Science.gov

Sample records for alternative rna splicing

  1. Alternative RNA splicing and cancer.

    PubMed

    Liu, Sali; Cheng, Chonghui

    2013-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells.

  2. Methods for Characterization of Alternative RNA Splicing.

    PubMed

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  3. Conserved RNA secondary structures promote alternative splicing.

    PubMed

    Shepard, Peter J; Hertel, Klemens J

    2008-08-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site strength, splicing regulators, the exon/intron architecture, and the process of pre-mRNA synthesis itself. RNA secondary structures have also been proposed to influence alternative splicing as stable RNA secondary structures that mask splice sites are expected to interfere with splice-site recognition. Using structural and functional conservation, we identified RNA structure elements within the human genome that associate with alternative splice-site selection. Their frequent involvement with alternative splicing demonstrates that RNA structure formation is an important mechanism regulating gene expression and disease.

  4. Investigating alternative RNA splicing in Xenopus.

    PubMed

    Mereau, Agnès; Hardy, Serge

    2012-01-01

    Alternative splicing, the process by which distinct mature mRNAs can be produced from a single primary transcript, is a key mechanism to increase the organism complexity. The generation of alternative splicing pattern is a means to expand the proteome diversity and also to control gene expression through the regulation of mRNA abundance. Alternative splicing is therefore particularly prevalent during development and accordingly numerous splicing events are regulated in a tissue or temporal manner. To study the roles of alternative splicing during developmental processes and decipher the molecular mechanisms that underlie temporal and spatial regulation, it is important to develop in vivo whole animal studies. In this chapter, we present the advantages of using the amphibian Xenopus as a fully in vivo model to study alternative splicing and we describe the experimental procedures that can be used with Xenopus laevis embryos and oocytes to define the cis-regulatory elements and identify the associated trans-acting factors.

  5. Vitamin D and alternative splicing of RNA.

    PubMed

    Zhou, Rui; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Xu, Jianzhong; Adams, John S; Hewison, Martin

    2015-04-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  6. Alternative Splicing of STAT3 Is Affected by RNA Editing.

    PubMed

    Goldberg, Lior; Abutbul-Amitai, Mor; Paret, Gideon; Nevo-Caspi, Yael

    2017-03-09

    A-to-I RNA editing, carried out by adenosine deaminase acting on RNA (ADAR) enzymes, is an epigenetic phenomenon of posttranscriptional modifications on pre-mRNA. RNA editing in intronic sequences may influence alternative splicing of flanking exons. We have previously shown that conditions that induce editing result in elevated expression of signal transducer and activator of transcription 3 (STAT3), preferentially the alternatively-spliced STAT3β isoform. Mechanisms regulating alternative splicing of STAT3 have not been elucidated. STAT3 undergoes A-to-I RNA editing in an intron residing in proximity to the alternatively spliced exon. We hypothesized that RNA editing plays a role in regulating alternative splicing toward STAT3β. In this study we extend our observation connecting RNA editing to the preferential induction of STAT3β expression. We study the involvement of ADAR1 in STAT3 editing and reveal the connection between editing and alternative splicing of STAT3. Deferoaxamine treatment caused the induction in STAT3 RNA editing and STAT3β expression. Silencing ADAR1 caused a decrease in STAT3 editing and expression with a preferential decrease in STAT3β. Cells transfected with a mutated minigene showed preferential splicing toward the STAT3β transcript. Editing in the STAT3 intron is performed by ADAR1 and affects STAT3 alternative splicing. These results suggest that RNA editing is one of the molecular mechanisms regulating the expression of STAT3β.

  7. The influence of Argonaute proteins on alternative RNA splicing.

    PubMed

    Batsché, Eric; Ameyar-Zazoua, Maya

    2015-01-01

    Alternative splicing of precursor RNAs is an important process in multicellular species because it impacts several aspects of gene expression: from the increase of protein repertoire to the level of expression. A large body of evidences demonstrates that factors regulating chromatin and transcription impact the outcomes of alternative splicing. Argonaute (AGO) proteins were known to play key roles in the regulation of gene expression at the post-transcriptional level. More recently, their role in the nucleus of human somatic cells has emerged. Here, we will discuss some of the nuclear functions of AGO, with special emphasis on alternative splicing. The AGO-mediated modulation of alternative splicing is based on several properties of these proteins: their binding to transcripts on chromatin and their interactions with many proteins, especially histone tail-modifying enzymes, HP1γ and splicing factors. AGO proteins may favor a decrease in the RNA-polymerase II kinetics at actively transcribed genes leading to the modulation of alternative splicing decisions. They could also influence alternative splicing through their interaction with core components of the splicing machinery and several splicing factors. We will discuss the modes of AGO recruitment on chromatin at active genes. We suggest that long intragenic antisense transcripts (lincRNA) might be an important feature of genes containing splicing events regulated by AGO.

  8. Temporal regulation of adenovirus major late alternative RNA splicing.

    PubMed

    Akusjarvi, Goran

    2008-05-01

    Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced mRNAs during replication. The accumulation of viral mRNAs is subjected to a temporal regulation, a mechanism that ensures that proteins that are needed at certain stages of the virus life cycle are produced in a timely fashion. The complex interactions between the virus and the host cell RNA splicing machinery has been studied in detail during the last decade. These studies have resulted in the characterization of two viral proteins, E4-ORF4 and L4-33K, that adenovirus uses to remodel the host cell RNA splicing machinery. Here I will review the current knowledge of how mRNA expression from the adenovirus major late transcription unit is controlled with a particular emphasis on how cis-acting sequence element, trans-acting factors and mechanisms regulating adenovirus major late L1 alternative RNA splicing is controlled.

  9. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html.

  10. Mechanisms and Regulation of Alternative Pre-mRNA Splicing

    PubMed Central

    Lee, Yeon

    2015-01-01

    Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052

  11. Regulation of chemoresistance via alternative messenger RNA splicing.

    PubMed

    Eblen, Scott T

    2012-04-15

    The acquisition of resistance to chemotherapy is a significant problem in the treatment of cancer, greatly increasing patient morbidity and mortality. Tumors are often sensitive to chemotherapy upon initial treatment, but repeated treatments can select for those cells that were able to survive initial therapy and have acquired cellular mechanisms to enhance their resistance to subsequent chemotherapy treatment. Many cellular mechanisms of drug resistance have been identified, most of which result from changes in gene and protein expression. While changes at the transcriptional level have been duly noted, it is primarily the post-transcriptional processing of pre-mRNA into mature mRNA that regulates the composition of the proteome and it is the proteome that actually regulates the cell's response to chemotherapeutic insult, inducing cell survival or death. During pre-mRNA processing, intronic non-protein-coding sequences are removed and protein-coding exons are spliced to form a continuous template for protein translation. Alternative splicing involves the differential inclusion or exclusion of exonic sequences into the mature transcript, generating different mRNA templates for protein production. This regulatory mechanism enables the potential to produce many different protein isoforms from the same gene. In this review I will explain the mechanism of alternative pre-mRNA splicing and look at some specific examples of how splicing factors, splicing factor kinases and alternative splicing of specific pre-mRNAs from genes have been shown to contribute to acquisition of the drug resistant phenotype.

  12. Regulation of Chemoresistance Via Alternative Messenger RNA Splicing

    PubMed Central

    Eblen, Scott T.

    2012-01-01

    The acquisition of drug resistance to chemotherapy is a significant problem in the treatment of cancer, greatly increasing patient morbidity and mortality. Tumors are often sensitive to chemotherapy upon initial treatment, but repeated treatments can select for those cells that have were able to survive initial therapy and have acquired cellular mechanisms to enhance their resistance to subsequent chemotherapy treatment. Many cellular mechanisms of drug resistance have been identified, most of which result from changes in gene and protein expression. While changes at the transcriptional level have been duly noted, it is primarily the post-transcriptional processing of pre-mRNA into mature mRNA that regulates the composition of the proteome and it is the proteome that actually regulates the cell’s response to chemotherapeutic insult, inducing cell survival or death. During pre-mRNA processing, intronic non-protein-coding sequences are removed and protein-coding exons are spliced to form a continuous template for protein translation. Alternative splicing involves the differential inclusion or exclusion of exonic sequences into the mature transcript, generating different mRNA templates for protein production. This regulatory mechanism enables the potential to produce many different protein isoforms from the same gene. In this review I will explain the mechanism of alternative pre-mRNA splicing and look at some specific examples of how splicing factors, splicing factor kinases and alternative splicing of specific pre-mRNAs from genes have been shown to contribute to acquisition of the drug resistant phenotype. PMID:22248731

  13. Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms.

    PubMed

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2016-01-15

    In lytically infected B cells Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 gene encodes two RNA isoforms by alternative splicing of its pre-mRNA, which contains a small, constitutive intron in its 5' half and a large, suboptimal intron in its 3's half. The RNA1 isoform encodes full-length ORF57 and is a major isoform derived from splicing of the constitutive small intron, but retaining the suboptimal large intron as the coding region. A small fraction (<5%) of ORF57 RNA undergoes double splicing to produce a smaller non-coding RNA2 due to lack of a translational termination codon. Both RNAs are cleaved and polyadenylated at the same cleavage site CS83636. The insertion of ORF57 RNA1 into a restriction cutting site in certain mammalian expression vectors activates splicing of the subopitmal intron and produces a truncated ORF57 protein.

  14. New insights into RNA secondary structure in the alternative splicing of pre-mRNAs.

    PubMed

    Jin, Yongfeng; Yang, Yun; Zhang, Peng

    2011-01-01

    Alternative splicing is an important mechanism in generating proteomic diversity, and RNA secondary structure is an important element in splicing regulation. The use of high-throughput sequencing and other approaches has increased the number of known pre-mRNA secondary structures by several orders of magnitude, and we now have new insights into the role of RNA secondary structure in alternative splicing and the mechanisms involved (e.g., physical competition, long-range RNA pairing, the structural splicing code, and co-transcriptional splicing). Furthermore, an RNA pairing-based mechanism ensures the selection of only one of several available exons (e.g., Dscam splicing). Here we review several recent discoveries related to the role of RNA secondary structure in alternative splicing and the underlying mechanisms.

  15. Integrative Analysis of Many RNA-Seq Datasets to Study Alternative Splicing

    PubMed Central

    Li, Wenyuan; Dai, Chao; Kang, Shuli; Zhou, Xianghong Jasmine

    2014-01-01

    Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale. PMID:24583115

  16. Integrative analysis of many RNA-seq datasets to study alternative splicing.

    PubMed

    Li, Wenyuan; Dai, Chao; Kang, Shuli; Zhou, Xianghong Jasmine

    2014-06-01

    Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale.

  17. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    PubMed Central

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.; Graveley, Brenton R.; Brenner, Steven E.

    2015-01-01

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs. PMID:26294686

  18. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    DOE PAGES

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; ...

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected themore » splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.« less

  19. Regulation of alternative splicing in Drosophila by 56 RNA binding proteins

    SciTech Connect

    Brooks, Angela N.; Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.; Graveley, Brenton R.; Brenner, Steven E.

    2015-08-20

    Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. In conclusion, this large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.

  20. Opportunities and methods for studying alternative splicing in cancer with RNA-Seq.

    PubMed

    Feng, Huijuan; Qin, Zhiyi; Zhang, Xuegong

    2013-11-01

    The biogenesis, development and metastases of cancer are associated with many variations in the transcriptome. Alternative splicing of genes is a major post-transcriptional regulation mechanism that is involved in many types of cancer. The next-generation sequencing applied on RNAs (RNA-Seq) provides a new technology for studying transcriptomes. It provides an unprecedented opportunity for quantitatively studying alternative splicing in a systematic way. This mini-review summarizes the current RNA-Seq studies on cancer transcriptomes especially studies on cancer-related alternative splicing, and discusses the strategy for quantitative study of alternative splicing in cancers with RNA-Seq, the bioinformatics methods available and existing questions.

  1. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges

    PubMed Central

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2014-01-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins. PMID:24213538

  2. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges.

    PubMed

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2013-12-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins.

  3. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR).

    PubMed

    Solomon, Oz; Oren, Shirley; Safran, Michal; Deshet-Unger, Naamit; Akiva, Pinchas; Jacob-Hirsch, Jasmine; Cesarkas, Karen; Kabesa, Reut; Amariglio, Ninette; Unger, Ron; Rechavi, Gideon; Eyal, Eran

    2013-05-01

    Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery.

  4. Regulation of hyaluronidase activity by alternative mRNA splicing.

    PubMed

    Lokeshwar, Vinata B; Schroeder, Grethchen L; Carey, Robert I; Soloway, Mark S; Iida, Naoko

    2002-09-13

    Hyaluronidase is a hyaluronic acid-degrading endoglycosidase that is present in many toxins and the levels of which are elevated in cancer. Increased concentration of HYAL1-type hyaluronidase correlates with tumor progression and is a marker for grade (G) 2 or 3 bladder cancer. Using bladder tissues and cells, prostate cancer cells, and kidney tissues and performing reverse transcription-PCR, cDNA cloning, DNA sequencing, and in vitro translation, we identified splice variants of HYAL1 and HYAL3. HYAL1v1 variant lacks a 30-amino acid (aa) sequence (301-330) present in HYAL1 protein. HYAL1v1, HYAL1v2 (aa 183-435 present in HYAL1 wild type), HYAL1v3 (aa 1-207), HYAL1v4 (aa 260-435), and HYAL1v5 (aa 340-435) are enzymatically inactive and are expressed in normal tissues/cells and G1 bladder tumor tissues. However, HYAL1 wild type is expressed in G2/G3 tumors and in invasive tumor cells. Stable transfection and HYAL1v1-specific antibody confirmed that the HYAL1 sequence from aa 301 to 330 is critical for hyaluronidase activity. All tumor cells and tissues mainly express HYAL3 variants. HYAL3v1 lacks a 30-aa sequence (299-328) present in HYAL3 protein, that is homologous to the 30-aa HYAL1 sequence. HYAL3v1, HYAL3v2 (aa 251-417 present in HYAL3 wild type), and HYAL3v3 (aa 251-417, but lacking aa 299-328), are enzymatically inactive. Although splicing of a single independent exon generates HYAL1v1 and HYAL3v1, internal exon splicing generates the other HYAL1/HYAL3 variants. These results demonstrate that alternative mRNA splicing controls cellular expression of enzymatically active hyaluronidase and may explain the elevated hyaluronidase levels in bladder/prostate cancer.

  5. MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data

    PubMed Central

    Shen, Shihao; Park, Juw Won; Huang, Jian; Dittmar, Kimberly A.; Lu, Zhi-xiang; Zhou, Qing; Carstens, Russ P.; Xing, Yi

    2012-01-01

    Ultra-deep RNA sequencing has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We develop MATS (multivariate analysis of transcript splicing), a Bayesian statistical framework for flexible hypothesis testing of differential alternative splicing patterns on RNA-Seq data. MATS uses a multivariate uniform prior to model the between-sample correlation in exon splicing patterns, and a Markov chain Monte Carlo (MCMC) method coupled with a simulation-based adaptive sampling procedure to calculate the P-value and false discovery rate (FDR) of differential alternative splicing. Importantly, the MATS approach is applicable to almost any type of null hypotheses of interest, providing the flexibility to identify differential alternative splicing events that match a given user-defined pattern. We evaluated the performance of MATS using simulated and real RNA-Seq data sets. In the RNA-Seq analysis of alternative splicing events regulated by the epithelial-specific splicing factor ESRP1, we obtained a high RT–PCR validation rate of 86% for differential exon skipping events with a MATS FDR of <10%. Additionally, over the full list of RT–PCR tested exons, the MATS FDR estimates matched well with the experimental validation rate. Our results demonstrate that MATS is an effective and flexible approach for detecting differential alternative splicing from RNA-Seq data. PMID:22266656

  6. [Perspectives of RNA interference application in the therapy of diseases associated with defects in alternative RNA splicing].

    PubMed

    Wysokiński, Daniel; Błasiak, Janusz

    2012-09-18

    The primary transcript of an eukaryotic gene (pre-mRNA) is composed of coding regions--exons intervened by non-coding introns--which are removed in the RNA splicing process, leading to the formation of mature, intron-free mRNA. Alternative splicing of pre-mRNA is responsible for high complexity of the cellular proteome and expresses effective use of genetic information contained in genomic DNA. Alternative splicing plays important roles in the organism, including apoptosis regulation or development and plasticity of the nervous system. The main role of alternative splicing is differential, dependent on conditions and the cell type, splicing of mRNA, generating diverse transcripts from one gene, and, after the translation, different isoforms of a particular protein. Because of the high complexity of this mechanism, alternative splicing is particularly prone to errors. The perturbations resulting from mutations in the key sequences for splicing regulations are especially harmful. The pathogenesis of numerous diseases results from disturbed alternative RNA splicing, and those include cancers and neurodegenerative disorders. The treatment of these conditions is problematic due to their genetic background and currently RNA interference, which is a common mechanism of eukaryotic gene regulation, is being studied. Initial successes in the attempts of silencing the expression of faulty protein isoforms support the idea of using RNA interference in targeting disease related to disturbances in alternative splicing of RNA.

  7. Designing alternative splicing RNA-seq studies. Beyond generic guidelines

    PubMed Central

    Stephan-Otto Attolini, Camille; Peña, Victor; Rossell, David

    2015-01-01

    Motivation: Designing an RNA-seq study depends critically on its specific goals, technology and underlying biology, which renders general guidelines inadequate. We propose a Bayesian framework to customize experiments so that goals can be attained and resources are not wasted, with a focus on alternative splicing. Results: We studied how read length, sequencing depth, library preparation and the number of replicates affects cost-effectiveness of single-sample and group comparison studies. Optimal settings varied strongly according to the target organism or tissue (potential 50–500% cost cuts) and, interestingly, short reads outperformed long reads for standard analyses. Our framework learns key characteristics for study design from the data, and predicts if and how to continue experimentation. These predictions matched several follow-up experimental datasets that were used for validation. We provide default pipelines, but the framework can be combined with other data analysis methods and can help assess their relative merits. Availability and implementation: casper package at www.bioconductor.org/packages/release/bioc/html/casper.html, Supplementary Manual by typing casperDesign() at the R prompt. Contact: rosselldavid@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26220961

  8. ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced.

    PubMed

    Gao, Huirong; Gordon-Kamm, William J; Lyznik, L Alexander

    2004-09-15

    Three ASF/SF2-like alternative splicing genes from maize were identified, cloned, and analyzed. Each of these genes (zmSRp30, zmSRp31, and zmSRp32) contains two RNA binding domains, a signature sequence SWQDLKD, and a characteristic serine/ariginine-rich domain. There is a strong structural similarity to the human ASF/SF2 splicing factor and to the Arabidopsis atSRp34/p30 proteins. Similar to ASF/SF2-like genes in other organisms, the maize pre-mRNA messages are alternatively spliced. They are differentially expressed in maize tissues with relatively uniform levels of zmSRp30 and zmSRp31 messages being observed throughout the plant, while zmSRp32 messages preferentially accumulated in the meristematic regions. Overexpression of zmSRp32 in maize cells leads to the enhanced selection of weak 5' intron splice sites during the processing of pre-mRNA molecules. Overexpression of the zmSRp31 or zmSRp32 gene affects regulation of wheat dwarf virus rep gene pre-mRNA splicing, presumably by interacting with the weak 5' splice site, CCGU. Our results suggest that the described genes are functional homologues of the human ASF/SF2 alternative splicing factor and they indicate a diversity of the ASF/SF2-like alternative splicing factors in monocot plant cells.

  9. nagnag: Identification and quantification of NAGNAG alternative splicing using RNA-Seq data.

    PubMed

    Yan, Xiaoyan; Sablok, Gaurav; Feng, Gang; Ma, Jiaxin; Zhao, Hongwei; Sun, Xiaoyong

    2015-07-08

    Regulation of proteome diversity by alternative splicing has been widely demonstrated in plants and animals. NAGNAG splicing, which was recently defined as a tissue specific event, results in the production of two distinct isoforms that are distinguished by three nucleotides (NAG) as a consequence of the intron proximal or distal to the splice site. Since the NAGNAG mechanism is not well characterized, tools for the identification and quantification of NAGNAG splicing events remain under-developed. Here we report nagnag, an R-based NAGNAG splicing detection tool, which accurately identifies and quantifies NAGNAG splicing events using RNA-Seq. Overall, nagnag produces user-friendly visualization reports and highlights differences between the DNA/RNA/protein across the identified isoforms of the reported gene. The package is available on https://sourceforge.net/projects/nagnag/files/; or http://genome.sdau.edu.cn/research/software/nagnag.html.

  10. Development and media regulate alternative splicing of a methyltransferase pre-mRNA in Monascus pilosus.

    PubMed

    Zhang, Ming-Yong; Miyake, Tsuyoshi

    2009-05-27

    Two alternatively spliced mRNAs (d- and l-MpLaeA) of a methyltransferase gene (MpLaeA) were identified from Monascus pilosus IFO4520 and its mutant MK-1. Alternative splicing of the MpLaeA pre-mRNA occurred in the 5'-untranslated region (5'-UTR). The alternative splicing patterns of MpLaeA were regulated by the fungal growth stage and the principal nutrients: that is, the short l-MpLaeA mRNA was a constitutive transcript at all growth stages and different carbon or nitrogen sources, but the glutamate and NaNO(3) as main nitrogen source could up-regulate the long d-MpLaeA mRNA form. The long spliced 5'-UTR of d-MpLaeA blocked GFP expression in Escherichia coli , suggesting that d-MpLaeA mRNA was an ineffective spliced mRNA. Down-regulation of MpLaeA by transgenic antisense d-MpLaeA cDNA resulted in decreasing synthesis of monacolin K in M. pilosus. This suggested that the alternative splicing of MpLaeA mRNA might regulate the synthesis of monacolin K.

  11. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing

    PubMed Central

    Khan, Dilshad H.; Gonzalez, Carolina; Cooper, Charlton; Sun, Jian-Min; Chen, Hou Yu; Healy, Shannon; Xu, Wayne; Smith, Karen T.; Workman, Jerry L.; Leygue, Etienne; Davie, James R.

    2014-01-01

    Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA. PMID:24234443

  12. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.

    PubMed

    Schimmer, Bernard P; Cordova, Martha

    2015-06-15

    The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex.

  13. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.

  14. Regulation of corepressor alternative mRNA splicing by hormonal and metabolic signaling.

    PubMed

    Snyder, Chelsea A; Goodson, Michael L; Schroeder, Amy C; Privalsky, Martin L

    2015-09-15

    Alternative mRNA splicing diversifies the products encoded by the NCoR and SMRT corepressor loci. There is a programmed alteration in NCoR mRNA splicing during adipocyte differentiation from an NCoRω isoform, which contains three nuclear receptor interaction domains, to an NCoRδ isoform that contains two nuclear receptor interaction domains. This alternative mRNA splicing of NCoR has profound effects on adiposity and on diabetes in mouse models. We report here that dexamethasone, a powerful regulator of metabolism and of adipocyte differentiation, confers this change in NCoR mRNA splicing in cultured adipocytes. We also demonstrate that changes in dietary components can consistently, if moderately, modulate the total transcript levels and the mRNA splicing of NCoR and SMRT in both cultured cells and intact mice. This ability of alternative corepressor mRNA splicing to respond to nutritional changes confirms its importance in regulating glucose and lipid metabolism, and its promise as a therapeutic candidate for metabolic disorders such as type 2 diabetes.

  15. Regulation of corepressor alternative mRNA splicing by hormonal and metabolic signaling

    PubMed Central

    Snyder, Chelsea A.; Goodson, Michael L.; Schroeder, Amy C.; Privalsky, Martin L.

    2015-01-01

    Alternative mRNA splicing diversifies the products encoded by the NCoR and SMRT corepressor loci. There is a programmed alteration in NCoR mRNA splicing during adipocyte differentiation from an NCoRδ isoform, which contains three nuclear receptor interaction domains, to an NCoRδ isoform that contains two nuclear receptor interaction domains. This alternative mRNA splicing of NCoR has profound effects on adiposity and on diabetes in mouse models. We report here that dexamethasone, a powerful regulator of metabolism and of adipocyte differentiation, confers this change in NCoR mRNA splicing in cultured adipocytes. We also demonstrate that changes in dietary components can consistently, if moderately, modulate the total transcript levels and the mRNA splicing of NCoR and SMRT in both cultured cells and intact mice. This ability of alternative corepressor mRNA splicing to respond to nutritional changes confirms its importance in regulating glucose and lipid metabolism, and its promise as a therapeutic candidate for metabolic disorders such as type 2 diabetes. PMID:26166430

  16. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.

    PubMed

    Shkreta, Lulzim; Bell, Brendan; Revil, Timothée; Venables, Julian P; Prinos, Panagiotis; Elela, Sherif Abou; Chabot, Benoit

    2013-01-01

    For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5' splice site and the U2AF65/U2AF35 complex to the 3' splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively

  17. Conserved RNA cis-elements regulate alternative splicing of Lepidopteran doublesex.

    PubMed

    Wang, Xiu-Ye; Zheng, Zeng-Zhang; Song, Hong-Sheng; Xu, Yong-Zhen

    2014-01-01

    Doublesex (dsx) is a downstream key regulator in insect sex determination pathway. In Drosophila, alternative splicing of Dm-dsx gene is sex-specifically regulated by transformer (tra), in which the functional TRA promotes female-specific Dm-dsx. However, the sex determination pathway in Lepidoptera is not well understood; here we focused on alternative splicing of doublesex (dsx) in two agricultural pests, Asian corn borer (Ostrinia furnacalis) and cotton bollworm (Helicoverpa armigera), as well as the silkworm (Bombyx mori). More than a dozen new alternative splicing isoforms of dsx were found in the Lepidopteran females, which exist in all tested developmental stages and differentiated tissues. Alignment of mRNA and protein sequences of doublesex revealed high conservation of this gene in Lepidoptera. Strength analysis of splice sites revealed a weak 5' splice site at intron 3 in Lepidopteran dsx, which was experimentally confirmed. Furthermore, we identified highly conserved RNA sequences in the Lepidopteran dsx, including RNA elements I (14 nt), II (11 nt), III (26 nt), IV (17 nt), 3E-1 (8 nt) and 3E-2 (8 nt). The RNA elements III and IV were previously found in exon 4 of B. mori dsx and bound with Bm-PSI, which suppressed the inclusion of exons 3 & 4 into the male-specific Bm-dsx. Then we identified and analyzed the homologous genes of Bm-psi in the two Lepidopteran pests, which expressed at similar levels and exhibited a unique isoform in the males and females from each Lepidoptera. Importantly, mutagenesis of Bm-dsx mini-genes and their expression in BmN cell line demonstrated that three RNA elements are involved in the female-specific alternative splicing of Bm-dsx. Mutations in the RNA cis-elements 3E-1 and 3E-2 resulted in decreased inclusion of exon 3 into the female-specific dsx mRNA, suggesting that these two elements would be exonic splicing enhancers that facilitate the recognition of the weak 5' splice site at intron 3 of Lepidopteran dsx. We

  18. Understanding splicing regulation through RNA splicing maps.

    PubMed

    Witten, Joshua T; Ule, Jernej

    2011-03-01

    Alternative splicing is a highly regulated process that greatly increases the proteome diversity and plays an important role in cellular differentiation and disease. Interactions between RNA-binding proteins (RBPs) and pre-mRNA are the principle regulator of splicing decisions. Findings from recent genome-wide studies of protein-RNA interactions have been combined with assays of the global effects of RBPs on splicing to create RNA splicing maps. These maps integrate information from all pre-mRNAs regulated by single RBPs to identify the global positioning principles guiding splicing regulation. Recent studies using this approach have identified a set of positional principles that are shared between diverse RBPs. Here, we discuss how insights from RNA splicing maps of different RBPs inform the mechanistic models of splicing regulation.

  19. Long Non-Coding RNA and Alternative Splicing Modulations in Parkinson's Leukocytes Identified by RNA Sequencing

    PubMed Central

    Soreq, Lilach; Guffanti, Alessandro; Salomonis, Nathan; Simchovitz, Alon; Israel, Zvi; Bergman, Hagai; Soreq, Hermona

    2014-01-01

    The continuously prolonged human lifespan is accompanied by increase in neurodegenerative diseases incidence, calling for the development of inexpensive blood-based diagnostics. Analyzing blood cell transcripts by RNA-Seq is a robust means to identify novel biomarkers that rapidly becomes a commonplace. However, there is lack of tools to discover novel exons, junctions and splicing events and to precisely and sensitively assess differential splicing through RNA-Seq data analysis and across RNA-Seq platforms. Here, we present a new and comprehensive computational workflow for whole-transcriptome RNA-Seq analysis, using an updated version of the software AltAnalyze, to identify both known and novel high-confidence alternative splicing events, and to integrate them with both protein-domains and microRNA binding annotations. We applied the novel workflow on RNA-Seq data from Parkinson's disease (PD) patients' leukocytes pre- and post- Deep Brain Stimulation (DBS) treatment and compared to healthy controls. Disease-mediated changes included decreased usage of alternative promoters and N-termini, 5′-end variations and mutually-exclusive exons. The PD regulated FUS and HNRNP A/B included prion-like domains regulated regions. We also present here a workflow to identify and analyze long non-coding RNAs (lncRNAs) via RNA-Seq data. We identified reduced lncRNA expression and selective PD-induced changes in 13 of over 6,000 detected leukocyte lncRNAs, four of which were inversely altered post-DBS. These included the U1 spliceosomal lncRNA and RP11-462G22.1, each entailing sequence complementarity to numerous microRNAs. Analysis of RNA-Seq from PD and unaffected controls brains revealed over 7,000 brain-expressed lncRNAs, of which 3,495 were co-expressed in the leukocytes including U1, which showed both leukocyte and brain increases. Furthermore, qRT-PCR validations confirmed these co-increases in PD leukocytes and two brain regions, the amygdala and substantia

  20. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    SciTech Connect

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  1. Coupling transcription and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2007-01-01

    Alternative splicing regulation not only depends on the interaction of splicing factors with splicing enhancers and silencers in the pre-mRNA, but also on the coupling between transcription and splicing. This coupling is possible because splicing is often cotranscriptional and promoter identity and occupation may affect alternative splicing. We discuss here the different mechanisms by which transcription regulates alternative splicing. These include the recruitment of splicing factors to the transcribing polymerase and "kinetic coupling", which involves changes in the rate of transcriptional elongation that in turn affect the timing in which splice sites are presented to the splicing machinery. The recruitment mechanism may depend on the particular features of the carboxyl terminal domain of RNA polymerase II, whereas kinetic coupling seems to be linked to how changes in chromatin structure and other factors affect transcription elongation.

  2. An alternatively spliced surfactant protein B mRNA in normal human lung: disease implication.

    PubMed Central

    Lin, Z; Wang, G; Demello, D E; Floros, J

    1999-01-01

    We identified an alternatively-spliced surfactant protein B (SP-B) mRNA from normal human lung with a 12 nt deletion at the beginning of exon 8. This deletion causes a loss of four amino acids in the SP-B precursor protein. Sequence comparison of the 3' splice sites reveals only one difference in the frequency of U/C in the 11 predominantly-pyrimidine nucleotide tract, 73% for the normal and 45% for the alternatively-spliced SP-B mRNA (77-99% for the consensus sequence). Analysis of SP-B mRNA in lung indicates that the abundance of the alternatively-spliced form is very low and varies among individuals. Although the relative abundance of the deletion form of SP-B mRNA remains constant among normal lungs, it is found with relatively higher abundance in the lungs of some individuals with diseases such as congenital alveolar proteinosis, respiratory distress syndrome, bronchopulmonary dysplasia, alveolar capillary dysplasia and hypophosphatasia. This observation points to the possibility that the alternative splicing is a potential regulatory mechanism of SP-B and may play a role in the pathogenesis of disease under certain circumstances. PMID:10493923

  3. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    SciTech Connect

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Shamy, Magdy; Muñoz, Manuel J.; and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  4. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells.

    PubMed

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A; Khoder, Mamdouh I; Shamy, Magdy; Muñoz, Manuel J; Kornblihtt, Alberto R

    2015-07-01

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5' untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing.

  5. Regulation of Dscam exon 17 alternative splicing by steric hindrance in combination with RNA secondary structures.

    PubMed

    Yue, Yuan; Li, Guoli; Yang, Yun; Zhang, Wenjing; Pan, Huawei; Chen, Ran; Shi, Feng; Jin, Yongfeng

    2013-12-01

    The gene Down syndrome cell adhesion molecule (Dscam) potentially encodes 38 016 distinct isoforms in Drosophila melanogaster via mutually exclusive splicing. Here we reveal a combinatorial mechanism of regulation of Dscam exon 17 mutually exclusive splicing through steric hindrance in combination with RNA secondary structure. This mutually exclusive behavior is enforced by steric hindrance, due to the close proximity of the exon 17.2 branch point to exon 17.1 in Diptera, and the interval size constraint in non-Dipteran species. Moreover, intron-exon RNA structures are evolutionarily conserved in 36 non-Drosophila species of six distantly related orders (Diptera, Lepidoptera, Coleoptera, Hymenoptera, Hemiptera, and Phthiraptera), which regulates the selection of exon 17 variants via masking the splice site. By contrast, a previously uncharacterized RNA structure specifically activated exon 17.1 by bringing splice sites closer together in Drosophila, while the other moderately suppressed exon 17.1 selection by hindering the accessibility of polypyrimidine sequences. Taken together, these data suggest a phylogeny of increased complexity in regulating alternative splicing of Dscam exon 17 spanning more than 300 million years of insect evolution. These results also provide models of the regulation of alternative splicing through steric hindrance in combination with dynamic structural codes.

  6. Physiological state co-regulates thousands of mammalian mRNA splicing events at tandem splice sites and alternative exons.

    PubMed

    Szafranski, Karol; Fritsch, Claudia; Schumann, Frank; Siebel, Lisa; Sinha, Rileen; Hampe, Jochen; Hiller, Michael; Englert, Christoph; Huse, Klaus; Platzer, Matthias

    2014-08-01

    Thousands of tandem alternative splice sites (TASS) give rise to mRNA insertion/deletion variants with small size differences. Recent work has concentrated on the question of biological relevance in general, and the physiological regulation of TASS in particular. We have quantitatively studied 11 representative TASS cases in comparison to one mutually exclusive exon case and two cassette exons (CEs) using a panel of human and mouse tissues, as well as cultured cell lines. Tissues show small but significant differences in TASS isoform ratios, with a variance 4- to 20-fold lower than seen for CEs. Remarkably, in cultured cells, all studied alternative splicing (AS) cases showed a cell-density-dependent shift of isoform ratios with similar time series profiles. A respective genome-wide co-regulation of TASS splicing was shown by next-generation mRNA sequencing data. Moreover, data from human and mouse organs indicate that this co-regulation of TASS occurs in vivo, with brain showing the strongest difference to other organs. Together, the results indicate a physiological AS regulation mechanism that functions almost independently from the splice site context and sequence.

  7. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions

    PubMed Central

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998

  8. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.

    PubMed

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection.

  9. In Vivo Analysis of Alternative Pre-mRNA Splicing.

    DTIC Science & Technology

    1996-10-01

    SF2 influences 5’ splice site selection by activating proximal sites. Cell 62: 35-42 Koehorst SG, Jacobs HM, Thijssen JH, Blankenstein MA (1993) Wild...S, Frati L and Gulino A (1995) Estrogen receptors: new perspectives in breast cancer management. J. Ster. Bioch . Mol. Biol. 49:327-331. Pfeffer U

  10. SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data

    PubMed Central

    Kahles, André; Ong, Cheng Soon; Zhong, Yi; Rätsch, Gunnar

    2016-01-01

    Motivation: Understanding the occurrence and regulation of alternative splicing (AS) is a key task towards explaining the regulatory processes that shape the complex transcriptomes of higher eukaryotes. With the advent of high-throughput sequencing of RNA (RNA-Seq), the diversity of AS transcripts could be measured at an unprecedented depth. Although the catalog of known AS events has grown ever since, novel transcripts are commonly observed when working with less well annotated organisms, in the context of disease, or within large populations. Whereas an identification of complete transcripts is technically challenging and computationally expensive, focusing on single splicing events as a proxy for transcriptome characteristics is fruitful and sufficient for a wide range of analyses. Results: We present SplAdder, an alternative splicing toolbox, that takes RNA-Seq alignments and an annotation file as input to (i) augment the annotation based on RNA-Seq evidence, (ii) identify alternative splicing events present in the augmented annotation graph, (iii) quantify and confirm these events based on the RNA-Seq data and (iv) test for significant quantitative differences between samples. Thereby, our main focus lies on performance, accuracy and usability. Availability: Source code and documentation are available for download at http://github.com/ratschlab/spladder. Example data, introductory information and a small tutorial are accessible via http://bioweb.me/spladder. Contacts: andre.kahles@ratschlab.org or gunnar.ratsch@ratschlab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873928

  11. Alternative splicing interference by xenobiotics.

    PubMed

    Zaharieva, Emanuela; Chipman, J Kevin; Soller, Matthias

    2012-06-14

    The protein coding sequence of most eukaryotic genes (exons) is interrupted by non-coding parts (introns), which are excised in a process termed splicing. To generate a mature messenger RNA (mRNA) hundreds of combinatorial protein-protein and RNA-protein interactions are required to splice out often very large introns with high fidelity and accuracy. Inherent to splicing is the use of alternative splice sites generating immense proteomic diversity from a limited number of genes. In humans, alternative splicing is a major mode of regulating gene expression, occurs in over 90% of genes and is particularly abundant in the brain. Only recently, it has been recognized that the complexity of the splicing process makes it susceptible to interference by various xenobiotics. These compounds include antineoplastic substances, commonly used drugs and food supplements and cause a spectrum of effects ranging from deleterious inhibition of general splicing to highly specific modifications of alternative splicing affecting only certain genes. Alterations in splicing have been implicated in numerous diseases such as cancer and neurodegeneration. Splicing regulation plays an important role in the execution of programmed cell death. The switch between anti- and pro-apoptotic isoforms by alternative splice site selection and misregulation of a number of splicing factors impacts on cell survival and disease. Here, our current knowledge is summarized on compounds interfering with general and alternative splicing and of the current methodology to study changes in these processes relevant to the field of toxicology and future risk assessments.

  12. RNA Polymerase II Elongation at the Crossroads of Transcription and Alternative Splicing

    PubMed Central

    de la Mata, Manuel; Muñoz, Manuel J.; Alló, Mariano; Fededa, Juan Pablo; Schor, Ignacio E.; Kornblihtt, Alberto R.

    2011-01-01

    The elongation phase of transcription lies at the core of several simultaneous and coupled events leading to alternative splicing regulation. Although underestimated in the past, it is at this phase of the transcription cycle where complexes affecting the transcription machinery itself, chromatin structure, posttranscriptional gene regulation and pre-mRNA processing converge to regulate each other or simply to consolidate higher-order complexes and functions. This paper focuses on the multiple processes that take place during transcription elongation which ultimately regulate the outcome of alternative splicing decisions. PMID:22567350

  13. Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1

    SciTech Connect

    Teplova, Marianna; Patel, Dinshaw J.

    2009-01-15

    Muscleblind-like (MBNL) proteins, regulators of developmentally programmed alternative splicing, harbor tandem CCCH zinc-finger (ZnF) domains that target pre-mRNAs containing YGCU(U/G)Y sequence elements (where Y is a pyrimidine). In myotonic dystrophy, reduced levels of MBNL proteins lead to aberrant alternative splicing of a subset of pre-mRNAs. The crystal structure of MBNL1 ZnF3/4 bound to r(CGCUGU) establishes that both ZnF3 and ZnF4 target GC steps, with site-specific recognition mediated by a network of hydrogen bonds formed primarily with main chain groups of the protein. The relative alignment of ZnF3 and ZnF4 domains is dictated by the topology of the interdomain linker, with a resulting antiparallel orientation of bound GC elements, supportive of a chain-reversal loop trajectory for MBNL1-bound pre-mRNA targets. We anticipate that MBNL1-mediated targeting of looped RNA segments proximal to splice-site junctions could contribute to pre-mRNA alternative-splicing regulation.

  14. Myocardial alternative RNA splicing and gene expression profiling in early stage hypoplastic left heart syndrome.

    PubMed

    Ricci, Marco; Xu, Yanji; Hammond, Harriet L; Willoughby, David A; Nathanson, Lubov; Rodriguez, Maria M; Vatta, Matteo; Lipshultz, Steven E; Lincoln, Joy

    2012-01-01

    Hypoplastic Left Heart Syndrome (HLHS) is a congenital defect characterized by underdevelopment of the left ventricle and pathological compensation of the right ventricle. If untreated, HLHS is invariably lethal due to the extensive increase in right ventricular workload and eventual failure. Despite the clinical significance, little is known about the molecular pathobiological state of HLHS. Splicing of mRNA transcripts is an important regulatory mechanism of gene expression. Tissue specific alterations of this process have been associated with several cardiac diseases, however, transcriptional signature profiles related to HLHS are unknown. In this study, we performed genome-wide exon array analysis to determine differentially expressed genes and alternatively spliced transcripts in the right ventricle (RV) of six neonates with HLHS, compared to the RV and left ventricle (LV) from non-diseased control subjects. In HLHS, over 180 genes were differentially expressed and 1800 were differentially spliced, leading to changes in a variety of biological processes involving cell metabolism, cytoskeleton, and cell adherence. Additional hierarchical clustering analysis revealed that differential gene expression and mRNA splicing patterns identified in HLHS are unique compared to non-diseased tissue. Our findings suggest that gene expression and mRNA splicing are broadly dysregulated in the RV myocardium of HLHS neonates. In addition, our analysis identified transcriptome profiles representative of molecular biomarkers of HLHS that could be used in the future for diagnostic and prognostic stratification to improve patient outcome.

  15. Alternative splicing of the mRNA encoding the human cholesteryl ester transfer protein

    SciTech Connect

    Inazu, Akihiro; Quinet, E.M.; Suke Wang; Brown, M.L.; Stevenson, S.; Barr, M.L.; Moulin, P.; Tall, A.R. )

    1992-03-03

    The plasma cholesteryl ester transfer protein (CETP) is known to facilitate the transfer of lipids between plasma lipoproteins. The human CETP gene is a complex locus encompassing 16 exons. The CETP mRNA is found in liver and small intestine as well as in a variety of peripheral tissues. While the CETP cDNA from human adipose tissue was being cloned, a variant CETP cDNA was discovered which excluded the complete sequence encoded by exon 9, but which was otherwise identical to the full-length CETP cDNA, suggesting modification of the CETP gene transcript by an alternative RNA splicing mechanism. RNase protection analysis of tissue RNA confirmed the presence of exon 9 deleted transcripts and showed that they represented a variable proportion of the total CETP mRNA in various human tissues including adipose tissue (25%), liver (33%), and spleen (46%). Transient expression of the exon 9 deleted cDNA in COS cells or stable expression in CHO cells showed that the protein encoded by the alternatively spliced transcript was inactive in neutral lipid transfer, smaller, and poorly secreted compared to the protein derived from the full-length cDNA. Endo H digestion suggested that the inactive, cell-associated protein was present within the endoplasmic reticulum. The experiments show that the expression of the human CETP gene is modified by alternative splicing of the ninth exon, in a tissue-specific fashion. The function of alternative splicing is unknown but could serve to produce a protein with a function other than plasma neutral lipid transfer, or as an on-off switch to regulate the local concentration of biologically active protein.

