dormancy and germination—emerging mechanisms and new hypotheses

    PubMed Central

    Nonogaki, Hiroyuki

    2014-01-01

    Seed dormancy has played a significant role in adaptation and evolution of seed plants. While its biological significance is clear, molecular mechanisms underlying seed dormancy induction, maintenance and alleviation still remain elusive. Intensive efforts have been made to investigate gibberellin and abscisic acid metabolism in seeds, which greatly contributed to the current understanding of seed dormancy mechanisms. Other mechanisms, which might be independent of hormones, or specific to the seed dormancy pathway, are also emerging from genetic analysis of “seed dormancy mutants.” These studies suggest that chromatin remodeling through histone ubiquitination, methylation and acetylation, which could lead to transcription elongation or gene silencing, may play a significant role in seed dormancy regulation. Small interfering RNA and/or long non-coding RNA might be a trigger of epigenetic changes at the seed dormancy or germination loci, such as DELAY OF GERMINATION1. While new mechanisms are emerging from genetic studies of seed dormancy, novel hypotheses are also generated from seed germination studies with high throughput gene expression analysis. Recent studies on tissue-specific gene expression in tomato and Arabidopsis seeds, which suggested possible “mechanosensing” in the regulatory mechanisms, advanced our understanding of embryo-endosperm interaction and have potential to re-draw the traditional hypotheses or integrate them into a comprehensive scheme. The progress in basic seed science will enable knowledge translation, another frontier of research to be expanded for food and fuel production. PMID:24904627

  6. Multiple Hypotheses Testing Procedures in Clinical Trials and Genomic Studies

    PubMed Central

    Pan, Qing

    2013-01-01

    We review and compare multiple hypothesis testing procedures used in clinical trials and those in genomic studies. Clinical trials often employ global tests, which draw an overall conclusion for all the hypotheses, such as SUM test, Two-Step test, Approximate Likelihood Ratio test (ALRT), Intersection-Union Test (IUT), and MAX test. The SUM and Two-Step tests are most powerful under homogeneous treatment effects, while the ALRT and MAX test are robust in cases with non-homogeneous treatment effects. Furthermore, the ALRT is robust to unequal sample sizes in testing different hypotheses. In genomic studies, stepwise procedures are used to draw marker-specific conclusions and control family wise error rate (FWER) or false discovery rate (FDR). FDR refers to the percent of false positives among all significant results and is preferred over FWER in screening high-dimensional genomic markers due to its interpretability. In cases where correlations between test statistics cannot be ignored, Westfall-Young resampling method generates the joint distribution of P-values under the null and maintains their correlation structure. Finally, the GWAS data from a clinical trial searching for SNPs associated with nephropathy among Type 1 diabetic patients are used to illustrate various procedures. PMID:24350232

  7. Hypothesizing Dopaminergic Genetic Antecedents in Schizophrenia and Substance Seeking Behavior

    PubMed Central

    Blum, Kenneth; Oscar-Berman, Marlene; Badgaiyan, Rajendra; Palomo, Tomas; Gold, Mark S.

    2014-01-01

    The dopamine system has been implicated in both substance use disorder (SUD) and schizophrenia. A recent meta- analysis suggests that A1 allele of the DRD2 gene imposes genetic risk for SUD, especially alcoholism and has been implicated in Reward Deficiency Syndrome (RDS). We hypothesize that dopamine D2 receptor (DRD2) gene Taq1 A2 allele is associated with a subtype of non- SUD schizophrenics and as such may act as a putative protective agent against the development of addiction to alcohol or other drugs of abuse. Schizophrenics with SUD may be carriers of the DRD2 Taq1 A1 allele, and/or other RDS reward polymorphisms and have hypodopaminergic reward function. One plausible mechanism for alcohol seeking in schizophrenics with SUD, based on previous research, may be a deficiency of gamma type endorphins that has been linked to schizophrenic type psychosis.. We also propose that alcohol seeking behavior in schizophrenics, may serve as a physiological self-healing process linked to the increased function of the gamma endorphins, thereby reducing abnormal dopaminergic activity at the nucleus accumbens (NAc). These hypotheses warrant further investigation and cautious interpretation. We, therefore, encourage research involving neuroimaging, genome wide association studies (GWAS), and epigenetic investigation into the relationship between neurogenetics and systems biology to unravel the role of dopamine in psychiatric illness and SUD. PMID:24636783

  8. Hypothesizing dopaminergic genetic antecedents in schizophrenia and substance seeking behavior.

    PubMed

    Blum, Kenneth; Oscar-Berman, Marlene; Badgaiyan, Rajendra D; Palomo, Tomas; Gold, Mark S

    2014-05-01

    The dopamine system has been implicated in both substance use disorder (SUD) and schizophrenia. A recent meta-analysis suggests that A1 allele of the DRD2 gene imposes genetic risk for SUD, especially alcoholism and has been implicated in Reward Deficiency Syndrome (RDS). We hypothesize that dopamine D2 receptor (DRD2) gene Taq1 A2 allele is associated with a subtype of non-SUD schizophrenics and as such may act as a putative protective agent against the development of addiction to alcohol or other drugs of abuse. Schizophrenics with SUD may be carriers of the DRD2 Taq1 A1 allele, and/or other RDS reward polymorphisms and have hypodopaminergic reward function. One plausible mechanism for alcohol seeking in schizophrenics with SUD, based on previous research, may be a deficiency of gamma type endorphins that has been linked to schizophrenic type psychosis. We also propose that alcohol seeking behavior in schizophrenics, may serve as a physiological self-healing process linked to the increased function of the gamma endorphins, thereby reducing abnormal dopaminergic activity at the nucleus accumbens (NAc). These hypotheses warrant further investigation and cautious interpretation. We, therefore, encourage research involving neuroimaging, genome wide association studies (GWAS), and epigenetic investigation into the relationship between neurogenetics and systems biology to unravel the role of dopamine in psychiatric illness and SUD. PMID:24636783

  9. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    PubMed Central

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  10. Phylogenetic Origins of Brain Organisers

    PubMed Central

    Robertshaw, Ellen; Kiecker, Clemens

    2012-01-01

    The regionalisation of the nervous system begins early in embryogenesis, concomitant with the establishment of the anteroposterior (AP) and dorsoventral (DV) body axes. The molecular mechanisms that drive axis induction appear to be conserved throughout the animal kingdom and may be phylogenetically older than the emergence of bilateral symmetry. As a result of this process, groups of patterning genes that are equally well conserved are expressed at specific AP and DV coordinates of the embryo. In the emerging nervous system of vertebrate embryos, this initial pattern is refined by local signalling centres, secondary organisers, that regulate patterning, proliferation, and axonal pathfinding in adjacent neuroepithelium. The main secondary organisers for the AP neuraxis are the midbrain-hindbrain boundary, zona limitans intrathalamica, and anterior neural ridge and for the DV neuraxis the notochord, floor plate, and roof plate. A search for homologous secondary organisers in nonvertebrate lineages has led to controversy over their phylogenetic origins. Based on a recent study in hemichordates, it has been suggested that the AP secondary organisers evolved at the base of the deuterostome superphylum, earlier than previously thought. According to this view, the lack of signalling centres in some deuterostome lineages is likely to reflect a secondary loss due to adaptive processes. We propose that the relative evolutionary flexibility of secondary organisers has contributed to a broader morphological complexity of nervous systems in different clades. PMID:24278699

  11. Phylogenetic approaches for studying diversification.

    PubMed

    Morlon, Hélène

    2014-04-01

    Estimating rates of speciation and extinction, and understanding how and why they vary over evolutionary time, geographical space and species groups, is a key to understanding how ecological and evolutionary processes generate biological diversity. Such inferences will increasingly benefit from phylogenetic approaches given the ever-accelerating rates of genetic sequencing. In the last few years, models designed to understand diversification from phylogenetic data have advanced significantly. Here, I review these approaches and what they have revealed about diversification in the natural world. I focus on key distinctions between different models, and I clarify the conclusions that can be drawn from each model. I identify promising areas for future research. A major challenge ahead is to develop models that more explicitly take into account ecology, in particular the interaction of species with each other and with their environment. This will not only improve our understanding of diversification; it will also present a new perspective to the use of phylogenies in community ecology, the science of interaction networks and conservation biology, and might shift the current focus in ecology on equilibrium biodiversity theories to non-equilibrium theories recognising the crucial role of history.

  12. Phylogenetic Conservatism in Plant Phenology

    NASA Technical Reports Server (NTRS)

    Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; Crimmins, Theresa M.; Mazer, Susan J.; McCabe, Gregory J.; Pau, Stephanie; Regetz, Jim; Schwartz, Mark D.; Travers, Steven E.

    2013-01-01

    Phenological events defined points in the life cycle of a plant or animal have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. Here, we evaluated evidence for phylogenetic conservatism the tendency for closely related species to share similar ecological and biological attributes in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing 4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses.Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.

  13. An Experimentally Determined Evolutionary Model Dramatically Improves Phylogenetic Fit

    PubMed Central

    Bloom, Jesse D.

    2014-01-01

    All modern approaches to molecular phylogenetics require a quantitative model for how genes evolve. Unfortunately, existing evolutionary models do not realistically represent the site-heterogeneous selection that governs actual sequence change. Attempts to remedy this problem have involved augmenting these models with a burgeoning number of free parameters. Here, I demonstrate an alternative: Experimental determination of a parameter-free evolutionary model via mutagenesis, functional selection, and deep sequencing. Using this strategy, I create an evolutionary model for influenza nucleoprotein that describes the gene phylogeny far better than existing models with dozens or even hundreds of free parameters. Emerging high-throughput experimental strategies such as the one employed here provide fundamentally new information that has the potential to transform the sensitivity of phylogenetic and genetic analyses. PMID:24859245

  14. Alternate Alternates: A Medley of Alternate Assessments.

    ERIC Educational Resources Information Center

    Burdette, Paula J.; Olsen, Ken

    This paper highlights eight states that have implemented alternate assessments for children with disabilities who cannot participate in their state and district-wide assessment programs. The alternate assessment systems in Delaware, Florida, Georgia, Indiana, Minnesota, North Dakota, Utah, and West Virginia are briefly described, along with their…

  15. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  16. Evolutionary origins of human handedness: evaluating contrasting hypotheses.

    PubMed

    Cochet, Hélène; Byrne, Richard W

    2013-07-01

    Variation in methods and measures, resulting in past dispute over the existence of population handedness in nonhuman great apes, has impeded progress into the origins of human right-handedness and how it relates to the human hallmark of language. Pooling evidence from behavioral studies, neuroimaging and neuroanatomy, we evaluate data on manual and cerebral laterality in humans and other apes engaged in a range of manipulative tasks and in gestural communication. A simplistic human/animal partition is no longer tenable, and we review four (nonexclusive) possible drivers for the origin of population-level right-handedness: skilled manipulative activity, as in tool use; communicative gestures; organizational complexity of action, in particular hierarchical structure; and the role of intentionality in goal-directed action. Fully testing these hypotheses will require developmental and evolutionary evidence as well as modern neuroimaging data.

  17. Learning from failures: testing broad taxonomic hypotheses about plant naturalization.

    PubMed

    Diez, Jeffrey M; Williams, Peter A; Randall, Rod P; Sullivan, Jon J; Hulme, Philip E; Duncan, Richard P

    2009-11-01

    Our understanding of broad taxonomic patterns of plant naturalizations is based entirely on observations of successful naturalizations. Omission of the failures, however, can introduce bias by conflating the probabilities of introduction and naturalization. Here, we use two comprehensive datasets of successful and failed plant naturalizations in New Zealand and Australia for a unique, flora-wide comparative test of several major invasion hypotheses. First, we show that some taxa are consistently more successful at naturalizing in these two countries, despite their environmental differences. Broad climatic origins helped to explain some of the differences in success rates in the two countries. We further show that species with native relatives were generally more successful in both countries, contrary to Darwin's naturalization hypothesis, but this effect was inconsistent among families across the two countries. Finally, we show that contrary to studies based on successful naturalizations only, islands need not be inherently more invisible than continents.

  18. Psychohistorical Hypotheses on Japan's History of Hostility Towards China.

    PubMed

    Wang, Bo; Rudmin, Floyd

    2016-01-01

    The accelerating tensions and military posturing between Japan and China have created a serious crisis with a danger of a catastrophic war. The purpose of this paper is to summarize the events of the current crisis, and to put it in the context of Japan's long history of hostility to China and repeated attempts at conquest. The historical record shows that Japan has attacked China at least seven times, even though China has never attacked Japan. The irrationality of Japan's behavior is demonstrated by the repetition of this hostile behavior despite the enormous human and economic costs that Japan has suffered because of it. The irrationality of Japan's militarism suggests that psychological explanations may be required to understand this phenomenon. Several hypotheses are proposed, including 1) projected paranoid aggression, 2) collective Zeigarnik compulsion, 3) perceived weakness exciting aggression, 4) national inferiority feelings, 5) cultural narcissism, and 6) Oedipal-like hatred of a parent culture.

  19. Molecular modelling of miraculin: Structural analyses and functional hypotheses.

    PubMed

    Paladino, Antonella; Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2008-02-29

    Miraculin is a plant protein that displays the peculiar property of modifying taste by swiching sour into a sweet taste. Its monomer is flavourless at all pH as well as at high concentration; the dimer form elicits its taste-modifying activity at acidic pH; a tetrameric form is also reported as active. Two histidine residues, located in exposed regions, are the main responsible of miraculin activity, as demonstrated by mutagenesis studies. Since structural data of miraculin are not available, we have predicted its three-dimensional structure and simulated both its dimer and tetramer forms by comparative modelling and molecular docking techniques. Finally, molecular dynamics simulations at different pH conditions have indicated that at acidic pH the dimer assumes a widely open conformation, in agreement with the hypotheses coming from other studies. PMID:18158914

  20. Psychohistorical Hypotheses on Japan's History of Hostility Towards China.

    PubMed

    Wang, Bo; Rudmin, Floyd

    2016-01-01

    The accelerating tensions and military posturing between Japan and China have created a serious crisis with a danger of a catastrophic war. The purpose of this paper is to summarize the events of the current crisis, and to put it in the context of Japan's long history of hostility to China and repeated attempts at conquest. The historical record shows that Japan has attacked China at least seven times, even though China has never attacked Japan. The irrationality of Japan's behavior is demonstrated by the repetition of this hostile behavior despite the enormous human and economic costs that Japan has suffered because of it. The irrationality of Japan's militarism suggests that psychological explanations may be required to understand this phenomenon. Several hypotheses are proposed, including 1) projected paranoid aggression, 2) collective Zeigarnik compulsion, 3) perceived weakness exciting aggression, 4) national inferiority feelings, 5) cultural narcissism, and 6) Oedipal-like hatred of a parent culture. PMID:27480012

  1. From themes to hypotheses: following up with quantitative methods.

    PubMed

    Morgan, David L

    2015-06-01

    One important category of mixed-methods research designs consists of quantitative studies that follow up on qualitative research. In this case, the themes that serve as the results from the qualitative methods generate hypotheses for testing through the quantitative methods. That process requires operationalization to translate the concepts from the qualitative themes into quantitative variables. This article illustrates these procedures with examples that range from simple operationalization to the evaluation of complex models. It concludes with an argument for not only following up qualitative work with quantitative studies but also the reverse, and doing so by going beyond integrating methods within single projects to include broader mutual attention from qualitative and quantitative researchers who work in the same field.

  2. Geologic setting of an unusual Martian channel - Hypotheses on origin

    NASA Technical Reports Server (NTRS)

    Scott, D. H.; Chapman, M. G.

    1989-01-01

    Several areas within the Memnonia region of Mars have been proposed as candidate sites for a Mars sample return mission. Geologic studies of these areas made from computer-enhanced high-resolution Viking images show that an assemblage of rocks having different ages and compositions are accessible to a roving vehicle. In addition, evidence of recent fluvial episodes is indicated by small channels that incises materials emplaced during the Amazonian Period. The channel discussed in this paper is located near the highland-lowland boundary in the Memnonia MC-16SW quadrangle of Mars. It is of particular interest because of distinctive morphologic characteristics compared to other Martian channels. Although several hypotheses are advanced to explain the origin of the channel, none of the arguments are completely satisfactory. However, it is believed that water mobilized from ice in the subjacent regolith (hypothesis 1) or that condensate water from highly volatile ash flows (hypothesis 2) are the most likely origins for the channel.

  3. Hypotheses for Near-Surface Exchange of Methane on Mars

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Bloom, A. Anthony; Gao, Peter; Miller, Charles E.; Yung, Yuk L.

    2016-07-01

    The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol-1 to explain the magnitude of the methane spikes, higher than existing laboratory measurements. The second scenario is that microorganisms convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption but entails extant life on Mars. The third scenario is that deep subsurface aquifers produce the bursts of methane. Continued in situ measurements of methane and water, as well as laboratory studies of adsorption and deliquescence, will test these hypotheses and inform the existence of the near-surface reservoir and its exchange with the atmosphere.

  4. Two hypotheses on the causes of male homosexuality and paedophilia.

    PubMed

    James, William H

    2006-11-01

    This note considers two hypotheses on the causes of homosexuality and paedophilia in men, viz. the hypotheses of maternal immunity and of postnatal learning. According to the maternal immune hypothesis, there is progressive immunization of some mothers to male-specific antigens by each succeeding male fetus, and there are concomitantly increasing effects of anti-male antibodies on the sexual differentiation of the brain in each succeeding male fetus. An attempt is made to assess the status of this hypothesis within immunology. Knowledge of the properties of anti-male antibodies is meagre and there has been little direct experimentation on them, let alone on their effects on the developing male fetal brain. Moreover until the relevant antigens are identified, it will not be possible to test mothers of male homosexuals or paedophiles for the presence of such antibodies. Yet until this experimentation has been done, it would seem premature to regard the hypothesis as more than a very provisional explanatory tool. The evidence in relation to the postnatal learning hypothesis is quite different. There is an abundance of data suggesting that male homosexuals and paedophiles report having experienced more sexual abuse (however defined) in childhood (CSA) than do heterosexual controls. The question revolves round the interpretation of these data. Many (though not all) of these studies are correlational and thus subject to the usual qualifications concerning such data. However, there are grounds for supposing that some of the reports are veridical, and there is support from a longitudinal study reporting a small but significant increase in paedophilia in adulthood following CSA. To summarize: most boys who experience CSA do not later develop into homosexuals or paedophiles. However, the available evidence suggests that a few do so as a result of the abuse. PMID:16202179

  5. Alternative Therapies

    MedlinePlus

    ... Late Effects of Poliomyelitis for Physicians and Survivors © Alternative Therapies Alternative therapies, also called complementary, can support ... of motion, pain, and fatigue are often reported. Energy work includes acupuncture and acupressure, traditional Chinese medicine ...

  6. Phylogenetic analysis of the spirochetes.

    PubMed Central

    Paster, B J; Dewhirst, F E; Weisburg, W G; Tordoff, L A; Fraser, G J; Hespell, R B; Stanton, T B; Zablen, L; Mandelco, L; Woese, C R

    1991-01-01

    The 16S rRNA sequences were determined for species of Spirochaeta, Treponema, Borrelia, Leptospira, Leptonema, and Serpula, using a modified Sanger method of direct RNA sequencing. Analysis of aligned 16S rRNA sequences indicated that the spirochetes form a coherent taxon composed of six major clusters or groups. The first group, termed the treponemes, was divided into two subgroups. The first treponeme subgroup consisted of Treponema pallidum, Treponema phagedenis, Treponema denticola, a thermophilic spirochete strain, and two species of Spirochaeta, Spirochaeta zuelzerae and Spirochaeta stenostrepta, with an average interspecies similarity of 89.9%. The second treponeme subgroup contained Treponema bryantii, Treponema pectinovorum, Treponema saccharophilum, Treponema succinifaciens, and rumen strain CA, with an average interspecies similarity of 86.2%. The average interspecies similarity between the two treponeme subgroups was 84.2%. The division of the treponemes into two subgroups was verified by single-base signature analysis. The second spirochete group contained Spirochaeta aurantia, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirochaeta litoralis, and Spirochaeta isovalerica, with an average similarity of 87.4%. The Spirochaeta group was related to the treponeme group, with an average similarity of 81.9%. The third spirochete group contained borrelias, including Borrelia burgdorferi, Borrelia anserina, Borrelia hermsii, and a rabbit tick strain. The borrelias formed a tight phylogenetic cluster, with average similarity of 97%. THe borrelia group shared a common branch with the Spirochaeta group and was closer to this group than to the treponemes. A single spirochete strain isolated fromt the shew constituted the fourth group. The fifth group was composed of strains of Serpula (Treponema) hyodysenteriae and Serpula (Treponema) innocens. The two species of this group were closely related, with a similarity of greater than 99%. Leptonema illini

  7. More Specific Signal Detection in Functional Magnetic Resonance Imaging by False Discovery Rate Control for Hierarchically Structured Systems of Hypotheses

    PubMed Central

    Schildknecht, Konstantin; Tabelow, Karsten; Dickhaus, Thorsten

    2016-01-01

    Signal detection in functional magnetic resonance imaging (fMRI) inherently involves the problem of testing a large number of hypotheses. A popular strategy to address this multiplicity is the control of the false discovery rate (FDR). In this work we consider the case where prior knowledge is available to partition the set of all hypotheses into disjoint subsets or families, e. g., by a-priori knowledge on the functionality of certain regions of interest. If the proportion of true null hypotheses differs between families, this structural information can be used to increase statistical power. We propose a two-stage multiple test procedure which first excludes those families from the analysis for which there is no strong evidence for containing true alternatives. We show control of the family-wise error rate at this first stage of testing. Then, at the second stage, we proceed to test the hypotheses within each non-excluded family and obtain asymptotic control of the FDR within each family at this second stage. Our main mathematical result is that this two-stage strategy implies asymptotic control of the FDR with respect to all hypotheses. In simulations we demonstrate the increased power of this new procedure in comparison with established procedures in situations with highly unbalanced families. Finally, we apply the proposed method to simulated and to real fMRI data. PMID:26914144

  8. More Specific Signal Detection in Functional Magnetic Resonance Imaging by False Discovery Rate Control for Hierarchically Structured Systems of Hypotheses.

    PubMed

    Schildknecht, Konstantin; Tabelow, Karsten; Dickhaus, Thorsten

    2016-01-01

    Signal detection in functional magnetic resonance imaging (fMRI) inherently involves the problem of testing a large number of hypotheses. A popular strategy to address this multiplicity is the control of the false discovery rate (FDR). In this work we consider the case where prior knowledge is available to partition the set of all hypotheses into disjoint subsets or families, e. g., by a-priori knowledge on the functionality of certain regions of interest. If the proportion of true null hypotheses differs between families, this structural information can be used to increase statistical power. We propose a two-stage multiple test procedure which first excludes those families from the analysis for which there is no strong evidence for containing true alternatives. We show control of the family-wise error rate at this first stage of testing. Then, at the second stage, we proceed to test the hypotheses within each non-excluded family and obtain asymptotic control of the FDR within each family at this second stage. Our main mathematical result is that this two-stage strategy implies asymptotic control of the FDR with respect to all hypotheses. In simulations we demonstrate the increased power of this new procedure in comparison with established procedures in situations with highly unbalanced families. Finally, we apply the proposed method to simulated and to real fMRI data.

  9. Phylogenetic organization of bacterial activity.

    PubMed

    Morrissey, Ember M; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; Hayer, Michaela; McHugh, Theresa A; Marks, Jane C; Price, Lance B; Hungate, Bruce A

    2016-09-01

    Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions.

  10. Phylogenetic organization of bacterial activity

    PubMed Central

    Morrissey, Ember M; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; Hayer, Michaela; McHugh, Theresa A; Marks, Jane C; Price, Lance B; Hungate, Bruce A

    2016-01-01

    Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with 13C and 18O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions. PMID:26943624

  11. Spatial overlap in a solitary carnivore: support for the land tenure, kinship or resource dispersion hypotheses?

    PubMed

    Elbroch, L Mark; Lendrum, Patrick E; Quigley, Howard; Caragiulo, Anthony

    2016-03-01

    There are several alternative hypotheses about the effects of territoriality, kinship and prey availability on individual carnivore distributions within populations. The first is the land-tenure hypothesis, which predicts that carnivores regulate their density through territoriality and temporal avoidance. The second is the kinship hypothesis, which predicts related individuals will be clumped within populations, and the third is the resource dispersion hypothesis, which suggests that resource richness may explain variable sociality, spatial overlap or temporary aggregations of conspecifics. Research on the socio-spatial organization of animals is essential in understanding territoriality, intra- and interspecific competition, and contact rates that influence diverse ecology, including disease transmission between conspecifics and courtship behaviours. We explored these hypotheses with data collected on a solitary carnivore, the cougar (Puma concolor), from 2005 to 2012 in the Southern Yellowstone Ecosystem, Wyoming, USA. We employed 27 annual home ranges for 13 cougars to test whether home range overlap was better explained by land tenure, kinship, resource dispersion or some combination of the three. We found support for both the land tenure and resource dispersion hypotheses, but not for kinship. Cougar sex was the primary driver explaining variation in home range overlap. Males overlapped significantly with females, whereas the remaining dyads (F-F, M-M) overlapped significantly less. In support for the resource dispersion hypothesis, hunting opportunity (the probability of a cougar killing prey in a given location) was often higher in overlapping than in non-overlapping portions of cougar home ranges. In particular, winter hunt opportunity rather than summer hunt opportunity was higher in overlapping portions of female-female and male-female home ranges. Our results may indicate that solitary carnivores are more tolerant of sharing key resources with unrelated

  12. Eastern Scotian Shelf trophic dynamics: A review of the evidence for diverse hypotheses

    NASA Astrophysics Data System (ADS)

    Sinclair, Michael; Power, Michael; Head, Erica; Li, William K. W.; McMahon, Michael; Mohn, Robert; O'Boyle, Robert; Swain, Douglas; Tremblay, John

    2015-11-01

    Two hypotheses have been proposed to account for trophic dynamic control of the eastern Scotian Shelf ecosystem off Atlantic Canada: (1) top-down: fishery induced trophic cascade and (2) bottom-up: climate variability. We evaluate the evidence in support of these hypotheses: including observations on top-down drivers (fishing effort and predation by grey seals), bottom-up drivers (nutrient supply and water column stratification), and the several trophic levels (groundfish, macro-invertebrates, small pelagic fish, and plankton). There is limited support for the fishery-induced trophic cascade hypothesis. The predictions of the climate variability hypothesis are generally met for the lower and middle trophic levels, but the ongoing high levels of natural mortality of groundfish are not accounted for. We propose an alternative hypothesis encompassing concurrent top-down and bottom-up processes, and conclude that many species of groundfish (including cod) and small pelagic fish stocks (including herring) will not recover with the ongoing high levels of natural mortality generated by grey seal predation. Predictions on future trends in abundance of the commercially important macro-invertebrate species (lobster, snow crab, and shrimp) are not possible based on the available evidence.

  13. Alternative strategies: a better alternative.

    PubMed

    Doody, Dennis

    2010-05-01

    Alternatives can be defined as being any financial asset other than traditional stocks and bonds. They include marketable alternatives, private capital, and equity real estate. There are two primary reasons for investing in alternatives: the potential for greater return and the opportunity to diversify a portfolio. Although alternatives were challenged in the highly volatile environment that existed in 2008 and early 2009, they generally lived up to expectations.

  14. Phylogenetic Reconstruction as a Broadly Applicable Teaching Tool in the Biology Classroom: The Value of Data in Estimating Likely Answers

    ERIC Educational Resources Information Center

    Julius, Matthew L.; Schoenfuss, Heiko L.

    2006-01-01

    This laboratory exercise introduces students to a fundamental tool in evolutionary biology--phylogenetic inference. Students are required to create a data set via observation and through mining preexisting data sets. These student data sets are then used to develop and compare competing hypotheses of vertebrate phylogeny. The exercise uses readily…

  15. Phylogenetic analysis of Attalea (Arecaceae): insights on the historical biogeography of a recently diversified Neotropical plant group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Here we present a dated phylogenetic tree of the neotropical palm genus Attalea (Arecaceae). We used six orthologs from the nuclear WRKY gene family across 98 accessions to address relationships among species and biogeographic hypotheses. Here we found that the formerly recognized...

  16. Logical synchronization: how evidence and hypotheses steer atomic clocks

    NASA Astrophysics Data System (ADS)

    Myers, John M.; Madjid, F. Hadi

    2014-05-01

    A clock steps a computer through a cycle of phases. For the propagation of logical symbols from one computer to another, each computer must mesh its phases with arrivals of symbols from other computers. Even the best atomic clocks drift unforeseeably in frequency and phase; feedback steers them toward aiming points that depend on a chosen wave function and on hypotheses about signal propagation. A wave function, always under-determined by evidence, requires a guess. Guessed wave functions are coded into computers that steer atomic clocks in frequency and position—clocks that step computers through their phases of computations, as well as clocks, some on space vehicles, that supply evidence of the propagation of signals. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation elevates `logical synchronization.' from its practice in computer engineering to a dicipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge the unforeseeable. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication.

  17. Plant reproduction systems in microgravity: experimental data and hypotheses

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.

    Elucidation of the possibilities for higher plants to realize complete ontogenesis, from seed to seed, and to propagate by seeds in microgravity, is a fundamental task of space biology connected with the working of the CELSS program. At present, there are results of only 6 spaceflight experiments with Arabidopsis thaliana, an ephemeral plant which will flower and fruit in orbit. Morphogenesis of generative organs occurs normally in microgravity, but unlike the ground control, buds and flowers mainly contain sterile elements of the androecium and gynoecium which degenerate at different stages of development in microgravity. Cytological peculiarities of male and female sterility in microgravity are similar to those occurring naturally during sexual differentiation. Many of the seed formed in microgravity are: 1) nutritional deficiency, 2) insufficient light, 3) intensification of the influence of the above-mentioned factors by microgravity, 4) disturbances of a hormonal nature, and 5) the absence of pollination and fertilization. Possible ways for testing these hypotheses and obtaining viable seeds in microgravity are discussed.