  16. The neurogenetics of alternative splicing

    PubMed Central

    Vuong, Celine K.; Black, Douglas L.; Zheng, Sika

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain. PMID:27094079

  17. Alternative Splicing of hTERT Pre-mRNA: A Potential Strategy for the Regulation of Telomerase Activity

    PubMed Central

    Liu, Xuewen; Wang, Yuchuan; Chang, Guangming; Wang, Feng; Wang, Fei; Geng, Xin

    2017-01-01

    The activation of telomerase is one of the key events in the malignant transition of cells, and the expression of human telomerase reverse transcriptase (hTERT) is indispensable in the process of activating telomerase. The pre-mRNA alternative splicing of hTERT at the post-transcriptional level is one of the mechanisms for the regulation of telomerase activity. Shifts in splicing patterns occur in the development, tumorigenesis, and response to diverse stimuli in a tissue-specific and cell type–specific manner. Despite the regulation of telomerase activity, the alternative splicing of hTERT pre-mRNA may play a role in other cellular functions. Modulating the mode of hTERT pre-mRNA splicing is providing a new precept of therapy for cancer and aging-related diseases. This review focuses on the patterns of hTERT pre-mRNA alternative splicing and their biological functions, describes the potential association between the alternative splicing of hTERT pre-mRNA and telomerase activity, and discusses the possible significance of the alternative splicing of the hTERT pre-mRNA in the diagnosis, therapy, and prognosis of cancer and aging-related diseases. PMID:28272339

  18. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia☆

    PubMed Central

    Hulse, R.P.; Beazley-Long, N.; Hua, J.; Kennedy, H.; Prager, J.; Bevan, H.; Qiu, Y.; Fernandes, E.S.; Gammons, M.V.; Ballmer-Hofer, K.; Gittenberger de Groot, A.C.; Churchill, A.J.; Harper, S.J.; Brain, S.D.; Bates, D.O.; Donaldson, L.F.

    2014-01-01

    Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event – leading to the preferential expression of VEGF-A165b over VEGF165a – prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. PMID:25151644

  19. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity.

    PubMed Central

    Purcell, D F; Martin, M A

    1993-01-01

    Multiple RNA splicing sites exist within human immunodeficiency virus type 1 (HIV-1) genomic RNA, and these sites enable the synthesis of many mRNAs for each of several viral proteins. We evaluated the biological significance of the alternatively spliced mRNA species during productive HIV-1 infections of peripheral blood lymphocytes and human T-cell lines to determine the potential role of alternative RNA splicing in the regulation of HIV-1 replication and infection. First, we used a semiquantitative polymerase chain reaction of cDNAs that were radiolabeled for gel analysis to determine the relative abundance of the diverse array of alternatively spliced HIV-1 mRNAs. The predominant rev, tat, vpr, and env RNAs contained a minimum of noncoding sequence, but the predominant nef mRNAs were incompletely spliced and invariably included noncoding exons. Second, the effect of altered RNA processing was measured following mutagenesis of the major 5' splice donor and several cryptic, constitutive, and competing 3' splice acceptor motifs of HIV-1NL4-3. Mutations that ablated constitutive splice sites led to the activation of new cryptic sites; some of these preserved biological function. Mutations that ablated competing splice acceptor sites caused marked alterations in the pool of virus-derived mRNAs and, in some instances, in virus infectivity and/or the profile of virus proteins. The redundant RNA splicing signals in the HIV-1 genome and alternatively spliced mRNAs provides a mechanism for regulating the relative proportions of HIV-1 proteins and, in some cases, viral infectivity. Images PMID:8411338

  20. RNA splicing: disease and therapy.

    PubMed

    Douglas, Andrew G L; Wood, Matthew J A

    2011-05-01

    The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. The mechanism of pre-mRNA splicing is highly complex, requiring multiple interactions between pre-mRNA, small nuclear ribonucleoproteins and splicing factor proteins. Regulation of this process is even more complicated, relying on loosely defined cis-acting regulatory sequence elements, trans-acting protein factors and cellular responses to varying environmental conditions. Many different human diseases can be caused by errors in RNA splicing or its regulation. Targeting aberrant RNA provides an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. Antisense oligonucleotide therapies show particular promise in this area and, if coupled with improved delivery strategies, could open the door to a multitude of novel personalized therapies.

  1. Ametantrone-based compounds as potential regulators of Tau pre-mRNA alternative splicing.

    PubMed

    Artigas, Gerard; López-Senín, Paula; González, Carlos; Escaja, Núria; Marchán, Vicente

    2015-01-14

    Tau pre-mRNA contains a stem-loop structure involved in the regulation of the alternative splicing of tau protein. We describe here a new family of Tau RNA ligands selected by dynamic combinatorial chemistry based on the combination of ametantrone with small RNA-binding molecules. The most promising compound results from derivatization of one of the side chains of the anthraquinone ring with the small aminoglycoside neamine through a short spacer. This compound binds the RNA target with a high affinity in a preferred binding site, in which the heteroaromatic moiety intercalates in the bulged region of the stem-loop and its side chains and neamine interact with the major groove of the RNA. Importantly, binding of this compound to mutated RNA sequences involved in the onset of some tauopathies such as FTDP-17 restores their thermodynamic stability to a similar or even higher levels than that of the wild-type sequence, thereby revealing its potential as a modulator of Tau pre-mRNA splicing.

  2. Predicting functional alternative splicing by measuring RNA selection pressure from multigenome alignments.

    PubMed

    Lu, Hongchao; Lin, Lan; Sato, Seiko; Xing, Yi; Lee, Christopher J

    2009-12-01

    High-throughput methods such as EST sequencing, microarrays and deep sequencing have identified large numbers of alternative splicing (AS) events, but studies have shown that only a subset of these may be functional. Here we report a sensitive bioinformatics approach that identifies exons with evidence of a strong RNA selection pressure ratio (RSPR)--i.e., evolutionary selection against mutations that change only the mRNA sequence while leaving the protein sequence unchanged--measured across an entire evolutionary family, which greatly amplifies its predictive power. Using the UCSC 28 vertebrate genome alignment, this approach correctly predicted half to three-quarters of AS exons that are known binding targets of the NOVA splicing regulatory factor, and predicted 345 strongly selected alternative splicing events in human, and 262 in mouse. These predictions were strongly validated by several experimental criteria of functional AS such as independent detection of the same AS event in other species, reading frame-preservation, and experimental evidence of tissue-specific regulation: 75% (15/20) of a sample of high-RSPR exons displayed tissue specific regulation in a panel of ten tissues, vs. only 20% (4/20) among a sample of low-RSPR exons. These data suggest that RSPR can identify exons with functionally important splicing regulation, and provides biologists with a dataset of over 600 such exons. We present several case studies, including both well-studied examples (GRIN1) and novel examples (EXOC7). These data also show that RSPR strongly outperforms other approaches such as standard sequence conservation (which fails to distinguish amino acid selection pressure from RNA selection pressure), or pairwise genome comparison (which lacks adequate statistical power for predicting individual exons).

  3. Regulation of transcription of the RNA splicing factor hSlu7 by Elk-1 and Sp1 affects alternative splicing.

    PubMed

    Alberstein, Moti; Amit, Maayan; Vaknin, Keren; O'Donnell, Amanda; Farhy, Chen; Lerenthal, Yaniv; Shomron, Noam; Shaham, Ohad; Sharrocks, Andrew D; Ashery-Padan, Ruth; Ast, Gil

    2007-11-01

    Alternative splicing plays a major role in transcriptome diversity and plasticity, but it is largely unknown how tissue-specific and embryogenesis-specific alternative splicing is regulated. The highly conserved splicing factor Slu7 is involved in 3' splice site selection and also regulates alternative splicing. We show that Slu7 has a unique spatial pattern of expression among human and mouse embryonic and adult tissues. We identified several functional Ets binding sites and GC-boxes in the human Slu7 (hSlu7) promoter region. The Ets and GC-box binding transcription factors, Elk-1 and Sp1, respectively, exerted opposite effects on hSlu7 transcription: Sp1 protein enhances and Elk-1 protein represses transcription in a dose-dependent manner. Sp1 protein bound to the hSlu7 promoter in vivo, and depletion of Sp1 by RNA interference (RNAi) repressed hSlu7 expression. Elk-1 protein bound to the hSlu7 promoter in vivo, and depletion of Elk-1 by RNAi caused an increase in the endogenous level of hSlu7 mRNA. Further, depletion of either Sp1 or Elk-1 affected alternative splicing. Our results provide indications of a complex transcription regulation mechanism that controls the spatial and temporal expression of Slu7, presumably allowing regulation of tissue-specific alternative splicing events.

  4. Molecular structure of the human argininosuccinate synthetase gene: Occurrence of alternative mRNA splicing

    SciTech Connect

    Freytag, S.O.; Beaudet, A.L.; Bock, H.G.O.; O'Brien, W.E.

    1984-10-01

    The human genome contains one expressed argininosuccinate synthetase gene and ca. 14 pseudogenes that are dispersed to at least 11 human chromosomes. Eleven clones isolated from a human genomic DNA library were characterized extensively by restriction mapping, Southern blotting, and nucleotide sequencing. These 11 clones represent the entire expressed argininosuccinate synthetase gene that spans 63 kilobases and contains at least 13 exons. The expressed gene codes for two mRNAs that differ in their 5' untranslated sequences and arise by alternative splicing involving the inclusion or deletion of an entire exon. In normal human liver and cultured fibroblasts, the predominant mature argininosuccinate synthetase mRNA lacks sequences encoded by exon 2 in the expressed gene. In contrast, the predominant argininosuccinate synthetase mRNA in baboon liver contains exon 2 sequences. A transformed canavanine-resistant human cell line in which argininosuccinate synthetase activity is 180-fold higher than that in wild-type cells contains abundant amounts of both forms of the argininosuccinate synthetase mRNA. The mRNA lacking exon 2 sequences is the more abundant mRNA species in the canavanine-resistant cells. These observations show that splicing of the argininosuccinate synthetase mRNA is species specific in primates and varies among different human cell types.

  5. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis

    PubMed Central

    Cheng, Albert W.; Shi, Jiahai; Wong, Piu; Luo, Katherine L.; Trepman, Paula; Wang, Eric T.; Choi, Heejo; Lodish, Harvey F.

    2014-01-01

    The scope and roles of regulated isoform gene expression during erythroid terminal development are poorly understood. We identified hundreds of differentiation-associated isoform changes during terminal erythropoiesis. Sequences surrounding cassette exons of skipped exon events are enriched for motifs bound by the Muscleblind-like (MBNL) family of splicing factors. Knockdown of Mbnl1 in cultured murine fetal liver erythroid progenitors resulted in a strong block in erythroid differentiation and disrupted the developmentally regulated exon skipping of Ndel1 mRNA, which is bound by MBNL1 and critical for erythroid terminal proliferation. These findings reveal an unanticipated scope of the alternative splicing program and the importance of Mbnl1 during erythroid terminal differentiation. PMID:24869935

  6. Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis.

    PubMed

    Cheng, Albert W; Shi, Jiahai; Wong, Piu; Luo, Katherine L; Trepman, Paula; Wang, Eric T; Choi, Heejo; Burge, Christopher B; Lodish, Harvey F

    2014-07-24

    The scope and roles of regulated isoform gene expression during erythroid terminal development are poorly understood. We identified hundreds of differentiation-associated isoform changes during terminal erythropoiesis. Sequences surrounding cassette exons of skipped exon events are enriched for motifs bound by the Muscleblind-like (MBNL) family of splicing factors. Knockdown of Mbnl1 in cultured murine fetal liver erythroid progenitors resulted in a strong block in erythroid differentiation and disrupted the developmentally regulated exon skipping of Ndel1 mRNA, which is bound by MBNL1 and critical for erythroid terminal proliferation. These findings reveal an unanticipated scope of the alternative splicing program and the importance of Mbnl1 during erythroid terminal differentiation.

  7. Cell-autonomous regulation of fast troponin T pre-mRNA alternative splicing in response to mechanical stretch.

    PubMed

    Schilder, Rudolf J; Kimball, Scot R; Jefferson, Leonard S

    2012-08-01

    How mechanochemical signals induced by the amount of weight borne by the skeletal musculature are translated into modifications to muscle sarcomeres is poorly understood. Our laboratory recently demonstrated that, in response to experimentally induced increases in the weight load borne by a rat, alternative splicing of the fast skeletal muscle troponin T (Tnnt3) pre-mRNA in gastrocnemius was adjusted in a correlated fashion with the amount of added weight. (Schilder RJ, Kimball SR, Marden JH, Jefferson LS. J Exp Biol 214: 1523-1532, 2011). Thus muscle load is perceived quantitatively by the body, and mechanisms that sense it appear to control processes that generate muscle sarcomere composition plasticity, such as alternative pre-mRNA splicing. Here we demonstrate how mechanical stretch (see earlier comment) of C2C12 muscle cells in culture results in changes to Tnnt3 pre-mRNA alternative splicing that are qualitatively similar to those observed in response to added weight in rats. Moreover, inhibition of Akt signaling, but not that of ERK1/2, prevents the stretch-induced effect on Tnnt3 pre-mRNA alternative splicing. These findings suggest that effects of muscle load on Tnnt3 pre-mRNA alternative splicing are controlled by a cell-autonomous mechanism, rather than systemically. They also indicate that, in addition to its regulatory role in protein synthesis and muscle mass plasticity, Akt signaling may regulate muscle sarcomere composition by modulating alternative splicing events in response to load. Manipulation of Tnnt3 pre-mRNA alternative splicing by mechanical stretch of cells in culture provides a model to investigate the biology of weight sensing by skeletal muscles and facilitates identification of mechanisms through which skeletal muscles match their performance and experienced load.

  8. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    SciTech Connect

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  9. Alternative splicing in single cells dissected from complex tissues: separate expression of prepro-tachykinin A mRNA splice variants in sensory neurones.

    PubMed

    Springer, Jochen; McGregor, Gerard P; Fink, Ludger; Fischer, Axel

    2003-05-01

    Tachykinins play an important role in peripheral inflammatory diseases and disorders of the CNS. Most members of the tachykinin family are generated by alternative post-transcriptional splicing of the prepro-tachykinin (PPT) A gene. Here, we examined the simultaneous expression of PPT-A splice variants in individual neurones of the nodose ganglion. In extracts of ganglia, the expression of the four PPT-A mRNA splice variants and their four encoded peptides was shown by RT-PCR and combined HPLC and radioimmunoassay respectively. In order to examine prepro-tachykinin A expression in individual cells, single neurones were isolated from the ganglia using laser-assisted microdissection and processed for RT-PCR. Some 31.9% of the neurones investigated expressed a specific PPT-A transcript. Each individual neurone was found to express only a single splice variant. This is the first study to analyse the differential expression of PPT-A splice variants at the single-cell level. In view of the large number of alternatively spliced genes in the human genome and the resulting profound physiological effects, including several diseases, the technique described here is useful for isolating cells without possible confounding effects of dissociated neuronal cultures. For PPT-A, the results indicate that alternative post-transcriptional splicing determines the tachykinergic phenotype and may therefore have important functional implications.

  10. Analysis of Alternative Pre-RNA Splicing in the Mouse Retina Using a Fluorescent Reporter.

    PubMed

    Murphy, Daniel; Kolandaivelu, Saravanan; Ramamurthy, Visvanathan; Stoilov, Peter

    2016-01-01

    In vivo alternative splicing is controlled in a tissue and cell type specific manner. Often individual cellular components of complex tissues will express different splicing programs. Thus, when studying splicing in multicellular organisms it is critical to determine the exon inclusion levels in individual cells positioned in the context of their native tissue or organ. Here we describe how a fluorescent splicing reporter in combination with in vivo electroporation can be used to visualize alternative splicing in individual cells within mature tissues. In a test case we show how the splicing of a photoreceptor specific exon can be visualized within the mouse retina. The retina was chosen as an example of a complex tissue that is fragile and whose cells cannot be studied in culture. With minor modifications to the injection and electroporation procedure, the protocol we outline can be applied to other tissues and organs.

  11. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing.

    PubMed

    Wu, Dong-Dong; Ye, Ling-Qun; Li, Yan; Sun, Yan-Bo; Shao, Yi; Chen, Chunyan; Zhu, Zhu; Zhong, Li; Wang, Lu; Irwin, David M; Zhang, Yong E; Zhang, Ya-Ping

    2015-08-01

    Next-generation RNA sequencing has been successfully used for identification of transcript assembly, evaluation of gene expression levels, and detection of post-transcriptional modifications. Despite these large-scale studies, additional comprehensive RNA-seq data from different subregions of the human brain are required to fully evaluate the evolutionary patterns experienced by the human brain transcriptome. Here, we provide a total of 6.5 billion RNA-seq reads from different subregions of the human brain. A significant correlation was observed between the levels of alternative splicing and RNA editing, which might be explained by a competition between the molecular machineries responsible for the splicing and editing of RNA. Young human protein-coding genes demonstrate biased expression to the neocortical and non-neocortical regions during evolution on the lineage leading to humans. We also found that a significantly greater number of young human protein-coding genes are expressed in the putamen, a tissue that was also observed to have the highest level of RNA-editing activity. The putamen, which previously received little attention, plays an important role in cognitive ability, and our data suggest a potential contribution of the putamen to human evolution.

  12. Alternative splicing of the neurofibromatosis type I pre-mRNA.

    PubMed

    Barron, Victoria A; Lou, Hua

    2012-04-01

    NF1 (neurofibromatosis type I) is a common genetic disease that affects one in 3500 individuals. The disease is completely penetrant but shows variable phenotypic expression in patients. NF1 is a large gene, and its pre-mRNA undergoes alternative splicing. The NF1 protein, neurofibromin, is involved in diverse signalling cascades. One of the best characterized functions of NF1 is its function as a Ras-GAP (GTPase-activating protein). NF1 exon 23a is an alternative exon that lies within the GAP-related domain of neurofibromin. This exon is predominantly included in most tissues, and it is skipped in CNS (central nervous system) neurons. The isoform in which exon 23a is skipped has 10 times higher Ras-GAP activity than the isoform in which exon 23a is included. Exon 23a inclusion is tightly regulated by at least three different families of RNA-binding proteins: CELF {CUG-BP (cytosine-uridine-guanine-binding protein) and ETR-3 [ELAV (embryonic lethal abnormal vision)-type RNA-binding protein]-like factor}, Hu and TIA-1 (T-cell intracellular antigen 1)/TIAR (T-cell intracellular antigen 1-related protein). The CELF and Hu proteins promote exon 23a skipping, while the TIA-1/TIAR proteins promote its inclusion. The widespread clinical variability that is observed among NF1 patients cannot be explained by NF1 mutations alone and it is believed that modifier genes may have a role in the variability. We suggest that the regulation of alternative splicing may act as a modifier to contribute to the variable expression in NF1 patients.

  13. Applying genetic programming to the prediction of alternative mRNA splice variants.

    PubMed

    Vukusic, Ivana; Grellscheid, Sushma Nagaraja; Wiehe, Thomas

    2007-04-01

    Genetic programming (GP) can be used to classify a given gene sequence as either constitutively or alternatively spliced. We describe the principles of GP and apply it to a well-defined data set of alternatively spliced genes. A feature matrix of sequence properties, such as nucleotide composition or exon length, was passed to the GP system "Discipulus." To test its performance we concentrated on cassette exons (SCE) and retained introns (SIR). We analyzed 27,519 constitutively spliced and 9641 cassette exons including their neighboring introns; in addition we analyzed 33,316 constitutively spliced introns compared to 2712 retained introns. We find that the classifier yields highly accurate predictions on the SIR data with a sensitivity of 92.1% and a specificity of 79.2%. Prediction accuracies on the SCE data are lower, 47.3% (sensitivity) and 70.9% (specificity), indicating that alternative splicing of introns can be better captured by sequence properties than that of exons.

  14. Cellular stress and RNA splicing.

    PubMed

    Biamonti, Giuseppe; Caceres, Javier F

    2009-03-01

    In response to physical and chemical stresses that affect protein folding and, thus, the execution of normal metabolic processes, cells activate gene-expression strategies aimed at increasing their chance of survival. One target of several stressing agents is pre-mRNA splicing, which is inhibited upon heat shock. Recently, the molecular basis of this splicing inhibition has begun to emerge. Interestingly, different mechanisms seem to be in place to block constitutive pre-mRNA splicing and to affect alternative splicing regulation. This could be important to modulate gene expression during recovery from stress. Thus, pre-mRNA splicing emerges as a central mechanism to integrate cellular and metabolic stresses into gene-expression profiles.

  15. MYCN controls an alternative RNA splicing program in high-risk metastatic neuroblastoma

    PubMed Central

    Zhang, Shile; Wei, Jun S.; Li, Samuel Q.; Badgett, Tom C.; Song, Young K.; Agarwal, Saurabh; Coarfa, Cristian; Tolman, Catherine; Hurd, Laura; Liao, Hongling; He, Jianbin; Wen, Xinyu; Liu, Zhihui; Thiele, Carol J.; Westermann, Frank; Asgharzadeh, Shahab; Seeger, Robert C.; Maris, John M.; Auvil, Jamie M Guidry; Smith, Malcolm A; Kolaczyk, Eric D; Shohet, Jason; Khan, Javed

    2016-01-01

    The molecular mechanisms underlying the aggressive behavior of MYCN driven neuroblastoma (NBL) is under intense investigation; however, little is known about the impact of this family of transcription factors on the splicing program. Here we used high-throughput RNA sequencing to systematically study the expression of RNA isoforms in stage 4 MYCN-amplified NBL, an aggressive subtype of metastatic NBL. We show that MYCN-amplified NBL tumors display a distinct gene splicing pattern affecting multiple cancer hallmark functions. Six splicing factors displayed unique differential expression patterns in MYCN-amplified tumors and cell lines, and the binding motifs for some of these splicing factors are significantly enriched in differentially-spliced genes. Direct binding of MYCN to promoter regions of the splicing factors PTBP1 and HNRNPA1 detected by ChIP-seq demonstrates MYCN controls the splicing pattern by direct regulation of the expression of these key splicing factors. Furthermore, high expression of PTBP1 and HNRNPA1 was significantly associated with poor overall survival of stage4 NBL patients (p≤0.05). Knocking down PTBP1, HNRNPA1 and their downstream target PKM2, an isoform of pro-tumor-growth, result in repressed growth of NBL cells. Therefore, our study reveals a novel role of MYCN in controlling global splicing program through regulation of splicing factors in addition to its well-known role in the transcription program. These findings suggest a therapeutically potential to target the key splicing factors or gene isoforms in high-risk NBL with MYCN-amplification. PMID:26683771

  16. MYCN controls an alternative RNA splicing program in high-risk metastatic neuroblastoma.

    PubMed

    Zhang, Shile; Wei, Jun S; Li, Samuel Q; Badgett, Tom C; Song, Young K; Agarwal, Saurabh; Coarfa, Cristian; Tolman, Catherine; Hurd, Laura; Liao, Hongling; He, Jianbin; Wen, Xinyu; Liu, Zhihui; Thiele, Carol J; Westermann, Frank; Asgharzadeh, Shahab; Seeger, Robert C; Maris, John M; Guidry Auvil, Jamie M; Smith, Malcolm A; Kolaczyk, Eric D; Shohet, Jason; Khan, Javed

    2016-02-28

    The molecular mechanisms underlying the aggressive behavior of MYCN driven neuroblastoma (NBL) is under intense investigation; however, little is known about the impact of this family of transcription factors on the splicing program. Here we used high-throughput RNA sequencing to systematically study the expression of RNA isoforms in stage 4 MYCN-amplified NBL, an aggressive subtype of metastatic NBL. We show that MYCN-amplified NBL tumors display a distinct gene splicing pattern affecting multiple cancer hallmark functions. Six splicing factors displayed unique differential expression patterns in MYCN-amplified tumors and cell lines, and the binding motifs for some of these splicing factors are significantly enriched in differentially-spliced genes. Direct binding of MYCN to promoter regions of the splicing factors PTBP1 and HNRNPA1 detected by ChIP-seq demonstrates that MYCN controls the splicing pattern by direct regulation of the expression of these key splicing factors. Furthermore, high expression of PTBP1 and HNRNPA1 was significantly associated with poor overall survival of stage4 NBL patients (p ≤ 0.05). Knocking down PTBP1, HNRNPA1 and their downstream target PKM2, an isoform of pro-tumor-growth, result in repressed growth of NBL cells. Therefore, our study reveals a novel role of MYCN in controlling global splicing program through regulation of splicing factors in addition to its well-known role in the transcription program. These findings suggest a therapeutically potential to target the key splicing factors or gene isoforms in high-risk NBL with MYCN-amplification.

  17. Poliovirus 2A protease triggers a selective nucleo-cytoplasmic redistribution of splicing factors to regulate alternative pre-mRNA splicing.

    PubMed

    Álvarez, Enrique; Castelló, Alfredo; Carrasco, Luis; Izquierdo, José M

    2013-01-01

    Poliovirus protease 2A (2A(pro)) obstructs host gene expression by reprogramming transcriptional and post-transcriptional regulatory events during infection. Here we demonstrate that expression of 2A(pro) induces a selective nucleo-cytoplasm translocation of several important RNA binding proteins and splicing factors. Subcellular fractionation studies, together with immunofluorescence microscopy revealed an asymmetric distribution of HuR and TIA1/TIAR in 2A(pro) expressing cells, which modulates splicing of the human Fas exon 6. Consistent with this result, knockdown of HuR or overexpression of TIA1/TIAR, leads to Fas exon 6 inclusion in 2A(pro)-expressing cells. Therefore, poliovirus 2A(pro) can target alternative pre-mRNA splicing by regulating protein shuttling between the nucleus and the cytoplasm.

  18. Alcoholism and alternative splicing of candidate genes.

    PubMed

    Sasabe, Toshikazu; Ishiura, Shoichi

    2010-04-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  19. Comprehensive analysis of alternative splicing in Digitalis purpurea by strand-specific RNA-Seq.

    PubMed

    Wu, Bin; Suo, Fengmei; Lei, Wanjun; Gu, Lianfeng

    2014-01-01

    Digitalis purpurea (D. purpurea) is one of the most important medicinal plants and is well known in the treatment of heart failure because of the cardiac glycosides that are its main active compounds. However, in the absence of strand specific sequencing information, the post-transcriptional mechanism of gene regulation in D. purpurea thus far remains unknown. In this study, a strand-specific RNA-Seq library was constructed and sequenced using Illumina HiSeq platforms to characterize the transcriptome of D. purpurea with a focus on alternative splicing (AS) events and the effect of AS on protein domains. De novo RNA-Seq assembly resulted in 48,475 genes. Based on the assembled transcripts, we reported a list of 3,265 AS genes, including 5,408 AS events in D. purpurea. Interestingly, both glycosyltransferases and monooxygenase, which were involved in the biosynthesis of cardiac glycosides, are regulated by AS. A total of 2,422 AS events occurred in coding regions, and 959 AS events were located in the regions of 882 unique protein domains, which could affect protein function. This D. purpurea transcriptome study substantially increased the expressed sequence resource and presented a better understanding of post-transcriptional regulation to further facilitate the medicinal applications of D. purpurea for human health.

  20. Chromatin, DNA structure and alternative splicing.

    PubMed

    Nieto Moreno, Nicolás; Giono, Luciana E; Cambindo Botto, Adrián E; Muñoz, Manuel J; Kornblihtt, Alberto R

    2015-11-14

    Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.

  1. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    PubMed

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.

  2. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    SciTech Connect

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko; Igarashi, Masayuki; Tani, Tokio

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  3. Promoter usage and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2005-06-01

    Recent findings justify a renewed interest in alternative splicing (AS): the process is more a rule than an exception as it affects the expression of 60% of human genes; it explains how a vast mammalian proteomic complexity is achieved with a limited number of genes; and mutations in AS regulatory sequences are a widespread source of human disease. AS regulation not only depends on the interaction of splicing factors with their target sequences in the pre-mRNA but is coupled to transcription. A clearer picture is emerging of the mechanisms by which transcription affects AS through promoter identity and occupation. These mechanisms involve the recruitment of factors with dual functions in transcription and splicing (i.e. that contain both functional domains and hence link the two processes) and the control of RNA polymerase II elongation.

  4. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo

    SciTech Connect

    Chiu Yali; Ouyang Pin . E-mail: ouyang@mail.cgu.edu.tw

    2006-03-10

    SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function.

  5. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression.

  6. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  7. RNA helicases in splicing.

    PubMed

    Cordin, Olivier; Beggs, Jean D

    2013-01-01

    In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.

  8. Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA

    SciTech Connect

    Gutman, A.; Kornblihtt, A.R.

    1987-10-01

    The authors describe here a third region of variability in human fibronectin (FN) due to alternative RNA splicing. Two other positions of alternative splicing have been reported previously (ED and IIICS). The third region involves a 273-nucleotide exon encoding exactly one 91-amino acid repeat of type III homology, located between the DNA- and the cell-binding domains of FN, which is either included in or excluded from FN mRNA. The two mRNA variants arising by an exon-skipping mechanism are present in cells known to synthesize the cellular form of FN. However, liver cells, which are the source of plasma FN, produce only messengers without the extra type III sequence. Therefore, the region described here resembles, both structurally and functionally, the previously described ED (for extra domain) region, located toward the C terminus of the molecule between the cell- and heparin- (hep 2) binding domains. The authors conclude that both the extra type III repeat (names EDII) and ED represent sequences restricted to cellular FN. Combination of all the possible patterns of splicing in the three regions described to date may generate up to 20 distinct FN polypeptides from a single gene.

  9. Targeting RNA Splicing for Disease Therapy

    PubMed Central

    Havens, Mallory A.; Duelli, Dominik M.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601

  10. Targeting RNA splicing for disease therapy.

    PubMed

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.

  11. Impact of Alternative Initiation, Splicing, and Termination on the Diversity of the mRNA Transcripts Encoded by the Mouse Transcriptome

    PubMed Central

    Zavolan, Mihaela; Kondo, Shinji; Schönbach, Christian; Adachi, Jun; Hume, David A.; Hayashizaki, Yoshihide; Gaasterland, Terry

    2003-01-01

    We analyzed the FANTOM2 clone set of 60,770 RIKEN full-length mouse cDNA sequences and 44,122 public mRNA sequences. We developed a new computational procedure to identify and classify the forms of splice variation evident in this data set and organized the results into a publicly accessible database that can be used for future expression array construction, structural genomics, and analyses of the mechanism and regulation of alternative splicing. Statistical analysis shows that at least 41% and possibly as much as 60% of multiexon genes in mouse have multiple splice forms. Of the transcription units with multiple splice forms, 49% contain transcripts in which the apparent use of an alternative transcription start (stop) is accompanied by alternative splicing of the initial (terminal) exon. This implies that alternative transcription may frequently induce alternative splicing. The fact that 73% of all exons with splice variation fall within the annotated coding region indicates that most splice variation is likely to affect the protein form. Finally, we compared the set of constitutive (present in all transcripts) exons with the set of cryptic (present only in some transcripts) exons and found statistically significant differences in their length distributions, the nucleotide distributions around their splice junctions, and the frequencies of occurrence of several short sequence motifs. PMID:12819126

  12. A novel role of fragile X mental retardation protein in pre-mRNA alternative splicing through RNA-binding protein 14.

    PubMed

    Zhou, Lin-Tao; Ye, Shun-Hua; Yang, Hai-Xuan; Zhou, Yong-Ting; Zhao, Qi-Hua; Sun, Wei-Wen; Gao, Mei-Mei; Yi, Yong-Hong; Long, Yue-Sheng

    2017-05-04

    Fragile X mental retardation protein (FMRP), an important RNA-binding protein responsible for fragile X syndrome, is involved in posttranscriptional control of gene expression that links with brain development and synaptic functions. Here, we reveal a novel role of FMRP in pre-mRNA alternative splicing, a general event of posttranscriptional regulation. Using co-immunoprecipitation and immunofluorescence assays, we identified that FMRP interacts with an alternative-splicing-associated protein RNA-binding protein 14 (RBM14) in a RNA-dependent fashion, and the two proteins partially colocalize in the nuclei of hippocampal neurons. We show that the relative skipping/inclusion ratio of the micro-exon L in the Protrudin gene and exon 10 in the Tau gene decreased in the hippocampus of Fmr1 knockout (KO) mice. Knockdown of either FMRP or RBM14 alters the relative skipping/inclusion ratio of Protrudin and Tau in cultured Neuro-2a cells, similar to that in the Fmr1 KO mice. Furthermore, overexpression of FMRP leads to an opposite pattern of the splicing, which can be offset by RBM14 knockdown. RNA immunoprecipitation assays indicate that FMRP promotes RBM14's binding to the mRNA targets. In addition, overexpression of the long form of Protrudin or the short form of Tau promotes protrusion growth of the retinoic acid-treated, neuronal-differentiated Neuro-2a cells. Together, these data suggest a novel function of FMRP in the regulation of pre-mRNA alternative splicing through RBM14 that may be associated with normal brain function and FMRP-related neurological disorders.

  13. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  14. Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable cis Elements

    PubMed Central

    Ajiro, Masahiko; Tang, Shuang; Doorbar, John

    2016-01-01

    ABSTRACT Human papillomavirus 18 (HPV18) is the second most common oncogenic HPV type associated with cervical, anogenital, and oropharyngeal cancers. Like other oncogenic HPVs, HPV18 encodes two major (one early and one late) polycistronic pre-mRNAs that are regulated by alternative RNA splicing to produce a repertoire of viral transcripts for the expression of individual viral genes. However, RNA cis-regulatory elements and trans-acting factors contributing to HPV18 alternative RNA splicing remain unknown. In this study, an exonic splicing enhancer (ESE) in the nucleotide (nt) 3520 to 3550 region in the HPV18 genome was identified and characterized for promotion of HPV18 929^3434 splicing and E1^E4 production through interaction with SRSF3, a host oncogenic splicing factor differentially expressed in epithelial cells and keratinocytes. Introduction of point mutations in the SRSF3-binding site or knockdown of SRSF3 expression in cells reduces 929^3434 splicing and E1^E4 production but activates other, minor 929^3465 and 929^3506 splicing. Knockdown of SRSF3 expression also enhances the expression of E2 and L1 mRNAs. An exonic splicing silencer (ESS) in the HPV18 nt 612 to 639 region was identified as being inhibitory to the 233^416 splicing of HPV18 E6E7 pre-mRNAs via binding to hnRNP A1, a well-characterized, abundantly and ubiquitously expressed RNA-binding protein. Introduction of point mutations into the hnRNP A1-binding site or knockdown of hnRNP A1 expression promoted 233^416 splicing and reduced E6 expression. These data provide the first evidence that the alternative RNA splicing of HPV18 pre-mRNAs is subject to regulation by viral RNA cis elements and host trans-acting splicing factors. IMPORTANCE Expression of HPV18 genes is regulated by alternative RNA splicing of viral polycistronic pre-mRNAs to produce a repertoire of viral early and late transcripts. RNA cis elements and trans-acting factors contributing to HPV18 alternative RNA splicing have been

  15. BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis

    PubMed Central

    Liu, Wenbo; Wang, Fengchao; Xu, Qianhua; Shi, Junchao; Zhang, Xiaoxin; Lu, Xukun; Zhao, Zhen-Ao; Gao, Zheng; Ma, Huaixiao; Duan, Enkui; Gao, Fei; Gao, Shaorong; Yi, Zhaohong; Li, Lei

    2017-01-01

    Breast cancer amplified sequence 2 (BCAS2) is involved in multiple biological processes, including pre-mRNA splicing. However, the physiological roles of BCAS2 are still largely unclear. Here we report that BCAS2 is specifically enriched in spermatogonia of mouse testes. Conditional disruption of Bcas2 in male germ cells impairs spermatogenesis and leads to male mouse infertility. Although the spermatogonia appear grossly normal, spermatocytes in meiosis prophase I and meiosis events (recombination and synapsis) are rarely observed in the BCAS2-depleted testis. In BCAS2 null testis, 245 genes are altered in alternative splicing forms; at least three spermatogenesis-related genes (Dazl, Ehmt2 and Hmga1) can be verified. In addition, disruption of Bcas2 results in a significant decrease of the full-length form and an increase of the short form (lacking exon 8) of DAZL protein. Altogether, our results suggest that BCAS2 regulates alternative splicing in spermatogonia and the transition to meiosis initiation, and male fertility. PMID:28128212

  16. The incredible complexity of RNA splicing.

    PubMed

    Robert, Christelle; Watson, Mick

    2016-12-30

    Alternative splice isoforms are common and important and have been shown to impact many human diseases. A new study by Nellore et al. offers a comprehensive study of splice junctions in humans by re-analyzing over 21,500 public human RNA sequencing datasets.

  17. Tumor microenvironment-associated modifications of alternative splicing.

    PubMed

    Brosseau, Jean-Philippe; Lucier, Jean-François; Nwilati, Hanad; Thibault, Philippe; Garneau, Daniel; Gendron, Daniel; Durand, Mathieu; Couture, Sonia; Lapointe, Elvy; Prinos, Panagiotis; Klinck, Roscoe; Perreault, Jean-Pierre; Chabot, Benoit; Abou-Elela, Sherif

    2014-02-01

    Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.

  18. [Deregulation of pre-messenger RNA splicing and rare diseases].

    PubMed

    de la Grange, Pierre

    2016-12-01

    Most of protein-coding human genes are subjected to alternative pre-mRNA splicing. This mechanism is highly regulated to precisely modulate detection of specific splice sites. This regulation is under control of the spliceosome and several splicing factors are also required to modulate the alternative usage of splice sites. Splicing factors and spliceosome components recognize splicing signals and regulatory sequences of the pre-mRNAs. These splicing sequences make splicing susceptible to polymorphisms and mutations. Examples of associations between human rare diseases and defects in pre-messenger RNA splicing are accumulating. Although many alterations are caused by mutations in splicing sequence (i.e., cis acting mutations), recent studies described the disruptive impact of mutations within spliceosome components or splicing factors (i.e., trans acting mutations). Following growing of knowledge regarding splicing regulation, several approaches have been developed to compensate for the effect of deleterious mutations and to restore sufficient amounts of functional protein.

  19. Alternative splicing in cancer: implications for biology and therapy.

    PubMed

    Chen, J; Weiss, W A

    2015-01-02

    Alternative splicing has critical roles in normal development and can promote growth and survival in cancer. Aberrant splicing, the production of noncanonical and cancer-specific mRNA transcripts, can lead to loss-of-function in tumor suppressors or activation of oncogenes and cancer pathways. Emerging data suggest that aberrant splicing products and loss of canonically spliced variants correlate with stage and progression in malignancy. Here, we review the splicing landscape of TP53, BARD1 and AR to illuminate roles for alternative splicing in cancer. We also examine the intersection between alternative splicing pathways and novel therapeutic approaches.

  20. Vemurafenib-resistant BRAF selects alternative branch points different from its wild-type BRAF in intron 8 for RNA splicing.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2015-01-01

    One mechanism of resistance of the melanoma-associated BRAF kinase to its small molecule inhibitor vemurafenib is by point mutations in its intron 8 resulting in exons 4-8 skipping. In this report, we carried out in vitro BRAF RNA splicing assays and lariat RT-PCR to map the intron 8 branch points in wild-type and BRAF mutants. We identify multiple branch points (BP) in intron 8 of both wild-type (wt) and vemurafenib-resistant BRAF RNA. In wt BRAF, BPs are located at -29A, -28A and -26A, whereas in a vemurafenib-resistant BRAF splicing mutant, BPs map to -22A, -18A and -15A, proximal to the intron 8 3' splice site. This finding of a distal-to-proximal shift of the branch point sequence in BRAF splicing in response to point-mutations in intron 8 provides insight into the regulation of BRAF alternative splicing upon vemurafenib resistance.

  1. RNA splicing and splicing regulator changes in prostate cancer pathology.

    PubMed

    Munkley, Jennifer; Livermore, Karen; Rajan, Prabhakar; Elliott, David J

    2017-04-05

    Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.

  2. Prp40 pre-mRNA processing factor 40 homolog B (PRPF40B) associates with SF1 and U2AF65 and modulates alternative pre-mRNA splicing in vivo

    PubMed Central

    Becerra, Soraya; Montes, Marta; Hernández-Munain, Cristina

    2015-01-01

    The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5′ splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3′ splice site. The 5′ and 3′ splice site complexes are thought to be joined together by protein–protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40. PRPF40B is highly enriched in speckles with a behavior similar to splicing factors. We demonstrated that PRPF40B interacts directly with SF1 and associates with U2AF65. Accordingly, PRPF40B colocalizes with these splicing factors in the cell nucleus. Splicing assays with reporter minigenes revealed that PRPF40B modulates alternative splice site selection. In the case of Fas regulation of alternative splicing, weak 5′ and 3′ splice sites and exonic sequences are required for PRPF40B function. Placing our data in a functional context, we also show that PRPF40B depletion increased Fas/CD95 receptor number and cell apoptosis, which suggests the ability of PRPF40B to alter the alternative splicing of key apoptotic genes to regulate cell survival. PMID:25605964

  3. Hibernation-specific alternative splicing of the mRNA encoding cold-inducible RNA-binding protein in the hearts of hamsters.

    PubMed

    Sano, Yuuki; Shiina, Takahiko; Naitou, Kiyotada; Nakamori, Hiroyuki; Shimizu, Yasutake

    2015-07-10

    The hearts of hibernating animals are capable of maintaining constant beating despite a decrease in body temperature to less than 10 °C during hibernation, suggesting that the hearts of hibernators are highly tolerant to a cold temperature. In the present study, we examined the expression pattern of cold-inducible RNA-binding protein (CIRP) in the hearts of hibernating hamsters, since CIRP plays important roles in protection of various types of cells against harmful effects of cold temperature. RT-PCR analysis revealed that CIRP mRNA is constitutively expressed in the heart of a non-hibernating euthermic hamster with several different forms probably due to alternative splicing. The short product contained the complete open reading frame for full-length CIRP. On the other hand, the long product had inserted sequences containing a stop codon, suggesting production of a C-terminal deletion isoform of CIRP. In contrast to non-hibernating hamsters, only the short product was amplified in hibernating animals. Induction of artificial hypothermia in non-hibernating hamsters did not completely mimic the splicing patterns observed in hibernating animals, although a partial shift from long form mRNA to short form was observed. Our results indicate that CIRP expression in the hamster heart is regulated at the level of alternative splicing, which would permit a rapid increment of functional CIRP when entering hibernation.

  4. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing.

    PubMed

    Treutlein, Barbara; Gokce, Ozgun; Quake, Stephen R; Südhof, Thomas C

    2014-04-01

    Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1α, Nrxn1β, Nrxn2β, Nrxn3α, and Nrxn3β mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1α and Nrxn3α (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-α, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that α-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing.

  5. Regulation of Human Adenovirus Alternative RNA Splicing by the Adenoviral L4-33K and L4-22K Proteins

    PubMed Central

    Biasiotto, Roberta; Akusjärvi, Göran

    2015-01-01

    Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins. PMID:25636034

  6. Regulation of human adenovirus alternative RNA splicing by the adenoviral L4-33K and L4-22K proteins.

    PubMed

    Biasiotto, Roberta; Akusjärvi, Göran

    2015-01-28

    Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins.

  7. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation.

  8. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  9. The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development

    PubMed Central

    2017-01-01

    ABSTRACT Mutations in the RNA-binding protein, RBM10, result in a human syndromic form of cleft palate, termed TARP syndrome. A role for RBM10 in alternative splicing regulation has been previously demonstrated in human cell lines. To uncover the cellular functions of RBM10 in a cell line that is relevant to the phenotype observed in TARP syndrome, we used iCLIP to identify its endogenous RNA targets in a mouse embryonic mandibular cell line. We observed that RBM10 binds to pre-mRNAs with significant enrichment in intronic regions, in agreement with a role for this protein in pre-mRNA splicing. In addition to protein-coding transcripts, RBM10 also binds to a variety of cellular RNAs, including non-coding RNAs, such as spliceosomal small nuclear RNAs, U2 and U12. RNA-seq was used to investigate changes in gene expression and alternative splicing in RBM10 KO mouse mandibular cells and also in mouse ES cells. We uncovered a role for RBM10 in the regulation of alternative splicing of common transcripts in both cell lines but also identified cell-type specific events. Importantly, those pre-mRNAs that display changes in alternative splicing also contain RBM10 iCLIP tags, suggesting a direct role of RBM10 in these events. Finally, we show that depletion of RBM10 in mouse ES cells leads to proliferation defects and to gross alterations in their differentiation potential. These results demonstrate a role for RBM10 in the regulation of alternative splicing in two cell models of mouse early development and suggests that mutations in RBM10 could lead to splicing changes that affect normal palate development and cause human disease. PMID:27763814

  10. Exploitation of a thermosensitive splicing event to study pre-mRNA splicing in vivo

    SciTech Connect

    Cizdziel, P.E.; De Mars, M.; Murphy, E.C. Jr.

    1988-04-01

    The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33/sup 0/C or lower than at 37 to 41/sup 0/C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41/sup 0/C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. The authors exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39/sup 0/C. However, after a short (about 30-min) lag following a shift to 33/sup 0/C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA.

  11. Validation and Interrogation of Differentially Expressed and Alternatively Spliced Genes in African-American Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    RNA and annotated. In addition, we have developed SSOs to manipulate PIK3CD alternative splicing, to correct aberrant splicing leading to production...molecular mechanisms, differential gene expression, alternative RNA splicing, epigenetic alterations, clinical tumor aggressiveness 16. SECURITY...words): Prostate cancer, health disparities among racial groups, molecular mechanisms, differential gene expression, alternative RNA splicing

  12. Genome-wide identification and characterization of tissue-specific RNA editing events in D. melanogaster and their potential role in regulating alternative splicing.

    PubMed

    Mazloomian, Alborz; Meyer, Irmtraud M

    2015-01-01

    RNA editing is a widespread mechanism that plays a crucial role in diversifying gene products. Its abundance and importance in regulating cellular processes were revealed using new sequencing technologies. The majority of these editing events, however, cannot be associated with regulatory mechanisms. We use tissue-specific high-throughput libraries of D. melanogaster to study RNA editing. We introduce an analysis pipeline that utilises large input data and explicitly captures ADAR's requirement for double-stranded regions. It combines probabilistic and deterministic filters and can identify RNA editing events with a low estimated false positive rate. Analyzing ten different tissue types, we predict 2879 editing sites and provide their detailed characterization. Our analysis pipeline accurately distinguishes genuine editing sites from SNPs and sequencing and mapping artifacts. Our editing sites are 3 times more likely to occur in exons with multiple splicing acceptor/donor sites than in exons with unique splice sites (p-value < 2.10(-15)). Furthermore, we identify 244 edited regions where RNA editing and alternative splicing are likely to influence each other. For 96 out of these 244 regions, we find evolutionary evidence for conserved RNA secondary-structures near splice sites suggesting a potential regulatory mechanism where RNA editing may alter splicing patterns via changes in local RNA structure.

  13. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    PubMed Central

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; Wösten, Han A. B.; Abeel, Thomas; Reinders, Marcel J. T.

    2016-01-01

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically. PMID:27659065

  14. cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing.

    PubMed Central

    Hirose, T; Sugita, M; Sugiura, M

    1993-01-01

    Three cDNAs encoding RNA-binding proteins were isolated from a tobacco (Nicotiana sylvestris) cDNA library. The predicted proteins (RGP-1) are homologous to each other and consist of a consensus-sequence type RNA-binding domain of 80 amino acids in the N-terminal half and a glycine-rich domain of 61-78 amino acids in the C-terminal half. Nucleic acid-binding assay using the in vitro synthesized RGP-1 protein confirmed that it is an RNA-binding protein. Based on its strong affinity for poly(G) and poly(U), the RGP-1 proteins are suggested to bind specifically to G and/or U rich sequences. All three genes are expressed in leaves, roots, flowers and cultured cells, however, the substantial amount of pre-mRNAs are accumulated especially in roots. Sequence analysis and ribonuclease protection assay indicated that significant amounts of alternatively spliced mRNAs, which are produced by differential selection of 5' splice sites, are also present in various tissues. Tissue-specific alternative splicing was found in two of the three genes. The alternatively spliced mRNAs are also detected in polysomal fractions and are suggested to produce truncated polypeptides. A possible role of this alternative splicing is discussed. Images PMID:8371974

  15. Analysis of mutations and alternative splicing patterns in the CFTR gene using mRNA derived from nasal epithelial cells.

    PubMed

    Hull, J; Shackleton, S; Harris, A

    1994-07-01

    Ten to fifteen percent of CF chromosomes carry mutations which are not detected by routine screening of the CFTR gene for known mutations. Many techniques have been used to screen the CFTR gene for these remaining mutations. Most of the methods use genomic DNA, and since the CFTR gene contains 27 exons, are necessarily labour intensive. We have screened the entire coding region of CFTR, by chemical cleavage of 7 overlapping segments of amplified cDNA. Using this method we have identified 4 sequence changes which had not been detected by screening genomic DNA, and successfully detected 10 out of 13 known mutations. In addition, we have identified 8 alternatively spliced forms of CFTR mRNA, 4 of which have not been described previously. These include transcripts lacking a) exon 3, b) exons 2 + 3, c) exons 9 + 12, and d) the final 357 bp of exon 15 as a result of use of the cryptic splice donor site CA2863/GTTCGT).

  16. HOLLYWOOD: a comparative relational database of alternative splicing.

    PubMed

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B

    2006-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information about the splicing of orthologous genes in different species, we have developed the Hollywood system. This database was built upon genomic annotation of splicing patterns of known genes derived from spliced alignment of complementary DNAs (cDNAs) and expressed sequence tags, and links features such as splice site sequence and strength, exonic splicing enhancers and silencers, conserved and non-conserved patterns of splicing, and cDNA library information for inferred alternative exons. Hollywood was implemented as a relational database and currently contains comprehensive information for human and mouse. It is accompanied by a web query tool that allows searches for sets of exons with specific splicing characteristics or splicing regulatory element composition, or gives a graphical or sequence-level summary of splicing patterns for a specific gene. A streamlined graphical representation of gene splicing patterns is provided, and these patterns can alternatively be layered onto existing information in the UCSC Genome Browser. The database is accessible at http://hollywood.mit.edu.

  17. Effects of Age and Hindlimb Immobilization and Remobilization on Fast Troponin T Precursor mRNA Alternative Splicing in Rat Gastrocnemius Muscle

    PubMed Central

    Ravi, Suhana; Schilder, Rudolf J.; Berg, Arthur S.; Kimball, Scot R.

    2016-01-01

    Fast skeletal muscle Troponin T (TNNT3) is an important component of the skeletal muscle contractile machinery. The pre-mRNA encoding TNNT3 is alternatively spliced and changes in the pattern of TNNT3 splice form expression are associated with alterations in thin filament calcium sensitivity and force production during muscle contraction, thereby regulating muscle function. Interestingly, during aging, muscle force/cross sectional area is reduced, suggesting that loss of mass does not completely account for the impaired muscle function that develops during the aging process. Therefore, in the present study, we tested the hypothesis that age- and changes in muscle loading are associated with alterations in TNNT3 alternative splicing in the rat gastrocnemius muscle. We found that the relative abundance of several TNNT3 splice forms varied significantly with age among 2, 9, and 18-month old rats, and the pattern correlated with changes in body weight rather than muscle mass. Hindlimb immobilization for 7 days resulted in dramatic alterations in splice form relative abundance such that the pattern was similar to that observed in lighter animals. Remobilization for 7 days restored the splicing pattern toward that observed in the non-immobilized limb, even though muscle mass had not yet begun to recover. In conclusion, the results suggest that TNNT3 pre-mRNA alternative splicing is rapidly (i.e. within days) modulated in response to changes in the load placed on the muscle. Moreover, the results show that restoration of TNNT3 alternative splicing to control patterns is initiated prior to an increase in muscle mass. PMID:26799695

  18. RNA-Seq of Aradopsis pollen uncovers novel transcription and alternative splicing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollen grains of Arabidopsis (Arabidopsis thaliana) contain two haploid sperm cells enclosed in a haploid vegetative cell. Upon germination, the vegetative cell extrudes a pollen tube that carries the sperm to an ovule for fertilization. Knowing the identity, relative abundance, and splicing pattern...

  19. Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry.

    PubMed

    Li, Yongping; Dai, Cheng; Hu, Chungen; Liu, Zhongchi; Kang, Chunying

    2017-04-01

    Alternative splicing (AS) is a key post-transcriptional regulatory mechanism, yet little information is known about its roles in fruit crops. Here, AS was globally analyzed in the wild strawberry Fragaria vesca genome with RNA-seq data derived from different stages of fruit development. The AS landscape was characterized and compared between the single-molecule, real-time (SMRT) and Illumina RNA-seq platform. While SMRT has a lower sequencing depth, it identifies more genes undergoing AS (57.67% of detected multiexon genes) when it is compared with Illumina (33.48%), illustrating the efficacy of SMRT in AS identification. We investigated different modes of AS in the context of fruit development; the percentage of intron retention (IR) is markedly reduced whereas that of alternative acceptor sites (AA) is significantly increased post-fertilization when compared with pre-fertilization. When all the identified transcripts were combined, a total of 66.43% detected multiexon genes in strawberry undergo AS, some of which lead to a gain or loss of conserved domains in the gene products. The work demonstrates that SMRT sequencing is highly powerful in AS discovery and provides a rich data resource for later functional studies of different isoforms. Further, shifting AS modes may contribute to rapid changes of gene expression during fruit set.

  20. Targeting RNA-splicing for SMA treatment.

    PubMed

    Zhou, Jianhua; Zheng, Xuexiu; Shen, Haihong

    2012-03-01

    The central dogma of DNA-RNA-protein was established more than 40 years ago. However, important biological processes have been identified since the central dogma was developed. For example, methylation is important in the regulation of transcription. In contrast, proteins, are more complex due to modifications such as phosphorylation, glycosylation, ubiquitination, or cleavage. RNA is the mediator between DNA and protein, but it can also be modulated at several levels. Among the most profound discoveries of RNA regulation is RNA splicing. It has been estimated that 80% of pre-mRNA undergo alternative splicing, which exponentially increases biological information flow in cellular processes. However, an increased number of regulated steps inevitably accompanies an increased number of errors. Abnormal splicing is often found in cells, resulting in protein dysfunction that causes disease. Splicing of the survival motor neuron (SMN) gene has been extensively studied during the last two decades. Accumulating knowledge on SMN splicing has led to speculation and search for spinal muscular atrophy (SMA) treatment by stimulating the inclusion of exon 7 into SMN mRNA. This mini-review summaries the latest progress on SMN splicing research as a potential treatment for SMA disease.

  1. CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins

    PubMed Central

    Chen, Lizhen; Liu, Zhijie; Zhou, Bing; Wei, Chaoliang; Zhou, Yu; Rosenfeld, Michael G; Fu, Xiang-Dong; Chisholm, Andrew D; Jin, Yishi

    2016-01-01

    Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension. DOI: http://dx.doi.org/10.7554/eLife.16072.001 PMID:27253061

  2. ICF-specific DNMT3B dysfunction interferes with intragenic regulation of mRNA transcription and alternative splicing.

    PubMed

    Gatto, Sole; Gagliardi, Miriam; Franzese, Monica; Leppert, Sylwia; Papa, Mariarosaria; Cammisa, Marco; Grillo, Giacomo; Velasco, Guillame; Francastel, Claire; Toubiana, Shir; D'Esposito, Maurizio; Angelini, Claudia; Matarazzo, Maria R

    2017-03-09

    Hypomorphic mutations in DNA-methyltransferase DNMT3B cause majority of the rare disorder Immunodeficiency, Centromere instability and Facial anomalies syndrome cases (ICF1). By unspecified mechanisms, mutant-DNMT3B interferes with lymphoid-specific pathways resulting in immune response defects. Interestingly, recent findings report that DNMT3B shapes intragenic CpG-methylation of highly-transcribed genes. However, how the DNMT3B-dependent epigenetic network modulates transcription and whether ICF1-specific mutations impair this process remains unknown. We performed a transcriptomic and epigenomic study in patient-derived B-cell lines to investigate the genome-scale effects of DNMT3B dysfunction. We highlighted that altered intragenic CpG-methylation impairs multiple aspects of transcriptional regulation, like alternative TSS usage, antisense transcription and exon splicing. These defects preferentially associate with changes of intragenic H3K4me3 and at lesser extent of H3K27me3 and H3K36me3. In addition, we highlighted a novel DNMT3B activity in modulating the self-regulatory circuit of sense-antisense pairs and the exon skipping during alternative splicing, through interacting with RNA molecules. Strikingly, altered transcription affects disease relevant genes, as for instance the memory-B cell marker CD27 and PTPRC genes, providing us with biological insights into the ICF1-syndrome pathogenesis. Our genome-scale approach sheds light on the mechanisms still poorly understood of the intragenic function of DNMT3B and DNA methylation in gene expression regulation.

  3. Control of alternative splicing by signal-dependent degradation of splicing-regulatory proteins.

    PubMed

    Katzenberger, Rebeccah J; Marengo, Matthew S; Wassarman, David A

    2009-04-17

    Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation of the ATR (ATM-RAD3-related) signaling pathway by the chemotherapeutic drug camptothecin (CPT). The screen identified 15 proteins that, when knocked down, caused the same change in TAF1 alternative splicing as CPT treatment. However, combined RNA interference and CPT treatment experiments indicated that only a subset of the identified proteins are targets of the CPT-induced signal, suggesting that multiple independent pathways regulate TAF1 alternative splicing. To understand how signals modulate the function of splicing factors, we characterized one of the CPT targets, Tra2 (Transformer-2). CPT was found to down-regulate Tra2 protein levels. CPT-induced Tra2 down-regulation was ATR-dependent and temporally paralleled the change in TAF1 alternative splicing, supporting the conclusion that Tra2 directly regulates TAF1 alternative splicing. Additionally, CPT-induced Tra2 down-regulation occurred independently of new protein synthesis, suggesting a post-translational mechanism. The proteasome inhibitor MG132 reduced CPT-induced Tra2 degradation and TAF1 alternative splicing, and mutation of evolutionarily conserved Tra2 lysine 81, a potential ubiquitin conjugation site, to arginine inhibited CPT-induced Tra2 degradation, supporting a proteasome-dependent alternative splicing mechanism. We conclude that CPT-induced TAF1 alternative splicing occurs through ATR-signaled degradation of a subset of splicing-regulatory proteins.

  4. Gene and alternative splicing annotation with AIR

    PubMed Central

    Florea, Liliana; Di Francesco, Valentina; Miller, Jason; Turner, Russell; Yao, Alison; Harris, Michael; Walenz, Brian; Mobarry, Clark; Merkulov, Gennady V.; Charlab, Rosane; Dew, Ian; Deng, Zuoming; Istrail, Sorin; Li, Peter; Sutton, Granger

    2005-01-01

    Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and protein sequence evidence from the same species or projected from a related species using syntenic mapping information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns, and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining 98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and systematic way, thus considerably aiding in the ensuing manual curation efforts. PMID:15632090

  5. Alternative splicing modulates stem cell differentiation.

    PubMed

    Fu, Ru-Huei; Liu, Shih-Ping; Ou, Chen-Wei; Yu, Hsiu-Hui; Li, Kuo-Wei; Tsai, Chang-Hai; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2009-01-01

    Stem cells have the surprising potential to develop into many different cell types. Therefore, major research efforts have focused on transplantation of stem cells and/or derived progenitors for restoring depleted diseased cells in degenerative disorders. Understanding the molecular controls, including alternative splicing, that arise during lineage differentiation of stem cells is crucial for developing stem cell therapeutic approaches in regeneration medicine. Alternative splicing to allow a single gene to encode multiple transcripts with different protein coding sequences and RNA regulatory elements increases genomic complexities. Utilizing differences in alternative splicing as a molecular marker may be more sensitive than simply gene expression in various degrees of stem cell differentiation. Moreover, alternative splicing maybe provide a new concept to acquire induced pluripotent stem cells or promote cell-cell transdifferentiation for restorative therapies and basic medicine researches. In this review, we highlight the recent advances of alternative splicing regulation in stem cells and their progenitors. It will hopefully provide much needed knowledge into realizing stem cell biology and related applications.

  6. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    PubMed Central

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  7. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  8. Variation in alternative splicing across human tissues

    PubMed Central

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most pronounced differences between tissues were seen for the frequencies of alternative 3' splice site and alternative 5' splice site usage, which were about 50 to 100% higher in the liver than in any other human tissue studied. Quantifying differences in splice junction usage, the brain, pancreas, liver and the peripheral nervous system had the most distinctive patterns of AS. Analysis of available microarray expression data showed that the liver had the most divergent pattern of expression of serine-arginine protein and heterogeneous ribonucleoprotein genes compared to the other human tissues studied, possibly contributing to the unusually high frequency of alternative splice site usage seen in liver. Sequence motifs enriched in alternative exons in genes expressed in the brain, testis and liver suggest specific splicing factors that may be important in AS regulation in these tissues. Conclusions This study distinguishes the human brain, testis and liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly in different tissues, and identifies candidate cis-regulatory elements and trans-acting factors likely to have important roles in tissue-specific AS in human cells. PMID:15461793

  9. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse

    PubMed Central

    Kanemori, Yoshinori; Koga, Yoshitaka; Sudo, Mai; Kang, Woojin; Kashiwabara, Shin-ichi; Ikawa, Masahito; Hasuwa, Hidetoshi; Nagashima, Kiyoshi; Ishikawa, Yu; Ogonuki, Narumi; Ogura, Atsuo; Baba, Tadashi

    2016-01-01

    Proper biogenesis of a sperm-specific organelle, the acrosome, is essential for gamete interaction. An acrosomal matrix protein, ACRBP, is known as a proacrosin-binding protein. In mice, two forms of ACRBP, wild-type ACRBP-W and variant ACRBP-V5, are generated by pre-mRNA alternative splicing of Acrbp. Here, we demonstrate the functional roles of these two ACRBP proteins. ACRBP-null male mice lacking both proteins showed a severely reduced fertility, because of malformation of the acrosome. Notably, ACRBP-null spermatids failed to form a large acrosomal granule, leading to the fragmented structure of the acrosome. The acrosome malformation was rescued by transgenic expression of ACRBP-V5 in ACRBP-null spermatids. Moreover, exogenously expressed ACRBP-W blocked autoactivation of proacrosin in the acrosome. Thus, ACRBP-V5 functions in the formation and configuration of the acrosomal granule during early spermiogenesis. The major function of ACRBP-W is to retain the inactive status of proacrosin in the acrosome until acrosomal exocytosis. PMID:27303034

  10. Alternative splicing and developmental and hormonal regulation of porcine comparative gene identification-58 (CGI-58) mRNA.

    PubMed

    Li, X; Suh, Y; Kim, E; Moeller, S J; Lee, K

    2012-12-01

    The process of lipolysis is essential for regulating the catabolism of cellular fat stores. Therefore, knowledge of lipolysis contributes to improving porcine production, such as reducing back fat, enhancing lean meat, and controlling marbling. Comparative gene identification-58 (CGI-58) plays an important role in the multi-enzyme-mediated process of lipolysis. It was identified as the co-activator of adipose triglyceride lipase (ATGL), which performs the first step in breaking down triacylglycerol and generating diacylglycerol and NEFA. We cloned and sequenced the CGI-58 cDNA and deduced the AA sequences in 3 breeds of swine (Duroc, Berkshire, and Landrace). Homologies were found with the human, mouse, and chicken for the lipid droplet binding domain, the α/β hydrolase domain, and the lysophosphatidic acid acyltransferase (LPAAT) domain, which demonstrates conservation of CGI-58 across species. An alternatively spliced isoform with an exon 3 deletion was identified. Interestingly, this unique isoform contains the lipid droplet-binding domain but lacks the LPAAT domain due to an open reading frame (ORF) shift that creates a premature stop codon. Furthermore, porcine CGI-58 is expressed in multiple organs and tissues but is most predominant in adipose tissue. Porcine adipose and stromal-vascular (SV) cell fractionation reveals that CGI-58 and ATGL are highly expressed (P < 0.01) in mature adipocytes. The expressions of both CGI-58 and ATGL mRNA were found to increase (P < 0.05) at d 6 of SV cell culture, confirming their upregulation during adipogenesis and differentiation. Also, the results from in vitro cell culture showed that insulin decreased (P < 0.05) the expressions of both CGI-58 and ATGL in a dose-dependent manner. Overall, these results report the cDNA and AA sequences of porcine CGI-58 with identification of its unique alternatively spliced variant. The results of the study also reveal the developmental and hormonal regulation of porcine CGI-58 gene

  11. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern

    PubMed Central

    Bouton, Clément; Geldreich, Angèle; Ramel, Laëtitia; Ryabova, Lyubov A.; Dimitrova, Maria; Keller, Mario

    2015-01-01

    The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splic-ing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5’ region and sug-gested that the main role of CaMV splicing is to downregulate expression of open read-ing frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA. PMID:26162084

  12. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes

    PubMed Central

    Lin, Jung-Chun

    2015-01-01

    Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed. PMID:26389882

  13. Alternative mRNA splicing generates multiple forms of peptidyl-glycine alpha-amidating monooxygenase in rat atrium.

    PubMed Central

    Stoffers, D A; Green, C B; Eipper, B A

    1989-01-01

    Peptidyl-glycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the conversion of a variety of glycine-extended peptides into biologically active alpha-amidated product peptides in a reaction dependent on copper, ascorbate, and molecular oxygen. We have isolated and sequenced cDNAs representing the two major classes of PAM mRNA in the adult rat heart atrium. The two types of cDNA, rPAM-1 and rPAM-2, are identical except for the deletion of a 315-base-pair segment within the protein coding region in rPAM-2, suggesting that rPAM-1 and rPAM-2 arise by alternative splicing. Northern analysis using a cDNA probe derived from within the 315-base-pair region deleted in rPAM-2 visualized the larger of the PAM mRNAs in adult rat atrium and not the smaller, indicating that the presence or absence of this 315-nucleotide segment is a major feature distinguishing the two size forms of PAM mRNA. The 105 amino acid segment that distinguishes the two forms of atrial PAM contains a consensus N-glycosylation site and a paired basic amino acid site of potential importance in endoproteolytic processing. Comparison of the nucleotide sequences of rat, frog, and bovine PAM cDNAs reveals an extremely well conserved segment in the 3' untranslated region. The high degree of conservation in amino acid sequence throughout the catalytic, intragranular, and cytoplasmic domains of rat atrium, bovine pituitary, and frog skin PAM suggests that both the catalytic and noncatalytic domains of the protein subserve important functions. Images PMID:2911604

  14. MAASE: An alternative splicing database designed for supporting splicing microarray applications

    PubMed Central

    ZHENG, CHRISTINA L.; KWON, YOUNG-SOO; LI, HAI-RI; ZHANG, KUI; COUTINHO-MANSFIELD, GABRIELA; YANG, CANZHU; NAIR, T. MURLIDHARAN; GRIBSKOV, MICHAEL; FU, XIANG-DONG

    2005-01-01

    Alternative splicing is a prominent feature of higher eukaryotes. Understanding of the function of mRNA isoforms and the regulation of alternative splicing is a major challenge in the post-genomic era. The development of mRNA isoform sensitive microarrays, which requires precise splice-junction sequence information, is a promising approach. Despite the availability of a large number of mRNAs and ESTs in various databases and the efforts made to align transcript sequences to genomic sequences, existing alternative splicing databases do not offer adequate information in an appropriate format to aid in splicing array design. Here we describe our effort in constructing the Manually Annotated Alternatively Spliced Events (MAASE) database system, which is specifically designed to support splicing microarray applications. MAASE comprises two components: (1) a manual/computational annotation tool for the efficient extraction of critical sequence and functional information for alternative splicing events and (2) a user-friendly database of annotated events that allows convenient export of information to aid in microarray design and data analysis. We provide a detailed introduction and a step-by-step user guide to the MAASE database system to facilitate future large-scale annotation efforts, integration with other alternative splicing databases, and splicing array fabrication. PMID:16251387

  15. RNA Splicing: Regulation and Dysregulation in the Heart.

    PubMed

    van den Hoogenhof, Maarten M G; Pinto, Yigal M; Creemers, Esther E

    2016-02-05

    RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease.

  16. Functional association between promoter structure and transcript alternative splicing.

    PubMed

    Cramer, P; Pesce, C G; Baralle, F E; Kornblihtt, A R

    1997-10-14

    It has been assumed that constitutive and regulated splicing of RNA polymerase II transcripts depends exclusively on signals present in the RNA molecule. Here we show that changes in promoter structure strongly affect splice site selection. We investigated the splicing of the ED I exon, which encodes a facultative type III repeat of fibronectin, whose inclusion is regulated during development and in proliferative processes. We used an alternative splicing assay combined with promoter swapping to demonstrate that the extent of ED I splicing is dependent on the promoter structure from which the transcript originated and that this regulation is independent of the promoter strength. Thus, these results provide the first evidence for coupling between alternative splicing and promoter-specific transcription, which agrees with recent cytological and biochemical evidence of coordination between splicing and transcription.

  17. SpliceDisease database: linking RNA splicing and disease.

    PubMed

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  18. The roles of phospholipase C activation and alternative ADAR1 and ADAR2 pre-mRNA splicing in modulating serotonin 2C-receptor editing in vivo

    PubMed Central

    Schmauss, Claudia; Zimnisky, Ross; Mehta, Mukti; Shapiro, Lauren P.

    2010-01-01

    The serotonin 2C receptor (5-HT2CR), a Gq-protein-coupled neurotransmitter receptor, exists in multiple isoforms that result from RNA editing of five exonic adenosines that are converted to inosines. In the adult brain, editing of 5-HT2C pre-mRNA exhibits remarkable plasticity in response to environmental and neurochemical stimuli. Here, we investigated two potential mechanisms underlying these plastic changes in adult 5-HT2CR editing phenotypes in vivo: activation of phospholipase C (PLC) and alternative splicing of pre-mRNA encoding the editing enzymes ADAR1 and ADAR2. Studies on two inbred strains of mice (C57Bl/6 and Balb/c) revealed that sustained stimulation of PLC—a downstream effector of activated Gαq protein—increased editing of forebrain neocortical 5-HT2C pre-mRNA at two sites known to be targeted by ADAR2. Moreover, changes in relative expression of the alternatively spliced “a” and “b” mRNA isoforms of ADAR1 and ADAR2 also correlate with changes in 5-HT2CR editing. The site-specific changes in 5-HT2CR editing detected in mice with different “a” over “b” ADAR mRNA isoform ratios only partially overlap with those evoked by sustained PLC activation and are best explained by the increased editing efficiency of ADAR1. Thus, activation of PLC and alternative splicing of ADAR pre-mRNA have both overlapping and specific roles in modulating 5-HT2CR editing phenotypes. PMID:20651031

  19. Evolutionary conservation of alternative splicing in chicken

    PubMed Central

    Katyal, S.; Gao, Z.; Liu, R.-Z.; Godbout, R.

    2013-01-01

    Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals. PMID:17675855

  20. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing

    PubMed Central

    Komeno, Yukiko; Huang, Yi-Jou; Qiu, Jinsong; Lin, Leo; Xu, YiJun; Zhou, Yu; Chen, Liang; Monterroza, Dora D.; Li, Hairi; DeKelver, Russell C.; Yan, Ming

    2015-01-01

    Myelodysplastic syndromes (MDS) are a group of neoplasms characterized by ineffective myeloid hematopoiesis and various risks for leukemia. SRSF2, a member of the serine/arginine-rich (SR) family of splicing factors, is one of the mutation targets associated with poor survival in patients suffering from myelodysplastic syndromes. Here we report the biological function of SRSF2 in hematopoiesis by using conditional knockout mouse models. Ablation of SRSF2 in the hematopoietic lineage caused embryonic lethality, and Srsf2-deficient fetal liver cells showed significantly enhanced apoptosis and decreased levels of hematopoietic stem/progenitor cells. Induced ablation of SRSF2 in adult Mx1-Cre Srsf2flox/flox mice upon poly(I):poly(C) injection demonstrated a significant decrease in lineage− Sca+ c-Kit+ cells in bone marrow. To reveal the functional impact of myelodysplastic syndromes-associated mutations in SRSF2, we analyzed splicing responses on the MSD-L cell line and found that the missense mutation of proline 95 to histidine (P95H) and a P95-to-R102 in-frame 8-amino-acid deletion caused significant changes in alternative splicing. The affected genes were enriched in cancer development and apoptosis. These findings suggest that intact SRSF2 is essential for the functional integrity of the hematopoietic system and that its mutations likely contribute to development of myelodysplastic syndromes. PMID:26124281

  1. Heritability of alternative splicing in the human genome

    PubMed Central

    Kwan, Tony; Benovoy, David; Dias, Christel; Gurd, Scott; Serre, David; Zuzan, Harry; Clark, Tyson A.; Schweitzer, Anthony; Staples, Michelle K.; Wang, Hui; Blume, John E.; Hudson, Thomas J.; Sladek, Rob; Majewski, Jacek

    2007-01-01

    Alternative pre-mRNA splicing increases proteomic diversity and provides a potential mechanism underlying both phenotypic diversity and susceptibility to genetic disorders in human populations. To investigate the variation in splicing among humans on a genome-wide scale, we use a comprehensive exon-targeted microarray to examine alternative splicing in lymphoblastoid cell lines (LCLs) derived from the CEPH HapMap population. We show the identification of transcripts containing sequence verified exon skipping, intron retention, and cryptic splice site usage that are specific between individuals. A number of novel alternative splicing events with no previous annotations in either the RefSeq and EST databases were identified, indicating that we are able to discover de novo splicing events. Using family-based linkage analysis, we demonstrate Mendelian inheritance and segregation of specific splice isoforms with regulatory haplotypes for three genes: OAS1, CAST, and CRTAP. Allelic association was further used to identify individual SNPs or regulatory haplotype blocks linked to the alternative splicing event, taking advantage of the high-resolution genotype information from the CEPH HapMap population. In one candidate, we identified a regulatory polymorphism that disrupts a 5′ splice site of an exon in the CAST gene, resulting in its exclusion in the mutant allele. This report illustrates that our approach can detect both annotated and novel alternatively spliced variants, and that such variation among individuals is heritable and genetically controlled. PMID:17671095

  2. Human slow troponin T (TNNT1) pre-mRNA alternative splicing is an indicator of skeletal muscle response to resistance exercise in older adults.

    PubMed

    Zhang, Tan; Choi, Seung Jun; Wang, Zhong-Min; Birbrair, Alexander; Messi, María L; Jin, Jian-Ping; Marsh, Anthony P; Nicklas, Barbara; Delbono, Osvaldo

    2014-12-01

    Slow skeletal muscle troponin T (TNNT1) pre-messenger RNA alternative splicing (AS) provides transcript diversity and increases the variety of proteins the gene encodes. Here, we identified three major TNNT1 splicing patterns (AS1-3), quantified their expression in the vastus lateralis muscle of older adults, and demonstrated that resistance training modifies their relative abundance; specifically, upregulating AS1 and downregulating AS2 and AS3. In addition, abundance of TNNT1 AS2 correlated negatively with single muscle fiber-specific force after resistance training, while abundance of AS1 correlated negatively with V max. We propose that TNNT1 AS1, AS2 and the AS1/AS2 ratio are potential quantitative biomarkers of skeletal muscle adaptation to resistance training in older adults, and that their profile reflects enhanced single fiber muscle force in the absence of significant increases in fiber cross-sectional area.

  3. Human Slow Troponin T (TNNT1) Pre-mRNA Alternative Splicing Is an Indicator of Skeletal Muscle Response to Resistance Exercise in Older Adults

    PubMed Central

    Zhang, Tan; Choi, Seung Jun; Wang, Zhong-Min; Birbrair, Alexander; Messi, María L.; Jin, Jian-Ping; Marsh, Anthony P.; Nicklas, Barbara

    2014-01-01

    Slow skeletal muscle troponin T (TNNT1) pre-messenger RNA alternative splicing (AS) provides transcript diversity and increases the variety of proteins the gene encodes. Here, we identified three major TNNT1 splicing patterns (AS1–3), quantified their expression in the vastus lateralis muscle of older adults, and demonstrated that resistance training modifies their relative abundance; specifically, upregulating AS1 and downregulating AS2 and AS3. In addition, abundance of TNNT1 AS2 correlated negatively with single muscle fiber–specific force after resistance training, while abundance of AS1 correlated negatively with V max. We propose that TNNT1 AS1, AS2 and the AS1/AS2 ratio are potential quantitative biomarkers of skeletal muscle adaptation to resistance training in older adults, and that their profile reflects enhanced single fiber muscle force in the absence of significant increases in fiber cross-sectional area. PMID:24368775

  4. Designing oligo libraries taking alternative splicing into account

    NASA Astrophysics Data System (ADS)

    Shoshan, Avi; Grebinskiy, Vladimir; Magen, Avner; Scolnicov, Ariel; Fink, Eyal; Lehavi, David; Wasserman, Alon

    2001-06-01

    We have designed sequences for DNA microarrays and oligo libraries, taking alternative splicing into account. Alternative splicing is a common phenomenon, occurring in more than 25% of the human genes. In many cases, different splice variants have different functions, are expressed in different tissues or may indicate different stages of disease. When designing sequences for DNA microarrays or oligo libraries, it is very important to take into account the sequence information of all the mRNA transcripts. Therefore, when a gene has more than one transcript (as a result of alternative splicing, alternative promoter sites or alternative poly-adenylation sites), it is very important to take all of them into account in the design. We have used the LEADS transcriptome prediction system to cluster and assemble the human sequences in GenBank and design optimal oligonucleotides for all the human genes with a known mRNA sequence based on the LEADS predictions.

  5. The human U1-70K snRNP protein: cDNA cloning, chromosomal localization, expression, alternative splicing and RNA-binding.

    PubMed Central

    Spritz, R A; Strunk, K; Surowy, C S; Hoch, S O; Barton, D E; Francke, U

    1987-01-01

    We have isolated and sequenced cDNA clones encoding the human U1-70K snRNP protein, and have mapped this locus (U1AP1) to human chromosome 19. The gene produces two size classes of RNA, a major 1.7-kb RNA and a minor 3.9-kb RNA. The 1.7-kb species appears to be the functional mRNA; the role of the 3.9-kb RNA, which extends further in the 5' direction, is unclear. The actual size of the hU1-70K protein is probably 52 kd, rather than 70 kd. The protein contains three regions similar to known nucleic acid-binding proteins, and it binds RNA in an in vitro assay. Comparison of the cDNA sequences indicates that there are multiple subclasses of mRNA that arise by alternative pre-mRNA splicing of at least four alternative exon segments. This suggests that multiple forms of the hU1-70K protein may exist, possibly with different functions in vivo. Images PMID:2447561

  6. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  7. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing.

    PubMed

    Nguyen, Anh H; Lee, Jong Uk; Sim, Sang Jun

    2016-02-28

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ∼29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  8. Connecting the dots: chromatin and alternative splicing in EMT

    PubMed Central

    Warns, Jessica A.; Davie, James R.; Dhasarathy, Archana

    2015-01-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process. PMID:26291837

  9. Connecting the dots: chromatin and alternative splicing in EMT.

    PubMed

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  10. Nonsense-Mediated Decay of Alternative Precursor mRNA Splicing Variants Is a Major Determinant of the Arabidopsis Steady State Transcriptome[C][W

    PubMed Central

    Drechsel, Gabriele; Kahles, André; Kesarwani, Anil K.; Stauffer, Eva; Behr, Jonas; Drewe, Philipp; Rätsch, Gunnar; Wachter, Andreas

    2013-01-01

    The nonsense-mediated decay (NMD) surveillance pathway can recognize erroneous transcripts and physiological mRNAs, such as precursor mRNA alternative splicing (AS) variants. Currently, information on the global extent of coupled AS and NMD remains scarce and even absent for any plant species. To address this, we conducted transcriptome-wide splicing studies using Arabidopsis thaliana mutants in the NMD factor homologs UP FRAMESHIFT1 (UPF1) and UPF3 as well as wild-type samples treated with the translation inhibitor cycloheximide. Our analyses revealed that at least 17.4% of all multi-exon, protein-coding genes produce splicing variants that are targeted by NMD. Moreover, we provide evidence that UPF1 and UPF3 act in a translation-independent mRNA decay pathway. Importantly, 92.3% of the NMD-responsive mRNAs exhibit classical NMD-eliciting features, supporting their authenticity as direct targets. Genes generating NMD-sensitive AS variants function in diverse biological processes, including signaling and protein modification, for which NaCl stress–modulated AS-NMD was found. Besides mRNAs, numerous noncoding RNAs and transcripts derived from intergenic regions were shown to be NMD responsive. In summary, we provide evidence for a major function of AS-coupled NMD in shaping the Arabidopsis transcriptome, having fundamental implications in gene regulation and quality control of transcript processing. PMID:24163313

  11. Differential Impacts of Alternative Splicing Networks on Apoptosis

    PubMed Central

    Lin, Jung-Chun; Tsao, Mei-Fen; Lin, Ying-Ju

    2016-01-01

    Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases. PMID:27983653

  12. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    PubMed Central

    Meyer, Katja; Koester, Tino; Staiger, Dorothee

    2015-01-01

    Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance. PMID:26213982

  13. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process.

    PubMed

    Meyer, Katja; Koester, Tino; Staiger, Dorothee

    2015-07-24

    Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  14. Molecular Characterization, mRNA Expression and Alternative Splicing of Ryanodine Receptor Gene in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy)

    PubMed Central

    Wang, Ke-Yi; Jiang, Xuan-Zhao; Yuan, Guo-Rui; Shang, Feng; Wang, Jin-Jun

    2015-01-01

    Ryanodine receptors (RyRs) play a critical role in regulating the release of intracellular calcium, which enables them to be effectively targeted by the two novel classes of insecticides, phthalic acid diamides and anthranilic diamides. However, less information is available about this target site in insects, although the sequence and structure information of target molecules are essential for designing new control agents of high selectivity and efficiency, as well as low non-target toxicity. Here, we provided sufficient information about the coding sequence and molecular structures of RyR in T. citricida (TciRyR), an economically important pest. The full-length TciRyR cDNA was characterized with an open reading frame of 15,306 nucleotides, encoding 5101 amino acid residues. TciRyR was predicted to embrace all the hallmarks of ryanodine receptor, typically as the conserved C-terminal domain with consensus calcium-biding EF-hands (calcium-binding motif) and six transmembrane domains, as well as a large N-terminal domain. qPCR analysis revealed that the highest mRNA expression levels of TciRyR were observed in the adults, especially in the heads. Alternative splicing in TciRyR was evidenced by an alternatively spliced exon, resulting from intron retention, which was different from the case of RyR in Myzus persicae characterized with no alternative splicing events. Diagnostic PCR analysis indicated that the splicing of this exon was not only regulated in a body-specific manner but also in a stage-dependent manner. Taken together, these results provide useful information for new insecticide design and further insights into the molecular basis of insecticide action. PMID:26154764

  15. SAW: A Method to Identify Splicing Events from RNA-Seq Data Based on Splicing Fingerprints

    PubMed Central

    Ning, Kang; Fermin, Damian

    2010-01-01

    Splicing event identification is one of the most important issues in the comprehensive analysis of transcription profile. Recent development of next-generation sequencing technology has generated an extensive profile of alternative splicing. However, while many of these splicing events are between exons that are relatively close on genome sequences, reads generated by RNA-Seq are not limited to alternative splicing between close exons but occur in virtually all splicing events. In this work, a novel method, SAW, was proposed for the identification of all splicing events based on short reads from RNA-Seq. It was observed that short reads not in known gene models are actually absent words from known gene sequences. An efficient method to filter and cluster these short reads by fingerprint fragments of splicing events without aligning short reads to genome sequences was developed. Additionally, the possible splicing sites were also determined without alignment against genome sequences. A consensus sequence was then generated for each short read cluster, which was then aligned to the genome sequences. Results demonstrated that this method could identify more than 90% of the known splicing events with a very low false discovery rate, as well as accurately identify, a number of novel splicing events between distant exons. PMID:20706591

  16. Long-range RNA pairings contribute to mutually exclusive splicing.

    PubMed

    Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng

    2016-01-01

    Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA-RNA interactions in gene regulatory networks.

  17. Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells

    PubMed Central

    Zhang, Yanli; Kwok, Jamie Sui-Lam; Choi, Pui-Wah; Liu, Minghua; Yang, Junzheng; Singh, Margit; Ng, Shu-Kay; Welch, William R.; Muto, Michael G.; Tsui, Stephen KW; Sugrue, Stephen P.; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Unlike many other human solid tumors, ovarian tumors express many epithelial markers at a high level for cell growth and local invasion. The phosphoprotein Pinin plays a key role in epithelial cell identity. We showed that clinical ovarian tumors and ovarian cancer cell lines express a high level of Pinin when compared with normal ovarian tissues and immortalized normal ovarian surface epithelial cell lines. Pinin co-localized and physically interacted with transcriptional corepressor C-terminal binding proteins, CtBP1 and CtBP2, in the nuclei of cancer cells. Knockdown of Pinin in ovarian cancer cells resulted in specific reduction of CtBP1 protein expression, cell adhesion, anchorage-independent growth, and increased drug sensitivity. Whole transcriptomic comparison of next-generation RNA sequencing data between control ovarian cancer cell lines and cancer cell lines with respective knockdown of Pinin, CtBP1, and CtBP2 expression also showed reduced expression of CtBP1 mRNA in the Pinin knockdown cell lines. The Pinin knockdown cell lines shared significant overlap of differentially expressed genes and RNA splicing aberrations with CtBP1 knockdown and in a lesser degree with CtBP2 knockdown cancer cells. Hence, Pinin and CtBP are oncotargets that closely interact with each other to regulate transcription and pre-mRNA alternative splicing and promote cell adhesion and other epithelial characteristics of ovarian cancer cells. PMID:26871283

  18. Pharmacology of Modulators of Alternative Splicing

    PubMed Central

    Morris, Jonathan C.; Oltean, Sebastian; Donaldson, Lucy F.

    2017-01-01

    More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed. PMID:28034912

  19. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing.

    PubMed

    Wu, J Y; Maniatis, T

    1993-12-17

    Specific recognition and pairing of the 5' and 3' splice sites are critical steps in pre-mRNA splicing. We report that the splicing factors SC35 and SF2/ASF specifically interact with both the integral U1 small nuclear ribonucleoprotein (snRNP U1-70K) and with the 35 kd subunit of the splicing factor U2AF (U2AF35). Previous studies indicated that the U1 snRNP binds specifically to the 5' splice site, while U2AF35-U2AF65 heterodimer binds to the 3' splice site. Together, these observations suggest that SC35 and other members of the SR family of splicing factors may function in splice site selection by acting as a bridge between components bound to the 5' and 3' splice sites. Interestingly, SC35, SF2/ASF, and U2AF35 also interact with the Drosophila splicing regulators Transformer (Tra) and Transformer-2 (Tra2), suggesting that protein-protein interactions mediated by SR proteins may also play an important role in regulating alternative splicing.