  18. A finite element analysis of masticatory stress hypotheses.

    PubMed

    Chalk, Janine; Richmond, Brian G; Ross, Callum F; Strait, David S; Wright, Barth W; Spencer, Mark A; Wang, Qian; Dechow, Paul C

    2011-05-01

    Understanding how the skull transmits and dissipates forces during feeding provides insights into the selective pressures that may have driven the evolution of primate skull morphology. Traditionally, researchers have interpreted masticatory biomechanics in terms of simple global loading regimes applied to simple shapes (i.e., bending in sagittal and frontal planes, dorsoventral shear, and torsion of beams and cylinders). This study uses finite element analysis to examine the extent to which these geometric models provide accurate strain predictions in the face and evaluate whether simple global loading regimes predict strains that approximate the craniofacial deformation pattern observed during mastication. Loading regimes, including those simulating peak loads during molar chewing and those approximating the global loading regimes, were applied to a previously validated finite element model (FEM) of a macaque (Macaca fascicularis) skull, and the resulting strain patterns were compared. When simple global loading regimes are applied to the FEM, the resulting strains do not match those predicted by simple geometric models, suggesting that these models fail to generate accurate predictions of facial strain. Of the four loading regimes tested, bending in the frontal plane most closely approximates strain patterns in the circumorbital region and lateral face, apparently due to masseter muscle forces acting on the zygomatic arches. However, these results indicate that no single simple global loading regime satisfactorily accounts for the strain pattern found in the validated FEM. Instead, we propose that FE models replace simple cranial models when interpreting bone strain data and formulating hypotheses about craniofacial biomechanics.

  19. A perspective on SIDS pathogenesis. the hypotheses: plausibility and evidence.

    PubMed

    Goldwater, Paul N

    2011-01-01

    Several theories of the underlying mechanisms of Sudden Infant Death Syndrome (SIDS) have been proposed. These theories have born relatively narrow beach-head research programs attracting generous research funding sustained for many years at expense to the public purse. This perspective endeavors to critically examine the evidence and bases of these theories and determine their plausibility; and questions whether or not a safe and reasoned hypothesis lies at their foundation. The Opinion sets specific criteria by asking the following questions: 1. Does the hypothesis take into account the key pathological findings in SIDS? 2. Is the hypothesis congruent with the key epidemiological risk factors? 3. Does it link 1 and 2? Falling short of any one of these answers, by inference, would imply insufficient grounds for a sustainable hypothesis. Some of the hypotheses overlap, for instance, notional respiratory failure may encompass apnea, prone sleep position, and asphyxia which may be seen to be linked to co-sleeping. For the purposes of this paper, each element will be assessed on the above criteria. PMID:21619576

  20. Testing hypotheses about glacial cycles against the observational record

    NASA Astrophysics Data System (ADS)

    Kaufmann, Robert K.; Juselius, Katarina

    2013-01-01

    We estimate an identified cointegrated vector autoregression model of the climate system to test hypotheses about the physical mechanisms that may drive glacial cycles during the late Pleistocene. Results indicate that a permanent doubling of CO2 generates a 11.1°C rise in Antarctic temperature. Large variations in atmospheric CO2 over glacial cycles are driven by changes in sea ice and sea surface temperature in southern oceans and marine biological activity. The latter can be represented by a two-step process in which iron dust increases biological activity and the increase in biological activity reduces CO2 concentrations. Glacial variations in ice volume, as proxied by δ18O are driven by changes in CO2 concentrations, global and high latitude solar insolation, latitudinal gradients in solar insolation, and the atmospheric concentration of CO2. The model is able to quantify the effects of ice volume and temperature on sea level, such that in the long-run, sea level rises 14 m per 0.11‰ δ18O and about 17 m/°C of sea surface temperature in southern oceans. Beyond these specific results, the multivariate model suggests omitted variables may bias bivariate analyses of these mechanisms.

  1. Exploration of miRNA families for hypotheses generation.

    PubMed

    Kamanu, Timothy K K; Radovanovic, Aleksandar; Archer, John A C; Bajic, Vladimir B

    2013-01-01

    Technological improvements have resulted in increased discovery of new microRNAs (miRNAs) and refinement and enrichment of existing miRNA families. miRNA families are important because they suggest a common sequence or structure configuration in sets of genes that hint to a shared function. Exploratory tools to enhance investigation of characteristics of miRNA families and the functions of family-specific miRNA genes are lacking. We have developed, miRNAVISA, a user-friendly web-based tool that allows customized interrogation and comparisons of miRNA families for hypotheses generation, and comparison of per-species chromosomal distribution of miRNA genes in different families. This study illustrates hypothesis generation using miRNAVISA in seven species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.

  2. The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport.

    PubMed Central

    Graham, L K; Wilcox, L W

    2000-01-01

    A life history involving alternation of two developmentally associated, multicellular generations (sporophyte and gametophyte) is an autapomorphy of embryophytes (bryophytesphytes + vascular plants). Microfossil data indicate that Mid Late Ordovician land plants possessed such a life cycle, and that the origin of alternation of generations preceded this date. Molecular phylogenetic data unambiguously relate charophycean green algae to the ancestry of monophyletic embryophytes, and identify bryophytes as early-divergent land plants. Comparison of reproduction in charophyceans and bryophytes suggests that the following stages occurred during evolutionary origin of embryophytic alternation of generations: (i) origin of oogamy; (ii) retention of eggs and zygotes on the parental thallus; (iii) origin of matrotrophy (regulated transfer of nutritional and morphogenetic solutes from parental cells to the next generation); (iv) origin of a multicellular sporophyte generation; and (v) origin of non-flagellate, walled spores. Oogamy, egg/zygote retention and matrotrophy characterize at least some modern charophvceans, and are postulated to represent pre-adaptative features inherited by embryophytes from ancestral charophyceans. Matrotrophy is hypothesized to have preceded origin of the multicellular sporophytes of' plants, and to represent a critical innovation. Molecular approaches to the study of the origins of matrotrophy include assessment of hexose transporter genes and protein family members and their expression patterns. The occurrence in modern charophyceans and bryophytes of chemically resistant tissues that exhibit distinctive morphology correlated with matrotrophy suggests that Early-Mid Ordovician or older microfossils relevant to the origin of land plant alternation of generations may be found. PMID:10905608

  3. Barcoding a quantified food web: crypsis, concepts, ecology and hypotheses.

    PubMed

    Smith, M Alex; Eveleigh, Eldon S; McCann, Kevin S; Merilo, Mark T; McCarthy, Peter C; Van Rooyen, Kathleen I

    2011-01-01

    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana--SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD)--the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the "bird feeder effect") and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future budworm

  4. Mitochondrial evidence on the phylogenetic position of caecilians (Amphibia: Gymnophiona).

    PubMed Central

    Zardoya, R; Meyer, A

    2000-01-01

    The complete nucleotide sequence (17,005 bp) of the mitochondrial genome of the caecilian Typhlonectes natans (Gymnophiona, Amphibia) was determined. This molecule is characterized by two distinctive genomic features: there are seven large 109-bp tandem repeats in the control region, and the sequence for the putative origin of replication of the L strand can potentially fold into two alternative secondary structures (one including part of the tRNA(Cys)). The new sequence data were used to assess the phylogenetic position of caecilians and to gain insights into the origin of living amphibians (frogs, salamanders, and caecilians). Phylogenetic analyses of two data sets-one combining protein-coding genes and the other combining tRNA genes-strongly supported a caecilian + frog clade and, hence, monophyly of modern amphibians. These two data sets could not further resolve relationships among the coelacanth, lungfishes, and tetrapods, but strongly supported diapsid affinities of turtles. Phylogenetic relationships among a larger set of species of frogs, salamanders, and caecilians were estimated with a mitochondrial rRNA data set. Maximum parsimony analysis of this latter data set also recovered monophyly of living amphibians and favored a frog + salamander (Batrachia) relationship. However, bootstrap support was only moderate at these nodes. This is likely due to an extensive among-site rate heterogeneity in the rRNA data set and the narrow window of time in which the three main groups of living amphibians were originated. PMID:10835397

  5. Mitochondrial evidence on the phylogenetic position of caecilians (Amphibia: Gymnophiona).

    PubMed

    Zardoya, R; Meyer, A

    2000-06-01

    The complete nucleotide sequence (17,005 bp) of the mitochondrial genome of the caecilian Typhlonectes natans (Gymnophiona, Amphibia) was determined. This molecule is characterized by two distinctive genomic features: there are seven large 109-bp tandem repeats in the control region, and the sequence for the putative origin of replication of the L strand can potentially fold into two alternative secondary structures (one including part of the tRNA(Cys)). The new sequence data were used to assess the phylogenetic position of caecilians and to gain insights into the origin of living amphibians (frogs, salamanders, and caecilians). Phylogenetic analyses of two data sets-one combining protein-coding genes and the other combining tRNA genes-strongly supported a caecilian + frog clade and, hence, monophyly of modern amphibians. These two data sets could not further resolve relationships among the coelacanth, lungfishes, and tetrapods, but strongly supported diapsid affinities of turtles. Phylogenetic relationships among a larger set of species of frogs, salamanders, and caecilians were estimated with a mitochondrial rRNA data set. Maximum parsimony analysis of this latter data set also recovered monophyly of living amphibians and favored a frog + salamander (Batrachia) relationship. However, bootstrap support was only moderate at these nodes. This is likely due to an extensive among-site rate heterogeneity in the rRNA data set and the narrow window of time in which the three main groups of living amphibians were originated.

  6. Mitochondrial evidence on the phylogenetic position of caecilians (Amphibia: Gymnophiona).

    PubMed

    Zardoya, R; Meyer, A

    2000-06-01

    The complete nucleotide sequence (17,005 bp) of the mitochondrial genome of the caecilian Typhlonectes natans (Gymnophiona, Amphibia) was determined. This molecule is characterized by two distinctive genomic features: there are seven large 109-bp tandem repeats in the control region, and the sequence for the putative origin of replication of the L strand can potentially fold into two alternative secondary structures (one including part of the tRNA(Cys)). The new sequence data were used to assess the phylogenetic position of caecilians and to gain insights into the origin of living amphibians (frogs, salamanders, and caecilians). Phylogenetic analyses of two data sets-one combining protein-coding genes and the other combining tRNA genes-strongly supported a caecilian + frog clade and, hence, monophyly of modern amphibians. These two data sets could not further resolve relationships among the coelacanth, lungfishes, and tetrapods, but strongly supported diapsid affinities of turtles. Phylogenetic relationships among a larger set of species of frogs, salamanders, and caecilians were estimated with a mitochondrial rRNA data set. Maximum parsimony analysis of this latter data set also recovered monophyly of living amphibians and favored a frog + salamander (Batrachia) relationship. However, bootstrap support was only moderate at these nodes. This is likely due to an extensive among-site rate heterogeneity in the rRNA data set and the narrow window of time in which the three main groups of living amphibians were originated. PMID:10835397

  7. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses

    NASA Astrophysics Data System (ADS)

    Bouma, Tjeerd J.; Olenin, Sergej; Reise, Karsten; Ysebaert, Tom

    2009-03-01

    Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and dissolved material fluxes between the land and sea, and between the benthos and the passing water or air. Above all, habitat engineering exerts facilitating and inhibiting effects on biodiversity. Despite a strongly growing interest in the functional role of ecosystem engineering over the recent years, compared to food web analyses, the conceptual understanding of engineering-mediated species interactions is still in its infancy. In the present paper, we provide a concise overview on current insights and propose two hypotheses on the general mechanisms by which ecosystem engineering may affect biodiversity in coastal sediments. We hypothesise that autogenic and allogenic ecosystem engineers have inverse effects on epibenthic and endobenthic biodiversity in coastal sediments. The primarily autogenic structures of the epibenthos achieve high diversity at the expense of endobenthos, whilst allogenic sediment reworking by infauna may facilitate other infauna and inhibits epibenthos. On a larger scale, these antagonistic processes generate patchiness and habitat diversity. Due to such interaction, anthropogenic influences can strongly modify the engineering community by removing autogenic ecosystem engineers through coastal engineering or bottom trawling. Another source of anthropogenic influences comes from introducing invasive engineers, from which the impact is often hard to predict. We hypothesise that the local biodiversity effects of invasive ecosystem engineers will depend on the engineering strength of the invasive species, with engineering strength defined as the number of habitats it can invade and the extent of modification. At a larger scale of an entire shore

  8. Kidney cancer mortality in Spain: geographic patterns and possible hypotheses

    PubMed Central

    López-Abente, Gonzalo; Aragonés, Nuria; Pérez-Gómez, Beatriz; Ramis, Rebeca; Vidal, Enrique; García-Pérez, Javier; Fernández-Navarro, Pablo; Pollán, Marina

    2008-01-01

    Background Since the second half of the 1990s, kidney cancer mortality has tended to stabilize and decline in many European countries, due to the decrease in the prevalence of smokers. Nevertheless, incidence of kidney cancer is rising across the sexes in some of these countries, a trend which may possibly reflect the fact that improvements in diagnostic techniques are being outweighed by the increased prevalence of some of this tumor's risk factors. This study sought to: examine the geographic pattern of kidney cancer mortality in Spain; suggest possible hypotheses that would help explain these patterns; and enhance existing knowledge about the large proportion of kidney tumors whose cause remains unknown. Methods Smoothed municipal relative risks (RRs) for kidney cancer mortality were calculated in men and women, using the conditional autoregressive model proposed by Besag, York and Molliè. Maps were plotted depicting smoothed relative risk estimates, and the distribution of the posterior probability of RR>1 by sex. Results Municipal maps displayed a marked geographic pattern, with excess mortality in both sexes, mainly in towns along the Bay of Biscay, including areas of Asturias, the Basque Country and, to a lesser extent, Cantabria. Among women, the geographic pattern was strikingly singular, not in evidence for any other tumors, and marked by excess risk in towns situated in the Salamanca area and Extremaduran Autonomous Region. This difference would lead one to postulate the existence of different exposures of environmental origin in the various regions. Conclusion The reasons for this pattern of distribution are not clear, and it would thus be of interest if the effect of industrial emissions on this disease could be studied. The excess mortality observed among women in towns situated in areas with a high degree of natural radiation could reflect the influence of exposures which derive from the geologic composition of the terrain and then become manifest

  9. Twelve testable hypotheses on the geobiology of weathering.

    PubMed

    Brantley, S L; Megonigal, J P; Scatena, F N; Balogh-Brunstad, Z; Barnes, R T; Bruns, M A; Van Cappellen, P; Dontsova, K; Hartnett, H E; Hartshorn, A S; Heimsath, A; Herndon, E; Jin, L; Keller, C K; Leake, J R; McDowell, W H; Meinzer, F C; Mozdzer, T J; Petsch, S; Pett-Ridge, J; Pregitzer, K S; Raymond, P A; Riebe, C S; Shumaker, K; Sutton-Grier, A; Walter, R; Yoo, K

    2011-03-01

    Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur.

  10. Endocardial tip cells in the human embryo - facts and hypotheses.

    PubMed

    Rusu, Mugurel C; Poalelungi, Cristian V; Vrapciu, Alexandra D; Nicolescu, Mihnea I; Hostiuc, Sorin; Mogoanta, Laurentiu; Taranu, Traian

    2015-01-01

    Experimental studies regarding coronary embryogenesis suggest that the endocardium is a source of endothelial cells for the myocardial networks. As this was not previously documented in human embryos, we aimed to study whether or not endothelial tip cells could be correlated with endocardial-dependent mechanisms of sprouting angiogenesis. Six human embryos (43-56 days) were obtained and processed in accordance with ethical regulations; immunohistochemistry was performed for CD105 (endoglin), CD31, CD34, α-smooth muscle actin, desmin and vimentin antibodies. Primitive main vessels were found deriving from both the sinus venosus and aorta, and were sought to be the primordia of the venous and arterial ends of cardiac microcirculation. Subepicardial vessels were found branching into the outer ventricular myocardium, with a pattern of recruiting α-SMA+/desmin+ vascular smooth muscle cells and pericytes. Endothelial sprouts were guided by CD31+/CD34+/CD105+/vimentin+ endothelial tip cells. Within the inner myocardium, we found endothelial networks rooted from endocardium, guided by filopodia-projecting CD31+/CD34+/CD105+/ vimentin+ endocardial tip cells. The myocardial microcirculatory bed in the atria was mostly originated from endocardium, as well. Nevertheless, endocardial tip cells were also found in cardiac cushions, but they were not related to cushion endothelial networks. A general anatomical pattern of cardiac microvascular embryogenesis was thus hypothesized; the arterial and venous ends being linked, respectively, to the aorta and sinus venosus. Further elongation of the vessels may be related to the epicardium and subepicardial stroma and the intramyocardial network, depending on either endothelial and endocardial filopodia-guided tip cells in ventricles, or mostly on endocardium, in atria. PMID:25617624

  11. Phylogenetic mapping of bacterial morphology

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Fox, G. E.

    1998-01-01

    The availability of a meaningful molecular phylogeny for bacteria provides a context for examining the historical significance of various developments in bacterial evolution. Herein, the classical morphological descriptions of selected members of the domain Bacteria are mapped upon the genealogical ancestry deduced from comparison of small-subunit rRNA sequences. For the species examined in this study, a distinct pattern emerges which indicates that the coccus shape has arisen and accumulated independently multiple times in separate lineages and typically survived as a persistent end-state morphology. At least two other morphologies persist but have evolved only once. This study demonstrates that although bacterial morphology is not useful in defining bacterial phylogeny, it is remarkably consistent with that phylogeny once it is known. An examination of the experimental evidence available for morphogenesis as well as microbial fossil evidence corroborates these findings. It is proposed that the accumulation of persistent morphologies is a result of the biophysical properties of peptidoglycan and their genetic control, and that an evolved body-plan strategy based on peptidoglycan may have been a fate-sealing step in the evolution of Bacteria. More generally, this study illustrates that significant evolutionary insights can be obtained by examining biological and biochemical data in the context of a reliable phylogenetic structure.

  12. Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states.

    PubMed

    Wright, April M; Lyons, Kathleen M; Brandley, Matthew C; Hillis, David M

    2015-09-01

    rare. The three putative reversals to oviparity with the strongest phylogenetic support occurred in the snakes Eryx jayakari and Lachesis, and the lizard, Liolaemus calchaqui. Our results emphasize that because the conclusions of ancestral state reconstruction studies are often highly sensitive to the methods and assumptions of analysis, researchers should carefully consider this sensitivity when evaluating alternative hypotheses of character-state evolution.

  13. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents

    PubMed Central

    Larsson, Hans C.E.; Habib, Michael B.

    2016-01-01

    Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can’t reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. Discussion: Using our first principles approach we find that “near flight” locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory adaptations, and this

  14. Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence.

    PubMed

    Villalobos, Fabricio; Rangel, Thiago F; Diniz-Filho, José Alexandre F

    2013-04-01

    Differential coexistence among species underlies geographical patterns of biodiversity. Understanding such patterns has relied either on ecological or historical approaches applied separately. Recently, macroecology and community phylogenetics have tried to integrate both ecological and historical approaches. However, macroecology is mostly non-phylogenetic, whereas community phylogenetics is largely focused on local scales. Here, we propose a conceptual framework to link macroecology and community phylogenetics by exploring the evolutionary context of large-scale species coexistence, introducing the phylogenetic field concept. This is defined as the phylogenetic structure of species co-occurrence within a focal species' geographical range. We developed concepts and methods for analysing phylogenetic fields and applied them to study coexistence patterns of the bat family Phyllostomidae. Our analyses showed that phyllostomid bats coexist mostly with closely related species, revealing a north-south gradient from overdispersed to clustered phylogenetic fields. Patterns at different phylogenetic levels (i.e. all species versus close relatives only) presented the same gradient. Results support the tropical niche conservatism hypothesis, potentially mediated by higher speciation rates in the region of origin coupled with shared environmental preferences among species. The phylogenetic field approach enables species-based community phylogenetics, instead of those that are site-based, allowing the description of historical processes at more appropriate macroecological and biogeographic scales.

  15. The evolution of chemoreception in squamate reptiles: a phylogenetic approach.

    PubMed

    Schwenk, K

    1993-01-01

    Recent advances in the field of squamate reptile chemoreception have been paralleled by the growth and preeminence of cladistics in the field of systematics, but for the most part, workers in the former have failed to incorporate the conceptual and informational advances of the latter. In this paper, I attempt a preliminary rapprochement by combining the methods of phylogenetic systematics and current hypotheses of squamate relationships with an overview of squamate chemosensory biology. This purely phylogenetic approach leads to a number of falsifiable generalizations about the evolution of chemoreception in squamates: 1) Evolution of this system is conservative rather than plastic, reflecting to a large extent suprafamilial attributes rather than adaptation to local conditions; 2) Anguimorphs are highly chemosensory and teiids show convergence with this group; 3) Tongue-flicking, a bifurcated tongue tip, a vomeronasal (VNO) mushroom body, and a complete circular muscle system in the tongue are a correlated character complex associated with the attainment, in squamates, of a direct VNO-oral connection and the loss of a VNO-nasal connection; 4) There is little support for a visual-chemosensory dichotomy within Squamata; 5) Gekkotans are allied with Autarchoglossa, both phylogenetically and in terms of chemosensory biology; 6) Iguania are highly variable in chemosensory development; iguanids represent the primitive iguanian condition, while agamids and chamaeleonids have secondarily reduced or lost their chemosensory abilities; 7) Apparent contradictions in chemosensory behavior among iguanids probably represent intrafamilial divergence; 8) Ecological correlates within Iguanidae and other taxa might be spurious, resulting from historical factors unrelated to the adaptations in question; 9) The mechanical demands of lingual food prehension have constrained chemosensory evolution in Iguania; chemosensory evolution within Scleroglossa was permitted by the liberation of

  16. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.

    PubMed

    Bonetti, Maria Fernanda; Wiens, John J

    2014-11-22

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change.

  17. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians

    PubMed Central

    Bonetti, Maria Fernanda; Wiens, John J.

    2014-01-01

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. PMID:25274369

  18. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.

    PubMed

    Bonetti, Maria Fernanda; Wiens, John J

    2014-11-22

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. PMID:25274369

  19. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity

    PubMed Central

    Lang, Daniel; Weiche, Benjamin; Timmerhaus, Gerrit; Richardt, Sandra; Riaño-Pachón, Diego M.; Corrêa, Luiz G. G.; Reski, Ralf; Mueller-Roeber, Bernd; Rensing, Stefan A.

    2010-01-01

    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phylogenetic comparative (PC) analyses, we define the timeline of TAP loss, gain, and expansion among Viridiplantae and find that two major bursts of gain/expansion occurred, coinciding with the water-to-land transition and the radiation of flowering plants. For the first time, we provide PC proof for the long-standing hypothesis that TAPs are major driving forces behind the evolution of morphological complexity, the latter in Plantae being shaped significantly by polyploidization and subsequent biased paleolog retention. Principal component analysis incorporating the number of TAPs per genome provides an alternate and significant proxy for complexity, ideally suited for PC genomics. Our work lays the ground for further interrogation of the shaping of gene regulatory networks underlying the evolution of organism complexity. PMID:20644220

  20. Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity.

    PubMed

    Lang, Daniel; Weiche, Benjamin; Timmerhaus, Gerrit; Richardt, Sandra; Riaño-Pachón, Diego M; Corrêa, Luiz G G; Reski, Ralf; Mueller-Roeber, Bernd; Rensing, Stefan A

    2010-07-19

    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phylogenetic comparative (PC) analyses, we define the timeline of TAP loss, gain, and expansion among Viridiplantae and find that two major bursts of gain/expansion occurred, coinciding with the water-to-land transition and the radiation of flowering plants. For the first time, we provide PC proof for the long-standing hypothesis that TAPs are major driving forces behind the evolution of morphological complexity, the latter in Plantae being shaped significantly by polyploidization and subsequent biased paleolog retention. Principal component analysis incorporating the number of TAPs per genome provides an alternate and significant proxy for complexity, ideally suited for PC genomics. Our work lays the ground for further interrogation of the shaping of gene regulatory networks underlying the evolution of organism complexity.

  1. Big and slow: phylogenetic estimates of molecular evolution in baleen whales (suborder mysticeti).

    PubMed

    Jackson, J A; Baker, C S; Vant, M; Steel, D J; Medrano-González, L; Palumbi, S R

    2009-11-01

    Baleen whales are the largest animals that have ever lived. To develop an improved estimation of substitution rate for nuclear and mitochondrial DNA for this taxon, we implemented a relaxed-clock phylogenetic approach using three fossil calibration dates: the divergence between odontocetes and mysticetes approximately 34 million years ago (Ma), between the balaenids and balaenopterids approximately 28 Ma, and the time to most recent common ancestor within the Balaenopteridae approximately 12 Ma. We examined seven mitochondrial genomes, a large number of mitochondrial control region sequences (219 haplotypes for 465 bp) and nine nuclear introns representing five species of whales, within which multiple species-specific alleles were sequenced to account for within-species diversity (1-15 for each locus). The total data set represents >1.65 Mbp of mitogenome and nuclear genomic sequence. The estimated substitution rate for the humpback whale control region (3.9%/million years, My) was higher than previous estimates for baleen whales but slow relative to other mammal species with similar generation times (e.g., human-chimp mean rate > 20%/My). The mitogenomic third codon position rate was also slow relative to other mammals (mean estimate 1%/My compared with a mammalian average of 9.8%/My for the cytochrome b gene). The mean nuclear genomic substitution rate (0.05%/My) was substantially slower than average synonymous estimates for other mammals (0.21-0.37%/My across a range of studies). The nuclear and mitogenome rate estimates for baleen whales were thus roughly consistent with an 8- to 10-fold slowing due to a combination of large body size and long generation times. Surprisingly, despite the large data set of nuclear intron sequences, there was only weak and conflicting support for alternate hypotheses about the phylogeny of balaenopterid whales, suggesting that interspecies introgressions or a rapid radiation has obscured species relationships in the nuclear genome.

  2. Differences in muscle fiber size and associated energetic costs in phylogenetically paired tropical and temperate birds.

    PubMed

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-01-01

    Tropical and temperate birds provide a unique system to examine mechanistic consequences of life-history trade-offs at opposing ends of the pace-of-life spectrum; tropical birds tend to have a slow pace of life whereas temperate birds the opposite. Birds in the tropics have a lower whole-animal basal metabolic rate and peak metabolic rate, lower rates of reproduction, and longer survival than birds in temperate regions. Although skeletal muscle has a relatively low tissue-specific metabolism at rest, it makes up the largest fraction of body mass and therefore contributes more to basal metabolism than any other tissue. A principal property of muscle cells that influences their rate of metabolism is fiber size. The optimal fiber size hypothesis attempts to link whole-animal basal metabolic rate to the cost of maintaining muscle mass by stating that larger fibers may be metabolically cheaper to maintain since the surface area∶volume ratio (SA∶V) is reduced compared with smaller fibers and thus the amount of area to transport ions is also reduced. Because tropical birds have a reduced whole-organism metabolism, we hypothesized that they would have larger muscle fibers than temperate birds, given that larger muscle fibers have reduced energy demand from membrane Na(+)-K(+) pumps. Alternatively, smaller muscle fibers could result in a lower capacity for shivering and exercise. To test this idea, we examined muscle fiber size and Na(+)-K(+)-ATPase activity in 16 phylogenetically paired species of tropical and temperate birds. We found that 3 of the 16 paired comparisons indicated that tropical birds had significantly larger fibers, contrary to our hypothesis. Our data show that SA∶V is proportional to Na(+)-K(+)-ATPase activity in muscles of birds.

  3. Declining scaup populations: issues, hypotheses, and research needs

    USGS Publications Warehouse

    Austin, J.E.; Afton, A.D.; Anderson, M.G.; Clark, R.G.; Custer, Christine M.; Lawrence, J.S.; Pollard, J.B.; Ringelman, J.K.

    2000-01-01

    The population estimate for greater (Aythya marila) and lesser (Aythya affinis) scaup (combined) has declined dramatically since the early 1980s to record lows in 1998. The 1998 estimate of 3.47 million scaup is far below the goal of 6.3 million set in the North American Waterfowl Management Plan (NAWMP), causing concern among biologists and hunters. We summarize issuesof concern, hypotheses for factors contributing to the population decline, and research and management needs recommended by participants of the Scaup Workshop, held in September 1999. We believe that contaminants, lower female survival, and reduced recruitment due to changes in food resources or breedingground habitats are primary factors contributing to the decline. These factors are not mutually exclusive but likely interact across seasons. Workshop participants identified seven action items. We need to further delineate where declines in breeding populations have occurred, with a primary focus on the western Canadian boreal forest, where declines appear to be most pronounced. Productivity in various areas and habitats throughout the breeding range needs to be assessed by conducting retrospective analyses of existing data and by intensive field studies at broad and local scales. Annual and seasonal survival rates need to be determined in order to assess the role of harvest or natural mortality. Effects of contaminants on reproduction, female body condition, and behavior must be investigated. Use, distribution, and role of food resources relative to body condition and reproduction need to be examined to better understand seasonal dynamics of nutrient reserves and the role in reproductive success. Affiliations among breeding, migration, and wintering areas must be assessed in order to understand differential exposure to harvest or contaminants, and differential reproductive success and recruitment. Biologists and agencies need to gather and improve information needed to manage greater and lesser

  4. Why the phylogenetic species concept?-Elementary.

    PubMed

    Wheeler, Q D

    1999-06-01

    Although species play a number of unique and necessary roles in biology, none are more important than as the elements of phylogeny, nomenclature, and biodiversity study. Species are not divisible into any smaller units among which shared derived characters can be recognized with fidelity. Biodiversity inventory, assessment, and conservation are dependent upon a uniformly applicable species concept. Species are the fundamental units in formal Linnaean classification and zoological nomenclature. The Biological Species Concept, long given nominal support by most zoologists, forced an essentialy taxonomic problem (what are species?) into a population genetics framework (why are there species?). Early efforts at a phylogenetic species concept focused on correcting problems in the Biological Species Concept associated with ancestral populations, then applying phylogenetic logic to species themselves. Subsequently, Eldredge and Cracraft, and Nelson and Platnick, each proposed essentially identical and truly phylogenetic species concepts that permitted the rigorous recognition of species prior to and for the purposes of phylogenetic analysis, yet maintained the integrity of the Phylogenetic Species Concept outside of cladistic analysis. Such phylogenetic elements have many benefits, including giving to biology a unit species concept applicable across all kinds of living things including sexual and asexual forms. This is possible because the Phylogenetic Species Concept is based on patterns of character distributions and is therefore consistent with the full range of possible evolutionary processes that contribute to species formation, including both biotic and abiotic (even random) factors. PMID:19270883

  5. Bovid mortality profiles in paleoecological context falsify hypotheses of endurance running-hunting and passive scavenging by early Pleistocene hominins

    NASA Astrophysics Data System (ADS)

    Bunn, Henry T.; Pickering, Travis Rayne

    2010-11-01

    The world's first archaeological traces from 2.6 million years ago (Ma) at Gona, in Ethiopia, include sharp-edged cutting tools and cut-marked animal bones, which indicate consumption of skeletal muscle by early hominin butchers. From that point, evidence of hominin meat-eating becomes increasingly more common throughout the Pleistocene archaeological record. Thus, the substantive debate about hominin meat-eating now centers on mode(s) of carcass resource acquisition. Two prominent hypotheses suggest, alternatively, (1) that early Homo hunted ungulate prey by running them to physiological failure and then dispatching them, or (2) that early Homo was relegated to passively scavenging carcass residues abandoned by carnivore predators. Various paleontologically testable predictions can be formulated for both hypotheses. Here we test four predictions concerning age-frequency distributions for bovids that contributed carcass remains to the 1.8 Ma. old FLK 22 Zinjanthropus (FLK Zinj, Olduvai Gorge, Tanzania) fauna, which zooarchaeological and taphonomic data indicate was formed predominantly by early Homo. In all but one case, the bovid mortality data from FLK Zinj violate test predictions of the endurance running-hunting and passive scavenging hypotheses. When combined with other taphonomic data, these results falsify both hypotheses, and lead to the hypothesis that early Homo operated successfully as an ambush predator.