  20. A liver X receptor (LXR)-{beta} alternative splicing variant (LXRBSV) acts as an RNA co-activator of LXR-{beta}

    SciTech Connect

    Hashimoto, Koshi; Ishida, Emi; Matsumoto, Shunichi; Shibusawa, Nobuyuki; Okada, Shuichi; Monden, Tsuyoshi; Satoh, Tetsurou; Yamada, Masanobu; Mori, Masatomo

    2009-12-25

    We report the isolation and functional characterization of a novel transcriptional co-activator, termed LXRBSV. LXRBSV is an alternative splicing variant of liver X receptor (LXR)-{beta} LXRBSV has an intronic sequence between exons 2 and 3 in the mouse LXR-{beta} gene. The LXRBSV gene is expressed in various tissues including the liver and brain. We sub-cloned LXRBSV into pSG5, a mammalian expression vector, and LXRBSV in pSG5 augmented human Sterol Response Element Binding Protein (SREBP)-1c promoter activity in HepG2 cells in a ligand (TO901317) dependent manner. The transactivation mediated by LXRBSV is selective for LXR-{beta}. The LXRBSV protein was deduced to be 64 amino acids in length; however, a GAL4-LXRBSV fusion protein was not able to induce transactivation. Serial deletion constructs of LXRBSV demonstrated that the intronic sequence inserted in LXRBSV is required for its transactivation activity. An ATG mutant of LXRBSV was able to induce transactivation as wild type. Furthermore, LXRBSV functions in the presence of cycloheximide. Taken together, we have concluded that LXRBSV acts as an RNA transcript not as a protein. In the current study, we have demonstrated for the first time that an alternative splicing variant of a nuclear receptor acts as an RNA co-activator.

  1. Age-Dependent Decrease and Alternative Splicing of Methionine Synthase mRNA in Human Cerebral Cortex and an Accelerated Decrease in Autism

    PubMed Central

    Muratore, Christina R.; Hodgson, Nathaniel W.; Trivedi, Malav S.; Abdolmaleky, Hamid M.; Persico, Antonio M.; Lintas, Carla; De La Monte, Suzanne; Deth, Richard C.

    2013-01-01

    The folate and vitamin B12-dependent enzyme methionine synthase (MS) is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin) from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression. PMID:23437274

  2. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  3. SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing.

    PubMed

    Pulyakhina, Irina; Gazzoli, Isabella; 't Hoen, Peter A C; Verwey, Nisha; den Dunnen, Johan T; den Dunnen, Johan; Aartsma-Rus, Annemieke; Laros, Jeroen F J

    2015-07-13

    Alternative splicing is a powerful mechanism present in eukaryotic cells to obtain a wide range of transcripts and protein isoforms from a relatively small number of genes. The mechanisms regulating (alternative) splicing and the paradigm of consecutive splicing have recently been challenged, especially for genes with a large number of introns. RNA-Seq, a powerful technology using deep sequencing in order to determine transcript structure and expression levels, is usually performed on mature mRNA, therefore not allowing detailed analysis of splicing progression. Sequencing pre-mRNA at different stages of splicing potentially provides insight into mRNA maturation. Although the number of tools that analyze total and cytoplasmic RNA in order to elucidate the transcriptome composition is rapidly growing, there are no tools specifically designed for the analysis of nuclear RNA (which contains mixtures of pre- and mature mRNA). We developed dedicated algorithms to investigate the splicing process. In this paper, we present a new classification of RNA-Seq reads based on three major stages of splicing: pre-, intermediate- and post-splicing. Applying this novel classification we demonstrate the possibility to analyze the order of splicing. Furthermore, we uncover the potential to investigate the multi-step nature of splicing, assessing various types of recursive splicing events. We provide the data that gives biological insight into the order of splicing, show that non-sequential splicing of certain introns is reproducible and coinciding in multiple cell lines. We validated our observations with independent experimental technologies and showed the reliability of our method. The pipeline, named SplicePie, is freely available at: https://github.com/pulyakhina/splicing_analysis_pipeline. The example data can be found at: https://barmsijs.lumc.nl/HG/irina/example_data.tar.gz.

  4. Defective control of pre–messenger RNA splicing in human disease

    PubMed Central

    Shkreta, Lulzim

    2016-01-01

    Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies. PMID:26728853

  5. Defective control of pre-messenger RNA splicing in human disease.

    PubMed

    Chabot, Benoit; Shkreta, Lulzim

    2016-01-04

    Examples of associations between human disease and defects in pre-messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies.

  6. [Alternative splicing regulation: implications in cancer diagnosis and treatment].

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora; Martínez-Contreras, Rebeca

    2015-04-08

    The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile.

  7. The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5' Splice Sites

    NASA Astrophysics Data System (ADS)

    Zuo, Ping; Manley, James L.

    1994-04-01

    ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.

  8. Hallmarks of alternative splicing in cancer.

    PubMed

    Oltean, S; Bates, D O

    2014-11-13

    The immense majority of genes are alternatively spliced and there are many isoforms specifically associated with cancer progression and metastasis. The splicing pattern of specific isoforms of numerous genes is altered as cells move through the oncogenic process of gaining proliferative capacity, acquiring angiogenic, invasive, antiapoptotic and survival properties, becoming free from growth factor dependence and growth suppression, altering their metabolism to cope with hypoxia, enabling them to acquire mechanisms of immune escape, and as they move through the epithelial-mesenchymal and mesenchymal-epithelial transitions and metastasis. Each of the 'hallmarks of cancer' is associated with a switch in splicing, towards a more aggressive invasive cancer phenotype. The choice of isoforms is regulated by several factors (signaling molecules, kinases, splicing factors) currently being identified systematically by a number of high-throughput, independent and unbiased methodologies. Splicing factors are de-regulated in cancer, and in some cases are themselves oncogenes or pseudo-oncogenes and can contribute to positive feedback loops driving cancer progression. Tumour progression may therefore be associated with a coordinated splicing control, meaning that there is the potential for a relatively small number of splice factors or their regulators to drive multiple oncogenic processes. The understanding of how splicing contributes to the various phenotypic traits acquired by tumours as they progress and metastasise, and in particular how alternative splicing is coordinated, can and is leading to the development of a new class of anticancer therapeutics-the alternative-splicing inhibitors.

  9. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation.

    PubMed Central

    Helfman, D M; Cheley, S; Kuismanen, E; Finn, L A; Yamawaki-Kataoka, Y

    1986-01-01

    The molecular basis for the expression of rat embryonic fibroblast tropomyosin 1 and skeletal muscle beta-tropomyosin was determined. cDNA clones encoding these tropomyosin isoforms exhibit complete identity except for two carboxy-proximal regions (amino acids 189 to 213 and 258 to 284) and different 3'-untranslated sequences. The isoform-specific regions delineate the troponin T-binding domains of skeletal muscle tropomyosin. Analysis of genomic clones indicates that there are two separate loci in the rat genome that contain sequences complementary to these mRNAs. One locus is a pseudogene. The other locus contains a single gene made up of 11 exons and spans approximately 10 kilobases. Sequences common to all mRNAs were found in exons 1 through 5 (amino acids 1 to 188) and exons 8 and 9 (amino acids 214 to 257). Exons 6 and 11 are specific for fibroblast mRNA (amino acids 189 to 213 and 258 to 284, respectively), while exons 7 and 10 are specific for skeletal muscle mRNA (amino acids 189 to 213 and 258 to 284, respectively). In addition, exons 10 and 11 each contain the entire 3'-untranslated sequences of the respective mRNAs including the polyadenylation site. Although the gene is also expressed in smooth muscle (stomach, uterus, and vas deferens), only the fibroblast-type splice products can be detected in these tissues. S1 and primer extension analyses indicate that all mRNAs expressed from this gene are transcribed from a single promoter. The promoter was found to contain G-C-rich sequences, a TATA-like sequence TTTTA, no identifiable CCAAT box, and two putative Sp1-binding sites. Images PMID:2432392

  10. Modulation of RNA splicing as a potential treatment for cancer.

    PubMed

    Bauman, John A; Kole, Ryszard

    2011-01-01

    Close to 90% of human genes are transcribed into pre-mRNA that undergoes alternative splicing, producing multiple mRNAs and proteins from single genes. This process is largely responsible for human proteome diversity, and about half of genetic disease-causing mutations affect splicing. Splice-switching oligonucleotides (SSOs) comprise an emerging class of antisense therapeutics that modify gene expression by directing pre-mRNA splice site usage. Bauman et al. investigated an SSO that up-regulated the expression of an anti-cancer splice variant while simultaneously eliminating an over-expressed cancer-causing splice variant.  This was accomplished by targeting pre-mRNA of the apoptotic regulator Bcl-x, which is alternatively spliced to express anti- and pro-apoptotic splice variants Bcl-xL and Bcl-xS, respectively. High expression of Bcl-xL is a hallmark of many cancers and is considered a general mechanism used by cancer cells to evade apoptosis. Redirection of Bcl-x pre-mRNA splicing from Bcl-xL to -xS by SSO induced apoptotic and chemosensitizing effects in various cancer cell lines. Importantly, the paper shows that delivery of Bcl-x SSO using a lipid nanoparticle redirected Bcl-x splicing and reduced tumor burden in melanoma lung metastases. This was the first demonstration of SSO efficacy in tumors in vivo. SSOs are not limited to be solely potential anti-cancer drugs. SSOs were first applied to repair aberrant splicing in thalassemia, a genetic disease, they have been used to create novel proteins (e.g., ∆7TNFR1), and they have recently progressed to clinical trials for patients with Duchenne muscular dystrophy. 

  11. Aberrant Alternative Splicing Is Another Hallmark of Cancer

    PubMed Central

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks. PMID:24101931

  12. Small molecule modulators of pre-mRNA splicing in cancer therapy

    PubMed Central

    Salton, Maayan; Misteli, Tom

    2015-01-01

    Pre-mRNA splicing is a fundamental process in mammalian gene expression and alternative RNA splicing plays a considerable role in generating protein diversity. RNA splicing events are key to the pathology of numerous diseases, including cancers. Some tumors are molecularly addicted to specific RNA splicing isoforms making interference with pre-mRNA processing a viable therapeutic strategy. Several RNA splicing modulators have been recently characterized showing promise in pre-clinical studies. While the targets of most splicing modulators are constitutive RNA processing components, with undesirable side effects, selectivity for individual splicing events has been observed. Given the high prevalence of splicing defects in cancer, small molecule modulators of RNA processing represent a novel therapeutic strategy in cancer treatment. Here, we review their reported effects, potential mechanisms, and limitations. PMID:26700537

  13. Aberrant and alternative splicing in skeletal system disease.

    PubMed

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy.

  14. Positive control of pre-mRNA splicing in vitro.

    PubMed

    Tian, M; Maniatis, T

    1992-04-10

    Positive control of the sex-specific alternative splicing of doublesex (dsx) precursor messenger RNA (pre-mRNA) in Drosophila melanogaster involves the activation of a female-specific 3' splice site by the products of the transformer (tra) and transformer-2 (tra-2) genes. The mechanisms of this process were investigated in an in vitro system in which the female-specific 3' splice site could be activated by recombinant Tra or Tra-2 (or both). An exon sequence essential for regulation in vivo was shown to be both necessary and sufficient for activation in vitro. Nuclear proteins in addition to Tra and Tra-2 were found to bind specifically to this exon sequence. Therefore, Tra and Tra-2 may act by promoting the assembly of a multiprotein complex on the exon sequence. This complex may facilitate recognition of the adjacent 3' splice site by the splicing machinery.

  15. Cytoplasmic Drosha activity generated by alternative splicing

    PubMed Central

    Dai, Lisheng; Chen, Kevin; Youngren, Brenda; Kulina, Julia; Yang, Acong; Guo, Zhengyu; Li, Jin; Yu, Peng; Gu, Shuo

    2016-01-01

    RNase III enzyme Drosha interacts with DGCR8 to form the Microprocessor, initiating canonical microRNA (miRNA) maturation in the nucleus. Here, we re-evaluated where Drosha functions in cells using Drosha and/or DGCR8 knock out (KO) cells and cleavage reporters. Interestingly, a truncated Drosha mutant located exclusively in the cytoplasm cleaved pri-miRNA effectively in a DGCR8-dependent manner. In addition, we demonstrated that in vitro generated pri-miRNAs when transfected into cells could be processed to mature miRNAs in the cytoplasm. These results indicate the existence of cytoplasmic Drosha (c-Drosha) activity. Although a subset of endogenous pri-miRNAs become enriched in the cytoplasm of Drosha KO cells, it remains unclear whether pri-miRNA processing is the main function of c-Drosha. We identified two novel in-frame Drosha isoforms generated by alternative splicing in both HEK293T and HeLa cells. One isoform loses the putative nuclear localization signal, generating c-Drosha. Further analysis indicated that the c-Drosha isoform is abundant in multiple cell lines, dramatically variable among different human tissues and upregulated in multiple tumors, suggesting that c-Drosha plays a unique role in gene regulation. Our results reveal a new layer of regulation on the miRNA pathway and provide novel insights into the ever-evolving functions of Drosha. PMID:27471035

  16. RNA-splicing endonuclease structure and function.

    PubMed

    Calvin, K; Li, H

    2008-04-01

    The RNA-splicing endonuclease is an evolutionarily conserved enzyme responsible for the excision of introns from nuclear transfer RNA (tRNA) and all archaeal RNAs. Since its first identification from yeast in the late 1970s, significant progress has been made toward understanding the biochemical mechanisms of this enzyme. Four families of the splicing endonucleases possessing the same active sites and overall architecture but with different subunit compositions have been identified. Two related consensus structures of the precursor RNA splice sites and the critical elements required for intron excision have been established. More recently, a glimpse was obtained of the structural mechanism by which the endonuclease recognizes the consensus RNA structures and cleaves at the splice sites. This review summarizes these findings and discusses their implications in the evolution of intron removal processes.

  17. Alternative splicing regulation of APP exon 7 by RBFox proteins.

    PubMed

    Alam, Shafiul; Suzuki, Hitoshi; Tsukahara, Toshifumi

    2014-12-01

    RBFox proteins are well-known alternative splicing regulators. We have shown previously that during neuronal differentiation of P19 cells induced by all-trans retinoic acid and cell aggregation, RBFox1 shows markedly increased temporal expression. To find its key splicing regulation, we examined the effect of RBFox1 on 33 previously reported and validated neuronal splicing events of P19 cells. We observed that alternative splicing of three genes, specifically, amyloid precursor protein (APP), disks large homolog 3 (DLG3), and G protein, alpha activating activity polypeptide O (GNAO1), was altered by transient RBFox1 expression in HEK293 and HeLa cells. Moreover, an RBFox1 mutant (RBFox1FA) that was unable to bind the target RNA sequence ((U)GCAUG) did not induce these splicing events. APP generates amyloid beta peptides that are involved in the pathology of Alzheimer's disease, and therefore we examined APP alternative splicing regulation by RBFox1 and other splicing regulators. Our results indicated that RBFox proteins promote the skipping of APP exon 7, but not the inclusion of exon 8. We made APP6789 minigenes and observed that two (U)GCAUG sequences, located upstream of exon 7 and in exon 7, functioned to induce skipping of exon 7 by RBFox proteins. Overall, RBFox proteins may shift APP from exon 7 containing isoforms, APP770 and APP751, toward the exon 7 lacking isoform, APP695, which is predominant in neural tissues.

  18. Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin.

    PubMed

    Mano, S; Hayashi, M; Nishimura, M

    1999-02-01

    Hydroxypyruvate reductase (HPR) is a leaf peroxisomal enzyme that functions in the glycolate pathway of photorespiration in plants. We have obtained two highly similar cDNAs for pumpkin HPR (HPR1 and HPR2). It has been revealed that two HPR mRNAs might be produced by alternative splicing from a single type of pre-mRNA. The HPR1 protein, but not the HPR2 protein, was found to have a targeting sequence into leaf peroxisomes at the C-terminus, suggesting that alternative splicing controls the subcellular localization of the two HPR proteins. Immunoblot analysis and subcellular fractionation experiments showed that HPR1 and HPR2 proteins are localized in leaf peroxisomes and the cytosol, respectively. Moreover, indirect fluorescence microscopy and analyses of transgenic tobacco cultured cells and Arabidopsis thaliana expressing fusion proteins with green fluorescent protein (GFP) revealed the different subcellular localizations of the two HPR proteins. Both mRNAs were induced developmentally and by light, but with quantitative differences. Almost equal amounts of the mRNAs were detected in pumpkin cotyledons grown in darkness, but treatment with light greatly enhanced the production of HPR2 mRNA. These findings indicate that light regulates alternative splicing of HPR mRNA, suggesting the presence of a novel mechanism of mRNA maturation, namely light-regulated alternative splicing, in higher plants.

  19. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  20. Spi-1/PU.1 but not Fli-1 inhibits erythroid-specific alternative splicing of 4.1R pre-mRNA in murine erythroleukemia cells.

    PubMed

    Théoleyre, Orianne; Deguillien, Mireille; Morinière, Madeleine; Starck, Joëlle; Moreau-Gachelin, Françoise; Morlé, François; Baklouti, Faouzi

    2004-01-29

    The inclusion of exon 16 in mature protein 4.1R mRNA arises from a stage-specific splicing event that occurs during late erythroid development. We have shown that mouse erythroleukemia (MEL) cells reproduce this erythroid-specific splicing event upon induction of differentiation. We here found that this splicing event is regulated specifically in erythroleukemic cells that have the potential to differentiate and produce hemoglobin, regardless of the nature of the differentiation inducer. Knowing that dysregulated expression of spi-1/pu.1 and fli-1 oncogenes is involved in MEL cell differentiation arrest, we looked at their effect on exon 16 erythroid splicing. We found that exon 16 inclusion requires Spi-1/PU.1 shutdown in MEL cells, and that enforced expression of Spi-1/PU.1 inhibits exon selection, regardless of the presence or absence of a chemical inducer. By contrast, endogenous overexpression or enforced expression of Fli-1 has no effect on exon selection. We further showed that Spi-1/PU.1 acts similarly on the endogenous and on a transfected exon 16, suggesting a promoter-independent effect of Spi-1/PU.1 on splicing regulation. This study provides the first evidence that Spi-1/PU.1 displays the unique property, not shared with Fli-1, to inhibit erythroid-specific pre-mRNA splicing in erythroleukemia cell context.

  1. RNA splicing and debranching viewed through analysis of RNA lariats.

    PubMed

    Cheng, Zhi; Menees, Thomas M

    2011-12-01

    Intron lariat RNAs, created by pre-mRNA splicing, are sources of information on gene expression and structure. Although produced equivalently to their corresponding mRNAs, the vast majority of intron lariat RNAs are rapidly degraded. However, their levels are enhanced in cells deficient for RNA debranching enzyme, which catalyzes linearization of these RNAs, the rate-limiting step in their degradation. Furthermore, RNA lariats are resistant to degradation by the 3' exonuclease polynucleotide phosphorylase (PNPase), providing a means to enrich for lariat RNAs. Working with the yeast Saccharomyces cerevisiae as a model organism, our goal was to develop novel combinations of methods to enhance the use of intron lariat RNAs as objects of study. Using RT-PCR assays developed for detecting and quantifying specific lariat RNAs, we demonstrate the resistance of RNA lariats to degradation by PNPase and their sensitivity to cleavage by RNA debranching enzyme. We also employ sequential treatments with these two enzymes to produce characteristic effects on linear and lariat RNAs. We establish the utility of the methods for analyzing RNA debranching enzyme variants and in vitro debranching reactions and discuss several possible applications, including measuring relative rates of transcription and combining these methods with non-gene-specific RNA sequencing as a novel approach for genome annotation. In summary, enzymatic treatments that produce characteristic effects on linear and lariat RNAs, combined with RT-PCR or RNA sequencing, can be powerful tools to advance studies on gene expression, alternative splicing, and any process that depends on the RNA debranching enzyme.

  2. A chloroplast retrograde signal regulates nuclear alternative splicing

    PubMed Central

    Petrillo, Ezequiel; Herz, Micaela A. Godoy; Fuchs, Armin; Reifer, Dominik; Fuller, John; Yanovsky, Marcelo J.; Simpson, Craig; Brown, John W. S.; Barta, Andrea; Kalyna, Maria; Kornblihtt, Alberto R.

    2015-01-01

    Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions. PMID:24763593

  3. Spliced leader RNA trans-splicing discovered in copepods

    PubMed Central

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-01-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3′-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods. PMID:26621068

  4. Spliced leader RNA trans-splicing discovered in copepods

    NASA Astrophysics Data System (ADS)

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  5. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation

    PubMed Central

    Schor, Ignacio E; Fiszbein, Ana; Petrillo, Ezequiel; Kornblihtt, Alberto R

    2013-01-01

    Alternative splicing contributes to cell type-specific transcriptomes. Here, we show that changes in intragenic chromatin marks affect NCAM (neural cell adhesion molecule) exon 18 (E18) alternative splicing during neuronal differentiation. An increase in the repressive marks H3K9me2 and H3K27me3 along the gene body correlated with inhibition of polymerase II elongation in the E18 region, but without significantly affecting total mRNA levels. Treatment with the general DNA methylation inhibitor 5-azacytidine and BIX 01294, a specific inhibitor of H3K9 dimethylation, inhibited the differentiation-induced E18 inclusion, pointing to a role for repressive marks in sustaining NCAM splicing patterns typical of mature neurons. We demonstrate that intragenic deployment of repressive chromatin marks, induced by intronic small interfering RNAs targeting NCAM intron 18, promotes E18 inclusion in undifferentiated N2a cells, confirming the chromatin changes observed upon differentiation to be sufficient to induce alternative splicing. Combined with previous evidence that neuronal depolarization causes H3K9 acetylation and subsequent E18 skipping, our results show how two alternative epigenetic marks regulate NCAM alternative splicing and E18 levels in different cellular contexts. PMID:23892457

  6. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation.

    PubMed

    Schor, Ignacio E; Fiszbein, Ana; Petrillo, Ezequiel; Kornblihtt, Alberto R

    2013-08-14

    Alternative splicing contributes to cell type-specific transcriptomes. Here, we show that changes in intragenic chromatin marks affect NCAM (neural cell adhesion molecule) exon 18 (E18) alternative splicing during neuronal differentiation. An increase in the repressive marks H3K9me2 and H3K27me3 along the gene body correlated with inhibition of polymerase II elongation in the E18 region, but without significantly affecting total mRNA levels. Treatment with the general DNA methylation inhibitor 5-azacytidine and BIX 01294, a specific inhibitor of H3K9 dimethylation, inhibited the differentiation-induced E18 inclusion, pointing to a role for repressive marks in sustaining NCAM splicing patterns typical of mature neurons. We demonstrate that intragenic deployment of repressive chromatin marks, induced by intronic small interfering RNAs targeting NCAM intron 18, promotes E18 inclusion in undifferentiated N2a cells, confirming the chromatin changes observed upon differentiation to be sufficient to induce alternative splicing. Combined with previous evidence that neuronal depolarization causes H3K9 acetylation and subsequent E18 skipping, our results show how two alternative epigenetic marks regulate NCAM alternative splicing and E18 levels in different cellular contexts.

  7. Splicing variants of ADAR2 and ADAR2-mediated RNA editing in glioma.

    PubMed

    Fu, Yao; Zhao, Xingli; Li, Zhaohui; Wei, Jun; Tian, Yu

    2016-08-01

    The roles of alternative splicing and RNA editing in gene regulation and transcriptome diversity are well documented. Adenosine deaminases acting on RNA (ADARs) are responsible for adenosine-to-inosine (A-to-I) editing and exemplify the complex association between RNA editing and alternative splicing. The self-editing activity of ADAR2, which acts on its own pre-mRNA, leads to its alternative splicing. Alternative splicing occurs independently at nine splicing sites on ADAR2 pre-mRNA, generating numerous alternative splicing variants with various catalytic activities. A-to-I RNA editing is important in a range of physiological processes in humans and is associated with several diseases, including amyotrophic lateral sclerosis, mood disorders, epilepsy and glioma. Reduced editing at the glutamine/arginine site of the AMPA receptor subunit GluA2 in glioma, without any alteration in ADAR2 expression, is a notable phenomenon. Several studies have tried to explain this alteration in the catalytic activity of ADAR2; however, the underlying mechanism remains unclear. The present review summarizes the relevant literature and shares experimental results concerning ADAR2 alternative splicing. In particular, the present review demonstrates that shifts in the relative abundance of the active and inactive splicing variants of ADAR2 may reduce the ADAR2 editing activity in glioma. Dominant expression of ADAR2 splicing variant with low enzyme activity causes reduced RNA editing of GluA2 subunit at the glutamine/arginine site in glioma.

  8. Finding signals that regulate alternative splicing in the post-genomic era

    PubMed Central

    Ladd, Andrea N; Cooper, Thomas A

    2002-01-01

    Alternative splicing of pre-mRNAs is central to the generation of diversity from the relatively small number of genes in metazoan genomes. Auxiliary cis elements and trans-acting factors are required for the recognition of constitutive and alternatively spliced exons and their inclusion in pre-mRNA. Here, we discuss the regulatory elements that direct alternative splicing and how genome-wide analyses can aid in their identification. PMID:12429065

  9. Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing

    PubMed Central

    Trochet, Delphine; Prudhon, Bernard; Jollet, Arnaud; Lorain, Stéphanie; Bitoun, Marc

    2016-01-01

    Dynamin 2 (DNM2) is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3′-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5′-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development. PMID:27623444

  10. Modulators of alternative splicing as novel therapeutics in cancer.

    PubMed

    Oltean, Sebastian

    2015-10-10

    Alternative splicing (AS), the process of removing introns from pre-mRNA and re-arrangement of exons to give several types of mature transcripts, has been described more than 40 years ago. However, until recently, it has not been clear how extensive it is. Genome-wide studies have now conclusively shown that more than 90% of genes are alternatively spliced in humans. This makes AS one of the main drivers of proteomic diversity and, consequently, determinant of cellular function repertoire. Unsurprisingly, given its extent, numerous splice isoforms have been described to be associated with several diseases including cancer. Many of them have antagonistic functions, e.g., pro- and anti-angiogenic or pro- and anti-apoptotic. Additionally several splice factors have been recently described to have oncogene or tumour suppressors activities, like SF3B1 which is frequently mutated in myelodysplastic syndromes. Beside the implications for cancer pathogenesis, de-regulated AS is recognized as one of the novel areas of cell biology where therapeutic manipulations may be designed. This editorial discusses the possibilities of manipulation of AS for therapeutic benefit in cancer. Approaches involving the use of oligonucleotides as well as small molecule splicing modulators are presented as well as thoughts on how specificity might be accomplished in splicing therapeutics.

  11. Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors.

    PubMed

    Han, Hong; Braunschweig, Ulrich; Gonatopoulos-Pournatzis, Thomas; Weatheritt, Robert J; Hirsch, Calley L; Ha, Kevin C H; Radovani, Ernest; Nabeel-Shah, Syed; Sterne-Weiler, Tim; Wang, Juli; O'Hanlon, Dave; Pan, Qun; Ray, Debashish; Zheng, Hong; Vizeacoumar, Frederick; Datti, Alessandro; Magomedova, Lilia; Cummins, Carolyn L; Hughes, Timothy R; Greenblatt, Jack F; Wrana, Jeffrey L; Moffat, Jason; Blencowe, Benjamin J

    2017-02-02

    Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.

  12. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis)

    PubMed Central

    Tang, Wei; Zheng, Yi; Dong, Jing; Yu, Jia; Yue, Junyang; Liu, Fangfang; Guo, Xiuhong; Huang, Shengxiong; Wisniewski, Michael; Sun, Jiaqi; Niu, Xiangli; Ding, Jian; Liu, Jia; Fei, Zhangjun; Liu, Yongsheng

    2016-01-01

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis “Hongyang” at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of “Hongyang.” AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology. PMID:27594858

  13. FGFR2 exon IIIa and IIIc mutations in Crouzon, Jackson-Weiss, and Pfeiffer syndromes: Evidence for missense changes, insertions, and a deletion due to alternative RNA splicing

    SciTech Connect

    Meyers, G.A.; Przylepa, K.A.; Scott, A.F.

    1996-03-01

    Fibroblast growth factor receptor 2 (FGFR2) mutations have been associated with the craniosynostotic conditions Crouzon, Jackson-Weiss, and Pfeiffer syndromes. Previously, mutations were described in the exons IIIa and IIIc, which form the extracellular, third immunoglobulin-like domain (IgM) and adjacent linker regions, both of which are normally involved in ligand binding. For all three conditions, mutations were found in exon IIIc. Only in Crouzon syndrome were mutations identified in exon IIIa. In this study, 39 cases with one of these three conditions were screened for exon IIIa or IIIc mutations. Eleven mutations are reported in 17 unrelated cases. Mutations in exon IIIa are identified for not only Crouzon but also Jackson-Weiss and Pfeiffer syndromes. Four mutations in either exon IIIa or exon IIIc reported only in Crouzon syndrome are present also in one of the other two syndromes. Two insertions, one in exon IIIa in a Crouzon syndrome patient and the other in exon IIIc in a Pfeiffer syndrome patient, were observed. The latter mutation has the same alternative RNA splicing effect as a reported synonymous mutation for Crouzon syndrome. A missense mutation was detected in one Pfeiffer syndrome family in which two members had craniosynostosis without limb anomalies. The inter- and intrafamilial variability in expression of FGFR2 mutations suggests that these three syndromes, presumed to be clinically distinct, are instead representative of a spectrum of related craniosynostotic and digital disorders. 16 refs., 3 figs., 1 tab.

  14. Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis).

    PubMed

    Tang, Wei; Zheng, Yi; Dong, Jing; Yu, Jia; Yue, Junyang; Liu, Fangfang; Guo, Xiuhong; Huang, Shengxiong; Wisniewski, Michael; Sun, Jiaqi; Niu, Xiangli; Ding, Jian; Liu, Jia; Fei, Zhangjun; Liu, Yongsheng

    2016-01-01

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis "Hongyang" at immature, mature, and postharvest ripening stages of fruit development, and generated over 66.2 million paired-end and 24.4 million single-end reads. From this dataset, here we have identified 7051 long noncoding RNAs (lncRNAs), 29,327 alternative splicing (AS) events and 2980 novel protein-coding genes that were not annotated in the draft genome of "Hongyang." AS events were demonstrated in genes involved in the synthesis of nutritional metabolites in fruit, such as ascorbic acids, carotenoids, anthocyanins, and chlorophylls, and also in genes in the ethylene signaling pathway, which plays an indispensable role in fruit ripening. Additionally, transcriptome profiles and the contents of sugars, organic and main amino acids were compared between immature, mature, and postharvest ripening stages in kiwifruits. A total of 5931 differentially expressed genes were identified, including those associated with the metabolism of sugar, organic acid, and main amino acids. The data generated in this study provide a foundation for further studies of fruit development and ripening in kiwifruit, and identify candidate genes and regulatory elements that could serve as targets for improving important agronomic traits through marker assisted breeding and biotechnology.

  15. Alternative Splicing of Toll-Like Receptor 9 Transcript in Teleost Fish Grouper Is Regulated by NF-κB Signaling via Phosphorylation of the C-Terminal Domain of the RPB1 Subunit of RNA Polymerase II

    PubMed Central

    Lee, Frank Fang-Yao; Hui, Cho-Fat; Chang, Tien-Hsien; Chiou, Pinwen Peter

    2016-01-01

    Similar to its mammalian counterparts, teleost Toll-like receptor 9 (TLR9) recognizes unmethylated CpG DNA presented in the genome of bacteria or DNA viruses and initiates signaling pathway(s) for immune responses. We have previously shown that the TLR9 pathway in grouper, an economically important teleost, can be debilitated by an inhibitory gTLR9B isoform, whose production is mediated by RNA alternative splicing. However, how does grouper TLR9 (gTLR9) signaling impinge on the RNA splicing machinery to produce gTlr9B is unknown. Here we show that the gTlr9 alternative splicing is regulated through ligand-induced phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II). We first observed that ligand-activated NF- κB pathway biased the production of the gTlr9B isoform. Because NF- κB is known to recruit p-TEFb kinase, which phosphorylates the Pol II CTD at Ser2 residues, we examined p-TEFb’s role in alternative splicing. We found that promoting p-TEFb kinase activity significantly favored the production of the gTlr9B isoform, whereas inhibiting p-TEFb yielded an opposite result. We further showed that p-TEFb-mediated production of the gTlr9B isoform down-regulates its own immune responses, suggesting a self-limiting mechanism. Taken together, our data indicate a feedback mechanism of the gTLR9 signaling pathway to regulate the alternative splicing machinery, which in turn produces an inhibitor to the pathway. PMID:27658294

  16. Alternative splicing may be responsible for heterogeneity of thyroglobulin structure.

    PubMed

    Mercken, L; Simons, M J; Brocas, H; Vassart, G

    1989-02-01

    During the cloning of the bovine thyroglobulin cDNA, the restriction map of one of the recombinant plasmids was in disagreement with that of the full-length double-stranded thyroglobulin cDNA. When compared to the bovine Tg mRNA sequence, this cDNA clone exhibits a 333-nucleotide deletion which corresponds precisely to 2 exons of the Tg gene. It is thus likely that alternative processing of the premessenger RNA is at the origin of the deletion. The presence of giant introns in the vicinity of the dispensable exons may also reflect some error level in the splicing mechanism. Together with previous results the alternative splicing described in this study indicates that alternative processing of the Tg transcripts may be at the origin of thyroglobulin isoforms.

  17. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay

    PubMed Central

    Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel

    2007-01-01

    Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403

  18. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing.

    PubMed

    Selvanathan, Saravana P; Graham, Garrett T; Erkizan, Hayriye V; Dirksen, Uta; Natarajan, Thanemozhi G; Dakic, Aleksandra; Yu, Songtao; Liu, Xuefeng; Paulsen, Michelle T; Ljungman, Mats E; Wu, Cathy H; Lawlor, Elizabeth R; Üren, Aykut; Toretsky, Jeffrey A

    2015-03-17

    The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron-exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.

  19. Evolutionary Character of Alternative Splicing in Plants

    PubMed Central

    Zhang, Chengjun; Yang, Hong; Yang, Huizhao

    2015-01-01

    Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questions in previous research were as follows. What is the content rate of AS genes among the whole gene set? How many AS types are presented in the genome, and which type is dominant? How about the conservation ability of AS among different species? Which kinds of isoforms from some genes have the environmental response to help individual adaptation? Based on this background, we collected analysis results from 17 species to try to map out the landscape of AS studies in plants. We have noted the shortages of previous results, and we appeal to all scientists working in the AS field to make a standard protocol so that analyses between different projects are comparable. PMID:26819552

  20. [EDAS, databases of alternatively spliced human genes].

    PubMed

    Nurtdinov, R N; Neverov, A D; Mal'ko, D B; Kosmodem'ianskiĭ, I A; Ermakova, E O; Ramenskiĭ, V E; Mironov, A A; Gel'fand, M S

    2006-01-01

    EDAS, a database of alternatively spliced human genes, contains data on the alignment of proteins, mRNAs, and EST. It contains information on all exons and introns observed, as well as elementary alternatives formed from them. The database makes it possible to filter the output data by changing the cut-off threshold by the significance level. The database is accessible at http://www.gene-bee.msu.ru/edas/.

  1. Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially.

    PubMed

    Simpson, Craig G; Lewandowska, Dominika; Liney, Michele; Davidson, Diane; Chapman, Sean; Fuller, John; McNicol, Jim; Shaw, Paul; Brown, John W S

    2014-07-01

    This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF65 overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF65 alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence.

  2. Quantitative Imaging of Single mRNA Splice Variants in Living Cells

    PubMed Central

    Lee, Kyuwan; Cui, Yi

    2015-01-01

    Alternative mRNA splicing is a fundamental process of gene regulation via the precise control of the post-transcriptional step that occurs before mRNA translation. Errors in RNA splicing have been known to correlate with different diseases; however, a key limitation is the lack of technologies for live cell monitoring and quantification to understand the process of alternative splicing. Here, we report a spectroscopic strategy for quantitative imaging of mRNA splice variants in living cells, using nanoplasmonic dimer antennas. The spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1 were monitored at single copy resolution by measuring the hybridization dynamics of nanoplasmonic antennas targeting complementary mRNA sequences in live cells. Our study provides valuable insights on RNA and its transport in living cells, which has the potential to enhance our understanding of cellular protein complex, pharmacogenomics, genetic diagnosis, and gene therapies. PMID:24747838

  3. Neurogenesis: Regulation by Alternative Splicing and Related Posttranscriptional Processes.

    PubMed

    Lara-Pezzi, Enrique; Desco, Manuel; Gatto, Alberto; Gómez-Gaviro, María Victoria

    2016-11-10

    The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.

  4. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes.

    PubMed

    Sharma, Alok; Nguyen, Hieu; Geng, Cuiyu; Hinman, Melissa N; Luo, Guangbin; Lou, Hua

    2014-11-18

    In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns.

  5. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis.

    PubMed

    Feng, Jinlin; Li, Jingjing; Gao, Zhaoxu; Lu, Yaru; Yu, Junya; Zheng, Qian; Yan, Shuning; Zhang, Wenjiao; He, Hang; Ma, Ligeng; Zhu, Zhengge

    2015-07-01

    Deciphering the mechanisms underlying plant responses to abiotic stress is key for improving plant stress resistance. Much is known about the regulation of gene expression in response to salt stress at the transcriptional level; however, little is known about this process at the posttranscriptional level. Recently, we demonstrated that SKIP is a component of spliceosome that interacts with clock gene pre-mRNAs and is essential for regulating their alternative splicing and mRNA maturation. In this study, we found that skip-1 plants are hypersensitive to both salt and osmotic stresses, and that SKIP is required for the alternative splicing and mRNA maturation of several salt-tolerance genes, including NHX1, CBL1, P5CS1, RCI2A, and PAT10. A genome-wide analysis revealed that SKIP mediates the alternative splicing of many genes under salt-stress conditions, and that most of the alternative splicing events in skip-1 involve intron retention and can generate a premature termination codon in the transcribed mRNA. SKIP also controls alternative splicing by modulating the recognition or cleavage of 5' and 3' splice donor and acceptor sites under salt-stress conditions. Therefore, this study addresses the fundamental question of how the mRNA splicing machinery in plants contributes to salt-stress responses at the posttranscriptional level, and provides a link between alternative splicing and salt tolerance.

  6. WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo

    SciTech Connect

    Markus, M. Andrea; Heinrich, Bettina; Raitskin, Oleg; Adams, David J.; Mangs, Helena; Goy, Christine; Ladomery, Michael; Sperling, Ruth; Stamm, Stefan; Morris, Brian J. . E-mail: brianm@medsci.usyd.edu.au

    2006-10-15

    Wilm's tumor protein 1 (WT1), a protein implicated in various cancers and developmental disorders, consists of two major isoforms: WT1(-KTS), a transcription factor, and WT1(+KTS), a post-transcriptional regulator that binds to RNA and can interact with splicing components. Here we show that WT1 interacts with the novel splicing regulator RBM4. Each protein was found to colocalize in nuclear speckles and to cosediment with supraspliceosomes in glycerol gradients. RBM4 conferred dose-dependent and cell-specific regulation of alternative splicing of pre-mRNAs transcribed from several reporter genes. We found that overexpressed WT1(+KTS) abrogated this effect of RBM4 on splice-site selection, whereas WT1(-KTS) did not. We conclude that the (+KTS) form of WT1 is able to inhibit the effect of RBM4 on alternative splicing.

  7. Leveraging transcript quantification for fast computation of alternative splicing profiles

    PubMed Central

    Alamancos, Gael P.; Pagès, Amadís; Trincado, Juan L.; Bellora, Nicolás; Eyras, Eduardo

    2015-01-01

    Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. PMID:26179515

  8. Genomic architecture and functional relationships of intronless, constitutively- and alternatively-spliced genes in Brachypodium distachyon

    PubMed Central

    Mandadi, Kranthi K; Scholthof, Karen-Beth G

    2015-01-01

    Splicing and alternative splicing (AS) are widespread co- and post-transcriptional regulatory processes in plants. Recently, we characterized genome-wide AS landscapes and virus-induced AS patterns in Brachypodium distachyon (Brachypodium), a C3 model grass. Brachypodium plants infected with Panicum mosaic virus (PMV) alone or in mixed infections with its satellite virus (SPMV) were used for high-throughput, paired-end RNA sequencing. Here, using gene attributes of ∼5,655 intronless genes, ∼13,302 constitutively spliced, and ∼7,564 alternatively spliced genes, we analyzed the influence of genomic features on splicing incidence and AS frequency. In Brachypodium, gene length, coding sequence length, and exon and intron number were positively correlated to splicing incidence and AS frequency. In contrast, exon length and the percentage composition of GC (%GC) content were inversely correlated with splicing incidence and AS frequency. Although gene expression status had little correlation with splicing occurrence per se, it negatively correlated to AS frequency: i.e., genes with ≥5 alternatively spliced transcripts were significantly less expressed compared to genes encoding <5 alternative transcripts. Further gene set enrichment analysis uncovered unique functional relationships among nonspliced, constitutively spliced and alternatively spliced genes. PMID:26156297

  9. Genomic architecture and functional relationships of intronless, constitutively- and alternatively-spliced genes in Brachypodium distachyon.

    PubMed

    Mandadi, Kranthi K; Scholthof, Karen-Beth G

    2015-01-01

    Splicing and alternative splicing (AS) are widespread co- and post-transcriptional regulatory processes in plants. Recently, we characterized genome-wide AS landscapes and virus-induced AS patterns in Brachypodium distachyon (Brachypodium), a C3 model grass. Brachypodium plants infected with Panicum mosaic virus (PMV) alone or in mixed infections with its satellite virus (SPMV) were used for high-throughput, paired-end RNA sequencing. Here, using gene attributes of ∼5,655 intronless genes, ∼13,302 constitutively spliced, and ∼7,564 alternatively spliced genes, we analyzed the influence of genomic features on splicing incidence and AS frequency. In Brachypodium, gene length, coding sequence length, and exon and intron number were positively correlated to splicing incidence and AS frequency. In contrast, exon length and the percentage composition of GC (%GC) content were inversely correlated with splicing incidence and AS frequency. Although gene expression status had little correlation with splicing occurrence per se, it negatively correlated to AS frequency: i.e., genes with ≥5 alternatively spliced transcripts were significantly less expressed compared to genes encoding <5 alternative transcripts. Further gene set enrichment analysis uncovered unique functional relationships among nonspliced, constitutively spliced and alternatively spliced genes.

  10. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  11. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing.

    PubMed

    Juan, Wen Chun; Roca, Xavier; Ong, S Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3' end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.

  12. Integrating alternative splicing detection into gene prediction

    PubMed Central

    Foissac, Sylvain; Schiex, Thomas

    2005-01-01

    Background Alternative splicing (AS) is now considered as a major actor in transcriptome/proteome diversity and it cannot be neglected in the annotation process of a new genome. Despite considerable progresses in term of accuracy in computational gene prediction, the ability to reliably predict AS variants when there is local experimental evidence of it remains an open challenge for gene finders. Results We have used a new integrative approach that allows to incorporate AS detection into ab initio gene prediction. This method relies on the analysis of genomically aligned transcript sequences (ESTs and/or cDNAs), and has been implemented in the dynamic programming algorithm of the graph-based gene finder EuGÈNE. Given a genomic sequence and a set of aligned transcripts, this new version identifies the set of transcripts carrying evidence of alternative splicing events, and provides, in addition to the classical optimal gene prediction, alternative optimal predictions (among those which are consistent with the AS events detected). This allows for multiple annotations of a single gene in a way such that each predicted variant is supported by a transcript evidence (but not necessarily with a full-length coverage). Conclusions This automatic combination of experimental data analysis and ab initio gene finding offers an ideal integration of alternatively spliced gene prediction inside a single annotation pipeline. PMID:15705189

  13. RNA-Binding Proteins: Splicing Factors and Disease

    PubMed Central

    Fredericks, Alger M.; Cygan, Kamil J.; Brown, Brian A.; Fairbrother, William G.

    2015-01-01

    Pre-mRNA splicing is mediated by interactions of the Core Spliceosome and an array of accessory RNA binding proteins with cis-sequence elements. Splicing is a major regulatory component in higher eukaryotes. Disruptions in splicing are a major contributor to human disease. One in three hereditary disease alleles are believed to cause aberrant splicing. Hereditary disease alleles can alter splicing by disrupting a splicing element, creating a toxic RNA, or affecting splicing factors. One of the challenges of medical genetics is identifying causal variants from the thousands of possibilities discovered in a clinical sequencing experiment. Here we review the basic biochemistry of splicing, the mechanisms of splicing mutations, the methods for identifying splicing mutants, and the potential of therapeutic interventions. PMID:25985083

  14. Alternatively spliced, spliceosomal twin introns in Helminthosporium solani.

    PubMed

    Ág, Norbert; Flipphi, Michel; Karaffa, Levente; Scazzocchio, Claudio; Fekete, Erzsébet

    2015-12-01

    Spliceosomal twin introns, "stwintrons", have been defined as complex intervening sequences that carry a second intron ("internal intron") interrupting one of the conserved sequence domains necessary for their correct splicing via consecutive excision events. Previously, we have described and experimentally verified stwintrons in species of Sordariomycetes, where an "internal intron" interrupted the donor sequence of an "external intron". Here we describe and experimentally verify two novel stwintrons of the potato pathogen Helminthosporium solani. One instance involves alternative splicing of an internal intron interrupting the donor domain of an external intron and a second one interrupting the acceptor domain of an overlapping external intron, both events leading to identical mature mRNAs. In the second case, an internal intron interrupts the donor domain of the external intron, while an alternatively spliced intron leads to an mRNA carrying a premature chain termination codon. We thus extend the stwintron concept to the acceptor domain and establish a link of the occurrence of stwintrons with that of alternative splicing.

  15. The Role of Canonical and Noncanonical Pre-mRNA Splicing in Plant Stress Responses

    PubMed Central

    Dubrovina, A. S.; Kiselev, K. V.; Zhuravlev, Yu. N.

    2013-01-01

    Plants are sessile organisms capable of adapting to various environmental constraints, such as high or low temperatures, drought, soil salinity, or pathogen attack. To survive the unfavorable conditions, plants actively employ pre-mRNA splicing as a mechanism to regulate expression of stress-responsive genes and reprogram intracellular regulatory networks. There is a growing evidence that various stresses strongly affect the frequency and diversity of alternative splicing events in the stress-responsive genes and lead to an increased accumulation of mRNAs containing premature stop codons, which in turn have an impact on plant stress response. A number of studies revealed that some mRNAs involved in plant stress response are spliced counter to the traditional conception of alternative splicing. Such noncanonical mRNA splicing events include trans-splicing, intraexonic deletions, or variations affecting multiple exons and often require short direct repeats to occur. The noncanonical alternative splicing, along with common splicing events, targets the spliced transcripts to degradation through nonsense-mediated mRNA decay or leads to translation of truncated proteins. Investigation of the diversity, biological consequences, and mechanisms of the canonical and noncanonical alternative splicing events will help one to identify those transcripts which are promising for using in genetic engineering and selection of stress-tolerant plants. PMID:23509698

  16. Vials: Visualizing Alternative Splicing of Genes

    PubMed Central

    Strobelt, Hendrik; Alsallakh, Bilal; Botros, Joseph; Peterson, Brant; Borowsky, Mark; Pfister, Hanspeter; Lex, Alexander

    2016-01-01

    Alternative splicing is a process by which the same DNA sequence is used to assemble different proteins, called protein isoforms. Alternative splicing works by selectively omitting some of the coding regions (exons) typically associated with a gene. Detection of alternative splicing is difficult and uses a combination of advanced data acquisition methods and statistical inference. Knowledge about the abundance of isoforms is important for understanding both normal processes and diseases and to eventually improve treatment through targeted therapies. The data, however, is complex and current visualizations for isoforms are neither perceptually efficient nor scalable. To remedy this, we developed Vials, a novel visual analysis tool that enables analysts to explore the various datasets that scientists use to make judgments about isoforms: the abundance of reads associated with the coding regions of the gene, evidence for junctions, i.e., edges connecting the coding regions, and predictions of isoform frequencies. Vials is scalable as it allows for the simultaneous analysis of many samples in multiple groups. Our tool thus enables experts to (a) identify patterns of isoform abundance in groups of samples and (b) evaluate the quality of the data. We demonstrate the value of our tool in case studies using publicly available datasets. PMID:26529712

  17. Emerging roles of BRCA1 alternative splicing.

    PubMed

    Orban, T I; Olah, E

    2003-08-01

    Germline mutations of the BRCA1 gene predispose individuals mainly to the development of breast and/or ovarian cancer. However, the exact function of the gene is still unclear, although the encoded proteins are involved in various cellular processes, including transcriptional regulation and DNA repair pathways. Several BRCA1 splice variants are found in different tissues, but in spite of intense investigations, their regulation and possible functions are poorly understood at the moment. This review summarises current knowledge on the roles of these splice variants and the mechanisms responsible for their formation. Because alternative splicing is now widely accepted as an important source of genetic diversity, elucidating the functions of the BRCA1 splice variants would help in the understanding of the exact role(s) of this tumour suppressor. This should help to resolve the current paradox that, despite its seemingly vital cellular functions, mutations of this gene are associated with tissue specific tumour formation predominantly in the breast and the ovary.

  18. TIA-1 and TIAR activate splicing of alternative exons with weak 5' splice sites followed by a U-rich stretch on their own pre-mRNAs.

    PubMed

    Le Guiner, C; Lejeune, F; Galiana, D; Kister, L; Breathnach, R; Stévenin, J; Del Gatto-Konczak, F

    2001-11-02

    TIA-1 has recently been shown to activate splicing of specific pre-mRNAs transcribed from transiently transfected minigenes, and of some 5' splice sites in vitro, but has not been shown to activate splicing of any endogenous pre-mRNA. We show here that overexpression of TIA-1 or the related protein TIAR has little effect on splicing of several endogenous pre-mRNAs containing alternative exons, but markedly activates splicing of some normally rarely used alternative exons on the TIA-1 and TIAR pre-mRNAs. These exons have weak 5' splice sites followed by U-rich stretches. When the U-rich stretch following the 5' splice site of a TIA-1 alternative exon was deleted, TIAR overexpression induced use of a cryptic 5' splice site also followed by a U-rich stretch in place of the original splice site. Using in vitro splicing assays, we have shown that TIA-1 is directly involved in activating the 5' splice sites of the TIAR alternative exons. Activation requires a downstream U-rich stretch of at least 10 residues. Our results confirm that TIA-1 activates 5' splice sites followed by U-rich sequences and show that TIAR exerts a similar activity. They suggest that both proteins may autoregulate their expression at the level of splicing.

  19. Estimation of the minimum mRNA splicing error rate in vertebrates.

    PubMed

    Skandalis, A

    2016-01-01

    The majority of protein coding genes in vertebrates contain several introns that are removed by the mRNA splicing machinery. Errors during splicing can generate aberrant transcripts and degrade the transmission of genetic information thus contributing to genomic instability and disease. However, estimating the error rate of constitutive splicing is complicated by the process of alternative splicing which can generate multiple alternative transcripts per locus and is particularly active in humans. In order to estimate the error frequency of constitutive mRNA splicing and avoid bias by alternative splicing we have characterized the frequency of splice variants at three loci, HPRT, POLB, and TRPV1 in multiple tissues of six vertebrate species. Our analysis revealed that the frequency of splice variants varied widely among loci, tissues, and species. However, the lowest observed frequency is quite constant among loci and approximately 0.1% aberrant transcripts per intron. Arguably this reflects the "irreducible" error rate of splicing, which consists primarily of the combination of replication errors by RNA polymerase II in splice consensus sequences and spliceosome errors in correctly pairing exons.

  20. RNA Splicing Factors and RNA-Directed DNA Methylation.

    PubMed

    Huang, Chao-Feng; Zhu, Jian-Kang

    2014-03-26

    RNA-directed histone and/or DNA modification is a conserved mechanism for the establishment of epigenetic marks from yeasts and plants to mammals. The heterochromation formation in yeast is mediated by RNAi-directed silencing mechanism, while the establishment of DNA methylation in plants is through the RNA-directed DNA methylation (RdDM) pathway. Recently, splicing factors are reported to be involved in both RNAi-directed heterochromatin formation in yeast and the RdDM pathway in plants. In yeast, splicing factors may provide a platform for facilitating the siRNA generation through an interaction with RDRC and thereby affect the heterochromatin formation, whereas in plants, various splicing factors seem to act at different steps in the RdDM pathway.

  1. Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells.

    PubMed

    Iannone, Camilla; Pohl, Andy; Papasaikas, Panagiotis; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel; ValcáRcel, Juan

    2015-03-01

    Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.

  2. Melanoma Differentiation-associated Gene 7/IL-24 Exerts Cytotoxic Effects by Altering the Alternative Splicing of Bcl-x Pre-mRNA via the SRC/PKCδ Signaling Axis.

    PubMed

    Shapiro, Brian A; Vu, Ngoc T; Shultz, Michael D; Shultz, Jacqueline C; Mietla, Jennifer A; Gouda, Mazen M; Yacoub, Adly; Dent, Paul; Fisher, Paul B; Park, Margaret A; Chalfant, Charles E

    2016-10-07

    Melanoma differentiation-associated gene 7 (MDA-7/IL-24) exhibits cytotoxic effects on tumor cells while sparing untransformed cells, and Bcl-x(L) is reported to efficiently block the induction of cell death by MDA-7/IL-24. The expression of Bcl-x(L) is regulated at the level of RNA splicing via alternative 5' splice site selection within exon 2 to produce either the pro-apoptotic Bcl-x(s) or the anti-apoptotic Bcl-x(L). Our laboratory previously reported that Bcl-x RNA splicing is dysregulated in a large percentage of human non-small cell lung cancer (NSCLC) tumors. Therefore, we investigated whether the alternative RNA splicing of Bcl-x pre-mRNA was modulated by MDA-7/IL-24, which would suggest that specific NSCLC tumors are valid targets for this cytokine therapy. Adenovirus-delivered MDA-7/IL-24 (Ad.mda-7) reduced the viability of NSCLC cells of varying oncogenotypes, which was preceded by a decrease in the ratio of Bcl-x(L)/Bcl-x(s) mRNA and Bcl-x(L) protein expression. Importantly, both the expression of Bcl-x(L) and the loss of cell viability were "rescued" in Ad.mda-7-treated cells incubated with Bcl-x(s) siRNA. In addition, NSCLC cells ectopically expressing Bcl-x(s) exhibited significantly reduced Bcl-x(L) expression, which was again restored by Bcl-x(s) siRNA, suggesting the existence of a novel mechanism by which Bcl-x(s) mRNA restrains the expression of Bcl-x(L). In additional mechanistic studies, inhibition of SRC and PKCδ completely ablated the ability of MDA-7/IL-24 to reduce the Bcl-x(L)/(s) mRNA ratio and cell viability. These findings show that Bcl-x(s) expression is an important mediator of MDA-7/IL-24-induced cytotoxicity requiring the SRC/PKCδ signaling axis in NSCLC cells.

  3. Genetic variations and alternative splicing: the Glioma associated oncogene 1, GLI1

    PubMed Central

    Zaphiropoulos, Peter G.

    2012-01-01

    Alternative splicing is a post-transcriptional regulatory process that is attaining stronger recognition as a modulator of gene expression. Alternative splicing occurs when the primary RNA transcript is differentially processed into more than one mature RNAs. This is the result of a variable definition/inclusion of the exons, the sequences that are excised from the primary RNA to form the mature RNAs. Consequently, RNA expression can generate a collection of differentially spliced RNAs, which may distinctly influence subsequent biological events, such as protein synthesis or other biomolecular interactions. Still the mechanisms that control exon definition and exon inclusion are not fully clarified. This mini-review highlights advances in this field as well as the impact of single nucleotide polymorphisms in affecting splicing decisions. The Glioma-associated oncogene 1, GLI1, is taken as an example in addressing the role of nucleotide substitutions for splicing regulation. PMID:22833753

  4. Genetic variations and alternative splicing: the Glioma associated oncogene 1, GLI1.

    PubMed

    Zaphiropoulos, Peter G

    2012-01-01

    Alternative splicing is a post-transcriptional regulatory process that is attaining stronger recognition as a modulator of gene expression. Alternative splicing occurs when the primary RNA transcript is differentially processed into more than one mature RNAs. This is the result of a variable definition/inclusion of the exons, the sequences that are excised from the primary RNA to form the mature RNAs. Consequently, RNA expression can generate a collection of differentially spliced RNAs, which may distinctly influence subsequent biological events, such as protein synthesis or other biomolecular interactions. Still the mechanisms that control exon definition and exon inclusion are not fully clarified. This mini-review highlights advances in this field as well as the impact of single nucleotide polymorphisms in affecting splicing decisions. The Glioma-associated oncogene 1, GLI1, is taken as an example in addressing the role of nucleotide substitutions for splicing regulation.

  5. The Involvement of Splicing Factor hnRNP A1 in UVB-Induced Alternative Splicing of hdm2.

    PubMed

    Feng, Jianguo; Li, Li; Tong, Lingying; Tang, Liling; Wu, Shiyong

    2016-01-12

    Human homolog double minute 2 (hdm2), an oncoprotein, which binds to tumor suppressor p53 to facilitate its degradation, has been known to contribute to tumorigenesis. Its splicing variants are reported to be highly expressed in many cancers and can be induced by ultraviolet B light (UVB). However, the mechanisms of how UVB radiation induces hdm2 alternative splicing still remain unclear. In this study, we investigated the roles of two common splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNP) A1 and serine/arginine-rich splicing factor 1 (SRSF1), in regulating UVB-induced hdm2 splicing. Our study indicated that while the expression of both hnRNP A1 and SRSF1 are induced, only hnRNP A1 is involved in hdm2 alternative splicing upon UVB irradiation. Overexpression of hnRNP A1 resulted in decrease of full-length hdm2 (hdm2-FL) and increase of hdm2B, one of hdm2 alternate-splicing forms; while down-regulated hnRNP A1 expression led to the decrease of the hdm2-FL and hdm2B in HaCaT cells. Protein-mRNA binding assay confirmed that UVB irradiation could increase the binding of hnRNP A1 to hdm2 pre-mRNA. In conclusion, we elucidated that UVB induces alternative splicing of hdm2 via increasing the expression and the binding of hnRNP A1 to hdm2 full-length mRNA. This article is protected by copyright. All rights reserved.

  6. Structure of the human myelin/oligodendrocyte glycoprotein gene and multiple alternative spliced isoforms

    SciTech Connect

    Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.

    1995-09-20

    Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknown alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.

  7. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    PubMed Central

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  8. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.

    PubMed

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L

    2015-06-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved--all the homologous exons we identified evolved over 460 million years ago--and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles.

  9. A heroin addiction severity-associated intronic single nucleotide polymorphism modulates alternative pre-mRNA splicing of the μ opioid receptor gene OPRM1 via hnRNPH interactions.

    PubMed

    Xu, Jin; Lu, Zhigang; Xu, Mingming; Pan, Ling; Deng, Yi; Xie, Xiaohu; Liu, Huifen; Ding, Shixiong; Hurd, Yasmin L; Pasternak, Gavril W; Klein, Robert J; Cartegni, Luca; Zhou, Wenhua; Pan, Ying-Xian

    2014-08-13

    Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction.

  10. Alternative splicing: a pivotal step between eukaryotic transcription and translation.

    PubMed

    Kornblihtt, Alberto R; Schor, Ignacio E; Alló, Mariano; Dujardin, Gwendal; Petrillo, Ezequiel; Muñoz, Manuel J

    2013-03-01

    Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.

  11. RNA catalyzes nuclear pre-mRNA splicing

    PubMed Central

    Fica, Sebastian M.; Tuttle, Nicole; Novak, Thaddeus; Li, Nan-Sheng; Lu, Jun; Koodathingal, Prakash; Dai, Qing; Staley, Jonathan P.; Piccirilli, Joseph A.

    2014-01-01

    SUMMARY In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a multi-megadalton machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, following the discovery of self-splicing group II intron RNAs, the snRNAs were hypothesized to catalyze splicing. However, no definitive evidence for a role of either RNA or protein in catalysis by the spliceosome has been reported to date. By using metal rescue strategies, here we show that the U6 snRNA catalyzes both splicing reactions by positioning divalent metals that stabilize the leaving groups during each reaction. Strikingly, all of the U6 catalytic metal ligands we identified correspond to the ligands observed to position catalytic, divalent metals in crystal structures of a group II intron RNA. These findings indicate that group II introns and the spliceosome share common catalytic mechanisms, and likely common evolutionary origins. Our results demonstrate that RNA mediates catalysis within the spliceosome. PMID:24196718

  12. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases.

    PubMed Central

    Lai, F; Chen, C X; Carter, K C; Nishikura, K

    1997-01-01

    Double-stranded (ds) RNA-specific adenosine deaminase converts adenosine residues into inosines in dsRNA and edits transcripts of certain cellular and viral genes such as glutamate receptor (GluR) subunits and hepatitis delta antigen. The first member of this type of deaminase, DRADA1, has been recently cloned based on the amino acid sequence information derived from biochemically purified proteins. Our search for DRADA1-like genes through expressed sequence tag databases led to the cloning of the second member of this class of enzyme, DRADA2, which has a high degree of sequence homology to DRADA1 yet exhibits a distinctive RNA editing site selectivity. There are four differentially spliced isoforms of human DRADA2. These different isoforms of recombinant DRADA2 proteins, including one which is a human homolog of the recently reported rat RED1, were analyzed in vitro for their GluR B subunit (GluR-B) RNA editing site selectivity. As originally reported for rat RED1, the DRADA2a and -2b isoforms edit GluR-B RNA efficiently at the so-called Q/R site, whereas DRADA1 barely edits this site. In contrast, the R/G site of GluR-B RNA was edited efficiently by the DRADA2a and -2b isoforms as well as DRADA1. Isoforms DRADA2c and -2d, which have a distinctive truncated shorter C-terminal structure, displayed weak adenosine-to-inosine conversion activity but no editing activity tested at three known sites of GluR-B RNA. The possible role of these DRADA2c and -2d isoforms in the regulatory mechanism of RNA editing is discussed. PMID:9111310

  13. Alternative Splicing of G9a Regulates Neuronal Differentiation.

    PubMed

    Fiszbein, Ana; Giono, Luciana E; Quaglino, Ana; Berardino, Bruno G; Sigaut, Lorena; von Bilderling, Catalina; Schor, Ignacio E; Steinberg, Juliana H Enriqué; Rossi, Mario; Pietrasanta, Lía I; Caramelo, Julio J; Srebrow, Anabella; Kornblihtt, Alberto R

    2016-03-29

    Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  14. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation

    PubMed Central

    Schmidt, Ute; Robert, Marie-Cécile; Yoshida, Minoru; Villemin, Jean-Philippe; Auboeuf, Didier; Aitken, Stuart

    2011-01-01

    Splicing is a key process that expands the coding capacity of genomes. Its kinetics remain poorly characterized, and the distribution of splicing time caused by the stochasticity of single splicing events is expected to affect regulation efficiency. We conducted a small-scale survey on 40 introns in human cells and observed that most were spliced cotranscriptionally. Consequently, we constructed a reporter system that splices cotranscriptionally and can be monitored in live cells and in real time through the use of MS2–GFP. All small nuclear ribonucleoproteins (snRNPs) are loaded on nascent pre-mRNAs, and spliceostatin A inhibits splicing but not snRNP recruitment. Intron removal occurs in minutes and is best described by a model where several successive steps are rate limiting. Each pre-mRNA molecule is predicted to require a similar time to splice, reducing kinetic noise and improving the regulation of alternative splicing. This model is relevant to other kinetically controlled processes acting on few molecules. PMID:21624952

  15. Hydrogen peroxide triggers a novel alternative splicing of arsenic (+3 oxidation state) methyltransferase gene.

    PubMed

    Sumi, Daigo; Takeda, Chieri; Yasuoka, Daiki; Himeno, Seiichiro

    2016-11-04

    We previously reported that two splicing variants of human AS3MT mRNA, exon-3 skipping form (Δ3) and exons-4 and -5 skipping form (Δ4,5), were detected in HepG2 cells and that both variants lacked arsenic methylation activity (Sumi et al., 2011). Here we studied whether hydrogen peroxide (H2O2) triggers alternative splicing of AS3MT mRNA. The results showed that exposure of HepG2 cells to H2O2 resulted in increased levels of a novel spliced form skipping exon-3 to exon-10 (Δ3-10) in an H2O2-concentration-dependent manner, although no change was detected in the mRNA levels of Δ3 AS3MT. We found decreased protein levels of serine/arginine-rich 40 (SRp40), which we determined to be a candidate splice factor for controlling the splicing of AS3MT mRNA. We next compared the amounts of methylated arsenic metabolites between control and H2O2-exposed HepG2 cells after the addition of arsenite as a substance. The results showed lower levels of methylated arsenic metabolites in HepG2 cells exposed to H2O2. These data suggest that the splicing of AS3MT pre-mRNA was disconcerted by oxidative stress and that abnormal alternative splicing of AS3MT mRNA may affect arsenic methylation ability.

  16. Unfolding the mystery of alternative splicing through a unique method of in vivo selection.

    PubMed

    Singh, Ravindra N

    2007-05-01

    Alternative splicing of pre-messenger RNA (pre-mRNA) is a fundamental mechanism of gene regulation in higher eukaryotes. In addition to creating protein diversity, alternative splicing provides the safest mode of gene evolution. Of late, more and more forms of alternatively spliced transcripts (mRNAs) are being discovered for key genes. Some of the alternatively spliced transcripts are also associated with major human diseases. This has created a sense of urgency to find the methods by which regulation of alternative splicing of specific exons could be best understood. Here I review a powerful in vivo selection method that uses a combinatorial library of partially random sequences. Several advantages of this method include in vivo analysis of large sequences, identification of unique sequence motifs, determination of relative strength of splice sites and identification of long-distance interactions including role of RNA structures. This unique method could be applied to identify tissue-specific cis-elements. Similarly, the method is suitable to find cis-elements that become active in response to specific treatments of cells. Considering this unbiased method uses in vivo conditions, it has potential to identify critical regulatory elements as therapeutic targets for a growing number of splicing-associated diseases.

  17. Alternative splicing and genomic structure of the Wilms tumor gene WT1

    SciTech Connect

    Haber, D.A. Massachusetts General Hospital Cancer Center, Charlestown ); Sohn, R.L.; Buckler, A.J.; Pelletier, J.; Call, K.M.; Housman, D.E. )

    1991-11-01

    The chromosome 11p13 Wilms tumor susceptibility gene WT1 appears to play a crucial role in regulating the proliferation and differentiation of nephroblasts and gonadal tissue. The WT1 gene consists of 10 exons, encoding a complex pattern of mRNA species: four distinct transcripts are expressed, reflecting the presence or absence of two alternative splices. Splice I consists of a separate exon, encoding 17 amino acids, which is inserted between the proline-rich amino terminus and the zinc finger domains. Splice II arises from the use of an alternative 5{prime} splice junction and results in the insertion of 3 amino acids between zinc fingers 3 and 4. RNase protection analysis demonstrates that the most prevalent splice variant in both human and mouse is that which contains both alternative splices, whereas the least common is the transcript missing both splices. The relative distribution of splice variants is highly conserved between normal fetal kidney tissue and Wilms tumors that have intact WT1 transcripts. The ratio of these different WT1 mRNA species is also maintained as a function of development in the mouse kidney and in various mouse tissues expressing WT1. The conservation in structure and relative levels of each of the four WT1 mRNA species suggest that each encoded polypeptide makes a significant contribution to normal gene function. The control of cellular proliferation and differentiation exerted by the WT1 gene products may involve interactions between four polypeptides with distinct targets and functions.

  18. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors.

    PubMed Central

    Hanamura, A; Cáceres, J F; Mayeda, A; Franza, B R; Krainer, A R

    1998-01-01

    The SR proteins are essential metazoan pre-mRNA splicing factors that can also influence the selection of alternative 5' splice sites in a concentration-dependent manner. Their activity in alternative splicing in vitro is antagonized by members of the hnRNP A/B family of proteins. The opposite effects of members of these two families of antagonistic splicing factors in vitro and upon overexpression in vivo suggest that changes in their relative levels may be a natural mechanism for the regulation of alternative splicing in vivo. One prediction of this model is that the ratios of these antagonists should vary in different cell types and in other situations in which cellular or viral transcripts are differentially spliced. We raised monoclonal antibodies specific for SF2/ASF and used them to measure the abundance of SF2/ASF protein and its isoforms, its phosphorylation state in vivo and during splicing in vitro, and its association with the spliceosome. SF2/ASF exists predominantly or exclusively in a highly phosphorylated state in vivo in all cell types examined, and unphosphorylated protein was not detectable. Unphosphorylated recombinant SF2/ASF becomes rapidly phosphorylated under splicing conditions in HeLa cell extracts and associates stably with one or more exons of beta-globin pre-mRNA. This interaction appears to persist through the splicing reaction and SF2/ASF remains bound to spliced mRNA. We compared the distribution of SF2/ASF to that of its antagonist, hnRNP A1, in different rat tissues and in immortal and transformed cell lines. We found that the protein levels of these antagonistic splicing factors vary naturally over a very wide range, supporting the notion that changes in the ratio of these proteins can affect alternative splicing of a variety of pre-mRNAs in vivo. PMID:9630249

  19. Alternative splicing in the nervous system: an emerging source of diversity and regulation.

    PubMed

    Lee, Christopher J; Irizarry, Kris

    2003-10-15

    Alternative splicing is emerging as a major mechanism of functional regulation in the human genome. Previously considered to be an unusual event, it has been detected by many genomics studies in 40%-60% of human genes. Moreover, it appears to be of central importance for neuronal genes and other genes involved in "information processing" functions. In this review, we will summarize alternative splicing's effects on mRNA transcripts, protein products, biological function, and human disease, focusing on genes of neuropsychiatric interest. We will also describe the latest experimental methods and database resources that can help neuroscientists make use of alternative splicing in their own research.

  20. Lost in Translation: Pitfalls in Deciphering Plant Alternative Splicing Transcripts

    PubMed Central

    Brown, John W.S.; Simpson, Craig G.; Marquez, Yamile; Gadd, Geoffrey M.; Barta, Andrea; Kalyna, Maria

    2015-01-01

    Transcript annotation in plant databases is incomplete and often inaccurate, leading to misinterpretation. As more and more RNA-seq data are generated, plant scientists need to be aware of potential pitfalls and understand the nature and impact of specific alternative splicing transcripts on protein production. A primary area of concern and the topic of this article is the (mis)annotation of open reading frames and premature termination codons. The basic message is that to adequately address expression and functions of transcript isoforms, it is necessary to be able to predict their fate in terms of whether protein isoforms are generated or specific transcripts are unproductive or degraded. PMID:26286536

  1. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen).

    PubMed

    Zhang, Jianzhen; Liu, Xiaojian; Zhang, Jianqin; Li, Daqi; Sun, Yi; Guo, Yaping; Ma, Enbo; Zhu, Kun Yan

    2010-11-01

    Chitin synthases are crucial enzymes responsible for chitin biosynthesis in fungi, nematodes and arthropods. We characterized two alternative splicing-derived variants of chitin synthase 1 gene (LmCHS1) from the oriental migratory locust, Locusta migratoria manilensis (Meyen). Each cDNA of the two variants (LmCHS1A and LmCHS1B) consists of 5116 nucleotides that include a 4728-nucleotide open reading frame (ORF) encoding 1576 amino acid residues, and 67- and 321-bp non-coding regions at the 5'- and 3'-ends of the cDNA, respectively. The two variants differ only in one exon consisting of 177 nucleotides that encode 59 amino acid residues. The amino acid sequences within this alternative splicing region are 75% identical between the two variants. Both variants were expressed in all the developmental stages. However, LmCHS1A was predominately expressed in the integument whereas LmCHS1B was mainly expressed in the trachea. Our RNAi-based gene silencing study resulted in a dramatic reduction in the levels of the corresponding mRNA in the locust nymphs injected with dsRNA of LmCHS1, or either of its two variants, LmCHS1A and LmCHS1B. Consequentially, 95, 88 and 51% of mortalities were observed in the locusts injected with the LmCHS1, LmCHS1A and LmCHS1B dsRNA, respectively. The phenotypes resulted from the injection of LmCHS1A dsRNA were similar to those from the injection of LmCHS1 dsRNA, whereas the locusts injected with LmCHS1B dsRNA exhibited crimpled cuticle phenotype. Our results suggest that both variants of chitin synthase 1 are essential for insect growth and development.

  2. Tissue-specific alternative splicing of Tak1 is conserved in deuterostomes.

    PubMed

    Venables, Julian P; Vignal, Emmanuel; Baghdiguian, Stephen; Fort, Philippe; Tazi, Jamal

    2012-01-01

    Alternative splicing allows organisms to rapidly modulate protein functions to physiological changes and therefore represents a highly versatile adaptive process. We investigated the conservation of the evolutionary history of the "Fox" family of RNA-binding splicing factors (RBFOX) as well as the conservation of regulated alternative splicing of the genes they control. We found that the RBFOX proteins are conserved in all metazoans examined. In humans, Fox proteins control muscle-specific alternative splicing of many genes but despite the conservation of splicing factors, conservation of regulation of alternative splicing has never been demonstrated between man and nonvertebrate species. Therefore, we studied 40 known Fox-regulated human exons and found that 22 had a tissue-specific splicing pattern in muscle and heart. Of these, 11 were spliced in the same tissue-specific manner in mouse tissues and 4 were tissue-specifically spliced in muscle and heart of the frog Xenopus laevis. The inclusion of two of these alternative exons was also downregulated during tadpole development. Of the 40 in the starting set, the most conserved alternative splicing event was in the transforming growth factor (TGF) beta-activated kinase Tak1 (MAP3K7) as this was also muscle specific in urochordates and in Ambulacraria, the most ancient deuterostome clade. We found exclusion of the muscle-specific exon of Tak1 was itself under control of TGF beta in cell culture and consistently that TGF beta caused an upregulation of Fox2 (RBFOX2) expression. The alternative exon, which codes for an in-frame 27 amino acids between the kinase and known regulatory domain of TAK1, contains conserved features in all organisms including potential phosphorylation sites and likely has an important conserved function in TGF beta signaling and development. This study establishes that deuterostomes share a remarkable conserved physiological process that involves a splicing factor and expression of tissue

  3. Splicing of two internal and four carboxyl-terminal alternative exons in nonmuscle tropomyosin 5 pre-mRNA is independently regulated during development.

    PubMed

    Dufour, C; Weinberger, R P; Schevzov, G; Jeffrey, P L; Gunning, P

    1998-07-17

    Four nonmuscle tropomyosin isoforms have been reported to be produced from the rat Tm5 gene by alternative splicing (Beisel, K. W., and Kennedy, J. E. (1994) Gene (Amst.) 145, 251-256). In order to detect additional isoforms that might be expressed from that gene, we used reverse transcriptase-polymerase chain reaction assays and evaluated the presence of all product combinations of two alternative internal exons (6a and 6b) and four carboxyl-terminal exons (9a, 9b, 9c, and 9d) in developing and adult rat brain. We identified five different combinations for exon 9 (9a + 9b, 9a + 9c, 9a + 9d, 9c, and 9d), and the exon combinations 9a + 9c and 9a + 9d were previously unreported. Each of these combinations existed with both exon 6a and exon 6b. Thus, the rat brain generates at least 10 different isoforms from the Tm5 gene. Northern blot hybridization with alternative exon-specific probes revealed that these isoforms were also expressed in a number of different adult rat tissues, although some exons are preferentially expressed in particular tissues. Studies of regulation of the 10 different Tm5 isoform mRNAs during rat brain development indicated that no two isoforms are coordinately accumulated. Furthermore, there is a developmental switch in the use of exon 6a to exon 6b from embryonic to adult isoforms. TM5 protein isoforms show a differential localization in the adult cerebellum.

  4. Mammalian mRNA Splice-Isoform Selection Is Tightly Controlled

    PubMed Central

    Chisa, Jennifer L.; Burke, David T.

    2007-01-01

    Post-transcriptional RNA processing is an important regulatory control mechanism for determining the phenotype of eukaryotic cells. The processing of a transcribed RNA species into alternative splice isoforms yields products that can perform different functions. Each type of cell in a multi-cellular organism is presumed to actively control the relative quantities of alternative splice isoforms. In this study, the alternatively spliced isoforms of five mRNA transcription units were examined by quantitative reverse transcription–PCR amplification. We show that interindividual variation in splice-isoform selection is very highly constrained when measured in a large population of genetically diverse mice (i.e., full siblings; N = 150). Remarkably, splice-isoform ratios are among the most invariant phenotypes measured in this population and are confirmed in a second, genetically distinct population. In addition, the patterns of splice-isoform selection show tissue-specific and age-related changes. We propose that splice-isoform selection is exceptionally robust to genetic and environmental variability and may provide a control point for cellular homeostasis. As a consequence, splice-isoform ratios may be useful as a practical quantitative measure of the physiological status of cells and tissues. PMID:17179090

  5. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  6. Evolutionary Insights into RNA trans-Splicing in Vertebrates

    PubMed Central

    Lei, Quan; Li, Cong; Zuo, Zhixiang; Huang, Chunhua; Cheng, Hanhua; Zhou, Rongjia

    2016-01-01

    Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint. PMID:26966239

  7. Evolutionary Insights into RNA trans-Splicing in Vertebrates.

    PubMed

    Lei, Quan; Li, Cong; Zuo, Zhixiang; Huang, Chunhua; Cheng, Hanhua; Zhou, Rongjia

    2016-03-10

    Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint.

  8. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators

    PubMed Central

    Llorian, Miriam; Gooding, Clare; Bellora, Nicolas; Hallegger, Martina; Buckroyd, Adrian; Wang, Xiao; Rajgor, Dipen; Kayikci, Melis; Feltham, Jack; Ule, Jernej; Eyras, Eduardo; Smith, Christopher W.J.

    2016-01-01

    Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery. PMID:27317697

  9. New way of regulating alternative splicing in retroviruses: the promoter makes a difference.

    PubMed

    Bohne, Jens; Schambach, Axel; Zychlinski, Daniela

    2007-04-01

    Alternative splicing has been recognized as a major mechanism for creating proteomic diversity from a limited number of genes. However, not all determinants regulating this process have been characterized. Using subviral human immunodeficiency virus (HIV) env constructs we observed an enhanced splicing of the RNA when expression was under control of the cytomegalovirus (CMV) promoter instead of the HIV long terminal repeat (LTR). We extended these observations to LTR- or CMV-driven murine leukemia proviruses, suggesting that retroviral LTRs are adapted to inefficient alternative splicing at most sites in order to maintain balanced gene expression.

  10. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles.

    PubMed Central

    Bailleul, B

    1996-01-01

    Circular splicing has already been described on nuclear pre-mRNA for certain splice sites far apart in the multi exonic ETS-1 gene and in the single 1.2 kb exon of the Sry locus. To date, it is unclear how splice site juxtaposition occurs in normal and circular splicing. The splice site selection of an internal exon is likely to involve pairing between splice sites across that exon. Based on this, we predict that, albeit at low frequency, internal exons yield circular RNA by splicing as an error-prone mechanism of exon juxtaposition or, perhaps more interestingly, as a regulated mechanism on alternative exons. To address this question, the circular exon formation was analyzed at three ETS-1 internal exons (one alternative spliced exon and two constitutive), in human cell line and blood cell samples. Here, we show by RT-PCR and sequencing that exon circular splicing occurs at the three individual exons that we examined. RNase protection experiments suggest that there is no correlation between exon circle expression and exon skipping. PMID:8604331

  11. The transcription factor c-Myb affects pre-mRNA splicing

    SciTech Connect

    Orvain, Christophe; Matre, Vilborg; Gabrielsen, Odd S.

    2008-07-25

    c-Myb is a transcription factor which plays a key role in haematopoietic proliferation and lineage commitment. We raised the question of whether c-Myb may have abilities beyond the extensively studied transcriptional activation function. In this report we show that c-Myb influences alternative pre-mRNA splicing. This was seen by its marked effect on the 5'-splice site selection during E1A alternative splicing, while no effect of c-Myb was observed when reporters for the 3'-splice site selection or for the constitutive splicing process were tested. Moreover, co-immunoprecipitation experiments provided evidence for interactions between c-Myb and distinct components of the splicing apparatus, such as the general splicing factor U2AF{sup 65} and hnRNPA1 involved in the 5'-splice site selection. The effect on 5'-splice site selection was abolished in the oncogenic variant v-Myb. Altogether, these data provide evidence that c-Myb may serve a previously unappreciated role in the coupling between transcription and splicing.

  12. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    PubMed

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2015-12-22

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.

  13. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation

    PubMed Central

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F.

    2015-01-01

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. PMID:26703587

  14. Molecular Characteristics, mRNA Expression, and Alternative Splicing of a Ryanodine Receptor Gene in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel)

    PubMed Central

    Yuan, Guo-Rui; Shi, Wen-Zhi; Yang, Wen-Jia; Jiang, Xuan-Zhao; Dou, Wei; Wang, Jin-Jun

    2014-01-01

    Ryanodine receptors (RyRs) are a distinct class of ligand-gated channels controlling the release of calcium from intracellular stores. The emergence of diamide insecticides, which selectively target insect RyRs, has promoted the study of insect RyRs. In the present study, the full-length RyR cDNA (BdRyR) was cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel), a serious pest of fruits and vegetables throughout East Asia and the Pacific Rim. The cDNA of BdRyR contains a 15,420-bp open reading frame encoding 5,140 amino acids with a predicted molecular weight of 582.4 kDa and an isoelectric point of 5.38. BdRyR shows a high level of amino acid sequence identity (78 to 97%) to other insect RyR isoforms. All common structural features of the RyRs are present in the BdRyR, including a well-conserved C-terminal domain containing consensus calcium-binding EF-hands and six transmembrane domains, and a large N-terminal domain. Quantitative real-time PCR analyses revealed that BdRyR was expressed at the lowest and highest levels in egg and adult, respectively, and that the BdRyR expression levels in the third instar larva, pupa and adult were 166.99-, 157.56- and 808.56-fold higher, respectively, than that in the egg. Among different adult body parts, the highest expression level was observed in the thorax compared with the head and abdomen. In addition, four alternative splice sites were identified in the BdRyR gene, with the first, ASI, being located in the central part of the predicted second spore lysis A/RyR domain. Diagnostic PCR analyses revealed that alternative splice variants were generated not only in a tissue-specific manner but also in a developmentally regulated manner. These results lay the foundation for further understanding the structural and functional properties of BdRyR, and the molecular mechanisms for target site resistance in B. dorsalis. PMID:24740254

  15. Alternative splicing affects the subcellular localization of Drosha

    PubMed Central

    Link, Steffen; Grund, Stefanie E.; Diederichs, Sven

    2016-01-01

    The RNase III enzyme Drosha is a key factor in microRNA (miRNA) biogenesis and as such indispensable for cellular homeostasis and developmental processes. Together with its co-factor DGCR8, it converts the primary transcript (pri-miRNA) into the precursor hairpin (pre-miRNA) in the nucleus. While the middle and the C-terminal domain are crucial for pri-miRNA processing and DGCR8 binding, the function of the N-terminus remains cryptic. Different studies have linked this region to the subcellular localization of Drosha, stabilization and response to stress. In this study, we identify alternatively spliced Drosha transcripts that are devoid of a part of the arginine/serine-rich (RS-rich) domain and expressed in a large set of human cells. In contrast to their expected habitation, we find two isoforms also present in the cytoplasm, while the other two isoforms reside exclusively in the nucleus. Their processing activity for pri-miRNAs and the binding to co-factors remains unaltered. In multiple cell lines, the endogenous mRNA expression of the Drosha isoforms correlates with the localization of endogenous Drosha proteins. The pri-miRNA processing efficiency is not significantly different between groups of cells with or without cytoplasmic Drosha expression. In summary, we discovered novel isoforms of Drosha with differential subcellular localization pointing toward additional layers of complexity in the regulation of its activity. PMID:27185895

  16. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    PubMed

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy.

  17. The structure of human cleavage factor I(m) hints at functions beyond UGUA-specific RNA binding: a role in alternative polyadenylation and a potential link to 5' capping and splicing.

    PubMed

    Yang, Qin; Gilmartin, Gregory M; Doublié, Sylvie

    2011-01-01

    3'-end cleavage and subsequent polyadenylation are critical steps in mRNA maturation. The precise location where cleavage occurs (referred to as poly(A) site) is determined by a tripartite mechanism in which a A(A/U)UAAA hexamer, GU rich downstream element and UGUA upstream element are recognized by the cleavage and polyadenylation factor (CPSF), cleavage stimulation factor (CstF) and cleavage factor I(m) (CFI(m)), respectively. CFI(m) is composed of a smaller 25 kDa subunit (CFI(m)25) and a larger 59, 68 or 72 kDa subunit. CFI(m)68 interacts with CFI(m)25 through its N-terminal RNA recognition motif (RRM). We recently solved the crystal structures of CFI(m)25 bound to RNA and of a complex of CFI(m)25, the RRM domain of CFI(m)68 and RNA. Our study illustrated the molecular basis for UGUA recognition by the CFI(m) complex, suggested a possible mechanism for CFI(m) mediated alternative polyadenylation, and revealed potential links between CFI(m) and other mRNA processing factors, such as the 20 kDa subunit of the cap binding protein (CBP20), and the splicing regulator U2AF65.

  18. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes.

    PubMed

    Singh, Parmit Kumar; Plumb, Matthew R; Ferris, Andrea L; Iben, James R; Wu, Xiaolin; Fadel, Hind J; Luke, Brian T; Esnault, Caroline; Poeschla, Eric M; Hughes, Stephen H; Kvaratskhelia, Mamuka; Levin, Henry L

    2015-11-01

    The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced.

  19. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    SciTech Connect

    Li, Long; Pintel, David J.

    2012-04-25

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained in unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.

  20. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure

    PubMed Central

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J.; Rau, Christoph D.; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M.; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2015-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload–induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease. PMID:26619120

  1. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.

    PubMed

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J; Rau, Christoph D; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2016-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload-induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease.

  2. Global impact of RNA splicing on transcriptome remodeling in the heart.

    PubMed

    Gao, Chen; Wang, Yibin

    2012-08-01

    In the eukaryotic transcriptome, both the numbers of genes and different RNA species produced by each gene contribute to the overall complexity. These RNA species are generated by the utilization of different transcriptional initiation or termination sites, or more commonly, from different messenger RNA (mRNA) splicing events. Among the 30,000+ genes in human genome, it is estimated that more than 95% of them can generate more than one gene product via alternative RNA splicing. The protein products generated from different RNA splicing variants can have different intracellular localization, activity, or tissue-distribution. Therefore, alternative RNA splicing is an important molecular process that contributes to the overall complexity of the genome and the functional specificity and diversity among different cell types. In this review, we will discuss current efforts to unravel the full complexity of the cardiac transcriptome using a deep-sequencing approach, and highlight the potential of this technology to uncover the global impact of RNA splicing on the transcriptome during development and diseases of the heart.