  6. Vigilance of kit foxes at water sources: a test of competing hypotheses for a solitary carnivore subject to predation.

    PubMed

    Hall, Lucas K; Day, Casey C; Westover, Matthew D; Edgel, Robert J; Larsen, Randy T; Knight, Robert N; McMillan, Brock R

    2013-03-01

    Animals that are potential prey do not respond equally to direct and indirect cues related to risk of predation. Based on differential responses to cues, three hypotheses have been proposed to explain spatial variation in vigilance behavior. The predator-vigilance hypothesis proposes that prey increase vigilance where there is evidence of predators. The visibility-vigilance hypothesis suggests that prey increase vigilance where visibility is obstructed. Alternatively, the refuge-vigilance hypothesis proposes that prey may perceive areas with low visibility (greater cover) as refuges and decrease vigilance. We evaluated support for these hypotheses using the kit fox (Vulpes macrotis), a solitary carnivore subject to intraguild predation, as a model. From 2010 to 2012, we used infrared-triggered cameras to record video of kit fox behavior at water sources in Utah, USA. The refuge-vigilance hypothesis explained more variation in vigilance behavior of kit foxes than the other two hypotheses (AICc model weight=0.37). Kit foxes were less vigilant at water sources with low overhead cover (refuge) obstructing visibility. Based on our results, the predator-vigilance and visibility-vigilance hypotheses may not be applicable to all species of prey. Solitary prey, unlike gregarious prey, may use areas with concealing cover to maximize resource acquisition and minimize vigilance.

  7. Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics

    PubMed Central

    van Hazel, Ilke; Santini, Francesco; Müller, Johannes; Chang, Belinda SW

    2006-01-01

    Background Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility. Results Phylogenetic analyses of vertebrate SWS1 genes produced topologies that were remarkably congruent with generally accepted hypotheses of vertebrate evolution at both higher and lower taxonomic levels. The few exceptions were generally associated with areas of poor taxonomic sampling, or relationships that have been difficult to resolve using other molecular markers. The SWS1 data set was characterized by a substantial amount of among-site rate variation, and a relatively unskewed substitution rate matrix, even when the data were partitioned into different codon sites and individual taxonomic groups. Although there were nucleotide biases in some groups at third positions, these biases were not convergent across different taxonomic groups. Conclusion Our results suggest that SWS1 may be a good marker for vertebrate phylogenetics due to the variable yet consistent patterns of sequence evolution exhibited across fairly wide taxonomic groups. This may result from constraints imposed by the functional role of SWS1 pigments in visual transduction. PMID:17107620

  8. Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis.

    PubMed

    von Hardenberg, Achaz; Gonzalez-Voyer, Alejandro

    2013-02-01

    Confirmatory path analysis is a statistical technique to build models of causal hypotheses among variables and test if the data conform with the causal model. However, classical path analysis techniques ignore the nonindependence of observations due to phylogenetic relatedness among species, possibly leading to spurious results. Here, we present a simple method to perform phylogenetic confirmatory path analysis (PPA). We analyzed simulated datasets with varying amounts of phylogenetic signal in the data and a known underlying causal structure linking the traits to estimate Type I error and power. Results show that Type I error for PPA appeared to be slightly anticonservative (range: 0.047-0.072) but path analysis models ignoring phylogenetic signal resulted in much higher Type I error rates, which were positively related to the amount of phylogenetic signal (range: 0.051 for λ= 0 to 0.916 for λ= 1). Further, the power of the test was not compromised when accounting for phylogeny. As an example of the application of PPA, we revisit a study on the correlates of aggressive broodmate competition across seven avian families. The use of PPA allowed us to gain greater insight into the plausible causal paths linking species traits to aggressive broodmate competition.

  9. Incorporating clade identity in analyses of phylogenetic community structure: an example with hummingbirds.

    PubMed

    Parra, Juan L; McGuire, Jimmy A; Graham, Catherine H

    2010-11-01

    An important challenge in community ecology is to determine how processes occurring at multiple spatial, temporal, and phylogenetic scales influence the structure of local communities. While indexes of phylogenetic structure, which measure how related species are in a community, provide insight into the processes that shape species coexistence, they fail to pinpoint the phylogenetic scales at which those processes occur. Here, we explore a framework to identify the species and clades responsible for the inferred patterns of phylogenetic structure within a given community. Further, we evaluate how communities that share the nonrandom representation of species from a given clade in the phylogeny are distributed across geography and environmental gradients. Using Ecuadorian hummingbird communities, we found that multiple patterns of phylogenetic structure often occur within a local assemblage. We also identified four geographic regions where species from certain clades exhibit nonrandom representation: the eastern Amazonian lowlands, the western dry lowlands, the Andes at middle elevations, and the Andes at high elevations. The environmental gradients along which changes in the local coexistence of species occurred were mainly elevation, annual precipitation, and seasonality in both temperature and precipitation. Finally, we show how these patterns can be used to generate hypotheses about the processes that allow species coexistence.

  10. Phylogeny and phylogenetic classification of the antbirds, ovenbirds, woodcreepers, and allies (Aves: Passeriformes: Infraorder Furnariides)

    USGS Publications Warehouse

    Moyle, R.G.; Chesser, R.T.; Brumfield, R.T.; Tello, J.G.; Marchese, D.J.; Cracraft, J.

    2009-01-01

    The infraorder Furnariides is a diverse group of suboscine passerine birds comprising a substantial component of the Neotropical avifauna. The included species encompass a broad array of morphologies and behaviours, making them appealing for evolutionary studies, but the size of the group (ca. 600 species) has limited well-sampled higher-level phylogenetic studies. Using DNA sequence data from the nuclear RAG-1 and RAG-2 exons, we undertook a phylogenetic analysis of the Furnariides sampling 124 (more than 88%) of the genera. Basal relationships among family-level taxa differed depending on phylogenetic method, but all topologies had little nodal support, mirroring the results from earlier studies in which discerning relationships at the base of the radiation was also difficult. In contrast, branch support for family-rank taxa and for many relationships within those clades was generally high. Our results support the Melanopareidae and Grallariidae as distinct from the Rhinocryptidae and Formicariidae, respectively. Within the Furnariides our data contradict some recent phylogenetic hypotheses and suggest that further study is needed to resolve these discrepancies. Of the few genera represented by multiple species, several were not monophyletic, indicating that additional systematic work remains within furnariine families and must include dense taxon sampling. We use this study as a basis for proposing a new phylogenetic classification for the group and in the process erect new family-group names for clades having high branch support across methods. ?? 2009 The Willi Hennig Society.

  11. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    PubMed

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time. PMID:21597250

  12. Phylogenetic trait conservation in the partner choice of a group of ectomycorrhizal trees.

    PubMed

    Hayward, Jeremy; Horton, Thomas R

    2014-10-01

    Ecological interactions are frequently conserved across evolutionary time. In the case of mutualisms, these conserved interactions may play a large role in structuring mutualist communities. We hypothesized that phylogenetic trait conservation could play a key role in determining patterns of association in the ectomycorrhizal symbiosis, a globally important trophic mutualism. We used the association between members of the pantropical plant tribe Pisonieae and its fungal mutualist partners as a model system to test the prediction that Pisonieae-associating ectomycorrhizal fungi will be more closely related than expected by chance, reflecting a conserved trait. We tested this prediction using previously published and newly generated sequences in a Bayesian framework incorporating phylogenetic uncertainty. We report that phylogenetic trait conservation does exist in this association. We generated a five-marker phylogeny of members of the Pisonieae and used this phylogeny in a Bayesian relaxed molecular clock analysis. We established that the most recent common ancestors of Pisonieae species and Pisonieae-associating fungi sharing phylogenetic conservation of their patterns of ectomycorrhizal association occurred no more recently than 14.2 Ma. We therefore suggest that phylogenetic trait conservation in the Pisonieae ectomycorrhizal mutualism association represents an inherited syndrome which has existed for at least 14 Myr. PMID:25169622

  13. Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora).

    PubMed

    Yu, Li; Luan, Peng-Tao; Jin, Wei; Ryder, Oliver A; Chemnick, Leona G; Davis, Heidi A; Zhang, Ya-Ping

    2011-03-01

    The monophyletic group Caniformia (dog-like carnivores) in the order Carnivora comprises 9 families. Except for the general consensus for the earliest divergence of Canidae and the grouping of Procyonidae and Mustelidae, conflicting phylogenetic hypotheses exist for the other caniformian families. In the present study, a data set comprising > 22 kb of 22 nuclear intron loci from 16 caniformian species is used to investigate the phylogenetic utility of nuclear introns in resolving the interfamilial relationships of Caniformia. Our phylogenetic analyses support Ailuridae as the sister taxon to a clade containing Procyonidae and Mustelidae, with Mephitinae being the sister taxon to all of them. The unresolved placements of Ursidae and Pinnipeds here emphasize a need to add more data and include more taxa to resolve this problem. The present study not only resolves some of the ambiguous relationships in Caniformia phylogeny but also shows that the noncoding nuclear markers can offer powerful complementary data for estimating the species tree. None of the newly developed introns here have previously been used for phylogeny reconstruction, thus increasing the spectrum of molecular markers available to mammalian systematics. Interestingly, all the newly developed intron data partitions exhibit intraindividual allele heterozygotes (IIAHs). There are 115 cases of IIAHs in total. The incorporation of IIAHs into phylogenetic analysis not only provides insights into the interfamilial relationships of Caniformia but also identifies two potential hybridization events occurred within Ursidae and Otariidae, respectively. Finally, the powers and pitfalls of phylogenetics using nuclear introns as markers are discussed in the context of Caniformia phylogeny.

  14. Phylogenetic relationships among subsurface microorganisms

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-01-01

    This report summarizes the progress made from 6/90--3/91 toward completion of our project, Phylogenetic Relationships among subsurface microorganisms. 16S rRNA was sequenced, and based on the sequence the SMCC isolates were assigned to preliminary groups. Microorganisms were obtained at various depths at the Savannah River Site, including the Surface (0 m), Congaree (91 m), and Middendorf (244 m, 259 m, 265 m). Sequence data from four isolates from the Congaree formation indicate these microorganisms can be divided into Pseudomonas spp. or Acinetobacter spp. Three 16S rRNA probes were synthesized based on sequence data. The synthesized probes were tested through in situ hybridization. Optimal conditions for in situ hybridization were determined. Because stability of RNA-DNA hybrids is dependent on hybridization stringency, related organisms can be differentiated using a single probe under different strigencies. The results of these hybridizations agree with results obtained by Balkwill and Reeves using restriction fragment length polymorphism analysis. The RNA content of a cell reflects its metabolic state. Cells which are starved for four days are not detectable with the homologous 16S rRNA probe. However, within 15 minutes of refeeding, detectable rRNA appeared. This suggests that organisms which are undetectable in environmental samples due to starvation may be detectable after addition of nutrients. Stepwise addition of specific nutrients could indicate which nutrients are rate limiting for growth. Preliminary experiments with soil samples from the Hanford Site indicate indigenous microorganisms can be detected by oligionucleotide probes. Further, using multiple probes based on universal sequences increases the number of organisms detected. Double label experiments, using a rhodamine-labelled oligionucleotide probe with free coumarin succinimidyl ester will allow simultaneous detection of total bacteria and specific 16S rRNA containing bacteria. 4 tabs. (MHB)

  15. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    SciTech Connect

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey; Sogin, Mitchell L.

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  16. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA.

    PubMed

    Medina, M; Collins, A G; Silberman, J D; Sogin, M L

    2001-08-14

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  17. Phylogenetic exploration of commonly used medicinal plants in South Africa.

    PubMed

    Yessoufou, Kowiyou; Daru, Barnabas H; Muasya, Abraham Muthama

    2015-03-01

    The rapid growth rate of human population, along with the public health crisis encountered in many regions, particularly in developing world, creates an urgent need for the discovery of alternative drugs. Because medicinal plants are not distributed randomly across lineages, it has been suggested that phylogeny along with traditional knowledge of plant uses can guide the identification of new medicinally useful plants. In this study, we combined different statistical approaches to test for phylogenetic signal in 33 categories of plant uses in South Africa. Depending on the null models considered, we found evidence for signal in up to 45% of plant use categories, indicating the need for multiple tests combination to maximize the chance of discovering new medicinal plants when applying a phylogenetic comparative approach. Furthermore, although there was no signal in the diversity of medicinal uses-that is, total number of medicinal uses recorded for each plant-our results indicate that taxa that are evolutionarily closely related have significantly more uses than those that are evolutionarily isolated. Our study therefore provides additional support to the body of the literature that advocates for the inclusion of phylogeny in bioscreening medicinal flora for the discovery of alternative medicines.

  18. On Tree-Based Phylogenetic Networks.

    PubMed

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  19. Molecular Phylogenetics: Mathematical Framework and Unsolved Problems

    NASA Astrophysics Data System (ADS)

    Xia, Xuhua

    Phylogenetic relationship is essential in dating evolutionary events, reconstructing ancestral genes, predicting sites that are important to natural selection, and, ultimately, understanding genomic evolution. Three categories of phylogenetic methods are currently used: the distance-based, the maximum parsimony, and the maximum likelihood method. Here, I present the mathematical framework of these methods and their rationales, provide computational details for each of them, illustrate analytically and numerically the potential biases inherent in these methods, and outline computational challenges and unresolved problems. This is followed by a brief discussion of the Bayesian approach that has been recently used in molecular phylogenetics.

  20. Classic Bernoulli’s principle derivation and its working hypotheses

    NASA Astrophysics Data System (ADS)

    Marciotto, Edson R.

    2016-07-01

    The Bernoulli’s principle states that the quantity p+ρ gz+ρ {{v}2}/2 must be conserved in a streamtube if some conditions are matched, namely: steady and irrotational flow of an inviscid and incompressible fluid. In most physics textbooks this result is demonstrated invoking the energy conservation of a fluid material volume at two different positions of a pipe whose cross-section and height vary along its way. Although the final result is correct the right justifications presented in textbooks are usually unclear or absent. The main problem rests on the work done by pressure, which are not found to be fully justified via free-body diagrams as depicted in many general physics textbooks, not to mention plenty of videos on YouTube that incur in similar omissions. In this article I will discuss this issue and how it is solved without resorting to alternative demonstrations. In addition, I discuss the needs of the assumptions to get the Bernoulli’s principle in a way viable to introductory physics courses.

  1. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage

    PubMed Central

    Pearman, Peter B; Lavergne, Sébastien; Roquet, Cristina; Wüest, Rafael; Zimmermann, Niklaus E; Thuiller, Wilfried

    2014-01-01

    Aim The origins of ecological diversity in continental species assemblages have long intrigued biogeographers. We apply phylogenetic comparative analyses to disentangle the evolutionary patterns of ecological niches in an assemblage of European birds. We compare phylogenetic patterns in trophic, habitat and climatic niche components. Location Europe. Methods From polygon range maps and handbook data we inferred the realized climatic, habitat and trophic niches of 405 species of breeding birds in Europe. We fitted Pagel's lambda and kappa statistics, and conducted analyses of disparity through time to compare temporal patterns of ecological diversification on all niche axes together. All observed patterns were compared with expectations based on neutral (Brownian) models of niche divergence. Results In this assemblage, patterns of phylogenetic signal (lambda) suggest that related species resemble each other less in regard to their climatic and habitat niches than they do in their trophic niche. Kappa estimates show that ecological divergence does not gradually increase with divergence time, and that this punctualism is stronger in climatic niches than in habitat and trophic niches. Observed niche disparity markedly exceeds levels expected from a Brownian model of ecological diversification, thus providing no evidence for past phylogenetic niche conservatism in these multivariate niches. Levels of multivariate disparity are greatest for the climatic niche, followed by disparity of the habitat and the trophic niches. Main conclusions Phylogenetic patterns in the three niche components differ within this avian assemblage. Variation in evolutionary rates (degree of gradualism, constancy through the tree) and/or non-random macroecological sampling probably lead here to differences in the phylogenetic structure of niche components. Testing hypotheses on the origin of these patterns requires more complete phylogenetic trees of the birds, and extended ecological data on

  2. The triple risk hypotheses in sudden infant death syndrome.

    PubMed

    Guntheroth, Warren G; Spiers, Philip S

    2002-11-01

    Sudden infant death syndrome (SIDS) victims were regarded as normal as a matter of definition (Beckwith 1970) until 1952 when Kinney and colleagues argued for elimination of the clause, "unexpected by history." They argued that "not all SIDS victims were normal," and referred to their hypothesis that SIDS results from brain abnormalities, which they postulated "to originate in utero and lead to sudden death during a vulnerable postnatal period." Bergman (1970) argued that SIDS did not depend on any "single characteristic that ordains a infant for death," but on an interaction of risk factors with variable probabilities. Wedgwood (1972) agreed and grouped risk factors into the first "triple risk hypothesis" consisting of general vulnerability, age-specific risks, and precipitating factors. Raring (1975), based on a bell-shaped curve of age of death (log-transformed), concluded that SIDS was a random process with multifactorial causation. Rognum and Saugstad (1993) developed a "fatal triangle" in 1993, with groupings similar to those of Wedgwood, but included mucosal immunity under a vulnerable developmental stage of the infant. Filiano and Kinney (1994) presented the best known triple risk hypothesis and emphasized prenatal injury of the brainstem. They added a qualifier, "in at least a subset of SIDS," but, the National Institute of Child Health and Development SIDS Strategic Plan 2000, quoting Kinney's work, states unequivocally that "SIDS is a developmental disorder. Its origins are during fetal development." Except for the emphasis on prenatal origin, all 3 triple risk hypotheses are similar. Interest in the brainstem of SIDS victims began with Naeye's 1976 report of astrogliosis in 50% of all victims. He concluded that these changes were caused by hypoxia and were not the cause of SIDS. He noted an absence of astrogliosis in some older SIDS victims, compatible with a single, terminal episode of hypoxia without previous hypoxic episodes, prenatal or postnatal

  3. Do Job Demands of Chinese Manufacturing Employees Predict Positive or Negative Outcomes? A Test of Competing Hypotheses.

    PubMed

    Cheung, Janelle H; Sinclair, Robert R; Shi, Junqi; Wang, Mo

    2015-12-01

    Karasek's job demands-control (JDC) model posits that job control can buffer against the harmful effects of demands experienced by employees. A large volume of JDC research has obtained support for the main effects of demands and control, but not the interactive effects. Recent research on the challenge-hindrance stressors framework, however, found that work stressors may not always be deleterious, suggesting alternative hypotheses about the effects of demands and control. The present study therefore examined competing hypotheses concerning the effects of job demands on occupational health outcomes. Using a sample of 316 employees in a Chinese manufacturing company, we found that, consistent with the challenge-hindrance framework, production demands were challenge stressors associated with favourable outcomes (i.e. job satisfaction and psychological well-being). In addition, results showed that the interactive role of job control depended on the nature of outcome variables. Future recommendations and implications of findings are discussed.

  4. A multiple hypotheses uncertainty analysis in hydrological modelling: about model structure, landscape parameterization, and numerical integration

    NASA Astrophysics Data System (ADS)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2016-04-01

    Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.

  5. Use of mammal manure by nesting burrowing owls: a test of four functional hypotheses

    USGS Publications Warehouse

    Smith, M.D.; Conway, C.J.

    2007-01-01

    Animals have evolved an impressive array of behavioural traits to avoid depredation. Olfactory camouflage of conspicuous odours is a strategy to avoid depredation that has been implicated only in a few species of birds. Burrowing owls, Athene cunicularia, routinely collect dried manure from mammals and scatter it in their nest chamber, in the tunnel leading to their nest and at the entrance to their nesting burrow. This unusual behaviour was thought to reduce nest depredation by concealing the scent of adults and juveniles, but a recent study suggests that manure functions to attract arthropod prey. However, burrowing owls routinely scatter other materials in the same way that they scatter manure, and this fact seems to be at odds with both of these hypotheses. Thus, we examined the function of this behaviour by testing four alternative hypotheses. We found no support for the widely cited olfactory-camouflage hypothesis (manure did not lower the probability of depredation), or for the mate-attraction hypothesis (males collected manure after, not before, pair formation). Predictions of the burrow-occupied hypothesis (manure indicates occupancy to conspecifics and thereby reduces agonistic interactions) were supported, but results were not statistically significant. Our results also supported several predictions of the prey-attraction hypothesis. Pitfall traps at sampling sites with manure collected more arthropod biomass (of taxa common in the diet of burrowing owls) than pitfall traps at sampling sites without manure. Scattering behaviour of burrowing owls appears to function to attract arthropod prey, but may also signal occupancy of a burrow to conspecifics. ?? 2006 The Association for the Study of Animal Behaviour.

  6. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    changed dramatically. With very large data sets and high throughput sampling, phylogenetic questions can be addressed without prior knowledge of morphological characters. Nevertheless, molecular studies have not lead to the great breakthrough in beetle systematics--yet. Especially the phylogeny of the extremely species rich suborder Polyphaga remains incompletely resolved. Coordinated efforts of molecular workers and of morphologists using innovative techniques may lead to more profound insights in the near future. The final aim is to develop a well-founded phylogeny, which truly reflects the evolution of this immensely species rich group of organisms. PMID:19760277

  7. Phylogenetic mixture models for proteins.

    PubMed

    Le, Si Quang; Lartillot, Nicolas; Gascuel, Olivier

    2008-12-27

    Standard protein substitution models use a single amino acid replacement rate matrix that summarizes the biological, chemical and physical properties of amino acids. However, site evolution is highly heterogeneous and depends on many factors: genetic code; solvent exposure; secondary and tertiary structure; protein function; etc. These impact the substitution pattern and, in most cases, a single replacement matrix is not enough to represent all the complexity of the evolutionary processes. This paper explores in maximum-likelihood framework phylogenetic mixture models that combine several amino acid replacement matrices to better fit protein evolution.We learn these mixture models from a large alignment database extracted from HSSP, and test the performance using independent alignments from TREEBASE.We compare unsupervised learning approaches, where the site categories are unknown, to supervised ones, where in estimations we use the known category of each site, based on its exposure or its secondary structure. All our models are combined with gamma-distributed rates across sites. Results show that highly significant likelihood gains are obtained when using mixture models compared with the best available single replacement matrices. Mixtures of matrices also improve over mixtures of profiles in the manner of the CAT model. The unsupervised approach tends to be better than the supervised one, but it appears difficult to implement and highly sensitive to the starting values of the parameters, meaning that the supervised approach is still of interest for initialization and model comparison. Using an unsupervised model involving three matrices, the average AIC gain per site with TREEBASE test alignments is 0.31, 0.49 and 0.61 compared with LG (named after Le & Gascuel 2008 Mol. Biol. Evol. 25, 1307-1320), WAG and JTT, respectively. This three-matrix model is significantly better than LG for 34 alignments (among 57), and significantly worse for 1 alignment only. Moreover

  8. Charles Darwin, beetles and phylogenetics

    NASA Astrophysics Data System (ADS)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    . This has changed dramatically. With very large data sets and high throughput sampling, phylogenetic questions can be addressed without prior knowledge of morphological characters. Nevertheless, molecular studies have not lead to the great breakthrough in beetle systematics—yet. Especially the phylogeny of the extremely species rich suborder Polyphaga remains incompletely resolved. Coordinated efforts of molecular workers and of morphologists using innovative techniques may lead to more profound insights in the near future. The final aim is to develop a well-founded phylogeny, which truly reflects the evolution of this immensely species rich group of organisms.

  9. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    changed dramatically. With very large data sets and high throughput sampling, phylogenetic questions can be addressed without prior knowledge of morphological characters. Nevertheless, molecular studies have not lead to the great breakthrough in beetle systematics--yet. Especially the phylogeny of the extremely species rich suborder Polyphaga remains incompletely resolved. Coordinated efforts of molecular workers and of morphologists using innovative techniques may lead to more profound insights in the near future. The final aim is to develop a well-founded phylogeny, which truly reflects the evolution of this immensely species rich group of organisms.

  10. Alternative Schools.

    ERIC Educational Resources Information Center

    Pritchett, Stanley; Kimsey, Steve

    2002-01-01

    Describes the design of the DeKalb Alternative School in Atlanta, Georgia, located in a renovated shopping center. Purchasing commercial land and renovating the existing building saved the school system time and money. (EV)

  11. Phylogenetic approaches to natural product structure prediction.

    PubMed

    Ziemert, Nadine; Jensen, Paul R

    2012-01-01

    Phylogenetics is the study of the evolutionary relatedness among groups of organisms. Molecular phylogenetics uses sequence data to infer these relationships for both organisms and the genes they maintain. With the large amount of publicly available sequence data, phylogenetic inference has become increasingly important in all fields of biology. In the case of natural product research, phylogenetic relationships are proving to be highly informative in terms of delineating the architecture and function of the genes involved in secondary metabolite biosynthesis. Polyketide synthases and nonribosomal peptide synthetases provide model examples in which individual domain phylogenies display different predictive capacities, resolving features ranging from substrate specificity to structural motifs associated with the final metabolic product. This chapter provides examples in which phylogeny has proven effective in terms of predicting functional or structural aspects of secondary metabolism. The basics of how to build a reliable phylogenetic tree are explained along with information about programs and tools that can be used for this purpose. Furthermore, it introduces the Natural Product Domain Seeker, a recently developed Web tool that employs phylogenetic logic to classify ketosynthase and condensation domains based on established enzyme architecture and biochemical function.

  12. Phylogenetic Inference From Conserved sites Alignments

    SciTech Connect

    grundy, W.N.; Naylor, G.J.P.

    1999-08-15

    Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements.

  13. Phylogenetic niche conservatism in C4 grasses.

    PubMed

    Liu, Hui; Edwards, Erika J; Freckleton, Robert P; Osborne, Colin P

    2012-11-01

    Photosynthetic pathway is used widely to discriminate plant functional types in studies of global change. However, independent evolutionary lineages of C(4) grasses with different variants of C(4) photosynthesis show different biogeographical relationships with mean annual precipitation, suggesting phylogenetic niche conservatism (PNC). To investigate how phylogeny and photosynthetic type differentiate C(4) grasses, we compiled a dataset of morphological and habitat information of 185 genera belonging to two monophyletic subfamilies, Chloridoideae and Panicoideae, which together account for 90 % of the world's C(4) grass species. We evaluated evolutionary variance and covariance of morphological and habitat traits. Strong phylogenetic signals were found in both morphological and habitat traits, arising mainly from the divergence of the two subfamilies. Genera in Chloridoideae had significantly smaller culm heights, leaf widths, 1,000-seed weights and stomata; they also appeared more in dry, open or saline habitats than those of Panicoideae. Controlling for phylogenetic structure showed significant covariation among morphological traits, supporting the hypothesis of phylogenetically independent scaling effects. However, associations between morphological and habitat traits showed limited phylogenetic covariance. Subfamily was a better explanation than photosynthetic type for the variance in most morphological traits. Morphology, habitat water availability, shading, and productivity are therefore all involved in the PNC of C(4) grass lineages. This study emphasized the importance of phylogenetic history in the ecology and biogeography of C(4) grasses, suggesting that divergent lineages need to be considered to fully understand the impacts of global change on plant distributions. PMID:22569558

  14. Many-core algorithms for statistical phylogenetics

    PubMed Central

    Suchard, Marc A.; Rambaut, Andrew

    2009-01-01

    Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a >140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes. Availability and implementation: Source code provided in BEAGLE: Broad-platform Evolutionary Analysis General Likelihood Evaluator, a cross-platform/processor library for phylogenetic likelihood computation (http://beagle-lib.googlecode.com/). We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (http://beast.bio.ed.ac.uk/). Contact: msuchard@ucla.edu; a.rambaut@ed.ac.uk PMID:19369496

  15. Phylogenetic clustering and overdispersion in bacterial communities.

    PubMed

    Horner-Devine, M Claire; Bohannan, Brendan J M

    2006-07-01

    Very little is known about the structure of microbial communities, despite their abundance and importance to ecosystem processes. Recent work suggests that bacterial biodiversity might exhibit patterns similar to those of plants and animals. However, relative to our knowledge about the diversity of macro-organisms, we know little about patterns of relatedness in free-living bacterial communities, and relatively few studies have quantitatively examined community structure in a phylogenetic framework. Here we apply phylogenetic tools to bacterial diversity data to determine whether bacterial communities are phylogenetically structured. We find that bacterial communities tend to contain lower taxonomic diversity and are more likely to be phylogenetically clustered than expected by chance. Such phylogenetic clustering may indicate the importance of habitat filtering (where a group of closely related species shares a trait, or suite of traits, that allow them to persist in a given habitat) in the assembly of bacterial communities. Microbial communities are especially accessible for phylogenetic analysis and thus have the potential to figure prominently in the integration of evolutionary biology and community ecology.

  16. Maximizing the phylogenetic diversity of seed banks.

    PubMed

    Griffiths, Kate E; Balding, Sharon T; Dickie, John B; Lewis, Gwilym P; Pearce, Tim R; Grenyer, Richard

    2015-04-01

    Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected-area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus-level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less-than-optimal phylogenetic diversity and prioritization of range-restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections.

  17. Phylogenetic structure in tropical hummingbird communities

    PubMed Central

    Graham, Catherine H.; Parra, Juan L.; Rahbek, Carsten; McGuire, Jimmy A.