  3. SRSF10 Plays a Role in Myoblast Differentiation and Glucose Production via Regulation of Alternative Splicing.

    PubMed

    Wei, Ning; Cheng, Yuanming; Wang, Zhijia; Liu, Yuguo; Luo, Chunling; Liu, Lina; Chen, Linlin; Xie, Zhiqin; Lu, Yun; Feng, Ying

    2015-11-24

    Alternative splicing is a major mechanism of controlling gene expression and protein diversity in higher eukaryotes. We report that the splicing factor SRSF10 functions during striated muscle development, myoblast differentiation, and glucose production both in cells and in mice. A combination of RNA-sequencing and molecular analysis allowed us to identify muscle-specific splicing events controlled by SRSF10 that are critically involved in striated muscle development. Inclusion of alternative exons 16 and 17 of Lrrfip1 is a muscle-specific event that is activated by SRSF10 and essential for myoblast differentiation. On the other hand, in mouse primary hepatocytes, PGC1α is a key target of SRSF10 that regulates glucose production by fasting. SRSF10 represses inclusion of PGC1α exon 7a and facilitates the production of functional protein. The results highlight the biological significance of SRSF10 and regulated alternative splicing in vivo.

  4. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.

    PubMed

    Listerman, Imke; Sapra, Aparna K; Neugebauer, Karla M

    2006-09-01

    Coupling between transcription and RNA processing is a key gene regulatory mechanism. Here we use chromatin immunoprecipitation to detect transcription-dependent accumulation of the precursor mRNA (pre-mRNA) splicing factors hnRNP A1, U2AF65 and U1 and U5 snRNPs on the intron-containing human FOS gene. These factors were poorly detected on intronless heat-shock and histone genes, a result that opposes direct recruitment by RNA polymerase II (Pol II) or the cap-binding complex in vivo. However, an observed RNA-dependent interaction between U2AF65 and active forms of Pol II may stabilize U2AF65 binding to intron-containing nascent RNA. We establish chromatin-RNA immunoprecipitation and show that FOS pre-mRNA is cotranscriptionally spliced. Notably, the topoisomerase I inhibitor camptothecin, which stalls elongating Pol II, increased cotranscriptional splicing factor accumulation and splicing in parallel. This provides direct evidence for a kinetic link between transcription, splicing factor recruitment and splicing catalysis.

  5. Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development

    PubMed Central

    Kim, Kee K.; Nam, Joseph

    2013-01-01

    Alternative premRNA splicing is a major mechanism to generate diversity of gene products. However, the biological roles of alternative splicing during development remain elusive. Here, we focus on a neuron-specific RNA-binding protein, Rbfox3, recently identified as the antigen of the widely used anti-NeuN antibody. siRNA-mediated loss-of-function studies using the developing chicken spinal cord revealed that Rbfox3 is required to promote neuronal differentiation of postmitotic neurons. Numb premRNA encoding a signaling adaptor protein was found to be a target of Rbfox3 action, and Rbfox3 repressed the inclusion of an alternative exon via binding to the conserved UGCAUG element in the upstream intron. Depleting a specific Numb splice isoform reproduced similar neuronal differentiation defects. Forced expression of the relevant Numb splice isoform was sufficient to rescue, in an isoform-specific manner, postmitotic neurons from defects in differentiation caused by Rbfox3 depletion. Thus, Rbfox3-dependent Numb alternative splicing plays an important role in the progression of neuronal differentiation during vertebrate development. PMID:23420872

  6. RNA-Seq Analysis of Differential Splice Junction Usage and Intron Retentions by DEXSeq

    PubMed Central

    Li, Yafang; Rao, Xiayu; Mattox, William W.; Amos, Christopher I.; Liu, Bin

    2015-01-01

    Alternative splicing is an important biological process in the generation of multiple functional transcripts from the same genomic sequences. Differential analysis of splice junctions (SJs) and intron retentions (IRs) is helpful in the detection of alternative splicing events. In this study, we conducted differential analysis of SJs and IRs by use of DEXSeq, a Bioconductor package originally designed for differential exon usage analysis in RNA-seq data analysis. We set up an analysis pipeline including mapping of RNA-seq reads, the preparation of count tables of SJs and IRs as the input files, and the differential analysis in DEXSeq. We analyzed the public RNA-seq datasets generated from RNAi experiments on Drosophila melanogaster S2-DRSC cells to deplete RNA-binding proteins (GSE18508). The analysis confirmed previous findings on the alternative splicing of the trol and Ant2 (sesB) genes in the CG8144 (ps)-depletion experiment and identified some new alternative splicing events in other RNAi experiments. We also identified IRs that were confirmed in our SJ analysis. The proposed method used in our study can output the genomic coordinates of differentially used SJs and thus enable sequence motif search. Sequence motif search and gene function annotation analysis helped us infer the underlying mechanism in alternative splicing events. To further evaluate this method, we also applied the method to public RNA-seq data from human breast cancer (GSE45419) and the plant Arabidopsis (SRP008262). In conclusion, our study showed that DEXSeq can be adapted to differential analysis of SJs and IRs, which will facilitate the identification of alternative splicing events and provide insights into the molecular mechanisms of transcription processes and disease development. PMID:26327458

  7. A computational and experimental approach toward a priori identification of alternatively spliced exons

    PubMed Central

    PHILIPPS, DANA L.; PARK, JUNG W.; GRAVELEY, BRENTON R.

    2004-01-01

    Alternative splicing is a powerful means of regulating gene expression and enhancing protein diversity. In fact, the majority of metazoan genes encode pre-mRNAs that are alternatively spliced to produce anywhere from two to tens of thousands of mRNA isoforms. Thus, an important part of determining the complete proteome of an organism is developing a catalog of all mRNA isoforms. Alternatively spliced exons are typically identified by aligning EST clusters to reference mRNAs or genomic DNA. However, this approach is not useful for genomes that lack robust EST coverage, and tools that enable accurate prediction of alternatively spliced exons would be extraordinarily useful. Here, we use comparative genomics to identify, and experimentally verify, potential alternative exons based solely on their high degree of conservation between Drosophila melanogaster and D. pseudoobscura. At least 40% of the exons that fit our prediction criteria are in fact alternatively spliced. Thus, comparative genomics can be used to accurately predict certain classes of alternative exons without relying on EST data. PMID:15525709

  8. An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus

    PubMed Central

    Nguyen, Thi-Minh; Schreiner, Dietmar; Xiao, Le; Traunmüller, Lisa; Bornmann, Caroline; Scheiffele, Peter

    2016-01-01

    The unique anatomical and functional features of principal and interneuron populations are critical for the appropriate function of neuronal circuits. Cell type-specific properties are encoded by selective gene expression programs that shape molecular repertoires and synaptic protein complexes. However, the nature of such programs, particularly for post-transcriptional regulation at the level of alternative splicing is only beginning to emerge. We here demonstrate that transcripts encoding the synaptic adhesion molecules neurexin-1,2,3 are commonly expressed in principal cells and interneurons of the mouse hippocampus but undergo highly differential, cell type-specific alternative splicing. Principal cell-specific neurexin splice isoforms depend on the RNA-binding protein Slm2. By contrast, most parvalbumin-positive (PV+) interneurons lack Slm2, express a different neurexin splice isoform and co-express the corresponding splice isoform-specific neurexin ligand Cbln4. Conditional ablation of Nrxn alternative splice insertions selectively in PV+ cells results in elevated hippocampal network activity and impairment in a learning task. Thus, PV-cell-specific alternative splicing of neurexins is critical for neuronal circuit function DOI: http://dx.doi.org/10.7554/eLife.22757.001 PMID:27960072

  9. General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 5' and 3' splice site selection.

    PubMed Central

    Fu, X D; Mayeda, A; Maniatis, T; Krainer, A R

    1992-01-01

    The human pre-mRNA splicing factors SF2 and SC35 have similar electrophoretic mobilities, and both of them contain an N-terminal ribonucleoprotein (RNP)-type RNA-recognition motif and a C-terminal arginine/serine-rich domain. However, the two proteins are encoded by different genes and display only 31% amino acid sequence identity. Here we report a systematic comparison of the splicing activities of recombinant SF2 and SC35. We find that either protein can reconstitute the splicing activity of S100 extracts and of SC35-immunodepleted nuclear extracts. Previous studies revealed that SF2 influences alternative 5' splice site selection in vitro, by favoring proximal over distal 5' splice sites, and that the A1 protein of heterogeneous nuclear RNP counteracts this effect. We now show that SC35 has a similar effect on competing 5' splice sites and is also antagonized by A1 protein. In addition, we report that both SF2 and SC35 also favor the proximal site in a pre-mRNA containing duplicated 3' splice sites, but this effect is not modulated by A1. We conclude that SF2 and SC35 are distinct splicing factors, but they display indistinguishable splicing activities in vitro. Images PMID:1454802

  10. SPACE: an algorithm to predict and quantify alternatively spliced isoforms using microarrays

    PubMed Central

    Anton, Miguel A; Gorostiaga, Dorleta; Guruceaga, Elizabeth; Segura, Victor; Carmona-Saez, Pedro; Pascual-Montano, Alberto; Pio, Ruben; Montuenga, Luis M; Rubio, Angel

    2008-01-01

    Exon and exon+junction microarrays are promising tools for studying alternative splicing. Current analytical tools applied to these arrays lack two relevant features: the ability to predict unknown spliced forms and the ability to quantify the concentration of known and unknown isoforms. SPACE is an algorithm that has been developed to (1) estimate the number of different transcripts expressed under several conditions, (2) predict the precursor mRNA splicing structure and (3) quantify the transcript concentrations including unknown forms. The results presented here show its robustness and accuracy for real and simulated data. PMID:18312629

  11. In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin

    PubMed Central

    Laustriat, Delphine; Gide, Jacqueline; Barrault, Laetitia; Chautard, Emilie; Benoit, Clara; Auboeuf, Didier; Boland, Anne; Battail, Christophe; Artiguenave, François; Deleuze, Jean-François; Bénit, Paule; Rustin, Pierre; Franc, Sylvia; Charpentier, Guillaume; Furling, Denis; Bassez, Guillaume; Nissan, Xavier; Martinat, Cécile; Peschanski, Marc; Baghdoyan, Sandrine

    2015-01-01

    Major physiological changes are governed by alternative splicing of RNA, and its misregulation may lead to specific diseases. With the use of a genome-wide approach, we show here that this splicing step can be modified by medication and demonstrate the effects of the biguanide metformin, on alternative splicing. The mechanism of action involves AMPK activation and downregulation of the RBM3 RNA-binding protein. The effects of metformin treatment were tested on myotonic dystrophy type I (DM1), a multisystemic disease considered to be a spliceopathy. We show that this drug promotes a corrective effect on several splicing defects associated with DM1 in derivatives of human embryonic stem cells carrying the causal mutation of DM1 as well as in primary myoblasts derived from patients. The biological effects of metformin were shown to be compatible with typical therapeutic dosages in a clinical investigation involving diabetic patients. The drug appears to act as a modifier of alternative splicing of a subset of genes and may therefore have novel therapeutic potential for many more diseases besides those directly linked to defective alternative splicing. PMID:26528939

  12. Purification of RNA-Protein Splicing Complexes Using a Tagged Protein from In Vitro Splicing Reaction Mixture.

    PubMed

    Kataoka, Naoyuki

    2016-01-01

    In eukaryotes, pre-mRNA splicing is an essential step for gene expression. Splicing reactions have been well investigated by using in vitro splicing reactions with extracts prepared from cultured cells. Here, we describe protocols for the preparation of splicing-competent extracts from cells expressing a tagged spliceosomal protein. The whole-cell extracts are able to splice exogenously added pre-mRNA and the RNA-protein complex formed in the in vitro splicing reaction can be purified by immunoprecipitation using antibodies against the peptide tag on the splicing protein. The method described here to prepare splicing-active extracts from whole cells is particularly useful when studying pre-mRNA splicing in various cell types, and the expression of a tagged spliceosomal protein allows one to purify and analyze the RNA-protein complexes by simple immunoprecipitation.

  13. The RNA-binding protein QKI suppresses cancer-associated aberrant splicing.

    PubMed

    Zong, Feng-Yang; Fu, Xing; Wei, Wen-Juan; Luo, Ya-Ge; Heiner, Monika; Cao, Li-Juan; Fang, Zhaoyuan; Fang, Rong; Lu, Daru; Ji, Hongbin; Hui, Jingyi

    2014-04-01

    Lung cancer is the leading cause of cancer-related death worldwide. Aberrant splicing has been implicated in lung tumorigenesis. However, the functional links between splicing regulation and lung cancer are not well understood. Here we identify the RNA-binding protein QKI as a key regulator of alternative splicing in lung cancer. We show that QKI is frequently down-regulated in lung cancer, and its down-regulation is significantly associated with a poorer prognosis. QKI-5 inhibits the proliferation and transformation of lung cancer cells both in vitro and in vivo. Our results demonstrate that QKI-5 regulates the alternative splicing of NUMB via binding to two RNA elements in its pre-mRNA, which in turn suppresses cell proliferation and prevents the activation of the Notch signaling pathway. We further show that QKI-5 inhibits splicing by selectively competing with a core splicing factor SF1 for binding to the branchpoint sequence. Taken together, our data reveal QKI as a critical regulator of splicing in lung cancer and suggest a novel tumor suppression mechanism involving QKI-mediated regulation of the Notch signaling pathway.

  14. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    SciTech Connect

    Alvarez, Enrique; Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M.

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  15. Alternative splicing: functional diversity among voltage-gated calcium channels and behavioral consequences.

    PubMed

    Lipscombe, Diane; Andrade, Arturo; Allen, Summer E

    2013-07-01

    Neuronal voltage-gated calcium channels generate rapid, transient intracellular calcium signals in response to membrane depolarization. Neuronal Ca(V) channels regulate a range of cellular functions and are implicated in a variety of neurological and psychiatric diseases including epilepsy, Parkinson's disease, chronic pain, schizophrenia, and bipolar disorder. Each mammalian Cacna1 gene has the potential to generate tens to thousands of Ca(V) channels by alternative pre-mRNA splicing, a process that adds fine granulation to the pool of Ca(V) channel structures and functions. The precise composition of Ca(V) channel splice isoform mRNAs expressed in each cell are controlled by cell-specific splicing factors. The activity of splicing factors are in turn regulated by molecules that encode various cellular features, including cell-type, activity, metabolic states, developmental state, and other factors. The cellular and behavioral consequences of individual sites of Ca(V) splice isoforms are being elucidated, as are the cell-specific splicing factors that control splice isoform selection. Altered patterns of alternative splicing of Ca(V) pre-mRNAs can alter behavior in subtle but measurable ways, with the potential to influence drug efficacy and disease severity. This article is part of a Special Issue entitled: Calcium channels.

  16. Identification of common genetic variation that modulates alternative splicing.

    PubMed

    Hull, Jeremy; Campino, Susana; Rowlands, Kate; Chan, Man-Suen; Copley, Richard R; Taylor, Martin S; Rockett, Kirk; Elvidge, Gareth; Keating, Brendan; Knight, Julian; Kwiatkowski, Dominic

    2007-06-01

    Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron-exon boundary, although the distance between these SNPs and the intron-exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function.

  17. Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing

    PubMed Central

    Gomez, Dennis; Lemarteleur, Thibault; Lacroix, Laurent; Mailliet, Patrick; Mergny, Jean-Louis; Riou, Jean-François

    2004-01-01

    Ligand 12459, a potent G-quadruplex-interacting agent that belongs to the triazine series, was previously shown to downregulate telomerase activity in the human A549 lung carcinoma cell line. We show here that the downregulation of telomerase activity is caused by an alteration of the hTERT splicing pattern induced by 12459, i.e. an almost complete disappearance of the active (+α,+β) transcript and an over-expression of the inactive –β transcript. Spliced intron 6 forming the –β hTERT transcript contained several tracks of G-rich sequences able to form G-quadruplexes. By using a specific PCR-stop assay, we show that 12459 is able to stabilize the formation of these G-quadruplex structures. A549 cell line clones selected for resistance to 12459 have been analyzed for their hTERT splicing pattern. Resistant clones are able to maintain the active hTERT transcript under 12459 treatment, suggesting the appearance of mechanisms able to bypass the 12459-induced splicing alterations. In contrast to 12459, telomestatin and BRACO19, two other G-quadruplex-interacting agents, have no effect on the hTERT splicing pattern in A549 cells, are cytotoxic against the A549-resistant clones and display a lower efficiency to stabilize hTERT G-quadruplexes. These results lead us to propose that 12459 impairs the splicing machinery of hTERT through stabilization of quadruplexes located in the hTERT intron 6. Differences of selectivity between 12459, BRACO19 and telomestatin for these hTERT quadruplexes may be important to explain their respective activity and inactivity against hTERT splicing. PMID:14729921

  18. Genome-Wide Survey of Cold Stress Regulated Alternative Splicing in Arabidopsis thaliana with Tiling Microarray

    PubMed Central

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682

  19. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray.

    PubMed

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression.

  20. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.

    PubMed

    Jimeno-González, Silvia; Payán-Bravo, Laura; Muñoz-Cabello, Ana M; Guijo, Macarena; Gutierrez, Gabriel; Prado, Félix; Reyes, José C

    2015-12-01

    RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate.

  1. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing

    PubMed Central

    Jimeno-González, Silvia; Payán-Bravo, Laura; Muñoz-Cabello, Ana M.; Guijo, Macarena; Gutierrez, Gabriel; Prado, Félix; Reyes, José C.

    2015-01-01

    RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate. PMID:26578803

  2. Selection and Characterization of Pre-mRNA Splicing Enhancers: Identification of Novel SR Protein-Specific Enhancer Sequences

    PubMed Central

    Schaal, Thomas D.; Maniatis, Tom

    1999-01-01

    Splicing enhancers are RNA sequences required for accurate splice site recognition and the control of alternative splicing. In this study, we used an in vitro selection procedure to identify and characterize novel RNA sequences capable of functioning as pre-mRNA splicing enhancers. Randomized 18-nucleotide RNA sequences were inserted downstream from a Drosophila doublesex pre-mRNA enhancer-dependent splicing substrate. Functional splicing enhancers were then selected by multiple rounds of in vitro splicing in nuclear extracts, reverse transcription, and selective PCR amplification of the spliced products. Characterization of the selected splicing enhancers revealed a highly heterogeneous population of sequences, but we identified six classes of recurring degenerate sequence motifs five to seven nucleotides in length including novel splicing enhancer sequence motifs. Analysis of selected splicing enhancer elements and other enhancers in S100 complementation assays led to the identification of individual enhancers capable of being activated by specific serine/arginine (SR)-rich splicing factors (SC35, 9G8, and SF2/ASF). In addition, a potent splicing enhancer sequence isolated in the selection specifically binds a 20-kDa SR protein. This enhancer sequence has a high level of sequence homology with a recently identified RNA-protein adduct that can be immunoprecipitated with an SRp20-specific antibody. We conclude that distinct classes of selected enhancers are activated by specific SR proteins, but there is considerable sequence degeneracy within each class. The results presented here, in conjunction with previous studies, reveal a remarkably broad spectrum of RNA sequences capable of binding specific SR proteins and/or functioning as SR-specific splicing enhancers. PMID:10022858

  3. Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants

    PubMed Central

    Shang, Xudong; Cao, Ying; Ma, Ligeng

    2017-01-01

    Gene expression can be regulated through transcriptional and post-transcriptional mechanisms. Transcription in eukaryotes produces pre-mRNA molecules, which are processed and spliced post-transcriptionally to create translatable mRNAs. More than one mRNA may be produced from a single pre-mRNA by alternative splicing (AS); thus, AS serves to diversify an organism’s transcriptome and proteome. Previous studies of gene expression in plants have focused on the role of transcriptional regulation in response to environmental changes. However, recent data suggest that post-transcriptional regulation, especially AS, is necessary for plants to adapt to a changing environment. In this review, we summarize recent advances in our understanding of AS during plant development in response to environmental changes. We suggest that alternative gene splicing is a novel means of regulating the environmental fitness of plants. PMID:28230724

  4. A long noncoding way to alternative splicing in plant development.

    PubMed

    Kornblihtt, Alberto R

    2014-07-28

    In this issue of Developmental Cell, Bardou et al. (2014) elucidate how long, highly structured noncoding RNAs control alternative splicing regulators that specifically mediate the action of the hormone auxin in the promotion of lateral root growth in Arabidopsis.

  5. Regulation of Alternative Splicing in Tumor Metastasis

    DTIC Science & Technology

    2001-10-01

    2001. Multiple interactions between SRm160 and SR family proteins in enhancer-dependent splicing and development of Caenorhabditis elegans . 11... Caenorhabditis 36 Lorson, C.L. et al. (1999) A single nucleotide in the Biol. 77, 277-291 elegans . Nature 402, 835-838 SMN gene regulates splicing and is...terminate (Birse et al., 1998; Proudfoot, 2000), mutation of the poly(A) signal resulted in the accumulation to high levels in the nuclear fraction of

  6. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles.

    PubMed

    de Longevialle, Andéol Falcon; Small, Ian D; Lurin, Claire

    2010-07-01

    Plant organelles arose from two independent endosymbiosis events. Throughout evolutionary history, tight control of chloroplasts and mitochondria has been gained by the nucleus, which regulates most steps of organelle genome expression and metabolism. In particular, RNA maturation, including RNA splicing, is highly dependent on nuclearly encoded splicing factors. Most introns in organelles are group II introns, whose catalytic mechanism closely resembles that of the nuclear spliceosome. Plant group II introns have lost the ability to self-splice in vivo and require nuclearly encoded proteins as cofactors. Since the first splicing factor was identified in chloroplasts more than 10 years ago, many other proteins have been shown to be involved in splicing of one or more introns in chloroplasts or mitochondria. These new proteins belong to a variety of different families of RNA binding proteins and provide new insights into ribonucleo-protein complexes and RNA splicing machineries in organelles. In this review, we describe how splicing factors, encoded by the nucleus and targeted to the organelles, take part in post-transcriptional steps in higher plant organelle gene expression. We go on to discuss the potential for these factors to regulate organelle gene expression.

  7. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB

    PubMed Central

    Coelho, Miguel B; Attig, Jan; Bellora, Nicolás; König, Julian; Hallegger, Martina; Kayikci, Melis; Eyras, Eduardo; Ule, Jernej; Smith, Christopher WJ

    2015-01-01

    Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3. PMID:25599992

  8. Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins

    PubMed Central

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Lin, Xianzhi; Chan, Tak-Ming; Wang, Rena; Xiao, Xinshu

    2016-01-01

    Identification of functional genetic variants and elucidation of their regulatory mechanisms represent significant challenges of the post-genomic era. A poorly understood topic is the involvement of genetic variants in mediating post-transcriptional RNA processing, including alternative splicing. Thus far, little is known about the genomic, evolutionary, and regulatory features of genetically modulated alternative splicing (GMAS). Here, we systematically identified intronic tag variants for genetic modulation of alternative splicing using RNA-seq data specific to cellular compartments. Combined with our previous method that identifies exonic tags for GMAS, this study yielded 622 GMAS exons. We observed that GMAS events are highly cell type independent, indicating that splicing-altering genetic variants could have widespread function across cell types. Interestingly, GMAS genes, exons, and single-nucleotide variants (SNVs) all demonstrated positive selection or accelerated evolution in primates. We predicted that GMAS SNVs often alter binding of splicing factors, with SRSF1 affecting the most GMAS events and demonstrating global allelic binding bias. However, in contrast to their GMAS targets, the predicted splicing factors are more conserved than expected, suggesting that cis-regulatory variation is the major driving force of splicing evolution. Moreover, GMAS-related splicing factors had stronger consensus motifs than expected, consistent with their susceptibility to SNV disruption. Intriguingly, GMAS SNVs in general do not alter the strongest consensus position of the splicing factor motif, except the more than 100 GMAS SNVs in linkage disequilibrium with polymorphisms reported by genome-wide association studies. Our study reports many GMAS events and enables a better understanding of the evolutionary and regulatory features of this phenomenon. PMID:26888265

  9. Fluorescence-based alternative splicing reporters for the study of epithelial plasticity in vivo.

    PubMed

    Somarelli, Jason A; Schaeffer, Daneen; Bosma, Reggie; Bonano, Vivian I; Sohn, Jang Wook; Kemeny, Gabor; Ettyreddy, Abhinav; Garcia-Blanco, Mariano A

    2013-01-01

    Alternative splicing generates a vast diversity of protein isoforms from a limited number of protein-coding genes, with many of the isoforms possessing unique, and even contrasting, functions. Fluorescence-based splicing reporters have the potential to facilitate studies of alternative splicing at the single-cell level and can provide valuable information on phenotypic transitions in almost real time. Fibroblast growth factor receptor 2 (FGFR2) pre-mRNA is alternatively spliced to form the epithelial-specific and mesenchymal-specific IIIb and IIIc isoforms, respectively, which are useful markers of epithelial-mesenchymal transitions (EMT). We have used our knowledge of FGFR2 splicing regulation to develop a fluorescence-based reporter system to visualize exon IIIc regulation in vitro and in vivo. Here we show the application of this reporter system to the study of EMT in vitro in cell culture and in vivo in transgenic mice harboring these splicing constructs. In explant studies, the reporters revealed that FGFR2 isoform switching is not required for keratinocyte migration during cutaneous wound closure. Our results demonstrate the value of the splicing reporters as tools to study phenotypic transitions and cell fates at single cell resolution. Moreover, our data suggest that keratinocytes migrate efficiently in the absence of a complete EMT.

  10. Peptidic tools applied to redirect alternative splicing events.

    PubMed

    Nancy, Martínez-Montiel; Nora, Rosas-Murrieta; Rebeca, Martínez-Contreras

    2015-05-01

    Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases.

  11. Validation of alternative transcript splicing in chicken lines that differ in genetic resistance to Marek’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilizing RNA-seq data, 1,574 candidate genes with alternative splicing were previously identified between two chicken lines that differ in Marek’s disease (MD) genetic resistance under control and Marek’s disease virus infection conditions. After filtering out 1,530 genes with splice variants in th...

  12. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    PubMed Central

    Dlamini, Zodwa; Tshidino, Shonisani C.; Hull, Rodney

    2015-01-01

    Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets. PMID:26580598

  13. Biochemistry and regulation of pre-mRNA splicing.

    PubMed

    Adams, M D; Rudner, D Z; Rio, D C

    1996-06-01

    During the past year, significant advances have been made in the field of pre-mRNA splicing. It is now clear that members of the serine-arginine-rich protein family are key players in exon definition and function at multiple steps in the spliceosome cycle. Novel findings have been made concerning the role of exon sequences, which function as both constitutive and regulated enhancers of splicing, in trans-splicing and as targets for tissue-specific control of splicing patterns. By combining biochemical approaches in human and yeast extracts with genetic analysis, much has been learned about the RNA-RNA and RNA-protein interactions that are necessary to assemble the various complexes that are found along the pathway to the catalytically active spliceosome.

  14. RNA splicing in human disease and in the clinic.

    PubMed

    Baralle, Diana; Buratti, Emanuele

    2017-03-01

    Defects at the level of the pre-mRNA splicing process represent a major cause of human disease. Approximately 15-50% of all human disease mutations have been shown to alter functioning of basic and auxiliary splicing elements. These elements are required to ensure proper processing of pre-mRNA splicing molecules, with their disruption leading to misprocessing of the pre-mRNA molecule and disease. The splicing process is a complex process, with much still to be uncovered before we are able to accurately predict whether a reported genomic sequence variant (GV) represents a splicing-associated disease mutation or a harmless polymorphism. Furthermore, even when a mutation is correctly identified as affecting the splicing process, there still remains the difficulty of providing an exact evaluation of the potential impact on disease onset, severity and duration. In this review, we provide a brief overview of splicing diagnostic methodologies, from in silico bioinformatics approaches to wet lab in vitro and in vivo systems to evaluate splicing efficiencies. In particular, we provide an overview of how the latest developments in high-throughput sequencing can be applied to the clinic, and are already changing clinical approaches.

  15. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing

    PubMed Central

    Salton, Maayan; Kasprzak, Wojciech K.; Voss, Ty; Shapiro, Bruce A.; Poulikakos, Poulikos I.; Misteli, Tom

    2015-01-01

    Mutations in the serine/threonine kinase BRAF are found in more than 60% of melanomas. The most prevalent melanoma mutation is BRAF(V600E), which constitutively activates downstream MAPK signaling. Vemurafenib is a potent RAF kinase inhibitor with remarkable clinical activity in BRAF(V600E)-positive melanoma tumors. However, patients rapidly develop resistance to vemurafenib treatment. One resistance mechanism is the emergence of BRAF alternative splicing isoforms leading to elimination of the RAS-binding domain. Here we identify interference with pre-mRNA splicing as a mechanism to combat vemurafenib resistance. We find that small molecule pre-mRNA splicing modulators reduce BRAF3-9 production and limit in-vitro cell growth of vemurafenib-resistant cells. In xenograft models, interference with pre-mRNA splicing prevents tumor formation and slows growth of vemurafenib-resistant tumors. Our results identify an intronic mutation as a molecular basis for RNA splicing-mediated RAF inhibitor resistance and we identify pre-mRNA splicing interference as a potential therapeutic strategy for drug resistance in BRAF melanoma. PMID:25971842

  16. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing.

    PubMed

    Salton, Maayan; Kasprzak, Wojciech K; Voss, Ty; Shapiro, Bruce A; Poulikakos, Poulikos I; Misteli, Tom

    2015-05-14

    Mutations in the serine/threonine kinase BRAF are found in more than 60% of melanomas. The most prevalent melanoma mutation is BRAF(V600E), which constitutively activates downstream MAPK signalling. Vemurafenib is a potent RAF kinase inhibitor with remarkable clinical activity in BRAF(V600E)-positive melanoma tumours. However, patients rapidly develop resistance to vemurafenib treatment. One resistance mechanism is the emergence of BRAF alternative splicing isoforms leading to elimination of the RAS-binding domain. Here we identify interference with pre-mRNA splicing as a mechanism to combat vemurafenib resistance. We find that small-molecule pre-mRNA splicing modulators reduce BRAF3-9 production and limit in-vitro cell growth of vemurafenib-resistant cells. In xenograft models, interference with pre-mRNA splicing prevents tumour formation and slows growth of vemurafenib-resistant tumours. Our results identify an intronic mutation as the molecular basis for a RNA splicing-mediated RAF inhibitor resistance mechanism and we identify pre-mRNA splicing interference as a potential therapeutic strategy for drug resistance in BRAF melanoma.

  17. How slow RNA polymerase II elongation favors alternative exon skipping.

    PubMed

    Dujardin, Gwendal; Lafaille, Celina; de la Mata, Manuel; Marasco, Luciano E; Muñoz, Manuel J; Le Jossic-Corcos, Catherine; Corcos, Laurent; Kornblihtt, Alberto R

    2014-05-22

    Splicing is functionally coupled to transcription, linking the rate of RNA polymerase II (Pol II) elongation and the ability of splicing factors to recognize splice sites (ss) of various strengths. In most cases, slow Pol II elongation allows weak splice sites to be recognized, leading to higher inclusion of alternative exons. Using CFTR alternative exon 9 (E9) as a model, we show here that slowing down elongation can also cause exon skipping by promoting the recruitment of the negative factor ETR-3 onto the UG-repeat at E9 3' splice site, which displaces the constitutive splicing factor U2AF65 from the overlapping polypyrimidine tract. Weakening of E9 5' ss increases ETR-3 binding at the 3' ss and subsequent E9 skipping, whereas strengthening of the 5' ss usage has the opposite effect. This indicates that a delay in the cotranscriptional emergence of the 5' ss promotes ETR-3 recruitment and subsequent inhibition of E9 inclusion.

  18. Alternative Splicing of Type II Procollagen: IIB or not IIB?

    PubMed Central

    McAlinden, Audrey

    2015-01-01

    Over two decades ago, two isoforms of the type II procollagen gene (COL2A1) were discovered. These isoforms, named IIA and IIB, are generated in a developmentally-regulated manner by alternative splicing of exon 2. Chondroprogenitor cells synthesize predominantly IIA isoforms (containing exon 2) while differentiated chondrocytes produce mainly IIB transcripts (devoid of exon 2). Importantly, this IIA-to-IIB alternative splicing switch occurs only during chondrogenesis. More recently, two other isoforms have been reported (IIC and IID) that also involve splicing of exon 2; these findings highlight the complexities involving regulation of COL2A1 expression. The biological significance of why different isoforms of COL2A1 exist within the context of skeletal development and maintenance is still not completely understood. This review will provide current knowledge on COL2A1 isoform expression during chondrocyte differentiation and what is known about some of the mechanisms that control exon 2 alternative splicing. Utilization of mouse models to address the biological significance of Col2a1 alternative splicing in vivo will also be discussed. From the knowledge acquired to date, some new questions and concepts are now being proposed on the importance of Col2a1 alternative splicing in regulating extracellular matrix assembly and how this may subsequently affect cartilage and endochondral bone quality and function. PMID:24669942

  19. Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases.

    PubMed

    Ohe, Kenji; Hagiwara, Masatoshi

    2015-04-17

    Alternative splicing is a critical step where a limited number of human genes generate a complex and diverse proteome. Various diseases, including inherited diseases with abnormalities in the "genome code," have been found to result in an aberrant mis-spliced "transcript code" with correlation to the resulting phenotype. Chemical compound-based and nucleic acid-based strategies are trying to target this mis-spliced "transcript code". We will briefly mention about how to obtain splicing-modifying-compounds by high-throughput screening and overview of what is known about compounds that modify splicing pathways. The main focus will be on RNA-binding protein kinase inhibitors. In the main text, we will refer to diseases where splicing-modifying-compounds have been intensively investigated, with comparison to nucleic acid-based strategies. The information on their involvement in mis-splicing as well as nonsplicing events will be helpful in finding better compounds with less off-target effects for future implications in mis-splicing therapy.

  20. Targeted RNA-Seq profiling of splicing pattern in the DMD gene: exons are mostly constitutively spliced in human skeletal muscle

    PubMed Central

    Bougé, Anne-Laure; Murauer, Eva; Beyne, Emmanuelle; Miro, Julie; Varilh, Jessica; Taulan, Magali; Koenig, Michel; Claustres, Mireille; Tuffery-Giraud, Sylvie

    2017-01-01

    We have analysed the splicing pattern of the human Duchenne Muscular Dystrophy (DMD) NB transcript in normal skeletal muscle. To achieve depth of coverage required for the analysis of this lowly expressed gene in muscle, we designed a targeted RNA-Seq procedure that combines amplification of the full-length 11.3 kb DMD cDNA sequence and 454 sequencing technology. A high and uniform coverage of the cDNA sequence was obtained that allowed to draw up a reliable inventory of the physiological alternative splicing events in the muscular DMD transcript. In contrast to previous assumptions, we evidenced that most of the 79 DMD exons are constitutively spliced in skeletal muscle. Only a limited number of 12 alternative splicing events were identified, all present at a very low level. These include previously known exon skipping events but also newly described pseudoexon inclusions and alternative 3′ splice sites, of which one is the first functional NAGNAG splice site reported in the DMD gene. This study provides the first RNA-Seq-based reference of DMD splicing pattern in skeletal muscle and reports on an experimental procedure well suited to detect condition-specific differences in this low abundance transcript that may prove useful for diagnostic, research or RNA-based therapeutic applications. PMID:28045018

  1. TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing.

    PubMed

    Marina, Ryan J; Sturgill, David; Bailly, Marc A; Thenoz, Morgan; Varma, Garima; Prigge, Maria F; Nanan, Kyster K; Shukla, Sanjeev; Haque, Nazmul; Oberdoerffer, Shalini

    2016-02-01

    Intragenic 5-methylcytosine and CTCF mediate opposing effects on pre-mRNA splicing: CTCF promotes inclusion of weak upstream exons through RNA polymerase II pausing, whereas 5-methylcytosine evicts CTCF, leading to exon exclusion. However, the mechanisms governing dynamic DNA methylation at CTCF-binding sites were unclear. Here, we reveal the methylcytosine dioxygenases TET1 and TET2 as active regulators of CTCF-mediated alternative splicing through conversion of 5-methylcytosine to its oxidation derivatives. 5-hydroxymethylcytosine and 5-carboxylcytosine are enriched at an intragenic CTCF-binding sites in the CD45 model gene and are associated with alternative exon inclusion. Reduced TET levels culminate in increased 5-methylcytosine, resulting in CTCF eviction and exon exclusion. In vitro analyses establish the oxidation derivatives are not sufficient to stimulate splicing, but efficiently promote CTCF association. We further show genomewide that reciprocal exchange of 5-hydroxymethylcytosine and 5-methylcytosine at downstream CTCF-binding sites is a general feature of alternative splicing in naïve and activated CD4(+) T cells. These findings significantly expand our current concept of the pre-mRNA "splicing code" to include dynamic intragenic DNA methylation catalyzed by the TET proteins.

  2. Quantitative imaging of single mRNA splice variants in living cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph

    2014-06-01

    Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.

  3. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection.

    PubMed

    Hoffmann, Steve; Otto, Christian; Doose, Gero; Tanzer, Andrea; Langenberger, David; Christ, Sabina; Kunz, Manfred; Holdt, Lesca M; Teupser, Daniel; Hackermüller, Jörg; Stadler, Peter F

    2014-02-10

    Numerous high-throughput sequencing studies have focused on detecting conventionally spliced mRNAs in RNA-seq data. However, non-standard RNAs arising through gene fusion, circularization or trans-splicing are often neglected. We introduce a novel, unbiased algorithm to detect splice junctions from single-end cDNA sequences. In contrast to other methods, our approach accommodates multi-junction structures. Our method compares favorably with competing tools for conventionally spliced mRNAs and, with a gain of up to 40% of recall, systematically outperforms them on reads with multiple splits, trans-splicing and circular products. The algorithm is integrated into our mapping tool segemehl (http://www.bioinf.uni-leipzig.de/Software/segemehl/).

  4. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

    PubMed

    Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J

    2015-01-09

    To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine.

  5. Alternative splicing in chronic myeloid leukemia (CML): a novel therapeutic target?

    PubMed

    Adamia, Sophia; Pilarski, Patrick M; Bar-Natan, Michal; Stone, Richard M; Griffin, James D

    2013-09-01

    Although the imatinib based therapy of chronic myeloid leukemia (CML) represents a triumph of medicine, not all patients with CML benefit from this drug due to the development of resistance and intolerance. The interruption of imatinib treatment is often followed by clinical relapse, suggesting a failure in the killing of residual leukaemic stem cells. There is need to identify alternative selective molecular targets for this disease and develop more effective therapeutic approaches. Alternative pre-mRNA splicing (AS) is an epigenetic process that greatly diversifies the repertoire of the transcriptome. AS orchestrates interactions between various types of proteins and between proteins and nucleic acids. Changes caused by individual splicing events in the cells are small, however, "splicing programs" typically react to these individual changes with considerable effects in cell proliferation, cell survival, and apoptosis. Current evidence suggests a pivotal role of AS in leukemias, particularly in myelodisplastic syndrome (MDS) and chronic lymphocyte leukemia (CLL). From these studies and studies in other malignances, it is clear that splicing abnormalities play a significant role in malignant transformation. Evaluation of AS events in CML can be used to identify novel disease markers and drugsensitive targets to overcome the limits of the small molecule inhibitors currently used for treating patients with CML. The use of aberrant splice variants as disease markers has been reported, however, little is known about the use of splicing abnormalities as drug targets in CML. Herein we discuss potential therapeutic approaches that can be used to target splicing abnormalities in CML.

  6. Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy

    PubMed Central

    Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew

    2016-01-01

    Alternative splicing is a regulated process that results in expression of specific mRNA and protein isoforms. Alternative splicing factors determine the relative abundance of each isoform. Here we focus on MBNL1, a splicing factor misregulated in the disease myotonic dystrophy. By altering the concentration of MBNL1 in cells across a broad dynamic range, we show that different splicing events require different amounts of MBNL1 for half-maximal response, and respond more or less steeply to MBNL1. Motifs around MBNL1 exon 5 were studied to assess how cis-elements mediate the MBNL1 dose-dependent splicing response. A framework was developed to estimate MBNL concentration using splicing responses alone, validated in the cell-based model, and applied to myotonic dystrophy patient muscle. Using this framework, we evaluated the ability of individual and combinations of splicing events to predict functional MBNL concentration in human biopsies, as well as their performance as biomarkers to assay mild, moderate, and severe cases of DM. PMID:27681373

  7. The Role of Alternative Splicing in Breast Cancer Progression

    DTIC Science & Technology

    2007-09-01

    tumorigenesis Reportable Outcomes: -portions of the work have been chosen for an oral presentation at this year’s Cold Spring Harbor “Eukaryotic mRNA...splicing alterations. References: N/A Appendices: Copy of abstract of the work presented during the Cold Spring Harbor “Eukaryotic mRNA Processing” meeting, August 22-26, 2007

  8. Competing RNA secondary structures are required for mutually exclusive splicing of the Dscam exon 6 cluster.

    PubMed

    May, Gemma E; Olson, Sara; McManus, C Joel; Graveley, Brenton R

    2011-02-01

    Alternative splicing of eukaryotic pre-mRNAs is an important mechanism for generating proteome diversity and regulating gene expression. The Drosophila melanogaster Down Syndrome Cell Adhesion Molecule (Dscam) gene is an extreme example of mutually exclusive splicing. Dscam contains 95 alternatively spliced exons that potentially encode 38,016 distinct mRNA and protein isoforms. We previously identified two sets of conserved sequence elements, the docking site and selector sequences in the Dscam exon 6 cluster, which contains 48 mutually exclusive exons. These elements were proposed to engage in competing RNA secondary structures required for mutually exclusive splicing, though this model has not yet been experimentally tested. Here we describe a new system that allowed us to demonstrate that the docking site and selector sequences are indeed required for exon 6 mutually exclusive splicing and that the strength of these RNA structures determines the frequency of exon 6 inclusion. We also show that the function of the docking site has been conserved for ~500 million years of evolution. This work demonstrates that conserved intronic sequences play a functional role in mutually exclusive splicing of the Dscam exon 6 cluster.

  9. HIV-1 Vpr N-terminal tagging affects alternative splicing of the viral genome

    PubMed Central

    Baeyens, Ann; Naessens, Evelien; Van Nuffel, Anouk; Weening, Karin E.; Reilly, Anne-Marie; Claeys, Eva; Trypsteen, Wim; Vandekerckhove, Linos; Eyckerman, Sven; Gevaert, Kris; Verhasselt, Bruno

    2016-01-01

    To facilitate studies on Vpr function in replicating HIV-1, we aimed to tag the protein in an infectious virus. First we showed that N-, but not C-terminal HA/FLAG tagging of Vpr protein preserves Vpr cytopathicity. Cloning the tags into proviral DNA however ablated viral production and replication. By construction of additional viral variants we could show this defect was not protein- but RNA-dependent and sequence specific, and characterized by oversplicing of the genomic RNA. Simulation of genomic RNA folding suggested that introduction of the tag sequence induced an alternative folding structure in a region enriched in splice sites and splicing regulatory sequences. In silico predictions identified the HA/His6-Vpr tagging in HIV-1 to affect mRNA folding less than HA/FLAG-Vpr tagging. In vitro infectivity and mRNA splice pattern improved but did not reach wild-type values. Thus, sequence-specific insertions may interfere with mRNA splicing, possibly due to altered RNA folding. Our results point to the complexity of viral RNA genome sequence interactions. This should be taken into consideration when designing viral manipulation strategies, for both research as for biological interventions. PMID:27721439

  10. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Simon, Dawn M.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5′ splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5′ exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

  11. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns.

  12. Regulation of Alternative Splicing in Tumor Metastasis

    DTIC Science & Technology

    2000-10-01

    erythematosus and sarcoidosis . Arthritis Rheum. 41: 1505-15 10. Eldridge A.G., Y. Li, P.A. Sharp, and B.J. Blencowe. 1999. The SRml60/300 splicing coactivator...J. Hum. Genet. 59:279-286. erythematosus and sarcoidosis . Arthritis Rheum. 41:1505-1510. Matsumoto, K., K.M. Wassarman, and A.P. Wolffe. 1998. Nuclear

  13. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins.