    2009-01-01

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight into the potential underlying mechanisms that have shaped community composition and phylogenetic diversity in one of the most species-rich, complex regions of the world. PMID:19805042

  18. Maximizing the phylogenetic diversity of seed banks.

    PubMed

    Griffiths, Kate E; Balding, Sharon T; Dickie, John B; Lewis, Gwilym P; Pearce, Tim R; Grenyer, Richard

    2015-04-01

    Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected-area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus-level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less-than-optimal phylogenetic diversity and prioritization of range-restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections. PMID:25196170

  19. Phylogenetic analysis of anthropoid relationships.

    PubMed

    Ross, C; Williams, B; Kay, R F

    1998-09-01

    The relationships of anthropoids to other primates are currently debated, as are the relationships among early fossil anthropoids and crown anthropoids. To resolve these issues, data on 291 morphological characters were collected for 57 taxa of living and fossil primates and analyzed using PAUP and MacClade. The dental evidence provides weak support for the notion of an adapid origin for anthropoids, the cranial evidence supports the tarsier-anthropoid hypothesis, and the postcranial evidence supports a monophyletic Prosimii and a monophyletic Anthropoidea. Combining these data into a single data set produces almost universal support for a tarsier-anthropoid clade nested within omomyids. Eosimias and Afrotarsius are certainly members of this clade, and probably basal anthropoids, although the Shanghuang petrosal may not belong to Eosimias. The tree derived from the combined data set resembles the tree derived from the cranial data set rather than the larger dental data set. This may be attributable to relatively slower evolution in the cranial characters. The combined data set shows Anthropoidea to be monophyletic but the features traditionally held to be anthropoid synapomorphies are found to have evolved mosaically. Parapithecines are the sister taxon to crown anthropoids; qatraniines and oligopithecids are more distantly related sister taxa. There is support for a relationship of a Tarsius + Anthropoidea clade with either washakiines on Uintanius. These elements of tree topology remain fairly stable under different assumptions sets, but overall, tree topology is not robust. Previously divergent hypotheses regarding anthropoid relationships are attributable to the use of restricted data sets. This large data set enables the adapid-anthropoid hypothesis to be rejected, and unites Tarsius, Anthropoidea and Omomyiformes within a clade, Haplorhini. However, relationships among these three taxa cannot be convincingly resolved at present.

  20. Geographic variation in plant community structure of salt marshes: species, functional and phylogenetic perspectives.

    PubMed

    Guo, Hongyu; Chamberlain, Scott A; Elhaik, Eran; Jalli, Inder; Lynes, Alana-Rose; Marczak, Laurie; Sabath, Niv; Vargas, Amy; Więski, Kazimierz; Zelig, Emily M; Pennings, Steven C

    2015-01-01

    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in

  1. Geographic Variation in Plant Community Structure of Salt Marshes: Species, Functional and Phylogenetic Perspectives

    PubMed Central

    Guo, Hongyu; Chamberlain, Scott A.; Elhaik, Eran; Jalli, Inder; Lynes, Alana-Rose; Marczak, Laurie; Sabath, Niv; Vargas, Amy; Więski, Kazimierz; Zelig, Emily M.; Pennings, Steven C.

    2015-01-01

    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in

  2. Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology.

    PubMed

    Barr, W Andrew

    2014-11-01

    Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat-specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed-habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced "spline-and-groove" morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size-correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat-specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study

  3. Bayesian Evaluation of Inequality and Equality Constrained Hypotheses for Contingency Tables

    ERIC Educational Resources Information Center

    Klugkist, Irene; Laudy, Olav; Hoijtink, Herbert

    2010-01-01

    In this article, a Bayesian model selection approach is introduced that can select the best of a set of inequality and equality constrained hypotheses for contingency tables. The hypotheses are presented in terms of cell probabilities allowing researchers to test (in)equality constrained hypotheses in a format that is directly related to the data.…

  4. Learning about Bones at a Science Museum: Examining the Alternate Hypotheses of Ceiling Effect and Prior Knowledge

    ERIC Educational Resources Information Center

    Judson, Eugene

    2012-01-01

    Groups of children at a science museum were pre- and post-assessed with a type of concept map, known as personal meaning maps, to determine what new understandings, if any, they were gaining from participation in a series of structured hands-on activities about bones and the process of bones healing. Close examination was made regarding whether…

  5. Computational Modeling to Evaluate Alternative Hypotheses for the Linkage of Aromatase Inhibition to Vitellogenin Levels in Fathead Minnows

    EPA Science Inventory

    Aromatase converts testosterone to estradiol (E2). In fish, E2 concentrations control hepatic synthesis of the glycolipoprotein vitellogenin (VTG), an egg yolk precursor protein essential to oocyte development and larval survival. Fathead minnows were exposed to the aromatase in...

  6. Migrating Seals on Shifting Sands: Testing Alternate Hypotheses for Holocene Ecological and Cultural Change on the California Coast

    NASA Astrophysics Data System (ADS)

    Koch, P. L.; Newsome, S. D.; Gifford-Gonzalez, D.

    2001-12-01

    The coast of California presented Holocene humans with a diverse set of ecosystems and geomorphic features, from large islands off a semi-desert mainland in the south, to a mix of sandy and rocky beaches abutting grassland and oak forest in central California, to a rocky coast hugged by dense coniferous forest in the north. Theories explaining trends in human resource use, settlement patterns, and demography are equally diverse, but can be categorized as 1) driven by diffusion of technological innovations from outside the region, 2) driven by population growth leading to more intensive extraction of resources, or 3) driven by climatic factors that affect the resource base. With respect to climatic shifts, attention has focused on a possible regime shift ca. 5500 BP, following peak Holocene warming, and on evidence for massive droughts and a drop in marine productivity ca. 1000 BP. While evidence for a coincidence between climatic, cultural, and ecological change is present, albeit complex, in southern California, similar data are largely lacking from central and northern California. We are using isotopic and archaeofaunal analysis to test ideas for ecological and cultural change in central California. Three features of the archaeological record are relevant. First, overall use of marine resources by coastal communities declined after 1000 BP. Second, northern fur seals, which are common in earlier sites, drop in abundance relative to remaining marine animals. We have previously established that Holocene humans in central California were hunting gregariously-breeding northern fur seals from mainland rookeries. These seals breed exclusively on offshore islands today, typically at high latitudes. Their restriction to these isolated sites today may be a response to human overexploitation of their mainland rookeries prehistorically. Finally, collection of oxygen and carbon isotope data from mussels at the archaeological sites, while still in a preliminary phase, has uncovered no evidence for a conspicuous change in near shore marine temperature or productivity coincident with the loss of fur seals and the shift to use of terrestrial resources.

  7. Probabilistic Graphical Model Representation in Phylogenetics

    PubMed Central

    Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.

    2014-01-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559

  8. [Alternative medicine].

    PubMed

    Mitello, L

    2001-01-01

    In a critical situation of world official medicine, we can find different alternatives therapies: natural therapy traditional and complementary, survival sometimes, of antique stiles and conditions of life. New sciences presented for them empiricism to the margin of official science. Doctors and sorcerer do the best to defeat the horrible virus that contribute to build symbols categories of sick. The alternatives put dangerously in game the scientific myth of experiment and exhume, if they got lost, antique remedy, almost preserved like cultural wreck very efficient where the medicine is impotent. Besides alternatives and complementary therapies, that are remedies not recognized conventional from official medicine, there are the homeopathic, phytotherapy, pranotherapy, nutritional therapy, the ayurveda, the yoga, ecc. Italians and internationals research show a composite picture of persons that apply that therapies. Object of this work is to understand and know the way that sick lighten their sufferings and role that have o that can assume the nurses to assist this sick. PMID:12146072

  9. Cosmic alternatives?

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  10. Historical biogeography and speciation in the neotropical highlands: molecular phylogenetics of the jay genus Cyanolyca.

    PubMed

    Bonaccorso, Elisa

    2009-03-01

    Phylogenetic relationships were studied in the genus Cyanolyca, an assemblage of jays distributed from Mexico south to Bolivia. Given its fragmented distribution along the humid forests of the Neotropics, the genus Cyanolyca is a model group for exploring hypotheses on biogeography and speciation. Phylogenetic analyses were based on two mitochondrial and three nuclear loci; taxon sampling includes all species in the genus and most subspecies. Maximum parsimony, maximum likelihood, and Bayesian analyses produced trees that were congruent and highly robust at both terminal and deep nodes of the phylogeny. Cyanolyca comprises two major clades: one contains the Mesoamerican "dwarf" jays, and the other consists of two main groups--C. cucullata+C. pulchra and the "core" South American species. Prior hypotheses of relationships were explored statistically using Maximum Likelihood and Bayesian approaches. Dispersal-Vicariance analysis revealed the importance of the Northern Andes as a major center for biological diversification, and the effects of dispersal across the Panamanian Land Bridge in the composition of South American and Mesoamerican avifaunas. Phylogenetic patterns are highly congruent with an allopatric mode of speciation. Implications of these results are discussed in the context of the biogeography of Neotropical montane forests.

  11. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads.

    PubMed

    Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G

    2009-02-01

    The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs

  12. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads.

    PubMed

    Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G

    2009-02-01

    The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs

  13. Genomic Repeat Abundances Contain Phylogenetic Signal

    PubMed Central

    Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  14. Prioritizing populations for conservation using phylogenetic networks.

    PubMed

    Volkmann, Logan; Martyn, Iain; Moulton, Vincent; Spillner, Andreas; Mooers, Arne O

    2014-01-01

    In the face of inevitable future losses to biodiversity, ranking species by conservation priority seems more than prudent. Setting conservation priorities within species (i.e., at the population level) may be critical as species ranges become fragmented and connectivity declines. However, existing approaches to prioritization (e.g., scoring organisms by their expected genetic contribution) are based on phylogenetic trees, which may be poor representations of differentiation below the species level. In this paper we extend evolutionary isolation indices used in conservation planning from phylogenetic trees to phylogenetic networks. Such networks better represent population differentiation, and our extension allows populations to be ranked in order of their expected contribution to the set. We illustrate the approach using data from two imperiled species: the spotted owl Strix occidentalis in North America and the mountain pygmy-possum Burramys parvus in Australia. Using previously published mitochondrial and microsatellite data, we construct phylogenetic networks and score each population by its relative genetic distinctiveness. In both cases, our phylogenetic networks capture the geographic structure of each species: geographically peripheral populations harbor less-redundant genetic information, increasing their conservation rankings. We note that our approach can be used with all conservation-relevant distances (e.g., those based on whole-genome, ecological, or adaptive variation) and suggest it be added to the assortment of tools available to wildlife managers for allocating effort among threatened populations. PMID:24586451

  15. Worldwide phylogenetic relationship of avian poxviruses

    USGS Publications Warehouse

    Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  16. Genomic repeat abundances contain phylogenetic signal.

    PubMed

    Dodsworth, Steven; Chase, Mark W; Kelly, Laura J; Leitch, Ilia J; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.

  17. Worldwide Phylogenetic Relationship of Avian Poxviruses

    PubMed Central

    Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635

  18. Prioritizing Populations for Conservation Using Phylogenetic Networks

    PubMed Central

    Volkmann, Logan; Martyn, Iain; Moulton, Vincent; Spillner, Andreas; Mooers, Arne O.

    2014-01-01

    In the face of inevitable future losses to biodiversity, ranking species by conservation priority seems more than prudent. Setting conservation priorities within species (i.e., at the population level) may be critical as species ranges become fragmented and connectivity declines. However, existing approaches to prioritization (e.g., scoring organisms by their expected genetic contribution) are based on phylogenetic trees, which may be poor representations of differentiation below the species level. In this paper we extend evolutionary isolation indices used in conservation planning from phylogenetic trees to phylogenetic networks. Such networks better represent population differentiation, and our extension allows populations to be ranked in order of their expected contribution to the set. We illustrate the approach using data from two imperiled species: the spotted owl Strix occidentalis in North America and the mountain pygmy-possum Burramys parvus in Australia. Using previously published mitochondrial and microsatellite data, we construct phylogenetic networks and score each population by its relative genetic distinctiveness. In both cases, our phylogenetic networks capture the geographic structure of each species: geographically peripheral populations harbor less-redundant genetic information, increasing their conservation rankings. We note that our approach can be used with all conservation-relevant distances (e.g., those based on whole-genome, ecological, or adaptive variation) and suggest it be added to the assortment of tools available to wildlife managers for allocating effort among threatened populations. PMID:24586451

  19. Teaching Molecular Phylogenetics through Investigating a Real-World Phylogenetic Problem

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2012-01-01

    A phylogenetics exercise is incorporated into the "Introduction to biocomputing" course, a junior-level course at Savannah State University. This exercise is designed to help students learn important concepts and practical skills in molecular phylogenetics through solving a real-world problem. In this application, students are required to identify…

  20. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data

    PubMed Central

    Tang, Cuong Q; Humphreys, Aelys M; Fontaneto, Diego; Barraclough, Timothy G; Paradis, Emmanuel

    2014-01-01

    Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The generalised mixed Yule coalescent (GMYC) and the Poisson tree process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. Here, we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2000 separate species delimitation analyses across 16 empirical data sets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses. PMID:25821577

  1. Millimeter-scale patterns of phylogenetic and trait diversity in a salt marsh microbial mat.

    PubMed

    Armitage, David W; Gallagher, Kimberley L; Youngblut, Nicholas D; Buckley, Daniel H; Zinder, Stephen H

    2012-01-01

    Intertidal microbial mats are comprised of distinctly colored millimeter-thick layers whose communities organize in response to environmental gradients such as light availability, oxygen/sulfur concentrations, and redox potential. Here, slight changes in depth correspond to sharp niche boundaries. We explore the patterns of biodiversity along this depth gradient as it relates to functional groups of bacteria, as well as trait-encoding genes. We used molecular techniques to determine how the mat's layers differed from one another with respect to taxonomic, phylogenetic, and trait diversity, and used these metrics to assess potential drivers of community assembly. We used a range of null models to compute the degree of phylogenetic and functional dispersion for each layer. The SSU-rRNA reads were dominated by Cyanobacteria and Chromatiales, but contained a high taxonomic diversity. The composition of each mat core was significantly different for developmental stage, year, and layer. Phylogenetic richness and evenness positively covaried with depth, and trait richness tended to decrease with depth. We found evidence for significant phylogenetic clustering for all bacteria below the surface layer, supporting the role of habitat filtering in the assembly of mat layers. However, this signal disappeared when the phylogenetic dispersion of particular functional groups, such as oxygenic phototrophs, was measured. Overall, trait diversity measured by orthologous genes was also lower than would be expected by chance, except for genes related to photosynthesis in the topmost layer. Additionally, we show how the choice of taxa pools, null models, spatial scale, and phylogenies can impact our ability to test hypotheses pertaining to community assembly. Our results demonstrate that given the appropriate physiochemical conditions, strong phylogenetic, and trait variation, as well as habitat filtering, can occur at the millimeter-scale.

  2. Millimeter-Scale Patterns of Phylogenetic and Trait Diversity in a Salt Marsh Microbial Mat

    PubMed Central

    Armitage, David W.; Gallagher, Kimberley L.; Youngblut, Nicholas D.; Buckley, Daniel H.; Zinder, Stephen H.

    2012-01-01

    Intertidal microbial mats are comprised of distinctly colored millimeter-thick layers whose communities organize in response to environmental gradients such as light availability, oxygen/sulfur concentrations, and redox potential. Here, slight changes in depth correspond to sharp niche boundaries. We explore the patterns of biodiversity along this depth gradient as it relates to functional groups of bacteria, as well as trait-encoding genes. We used molecular techniques to determine how the mat’s layers differed from one another with respect to taxonomic, phylogenetic, and trait diversity, and used these metrics to assess potential drivers of community assembly. We used a range of null models to compute the degree of phylogenetic and functional dispersion for each layer. The SSU-rRNA reads were dominated by Cyanobacteria and Chromatiales, but contained a high taxonomic diversity. The composition of each mat core was significantly different for developmental stage, year, and layer. Phylogenetic richness and evenness positively covaried with depth, and trait richness tended to decrease with depth. We found evidence for significant phylogenetic clustering for all bacteria below the surface layer, supporting the role of habitat filtering in the assembly of mat layers. However, this signal disappeared when the phylogenetic dispersion of particular functional groups, such as oxygenic phototrophs, was measured. Overall, trait diversity measured by orthologous genes was also lower than would be expected by chance, except for genes related to photosynthesis in the topmost layer. Additionally, we show how the choice of taxa pools, null models, spatial scale, and phylogenies can impact our ability to test hypotheses pertaining to community assembly. Our results demonstrate that given the appropriate physiochemical conditions, strong phylogenetic, and trait variation, as well as habitat filtering, can occur at the millimeter-scale. PMID:22908010

  3. Conservation priority of global Galliformes species based on phylogenetic diversity.

    PubMed

    Chen, Youhua

    2014-06-01

    In this study, based on phylogenetic diversity (PD), I develop a conservation strategy for Galliformes species around the world. A cladogram of 197 Galliformes species derived from a previous study was used for calculating PD metrics. Branch length is an important aspect of the phylogenetic information a tree can convey, but 2 traditionally-used metrics, the number of phylogenetic groups to which a taxon belongs (I) and the proportion that each taxon contributes to the total diversity of the group (W), are fully node-based and do not take branch length into account. Therefore, to measure PD more appropriately, I combined a branch-related metric, pendant edge (P), in addition to I and W. A final combined rank for Galliformes species was obtained by summing the ranks of the 3 metrics. My results showed that the 5% top priority species for conserving evolutionary potential were Galloperdix lunulata, Haematortyx sanguiniceps, Margaroperdix madagarensis, Syrmaticus soemmerringii, Coturnix pectoralis, Polyplectron napoleonis, Alectoris melanocephala, Xenoperdix udzungwensis, Afropavo congensis and Syrmaticus reevesii. The current species priority ranking based on pylogenetic diversity and the official International Union for Conservation of Nature (IUCN) ranking of Galliformes species was significantly correlated when considering the 5 categories of IUCN (critical endangered, endangered, vulnerable, near threatened and least concern). This indicated the feasibility of introducing the PD index into the network of IUCN regional Red List assessment. The 5% top priority countries selected using the complementarity principle possessing diversified Galliformes genetic resources were China, Indonesia, Mexico, India, Colombia, Australia, Brazil, Angola, Congo and Japan (in descending order). China, Indonesia, Mexico, Brazil, India and Colombia are consistently selected among the 4 top priority sets of richness, rarity, endemicity and PD. This result indicated that the priority

  4. Alternative Conceptualizations.

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; O'Reilly, Patricia, Ed.

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains five articles devoted to the topic of "Alternative Conceptualizations" of the foundations of education. In "The Concept of Place in the New Sociology of Education," Paul Theobald examines the notion of place in educational theory and practice. Janice Jipson and Nicholas Paley, in…

  5. Magnetostrictive Alternator

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger; Bruder, Geoffrey

    2013-01-01

    This innovation replaces the linear alternator presently used in Stirling engines with a continuous-gradient, impedance-matched, oscillating magnetostrictive transducer that eliminates all moving parts via compression, maintains high efficiency, costs less to manufacture, reduces mass, and eliminates the need for a bearing system. The key components of this new technology are the use of stacked magnetostrictive materials, such as Terfenol-D, under a biased magnetic and stress-induced compression, continuous-gradient impedance-matching material, coils, force-focusing metallic structure, and supports. The acoustic energy from the engine travels through an impedancematching layer that is physically connected to the magnetostrictive mass. Compression bolts keep the structure under compressive strain, allowing for the micron-scale compression of the magnetostrictive material and eliminating the need for bearings. The relatively large millimeter displacement of the pressure side of the impedance-matching material is reduced to micron motion, and undergoes stress amplification at the magnetostrictive interface. The alternating compression and expansion of the magnetostrictive material creates an alternating magnetic field that then induces an electric current in a coil that is wound around the stack. This produces electrical power from the acoustic pressure wave and, if the resonant frequency is tuned to match the engine, can replace the linear alternator that is commonly used.

  6. Alternative Thinking.

    ERIC Educational Resources Information Center

    Herman, Dan

    1999-01-01

    Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)

  7. Encoding phylogenetic trees in terms of weighted quartets.

    PubMed

    Grünewald, Stefan; Huber, Katharina T; Moulton, Vincent; Semple, Charles

    2008-04-01

    One of the main problems in phylogenetics is to develop systematic methods for constructing evolutionary or phylogenetic trees. For a set of species X, an edge-weighted phylogenetic X-tree or phylogenetic tree is a (graph theoretical) tree with leaf set X and no degree 2 vertices, together with a map assigning a non-negative length to each edge of the tree. Within phylogenetics, several methods have been proposed for constructing such trees that work by trying to piece together quartet trees on X, i.e. phylogenetic trees each having four leaves in X. Hence, it is of interest to characterise when a collection of quartet trees corresponds to a (unique) phylogenetic tree. Recently, Dress and Erdös provided such a characterisation for binary phylogenetic trees, that is, phylogenetic trees all of whose internal vertices have degree 3. Here we provide a new characterisation for arbitrary phylogenetic trees.

  8. Secondary aortoesophageal fistula after thoracic aortic aneurysm endovascular repair: literature review and new insights regarding the hypothesized mechanisms

    PubMed Central

    Xi, Er-Ping; Zhu, Jian; Zhu, Shui-Bo; Zhang, Yu

    2014-01-01

    Background: Endovascular aortic repair was first performed nearly two decades ago and has become a well-established alternative therapy for many thoracoabdominal aortic diseases. Early survival results with the endovascular aortic repair were impressive, but it also brought many complications. Aortoesophageal fistula is little-known and may be underestimated because it is an unusual complication of thoracic endovascular aortic repair. Objective: To provide a review of the general features of aortoesophageal fistula as a little-known complication after thoracic endovascular aortic repair and to present a new insight regarding the hypothesized mechanisms of this complication based on clinical experience. Methods: The new insights regarding the hypothesized mechanisms built on the literature review and clinical experience. Literature Review from PubMed and Web of Knowledge for relevant studies with English paper. Searches were performed without year, and used the combinations of the following key words: “thoracic aortic aneurysm”, “endovascular”, “aortoesophageal fistula”, “complication”. Results: The authors’ hypothesized mechanisms of aortoesophageal fistula after thoracic aortic aneurysm endovascular repair include the relatively thin vessel wall on thoracic aortic aneurysm hard to prevent the relatively rigid stent graft projecting the aortic and direct erosion into the esophagus. Conclusion: Selecting flexibility and appropriate size stent graft, avoiding the thin aortic wall, and identifying the risk factors may reduce the morbidity of complications with aortoesophageal fistula after thoracic aortic aneurysm endovascular repair. PMID:25419355

  9. Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss

    PubMed Central

    Pan, Xu; Berg, Matty P.; Butenschoen, Olaf; Murray, Phil J.; Bartish, Igor V.; Cornelissen, Johannes H. C.; Dong, Ming; Prinzing, Andreas

    2015-01-01

    Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability. PMID:25876845

  10. Morphological and molecular convergences in mammalian phylogenetics

    PubMed Central

    Zou, Zhengting; Zhang, Jianzhi

    2016-01-01

    Phylogenetic trees reconstructed from molecular sequences are often considered more reliable than those reconstructed from morphological characters, in part because convergent evolution, which confounds phylogenetic reconstruction, is believed to be rarer for molecular sequences than for morphologies. However, neither the validity of this belief nor its underlying cause is known. Here comparing thousands of characters of each type that have been used for inferring the phylogeny of mammals, we find that on average morphological characters indeed experience much more convergences than amino acid sites, but this disparity is explained by fewer states per character rather than an intrinsically higher susceptibility to convergence for morphologies than sequences. We show by computer simulation and actual data analysis that a simple method for identifying and removing convergence-prone characters improves phylogenetic accuracy, potentially enabling, when necessary, the inclusion of morphologies and hence fossils for reliable tree inference. PMID:27585543

  11. Morphological and molecular convergences in mammalian phylogenetics.

    PubMed

    Zou, Zhengting; Zhang, Jianzhi

    2016-01-01

    Phylogenetic trees reconstructed from molecular sequences are often considered more reliable than those reconstructed from morphological characters, in part because convergent evolution, which confounds phylogenetic reconstruction, is believed to be rarer for molecular sequences than for morphologies. However, neither the validity of this belief nor its underlying cause is known. Here comparing thousands of characters of each type that have been used for inferring the phylogeny of mammals, we find that on average morphological characters indeed experience much more convergences than amino acid sites, but this disparity is explained by fewer states per character rather than an intrinsically higher susceptibility to convergence for morphologies than sequences. We show by computer simulation and actual data analysis that a simple method for identifying and removing convergence-prone characters improves phylogenetic accuracy, potentially enabling, when necessary, the inclusion of morphologies and hence fossils for reliable tree inference. PMID:27585543

  12. Phylogenetic conservatism of extinctions in marine bivalves.

    PubMed

    Roy, Kaustuv; Hunt, Gene; Jablonski, David

    2009-08-01

    Evolutionary histories of species and lineages can influence their vulnerabilities to extinction, but the importance of this effect remains poorly explored for extinctions in the geologic past. When analyzed using a standardized taxonomy within a phylogenetic framework, extinction rates of marine bivalves estimated from the fossil record for the last approximately 200 million years show conservatism at multiple levels of evolutionary divergence, both within individual families and among related families. The strength of such phylogenetic clustering varies over time and is influenced by earlier extinction history, especially by the demise of volatile taxa in the end-Cretaceous mass extinction. Analyses of the evolutionary roles of ancient extinctions and predictive models of vulnerability of taxa to future natural and anthropogenic stressors should take phylogenetic relationships and extinction history into account.

  13. Phylogenetics of the laboratory rat Rattus norvegicus.

    PubMed

    Canzian, F

    1997-03-01

    A genealogic tree was constructed for inbred strains of the laboratory rat, including 63 strains and 214 of their substrains. Information on genetic and biochemical marker typings of these lines was collected from the literature and from the World Wide Web. Data on 995 polymorphisms were processed into a phylogenetic distance matrix, and a tree was obtained by the Fitch-Margoliash distance matrix method. The inbred strains of the laboratory rat showed an average polymorphism for pairwise comparison of 53%. Strain BN showed the highest genetic divergence from all the other ones. Comparison with the mouse phylogenetic tree indicated that laboratory rats possess a higher diversity than inbred strains of mice not derived from wild species. These results provide a phylogenetic basis in the choice of rat strains for genetic linkage experiments.

  14. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus.

    PubMed

    Larson, Eric R; Castelin, Magalie; Williams, Bronwyn W; Olden, Julian D; Abbott, Cathryn L

    2016-01-01

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western

  15. The phylogenetic significance of colour patterns in marine teleost larvae

    PubMed Central

    Baldwin, Carole C

    2013-01-01

    Ichthyologists, natural-history artists, and tropical-fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic

  16. Syphilis at the Crossroad of Phylogenetics and Paleopathology

    PubMed Central

    de Melo, Fernando Lucas; de Mello, Joana Carvalho Moreira; Fraga, Ana Maria; Nunes, Kelly; Eggers, Sabine

    2010-01-01

    The origin of syphilis is still controversial. Different research avenues explore its fascinating history. Here we employed a new integrative approach, where paleopathology and molecular analyses are combined. As an exercise to test the validity of this approach we examined different hypotheses on the origin of syphilis and other human diseases caused by treponemes (treponematoses). Initially, we constructed a worldwide map containing all accessible reports on palaeopathological evidences of treponematoses before Columbus's return to Europe. Then, we selected the oldest ones to calibrate the time of the most recent common ancestor of Treponema pallidum subsp. pallidum, T. pallidum subsp. endemicum and T. pallidum subsp. pertenue in phylogenetic analyses with 21 genetic regions of different T. pallidum strains previously reported. Finally, we estimated the treponemes' evolutionary rate to test three scenarios: A) if treponematoses accompanied human evolution since Homo erectus; B) if venereal syphilis arose very recently from less virulent strains caught in the New World about 500 years ago, and C) if it emerged in the Americas between 16,500 and 5,000 years ago. Two of the resulting evolutionary rates were unlikely and do not explain the existent osseous evidence. Thus, treponematoses, as we know them today, did not emerge with H. erectus, nor did venereal syphilis appear only five centuries ago. However, considering 16,500 years before present (yBP) as the time of the first colonization of the Americas, and approximately 5,000 yBP as the oldest probable evidence of venereal syphilis in the world, we could not entirely reject hypothesis C. We confirm that syphilis seems to have emerged in this time span, since the resulting evolutionary rate is compatible with those observed in other bacteria. In contrast, if the claims of precolumbian venereal syphilis outside the Americas are taken into account, the place of origin remains unsolved. Finally, the endeavor of

  17. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus

    PubMed Central

    Castelin, Magalie; Williams, Bronwyn W.; Olden, Julian D.; Abbott, Cathryn L.

    2016-01-01

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western

  18. The phylogenetic significance of colour patterns in marine teleost larvae.

    PubMed

    Baldwin, Carole C

    2013-07-01

    Ichthyologists, natural-history artists, and tropical-fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic

  19. Evolution and Phylogenetic Diversity of Yam Species (Dioscorea spp.): Implication for Conservation and Agricultural Practices.

    PubMed

    Ngo Ngwe, Marie Florence Sandrine; Omokolo, Denis Ndoumou; Joly, Simon

    2015-01-01

    Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD) approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species.

  20. Phylogenetic origins of Lophocereus (Cactaceae) and the senita cactus-senita moth pollination mutualism.

    PubMed

    Hartmann, Stefanie; Nason, John D; Bhattacharya, Debashish

    2002-07-01

    Recent ecological research has revealed that the Sonoran Desert columnar cactus Lophocereus and the pyralid moth Upiga virescens form an obligate pollination mutualism, a rare but important case of coevolution. To investigate the phylogenetic origins of this unusual pollination system, we used molecular sequence data to reconstruct the phylogeny of the four taxa within the genus Lophocereus and to determine the phylogenetic position of Lophocereus within the North American columnar cacti (tribe Pachycereeae). Our analysis included Lophocereus, six Pachycereus species, Carnegiea gigantea, and Neobuxbaumia tetetzo within the subtribe Pachycereinae, and Stenocereus thurberi as an outgroup within the Stenocereinae. Extensive screening of chloroplast and mitochondrial genomes failed to reveal sequence variation within Lophocereus. At a deeper phylogenetic level, however, we found strong support for the placement of Lophocereus within Pachycereus as sister group to the hummingbird-pollinated P. marginatus. We discuss possible hypotheses that may explain the transition from bat pollination (ancestral) to moth and hummingbird pollination in Lophocereus and P. marginatus, respectively. Additional phylogenetic analyses suggest that the genus Pachycereus should be expanded to include Lophocereus, Carnegiea, Neobuxbaumia, and perhaps other species, whereas P. hollianus may need to be excluded from this clade. Future study will be needed to test taxonomic distinctions within Lophocereus, to test for parallel cladogenesis between phylogroups within Lophocereus and Upiga, and to fully delineate the genus Pachycereus and relationships among genera in the Pachycereinae.