    PubMed

    Huelga, Stephanie C; Vu, Anthony Q; Arnold, Justin D; Liang, Tiffany Y; Liu, Patrick P; Yan, Bernice Y; Donohue, John Paul; Shiue, Lily; Hoon, Shawn; Brenner, Sydney; Ares, Manuel; Yeo, Gene W

    2012-02-23

    Understanding how RNA binding proteins control the splicing code is fundamental to human biology and disease. Here, we present a comprehensive study to elucidate how heterogeneous nuclear ribonucleoparticle (hnRNP) proteins, among the most abundant RNA binding proteins, coordinate to regulate alternative pre-mRNA splicing (AS) in human cells. Using splicing-sensitive microarrays, crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq), and cDNA sequencing, we find that more than half of all AS events are regulated by multiple hnRNP proteins and that some combinations of hnRNP proteins exhibit significant synergy, whereas others act antagonistically. Our analyses reveal position-dependent RNA splicing maps, in vivo consensus binding sites, a surprising level of cross- and autoregulation among hnRNP proteins, and the coordinated regulation by hnRNP proteins of dozens of other RNA binding proteins and genes associated with cancer. Our findings define an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells.

  14. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins

    PubMed Central

    Huelga, Stephanie C.; Vu, Anthony Q.; Arnold, Justin D.; Liang, Tiffany Y.; Liu, Patrick P.; Yan, Bernice Y.; Donohue, John Paul; Shiue, Lily; Hoon, Shawn; Brenner, Sydney; Ares, Manuel; Yeo, Gene W.

    2012-01-01

    SUMMARY Understanding how RNA binding proteins control the splicing code is fundamental to human biology and disease. Here we present a comprehensive study to elucidate how heterogeneous nuclear ribonucleoparticle (hnRNP) proteins, among the most abundant RNA binding proteins, coordinate to regulate alternative pre-mRNA splicing (AS) in human cells. Using splicing-sensitive microarrays, cross-linking and immunoprecipitation coupled with high-throughput sequencing, and cDNA sequencing, we find that more than half of all AS events are regulated by multiple hnRNP proteins, and that some combinations of hnRNP proteins exhibit significant synergy, whereas others act antagonistically. Our analyses reveal position-dependent RNA splicing maps, in vivo consensus binding sites, a surprising level of cross- and auto-regulation among hnRNP proteins, and the coordinated regulation by hnRNP proteins of dozens of other RNA binding proteins and genes associated with cancer. Our findings define an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells. PMID:22574288

  15. New discoveries of old SON: a link between RNA splicing and cancer.

    PubMed

    Hickey, Christopher J; Kim, Jung-Hyun; Ahn, Eun-Young Erin

    2014-02-01

    The SON protein is a ubiquitously expressed DNA- and RNA-binding protein primarily localized to nuclear speckles. Although several early studies implicated SON in DNA-binding, tumorigenesis and apoptosis, functional significance of this protein had not been recognized until recent studies discovered SON as a novel RNA splicing co-factor. During constitutive RNA splicing, SON ensures efficient intron removal from the transcripts containing suboptimal splice sites. Importantly, SON-mediated splicing is required for proper processing of selective transcripts related to cell cycle, microtubules, centrosome maintenance, and genome stability. Moreover, SON regulates alternative splicing of RNAs from the genes involved in apoptosis and epigenetic modification. In addition to the role in RNA splicing, SON has an ability to suppress transcriptional activation at certain promoter/enhancer DNA sequences. Considering the multiple SON target genes which are directly involved in cell proliferation, genome stability and chromatin modifications, SON is an emerging player in gene regulation during cancer development and progression. Here, we summarize available information from several early studies on SON, and highlight recent discoveries describing molecular mechanisms of SON-mediated gene regulation. We propose that our future effort on better understanding of diverse SON functions would reveal novel targets for cancer therapy.

  16. PVAAS: identify variants associated with aberrant splicing from RNA-seq

    PubMed Central

    Wang, Liguo; Nie, Jinfu J.; Kocher, Jean-Pierre A.

    2015-01-01

    Motivation: RNA-seq has been widely used to study the transcriptome. Comparing to microarray, sequencing-based RNA-seq is able to identify splicing variants and single nucleotide variants in one experiment simultaneously. This provides unique opportunity to detect variants that associated with aberrant splicing. Despite the popularity of RNA-seq, no bioinformatics tool has been developed to leverage this advantage to identify variants associated with aberrant splicing. Results: We have developed PVAAS, a tool to identify single nucleotide variants that associated with aberrant alternative splicing from RNA-seq data. PVAAS works in three steps: (i) identify aberrant splicings; (ii) use user-provided variants or perform variant calling; (iii) assess the significance of association between variants and aberrant splicing events. Availability and implementation: PVAAS is written in Python and C. Source code and a comprehensive user’s manual are freely available at: http://pvaas.sourceforge.net/. Contact: wang.liguo@mayo.edu or kocher.jeanpierre@mayo.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573917

  17. In vitro Splicing of Influenza Viral NS1 mRNA and NS1-β -globin Chimeras: Possible Mechanisms for the Control of Viral mRNA Splicing

    NASA Astrophysics Data System (ADS)

    Plotch, Stephen J.; Krug, Robert M.

    1986-08-01

    In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human β -globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and β -globin sequences, we show that the NS1 5' splice site was effectively utilized by the β -globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the β -globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from β -globin With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.

  18. CUG-BP1 regulates RyR1 ASI alternative splicing in skeletal muscle atrophy.

    PubMed

    Tang, Yinglong; Wang, Huiwen; Wei, Bin; Guo, Yuting; Gu, Lei; Yang, Zhiguang; Zhang, Qing; Wu, Yanyun; Yuan, Qi; Zhao, Gang; Ji, Guangju

    2015-11-04

    RNA binding protein is identified as an important mediator of aberrant alternative splicing in muscle atrophy. The altered splicing of calcium channels, such as ryanodine receptors (RyRs), plays an important role in impaired excitation-contraction (E-C) coupling in muscle atrophy; however, the regulatory mechanisms of ryanodine receptor 1 (RyR1) alternative splicing leading to skeletal muscle atrophy remains to be investigated. In this study we demonstrated that CUG binding protein 1 (CUG-BP1) was up-regulated and the alternative splicing of RyR1 ASI (exon70) was aberrant during the process of neurogenic muscle atrophy both in human patients and mouse models. The gain and loss of function experiments in vivo demonstrated that altered splicing pattern of RyR1 ASI was directly mediated by an up-regulated CUG-BP1 function. Furthermore, we found that CUG-BP1 affected the calcium release activity in single myofibers and the extent of atrophy was significantly reduced upon gene silencing of CUG-BP1 in atrophic muscle. These findings improve our understanding of calcium signaling related biological function of CUG-BP1 in muscle atrophy. Thus, we provide an intriguing perspective of involvement of mis-regulated RyR1 splicing in muscular disease.

  19. RNA splicing factors as oncoproteins and tumor suppressors

    PubMed Central

    Dvinge, Heidi; Kim, Eunhee; Abdel-Wahab, Omar; Bradley, Robert K.

    2016-01-01

    Preface The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these ‘spliceosomal mutations’ suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic, and biological effects of spliceosomal mutations are critical for the development of cancer therapies targeted to these mutations. PMID:27282250

  20. CLASS2: accurate and efficient splice variant annotation from RNA-seq reads

    PubMed Central

    Song, Li; Sabunciyan, Sarven; Florea, Liliana

    2016-01-01

    Next generation sequencing of cellular RNA is making it possible to characterize genes and alternative splicing in unprecedented detail. However, designing bioinformatics tools to accurately capture splicing variation has proven difficult. Current programs can find major isoforms of a gene but miss lower abundance variants, or are sensitive but imprecise. CLASS2 is a novel open source tool for accurate genome-guided transcriptome assembly from RNA-seq reads based on the model of splice graph. An extension of our program CLASS, CLASS2 jointly optimizes read patterns and the number of supporting reads to score and prioritize transcripts, implemented in a novel, scalable and efficient dynamic programming algorithm. When compared against reference programs, CLASS2 had the best overall accuracy and could detect up to twice as many splicing events with precision similar to the best reference program. Notably, it was the only tool to produce consistently reliable transcript models for a wide range of applications and sequencing strategies, including ribosomal RNA-depleted samples. Lightweight and multi-threaded, CLASS2 requires <3GB RAM and can analyze a 350 million read set within hours, and can be widely applied to transcriptomics studies ranging from clinical RNA sequencing, to alternative splicing analyses, and to the annotation of new genomes. PMID:26975657

  1. HRP-2, the Caenorhabditis elegans homolog of mammalian heterogeneous nuclear ribonucleoproteins Q and R, is an alternative splicing factor that binds to UCUAUC splicing regulatory elements.

    PubMed

    Kabat, Jennifer L; Barberan-Soler, Sergio; Zahler, Alan M

    2009-10-16

    Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.

  2. Rbfox2-coordinated alternative splicing of Mef2d and Rock2 controls myoblast fusion during myogenesis

    PubMed Central

    Bland, Christopher S.; Kalsotra, Auinash; Scavuzzo, Marissa A.; Curk, Tomaz; Ule, Jernej; Li, Wei; Cooper, Thomas A.

    2014-01-01

    Summary Alternative splicing plays important regulatory roles during periods of physiological change. During development a large number of genes coordinately express protein isoform transitions regulated by alternative splicing, however, the mechanisms that coordinate splicing and the functional integration of the resultant tissue-specific protein isoforms are typically unknown. Here we show that the conserved Rbfox2 RNA binding protein regulates 30% of the splicing transitions observed during myogenesis and is required for the specific step of myoblast fusion. Integration of Rbfox2-dependent splicing outcomes from RNA-seq with Rbfox2 iCLIP data identified Mef2d and Rock2 as Rbfox2 splicing targets. Restored activities of Mef2d and Rock2 rescued myoblast fusion in Rbfox2 depleted cultures demonstrating functional cooperation of protein isoforms generated by coordinated alterative splicing. The results demonstrate that coordinated alternative splicing by a single RNA binding protein modulates transcription (Mef2d) and cell signaling (Rock2) programs to drive tissue-specific functions (cell fusion) to promote a developmental transition. PMID:25087874

  3. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    SciTech Connect

    Giblin, P.; Kavathas, P. ); Ledbetter, J.A. )

    1989-02-01

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8{sup +} T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation.

  4. Spinal morphine but not ziconotide or gabapentin analgesia is affected by alternative splicing of voltage-gated calcium channel CaV2.2 pre-mRNA.

    PubMed

    Jiang, Yu-Qiu; Andrade, Arturo; Lipscombe, Diane

    2013-12-26

    Presynaptic voltage-gated calcium Ca(V)2.2 channels play a privileged role in spinal level sensitization following peripheral nerve injury. Direct and indirect inhibitors of Ca(V)2.2 channel activity in spinal dorsal horn are analgesic in chronic pain states. Ca(V)2.2 channels represent a family of splice isoforms that are expressed in different combinations according to cell-type. A pair of mutually exclusive exons in the Ca(V)2.2 encoding Cacna1b gene, e37a and e37b, differentially influence morphine analgesia. In mice that lack exon e37a, which is enriched in nociceptors, the analgesic efficacy of intrathecal morphine against noxious thermal stimuli is reduced. Here we ask if sequences unique to e37a influence: the development of abnormal thermal and mechanical sensitivity associated with peripheral nerve injury; and the actions of two other classes of analgesics that owe part or all of their efficacy to Ca(V)2.2 channel inhibition. We find that: i) the analgesic efficacy of morphine, but not ziconotide or gabapentin, is reduced in mice lacking e37a, ii) the induction and maintenance of behaviors associated with sensitization that accompany peripheral nerve injury, do not require e37a-specific sequence, iii) intrathecal morphine, but not ziconotide or gabapentin analgesia to thermal stimuli is significantly lower in wild-type mice after peripheral nerve injury, iv) the analgesic efficacy of ziconotide and gabapentin to mechanical stimuli is reduced following nerve injury, and iv) intrathecal morphine analgesia to thermal stimuli in mice lacking e37a is not further reduced by peripheral nerve injury. Our findings show that the analgesic action of morphine, but not ziconotide or gabapentin, to thermal stimuli is linked to which Cacna1b exon, e37a or e37b, is selected during alternative pre-mRNA splicing.

  5. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: alternative expression modes and gene function correlates.

    PubMed

    Matsumoto, Jun; Dewar, Ken; Wasserscheid, Jessica; Wiley, Graham B; Macmil, Simone L; Roe, Bruce A; Zeller, Robert W; Satou, Yutaka; Hastings, Kenneth E M

    2010-05-01

    Pre-mRNA 5' spliced-leader (SL) trans-splicing occurs in some metazoan groups but not in others. Genome-wide characterization of the trans-spliced mRNA subpopulation has not yet been reported for any metazoan. We carried out a high-throughput analysis of the SL trans-spliced mRNA population of the ascidian tunicate Ciona intestinalis by 454 Life Sciences (Roche) pyrosequencing of SL-PCR-amplified random-primed reverse transcripts of tailbud embryo RNA. We obtained approximately 250,000 high-quality reads corresponding to 8790 genes, approximately 58% of the Ciona total gene number. The great depth of this data revealed new aspects of trans-splicing, including the existence of a significant class of "infrequently trans-spliced" genes, accounting for approximately 28% of represented genes, that generate largely non-trans-spliced mRNAs, but also produce trans-spliced mRNAs, in part through alternative promoter use. Thus, the conventional qualitative dichotomy of trans-spliced versus non-trans-spliced genes should be supplanted by a more accurate quantitative view recognizing frequently and infrequently trans-spliced gene categories. Our data include reads representing approximately 80% of Ciona frequently trans-spliced genes. Our analysis also revealed significant use of closely spaced alternative trans-splice acceptor sites which further underscores the mechanistic similarity of cis- and trans-splicing and indicates that the prevalence of +/-3-nt alternative splicing events at tandem acceptor sites, NAGNAG, is driven by spliceosomal mechanisms, and not nonsense-mediated decay, or selection at the protein level. The breadth of gene representation data enabled us to find new correlations between trans-splicing status and gene function, namely the overrepresentation in the frequently trans-spliced gene class of genes associated with plasma/endomembrane system, Ca(2+) homeostasis, and actin cytoskeleton.

  6. Identification of alternative splicing events regulated by the oncogenic factor SRSF1 in lung cancer.

    PubMed

    de Miguel, Fernando J; Sharma, Ravi D; Pajares, María J; Montuenga, Luis M; Rubio, Angel; Pio, Ruben

    2014-02-15

    Abnormal alternative splicing has been associated with cancer. Genome-wide microarrays can be used to detect differential splicing events. In this study, we have developed ExonPointer, an algorithm that uses data from exon and junction probes to identify annotated cassette exons. We used the algorithm to profile differential splicing events in lung adenocarcinoma A549 cells after downregulation of the oncogenic serine/arginine-rich splicing factor 1 (SRSF1). Data were generated using two different microarray platforms. The PCR-based validation rate of the top 20 ranked genes was 60% and 100%. Functional enrichment analyses found a substantial number of splicing events in genes related to RNA metabolism. These analyses also identified genes associated with cancer and developmental and hereditary disorders, as well as biologic processes such as cell division, apoptosis, and proliferation. Most of the top 20 ranked genes were validated in other adenocarcinoma and squamous cell lung cancer cells, with validation rates of 80% to 95% and 70% to 75%, respectively. Moreover, the analysis allowed us to identify four genes, ATP11C, IQCB1, TUBD1, and proline-rich coiled-coil 2C (PRRC2C), with a significantly different pattern of alternative splicing in primary non-small cell lung tumors compared with normal lung tissue. In the case of PRRC2C, SRSF1 downregulation led to the skipping of an exon overexpressed in primary lung tumors. Specific siRNA downregulation of the exon-containing variant significantly reduced cell growth. In conclusion, using a novel analytical tool, we have identified new splicing events regulated by the oncogenic splicing factor SRSF1 in lung cancer.

  7. Detecting tissue-specific alternative splicing and disease-associated aberrant splicing of the PTCH gene with exon junction microarrays.

    PubMed

    Nagao, Kazuaki; Togawa, Naoyuki; Fujii, Katsunori; Uchikawa, Hideki; Kohno, Yoichi; Yamada, Masao; Miyashita, Toshiyuki

    2005-11-15

    Mutations in the human ortholog of Drosophila patched (PTCH) have been identified in patients with autosomal dominant nevoid basal cell carcinoma syndrome (NBCCS), characterized by minor developmental anomalies and an increased incidence of cancers such as medulloblastoma and basal cell carcinoma. We identified many isoforms of PTCH mRNA involving exons 1-5, exon 10 and a novel exon, 12b, generated by alternative splicing (AS), most of which have not been deposited in GenBank nor discussed earlier. To monitor splicing events of the PTCH gene, we designed oligonucleotide arrays on which exon probes and exon-exon junction probes as well as a couple of intron probes for the PTCH gene were placed in duplicate. Probe intensities were normalized on the basis of the total expression of PTCH and probe sensitivity. Tissue-specific regulation of AS identified with the microarrays closely correlated with the results obtained by RT-PCR. Of note, the novel exon, exon 12b, was specifically expressed in the brain and heart, especially in the cerebellum. Additionally, using these microarrays, we were able to detect disease-associated aberrant splicings of the PTCH gene in two patients with NBCCS. In both cases, cryptic splice donor sites located either in an exon or in an intron were activated because of the partial disruption of the consensus sequence for the authentic splice donor sites due to point mutations. Taken together, oligonucleotide microarrays containing exon junction probes are demonstrated to be a powerful tool to investigate tissue-specific regulation of AS and aberrant splicing taking place in genetic disorders.

  8. Alternative splicing of the androgen receptor in polycystic ovary syndrome

    PubMed Central

    Wang, Fangfang; Pan, Jiexue; Liu, Ye; Meng, Qing; Lv, Pingping; Qu, Fan; Ding, Guo-Lian; Klausen, Christian; Leung, Peter C. K.; Chan, Hsiao Chang; Yao, Weimiao; Zhou, Cai-Yun; Shi, Biwei; Zhang, Junyu; Sheng, Jianzhong; Huang, Hefeng

    2015-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders and a leading cause of female subfertility. The mechanism underlying the pathophysiology of PCOS remains to be illustrated. Here, we identify two alternative splice variants (ASVs) of the androgen receptor (AR), insertion and deletion isoforms, in granulosa cells (GCs) in ∼62% of patients with PCOS. AR ASVs are strongly associated with remarkable hyperandrogenism and abnormalities in folliculogenesis, and are absent from all control subjects without PCOS. Alternative splicing dramatically alters genome-wide AR recruitment and androgen-induced expression of genes related to androgen metabolism and folliculogenesis in human GCs. These findings establish alternative splicing of AR in GCs as the major pathogenic mechanism for hyperandrogenism and abnormal folliculogenesis in PCOS. PMID:25825716

  9. Identification of genetic variants associated with alternative splicing using sQTLseekeR

    PubMed Central

    Monlong, Jean; Calvo, Miquel; Ferreira, Pedro G.; Guigó, Roderic

    2014-01-01

    Identification of genetic variants affecting splicing in RNA sequencing population studies is still in its infancy. Splicing phenotype is more complex than gene expression and ought to be treated as a multivariate phenotype to be recapitulated completely. Here we represent the splicing pattern of a gene as the distribution of the relative abundances of a gene’s alternative transcript isoforms. We develop a statistical framework that uses a distance-based approach to compute the variability of splicing ratios across observations, and a non-parametric analogue to multivariate analysis of variance. We implement this approach in the R package sQTLseekeR and use it to analyze RNA-Seq data from the Geuvadis project in 465 individuals. We identify hundreds of single nucleotide polymorphisms (SNPs) as splicing QTLs (sQTLs), including some falling in genome-wide association study SNPs. By developing the appropriate metrics, we show that sQTLseekeR compares favorably with existing methods that rely on univariate approaches, predicting variants that behave as expected from mutations affecting splicing. PMID:25140736

  10. Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection

    PubMed Central

    Kalam, Haroon; Fontana, Mary F.

    2017-01-01

    Transcriptional reprogramming of macrophages upon Mycobacterium tuberculosis (Mtb) infection is widely studied; however, the significance of alternate splicing (AS) in shaping cellular responses to mycobacterial infections is not yet appreciated. Alternate splicing can influence transcript stability or structure, function and localization of corresponding proteins thereby altering protein stoichiometry and physiological consequences. Using comprehensive analysis of a time-series RNA-seq data obtained from human macrophages infected with virulent or avirulent strains of Mtb, we show extensive remodeling of alternate splicing in macrophage transcriptome. The global nature of this regulation was evident since genes belonging to functional classes like trafficking, immune response, autophagy, redox and metabolism showed marked departure in the pattern of splicing in the infected macrophages. The systemic perturbation of splicing machinery in the infected macrophages was apparent as genes involved at different stages of spliceosome assembly were also regulated at the splicing level. Curiously there was a considerable increase in the expression of truncated/non-translatable variants of several genes, specifically upon virulent infections. Increased expression of truncated transcripts correlated with a decline in the corresponding protein levels. We verified the physiological relevance for one such candidate gene RAB8B; whose truncated variant gets enriched in H37Rv infected cells. Upon tweaking relative abundance of longer or shorter variants of RAB8B transcripts by specialized transduction, mycobacterial targeting to lysosomes could be promoted or blocked respectively, which also resulted in corresponding changes in the bacterial survival. Our results show RAB8B recruitment to the mycobacterial phagosomes is required for phagosome maturation. Thus the abundance of truncated RAB8B variant helps virulent Mtb survival by limiting the RAB8B levels in the cells, a mechanism

  11. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation.

    PubMed

    Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G; Xie, Jiuyong

    2012-09-01

    The molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3' splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3' splice site usage.

  12. Homologous SV40 RNA trans-splicing: a new mechanism for diversification of viral sequences and phenotypes.

    PubMed

    Eul, Joachim; Patzel, Volker

    2013-11-01

    Simian Virus 40 (SV40) is a polyomavirus found in both monkeys and humans, which causes cancer in some animal models. In humans, SV40 has been reported to be associated with cancers but causality has not been proven yet. The transforming activity of SV40 is mainly due to its 94-kD large T antigen, which binds to the retinoblastoma (pRb) and p53 tumor suppressor proteins, and thereby perturbs their functions. Here we describe a 100 kD super T antigen harboring a duplication of the pRB binding domain that was associated with unusual high cell transformation activity and that was generated by a novel mechanism involving homologous RNA trans-splicing of SV40 early transcripts in transformed rodent cells. Enhanced trans-splice activity was observed in clones carrying a single point mutation in the large T antigen 5' donor splice site (ss). This mutation impaired cis-splicing in favor of an alternative trans-splice reaction via a cryptic 5'ss within a second cis-spliced SV40 pre-mRNA molecule and enabled detectable gene expression. Next to the cryptic 5'ss we identified additional trans-splice helper functions, including putative dimerization domains and a splice enhancer sequence. Our findings suggest RNA trans-splicing as a SV40-intrinsic mechanism that supports the diversification of viral RNA and phenotypes.

  13. Reversion to an embryonic alternative splicing program enhances leukemia stem cell self-renewal

    PubMed Central

    Holm, Frida; Hellqvist, Eva; Mason, Cayla N.; Ali, Shawn A.; Delos-Santos, Nathaniel; Barrett, Christian L.; Chun, Hye-Jung; Minden, Mark D.; Moore, Richard A.; Marra, Marco A.; Runza, Valeria; Frazer, Kelly A.; Sadarangani, Anil; Jamieson, Catriona H. M.

    2015-01-01

    Formative research suggests that a human embryonic stem cell-specific alternative splicing gene regulatory network, which is repressed by Muscleblind-like (MBNL) RNA binding proteins, is involved in cell reprogramming. In this study, RNA sequencing, splice isoform-specific quantitative RT-PCR, lentiviral transduction, and in vivo humanized mouse model studies demonstrated that malignant reprogramming of progenitors into self-renewing blast crisis chronic myeloid leukemia stem cells (BC LSCs) was partially driven by decreased MBNL3. Lentiviral knockdown of MBNL3 resulted in reversion to an embryonic alternative splice isoform program typified by overexpression of CD44 transcript variant 3, containing variant exons 8–10, and BC LSC proliferation. Although isoform-specific lentiviral CD44v3 overexpression enhanced chronic phase chronic myeloid leukemia (CML) progenitor replating capacity, lentiviral shRNA knockdown abrogated these effects. Combined treatment with a humanized pan-CD44 monoclonal antibody and a breakpoint cluster region - ABL proto-oncogene 1, nonreceptor tyrosine kinase (BCR-ABL1) antagonist inhibited LSC maintenance in a niche-dependent manner. In summary, MBNL3 down-regulation–related reversion to an embryonic alternative splicing program, typified by CD44v3 overexpression, represents a previously unidentified mechanism governing malignant progenitor reprogramming in malignant microenvironments and provides a pivotal opportunity for selective BC LSC detection and therapeutic elimination. PMID:26621726

  14. Sec16 alternative splicing dynamically controls COPII transport efficiency

    PubMed Central

    Wilhelmi, Ilka; Kanski, Regina; Neumann, Alexander; Herdt, Olga; Hoff, Florian; Jacob, Ralf; Preußner, Marco; Heyd, Florian

    2016-01-01

    The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments. PMID:27492621

  15. SRRM4-dependent neuron-specific alternative splicing of protrudin transcripts regulates neurite outgrowth

    PubMed Central

    Ohnishi, Takafumi; Shirane, Michiko; Nakayama, Keiichi I.

    2017-01-01

    Alternative splicing gives rise to diversity of the proteome, and it is especially prevalent in the mammalian nervous system. Indeed, many factors that control the splicing process govern nervous system development. Among such factors, SRRM4 is an important regulator of aspects of neural differentiation including neurite outgrowth. The mechanism by which SRRM4 regulates neurite outgrowth has remained poorly understood, however. We now show that SRRM4 regulates the splicing of protrudin gene (Zfyve27) transcripts in neuronal cells. SRRM4 was found to promote splicing of protrudin pre-mRNA so as to include a microexon (exon L) encoding seven amino acids in a neuron-specific manner. The resulting protein (protrudin-L) promotes neurite outgrowth during neurogenesis. Depletion of SRRM4 in Neuro2A cells impaired inclusion of exon L in protrudin mRNA, resulting in the generation of a shorter protein isoform (protrudin-S) that is less effective at promoting neurite extension. SRRM4 was found to recognize a UGC motif that is located immediately upstream of exon L and is necessary for inclusion of exon L in the mature transcript. Deletion of exon L in Neuro2A or embryonic stem cells inhibited neurite outgrowth. Our results suggest that SRRM4 controls neurite outgrowth through regulation of alternative splicing of protrudin transcripts. PMID:28106138

  16. Robust detection of alternative splicing in a population of single cells

    PubMed Central

    Welch, Joshua D.; Hu, Yin; Prins, Jan F.

    2016-01-01

    Single cell RNA-seq experiments provide valuable insight into cellular heterogeneity but suffer from low coverage, 3′ bias and technical noise. These unique properties of single cell RNA-seq data make study of alternative splicing difficult, and thus most single cell studies have restricted analysis of transcriptome variation to the gene level. To address these limitations, we developed SingleSplice, which uses a statistical model to detect genes whose isoform usage shows biological variation significantly exceeding technical noise in a population of single cells. Importantly, SingleSplice is tailored to the unique demands of single cell analysis, detecting isoform usage differences without attempting to infer expression levels for full-length transcripts. Using data from spike-in transcripts, we found that our approach detects variation in isoform usage among single cells with high sensitivity and specificity. We also applied SingleSplice to data from mouse embryonic stem cells and discovered a set of genes that show significant biological variation in isoform usage across the set of cells. A subset of these isoform differences are linked to cell cycle stage, suggesting a novel connection between alternative splicing and the cell cycle. PMID:26740580

  17. RNA splicing in a new rhabdovirus from Culex mosquitoes.

    PubMed

    Kuwata, Ryusei; Isawa, Haruhiko; Hoshino, Keita; Tsuda, Yoshio; Yanase, Tohru; Sasaki, Toshinori; Kobayashi, Mutsuo; Sawabe, Kyoko

    2011-07-01

    Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.

  18. Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer.

    PubMed

    Das, Shipra; Krainer, Adrian R

    2014-09-01

    Serine/Arginine Splicing Factor 1 (SRSF1) is the archetype member of the SR protein family of splicing regulators. Since its discovery over two decades ago, SRSF1 has been repeatedly surprising and intriguing investigators by the plethora of complex biologic pathways it regulates. These include several key aspects of mRNA metabolism, such as mRNA splicing, stability, and translation, as well as other mRNA-independent processes, such as miRNA processing, protein sumoylation, and the nucleolar stress response. In this review, the structural features of SRSF1 are discussed as they relate to the intricate mechanism of splicing and the multiplicity of functions it performs. Similarly, a list of relevant alternatively spliced transcripts and SRSF1 interacting proteins is provided. Finally, emphasis is given to the deleterious consequences of overexpression of the SRSF1 proto-oncogene in human cancers, and the complex mechanisms and pathways underlying SRSF1-mediated transformation. The accumulated knowledge about SRSF1 provides critical insight into the integral role it plays in maintaining cellular homeostasis and suggests new targets for anticancer therapy. Mol Cancer Res; 12(9); 1195-204. ©2014 AACR.

  19. The Ski2-family helicase Obelus regulates Crumbs alternative splicing and cell polarity

    PubMed Central

    Vichas, Athea; Laurie, Matthew T.

    2015-01-01

    Alternative splicing can have profound consequences for protein activity, but the functions of most alternative splicing regulators are not known. We show that Obelus, a conserved Ski2-family helicase, is required for cell polarity and adherens junction organization in the Drosophila melanogaster embryo. In obelus mutants, epithelial cells display an expanded apical domain, aggregation of adherens junctions at the cell membrane, and microtubule-dependent defects in centrosome positioning. Through whole-genome transcriptome analysis, we found that Obelus is required for the alternative splicing of a small number of transcripts in the early embryo, including the pre-mRNA that encodes the apical polarity protein Crumbs. In obelus mutants, inclusion of an alternative exon results in increased expression of a Crumbs isoform that contains an additional epidermal growth factor–like repeat in the extracellular domain. Overexpression of this alternative Crumbs isoform recapitulates the junctional aggregation and centrosome positioning defects of obelus mutants. These results indicate that regulation of Crumbs alternative splicing by the Obelus helicase modulates epithelial polarity during development. PMID:26644515

  20. Generation of functionally distinct isoforms of PTBP3 by alternative splicing and translation initiation

    PubMed Central

    Tan, Lit-Yeen; Whitfield, Peter; Llorian, Miriam; Monzon-Casanova, Elisa; Diaz-Munoz, Manuel D.; Turner, Martin; Smith, Christopher W.J.

    2015-01-01

    Polypyrimidine tract binding protein (PTBP1) is a widely expressed RNA binding protein that acts as a regulator of alternative splicing and of cytoplasmic mRNA functions. Vertebrates contain two closely-related paralogs with >75% amino acid sequence identity. Early replacement of PTBP1 by PTBP2 during neuronal differentiation causes a concerted set of splicing changes. By comparison, very little is known about the molecular functions or physiological roles of PTBP3, although its expression and conservation throughout the vertebrates suggest a role in haematopoietic cells. To begin to understand its functions we have characterized the mRNA and protein isoform repertoire of PTBP3. Combinatorial alternative splicing events at the 5′ end of the gene allow for the generation of eight mRNA and three major protein isoforms. Individual mRNAs generate up to three protein isoforms via alternative translation initiation by re-initiation and leaky scanning using downstream AUG codons. The N-terminally truncated PTBP3 isoforms lack nuclear localization signals and/or most of the RRM1 domain and vary in their RNA binding properties and nuclear/cytoplasmic distribution, suggesting that PTBP3 may have major post-transcriptional cytoplasmic roles. Our findings set the stage for understanding the non-redundant physiological roles of PTBP3. PMID:25940628

  1. Alternative splicing and evolution: diversification, exon definition and function.

    PubMed

    Keren, Hadas; Lev-Maor, Galit; Ast, Gil

    2010-05-01

    Over the past decade, it has been shown that alternative splicing (AS) is a major mechanism for the enhancement of transcriptome and proteome diversity, particularly in mammals. Splicing can be found in species from bacteria to humans, but its prevalence and characteristics vary considerably. Evolutionary studies are helping to address questions that are fundamental to understanding this important process: how and when did AS evolve? Which AS events are functional? What are the evolutionary forces that shaped, and continue to shape, AS? And what determines whether an exon is spliced in a constitutive or alternative manner? In this Review, we summarize the current knowledge of AS and evolution and provide insights into some of these unresolved questions.

  2. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    PubMed

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  3. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles

    NASA Astrophysics Data System (ADS)

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  4. Multiple Distinct Splicing Enhancers in the Protein-Coding Sequences of a Constitutively Spliced Pre-mRNA

    PubMed Central

    Schaal, Thomas D.; Maniatis, Tom

    1999-01-01

    We have identified multiple distinct splicing enhancer elements within protein-coding sequences of the constitutively spliced human β-globin pre-mRNA. Each of these highly conserved sequences is sufficient to activate the splicing of a heterologous enhancer-dependent pre-mRNA. One of these enhancers is activated by and binds to the SR protein SC35, whereas at least two others are activated by the SR protein SF2/ASF. A single base mutation within another enhancer element inactivates the enhancer but does not change the encoded amino acid. Thus, overlapping protein coding and RNA recognition elements may be coselected during evolution. These studies provide the first direct evidence that SR protein-specific splicing enhancers are located within the coding regions of constitutively spliced pre-mRNAs. We propose that these enhancers function as multisite splicing enhancers to specify 3′ splice-site selection. PMID:9858550

  5. Alternatively spliced T-cell receptor transcripts are up-regulated in response to disruption of either splicing elements or reading frame.

    PubMed

    Chang, Yao-Fu; Chan, Wai-Kin; Imam, J Saadi; Wilkinson, Miles F

    2007-10-12

    Nonsense mutations create premature termination codons (PTCs), leading to the generation of truncated proteins, some of which have deleterious gain-of-function or dominant-negative activity. Protecting cells from such aberrant proteins is non-sense-mediated decay (NMD), an RNA surveillance pathway that degrades transcripts harboring PTCs. A second response to nonsense mutations is the up-regulation of alternatively spliced transcripts that skip the PTC. This nonsense-associated altered splicing (NAS) response has the potential to rescue protein function, but the mechanism by which it is triggered has been controversial. Some studies suggest that, like NMD, NAS is triggered as a result of nonsense mutations disrupting reading frame, whereas other studies suggest that NAS is triggered when nonsense mutations disrupt exonic splicing enhancers (ESEs). Using T-cell receptor-beta (TCRbeta), which naturally acquires PTCs at high frequency, we provide evidence that both mechanisms act on a single type of mRNA. Mutations that disrupt consensus ESE sites up-regulated an alternatively spliced TCRbeta transcript that skipped the mutations independently of reading frame disruption and the NMD factor UPF1. In contrast, reading frame-disrupting mutations that did not disrupt consensus ESE sites elicited UPF1-dependent up-regulation of the alternatively spliced TCRbeta transcript. Restoration of reading frame prevented this up-regulation. Our results suggest that the response of an mRNA to a nonsense mutation depends on its context.

  6. Alternative Splicing within and between Drosophila Species, Sexes, Tissues, and Developmental Stages

    PubMed Central

    Gibilisco, Lauren; Zhou, Qi; Mahajan, Shivani; Bachtrog, Doris

    2016-01-01

    Alternative pre-mRNA splicing (“AS”) greatly expands proteome diversity, but little is known about the evolutionary landscape of AS in Drosophila and how it differs between embryonic and adult stages or males and females. Here we study the transcriptomes from several tissues and developmental stages in males and females from four species across the Drosophila genus. We find that 20–37% of multi-exon genes are alternatively spliced. While males generally express a larger number of genes, AS is more prevalent in females, suggesting that the sexes adopt different expression strategies for their specialized function. While the number of total genes expressed increases during early embryonic development, the proportion of expressed genes that are alternatively spliced is highest in the very early embryo, before the onset of zygotic transcription. This indicates that females deposit a diversity of isoforms into the egg, consistent with abundant AS found in ovary. Cluster analysis by gene expression (“GE”) levels shows mostly stage-specific clustering in embryonic samples, and tissue-specific clustering in adult tissues. Clustering embryonic stages and adult tissues based on AS profiles results in stronger species-specific clustering, suggesting that diversification of splicing contributes to lineage-specific evolution in Drosophila. Most sex-biased AS found in flies is due to AS in gonads, with little sex-specific splicing in somatic tissues. PMID:27935948

  7. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    PubMed

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.

  8. Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis cv. 'Hongyang' at immature, mature, and postharvest ripening...

  9. Recruitment of RED-SMU1 complex by Influenza A Virus RNA polymerase to control Viral mRNA splicing.

    PubMed

    Fournier, Guillaume; Chiang, Chiayn; Munier, Sandie; Tomoiu, Andru; Demeret, Caroline; Vidalain, Pierre-Olivier; Jacob, Yves; Naffakh, Nadia

    2014-06-01

    Influenza A viruses are major pathogens in humans and in animals, whose genome consists of eight single-stranded RNA segments of negative polarity. Viral mRNAs are synthesized by the viral RNA-dependent RNA polymerase in the nucleus of infected cells, in close association with the cellular transcriptional machinery. Two proteins essential for viral multiplication, the exportin NS2/NEP and the ion channel protein M2, are produced by splicing of the NS1 and M1 mRNAs, respectively. Here we identify two human spliceosomal factors, RED and SMU1, that control the expression of NS2/NEP and are required for efficient viral multiplication. We provide several lines of evidence that in infected cells, the hetero-trimeric viral polymerase recruits a complex formed by RED and SMU1 through interaction with its PB2 and PB1 subunits. We demonstrate that the splicing of the NS1 viral mRNA is specifically affected in cells depleted of RED or SMU1, leading to a decreased production of the spliced mRNA species NS2, and to a reduced NS2/NS1 protein ratio. In agreement with the exportin function of NS2, these defects impair the transport of newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm, and strongly reduce the production of infectious influenza virions. Overall, our results unravel a new mechanism of viral subversion of the cellular splicing machinery, by establishing that the human splicing factors RED and SMU1 act jointly as key regulators of influenza virus gene expression. In addition, our data point to a central role of the viral RNA polymerase in coupling transcription and alternative splicing of the viral mRNAs.

  10. Coordinated Dynamics of RNA Splicing Speckles in the Nucleus.

    PubMed

    Zhang, Qiao; Kota, Krishna P; Alam, Samer G; Nickerson, Jeffrey A; Dickinson, Richard B; Lele, Tanmay P

    2016-06-01

    Despite being densely packed with chromatin, nuclear bodies and a nucleoskeletal network, the nucleus is a remarkably dynamic organelle. Chromatin loops form and relax, RNA transcripts and transcription factors move diffusively, and nuclear bodies move. We show here that RNA splicing speckled domains (splicing speckles) fluctuate in constrained nuclear volumes and remodel their shapes. Small speckles move in a directed way toward larger speckles with which they fuse. This directed movement is reduced upon decreasing cellular ATP levels or inhibiting RNA polymerase II activity. The random movement of speckles is reduced upon decreasing cellular ATP levels, moderately reduced after inhibition of SWI/SNF chromatin remodeling and modestly increased upon inhibiting RNA polymerase II activity. To define the paths through which speckles can translocate in the nucleus, we generated a pressure gradient to create flows in the nucleus. In response to the pressure gradient, speckles moved along curvilinear paths in the nucleus. Collectively, our results demonstrate a new type of ATP-dependent motion in the nucleus. We present a model where recycling splicing factors return as part of small sub-speckles from distal sites of RNA processing to larger splicing speckles by a directed ATP-driven mechanism through interchromatin spaces.

  11. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    SciTech Connect

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  12. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes.

    PubMed

    Paraboschi, Elvezia Maria; Cardamone, Giulia; Rimoldi, Valeria; Gemmati, Donato; Spreafico, Marta; Duga, Stefano; Soldà, Giulia; Asselta, Rosanna

    2015-09-30

    Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p=0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  13. From polyadenylation to splicing: Dual role for mRNA 3' end formation factors.

    PubMed

    Misra, Ashish; Green, Michael R

    2016-01-01

    Recent genome-wide protein-RNA interaction studies have significantly reshaped our understanding of the role of mRNA 3' end formation factors in RNA biology. Originally thought to function solely in mediating cleavage and polyadenylation of mRNAs during their maturation, 3' end formation factors have now been shown to play a role in alternative splicing, even at internal introns--an unanticipated role for factors thought only to act at the 3' end of the mRNA. Here, we discuss the recent advances in our understanding of the role of 3' end formation factors in promoting global changes in alternative splicing at internal exon-intron junctions and how they act as cofactors for well known splicing regulators. Additionally, we review the mechanism by which these factors affect the recruitment of early intron recognition components to the 5' and 3' splice site. Our understanding of the roles of 3' end formation factors is still evolving, and the final picture might be more complex than originally envisioned.

  14. Alternative splicing regulates pluripotent state in pluripotent stem cells.

    PubMed

    He, Ling; Bai, Qiang; Tang, Liling

    2015-01-01

    Alternative splicing (AS) generates multiple mature mRNAs from a single pre-mRNA, so AS is the main contributor for the diversity of the proteins, participating in most of the cellular processes. For pluripotent stem cells (PSCs), great effort has been made to search for pluripotency-related genes and their regulatory mechanisms. However, the sophisticated regulation still remains to be clear. Recent studies indicate that stem cells undergo a unique AS pattern and have a different protein expression profile from differentiated cells, giving a new clue that AS switching or AS itself may play a significant role in the processes of differentiation and somatic reprogramming. Indeed, accumulating evidences prove that AS plays critical roles in maintaining pluripotent homeostasis in PSCs. In this review, we summarized recent researches on AS in ESCs and iPSCs, including some distinct AS events in pluripotent cells, and then discussed the new progress on mechanisms for AS in ESCs and iPSCs differentiation and somatic reprogramming.

  15. Alternatively spliced orcokinin isoforms and their functions in Tribolium castaneum.

    PubMed

    Jiang, Hongbo; Kim, Hong Geun; Park, Yoonseong

    2015-10-01

    Orcokinin and orcomyotropin were originally described as neuropeptides in crustaceans but have now been uncovered in many species of insects in which they are called orcokinin-A (OK-A) and orcokinin-B (OK-B), respectively. The two groups of mature peptides are products of alternatively spliced transcripts of the single copy gene orcokinin in insects. We investigated the expression patterns and the functions of OK-A and OK-B in the red flour beetle Tribolium castaneum. In situ hybridization and immunohistochemistry using isoform-specific probes and antibodies for each OK-A and OK-B suggests that both peptides are co-expressed in 5-7 pairs of brain cells and in the midgut enteroendocrine cells, which contrasts to expression patterns in other insects in which the two peptides are expressed in different cells. We developed a novel behavioral assay to assess the phenotypes of orcokinin RNA interference (RNAi) in T. castaneum. RNAi of ok-a and ok-b alone or in combination resulted in higher frequencies and longer durations of death feigning in response to mechanical stimulation in the adult assay. In the larval behavioral assays, we observed longer recovery times from knockout induced by water submergence in the insects treated with RNAi for ok-a and ok-b alone or in combination. We conclude that both OK-A and OK-B have "awakening" activities and are potentially involved in the control of circadian rhythms.

  16. Ancient nature of alternative splicing and functions of introns

    SciTech Connect

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea; Grigoriev, Igor

    2011-03-21

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.