  1. Evolution and Phylogenetic Diversity of Yam Species (Dioscorea spp.): Implication for Conservation and Agricultural Practices

    PubMed Central

    Ngo Ngwe, Marie Florence Sandrine; Omokolo, Denis Ndoumou; Joly, Simon

    2015-01-01

    Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD) approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species. PMID:26691919

  2. Phylogenetic conservatism of functional traits in microorganisms.

    PubMed

    Martiny, Adam C; Treseder, Kathleen; Pusch, Gordon

    2013-04-01

    A central question in biology is how biodiversity influences ecosystem functioning. Underlying this is the relationship between organismal phylogeny and the presence of specific functional traits. The relationship is complicated by gene loss and convergent evolution, resulting in the polyphyletic distribution of many traits. In microorganisms, lateral gene transfer can further distort the linkage between phylogeny and the presence of specific functional traits. To identify the phylogenetic conservation of specific traits in microorganisms, we developed a new phylogenetic metric-consenTRAIT-to estimate the clade depth where organisms share a trait. We then analyzed the distribution of 89 functional traits across a broad range of Bacteria and Archaea using genotypic and phenotypic data. A total of 93% of the traits were significantly non-randomly distributed, which suggested that vertical inheritance was generally important for the phylogenetic dispersion of functional traits in microorganisms. Further, traits in microbes were associated with a continuum of trait depths (τD), ranging from a few deep to many shallow clades (average τD: 0.101-0.0011 rRNA sequence dissimilarity). Next, we demonstrated that the dispersion and the depth of clades that contain a trait is correlated with the trait's complexity. Specifically, complex traits encoded by many genes like photosynthesis and methanogenesis were found in a few deep clusters, whereas the ability to use simple carbon substrates was highly phylogenetically dispersed. On the basis of these results, we propose a framework for predicting the phylogenetic conservatism of functional traits depending on the complexity of the trait. This framework enables predicting how variation in microbial composition may affect microbially-mediated ecosystem processes as well as linking phylogenetic and trait-based patterns of biogeography.

  3. [Analysis phylogenetic relationship of Gynostemma (Cucurbitaceae)].

    PubMed

    Qin, Shuang-shuang; Li, Hai-tao; Wang, Zhou-yong; Cui, Zhan-hu; Yu, Li-ying

    2015-05-01

    The sequences of ITS, matK, rbcL and psbA-trnH of 9 Gynostemma species or variety including 38 samples were compared and analyzed by molecular phylogeny method. Hemsleya macrosperma was designated as outgroup. The MP and NJ phylogenetic tree of Gynostemma was built based on ITS sequence, the results of PAUP phylogenetic analysis showed the following results: (1) The eight individuals of G. pentaphyllum var. pentaphyllum were not supported as monophyletic in the strict consensus trees and NJ trees. (2) It is suspected whether G. longipes and G. laxum should be classified as the independent species. (3)The classification of subgenus units of Gynostemma plants is supported.

  4. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis.

    PubMed

    Hanelt, B; Van Schyndel, D; Adema, C M; Lewis, L A; Loker, E S

    1996-11-01

    The Orthonectida is a small, poorly known phylum of parasites of marine invertebrates. Their phylogenetic placement is obscure; they have been considered to be multicellular protozoans, primitive animals at a "mesozoan" grade of organization, or secondarily simplified flatworm-like organisms. The best known species in the phylum, Rhopalura ophiocomae, was collected on San Juan Island, Wash. and a complete 18S rDNA sequence was obtained. Using the models of minimum evolution and parsimony, phylogenetic analyses were undertaken and the results lend support to the following hypotheses about orthonectids: (1) orthonectids are more closely aligned with triploblastic metazoan taxa than with the protist or diploblastic metazoan taxa considered in this analysis; (2) orthonectids are not derived members of the phylum Platyhelminthes; and (3) orthonectids and rhombozoans are not each other's closest relatives, thus casting further doubt on the validity of the phylum Mesozoa previously used to encompass both groups. PMID:8896370

  5. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis.

    PubMed

    Hanelt, B; Van Schyndel, D; Adema, C M; Lewis, L A; Loker, E S

    1996-11-01

    The Orthonectida is a small, poorly known phylum of parasites of marine invertebrates. Their phylogenetic placement is obscure; they have been considered to be multicellular protozoans, primitive animals at a "mesozoan" grade of organization, or secondarily simplified flatworm-like organisms. The best known species in the phylum, Rhopalura ophiocomae, was collected on San Juan Island, Wash. and a complete 18S rDNA sequence was obtained. Using the models of minimum evolution and parsimony, phylogenetic analyses were undertaken and the results lend support to the following hypotheses about orthonectids: (1) orthonectids are more closely aligned with triploblastic metazoan taxa than with the protist or diploblastic metazoan taxa considered in this analysis; (2) orthonectids are not derived members of the phylum Platyhelminthes; and (3) orthonectids and rhombozoans are not each other's closest relatives, thus casting further doubt on the validity of the phylum Mesozoa previously used to encompass both groups.

  6. A comparative approach to testing hypotheses for the evolution of sex-biased dispersal in bean beetles.

    PubMed

    Downey, Michelle H; Searle, Rebecca; Bellur, Sunil; Geiger, Adam; Maitner, Brian S; Ohm, Johanna R; Tuda, Midori; Miller, Tom E X

    2015-11-01

    Understanding the selective forces that shape dispersal strategies is a fundamental goal of evolutionary ecology and is increasingly important in changing, human-altered environments. Sex-biased dispersal (SBD) is common in dioecious taxa, and understanding variation in the direction and magnitude of SBD across taxa has been a persistent challenge. We took a comparative, laboratory-based approach using 16 groups (species or strains) of bean beetles (genera Acanthoscelides, Callosobruchus, and Zabrotes, including 10 strains of one species) to test two predictions that emerge from dominant hypotheses for the evolution of SBD: (1) groups that suffer greater costs of inbreeding should exhibit greater SBD in favor of either sex (inbreeding avoidance hypothesis) and (2) groups with stronger local mate competition should exhibit greater male bias in dispersal (kin competition avoidance hypothesis). We used laboratory experiments to quantify SBD in crawling dispersal, the fitness effects of inbreeding, and the degree of polygyny (number of female mates per male), a proxy for local mate competition. While we found that both polygyny and male-biased dispersal were common across bean beetle groups, consistent with the kin competition avoidance hypothesis, quantitative relationships between trait values did not support the predictions. Across groups, there was no significant association between SBD and effects of inbreeding nor SBD and degree of polygyny, using either raw values or phylogenetically independent contrasts. We discuss possible limitations of our experimental approach for detecting the predicted relationships, as well as reasons why single-factor hypotheses may be too simplistic to explain the evolution of SBD.

  7. Decisive Data Sets in Phylogenomics: Lessons from Studies on the Phylogenetic Relationships of Primarily Wingless Insects

    PubMed Central

    Meusemann, Karen; Meyer, Benjamin; Borner, Janus; Petersen, Malte; Aberer, Andre J.; Stamatakis, Alexandros; Walzl, Manfred G.; Minh, Bui Quang; von Haeseler, Arndt; Ebersberger, Ingo; Pass, Günther; Misof, Bernhard

    2014-01-01

    Phylogenetic relationships of the primarily wingless insects are still considered unresolved. Even the most comprehensive phylogenomic studies that addressed this question did not yield congruent results. To get a grip on these problems, we here analyzed the sources of incongruence in these phylogenomic studies by using an extended transcriptome data set. Our analyses showed that unevenly distributed missing data can be severely misleading by inflating node support despite the absence of phylogenetic signal. In consequence, only decisive data sets should be used which exclusively comprise data blocks containing all taxa whose relationships are addressed. Additionally, we used Four-cluster Likelihood Mapping (FcLM) to measure the degree of congruence among genes of a data set, as a measure of support alternative to bootstrap. FcLM showed incongruent signal among genes, which in our case is correlated neither with functional class assignment of these genes nor with model misspecification due to unpartitioned analyses. The herein analyzed data set is the currently largest data set covering primarily wingless insects, but failed to elucidate their interordinal phylogenetic relationships. Although this is unsatisfying from a phylogenetic perspective, we try to show that the analyses of structure and signal within phylogenomic data can protect us from biased phylogenetic inferences due to analytical artifacts. PMID:24140757

  8. Haunted hypotheses.

    PubMed

    Albon, S

    1998-10-01

    American Pronghorn: Social Adaptations and the Ghosts of Predators Past by J.A. Byers The University of Chicago Press, 1998. $70.00/£55.95 hbk, $23.95/£19.25 pbk (xviii+300 pages) ISBN 0 226 08698 4/0 226 08699 2. PMID:21238377

  9. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses

    PubMed Central

    Faith, Daniel P.

    2015-01-01

    The phylogenetic diversity measure, (‘PD’), measures the relative feature diversity of different subsets of taxa from a phylogeny. At the level of feature diversity, PD supports the broad goal of biodiversity conservation to maintain living variation and option values. PD calculations at the level of lineages and features include those integrating probabilities of extinction, providing estimates of expected PD. This approach has known advantages over the evolutionarily distinct and globally endangered (EDGE) methods. Expected PD methods also have limitations. An alternative notion of expected diversity, expected functional trait diversity, relies on an alternative non-phylogenetic model and allows inferences of diversity at the level of functional traits. Expected PD also faces challenges in helping to address phylogenetic tipping points and worst-case PD losses. Expected PD may not choose conservation options that best avoid worst-case losses of long branches from the tree of life. We can expand the range of useful calculations based on expected PD, including methods for identifying phylogenetic key biodiversity areas. PMID:25561672

  10. Constructing Student Problems in Phylogenetic Tree Construction.

    ERIC Educational Resources Information Center

    Brewer, Steven D.

    Evolution is often equated with natural selection and is taught from a primarily functional perspective while comparative and historical approaches, which are critical for developing an appreciation of the power of evolutionary theory, are often neglected. This report describes a study of expert problem-solving in phylogenetic tree construction.…

  11. Reconstructing phylogenetic networks using maximum parsimony.

    PubMed

    Nakhleh, Luay; Jin, Guohua; Zhao, Fengmei; Mellor-Crummey, John

    2005-01-01

    Phylogenies - the evolutionary histories of groups of organisms - are one of the most widely used tools throughout the life sciences, as well as objects of research within systematics, evolutionary biology, epidemiology, etc. Almost every tool devised to date to reconstruct phylogenies produces trees; yet it is widely understood and accepted that trees oversimplify the evolutionary histories of many groups of organims, most prominently bacteria (because of horizontal gene transfer) and plants (because of hybrid speciation). Various methods and criteria have been introduced for phylogenetic tree reconstruction. Parsimony is one of the most widely used and studied criteria, and various accurate and efficient heuristics for reconstructing trees based on parsimony have been devised. Jotun Hein suggested a straightforward extension of the parsimony criterion to phylogenetic networks. In this paper we formalize this concept, and provide the first experimental study of the quality of parsimony as a criterion for constructing and evaluating phylogenetic networks. Our results show that, when extended to phylogenetic networks, the parsimony criterion produces promising results. In a great majority of the cases in our experiments, the parsimony criterion accurately predicts the numbers and placements of non-tree events.

  12. Quantifying MCMC exploration of phylogenetic tree space.

    PubMed

    Whidden, Chris; Matsen, Frederick A

    2015-05-01

    In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks.

  13. Mitochondrial phylogenetics and evolution of mysticete whales.

    PubMed

    Sasaki, Takeshi; Nikaido, Masato; Hamilton, Healy; Goto, Mutsuo; Kato, Hidehiro; Kanda, Naohisa; Pastene, Luis; Cao, Ying; Fordyce, R; Hasegawa, Masami; Okada, Norihiro

    2005-02-01

    The phylogenetic relationships among baleen whales (Order: Cetacea) remain uncertain despite extensive research in cetacean molecular phylogenetics and a potential morphological sample size of over 2 million animals harvested. Questions remain regarding the number of species and the monophyly of genera, as well as higher order relationships. Here, we approach mysticete phylogeny with complete mitochondrial genome sequence analysis. We determined complete mtDNA sequences of 10 extant Mysticeti species, inferred their phylogenetic relationships, and estimated node divergence times. The mtDNA sequence analysis concurs with previous molecular studies in the ordering of the principal branches, with Balaenidae (right whales) as sister to all other mysticetes base, followed by Neobalaenidae (pygmy right whale), Eschrichtiidae (gray whale), and finally Balaenopteridae (rorquals + humpback whale). The mtDNA analysis further suggests that four lineages exist within the clade of Eschrichtiidae + Balaenopteridae, including a sister relationship between the humpback and fin whales, and a monophyletic group formed by the blue, sei, and Bryde's whales, each of which represents a newly recognized phylogenetic relationship in Mysticeti. We also estimated the divergence times of all extant mysticete species, accounting for evolutionary rate heterogeneity among lineages. When the mtDNA divergence estimates are compared with the mysticete fossil record, several lineages have molecular divergence estimates strikingly older than indicated by paleontological data. We suggest this discrepancy reflects both a large amount of ancestral polymorphism and long generation times of ancestral baleen whale populations.

  14. On the analysis of phylogenetically paired designs

    PubMed Central

    Funk, Jennifer L; Rakovski, Cyril S; Macpherson, J Michael

    2015-01-01

    As phylogenetically controlled experimental designs become increasingly common in ecology, the need arises for a standardized statistical treatment of these datasets. Phylogenetically paired designs circumvent the need for resolved phylogenies and have been used to compare species groups, particularly in the areas of invasion biology and adaptation. Despite the widespread use of this approach, the statistical analysis of paired designs has not been critically evaluated. We propose a mixed model approach that includes random effects for pair and species. These random effects introduce a “two-layer” compound symmetry variance structure that captures both the correlations between observations on related species within a pair as well as the correlations between the repeated measurements within species. We conducted a simulation study to assess the effect of model misspecification on Type I and II error rates. We also provide an illustrative example with data containing taxonomically similar species and several outcome variables of interest. We found that a mixed model with species and pair as random effects performed better in these phylogenetically explicit simulations than two commonly used reference models (no or single random effect) by optimizing Type I error rates and power. The proposed mixed model produces acceptable Type I and II error rates despite the absence of a phylogenetic tree. This design can be generalized to a variety of datasets to analyze repeated measurements in clusters of related subjects/species. PMID:25750719

  15. Quantifying MCMC Exploration of Phylogenetic Tree Space

    PubMed Central

    Whidden, Chris; Matsen, Frederick A.

    2015-01-01

    In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks. PMID:25631175

  16. Probabilistic phylogenetic inference with insertions and deletions.

    PubMed

    Rivas, Elena; Eddy, Sean R

    2008-01-01

    A fundamental task in sequence analysis is to calculate the probability of a multiple alignment given a phylogenetic tree relating the sequences and an evolutionary model describing how sequences change over time. However, the most widely used phylogenetic models only account for residue substitution events. We describe a probabilistic model of a multiple sequence alignment that accounts for insertion and deletion events in addition to substitutions, given a phylogenetic tree, using a rate matrix augmented by the gap character. Starting from a continuous Markov process, we construct a non-reversible generative (birth-death) evolutionary model for insertions and deletions. The model assumes that insertion and deletion events occur one residue at a time. We apply this model to phylogenetic tree inference by extending the program dnaml in phylip. Using standard benchmarking methods on simulated data and a new "concordance test" benchmark on real ribosomal RNA alignments, we show that the extended program dnamlepsilon improves accuracy relative to the usual approach of ignoring gaps, while retaining the computational efficiency of the Felsenstein peeling algorithm. PMID:18787703

  17. Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling.

    PubMed

    Yesson, C; Culham, A

    2006-10-01

    We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of

  18. Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling.

    PubMed

    Yesson, C; Culham, A

    2006-10-01

    We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of

  19. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  20. A Metric on the Space of Partly Reduced Phylogenetic Networks

    PubMed Central

    2016-01-01

    Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of evolutionary events acting at the population level, such as recombination between genes, hybridization between lineages, and horizontal gene transfer. The researchers have designed several measures for computing the dissimilarity between two phylogenetic networks, and each measure has been proven to be a metric on a special kind of phylogenetic networks. However, none of the existing measures is a metric on the space of partly reduced phylogenetic networks. In this paper, we provide a metric, de-distance, on the space of partly reduced phylogenetic networks, which is polynomial-time computable. PMID:27419137

  1. The Missing Link of Jewish European Ancestry: Contrasting the Rhineland and the Khazarian Hypotheses

    PubMed Central

    Elhaik, Eran

    2013-01-01

    The question of Jewish ancestry has been the subject of controversy for over two centuries and has yet to be resolved. The “Rhineland hypothesis” depicts Eastern European Jews as a “population isolate” that emerged from a small group of German Jews who migrated eastward and expanded rapidly. Alternatively, the “Khazarian hypothesis” suggests that Eastern European Jews descended from the Khazars, an amalgam of Turkic clans that settled the Caucasus in the early centuries CE and converted to Judaism in the 8th century. Mesopotamian and Greco–Roman Jews continuously reinforced the Judaized empire until the 13th century. Following the collapse of their empire, the Judeo–Khazars fled to Eastern Europe. The rise of European Jewry is therefore explained by the contribution of the Judeo–Khazars. Thus far, however, the Khazars’ contribution has been estimated only empirically, as the absence of genome-wide data from Caucasus populations precluded testing the Khazarian hypothesis. Recent sequencing of modern Caucasus populations prompted us to revisit the Khazarian hypothesis and compare it with the Rhineland hypothesis. We applied a wide range of population genetic analyses to compare these two hypotheses. Our findings support the Khazarian hypothesis and portray the European Jewish genome as a mosaic of Near Eastern-Caucasus, European, and Semitic ancestries, thereby consolidating previous contradictory reports of Jewish ancestry. We further describe a major difference among Caucasus populations explained by the early presence of Judeans in the Southern and Central Caucasus. Our results have important implications for the demographic forces that shaped the genetic diversity in the Caucasus and for medical studies. PMID:23241444

  2. Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi

    PubMed Central

    Telleria, Jenny; Biron, David G.; Brizard, Jean-Paul; Demettre, Edith; Séveno, Martial; Barnabé, Christian; Ayala, Francisco J.; Tibayrenc, Michel

    2010-01-01

    We performed a phylogenetic character mapping on 26 stocks of Trypanosoma cruzi, the parasite responsible for Chagas disease, and 2 stocks of the sister taxon T. cruzi marinkellei to test for possible associations between T. cruzi–subspecific phylogenetic diversity and levels of protein expression, as examined by proteomic analysis and mass spectrometry. We observed a high level of correlation (P < 10−4) between genetic distance, as established by multilocus enzyme electrophoresis, and proteomic dissimilarities estimated by proteomic Euclidian distances. Several proteins were found to be specifically associated to T. cruzi phylogenetic subdivisions (discrete typing units). This study explores the previously uncharacterized links between infraspecific phylogenetic diversity and gene expression in a human pathogen. It opens the way to searching for new vaccine and drug targets and for identification of specific biomarkers at the subspecific level of pathogens. PMID:21059959

  3. Phylogenetic Analysis Supports a Link between DUF1220 Domain Number and Primate Brain Expansion.

    PubMed

    Zimmer, Fabian; Montgomery, Stephen H

    2015-08-01

    The expansion of DUF1220 domain copy number during human evolution is a dramatic example of rapid and repeated domain duplication. Although patterns of expression, homology, and disease associations suggest a role in cortical development, this hypothesis has not been robustly tested using phylogenetic methods. Here, we estimate DUF1220 domain counts across 12 primate genomes using a nucleotide Hidden Markov Model. We then test a series of hypotheses designed to examine the potential evolutionary significance of DUF1220 copy number expansion. Our results suggest a robust association with brain size, and more specifically neocortex volume. In contradiction to previous hypotheses, we find a strong association with postnatal brain development but not with prenatal brain development. Our results provide further evidence of a conserved association between specific loci and brain size across primates, suggesting that human brain evolution may have occurred through a continuation of existing processes. PMID:26112965

  4. Phylogenetic Analysis Supports a Link between DUF1220 Domain Number and Primate Brain Expansion

    PubMed Central

    Zimmer, Fabian; Montgomery, Stephen H.

    2015-01-01

    The expansion of DUF1220 domain copy number during human evolution is a dramatic example of rapid and repeated domain duplication. Although patterns of expression, homology, and disease associations suggest a role in cortical development, this hypothesis has not been robustly tested using phylogenetic methods. Here, we estimate DUF1220 domain counts across 12 primate genomes using a nucleotide Hidden Markov Model. We then test a series of hypotheses designed to examine the potential evolutionary significance of DUF1220 copy number expansion. Our results suggest a robust association with brain size, and more specifically neocortex volume. In contradiction to previous hypotheses, we find a strong association with postnatal brain development but not with prenatal brain development. Our results provide further evidence of a conserved association between specific loci and brain size across primates, suggesting that human brain evolution may have occurred through a continuation of existing processes. PMID:26112965

  5. Phylogenetic Composition of Rocky Mountain Endolithic Microbial Ecosystems▿

    PubMed Central

    Walker, Jeffrey J.; Pace, Norman R.

    2007-01-01

    The endolithic environment, the pore space in rocks, is a ubiquitous microbial habitat. Photosynthesis-based endolithic communities inhabit the outer few millimeters to centimeters of rocks exposed to the surface. Such endolithic ecosystems have been proposed as simple, tractable models for understanding basic principles in microbial ecology. In order to test previously conceived hypotheses about endolithic ecosystems, we studied selected endolithic communities in the Rocky Mountain region of the United States with culture-independent molecular methods. Community compositions were determined by determining rRNA gene sequence contents, and communities were compared using statistical phylogenetic methods. The results indicate that endolithic ecosystems are seeded from a select, global metacommunity and form true ecological communities that are among the simplest microbial ecosystems known. Statistical analysis showed that biogeographical characteristics that control community composition, such as rock type, are more complex than predicted. Collectively, results of this study support the idea that patterns of microbial diversity found in endolithic communities are governed by principles similar to those observed in macroecological systems. PMID:17416689

  6. Phylogenetic escalation and decline of plant defense strategies.

    PubMed

    Agrawal, Anurag A; Fishbein, Mark

    2008-07-22

    As the basal resource in most food webs, plants have evolved myriad strategies to battle consumption by herbivores. Over the past 50 years, plant defense theories have been formulated to explain the remarkable variation in abundance, distribution, and diversity of secondary chemistry and other defensive traits. For example, classic theories of enemy-driven evolutionary dynamics have hypothesized that defensive traits escalate through the diversification process. Despite the fact that macroevolutionary patterns are an explicit part of defense theories, phylogenetic analyses have not been previously attempted to disentangle specific predictions concerning (i) investment in resistance traits, (ii) recovery after damage, and (iii) plant growth rate. We constructed a molecular phylogeny of 38 species of milkweed and tested four major predictions of defense theory using maximum-likelihood methods. We did not find support for the growth-rate hypothesis. Our key finding was a pattern of phyletic decline in the three most potent resistance traits (cardenolides, latex, and trichomes) and an escalation of regrowth ability. Our neontological approach complements more common paleontological approaches to discover directional trends in the evolution of life and points to the importance of natural enemies in the macroevolution of species. The finding of macroevolutionary escalating regowth ability and declining resistance provides a window into the ongoing coevolutionary dynamics between plants and herbivores and suggests a revision of classic plant defense theory. Where plants are primarily consumed by specialist herbivores, regrowth (or tolerance) may be favored over resistance traits during the diversification process.

  7. Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems.

    PubMed

    Walker, Jeffrey J; Pace, Norman R

    2007-06-01

    The endolithic environment, the pore space in rocks, is a ubiquitous microbial habitat. Photosynthesis-based endolithic communities inhabit the outer few millimeters to centimeters of rocks exposed to the surface. Such endolithic ecosystems have been proposed as simple, tractable models for understanding basic principles in microbial ecology. In order to test previously conceived hypotheses about endolithic ecosystems, we studied selected endolithic communities in the Rocky Mountain region of the United States with culture-independent molecular methods. Community compositions were determined by determining rRNA gene sequence contents, and communities were compared using statistical phylogenetic methods. The results indicate that endolithic ecosystems are seeded from a select, global metacommunity and form true ecological communities that are among the simplest microbial ecosystems known. Statistical analysis showed that biogeographical characteristics that control community composition, such as rock type, are more complex than predicted. Collectively, results of this study support the idea that patterns of microbial diversity found in endolithic communities are governed by principles similar to those observed in macroecological systems. PMID:17416689

  8. Black/White Differences in Adolescent Drug Use: A Test of Six Hypotheses

    ERIC Educational Resources Information Center

    Rote, Sunshine M.; Taylor, John

    2014-01-01

    Six specific hypotheses have been developed to account for why Caucasians have higher rates of drug use compared to African-Americans. This article utilizes data from a South Florida-based community study of 893 young adults (1998-2002) to test these hypotheses. Specifically, Caucasians (1) initiate drug use at younger ages than African-Americans…

  9. Bayesian Meta-Analysis of Cronbach's Coefficient Alpha to Evaluate Informative Hypotheses

    ERIC Educational Resources Information Center

    Okada, Kensuke

    2015-01-01

    This paper proposes a new method to evaluate informative hypotheses for meta-analysis of Cronbach's coefficient alpha using a Bayesian approach. The coefficient alpha is one of the most widely used reliability indices. In meta-analyses of reliability, researchers typically form specific informative hypotheses beforehand, such as "alpha of…

  10. A phylogenetic analysis of the phylum Fibrobacteres.

    PubMed

    Jewell, Kelsea A; Scott, Jarrod J; Adams, Sandra M; Suen, Garret

    2013-09-01

    Members of the phylum Fibrobacteres are highly efficient cellulolytic bacteria, best known for their role in rumen function and as potential sources of novel enzymes for bioenergy applications. Despite being key members of ruminants and other digestive microbial communities, our knowledge of this phylum remains incomplete, as much of our understanding is focused on two recognized species, Fibrobacter succinogenes and F. intestinalis. As a result, we lack insights regarding the environmental niche, host range, and phylogenetic organization of this phylum. Here, we analyzed over 1000 16S rRNA Fibrobacteres sequences available from public databases to establish a phylogenetic framework for this phylum. We identify both species- and genus-level clades that are suggestive of previously unknown taxonomic relationships between Fibrobacteres in addition to their putative lifestyles as host-associated or free-living. Our results shed light on this poorly understood phylum and will be useful for elucidating the function, distribution, and diversity of these bacteria in their niches.

  11. Molecular phylogenetics of mastodon and Tyrannosaurus rex.

    PubMed

    Organ, Chris L; Schweitzer, Mary H; Zheng, Wenxia; Freimark, Lisa M; Cantley, Lewis C; Asara, John M

    2008-04-25

    We report a molecular phylogeny for a nonavian dinosaur, extending our knowledge of trait evolution within nonavian dinosaurs into the macromolecular level of biological organization. Fragments of collagen alpha1(I) and alpha2(I) proteins extracted from fossil bones of Tyrannosaurus rex and Mammut americanum (mastodon) were analyzed with a variety of phylogenetic methods. Despite missing sequence data, the mastodon groups with elephant and the T. rex groups with birds, consistent with predictions based on genetic and morphological data for mastodon and on morphological data for T. rex. Our findings suggest that molecular data from long-extinct organisms may have the potential for resolving relationships at critical areas in the vertebrate evolutionary tree that have, so far, been phylogenetically intractable.

  12. Visualizing phylogenetic trees using TreeView.

    PubMed

    Page, Roderic D M

    2002-08-01

    TreeView provides a simple way to view the phylogenetic trees produced by a range of programs, such as PAUP*, PHYLIP, TREE-PUZZLE, and ClustalX. While some phylogenetic programs (such as the Macintosh version of PAUP*) have excellent tree printing facilities, many programs do not have the ability to generate publication quality trees. TreeView addresses this need. The program can read and write a range of tree file formats, display trees in a variety of styles, print trees, and save the tree as a graphic file. Protocols in this unit cover both displaying and printing a tree. Support protocols describe how to download and install TreeView, and how to display bootstrap values in trees generated by ClustalX and PAUP*. PMID:18792942

  13. The phylogenetic position of the Critically Endangered Saint Croix ground lizard Ameiva polops: revisiting molecular systematics of West Indian Ameiva.

    PubMed

    Hurtado, Luis A; Santamaria, Carlos A; Fitzgerald, Lee A

    2014-01-01

    The phylogenetic position of the critically endangered Saint Croix ground lizard Ameiva polops is presently unknown and several hypotheses have been proposed. We investigated the phylogenetic position of this species using molecular phylogenetic methods. We obtained sequences of DNA fragments of the mitochondrial ribosomal genes 12S rDNA and 16S rDNA for this species. We aligned these sequences with published sequences of other Ameiva species, which include most of the Ameiva species from the West Indies, three Ameiva species from Central America and South America, and one from the teiid lizard Tupinambis teguixin, which was used as outgroup. We conducted Maximum Likelihood and Bayesian phylogenetic analyses. The phylogenetic reconstructions among the different methods were very similar, supporting the monophyly of West Indian Ameiva and showing within this lineage, a basal polytomy of four clades that are separated geographically. Ameiva polops grouped in a cluster that included the other two Ameiva species found in the Puerto Rican Bank: A. wetmorei and A. exsul. A sister relationship between A. polops and A. wetmorei is suggested by our analyses. We compare our results with a previous study on molecular systematics of West Indian Ameiva.  PMID:24870322

  14. Development of working hypotheses linking management of the Missouri River to population dynamics of Scaphirhynchus albus (pallid sturgeon)

    USGS Publications Warehouse

    Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.

    2016-01-01

    The initial set of candidate hypotheses provides a useful starting point for quantitative modeling and adaptive management of the river and species. We anticipate that hypotheses will change from the set of working management hypotheses as adaptive management progresses. More importantly, hypotheses that have been filtered out of our multistep process are still being considered. These filtered hypotheses are archived and if existing hypotheses are determined to be inadequate to explain observed population dynamics, new hypotheses can be created or filtered hypotheses can be reinstated.

  15. Development of working hypotheses linking management of the Missouri River to population dynamics of Scaphirhynchus albus (pallid sturgeon)

    USGS Publications Warehouse

    Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.

    2016-01-20

    The initial set of candidate hypotheses provides a useful starting point for quantitative modeling and adaptive management of the river and species. We anticipate that hypotheses will change from the set of working management hypotheses as adaptive management progresses. More importantly, hypotheses that have been filtered out of our multistep process are still being considered. These filtered hypotheses are archived and if existing hypotheses are determined to be inadequate to explain observed population dynamics, new hypotheses can be created or filtered hypotheses can be reinstated.

  16. A phylogenetic analysis of Aquifex pyrophilus

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Olsen, G. J.; Stetter, K. O.; Woese, C. R.

    1992-01-01

    The 16S rRNA of the bacterion Aquifex pyrophilus, a microaerophilic, oxygen-reducing hyperthermophile, has been sequenced directly from the the PCR amplified gene. Phylogenetic analyses show the Aq. pyrophilus lineage to be probably the deepest (earliest) in the (eu)bacterial tree. The addition of this deep branching to the bacterial tree further supports the argument that the Bacteria are of thermophilic ancestry.

  17. The phylogenetic affinities of the extinct glyptodonts.

    PubMed

    Delsuc, Frédéric; Gibb, Gillian C; Kuch, Melanie; Billet, Guillaume; Hautier, Lionel; Southon, John; Rouillard, Jean-Marie; Fernicola, Juan Carlos; Vizcaíno, Sergio F; MacPhee, Ross D E; Poinar, Hendrik N

    2016-02-22

    Among the fossils of hitherto unknown mammals that Darwin collected in South America between 1832 and 1833 during the Beagle expedition were examples of the large, heavily armored herbivores later known as glyptodonts. Ever since, glyptodonts have fascinated evolutionary biologists because of their remarkable skeletal adaptations and seemingly isolated phylogenetic position even within their natural group, the cingulate xenarthrans (armadillos and their allies). In possessing a carapace comprised of fused osteoderms, the glyptodonts were clearly related to other cingulates, but their precise phylogenetic position as suggested by morphology remains unresolved. To provide a molecular perspective on this issue, we designed sequence-capture baits using in silico reconstructed ancestral sequences and successfully assembled the complete mitochondrial genome of Doedicurus sp., one of the largest glyptodonts. Our phylogenetic reconstructions establish that glyptodonts are in fact deeply nested within the armadillo crown-group, representing a distinct subfamily (Glyptodontinae) within family Chlamyphoridae. Molecular dating suggests that glyptodonts diverged no earlier than around 35 million years ago, in good agreement with their fossil record. Our results highlight the derived nature of the glyptodont morphotype, one aspect of which is a spectacular increase in body size until their extinction at the end of the last ice age. PMID:26906483

  18. Phylogenetic Stochastic Mapping Without Matrix Exponentiation

    PubMed Central

    Irvahn, Jan; Minin, Vladimir N.

    2014-01-01

    Abstract Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices—an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods. PMID:24918812

  19. Posterior Predictive Bayesian Phylogenetic Model Selection

    PubMed Central

    Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-01-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892

  20. The phylogenetic affinities of the extinct glyptodonts.

    PubMed

    Delsuc, Frédéric; Gibb, Gillian C; Kuch, Melanie; Billet, Guillaume; Hautier, Lionel; Southon, John; Rouillard, Jean-Marie; Fernicola, Juan Carlos; Vizcaíno, Sergio F; MacPhee, Ross D E; Poinar, Hendrik N

    2016-02-22

    Among the fossils of hitherto unknown mammals that Darwin collected in South America between 1832 and 1833 during the Beagle expedition were examples of the large, heavily armored herbivores later known as glyptodonts. Ever since, glyptodonts have fascinated evolutionary biologists because of their remarkable skeletal adaptations and seemingly isolated phylogenetic position even within their natural group, the cingulate xenarthrans (armadillos and their allies). In possessing a carapace comprised of fused osteoderms, the glyptodonts were clearly related to other cingulates, but their precise phylogenetic position as suggested by morphology remains unresolved. To provide a molecular perspective on this issue, we designed sequence-capture baits using in silico reconstructed ancestral sequences and successfully assembled the complete mitochondrial genome of Doedicurus sp., one of the largest glyptodonts. Our phylogenetic reconstructions establish that glyptodonts are in fact deeply nested within the armadillo crown-group, representing a distinct subfamily (Glyptodontinae) within family Chlamyphoridae. Molecular dating suggests that glyptodonts diverged no earlier than around 35 million years ago, in good agreement with their fossil record. Our results highlight the derived nature of the glyptodont morphotype, one aspect of which is a spectacular increase in body size until their extinction at the end of the last ice age.

  1. Modularized evolution in archaeal methanogens phylogenetic forest.

    PubMed

    Li, Jun; Wong, Chi-Fat; Wong, Mabel Ting; Huang, He; Leung, Frederick C

    2014-12-09

    Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species.

  2. Marine turtle mitogenome phylogenetics and evolution.

    PubMed

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A

    2012-10-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution. PMID:22750111

  3. Quantitative developmental data in a phylogenetic framework.

    PubMed

    Giannini, Norberto Pedro

    2014-12-01

    Following the embryonic period of organogenesis, most development is allometric growth, which is thought to produce most of the evolutionary morphological divergence between related species. Bivariate or multivariate coefficients of allometry are used to describe quantitative developmental data and are comparable across taxa; as such, these coefficients are amenable to direct treatment in a phylogenetic framework. Mapping of actual allometric coefficients onto phylogenetic trees is supported on the basis of the evolving nature of growth programs and the type of character (continuous) that they represent. This procedure depicts evolutionary allometry accurately and allows for the generation of reliable reconstructions of ancestral allometry, as shown here with a previously published case study on rodent cranial ontogeny. Results reconstructed the signature allometric patterns of rodents to the root of the phylogeny, which could be traced back into a (minimum) Paleocene age. Both character and statistical dependence need to be addressed, so this approach can be integrated with phylogenetic comparative methods that deal with those issues. It is shown that, in this particular sample of rodents, common ancestry explains little allometric variation given the level of divergence present within, and convergence between, major rodent lineages. Furthermore, all that variation is independent of body mass. Thus, from an evolutionary perspective, allometry appears to have a strong functional and likely adaptive basis. PMID:25130201

  4. Phylogenetic conservatism of environmental niches in mammals.

    PubMed

    Cooper, Natalie; Freckleton, Rob P; Jetz, Walter

    2011-08-01

    Phylogenetic niche conservatism is the pattern where close relatives occupy similar niches, whereas distant relatives are more dissimilar. We suggest that niche conservatism will vary across clades in relation to their characteristics. Specifically, we investigate how conservatism of environmental niches varies among mammals according to their latitude, range size, body size and specialization. We use the Brownian rate parameter, σ(2), to measure the rate of evolution in key variables related to the ecological niche and define the more conserved group as the one with the slower rate of evolution. We find that tropical, small-ranged and specialized mammals have more conserved thermal niches than temperate, large-ranged or generalized mammals. Partitioning niche conservatism into its spatial and phylogenetic components, we find that spatial effects on niche variables are generally greater than phylogenetic effects. This suggests that recent evolution and dispersal have more influence on species' niches than more distant evolutionary events. These results have implications for our understanding of the role of niche conservatism in species richness patterns and for gauging the potential for species to adapt to global change.

  5. The evolution of HIV: Inferences using phylogenetics

    PubMed Central

    Castro-Nallar, Eduardo; Pérez-Losada, Marcos; Burton, Gregory F.; Crandall, Keith A.

    2011-01-01

    Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics). PMID:22138161

  6. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids

    PubMed Central

    Jansen, Robert K; Kaittanis, Charalambos; Saski, Christopher; Lee, Seung-Bum; Tomkins, Jeffrey; Alverson, Andrew J; Daniell, Henry

    2006-01-01

    Background The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids. Results The Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade. However, maximum

  7. Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms

    PubMed Central

    Kim, Young-Mo; Nowack, Shane; Olsen, Millie T.; Becraft, Eric D.; Wood, Jason M.; Thiel, Vera; Klapper, Isaac; Kühl, Michael; Fredrickson, James K.; Bryant, Donald A.; Ward, David M.; Metz, Thomas O.

    2015-01-01

    Dynamic environmental factors such as light, nutrients, salt, and temperature continuously affect chlorophototrophic microbial mats, requiring adaptive and acclimative responses to stabilize composition and function. Quantitative metabolomics analysis can provide insights into metabolite dynamics for understanding community response to such changing environmental conditions. In this study, we quantified volatile organic acids, polar metabolites (amino acids, glycolytic and citric acid cycle intermediates, nucleobases, nucleosides, and sugars), wax esters, and polyhydroxyalkanoates, resulting in the identification of 104 metabolites and related molecules in thermal chlorophototrophic microbial mat cores collected over a diel cycle in Mushroom Spring, Yellowstone National Park. A limited number of predominant taxa inhabit this community and their functional potentials have been previously identified through metagenomic and metatranscriptomic analyses and in situ metabolisms, and metabolic interactions among these taxa have been hypothesized. Our metabolomics results confirmed the diel cycling of photorespiration (e.g., glycolate) and fermentation (e.g., acetate, propionate, and lactate) products, the carbon storage polymers polyhydroxyalkanoates, and dissolved gasses (e.g., H2 and CO2) in the waters overlying the mat, which were hypothesized to occur in major mat chlorophototrophic community members. In addition, we have formulated the following new hypotheses: (1) the morning hours are a time of biosynthesis of amino acids, DNA, and RNA; (2) photo-inhibited cells may also produce lactate via fermentation as an alternate metabolism; (3) glycolate and lactate are exchanged among Synechococcus and Roseiflexus spp.; and (4) fluctuations in many metabolite pools (e.g., wax esters) at different times of day result from species found at different depths within the mat responding to temporal differences in their niches. PMID:25941514

  8. Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms

    DOE PAGES

    Kim, Young-Mo; Nowack, Shane; Olsen, Millie; Becraft, Eric; Wood, Jason M.; Thiel, Vera; Klapper, Isaac; Kuhl, Michael; Fredrickson, Jim K.; Bryant, Donald A.; et al

    2015-04-17

    Dynamic environmental factors such as light, nutrients, salt, and temperature continuously affect chlorophototrophic microbial mats, requiring adaptative and acclimative responses to stabilize composition and function. Quantitative metabolomics analysis can provide insights into metabolite dynamics for understanding community response to such changing environmental conditions. In this study, we quantified volatile organic acids, polar metabolites (amino acids, glycolytic and citric acid cycle intermediates, nucleobases, nucleosides, and sugars), wax esters, and polyhydroxyalkanoates, resulting in the identification of 104 metabolites and related molecules in thermal chlorophototrophic microbial mat cores collected over a diel cycle in Mushroom Spring, Yellowstone National Park. A limited number ofmore » predominant taxa inhabiting this community and their functional potentials have been previously identified through metagenomic and metatranscriptomic analyses and in situ metabolisms and metabolic interactions among these taxa have been hypothesized. Our metabolomics results confirmed the diel cycling of photorespiration (e.g. glycolate) and fermentation (e.g. acetate, propionate, and lactate) products, the carbon storage polymers polyhydroxyalkanoates, and dissolved gases (e.g. H2 and CO2) in the waters overlying the mat, which were hypothesized to occur in major mat chlorophototrophic community members. In addition, we have formulated the following new hypotheses: 1) the morning hours are a time of biosynthesis of amino acids, DNA, and RNA; 2) Synechococcus spp. produce CH4 via metabolism of phosphonates, and photo-inhibited cells may also produce lactate via fermentation as an alternate metabolism; 3) glycolate and lactate are exchanged among Synechococcus and Roseiflexus spp.; and 4) fluctuations in many metabolite pools (e.g. wax esters) at different times of day result from species found at different depths within the mat responding to temporal differences

  9. Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms

    SciTech Connect

    Kim, Young-Mo; Nowack, Shane; Olsen, Millie; Becraft, Eric; Wood, Jason M.; Thiel, Vera; Klapper, Isaac; Kuhl, Michael; Fredrickson, Jim K.; Bryant, Donald A.; Ward, David M.; Metz, Thomas O.

    2015-04-17

    Dynamic environmental factors such as light, nutrients, salt, and temperature continuously affect chlorophototrophic microbial mats, requiring adaptative and acclimative responses to stabilize composition and function. Quantitative metabolomics analysis can provide insights into metabolite dynamics for understanding community response to such changing environmental conditions. In this study, we quantified volatile organic acids, polar metabolites (amino acids, glycolytic and citric acid cycle intermediates, nucleobases, nucleosides, and sugars), wax esters, and polyhydroxyalkanoates, resulting in the identification of 104 metabolites and related molecules in thermal chlorophototrophic microbial mat cores collected over a diel cycle in Mushroom Spring, Yellowstone National Park. A limited number of predominant taxa inhabiting this community and their functional potentials have been previously identified through metagenomic and metatranscriptomic analyses and in situ metabolisms and metabolic interactions among these taxa have been hypothesized. Our metabolomics results confirmed the diel cycling of photorespiration (e.g. glycolate) and fermentation (e.g. acetate, propionate, and lactate) products, the carbon storage polymers polyhydroxyalkanoates, and dissolved gases (e.g. H2 and CO2) in the waters overlying the mat, which were hypothesized to occur in major mat chlorophototrophic community members. In addition, we have formulated the following new hypotheses: 1) the morning hours are a time of biosynthesis of amino acids, DNA, and RNA; 2) Synechococcus spp. produce CH4 via metabolism of phosphonates, and photo-inhibited cells may also produce lactate via fermentation as an alternate metabolism; 3) glycolate and lactate are exchanged among Synechococcus and Roseiflexus spp.; and 4) fluctuations in many metabolite pools (e.g. wax esters) at different times of day result from species found at different depths within the mat responding to temporal differences in their

  10. How can Teachers Help Students Formulate Scientific Hypotheses? Some Strategies Found in Abductive Inquiry Activities of Earth Science

    NASA Astrophysics Data System (ADS)

    Oh, Phil Seok

    2010-03-01

    The purpose of this study was to find how the teacher could help students formulate scientific hypotheses. Data came from two microteaching episodes in which two groups of pre-service secondary science teachers taught high school students as they were engaged in abductive inquiry activities of earth science. Multiple data sources including video recordings of the microteaching, the pre-service teachers' oral and written reports, student worksheets, and instructional materials were examined. The analysis identified four categories of teaching strategies which could be used by science teachers to help students in hypothesis-generating inquiry. These included: (1) expanding and activating students' background knowledge, (2) providing analogies, (3) questioning, and (4) encouraging students to use alternative forms of representation. Implications for science education as well as for further research are suggested.

  11. Patterns of Reproductive Isolation in Eucalyptus-A Phylogenetic Perspective.

    PubMed

    Larcombe, Matthew J; Holland, Barbara; Steane, Dorothy A; Jones, Rebecca C; Nicolle, Dean; Vaillancourt, René E; Potts, Brad M

    2015-07-01

    We assess phylogenetic patterns of hybridization in the speciose, ecologically and economically important genus Eucalyptus, in order to better understand the evolution of reproductive isolation. Eucalyptus globulus pollen was applied to 99 eucalypt species, mainly from the large commercially important subgenus, Symphyomyrtus. In the 64 species that produce seeds, hybrid compatibility was assessed at two stages, hybrid-production (at approximately 1 month) and hybrid-survival (at 9 months), and compared with phylogenies based on 8,350 genome-wide DArT (diversity arrays technology) markers. Model fitting was used to assess the relationship between compatibility and genetic distance, and whether or not the strength of incompatibility "snowballs" with divergence. There was a decline in compatibility with increasing genetic distance between species. Hybridization was common within two closely related clades (one including E. globulus), but rare between E. globulus and species in two phylogenetically distant clades. Of three alternative models tested (linear, slowdown, and snowball), we found consistent support for a snowball model, indicating that the strength of incompatibility accelerates relative to genetic distance. Although we can only speculate about the genetic basis of this pattern, it is consistent with a Dobzhansky-Muller-model prediction that incompatibilities should snowball with divergence due to negative epistasis. Different rates of compatibility decline in the hybrid-production and hybrid-survival measures suggest that early-acting postmating barriers developed first and are stronger than later-acting barriers. We estimated that complete reproductive isolation can take up to 21-31 My in Eucalyptus. Practical implications for hybrid eucalypt breeding and genetic risk assessment in Australia are discussed. PMID:25777461

  12. Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta).

    PubMed

    Shaw, A J; Cox, C J; Goffinet, B; Buck, W R; Boles, S B

    2003-10-01

    Pleurocarpous mosses, characterized by lateral female gametangia and highly branched, interwoven stems, comprise three orders and some 5000 species, or almost half of all moss diversity. Recent phylogenetic analyses resolve the Ptychomniales as sister to the Hypnales plus Hookeriales. Species richness is highly asymmetric with approximately 100 Ptychomniales, 750 Hookeriales, and 4400 Hypnales. Chloroplast DNA (cpDNA) sequences were obtained to compare partitioning of molecular diversity among the orders with estimates of species richness, and to test the hypothesis that either the Hookeriales or Hypnales underwent a period (or periods) of exceptionally rapid diversification. Levels of biodiversity were quantified using explicitly historical "phylogenetic diversity" and non-historical estimates of standing sequence diversity. Diversification rates were visualized using lineage-through-time (LTT) plots, and statistical tests of alternative diversification models were performed using the methods of Paradis (1997). The effects of incomplete sampling on the shape of LTT plots and performance of statistical tests were investigated using simulated phylogenies with incomplete sampling. Despite a much larger number of accepted species, the Hypnales contain lower levels of (cpDNA) biodiversity than their sister group, the Hookeriales, based on all molecular measures. Simulations confirm previous results that incomplete sampling yields diversification patterns that appear to reflect a decreasing rate through time, even when the true phylogenies were simulated with constant rates. Comparisons between simulated results and empirical data indicate that a constant rate of diversification cannot be rejected for the Hookeriales. The Hypnales, however, appear to have undergone a period of exceptionally rapid diversification for the earliest 20% of their history.

  13. Phylogenetic niche conservatism – common pitfalls and ways forward

    PubMed Central

    Münkemüller, Tamara; Boucher, Florian C.; Thuiller, Wilfried; Lavergne, Sébastien

    2015-01-01

    1. The prevalence of phylogenetic niche conservatism (PNC) in nature is still a conflicting issue. Disagreement arises from confusion over its precise definition and the variety of approaches to measure its prevalence. Recent work highlighted that common measures of PNC strongly depend on the assumptions of the underlying model of niche evolution. However, this warning has not been well recognized in the applied literature and questionable approaches are still frequently applied. 2. The aim of this paper is to draw attention to the assumptions underlying commonly applied simple measures of PNC. We used a series of simulations to illustrate how misleading results can be if assumptions of niche evolution are violated, that the violation of assumptions is a common phenomenon and that testing assumptions requires in-depth pre-test. 3. We conclude that the seemingly simple measures of PNC, such as phylogenetic sign6al and evolutionary rate, are not so easy to apply if one accounts for the necessity to test model assumptions. In addition, these measures can be difficult to interpret. The common assumption that strong phylogenetic signal indicates PNC will be often invalid. In addition, the interpretation of some measures, e.g. the conclusion that evolutionary rate is slow enough to indicate PNC, requires a comparison with another clade, another trait or well-developed null model assumptions and thus additional data. 4. We suggest that studies investigating PNC should always compare alternative evolutionary models, and that model comparisons should in particular include flexible niche evolution models such as multiple-optima OU models, although these are computational intensive. These models are directly inherited from the concept of macro-evolutionary adaptive landscape, and can indicate PNC either by relative few peak shifts or by narrow peaks in the adaptive landscape. A test of PNC thus requires comparing these parameters of the macroevolutionary landscape between

  14. A New Orthology Assessment Method for Phylogenomic Data: Unrooted Phylogenetic Orthology.

    PubMed

    Ballesteros, Jesús A; Hormiga, Gustavo

    2016-08-01

    Current sequencing technologies are making available unprecedented amounts of genetic data for a large variety of species including nonmodel organisms. Although many phylogenomic surveys spend considerable time finding orthologs from the wealth of sequence data, these results do not transcend the original study and after being processed for specific phylogenetic purposes these orthologs do not become stable orthology hypotheses. We describe a procedure to detect and document the phylogenetic distribution of orthologs allowing researchers to use this information to guide selection of loci best suited to test specific evolutionary questions. At the core of this pipeline is a new phylogenetic orthology method that is neither affected by the position of the root nor requires explicit assignment of outgroups. We discuss the properties of this new orthology assessment method and exemplify its utility for phylogenomics using a small insects dataset. In addition, we exemplify the pipeline to identify and document stable orthologs for the group of orb-weaving spiders (Araneoidea) using RNAseq data. The scripts used in this study, along with sample files and additional documentation, are available at https://github.com/ballesterus/UPhO. PMID:27189539

  15. Phylogenetic diversity theory sheds light on the structure of microbial communities.

    PubMed

    O'Dwyer, James P; Kembel, Steven W; Green, Jessica L

    2012-01-01

    Microbial communities are typically large, diverse, and complex, and identifying and understanding the processes driving their structure has implications ranging from ecosystem stability to human health and well-being. Phylogenetic data gives us a new insight into these processes, providing a more informative perspective on functional and trait diversity than taxonomic richness alone. But the sheer scale of high resolution phylogenetic data also presents a new challenge to ecological theory. We bring a sampling theory perspective to microbial communities, considering a local community of co-occuring organisms as a sample from a larger regional pool, and apply our framework to make analytical predictions for local phylogenetic diversity arising from a given metacommunity and community assembly process. We characterize community assembly in terms of quantitative descriptions of clustered, random and overdispersed sampling, which have been associated with hypotheses of environmental filtering and competition. Using our approach, we analyze large microbial communities from the human microbiome, uncovering significant variation in diversity across habitats relative to the null hypothesis of random sampling. PMID:23284280

  16. The phylogenetic status of Paxillosida (Asteroidea) based on complete mitochondrial DNA sequences.

    PubMed

    Matsubara, Mioko; Komatsu, Miéko; Araki, Takeyoshi; Asakawa, Shuichi; Yokobori, Shin-ichi; Watanabe, Kimitsuna; Wada, Hiroshi

    2005-09-01

    One of the most important issues in asteroid phylogeny is the phylogenetic status of Paxillosida. This group lacks an anus and suckers on the tube feet in adults and does not develop the brachiolaria stage in early development. Two controversial hypotheses have been proposed for the phylogenetic status of Paxillosida, i.e., Paxillosida is primitive or rather specialized in asteroids. In this study, we determined the complete mitochondrial DNA nucleotide sequences from two paxillosidans (Astropecten polyacanthus and Luidia quinaria) and one forcipulatidan (Asterias amurensis). The mitochondrial genomes of the three asteroids were identical with respect to gene order and transcription direction, and were identical to the previously reported mitochondrial genomes of Asterina pectinifera (Valvatida) and Pisaster ochraceus (Forcipulatida) in this respect. Therefore, the comparison of genome structures was uninformative for the purposes of asteroid phylogeny. However, molecular phylogenetic analyses based on the amino acid sequences and the nucleotide sequences from the five asteroids supported the monophyly of the clade that included the two paxillosidans and Asterina. This suggests that the paxillosidan characters are secondarily derived ones.

  17. Congruent phylogenetic and fossil signatures of mammalian diversification dynamics driven by Tertiary abiotic change.

    PubMed

    Cantalapiedra, Juan L; Hernández Fernández, Manuel; Azanza, Beatriz; Morales, Jorge

    2015-11-01

    Computational methods for estimating diversification rates from extant species phylogenetic trees have become abundant in evolutionary research. However, little evidence exists about how their outcome compares to a complementary and direct source of information: the fossil record. Furthermore, there is virtually no direct test for the congruence of evolutionary rates based on these two sources. This task is only achievable in clades with both a well-known fossil record and a complete phylogenetic tree. Here, we compare the evolutionary rates of ruminant mammals as estimated from their vast paleontological record--over 1200 species spanning 50 myr--and their living-species phylogeny. Significantly, our results revealed that the ruminant's fossil record and phylogeny reflect congruent evolutionary processes. The concordance is especially strong for the last 25 myr, when living groups became a dominant part of ruminant diversity. We found empirical support for previous hypotheses based on simulations and neontological data: The pattern captured by the tree depends on how clade specific the processes are and which clades are involved. Also, we report fossil evidence for a postradiation speciation slowdown coupled with constant, moderate extinction in the Miocene. The recent deceleration in phylogenetic rates is connected to rapid extinction triggered by recent climatic fluctuations. PMID:26427031

  18. Phylogenetic relationships in Nuphar (Nymphaeaceae): evidence from morphology, chloroplast DNA, and nuclear ribosomal DNA.

    PubMed

    Padgett, D J; Les, D H; Crow, G E

    1999-09-01

    The genus Nuphar consists of yellow-flowered waterlilies and is widely distributed in north-temperate bodies of water. Despite regular taxonomic evaluation of these plants, no explicit phylogenetic hypotheses have been proposed for the genus. We investigated phylogenetic relationships in Nuphar using morphology and sequences of the chloroplast gene matK and of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. Two major lineages within Nuphar are consistently resolved with the morphological and molecular data sets. One lineage comprises New World taxa and the other represents a primarily Old World lineage. Relationships within the major lineages were poorly resolved by morphology and ITS, yet certain relationships were elucidated by all analyses. Most notable is the strong support for a monophyletic lineage of dwarf taxa and the alliance of the North American N. microphylla with the Eurasian taxa. Minor discordance between the independent cladograms is accounted for by hybridization. The common taxonomic practice of uniting all North American and Eurasian taxa under one species is not supported phylogenetically.

  19. Congruent phylogenetic and fossil signatures of mammalian diversification dynamics driven by Tertiary abiotic change.

    PubMed

    Cantalapiedra, Juan L; Hernández Fernández, Manuel; Azanza, Beatriz; Morales, Jorge

    2015-11-01

    Computational methods for estimating diversification rates from extant species phylogenetic trees have become abundant in evolutionary research. However, little evidence exists about how their outcome compares to a complementary and direct source of information: the fossil record. Furthermore, there is virtually no direct test for the congruence of evolutionary rates based on these two sources. This task is only achievable in clades with both a well-known fossil record and a complete phylogenetic tree. Here, we compare the evolutionary rates of ruminant mammals as estimated from their vast paleontological record--over 1200 species spanning 50 myr--and their living-species phylogeny. Significantly, our results revealed that the ruminant's fossil record and phylogeny reflect congruent evolutionary processes. The concordance is especially strong for the last 25 myr, when living groups became a dominant part of ruminant diversity. We found empirical support for previous hypotheses based on simulations and neontological data: The pattern captured by the tree depends on how clade specific the processes are and which clades are involved. Also, we report fossil evidence for a postradiation speciation slowdown coupled with constant, moderate extinction in the Miocene. The recent deceleration in phylogenetic rates is connected to rapid extinction triggered by recent climatic fluctuations.

  20. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  1. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation.

  2. Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes

    PubMed Central

    Hill, Malcolm S.; Hill, April L.; Lopez, Jose; Peterson, Kevin J.; Pomponi, Shirley; Diaz, Maria C.; Thacker, Robert W.; Adamska, Maja; Boury-Esnault, Nicole; Cárdenas, Paco; Chaves-Fonnegra, Andia; Danka, Elizabeth; De Laine, Bre-Onna; Formica, Dawn; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Klontz, Sarah; Morrow, Christine C.; Patel, Jignasa; Picton, Bernard; Pisani, Davide; Pohlmann, Deborah; Redmond, Niamh E.; Reed, John; Richey, Stacy; Riesgo, Ana; Rubin, Ewelina; Russell, Zach; Rützler, Klaus; Sperling, Erik A.; di Stefano, Michael; Tarver, James E.; Collins, Allen G.

    2013-01-01

    Background Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges. Methodology/Principal Findings We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the marine haplosclerids) and Democlaviap. We found conflicting results concerning the relationships of Keratosap and Myxospongiaep to the remaining demosponges, but our results strongly supported a clade of Haploscleromorphap+Spongillidap+Democlaviap. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillidap) are sister to Haploscleromorphap rather than part of Democlaviap. Within Keratosap, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiaep, Chondrosida and Verongida were monophyletic. A well-supported clade within Democlaviap, Tetractinellidap, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlaviap. Within Tetractinellidap, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida. Conclusions/Significance These results, using an

  3. Placing cryptic, recently extinct, or hypothesized taxa into an ultrametric phylogeny using continuous character data: a case study with the lizard Anolis roosevelti.

    PubMed

    Revell, Liam J; Mahler, D Luke; Reynolds, R Graham; Slater, Graham J

    2015-04-01

    In recent years, enormous effort and investment has been put into assembling the tree of life: a phylogenetic history for all species on Earth. Overwhelmingly, this progress toward building an ever increasingly complete phylogeny of living things has been accomplished through sophisticated analysis of molecular data. In the modern genomic age, molecular genetic data have become very easy and inexpensive to obtain for many species. However, some lineages are poorly represented in or absent from tissue collections, or are unavailable for molecular analysis for other reasons such as restrictive biological sample export laws. Other species went extinct recently and are only available in formalin museum preparations or perhaps even as subfossils. In this brief communication we present a new method for placing cryptic, recently extinct, or hypothesized taxa into an ultrametric phylogeny of extant taxa using continuous character data. This method is based on a relatively simple modification of an established maximum likelihood (ML) method for phylogeny inference from continuous traits. We show that the method works well on simulated trees and data. We then apply it to the case of placing the Culebra Island Giant Anole (Anolis roosevelti) into a phylogeny of Caribbean anoles. Anolis roosevelti is a "crown-giant" ecomorph anole hypothesized to have once been found throughout the Spanish, United States, and British Virgin Islands, but that has not been encountered or collected since the 1930s. Although this species is widely thought to be closely related to the Puerto Rican giant anole, A. cuvieri, our ML method actually places A. roosevelti in a different part of the tree and closely related to a clade of morphologically similar species. We are unable, however, to reject a phylogenetic position for A. roosevelti that places it as sister taxon to A. cuvieri; although close relationship with the remainder of Puerto Rican anole species is strongly rejected by our method. PMID

  4. Impacts of Terraces on Phylogenetic Inference.

    PubMed

    Sanderson, Michael J; McMahon, Michelle M; Stamatakis, Alexandros; Zwickl, Derrick J; Steel, Mike

    2015-09-01

    Terraces are sets of trees with precisely the same likelihood or parsimony score, which can be induced by missing sequences in partitioned multi-locus phylogenetic data matrices. The potentially large set of trees on a terrace can be characterized by enumeration algorithms or consensus methods that exploit the pattern of partial taxon coverage in the data, independent of the sequence data themselves. Terraces can add ambiguity and complexity to phylogenetic inference, particularly in settings where inference is already challenging: data sets with many taxa and relatively few loci. In this article we present five new findings about terraces and their impacts on phylogenetic inference. First, we clarify assumptions about partitioning scheme model parameters that are necessary for the existence of terraces. Second, we explore the dependence of terrace size on partitioning scheme and indicate how to find the partitioning scheme associated with the largest terrace containing a given tree. Third, we highlight the impact of terrace size on bootstrap estimates of confidence limits in clades, and characterize the surprising result that the bootstrap proportion for a clade, as it is usually calculated, can be entirely determined by the frequency of bipartitions on a terrace, with some bipartitions receiving high support even when incorrect. Fourth, we dissect some effects of prior distributions of edge lengths on the computed posterior probabilities of clades on terraces, to understand an example in which long edges "attract" each other in Bayesian inference. Fifth, we describe how assuming relationships between edge-lengths of different loci, as an attempt to avoid terraces, can also be problematic when taxon coverage is partial, specifically when heterotachy is present. Finally, we discuss strategies for remediation of some of these problems. One promising approach finds a minimal set of taxa which, when deleted from the data matrix, reduces the size of a terrace to a

  5. Using tree diversity to compare phylogenetic heuristics

    PubMed Central

    Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L

    2009-01-01

    Background Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Results Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Conclusion Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees—especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest. PMID:19426451

  6. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  7. Phylogenetic and Biogeographic Analysis of Sphaerexochine Trilobites

    PubMed Central

    Congreve, Curtis R.; Lieberman, Bruce S.

    2011-01-01

    Background Sphaerexochinae is a speciose and widely distributed group of cheirurid trilobites. Their temporal range extends from the earliest Ordovician through the Silurian, and they survived the end Ordovician mass extinction event (the second largest mass extinction in Earth history). Prior to this study, the individual evolutionary relationships within the group had yet to be determined utilizing rigorous phylogenetic methods. Understanding these evolutionary relationships is important for producing a stable classification of the group, and will be useful in elucidating the effects the end Ordovician mass extinction had on the evolutionary and biogeographic history of the group. Methodology/Principal Findings Cladistic parsimony analysis of cheirurid trilobites assigned to the subfamily Sphaerexochinae was conducted to evaluate phylogenetic patterns and produce a hypothesis of relationship for the group. This study utilized the program TNT, and the analysis included thirty-one taxa and thirty-nine characters. The results of this analysis were then used in a Lieberman-modified Brooks Parsimony Analysis to analyze biogeographic patterns during the Ordovician-Silurian. Conclusions/Significance The genus Sphaerexochus was found to be monophyletic, consisting of two smaller clades (one composed entirely of Ordovician species and another composed of Silurian and Ordovician species). By contrast, the genus Kawina was found to be paraphyletic. It is a basal grade that also contains taxa formerly assigned to Cydonocephalus. Phylogenetic patterns suggest Sphaerexochinae is a relatively distinctive trilobite clade because it appears to have been largely unaffected by the end Ordovician mass extinction. Finally, the biogeographic analysis yields two major conclusions about Sphaerexochus biogeography: Bohemia and Avalonia were close enough during the Silurian to exchange taxa; and during the Ordovician there was dispersal between Eastern Laurentia and the Yangtze block

  8. Budgeted phylogenetic diversity on circular split systems.

    PubMed

    Minh, Bui Quang; Pardi, Fabio; Klaere, Steffen; von Haeseler, Arndt

    2009-01-01

    In the last 15 years, Phylogenetic Diversity (PD) has gained interest in the community of conservation biologists as a surrogate measure for assessing biodiversity. We have recently proposed two approaches to select taxa for maximizing PD, namely PD with budget constraints and PD on split systems. In this paper, we will unify these two strategies and present a dynamic programming algorithm to solve the unified framework of selecting taxa with maximal PD under budget constraints on circular split systems. An improved algorithm will also be given if the underlying split system is a tree.

  9. Concepts of Classification and Taxonomy Phylogenetic Classification

    NASA Astrophysics Data System (ADS)

    Fraix-Burnet, D.

    2016-05-01

    Phylogenetic approaches to classification have been heavily developed in biology by bioinformaticians. But these techniques have applications in other fields, in particular in linguistics. Their main characteristics is to search for relationships between the objects or species in study, instead of grouping them by similarity. They are thus rather well suited for any kind of evolutionary objects. For nearly fifteen years, astrocladistics has explored the use of Maximum Parsimony (or cladistics) for astronomical objects like galaxies or globular clusters. In this lesson we will learn how it works.

  10. The phylogenetic problem of Huia (Amphibia: Ranidae).

    PubMed

    Stuart, Bryan L

    2008-01-01

    A taxonomic consensus for the diverse and pan-global frog family Ranidae is lacking. A recently proposed classification of living amphibians [Frost, D.R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C.F.B., de Sá, R.O., Channing, A., Wilkinson, M., Donnellan, S.C., Raxworthy, C.J., Campbell, J.A., Blotto, B.L., Moler, P., Drewes, R.C., Nussbaum, R.A., Lynch, J.D., Green, D.M., Wheeler, W.C., 2006. The amphibian tree of life. B. Am. Mus. Nat. Hist. 297, 1-370] included expansion of the Southeast Asian ranid frog genus Huia from seven to 47 species, but without having studied the type species of Huia. This study tested the monophyly of this concept of Huia by sampling the type species and putative members of Huia. Molecular phylogenetic analyses consistently recovered the type species H. cavitympanum as the sister taxon to other Bornean-endemic species in the genus Meristogenys, rendering all previously published concepts of Huia as polyphyletic. Members of Huia sensu [Frost, D.R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C.F.B., de Sá, R.O., Channing, A., Wilkinson, M., Donnellan, S.C., Raxworthy, C.J., Campbell, J.A., Blotto, B.L., Moler, P., Drewes, R.C., Nussbaum, R.A., Lynch, J.D., Green, D.M., Wheeler, W.C., 2006. The amphibian tree of life. B. Am. Mus. Nat. Hist. 297, 1-370.] appear in four places within the family Ranidae. A clade containing the type species of Odorrana is phylogenetically unrelated to the type species of Huia, and Odorrana is removed from synonymy with Huia. These findings underscore the need to include relevant type species in phylogenetic studies before proposing sweeping taxonomic changes. The molecular phylogenetic analyses revealed a high degree of homoplasy in larval and adult morphology of Asian ranid frogs. Detailed studies are needed to identify morphological synapomorphies that unite members in these major clades of ranid frogs.

  11. Sequence and Phylogenetic Analysis of FAD Synthetase

    NASA Astrophysics Data System (ADS)

    Schubert, Luisa; Frago, Susana; Martínez-Júlvez, Marta; Medina, Milagros

    2006-08-01

    An evolutionary analysis of the sequences available till now for FAD synthetases has been carried out. Several identical conserved residues have been observed along the sequences of all the FAD synthetases analyzed, which might correlate with role for these residues in the catalytic activity of the enzyme. Phylogenetic analysis shows that FAD synthetase sequences can be organized in two main clusters. One of them mainly contains temperature, pressure or pH resistant organisms, whereas in the other one organisms with pathogenic character can be found.

  12. MINER: software for phylogenetic motif identification.

    PubMed

    La, David; Livesay, Dennis R

    2005-07-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at http://www.pmap.csupomona.edu/MINER/. Source code is available to the academic community on request.

  13. Heterochrony repolarized: a phylogenetic analysis of developmental timing in plethodontid salamanders

    PubMed Central

    2014-01-01

    Background Disentangling evolutionary shifts in developmental timing (heterochony) is dependent upon accurate estimates of ancestral patterns. However, many classic assessments of heterochronic patterns predate robust phylogenetic hypotheses and methods for trait reconstruction, and therefore may have been polarized with untested ‘primitive’ conditions. Here we revisit the heterochronic modes of development that underlie the evolution of metamorphosis, maturation, and paedomorphosis in plethodontid salamanders. We focus on the tribe Spelerpini, which is a diverse clade that exhibits tremendous variation in timing of metamorphosis and maturation, as well as multiple independent instances of larval form paedomorphosis. Based on morphology and biogeography, early investigators concluded that the most recent common ancestors of plethodontids, and also spelerpines, were large salamanders, with very long larval periods and late maturation times. This prevailing assumption influenced subsequent heterochronic assessments, which concluded that most modern spelerpines (with shorter larval periods) were derived through multiple independent accelerations in larval development. It was also concluded that most occurrences of larval form paedomorphosis in this clade resulted from progenesis (acceleration of gonadal development relative to metamorphosis). Results By reconstructing the time to metamorphosis on a molecular-based phylogeny of plethodontids, we find that ancestral spelerpines likely had relatively shorter larval periods than previously proposed. Taken together with the credibility interval from our ancestral state estimation we show that very long larval periods are likely derived decelerations, only a few lineages have undergone appreciable accelerations in metamorphic timing, and the remaining taxa have lower probabilities of being different than the ancestral condition (possibly due to stasis). Reconstructing maturation age across nodes concomitant with the

  14. Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    PubMed Central

    Voigt, Oliver; Wülfing, Eilika; Wörheide, Gert

    2012-01-01

    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a

  15. Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera, Class Calcarea).

    PubMed

    Voigt, Oliver; Wülfing, Eilika; Wörheide, Gert

    2012-01-01

    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a

  16. Phylogenetic relationships and the evolution of BMP4 in triggerfishes and filefishes (Balistoidea).

    PubMed

    McCord, Charlene L; Westneat, Mark W

    2016-01-01

    The triggerfishes (family Balistidae) and filefishes (family Monacanthidae) comprise a charismatic superfamily (Balistoidea) within the diverse order Tetraodontiformes. This group of largely marine fishes occupies an impressive ecological range across the world's oceans, and is well known for its locomotor and feeding diversity, unusual body shapes, small genome size, and ecological and economic importance. In order to investigate the evolutionary history of these important fish families, we used multiple phylogenetic methods to analyze molecular data from 86 species spanning the extant biodiversity of Balistidae and Monacanthidae. In addition to three gene regions that have been used extensively in phylogenetic analyses, we include sequence data for two mitochondrial regions, two nuclear markers, and the growth factor gene bmp4, which is involved with cranial development. Phylogenetic analyses strongly support the monophyly of the superfamily Balistoidea, the sister-family relationship of Balistidae and Monacanthidae, as well as three triggerfish and four filefish clades that are well resolved. A new classification for the Balistidae is proposed based on phylogenetic groups. Bayesian topology, as well as the timing of major cladogenesis events, is largely congruent with previous hypotheses of balistid phylogeny. However, we present a novel topology for major clades in the filefish family that illustrate the genera Aluterus and Stephanolepis are more closely related than previously posited. Molecular rates suggest a Miocene and Oligocene origin for the families Balistidae and Monacanthidae, respectively, and significant divergence of species in both families within the past 5 million years. A second key finding of this study is that, relative to the other protein-coding gene regions in our DNA supermatrix, bmp4 shows a rapid accumulation of both synonymous and non-synonymous substitutions, especially within the family Monacanthidae. Overall substitution patterns in

  17. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria

    PubMed Central

    2008-01-01

    Background Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium

  18. Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships

    PubMed Central

    Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan

    2015-01-01

    Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals. PMID:25691955

  19. Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships.

    PubMed

    Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan

    2015-01-01

    Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals. PMID:25691955

  20. Multigene analysis of phylogenetic relationships and divergence times of primate sucking lice (Phthiraptera: Anoplura).

    PubMed

    Light, Jessica E; Reed, David L

    2009-02-01

    Cospeciation between hosts and parasites offers a unique opportunity to use information from parasites to infer events in host evolutionary history. Although lice (Insecta: Phthiraptera) are known to cospeciate with their hosts and have frequently served as important markers to infer host evolutionary history, most molecular studies are based on only one or two markers. Resulting phylogenies may, therefore, represent gene histories (rather than species histories), and analyses of multiple molecular markers are needed to increase confidence in the results of phylogenetic analyses. Herein, we phylogenetically examine nine molecular markers in primate sucking lice (Phthiraptera: Anoplura) and we use these markers to estimate divergence times among louse lineages. Individual and combined analyses of these nine markers are, for the most part, congruent, supporting relationships hypothesized in previous studies. Only one marker, the nuclear protein-coding gene Histone 3, has a significantly different tree topology compared to the other markers. The disparate evolutionary history of this marker, however, has no significant effect on topology or nodal support in the combined phylogenetic analyses. Therefore, phylogenetic results from the combined data set likely represent a solid hypothesis of species relationships. Additionally, we find that simultaneous use of multiple markers and calibration points provides the most reliable estimates of louse divergence times, in agreement with previous studies estimating divergences among species. Estimates of phylogenies and divergence times also allow us to verify the results of [Reed, D.L., Light, J.E., Allen, J.M., Kirchman, J.J., 2007. Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice. BMC Biol. 5, 7.]; there was probable contact between gorilla and archaic hominids roughly 3 Ma resulting in a host switch of Pthirus lice from gorillas to archaic hominids. Thus, these results provide

  1. Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships.

    PubMed

    Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan

    2015-01-01

    Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.

  2. Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences.

    PubMed

    Fan, C

    2001-06-01

    Phylogenetic relationships within the dogwood genus Cornus have been highly controversial due to the great morphological heterogeneity. Earlier phylogenetic analyses of Cornus using chloroplast DNA (cpDNA) data (including rbcL and matK sequences, as well as restriction sites) and morphological characters suggested incongruent relationships within the genus. The present study generated sequence data from the nuclear gene 26S rDNA for Cornus to test the phylogenetic hypotheses based on cpDNA and morphological data. The 26S rDNA sequence data obtained represent 16 species, 13 from Cornus and three from outgroups, having an aligned length of 3380 bp. Both parsimony and maximum likelihood analyses of these sequences were conducted. Trees resulting from these analyses suggest relationships among subgroups of Cornus consistent with those inferred from cpDNA data. That is, the dwarf dogwood (subg. Arctocrania) and the big-bracted dogwood (subg. Cynoxylon and subg. Syncarpea) clades are sisters, which are, in turn, sister to the cornelian cherries (subg. Cornus and subg. Afrocrania). This red-fruited clade is sister to the blue- or white-fruited dogwoods (subg. Mesomora, subg. Kraniopsis, and subg. Yinquania). Within the blue- or white-fruited clade, C. oblonga (subg. Yinquania) is sister to the remainder, and subg. Mesomora is sister to subg. Kraniopsis. These relationships were also suggested by the combined 26S rDNA and cpDNA data, but with higher bootstrap and Bremer support in the combined analysis. The 26S rDNA sequence data of Cornus consist of 12 expansion segments spanning 1034 bp. These expansion segments evolve approximately four times as fast as the conserved core regions. The study provides an example of phylogenetic utility of 26S rDNA sequences below the genus level. PMID:11410478

  3. Diversity, phylogenetic distribution, and origins of venomous catfishes

    PubMed Central

    2009-01-01

    Background The study of venomous fishes is in a state of relative infancy when compared to that of other groups of venomous organisms. Catfishes (Order Siluriformes) are a diverse group of bony fishes that have long been known to include venomous taxa, but the extent and phylogenetic distribution of this venomous species diversity has never been documented, while the nature of the venoms themselves also remains poorly understood. In this study, I used histological preparations from over 100 catfish genera, basic biochemical and toxicological analyses of fin spine extracts from several species, and previous systematic studies of catfishes to examine the distribution of venom glands in this group. These results also offer preliminary insights into the evolutionary history of venom glands in the Siluriformes. Results Histological examinations of 158 catfish species indicate that approximately 1250-1625+ catfish species should be presumed to be venomous, when viewed in conjunction with several hypotheses of siluriform phylogeny. Maximum parsimony character optimization analyses indicate two to three independent derivations of venom glands within the Siluriformes. A number of putative toxic peptides were identified in the venoms of catfish species from many of the families determined to contain venomous representatives. These peptides elicit a wide array of physiological effects in other fishes, though any one species examined produced no more than three distinct putative toxins in its venom. The molecular weights and effects produced by these putative toxic peptides show strong similarities to previously characterized toxins found in catfish epidermal secretions. Conclusion Venom glands have evolved multiple times in catfishes (Order Siluriformes), and venomous catfishes may outnumber the combined diversity of all other venomous vertebrates. The toxic peptides found in catfish venoms may be derived from epidermal secretions that have been demonstrated to accelerate the

  4. New algorithms for reconstructing phylogenetic trees

    SciTech Connect

    Dress, A.

    1994-12-31

    Since the time of Linne, classification of living beings into subspecies, species, orders, families etc. has been an important task in biology. With the advent of molecular biology, many more data have become available which can be exploited for this purpose using comparative sequence analysis, while the sheer amount of these data stored presently in biomolecular data bases make automated classification procedures unavoidable. Consequently, many algorithms have been developed in the last 25 years to support this task. In the lecture, an amazingly successful polynomial algorithm for analysing all sorts of distance data derived from sequence analysis (or elsewhere) will be presented which simultaneously highlights phylogenetic similarity and similarity caused by convergent evolution. In addition to sketching the mathematics on which the algorithm is based and discussing its implementation (including some interesting computer graphics aspects), various proper biological examples will be presented which stretch from the analysis of data relating to the origin of life and the first bifurcations into the various {open_quote}kingdoms of life{close_quote} to the analysis of data relating to, say, the phylogenetic history of mammals or that of the AIDS or the Influenca virus family.

  5. Phylogenetic analysis of ancient DNA using BEAST.

    PubMed

    Ho, Simon Y W

    2012-01-01

    Under exceptional circumstances, it is possible to obtain DNA sequences from samples that are up to hundreds of thousands of years old. These data provide an opportunity to look directly at past genetic diversity, to trace the evolutionary process through time, and to infer demographic and phylogeographic trends. Ancient DNA (aDNA) data sets have some degree of intrinsic temporal structure because the sequences have been obtained from samples of different ages. When analyzing these data sets, it is usually necessary to take the sampling times into account. A number of phylogenetic methods have been designed with this purpose in mind. Here I describe the steps involved in Bayesian phylogenetic analysis of aDNA data. I outline a procedure that can be used to co-estimate the genealogical relationships, mutation rate, evolutionary timescale, and demographic history of the study species in a single analytical framework. A number of modifications to the methodology can be made in order to deal with complicating factors such as postmortem damage, sequences from undated samples, and data sets with low information content.

  6. On phylogenetic tests of irreversible evolution.

    PubMed

    Goldberg, Emma E; Igić, Boris

    2008-11-01

    "Dollo's law" states that, following loss, a complex trait cannot reevolve in an identical manner. Although the law has previously fallen into disrepute, it has only recently been challenged with statistical phylogenetic methods. We employ simulation studies of an irreversible binary character to show that rejections of Dollo's law based on likelihood-ratio tests of transition rate constraints or on reconstructions of ancestral states are frequently incorrect. We identify two major causes of errors: incorrect assignment of root state frequencies, and neglect of the effect of the character state on rates of speciation and extinction. Our findings do not necessarily overturn the conclusions of phylogenetic studies claiming reversals, but we demonstrate devastating flaws in the methods that are the foundation of all such studies. Furthermore, we show that false rejections of Dollo's law can be reduced by the use of appropriate existing models and model selection procedures. More powerful tests of irreversibility require data beyond phylogenies and character states of extant taxa, and we highlight empirical work that incorporates additional information.

  7. Phylogenetic analysis of ancient DNA using BEAST.

    PubMed

    Ho, Simon Y W

    2012-01-01

    Under exceptional circumstances, it is possible to obtain DNA sequences from samples that are up to hundreds of thousands of years old. These data provide an opportunity to look directly at past genetic diversity, to trace the evolutionary process through time, and to infer demographic and phylogeographic trends. Ancient DNA (aDNA) data sets have some degree of intrinsic temporal structure because the sequences have been obtained from samples of different ages. When analyzing these data sets, it is usually necessary to take the sampling times into account. A number of phylogenetic methods have been designed with this purpose in mind. Here I describe the steps involved in Bayesian phylogenetic analysis of aDNA data. I outline a procedure that can be used to co-estimate the genealogical relationships, mutation rate, evolutionary timescale, and demographic history of the study species in a single analytical framework. A number of modifications to the methodology can be made in order to deal with complicating factors such as postmortem damage, sequences from undated samples, and data sets with low information content. PMID:22237538

  8. A phylogenetic blueprint for a modern whale.

    PubMed

    Gatesy, John; Geisler, Jonathan H; Chang, Joseph; Buell, Carl; Berta, Annalisa; Meredith, Robert W; Springer, Mark S; McGowen, Michael R

    2013-02-01

    The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life.

  9. [Phylogenetic elements in Goethe's theory of colors].

    PubMed

    Solch, R

    1996-07-16

    Phylogenetic findings in the field of human color vision are compared with Goethe's theory of colors. Goethe's research into nature was often based on his view that whenever you find complex ("mannigfaltige') natural phenomena, there has always been a development from simple phenomena. In this connexion his interest focused on the identification of primordial phenomena ("Urphänomene') and not on the temporal aspects of development. This was also true for his studies of color. Based on erroneous interpretations of prismatic experiments, he put forward the theory that all colors developed from the two primordial colors yellow and blue, which were, according to Goethe, the two "first and simplest colors'. Although some of his assumptions were incorrect, his theory has many similarities with current phylogenetic findings, according to which our color vision is derived from an original perception of two colors, possibly yellow and blue. This similarity needs clarification on an interdisciplinary level as well as research to determine the degree to which Goethe's own physiological condition influenced his study of colors. The author suggests that a reappraisal of this, the largest section of Goethe's scientific work is now necessary.

  10. Posterior predictive Bayesian phylogenetic model selection.

    PubMed

    Lewis, Paul O; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-05-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand-Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. PMID:24193892

  11. A Distance Measure for Genome Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  12. Social engagement and attachment: a phylogenetic perspective.

    PubMed

    Porges, Stephen W

    2003-12-01

    This article focuses on the importance of social engagement and the behavioral and neurophysiological mechanisms that allow individuals to reduce psychological and physical distance. A model of social engagement derived from the Polyvagal Theory is presented. The model emphasizes phylogeny as an organizing principle and includes the following points: (1) there are well-defined neural circuits to support social engagement behaviors and the defensive strategies of fight, flight, and freeze; (2) these neural circuits form a phylogenetically organized hierarchy; (3) without being dependent on conscious awareness, the nervous system evaluates risk in the environment and regulates the expression of adaptive behavior to match the neuroception of a safe, dangerous, or life-threatening environment; (4) social engagement behaviors and the benefits of the physiological states associated with social support require a neuroception of safety; (5) social behaviors associated with nursing, reproduction, and the formation of strong pair bonds require immobilization without fear; and (6) immobilization without fear is mediated by a co-opting of the neural circuit regulating defensive freezing behaviors through the involvement of oxytocin, a neuropeptide in mammals involved in the formation of social bonds. The model provides a phylogenetic interpretation of the neural mechanisms mediating the behavioral and physiological features associated with stress and several psychiatric disorders.

  13. Phylogenetically-informed priorities for amphibian conservation.

    PubMed

    Isaac, Nick J B; Redding, David W; Meredith, Helen M; Safi, Kamran

    2012-01-01

    The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species' threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list) for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species' phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our 'top 100' list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history.

  14. NAPP: the Nucleic Acid Phylogenetic Profile Database.

    PubMed

    Ott, Alban; Idali, Anouar; Marchais, Antonin; Gautheret, Daniel

    2012-01-01

    Nucleic acid phylogenetic profiling (NAPP) classifies coding and non-coding sequences in a genome according to their pattern of conservation across other genomes. This procedure efficiently distinguishes clusters of functional non-coding elements in bacteria, particularly small RNAs and cis-regulatory RNAs, from other conserved sequences. In contrast to other non-coding RNA detection pipelines, NAPP does not require the presence of conserved RNA secondary structure and therefore is likely to identify previously undetected RNA genes or elements. Furthermore, as NAPP clusters contain both coding and non-coding sequences with similar occurrence profiles, they can be analyzed under a functional perspective. We recently improved the NAPP pipeline and applied it to a collection of 949 bacterial and 68 archaeal species. The database and web interface available at http://napp.u-psud.fr/ enable detailed analysis of NAPP clusters enriched in non-coding RNAs, graphical display of phylogenetic profiles, visualization of predicted RNAs in their genome context and extraction of predicted RNAs for use with genome browsers or other software.

  15. Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences.

    PubMed

    Kim, Man Il; Wan, Xinlong; Kim, Min Jee; Jeong, Heon Cheon; Ahn, Neung-Ho; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2010-11-01

    The molecular phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy; this debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of three outgroup species belonging to three lepidopteran superfamilies. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. The monophyletic Pieridae and monophyletic Papilionidae evidenced good recovery in all analyses, but in some analyses, the monophylies of the Lycaenidae and Nymphalidae were hampered by the inclusion of single species of the lycaenid subfamily Miletinae and the nymphalid subfamily Danainae. Excluding those singletons, all phylogenetic analyses among the four true butterfly families clearly identified the Nymphalidae as the sister to the Lycaenidae and identified this group as a sister to the Pieridae, with the Papilionidae identified as the most basal linage to the true butterfly, thus supporting the hypothesis: (Papilionidae + (Pieridae + (Nymphalidae + Lycaenidae))).

  16. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae

    PubMed Central

    Liu, Hui; Xu, Qiuyuan; He, Pengcheng; Santiago, Louis S.; Yang, Keming; Ye, Qing

    2015-01-01

    The early diverged Magnoliaceae shows a historical temperate-tropical distribution among lineages indicating divergent evolution, yet which ecophysiological traits are phylogenetically conserved, and whether these traits are involved in correlated evolution remain unclear. Integrating phylogeny and 20 ecophysiological traits of 27 species, from the four largest sections of Magnoliaceae, we tested the phylogenetic signals of these traits and the correlated evolution between trait pairs. Phylogenetic niche conservatism (PNC) in water-conducting and nutrient-use related traits was identified, and correlated evolution of several key functional traits was demonstrated. Among the three evergreen sections of tropical origin, Gwillimia had the lowest hydraulic-photosynthetic capacity and the highest drought tolerance compared with Manglietia and Michelia. Contrastingly, the temperate centred deciduous section, Yulania, showed high rates of hydraulic conductivity and photosynthesis at the cost of drought tolerance. This study elucidated the regulation of hydraulic and photosynthetic processes in the temperate-tropical adaptations for Magnoliaceae species, which led to strong phylogenetic signals and PNC in ecophysiological traits across divergent lineages of Magnoliaceae. PMID:26179320

  17. Morphological, molecular and phylogenetic analyses of the spirurid nematode Stegophorus macronectes (Johnston & Mawson, 1942).

    PubMed

    Vidal, V; Ortiz, J; Diaz, J I; Zafrilla, B; Bonete, M J; Ruiz De Ybañez, M R; Palacios, M J; Benzal, J; Valera, F; De La Cruz, C; Motas, M; Bautista, V; Machordom, A; Barbosa, A

    2016-03-01

    Stegophorus macronectes (Johnston & Mawson, 1942) is a gastrointestinal parasite found in Antarctic seabirds. The original description of the species, which was based only on females, is poor and fragmented with some unclear diagnostic characters. This study provides new morphometric and molecular data on this previously poorly described parasite. Nuclear rDNA sequences (18S, 5.8S, 28S and internal transcribed spacer (ITS) regions) were isolated from S. macronectes specimens collected from the chinstrap penguin Pygoscelis antarctica Forster on Deception Island, Antarctica. Using 18S rDNA sequences, phylogenetic analyses (maximum likelihood, maximum parsimony and Bayesian inference) of the order Spirurida were performed to determine the phylogenetic location of this species. Primer pairs of the ITS regions were designed for genus-level identification of specimens, regardless of their cycle, as an alternative to coprological methods. The utility of this molecular method for identification of morphologically altered specimens is also discussed. PMID:25871788

  18. Phylogenetic classification at generic level in the absence of distinct phylogenetic patterns of phenotypical variation: a case study in graphidaceae (ascomycota).

    PubMed

    Parnmen, Sittiporn; Lücking, Robert; Lumbsch, H Thorsten

    2012-01-01

    Molecular phylogenies often reveal that taxa circumscribed by phenotypical characters are not monophyletic. While re-examination of phenotypical characters often identifies the presence of characters characterizing clades, there is a growing number of studies that fail to identify diagnostic characters, especially in organismal groups lacking complex morphologies. Taxonomists then can either merge the groups or split taxa into smaller entities. Due to the nature of binomial nomenclature, this decision is of special importance at the generic level. Here we propose a new approach to choose among classification alternatives using a combination of morphology-based phylogenetic binning and a multiresponse permutation procedure to test for morphological differences among clades. We illustrate the use of this method in the tribe Thelotremateae focusing on the genus Chapsa, a group of lichenized fungi in which our phylogenetic estimate is in conflict with traditional classification and the morphological and chemical characters do not show a clear phylogenetic pattern. We generated 75 new DNA sequences of mitochondrial SSU rDNA, nuclear LSU rDNA and the protein-coding RPB2. This data set was used to infer phylogenetic estimates using maximum likelihood and Bayesian approaches. The genus Chapsa was found to be polyphyletic, forming four well-supported clades, three of which clustering into one unsupported clade, and the other, supported clade forming two supported subclades. While these clades cannot be readily separated morphologically, the combined binning/multiresponse permutation procedure showed that accepting the four clades as different genera each reflects the phenotypical pattern significantly better than accepting two genera (or five genera if splitting the first clade). Another species within the Thelotremateae, Thelotrema petractoides, a unique taxon with carbonized excipulum resembling Schizotrema, was shown to fall outside Thelotrema. Consequently, the new

  19. Phylogenetic Classification at Generic Level in the Absence of Distinct Phylogenetic Patterns of Phenotypical Variation: A Case Study in Graphidaceae (Ascomycota)

    PubMed Central

    Parnmen, Sittiporn; Lücking, Robert; Lumbsch, H. Thorsten

    2012-01-01

    Molecular phylogenies often reveal that taxa circumscribed by phenotypical characters are not monophyletic. While re-examination of phenotypical characters often identifies the presence of characters characterizing clades, there is a growing number of studies that fail to identify diagnostic characters, especially in organismal groups lacking complex morphologies. Taxonomists then can either merge the groups or split taxa into smaller entities. Due to the nature of binomial nomenclature, this decision is of special importance at the generic level. Here we propose a new approach to choose among classification alternatives using a combination of morphology-based phylogenetic binning and a multiresponse permutation procedure to test for morphological differences among clades. We illustrate the use of this method in the tribe Thelotremateae focusing on the genus Chapsa, a group of lichenized fungi in which our phylogenetic estimate is in conflict with traditional classification and the morphological and chemical characters do not show a clear phylogenetic pattern. We generated 75 new DNA sequences of mitochondrial SSU rDNA, nuclear LSU rDNA and the protein-coding RPB2. This data set was used to infer phylogenetic estimates using maximum likelihood and Bayesian approaches. The genus Chapsa was found to be polyphyletic, forming four well-supported clades, three of which clustering into one unsupported clade, and the other, supported clade forming two supported subclades. While these clades cannot be readily separated morphologically, the combined binning/multiresponse permutation procedure showed that accepting the four clades as different genera each reflects the phenotypical pattern significantly better than accepting two genera (or five genera if splitting the first clade). Another species within the Thelotremateae, Thelotrema petractoides, a unique taxon with carbonized excipulum resembling Schizotrema, was shown to fall outside Thelotrema. Consequently, the new

  20. The phylogenetic utility and functional constraint of microRNA flanking sequences

    PubMed Central

    Kenny, Nathan J.; Sin, Yung Wa; Hayward, Alexander; Paps, Jordi; Chu, Ka Hou; Hui, Jerome H. L.

    2015-01-01

    MicroRNAs (miRNAs) have recently risen to prominence as novel factors responsible for post-transcriptional regulation of gene expression. miRNA genes have been posited as highly conserved in the clades in which they exist. Consequently, miRNAs have been used as rare genome change characters to estimate phylogeny by tracking their gain and loss. However, their short length (21–23 bp) has limited their perceived utility in sequenced-based phylogenetic inference. Here, using reference taxa with established phylogenetic relationships, we demonstrate that miRNA sequences are of high utility in quantitative, rather than in qualitative, phylogenetic analysis. The clear orthology among miRNA genes from different species makes it straightforward to identify and align these sequences from even fragmentary datasets. We also identify significant sequence conservation in the regions directly flanking miRNA genes, and show that this too is of utility in phylogenetic analysis, as well as highlighting conserved regions that will be of interest to other fields. Employing miRNA sequences from 12 sequenced drosophilid genomes, together with a Tribolium castaneum outgroup, we demonstrate that this approach is robust using Bayesian and maximum-likelihood methods. The utility of these characters is further demonstrated in the rhabditid nematodes and primates. As next-generation sequencing makes it more cost-effective to sequence genomes and small RNA libraries, this methodology provides an alternative data source for phylogenetic analysis. The approach allows rapid resolution of relationships between both closely related and rapidly evolving species, and provides an additional tool for investigation of relationships within the tree of life. PMID:25694624

  1. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds.

    PubMed

    Gómez, Juan Pablo; Bravo, Gustavo A; Brumfield, Robb T; Tello, José G; Cadena, Carlos Daniel

    2010-11-01

    1. Methods that assess patterns of phylogenetic relatedness, as well as character distribution and evolution, allow one to infer the ecological processes involved in community assembly. Assuming niche conservatism, assemblages should shift from phylogenetic clustering to evenness with decreasing geographic scale because the relative importance of mechanisms that shape assemblages is hypothesized to be scale-dependent. Whereas habitat filtering is more likely to act at regional scales because of increased habitat heterogeneity that allows sorting of ecologically similar species in contrasting environments, competition is more likely to act at local scales because low habitat heterogeneity provides few opportunities for niche partitioning. 2. We used species lists to assess assemblage composition, data on ecologically-relevant traits, and a molecular phylogeny, to examine the phylogenetic structure of antbird (Thamnophilidae) assemblages at three different geographical scales: regional (ecoregions), intermediate (100-ha plots) and local (mixed-flocks). In addition, we used patterns of phylogenetic beta diversity and beta diversity to separate the factors that structure antbird assemblages at regional scales. 3. Contrary to previous findings, we found a shift from phylogenetic evenness to clustering with decreasing geographical scale. We argue that this does not reject the hypothesis that habitat filtering is the predominant force in regional community assembly, because analyses of trait evolution and structure indicated a lack of niche conservatism in antbirds. 4. In some cases, phylogenetic evenness at regional scales can be an effect of historical biogeographic processes instead of niche-based processes. However, regional patterns of beta diversity and phylogenetic beta diversity suggested that phylogenetic structure in our study cannot be explained by the history of speciation and dispersal of antbirds, further supporting the habitat-filtering hypothesis. 5. Our

  2. Hidden decay of impact after education for self-management of chronic illnesses: hypotheses.

    PubMed

    Park, M J; Green, Joseph; Ishikawa, Hirono; Kiuchi, Takahiro

    2013-03-01

    People with chronic illnesses can benefit from self-management education. However, those benefits are said to decay over time (there is some evidence that this 'decay of impact' does occur), and the reinforcements used to prevent that decay appear to be ineffective. We hypothesize that the reinforcements appear to be ineffective because decay of impact occurs only in a subgroup of these programs' participants, so any benefits of reinforcements in that subgroup are concealed by whole-group summary statistics. We also hypothesize that reinforcements can benefit those who need them - those who would otherwise have decay. One approach to testing these hypotheses requires analysis of individual-level data, which is uncommon in this field. Some useful data could come from studies that have already been completed, but the strongest evidence will require prospectively designed tests in future trials. If the hypotheses are false, then time and resources spent on reinforcements can be saved or redirected. If the hypotheses are true, then reinforcements can be implemented with less waste and they can be made more effective. These programs can also be improved to better fit their users' needs, and there can be a new basis for evaluating the programs' effectiveness.

  3. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny

    PubMed Central

    2011-01-01

    Background Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. Results Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic

  4. Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates.

    PubMed

    Martin, Adam R; Erickson, David L; Kress, W John; Thomas, Sean C

    2014-11-01

    In tropical and temperate trees, wood chemical traits are hypothesized to covary with species' life-history strategy along a 'wood economics spectrum' (WES), but evidence supporting these expected patterns remains scarce. Due to its role in nutrient storage, we hypothesize that wood nitrogen (N) concentration will covary along the WES, being higher in slow-growing species with high wood density (WD), and lower in fast-growing species with low WD. In order to test this hypothesis we quantified wood N concentrations in 59 Panamanian hardwood species, and used this dataset to examine ecological correlates and phylogenetic patterns of wood N. Wood N varied > 14-fold among species between 0.04 and 0.59%; closely related species were more similar in wood N than expected by chance. Wood N was positively correlated with WD, and negatively correlated with log-transformed relative growth rates, although these relationships were relatively weak. We found evidence for co-evolution between wood N and both WD and log-transformed mortality rates. Our study provides evidence that wood N covaries with tree life-history parameters, and that these patterns consistently co-evolve in tropical hardwoods. These results provide some support for the hypothesized WES, and suggest that wood is an increasingly important N pool through tropical forest succession.

  5. Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation

    NASA Astrophysics Data System (ADS)

    Pagel, Mark; Lutzoni, Francois

    We describe the application of Markov Chain Monte Carlo (MCMC) methods to two fundamental problems in evolutionary biology. Evolutionary biologists frequently wish to investigate the evolution of traits across a range of species. This is known as a comparative study. Comparative studies require constructing a phylogeny of the species and then investigating the evolutionary transitions in the trait on that phylogeny. A difficulty with this approach is that phylogenies themselves are sel dom known with certainty and different phylogenies can give different answers to the comparative hypotheses. MCMC methods make it possible to avoid both of these problems by constructing a random sample of phylogenies from the universe of possible phylogenetic trees for a given data set. Once this sample is obtained the comparative hypotheses can be investigated separately in each tree in the MCMC sample. Given the statistical properties of the sample of trees - trees are sampled in proportion to the probab ility under a model of evolution - the combined results across trees can be interpreted as being independent of the underlying phylogeny. Thus, investigators can test comparative hypotheses without the real concern that results are valid only for the particular tree used in the investigation. We illustrate these ideas with an example from the evolution of lichen formation in fungi.

  6. Mitochondrial DNA sequences of five squamates: phylogenetic affiliation of snakes.

    PubMed

    Kumazawa, Yoshinori

    2004-04-30

    Complete or nearly complete mitochondrial DNA sequences were determined from four lizards (Western fence lizard, Warren's spinytail lizard, Terrestrial arboreal alligator lizard, and Chinese crocodile lizard) and a snake (Texas blind snake). These genomes had a typical gene organization found in those of most mammals and fishes, except for a translocation of the glutamine tRNA gene in the blind snake and a tandem duplication of the threonine and proline tRNA genes in the spinytail lizard. Although previous work showed the existence of duplicate control regions in mitochondrial DNAs of several snakes, the blind snake did not have this characteristic. Phylogenetic analyses based on different tree-building methods consistently supported that the blind snake and a colubrid snake (akamata) make a sister clade relative to all the lizard taxa from six different families. An alternative hypothesis that snakes evolved from a lineage of varanoids was not favored and nearly statistically rejected by the Kishino-Hasegawa test. It is therefore likely that the apparent similarity of the tongue structure between snakes and varanoids independently evolved and that the duplication of the control region occurred on a snake lineage after divergence of the blind snake. PMID:15449546

  7. Healthy migrant and salmon bias hypotheses: a study of health and internal migration in China.

    PubMed

    Lu, Yao; Qin, Lijian

    2014-02-01

    The existing literature has often underscored the "healthy migrant" effect and the "salmon bias" in understanding the health of migrants. Nevertheless, direct evidence for these two hypotheses, particularly the "salmon bias," is limited. Using data from a national longitudinal survey conducted between 2003 and 2007 in China, we provide tests of these hypotheses in the case of internal migration in China. To examine the healthy migrant effect, we study how pre-migration self-reported health is associated with an individual's decision to migrate and the distance of migration. To test the salmon bias hypothesis, we compare the self-reported health of migrants who stay in destinations and who return or move closer to home villages. The results provide support for both hypotheses. Specifically, healthier individuals are more likely to migrate and to move further away from home. Among migrants, those with poorer health are more likely to return or to move closer to their origin communities. PMID:24565140

  8. Dreaming and waking experiences in schizophrenia: how should the (dis)continuity hypotheses be approached empirically?

    PubMed

    Noreika, Valdas

    2011-06-01

    A number of differences between the dreams of schizophrenia patients and those of healthy participants have been linked to changes in waking life that schizophrenia may cause. This way, the "continuity hypothesis" has become a standard way to relate dreaming and waking experiences in schizophrenia. Nevertheless, some of the findings in dream literature are not compatible with the continuity hypothesis and suggest some other ways how dream content and waking experiences could interact. Conceptually, the continuity hypothesis could be sharpened into the "waking-to-dreaming" and the "dreaming-to-waking" hypotheses, whereas a less explored type of "discontinuity" could embrace the "compensated waking" and the "compensated dreaming" hypotheses. A careful consideration and empirical testing of each of those hypotheses may reveal a multiplicity of the ways how dreaming and waking life interact in schizophrenia.

  9. Healthy migrant and salmon bias hypotheses: a study of health and internal migration in China.

    PubMed

    Lu, Yao; Qin, Lijian

    2014-02-01

    The existing literature has often underscored the "healthy migrant" effect and the "salmon bias" in understanding the health of migrants. Nevertheless, direct evidence for these two hypotheses, particularly the "salmon bias," is limited. Using data from a national longitudinal survey conducted between 2003 and 2007 in China, we provide tests of these hypotheses in the case of internal migration in China. To examine the healthy migrant effect, we study how pre-migration self-reported health is associated with an individual's decision to migrate and the distance of migration. To test the salmon bias hypothesis, we compare the self-reported health of migrants who stay in destinations and who return or move closer to home villages. The results provide support for both hypotheses. Specifically, healthier individuals are more likely to migrate and to move further away from home. Among migrants, those with poorer health are more likely to return or to move closer to their origin communities.

  10. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses.

    PubMed

    Cacho, N Ivalú; Kliebenstein, Daniel J; Strauss, Sharon Y

    2015-11-01

    We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments.

  11. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  12. Best Practices for Data Sharing in Phylogenetic Research

    PubMed Central

    Cranston, Karen; Harmon, Luke J.; O'Leary, Maureen A.; Lisle, Curtis

    2014-01-01

    As phylogenetic data becomes increasingly available, along with associated data on species’ genomes, traits, and geographic distributions, the need to ensure data availability and reuse become more and more acute. In this paper, we provide ten “simple rules” that we view as best practices for data sharing in phylogenetic research. These rules will help lead towards a future phylogenetics where data can easily be archived, shared, reused, and repurposed across a wide variety of projects. PMID:24987572

  13. Specific chicken repeat 1 (CR1) retrotransposon insertion suggests phylogenetic affinity of rockfowls (genus Picathartes) to crows and ravens (Corvidae).

    PubMed

    Treplin, Simone; Tiedemann, Ralph

    2007-04-01

    While the monophyly of the order Passeriformes as well as its suborders suboscines (Tyranni) and oscines (Passeri) is well established, both on morphological and molecular grounds, lower phylogenetic relationships have been a continuous matter of debate, especially within oscines. This is particularly true for the rockfowls (genus Picathartes), which phylogenetic classification has been an ongoing puzzle. Sequence-based molecular studies failed in deriving unambiguously resolved and supported hypotheses. We present here a novel approach: use of retrotransposon insertions as phylogenetic markers in passerine birds. Chicken repeat 1 (CR1) is the most important non-LTR retrotransposon in birds. We present two truncated CR1 loci in passerine birds, not only found in representatives of Corvinae (jays, crows and allies), but also in the West-African Picathartes species which provide new evidence for a closer relationship of these species to Corvidae than has previously been thought. Additionally, we show that not only the absence/presence pattern of a CR1 insertion, but also the CR1 sequences themselves contain phylogenetic information.

  14. Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes

    PubMed Central

    Chase, Mark W.; Kim, Joo-Hwan

    2013-01-01

    Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses. PMID:23544071

  15. Disentangling the phylogenetic and ecological components of spider phenotypic variation.

    PubMed

    Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo

    2014-01-01

    An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.

  16. Trinets encode tree-child and level-2 phylogenetic networks.

    PubMed

    van Iersel, Leo; Moulton, Vincent

    2014-06-01

    Phylogenetic networks generalize evolutionary trees, and are commonly used to represent evolutionary histories of species that undergo reticulate evolutionary processes such as hybridization, recombination and lateral gene transfer. Recently, there has been great interest in trying to develop methods to construct rooted phylogenetic networks from triplets, that is rooted trees on three species. However, although triplets determine or encode rooted phylogenetic trees, they do not in general encode rooted phylogenetic networks, which is a potential issue for any such method. Motivated by this fact, Huber and Moulton recently introduced trinets as a natural extension of rooted triplets to networks. In particular, they showed that [Formula: see text] phylogenetic networks are encoded by their trinets, and also conjectured that all "recoverable" rooted phylogenetic networks are encoded by their trinets. Here we prove that recoverable binary level-2 networks and binary tree-child networks are also encoded by their trinets. To do this we prove two decomposition theorems based on trinets which hold for all recoverable binary rooted phylogenetic networks. Our results provide some additional evidence in support of the conjecture that trinets encode all recoverable rooted phylogenetic networks, and could also lead to new approaches to construct phylogenetic networks from trinets.

  17. Phylogenetic analysis with the iPlant discovery environment.

    PubMed

    Matasci, Naim; McKay, Sheldon

    2013-06-01

    The iPlant Collaborative's Discovery Environment is a unified Web portal to many bioinformatics applications and analytical workflows, including various methods of phylogenetic analysis. This unit describes example protocols for phylogenetic analyses, starting at sequence retrieval from the GenBank sequence database, through to multiple sequence alignment inference and visualization of phylogenetic trees. Methods for extracting smaller sub-trees from very large phylogenies, and the comparative method of continuous ancestral character state reconstruction based on observed morphology of extant species related to their phylogenetic relationships, are also presented.

  18. Dating human cultural capacity using phylogenetic principles.

    PubMed

    Lind, J; Lindenfors, P; Ghirlanda, S; Lidén, K; Enquist, M

    2013-01-01

    Humans have genetically based unique abilities making complex culture possible; an assemblage of traits which we term "cultural capacity". The age of this capacity has for long been subject to controversy. We apply phylogenetic principles to date this capacity, integrating evidence from archaeology, genetics, paleoanthropology, and linguistics. We show that cultural capacity is older than the first split in the modern human lineage, and at least 170,000 years old, based on data on hyoid bone morphology, FOXP2 alleles, agreement between genetic and language trees, fire use, burials, and the early appearance of tools comparable to those of modern hunter-gatherers. We cannot exclude that Neanderthals had cultural capacity some 500,000 years ago. A capacity for complex culture, therefore, must have existed before complex culture itself. It may even originated long before. This seeming paradox is resolved by theoretical models suggesting that cultural evolution is exceedingly slow in its initial stages. PMID:23648831

  19. Evolution probabilities and phylogenetic distance of dinucleotides.

    PubMed

    Michel, Christian J

    2007-11-21

    We develop here an analytical evolution model based on a dinucleotide mutation matrix 16 x 16 with six substitution parameters associated with the three types of substitutions in the two dinucleotide sites. It generalizes the previous models based on the nucleotide mutation matrices 4 x 4. It determines at some time t the exact occurrence probabilities of dinucleotides mutating randomly according to these six substitution parameters. Furthermore, several properties and two applications of this model allow to derive 16 evolutionary analytical solutions of dinucleotides and also a dinucleotide phylogenetic distance. Finally, based on this mathematical model, the SED (Stochastic Evolution of Dinucleotides) web server has been developed for deriving evolutionary analytical solutions of dinucleotides.

  20. Dating human cultural capacity using phylogenetic principles

    PubMed Central

    Lind, J.; Lindenfors, P.; Ghirlanda, S.; Lidén, K.; Enquist, M.

    2013-01-01

    Humans have genetically based unique abilities making complex culture possible; an assemblage of traits which we term “cultural capacity”. The age of this capacity has for long been subject to controversy. We apply phylogenetic principles to date this capacity, integrating evidence from archaeology, genetics, paleoanthropology, and linguistics. We show that cultural capacity is older than the first split in the modern human lineage, and at least 170,000 years old, based on data on hyoid bone morphology, FOXP2 alleles, agreement between genetic and language trees, fire use, burials, and the early appearance of tools comparable to those of modern hunter-gatherers. We cannot exclude that Neanderthals had cultural capacity some 500,000 years ago. A capacity for complex culture, therefore, must have existed before complex culture itself. It may even originated long before. This seeming paradox is resolved by theoretical models suggesting that cultural evolution is exceedingly slow in its initial stages. PMID:23648831

  1. From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic gamma-Proteobacteria as a test case.

    PubMed

    Comas, Iñaki; Moya, Andrés; González-Candelas, Fernando

    2007-02-01

    approaches were useful in revealing alternative phylogenetic signals and should be included in comprehensive phylogenomic studies. PMID:17366133

  2. Predictors of floater status in a long-lived bird: a cross-sectional and longitudinal test of hypotheses.

    PubMed

    Sergio, Fabrizio; Blas, Julio; Hiraldo, Fernando

    2009-01-01

    1. Few studies have been capable of monitoring the nonterritorial sector of a population because of the typically secretive behaviour of floating individuals, despite the existing consensus over the demographic importance of floating. Furthermore, there is almost no information on floating behaviour for migratory species. 2. The factors that determine whether an individual will be a floater or a territory owner have been framed into five, non-mutually exclusive hypotheses: (i) territory holders are morphologically superior to floaters (resource-holding potential hypothesis); (ii) age confers skills and fighting motivation which lead to social dominance and territory ownership (age hypothesis); (iii) occupancy time of a site determines asymmetries in its knowledge, familiarity and value for potential contenders (site-dominance hypothesis); (iv) contenders use an arbitrary rule to settle contests leading to pre-defined cut-off points for a biologically meaningful trait (e.g. age, body size) separating floaters from territory holders (arbitrary convention hypothesis); and (v) floaters set up a 'war of attrition' at arbitrarily chosen territories (arbitrary attrition hypothesis). 3. We tested these hypotheses using long-term data on a long-lived, migratory raptor, the black kite Milvus migrans Boddaert. 4. Floating status was best explained by the concerted action of mechanisms consistent with the age and site-dominance hypotheses. 5. In both cross-sectional and longitudinal analyses, acquisition of a territory was determined by a complex interaction between age and early arrival from migration, suggesting: (i) a progressive incorporation of early arriving individuals in the territorial contingent of the population, and (ii) the existence of an alternative restraint strategy of delayed territoriality mediated by long-term acquisition of social dominance. 6. Such results suggested that territory acquisition was mediated by the establishment of site dominance through pre

  3. Molecular tests of phylogenetic taxonomies: a general procedure and example using four subfamilies of the lizard family Iguanidae.

    PubMed

    Schulte, J A; Macey, J R; Larson, A; Papenfuss, T J

    1998-12-01

    A general procedure is described for examining when results of molecular phylogenetic analyses warrant formal revision of taxonomies constructed using morphological characters. We illustrate this procedure with tests of monophyly for four subfamilies in the lizard family Iguanidae using 1561 aligned base positions (838 phylogenetically informative) of mitochondrial DNA sequences, representing coding regions for eight tRNAs, ND2, and portions of ND1 and COI. Ten new sequences ranging in length from 1732 to 1751 bases are compared with 12 previously reported sequences and 67 morphological characters (54 phylogenetically informative) from the literature. New morphological character states are provided for Sator. Phylogenies derived from the molecular and combined data are in agreement but both conflict with phylogenetic inferences from the morphological data alone. Strong support is found for the monophyly of the subfamilies Crotaphytinae and Phrynosomatinae. Monophyly of the Iguaninae is weakly supported in each analysis. All analyses suggest that the Tropidurinae is not monophyletic but the hypothesis of monophyly cannot be rejected. A phylogenetic taxonomy is proposed in which the Tropidurinae* is maintained as a metataxon (denoted with an asterisk), for which monophyly has not been demonstrated. Within the Phrynosomatinae, the close relationship of Sator and Sceloporus is questioned and an alternative hypothesis in which Sator is the sister taxon to a clade comprising Petrosaurus, Sceloporus, and Urosaurus is presented. Statistical tests of monophyly provide a powerful way to evaluate support for taxonomic groupings. Use of the metataxon prevents premature taxonomic rearrangements where support is lacking.

  4. Similarity and Difference in Multicultural Counseling: Considering the Attraction and Repulsion Hypotheses.

    ERIC Educational Resources Information Center

    Speight, Suzette L.; Vera, Elizabeth M.

    1997-01-01

    Summarizes issues relevant to empirical investigations of client and counselor preferences. Explores the effects of similarity and difference on relationship development and focuses on the attraction and repulsion hypotheses' applicability to multicultural counseling research and theory. It is hoped that differences between counseling and social…

  5. Learned Helplessness and Depression in a Clinical Population: A Test of Two Behavioral Hypotheses

    ERIC Educational Resources Information Center

    And Others; Price, Kenneth P.

    1978-01-01

    This study was undertaken to extend the learned helplessness phenomenon to a clinical population and to test the competing hypotheses of Seligman and Lewinsohn. 96 male hospitalized psychiatric and medical patients were randomly assigned to one of four experimental conditions. Results replicate the learned helplessness phenomenon in a group of…

  6. What Constrains the Accuracy of Metacomprehension Judgments? Testing the Transfer-Appropriate-Monitoring and Accessibility Hypotheses

    ERIC Educational Resources Information Center

    Dunlosky, J.; Rawson, K.A.; Middleton, E.L.

    2005-01-01

    We evaluated two hypotheses-transfer appropriate monitoring (TAM) and the accessibility hypothesis-that explain why the accuracy of metacomprehension judgments is commonly low. In 2 experiments, participants read six expository texts, made global judgments about how well they would perform on a test over each text, and made term-specific judgments…

  7. Teaching Advanced Level Students to Hypothesize: Proceeding One Step at a Time.

    ERIC Educational Resources Information Center

    Kline, Rebecca R.

    1989-01-01

    Discusses and describes incrementally organized instructional strategies for teaching students of French how to hypothesize. The method uses the naturally occurring phenomenon in "La Vie Conjugale," a French short story by Michelle Maurois. Instructional activities designed to help students master this function are described. (MSE)

  8. Investigating Moderator Hypotheses in Aging Research: Statistical, Methodological, and Conceptual Difficulties with Comparing Separate Regressions

    ERIC Educational Resources Information Center

    Newsom, Jason T.; Prigerson, Holly G.; Schulz, Richard; Reynolds, Charles F., III

    2003-01-01

    Many topics in aging research address questions about group differences in prediction. Such questions can be viewed in terms of interaction or moderator effects, and use of appropriate methods to test these hypotheses are necessary to arrive at accurate conclusions about age differences. This article discusses the conceptual, methodological, and…

  9. Bullying Victimization and Adolescent Self-Harm: Testing Hypotheses from General Strain Theory

    ERIC Educational Resources Information Center

    Hay, Carter; Meldrum, Ryan

    2010-01-01

    Self-harm is widely recognized as a significant adolescent social problem, and recent research has begun to explore its etiology. Drawing from Agnew's (1992) social psychological strain theory of deviance, this study considers this issue by testing three hypotheses about the effects of traditional and cyber bullying victimization on deliberate…

  10. Factors that Affect the Physical Science Career Interest of Female Students: Testing Five Common Hypotheses

    ERIC Educational Resources Information Center

    Hazari, Zahra; Potvin, Geoff; Lock, Robynne M.; Lung, Florin; Sonnert, Gerhard; Sadler, Philip M.

    2013-01-01

    There are many hypotheses regarding factors that may encourage female students to pursue careers in the physical sciences. Using multivariate matching methods on national data drawn from the Persistence Research in Science and Engineering (PRiSE) project ("n" = 7505), we test the following five commonly held beliefs regarding what…

  11. Vestigial Biological Structures: A Classroom-Applicable Test of Creationist Hypotheses

    ERIC Educational Resources Information Center

    Senter, Phil; Ambrocio, Zenis; Andrade, Julia B.; Foust, Katanya K.; Gaston, Jasmine E.; Lewis, Ryshonda P.; Liniewski, Rachel M.; Ragin, Bobby A.; Robinson, Khanna L.; Stanley, Shane G.

    2015-01-01

    Lists of vestigial biological structures in biology textbooks are so short that some young-Earth creationist authors claim that scientists have lost confidence in the existence of vestigial structures and can no longer identify any verifiable ones. We tested these hypotheses with a method that is easily adapted to biology classes. We used online…

  12. Sound and Faulty Arguments Generated by Preservice Biology Teachers When Testing Hypotheses Involving Unobservable Entities.

    ERIC Educational Resources Information Center

    Lawson, Anton E.

    2002-01-01

    Investigates the responses of a sample of preservice biology teachers enrolled in a teaching methods course to a casual question about why water rose in a jar inverted over a burning candle placed in a pan of water by formulating and testing six hypotheses. (Contains 43 references.) (Author/YDS)

  13. Aggression among Children with ADHD, Anxiety, or Co-Occurring Symptoms: Competing Exacerbation and Attenuation Hypotheses

    ERIC Educational Resources Information Center

    Becker, Stephen P.; Luebbe, Aaron M.; Stoppelbein, Laura; Greening, Leilani; Fite, Paula J.

    2012-01-01

    Competing hypotheses for explaining the role of anxiety in the relation between attention-deficit/hyperactivity disorder (ADHD) symptoms and childhood aggression were evaluated. Two studies tested whether anxiety exacerbated, attenuated, or had no effect on the relation between ADHD and aggression subtypes among psychiatrically hospitalized…

  14. A wasting syndrome in Swedish moose (Alces alces): background and current hypotheses.

    PubMed

    Broman, Emil; Wallin, Kjell; Stéen, Margareta; Cederlund, Göran

    2002-08-01

    In the 1980s, people in Sweden frequently responded to moose (Alces alces) found dead or in poor physical condition. The number of moose submitted for routine investigations to the National Veterinary Institute (SVA) increased tenfold and the hunters in Alvsborg County were especially concerned. Later, a complex wasting syndrome was described and reports of moose suffering from the syndrome have been collected since 1991. Today, there is no definitive answer as to the underlying causel(s) of the syndrome, but there are several plausible hypotheses that can be divided into two groups: food-related and host-parasite related. The food-related hypotheses are postulated to have any of the following ultimate causes: acidification/liming, browser density/food production or pollution. Our view is that few of the hypotheses have been critically tested. Most of the hypotheses are supported by some observations, which is to be expected because these are post-hoc attempts to explain these very observations.

  15. A Refined Computer Harassment Paradigm: Validation, and Test of Hypotheses about Target Characteristics

    ERIC Educational Resources Information Center

    Siebler, Frank; Sabelus, Saskia; Bohner, Gerd

    2008-01-01

    A refined computer paradigm for assessing sexual harassment is presented, validated, and used for testing substantive hypotheses. Male participants were given an opportunity to send sexist jokes to a computer-simulated female chat partner. In Study 1 (N = 44), the harassment measure (number of sexist jokes sent) correlated positively with…

  16. Testing Social Cognitive Interest and Choice Hypotheses across Holland Types in Italian High School Students.

    ERIC Educational Resources Information Center

    Lent, Robert W.; Brown, Steven D.; Nota, Laura; Soresi, Salvatore

    2003-01-01

    Italian high school students (n=796) completed measures related to Social Cognitive Career Theory and Holland's personality types. Findings supported hypotheses that self-efficacy and outcome expectations predict interests. Whether the mediation effect of interests was full or partial varied across types. Social supports/barriers related to career…

  17. Utility of Krashen's Five Hypotheses in the Saudi Context of Foreign Language Acquisition/Learning

    ERIC Educational Resources Information Center

    Gulzar, Malik Ajmal; Gulnaz, Fahmeeda; Ijaz, Attiya

    2014-01-01

    In the last twenty years, the paradigm that has dominated the discipline of language teaching is the SLA theory and Krashen's five hypotheses which are still proving flexible to accommodate earlier reforms. This paper reviews second language acquisition (SLA) theory to establish an understanding of its role in the EFL/ESL classrooms. Other areas…

  18. A Comprehensive Framework for Evaluating Hypotheses about Cultural Bias in Educational Testing

    ERIC Educational Resources Information Center

    Banks, Kathleen

    2006-01-01

    The purpose of this article is to present a working definition of the term "culture," as well as to describe and demonstrate a comprehensive framework for evaluating hypotheses about cultural bias in educational testing. The framework is demonstrated using 5th-grade reading and language arts data from the Terra Nova test (CTB/McGraw-Hill, 1999).…

  19. Basing the Treatment of Stereotypic and Self-Injurious Behaviors on Hypotheses of Their Causes.

    ERIC Educational Resources Information Center

    Repp, Alan C.; And Others

    1988-01-01

    Method of treatment of self-injurious behaviors for three severely retarded students (ages six-seven) was selected by matching one of three hypotheses (self-stimulation, positive reinforcement, negative reinforcement) to a judgment concerning cause. Results supported the argument that treatment programs should be based on a functional analysis of…

  20. Roles of Abductive Reasoning and Prior Belief in Children's Generation of Hypotheses about Pendulum Motion

    ERIC Educational Resources Information Center

    Kwon, Yong-Ju; Jeong, Jin-Su; Park, Yun-Bok

    2006-01-01

    The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on pendulum motion, and a prior-belief test about pendulum motion were developed and administered to a sample of…