  17. Differential expression and alternative splicing of cell cycle genes in imatinib-treated K562 cells.

    PubMed

    Liu, Jing; Lin, Jin; Huang, Lin-Feng; Huang, Bo; Xu, Yan-Mei; Li, Jing; Wang, Yan; Zhang, Jing; Yang, Wei-Ming; Min, Qing-Hua; Wang, Xiao-Zhong

    2015-09-01

    Cancer progression often involves the disorder of the cell cycle, and a number of effective chemotherapeutic drugs have been shown to induce cell cycle arrest. The purpose of this study was to comprehensively investigate the effects of imatinib on the expression profile of cell cycle genes in the chronic myeloid leukemia (CML) K562 cell line. In addition, we also investigated alternative splicing of the cell cycle genes affected by imatinib, since an important relationship has been shown to exist between RNA splicing and cell cycle progression. Exon array analysis was performed using total RNA purified from normal and imatinib-treated K562 cells. We identified 185 differentially expressed genes and 277 alternative splicing events between the two cell groups. A detailed analysis by reverse transcription-PCR (RT-PCR) of key genes confirmed the experimental results of the exon array. These results suggested that treatment of K562 cells with imatinib shifts the expression and alternative splicing profiles of several cell cycle-related genes. Importantly, these findings may help improve imatinib treatment strategies in patients with CML and may be useful for imatinib resistance research and CML drug development.

  18. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis.

    PubMed

    Bielli, Pamela; Busà, Roberta; Di Stasi, Savino M; Munoz, Manuel J; Botti, Flavia; Kornblihtt, Alberto R; Sette, Claudio

    2014-04-01

    Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5' splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival.

  19. Complexity of the Alternative Splicing Landscape in Plants[C][W][OPEN

    PubMed Central

    Reddy, Anireddy S.N.; Marquez, Yamile; Kalyna, Maria; Barta, Andrea

    2013-01-01

    Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation. PMID:24179125

  20. Detection of circulating prostate tumor cells: alternative spliced variant of PSM induced false-positive result.

    PubMed

    Hisatomi, Hisashi; Nagao, Kumi; Kawakita, Mutsuji; Matsuda, Tadashi; Hirata, Hiroyuki; Yamamoto, Shigeki; Nakamoto, Takaaki; Harasawa, Hiroshi; Kaneko, Noboru; Hikiji, Kazumasa; Tsukada, Yutaka

    2002-11-01

    RT-nested PCR has been introduced as a highly specific and sensitive assay method to detect the prostate-specific membrane antigen (PSM) mRNA in peripheral blood. However, appreciable percentages of false-positive cases have been reported. Additionally, primer sets reported previously could not discriminate between PSM and PSM', an alternatively spliced variant, mRNA. These isoforms can be produced from a single gene. Switches in alternative splicing patterns are often controlled with strict cell-type or developmental-stage specificity. Therefore, it is most important to discriminate between PSM mRNA and PSM' mRNA. Using our highly specific primer sets, PSM mRNA was detected in 3 of 24 peripheral blood samples of normal male volunteers (12.5%) and was not detected in peripheral blood of 11 normal female volunteers. PSM' mRNA was detected in 5 of 24 peripheral blood samples of normal male volunteers (20.8%) and in 4 of 11 of normal female volunteers (36.4%). PSM' mRNA induced false-positive results, it is important for genetic diagnosis of prostate cancer to discriminate between PSM and PSM' using our primer sets with high specificity. The advances in the uniquely designed primer sets may allow researchers to detect a real PSM mRNA without PSM' mRNA.

  1. AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors

    PubMed Central

    Hu, Jing; Khodadadi-Jamayran, Alireza; Mao, Miaowei; Shah, Kushani; Yang, Zhenhua; Nasim, Md Talat; Wang, Zefeng; Jiang, Hao

    2016-01-01

    Alternative splicing of pre-mRNAs significantly contributes to the complexity of gene expression in higher organisms, but the regulation of the splice site selection remains incompletely understood. We have previously demonstrated that a chromatin-associated protein, AKAP95, has a remarkable activity in enhancing chromatin transcription. In this study, we show that AKAP95 interacts with many factors involved in transcription and RNA processing, including selective groups of hnRNP proteins, through its N-terminal region, and directly regulates pre-mRNA splicing. AKAP95 binds preferentially to proximal intronic regions on pre-mRNAs in human transcriptome, and this binding requires its zinc-finger domains. By selectively coordinating with hnRNP H/F and U proteins, AKAP95 appears to mainly promote the inclusion of many exons in the genome. AKAP95 also directly interacts with itself. Taken together, our results establish AKAP95 as a mostly positive regulator of pre-mRNA splicing and a possible integrator of transcription and splicing regulation. PMID:27824034

  2. Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis.

    PubMed

    Tejedor, J Ramón; Papasaikas, Panagiotis; Valcárcel, Juan

    2015-01-08

    Alternative splicing of Fas/CD95 exon 6 generates either a membrane-bound receptor that promotes, or a soluble isoform that inhibits, apoptosis. Using an automatized genome-wide siRNA screening for alternative splicing regulators of endogenous transcripts in mammalian cells, we identified 200 genes whose knockdown modulates the ratio between Fas/CD95 isoforms. These include classical splicing regulators; core spliceosome components; and factors implicated in transcription and chromatin remodeling, RNA transport, intracellular signaling, and metabolic control. Coherent effects of genes involved in iron homeostasis and pharmacological modulation of iron levels revealed a link between intracellular iron and Fas/CD95 exon 6 inclusion. A splicing regulatory network linked iron levels with reduced activity of the Zinc-finger-containing splicing regulator SRSF7, and in vivo and in vitro assays revealed that iron inhibits SRSF7 RNA binding. Our results uncover numerous links between cellular pathways and RNA processing and a mechanism by which iron homeostasis can influence alternative splicing.

  3. The organization and contribution of helicases to RNA splicing.

    PubMed

    De, Inessa; Schmitzová, Jana; Pena, Vladimir

    2016-01-01

    Splicing is an essential step of gene expression. It occurs in two consecutive chemical reactions catalyzed by a large protein-RNA complex named the spliceosome. Assembled on the pre-mRNA substrate from five small nuclear proteins, the spliceosome acts as a protein-controlled ribozyme to catalyze the two reactions and finally dissociates into its components, which are re-used for a new round of splicing. Upon following this cyclic pathway, the spliceosome undergoes numerous intermediate stages that differ in composition as well as in their internal RNA-RNA and RNA-protein contacts. The driving forces and control mechanisms of these remodeling processes are provided by specific molecular motors called RNA helicases. While eight spliceosomal helicases are present in all organisms, higher eukaryotes contain five additional ones potentially required to drive a more intricate splicing pathway and link it to an RNA metabolism of increasing complexity. Spliceosomal helicases exhibit a notable structural diversity in their accessory domains and overall architecture, in accordance with the diversity of their task-specific functions. This review summarizes structure-function knowledge about all spliceosomal helicases, including the latter five, which traditionally are treated separately from the conserved ones. The implications of the structural characteristics of helicases for their functions, as well as for their structural communication within the multi-subunits environment of the spliceosome, are pointed out.

  4. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    PubMed Central

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  5. Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5'-untranslated region leader exon.

    PubMed

    Newton, Derek C; Bevan, Sian C; Choi, Stephen; Robb, G Brett; Millar, Adam; Wang, Yang; Marsden, Philip A

    2003-01-03

    Expression of the neuronal nitric-oxide synthase (nNOS) mRNA is subject to complex cell-specific transcriptional regulation, which is mediated by alternative promoters. Unexpectedly, we identified a 89-nucleotide alternatively spliced exon located in the 5'-untranslated region between exon 1 variants and a common exon 2 that contains the translational initiation codon. Alternative splicing events that do not affect the open reading frame are distinctly uncommon in mammals; therefore, we assessed its functional relevance. Transient transfection of reporter RNAs performed in a variety of cell types revealed that this alternatively spliced exon acts as a potent translational repressor. Stably transfected cell lines confirmed that the alternatively spliced exon inhibited translation of the native nNOS open reading frame. Reverse transcription-PCR and RNase protection assays indicated that nNOS mRNAs containing this exon are common and expressed in both a promoter-specific and tissue-restricted fashion. Mutational analysis identified the functional cis-element within this novel exon, and a secondary structure prediction revealed that it forms a putative stem-loop. RNA electrophoretic mobility shift assay techniques revealed that a specific cytoplasmic RNA-binding complex interacts with this motif. Hence, a unique splicing event within a 5'-untranslated region is demonstrated to introduce a translational control element. This represents a newer model for the translational control of a mammalian mRNA.

  6. MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1.

    PubMed

    Kino, Yoshihiro; Washizu, Chika; Oma, Yoko; Onishi, Hayato; Nezu, Yuriko; Sasagawa, Noboru; Nukina, Nobuyuki; Ishiura, Shoichi

    2009-10-01

    The expression and function of the skeletal muscle chloride channel CLCN1/ClC-1 is regulated by alternative splicing. Inclusion of the CLCN1 exon 7A is aberrantly elevated in myotonic dystrophy (DM), a genetic disorder caused by the expansion of a CTG or CCTG repeat. Increased exon 7A inclusion leads to a reduction in CLCN1 function, which can be causative of myotonia. Two RNA-binding protein families--muscleblind-like (MBNL) and CUG-BP and ETR-3-like factor (CELF) proteins--are thought to mediate the splicing misregulation in DM. Here, we have identified multiple factors that regulate the alternative splicing of a mouse Clcn1 minigene. The inclusion of exon 7A was repressed by MBNL proteins while promoted by an expanded CUG repeat or CELF4, but not by CUG-BP. Mutation analyses suggested that exon 7A and its flanking region mediate the effect of MBNL1, whereas another distinct region in intron 6 mediates that of CELF4. An exonic splicing enhancer essential for the inclusion of exon 7A was identified at the 5' end of this exon, which might be inhibited by MBNL1. Collectively, these results provide a mechanistic model for the regulation of Clcn1 splicing, and reveal novel regulatory properties of MBNL and CELF proteins.

  7. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human.

    PubMed

    Clark, Francis; Thanaraj, T A

    2002-02-15

    By spliced alignment of human DNA and transcript sequence data we constructed a data set of transcript-confirmed exons and introns from 2793 genes, 796 of which (28%) were seen to have multiple isoforms. We find that over one-third of human exons can translate in more than one frame, and that this is highly correlated with G+C content. Introns containing adenosine at donor site position +3 (A3), rather than guanosine (G3), are more common in low G+C regions, while the converse is true in high G+C regions. These two classes of introns are shown to have distinct lengths, consensus sequences and correlations among splice signals, leading to the hypothesis that A3 donor sites are associated with exon definition, and G3 donor sites with intron definition. Minor classes of introns, including GC-AG, U12-type GT-AG, weak, and putative AG-dependant introns are identified and characterized. Cassette exons are more prevalent in low G+C regions, while exon isoforms are more prevalent in high G+C regions. Cassette exon events outnumber other alternative events, while exon isoform events involve truncation twice as often as extension, and occur at acceptor sites twice as often as at donor sites. Alternative splicing is usually associated with weak splice signals, and in a majority of cases, preserves the coding frame. The reported characteristics of constitutive and alternative splice signals, and the hypotheses offered regarding alternative splicing and genome organization, have important implications for experimental research into RNA processing. The 'AltExtron' data sets are available at http://www.bit.uq.edu.au/altExtron/ and http://www.ebi.ac.uk/~thanaraj/altExtron/.

  8. Alternative splicing and nonsense-mediated decay regulate telomerase reverse transcriptase (TERT) expression during virus-induced lymphomagenesis in vivo

    PubMed Central

    2010-01-01

    Background Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis in vivo, from the start point to tumor establishment. Results We first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without in vitro telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants. Conclusions TERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of

  9. RNA self-splicing and energy localization

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    1991-02-01

    We establish a mechanism for energy localization in regions of the sugar-phosphate RNA backbone which leads to the formation of transesterification or hydrolysis hot spots. In particular, our results account for the site specificity of the covalent cyclization and cycle reopening in the catalytic intervening sequence (IVS) of a ribosomal RNA.

  10. Aberrant alternative splicing pattern of ADAR2 downregulates adenosine-to-inosine editing in glioma.

    PubMed

    Li, Zhaohui; Tian, Yu; Tian, Nan; Zhao, Xingli; Du, Chao; Han, Liang; Zhang, Haishan

    2015-06-01

    Adenosine-to-inosine (A-to-I) RNA editing is the most common type of RNA editing in mammals, and is catalyzed by adenosine deaminases acting on RNA (ADARs). ADAR2 is the main enzyme responsible for A-to-I editing in humans, and A-to-I underediting at the glutamine (Q)/arginine (R) site of the glutamate receptor subunit B (GluR-B) is associated with the pathogenesis and invasiveness of glioma. The level of ADAR2 mRNA expression and the alternative splicing of the ADAR2 pre-mRNA both affect the catalytic activity of ADAR2. However, reports of ADAR2 mRNA expression in glioma are inconsistent. The mechanism regulating ADAR2 pre-mRNA splicing is also unknown. In this study, we explored the deregulation of A-to-I RNA editing in glioma. We confirmed the underediting at the Q/R site of GluR-B mRNA in the glioma cell lines U87, U251 and A172 compared with that in normal human astrocytes (NHAs) HA1800. However, we demonstrated with reverse transcription (RT-PCR) and quantitative PCR (qPCR) that the expression of ADAR2 mRNA was not significantly altered in the glioma cell lines. Three alternative splicing sites are utilized in the glioma cell lines and NHAs: the first, located between exons -1 and 1, causes the inclusion of exon 1a; the second causes the removal of exon 2, which encodes two double-stranded RNA-binding domains; and the third, located between exons 4 and 6, causes the inclusion of alternative exon 5a, introducing a 120-nucleotide coding Alu-repeat sequence in frame. However, the expression ratio of two types of transcripts (with and without exon 5a) was altered in the glioma cells. Transcripts with exon 5a, which generate an ADAR2 isoform with ~50% reduced activity, were predominantly expressed in the glioma cell lines, whereas transcripts without exon 5a were predominantly expressed in the NHAs. From these results, we conclude that this aberrant alternative splicing pattern of ADAR2 downregulates A-to-I editing in glioma.

  11. Alternative splicing of VEGFA, APP and NUMB genes in colorectal cancer

    PubMed Central

    Zhao, Yi-Jun; Han, Hua-Zhong; Liang, Yong; Shi, Chen-Zhang; Zhu, Qing-Chao; Yang, Jun

    2015-01-01

    AIM: To investigate alternative splicing in vascular endothelial growth factor A (VEGFA), amyloid beta precursor protein (APP), and Numb homolog (NUMB) in colorectal cancer (CRC). METHODS: Real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and PCR-restriction fragment length polymorphism analyses were performed to detect the expression of VEGFA, APP, and NUMB mRNA in 20 CRC tissues and matched adjacent normal tissues, as well as their alternative splicing variants. RESULTS: qRT-PCR analysis revealed that the expression of APP, NUMB, and VEGFA165b mRNA were significantly downregulated, while VEGFA mRNA was upregulated, in CRC tissues (all P < 0.05). PCR-restriction fragment length polymorphism analysis revealed that the expression of VEGFA165a/b in CRC tissues was significantly higher than in adjacent normal tissues (P < 0.05). Compared with adjacent normal tissues, the expression of NUMB-PRRS in CRC tissues was significantly decreased (P < 0.05), and the expression of NUMB-PRRL was increased (P < 0.05). CONCLUSION: Alternative splicing of VEGFA, APP, and NUMB may regulate the development of CRC, and represent new targets for its diagnosis, prognosis, and treatment. PMID:26074693

  12. A leaf-peroxisomal protein, hydroxypyruvate reductase, is produced by light-regulated alternative splicing.

    PubMed

    Mano, S; Hayashi, M; Nishimura, M

    2000-01-01

    Hydroxypyruvate reductase (HPR) is localized in leaf peroxisomes in plants, and it plays an important role in the glycolate pathway of photorespiration. In this laboratory, two highly homologous cDNAs for pumpkin HPR (HPR1 and HPR2) have been obtained, and appear to be produced from the same primary transcript by alternative splicing. Analyses at the mRNA level showed that the amounts of the two HPR mRNAs is changed in response to light, suggesting that light changes the splicing pattern of HPR pre-mRNA from almost equal amounts of two HPR mRNAs to greater production of HPR2 mRNA. From the sequences of the two HPR cDNAs, the HPR1 protein, but not the HPR2 protein, was found to have a targeting sequence into peroxisomes at the carboxy terminus. Analyses of transgenic Arabidopsis thaliana expressing fusion proteins with green fluorescent protein confirmed the different subcellular localizations of the two HPR proteins. These findings indicate the presence of light-regulated alternative splicing of HPR pre-mRNA, which controls the subcellular localizations of two HPR proteins in pumpkin cells.

  13. Diagnosis of trypanosomatid infections: targeting the spliced leader RNA.

    PubMed

    González-Andrade, Pablo; Camara, Mamady; Ilboudo, Hamidou; Bucheton, Bruno; Jamonneau, Vincent; Deborggraeve, Stijn

    2014-07-01

    Trypanosomatids transcribe their genes in large polycistronic clusters that are further processed into mature mRNA molecules by trans-splicing. During this maturation process, a conserved spliced leader RNA (SL-RNA) sequence of 39 bp is physically linked to the 5' end of the pre-mRNA molecules. Trypanosomatid infections cause a series of devastating diseases in man (sleeping sickness, leishmaniasis, Chagas disease) and animals (nagana, surra, dourine). Here, we investigated the SL-RNA molecule for its diagnostic potential using reverse transcription followed by real-time PCR. As a model, we used Trypanosoma brucei gambiense, which causes sleeping sickness in west and central Africa. We showed that the copy number of the SL-RNA molecule in one single parasitic cell is at least 8600. We observed a lower detection limit of the SL-RNA assay in spiked blood samples of 100 trypanosomes per milliliter of blood. We also proved that we can detect the trypanosome's SL-RNA in the blood of sleeping sickness patients with a sensitivity of 92% (95% CI, 78%-97%) and a specificity of 96% (95% CI, 86%-99%). The SL-RNA is thus an attractive new molecular target for next-generation diagnostics in diseases caused by trypanosomatids.

  14. Inhibition of Splicing but not Cleavage at the 5' Splice Site by Truncating Human β -globin Pre-mRNA

    NASA Astrophysics Data System (ADS)

    Furdon, Paul J.; Kole, Ryszard

    1986-02-01

    Human β -globin mRNAs truncated in the second exon or in the first intron have been processed in vitro in a HeLa cell nuclear extract. Transcripts containing a fragment of the second exon as short as 53 nucleotides are efficiently spliced, whereas transcripts truncated 24 or 14 nucleotides downstream from the 3' splice site are spliced inefficiently, if at all. All of these transcripts, however, are efficiently and accurately cleaved at the 5' splice site. In contrast, RNA truncated in the first intron, 54 nucleotides upstream from the 3' splice site, is not processed at all. These findings suggest that cleavage at the 5' splice site and subsequent splicing steps--i.e., cleavage at the 3' splice site and exon ligation--need not be coupled. Anti-Sm serum inhibits the complete splicing reaction and cleavage at the 5' splice site, suggesting involvement of certain ribonucleoprotein particles in the cleavage reaction. ATP and Mg2+ are required for cleavage at the 5' splice site at concentrations similar to those for the complete splicing reaction.

  15. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform

    PubMed Central

    Tian, Na; Li, Jialiang; Shi, Jinming; Sui, Guangchao

    2017-01-01

    Alternative pre-mRNA splicing is a crucial process that allows the generation of diversified RNA and protein products from a multi-exon gene. In tumor cells, this mechanism can facilitate cancer development and progression through both creating oncogenic isoforms and reducing the expression of normal or controllable protein species. We recently demonstrated that an alternative cyclin D-binding myb-like transcription factor 1 (DMTF1) pre-mRNA splicing isoform, DMTF1β, is increasingly expressed in breast cancer and promotes mammary tumorigenesis in a transgenic mouse model. Aberrant pre-mRNA splicing is a typical event occurring for many cancer-related functional proteins. In this review, we introduce general aberrant pre-mRNA splicing in cancers and discuss its therapeutic application using our recent discovery of the oncogenic DMTF1 isoform as an example. We also summarize new insights in designing novel targeting strategies of cancer therapies based on the understanding of deregulated pre-mRNA splicing mechanisms. PMID:28257090

  16. Identification and analysis of alternative splicing events conserved in human and mouse

    PubMed Central

    Yeo, Gene W.; Van Nostrand, Eric; Holste, Dirk; Poggio, Tomaso; Burge, Christopher B.

    2005-01-01

    Alternative pre-mRNA splicing affects a majority of human genes and plays important roles in development and disease. Alternative splicing (AS) events conserved since the divergence of human and mouse are likely of primary biological importance, but relatively few of such events are known. Here we describe sequence features that distinguish exons subject to evolutionarily conserved AS, which we call alternative conserved exons (ACEs), from other orthologous human/mouse exons and integrate these features into an exon classification algorithm, acescan. Genome-wide analysis of annotated orthologous human–mouse exon pairs identified ≈2,000 predicted ACEs. Alternative splicing was verified in both human and mouse tissues by using an RT-PCR-sequencing protocol for 21 of 30 (70%) predicted ACEs tested, supporting the validity of a majority of acescan predictions. By contrast, AS was observed in mouse tissues for only 2 of 15 (13%) tested exons that had EST or cDNA evidence of AS in human but were not predicted ACEs, and AS was never observed for 11 negative control exons in human or mouse tissues. Predicted ACEs were much more likely to preserve the reading frame and less likely to disrupt protein domains than other AS events and were enriched in genes expressed in the brain and in genes involved in transcriptional regulation, RNA processing, and development. Our results also imply that the vast majority of AS events represented in the human EST database are not conserved in mouse. PMID:15708978

  17. Fas-activated serine/threonine kinase (FAST K) synergizes with TIA-1/TIAR proteins to regulate Fas alternative splicing.

    PubMed

    Izquierdo, José M; Valcárcel, Juan

    2007-01-19

    The factors and mechanisms that mediate the effects of intracellular signaling cascades on alternative pre-mRNA splicing are poorly understood. TIA-1 (T-cell intracellular antigen 1) and TIAR (TIA-1-related) proteins regulate alternative pre-mRNA splicing by promoting the use of suboptimal 5' splice sites followed by uridine-rich intronic enhancer sequences. These proteins promote, for example, inclusion of Fas receptor exon 6, which leads to an mRNA encoding a pro-apoptotic form of the receptor at the expense of the form that skips exon 6, which encodes an anti-apoptotic form. Fas-activated serine/threonine kinase (FAST K) is known to interact with and phosphorylate TIA-1. Here we have tested the possibility that FAST K influences alternative pre-mRNA splicing by affecting the activity of TIA-1/TIAR. Depletion of FAST K form Jurkat cells leads to skipping of exon 6 from endogenous Fas transcripts. Conversely, FAST K overexpression enhances exon 6 inclusion of Fas reporters transfected in HeLa cells. Consistent with the possibility that the effects of FAST K are mediated by changes in the function of TIA-1/TIAR, the effects of FAST K overexpression (i) are largely suppressed by depletion of TIA-1 and TIAR and (ii) are significantly compromised by mutation of a TIA-1/TIAR-responsive enhancer present downstream of exon 6 5' splice site. Furthermore, in vitro phosphorylation of TIA-1 by FAST K results in enhanced U1 snRNP recruitment. Interestingly, this enhancement is not due to increased binding of TIA-1 to the pre-mRNA. Taken together, the results connect Fas signaling with the activity of splicing factors that modulate Fas alternative splicing, suggesting the existence of an autoregulatory loop that could serve to amplify Fas responses.

  18. Global variability in gene expression and alternative splicing is modulated by mitochondrial content.

    PubMed

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J

    2015-05-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype.

  19. A G-tract element in apoptotic agents-induced alternative splicing.

    PubMed

    Hai, Yan; Cao, Wenguang; Liu, Guodong; Hong, Say-Pham; Elela, Sherif Abou; Klinck, Roscoe; Chu, Jiayou; Xie, Jiuyong

    2008-06-01

    Alternative splicing of a single pre-mRNA transcript can produce protein isoforms that promote either cell growth or death. Here we show that Ro-31-8220 (Ro), an apoptotic agent that inhibits protein kinase C and activates the c-Jun N terminal kinase, decreased the proportion of the cell growth-promoting Bcl-xL splice variant. Targeted mutagenesis analyses narrowed down a critical sequence to a 16-nt G-tract element (Gt16). Transferring this element to a heterologous gene conferred Ro response on an otherwise constitutive exon. The Ro effect was reduced by okadaic acid, an inhibitor of protein phosphatases PP1 and PP2A, in a concentration-dependent manner. Search in the human genome followed by RT-PCR identified a group of genes that contain similar exonic G-tract elements and are responsive to Ro. Moreover, the Gt16 element also mediates the regulation of alternative splicing by other cell apoptosis-inducers particularly retinoic acid. Therefore, the G-tract element likely plays a role in the apoptotic agents-induced alternative splicing of a group of genes. The functions of these genes imply that this regulation will have impact on cell growth/death.

  20. Global variability in gene expression and alternative splicing is modulated by mitochondrial content

    PubMed Central

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J.

    2015-01-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. PMID:25800673

  1. How does Tra2β protein regulate tissue-specific RNA splicing?

    PubMed

    Elliott, David J; Best, Andrew; Dalgliesh, Caroline; Ehrmann, Ingrid; Grellscheid, Sushma

    2012-08-01

    The splicing regulator protein Tra2β is conserved between humans and insects and is essential for mouse development. Recent identification of physiological RNA targets has started to uncover molecular targets and mechanisms of action of Tra2β. At a transcriptome-wide level, Tra2β protein binds a matrix of AGAA-rich sequences mapping frequently to exons. Particular tissue-specific alternatively spliced exons contain high concentrations of high scoring Tra2β-binding sites and bind Tra2β strongly in vitro. These top exons were also activated for splicing inclusion in cellulo by co-expression of Tra2β protein and were significantly down-regulated after genetic depletion of Tra2β. Tra2β itself seems to be fairly evenly expressed across several different mouse tissues. In the present paper, we review the properties of Tra2β and its regulated target exons, and mechanisms through which this fairly evenly expressed alternative splicing regulator might drive tissue-specific splicing patterns.

  2. Integrative genome-wide analysis of the determinants of RNA splicing in kidney renal clear cell carcinoma.

    PubMed

    Lehmann, Kjong-Van; Kahles, André; Kandoth, Cyriac; Lee, William; Schultz, Nikolaus; Stegle, Oliver; Rätsch, Gunnar

    2015-01-01

    We present a genome-wide analysis of splicing patterns of 282 kidney renal clear cell carcinoma patients in which we integrate data from whole-exome sequencing of tumor and normal samples, RNA-seq and copy number variation. We proposed a scoring mechanism to compare splicing patterns in tumor samples to normal samples in order to rank and detect tumor-specific isoforms that have a potential for new biomarkers. We identified a subset of genes that show introns only observable in tumor but not in normal samples, ENCODE and GEUVADIS samples. In order to improve our understanding of the underlying genetic mechanisms of splicing variation we performed a large-scale association analysis to find links between somatic or germline variants with alternative splicing events. We identified 915 cis- and trans-splicing quantitative trait loci (sQTL) associated with changes in splicing patterns. Some of these sQTL have previously been associated with being susceptibility loci for cancer and other diseases. Our analysis also allowed us to identify the function of several COSMIC variants showing significant association with changes in alternative splicing. This demonstrates the potential significance of variants affecting alternative splicing events and yields insights into the mechanisms related to an array of disease phenotypes.

  3. Identification of interleukin-26 in the dromedary camel (Camelus dromedarius): Evidence of alternative splicing and isolation of novel splice variants.

    PubMed

    Premraj, Avinash; Nautiyal, Binita; Aleyas, Abi G; Rasool, Thaha Jamal

    2015-10-01

    Interleukin-26 (IL-26) is a member of the IL-10 family of cytokines. Though conserved across vertebrates, the IL-26 gene is functionally inactivated in a few mammals like rat, mouse and horse. We report here the identification, isolation and cloning of the cDNA of IL-26 from the dromedary camel. The camel cDNA contains a 516 bp open reading frame encoding a 171 amino acid precursor protein, including a 21 amino acid signal peptide. Sequence analysis revealed high similarity with other mammalian IL-26 homologs and the conservation of IL-10 cytokine family domain structure including key amino acid residues. We also report the identification and cloning of four novel transcript variants produced by alternative splicing at the Exon 3-Exon 4 regions of the gene. Three of the alternative splice variants had premature termination codons and are predicted to code for truncated proteins. The transcript variant 4 (Tv4) having an insertion of an extra 120 bp nucleotides in the ORF was predicted to encode a full length protein product with 40 extra amino acid residues. The mRNA transcripts of all the variants were identified in lymph node, where as fewer variants were observed in other tissues like blood, liver and kidney. The expression of Tv2 and Tv3 were found to be up regulated in mitogen induced camel peripheral blood mononuclear cells. IL-26-Tv2 expression was also induced in camel fibroblast cells infected with Camel pox virus in-vitro. The identification of the transcript variants of IL-26 from the dromedary camel is the first report of alternative splicing for IL-26 in a species in which the gene has not been inactivated.

  4. Modulation of Stat3 Alternative Splicing in Breast Cancer

    DTIC Science & Technology

    2010-09-01

    The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an...Stat3 Alternative Splicing in Breast Cancer Dr. Luca Cartegni Sloan-Kettering Institute New York, NY 10021 Stat3 is a transcription factor...constitutively active in a large number of breast cancers and other tumors, where it works as a central player in the activation of multiple oncogenic pathways

  5. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells

    PubMed Central

    Calabretta, Sara; Bielli, Pamela; Passacantilli, Ilaria; Pilozzi, Emanuela; Fendrich, Volker; Capurso, Gabriele; Delle Fave, Gianfranco; Sette, Claudio

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and incurable disease. Poor prognosis is due to multiple reasons, including acquisition of resistance to gemcitabine, the first line chemotherapeutic approach. Thus, there is a strong need for novel therapies, targeting more directly the molecular aberrations of this disease. We found that chronic exposure of PDAC cells to gemcitabine selected a subpopulation of cells that are drug-resistant (DR-PDAC cells). Importantly, alternative splicing of the pyruvate kinase gene (PKM) was differentially modulated in DR-PDAC cells, resulting in promotion of the cancer-related PKM2 isoform, whose high expression also correlated with shorter recurrence free survival in PDAC patients. Switching PKM splicing by antisense oligonucleotides to favour the alternative PKM1 variant rescued sensitivity of DR-PDAC cells to gemcitabine and cisplatin, suggesting that PKM2 expression is required to withstand drug-induced genotoxic stress. Mechanistically, up-regulation of the polypyrimidine-tract binding protein (PTBP1), a key modulator of PKM splicing, correlated with PKM2 expression in DR-PDAC cell lines. PTBP1 was recruited more efficiently to PKM pre-mRNA in DR- than in parental PDAC cells. Accordingly, knockdown of PTBP1 in DR-PDAC cells reduced its recruitment to the PKM pre-mRNA, promoted splicing of the PKM1 variant and abolished drug resistance. Thus, chronic exposure to gemcitabine leads to up-regulation of PTBP1 and modulation of PKM alternative splicing in PDAC cells, conferring resistance to the drug. These findings point to PKM2 and PTBP1 as new potential therapeutic targets to improve response of PDAC to chemotherapy. PMID:26234680

  6. Exclusion of exon 2 is a common mRNA splice variant of primate telomerase reverse transcriptases.

    PubMed

    Withers, Johanna B; Ashvetiya, Tamara; Beemon, Karen L

    2012-01-01

    Telomeric sequences are added by an enzyme called telomerase that is made of two components: a catalytic protein called telomerase reverse transcriptase (TERT) and an integral RNA template (TR). Telomerase expression is tightly regulated at each step of gene expression, including alternative splicing of TERT mRNA. While over a dozen different alternative splicing events have been reported for human TERT mRNA, these were all in the 3' half of the coding region. We were interested in examining splicing of the 5' half of hTERT mRNA, especially since exon 2 is unusually large (1.3 kb). Internal mammalian exons are usually short, typically only 50 to 300 nucleotides, and most long internal exons are alternatively processed. We used quantitative RT-PCR and high-throughput sequencing data to examine the variety and quantity of mRNA species generated from the hTERT locus. We determined that there are approximately 20-40 molecules of hTERT mRNA per cell in the A431 human cell line. In addition, we describe an abundant, alternatively-spliced mRNA variant that excludes TERT exon 2 and was seen in other primates. This variant causes a frameshift and results in translation termination in exon 3, generating a 12 kDa polypeptide.

  7. The Evolutionary Relationship between Alternative Splicing and Gene Duplication

    PubMed Central

    Iñiguez, Luis P.; Hernández, Georgina

    2017-01-01

    The protein diversity that exists today has resulted from various evolutionary processes. It is well known that gene duplication (GD) along with the accumulation of mutations are responsible, among other factors, for an increase in the number of different proteins. The gene structure in eukaryotes requires the removal of non-coding sequences, introns, to produce mature mRNAs. This process, known as cis-splicing, referred to here as splicing, is regulated by several factors which can lead to numerous splicing arrangements, commonly designated as alternative splicing (AS). AS, producing several transcripts isoforms form a single gene, also increases the protein diversity. However, the evolution and manner for increasing protein variation differs between AS and GD. An important question is how are patterns of AS affected after a GD event. Here, we review the current knowledge of AS and GD, focusing on their evolutionary relationship. These two processes are now considered the main contributors to the increasing protein diversity and therefore their relationship is a relevant, yet understudied, area of evolutionary study. PMID:28261262

  8. RNA splicing manipulation: strategies to modify gene expression for a variety of therapeutic outcomes.

    PubMed

    Wilton, Steve D; Fletcher, Susan

    2011-08-01

    Antisense oligomers initially showed promise as compounds to modify gene expression, primarily through RNaseH induced degradation of the target transcript. Expansion of the field has led to new chemistries capable of invoking different mechanisms, including suppression of protein synthesis by translational blockade and gene silencing using short interfering RNAs. It is now apparent that the majority of the eukaryotic genome is transcribed and non-protein coding RNAs have been implicated in the regulation of gene expression at many levels. This review considers potential therapeutic applications of antisense oligomers to modify gene expression, primarily by interfering with the process of exon recognition and intron removal during gene transcript splicing. While suppression of gene expression will be necessary to address some conditions, it is likely that antisense oligomer splice modification will have extensive clinical application. Pre-mRNA splicing is a tightly co-ordinated, multifactorial process that can be disrupted by antisense oligomers in a highly specific manner to suppress aberrant splicing, remove exons to by-pass nonsense or frame-shifting mutations or influence exon selection to alter spliceoform ratios. Manipulation of splicing patterns has been applied to a diverse range of conditions, including b-thalassemia, Duchenne muscular dystrophy, spinal muscular atrophy and certain cancers. Alternative exon usage has been identified as a major mechanism for generating diversity from a limited repertoire of genes in higher eukaryotes. Considering that the majority of all human primary gene transcripts are reportedly alternatively spliced, intervention at the level of pre-mRNA processing is likely to become increasingly significant in the fight against genetic and acquired disorders.

  9. Innovations in Proteomic Profiling of Cancers: Alternative Splice Variants as a New Class of Cancer Biomarker Candidates and Bridging of Proteomics with Structural Biology

    PubMed Central

    Omenn, Gilbert S.; Menon, Rajasree; Zhang, Yang

    2013-01-01

    Alternative splicing allows a single gene to generate multiple RNA transcripts which can be translated into functionally diverse protein isoforms. Current knowledge of splicing is derived mainly from RNA transcripts, with very little known about the expression level, 3D structures, and functional differences of the proteins. Splicing is a remarkable phenomenon of molecular and biological evolution. Studies which simply report up-regulation or down-regulation of protein or mRNA expression are confounded by the effects of mixtures of these isoforms. Besides understanding the net biological effects of the mixtures, we may be able to develop biomarker tests based on the observable differential expression of particular splice variants or combinations of splice variants in specific disease states. Here we review our work on differential expression of splice variant proteins in cancers and the feasibility of integrating proteomic analysis with structure-based conformational predictions of the differences between such isoforms. PMID:23603631

  10. Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain.

    PubMed

    Cheng, Tian-Lin; Chen, Jingqi; Wan, Huida; Tang, Bin; Tian, Weidong; Liao, Lujian; Qiu, Zilong

    2017-02-17

    Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system.

  11. Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain

    PubMed Central

    Cheng, Tian-Lin; Chen, Jingqi; Wan, Huida; Tang, Bin; Tian, Weidong; Liao, Lujian; Qiu, Zilong

    2017-01-01

    Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system. PMID:28211484

  12. Expression and alternative splicing of N-RAP during mouse skeletal muscle development.

    PubMed

    Lu, Shajia; Borst, Diane E; Horowits, Robert

    2008-12-01

    N-RAP alternative splicing and protein localization were studied in developing skeletal muscle tissue from pre- and postnatal mice and in fusing primary myotubes in culture. Messages encoding N-RAP-s and N-RAP-c, the predominant isoforms of N-RAP detected in adult skeletal muscle and heart, respectively, were present in a 5:1 ratio in skeletal muscle isolated from E16.5 embryos. N-RAP-s mRNA levels increased three-fold over the first 3 weeks of postnatal development, while N-RAP-c mRNA levels remained low. N-RAP alternative splicing during myotube differentiation in culture was similar to the pattern observed in embryonic and neonatal muscle, with N-RAP-s expression increasing and N-RAP-c mRNA levels remaining low. In both developing skeletal muscle and cultured myotubes, N-RAP protein was primarily associated with developing myofibrillar structures containing alpha-actinin, but was not present in mature myofibrils. The results establish that N-RAP-s is the predominant spliced form of N-RAP present throughout skeletal muscle development.

  13. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    PubMed

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-08-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.

  14. Alternative Splicing Governs Cone Cyclic Nucleotide-gated (CNG) Channel Sensitivity to Regulation by Phosphoinositides*

    PubMed Central

    Dai, Gucan; Sherpa, Tshering; Varnum, Michael D.

    2014-01-01

    Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides. PMID:24675082

  15. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA.

    PubMed Central

    Teigelkamp, S; McGarvey, M; Plumpton, M; Beggs, J D

    1994-01-01

    The RNA helicase-like splicing factor PRP2 interacts only transiently with spliceosomes. To facilitate analysis of interactions of PRP2 with spliceosomal components, PRP2 protein was stalled in splicing complexes by two different methods. A dominant negative mutant form of PRP2 protein, which associates stably with spliceosomes, was found to interact directly with pre-mRNAs, as demonstrated by UV-crosslinking experiments. The use of various mutant and truncated pre-mRNAs revealed that this interaction requires a spliceable pre-mRNA and an assembled spliceosome; a 3' splice site is not required. To extend these observations to the wild-type PRP2 protein, spliceosomes were depleted of ATP; PRP2 protein interacts with pre-mRNA in these spliceosomes in an ATP-independent fashion. Comparison of RNA binding by PRP2 protein in the presence of ATP or gamma S-ATP showed that ATP hydrolysis rather than mere ATP binding is required to release PRP2 protein from pre-mRNA. As PRP2 is an RNA-stimulated ATPase, these experiments strongly suggest that the pre-mRNA is the native co-factor stimulating ATP hydrolysis by PRP2 protein in spliceosomes. Since PRP2 is a putative RNA helicase, we propose that the pre-mRNA is the target of RNA displacement activity of PRP2 protein, promoting the first step of splicing. Images PMID:8112302

  16. Beta zero thalassemia caused by a base substitution that creates an alternative splice acceptor site in an intron.

    PubMed Central

    Metherall, J E; Collins, F S; Pan, J; Weissman, S M; Forget, B G

    1986-01-01

    A thalassemic beta-globin gene cloned from a haplotype I chromosome contains a T to G transversion at position 116 of IVS1 which results in the generation of an abnormal alternative acceptor splice site. Transient expression studies revealed a 4-fold decrease in the amount of RNA produced with greater than 99% of it being abnormally spliced despite preservation of the normal acceptor splice site at position 130. These results suggest that the mutation at IVS1 position 116 results in beta zero thalassemia. A closely related mutation at position 110 of IVS1 also generates a novel acceptor site and results in a similar decrease in total mRNA produced, but approximately 20% of the mRNA produced is normally spliced and thus the phenotype is that of beta + thalassemia. These observations suggest that short range position effects may play a dramatic role in the choice of potential splice acceptor sites. We demonstrate the presence of abnormally spliced mRNA in reticulocytes of affected individuals and show the mutation at IVS1 position 116 segregating from the mutation at IVS1 position 110 in a three generation pedigree. The mutation results in the creation of a MaeI restriction site, as do a number of other thalassemic mutations, and we demonstrate some difficulties that may arise in the differential diagnosis of these mutations. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3780671

  17. Conserved stem-loop structures in the HIV-1 RNA region containing the A3 3' splice site and its cis-regulatory element: possible involvement in RNA splicing.

    PubMed

    Jacquenet, S; Ropers, D; Bilodeau, P S; Damier, L; Mougin, A; Stoltzfus, C M; Branlant, C

    2001-01-15

    The HIV-1 transcript is alternatively spliced to over 30 different mRNAs. Whether RNA secondary structure can influence HIV-1 RNA alternative splicing has not previously been examined. Here we have determined the secondary structure of the HIV-1/BRU RNA segment, containing the alternative A3, A4a, A4b, A4c and A5 3' splice sites. Site A3, required for tat mRNA production, is contained in the terminal loop of a stem-loop structure (SLS2), which is highly conserved in HIV-1 and related SIVcpz strains. The exon splicing silencer (ESS2) acting on site A3 is located in a long irregular stem-loop structure (SLS3). Two SLS3 domains were protected by nuclear components under splicing condition assays. One contains the A4c branch points and a putative SR protein binding site. The other one is adjacent to ESS2. Unexpectedly, only the 3' A residue of ESS2 was protected. The suboptimal A3 polypyrimidine tract (PPT) is base paired. Using site-directed mutagenesis and transfection of a mini-HIV-1 cDNA into HeLa cells, we found that, in a wild-type PPT context, a mutation of the A3 downstream sequence that reinforced SLS2 stability decreased site A3 utilization. This was not the case with an optimized PPT. Hence, sequence and secondary structure of the PPT may cooperate in limiting site A3 utilization.

  18. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    SciTech Connect

    Kvissel, Anne-Katrine . E-mail: a.k.kvissel@basalmed.uio.no; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-08-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both C{alpha} and C{beta} are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism.

  19. Increased Serine-Arginine (SR) Protein Phosphorylation Changes Pre-mRNA Splicing in Hypoxia*

    PubMed Central

    Jakubauskiene, Egle; Vilys, Laurynas; Makino, Yuichi; Poellinger, Lorenz; Kanopka, Arvydas

    2015-01-01

    The removal of introns from mRNA precursors (pre-mRNAs) is an essential step in eukaryotic gene expression. The splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Inhibitory PAS domain protein (IPAS), a dominant negative regulator of hypoxia-inducible gene expression, is generated from hypoxia inducible transcription factor-3α (HIF-3α) pre-mRNA by an alternative splicing mechanism. Inactivation of the IPAS transcript in mice leads to the neo-vascularization of the cornea, suggesting that IPAS is an important regulator of anti-angiogenesis in this tissue. For the first time we demonstrate that serine-arginine (SR) proteins are involved in oxygen tension-dependent changes in pre-mRNA splicing. SR proteins isolated from hypoxic cells differentially interact with RNA (compared with proteins isolated from cells cultured under normoxic conditions). They possess the differential ability to activate hypoxia-dependent splice sites, and they are more phosphorylated than those isolated from normoxic HeLa cells. We also show that expression of SR protein kinases (CLK1, SRPK1, SRPK2) in hypoxic cells is elevated at mRNA and protein levels. Increased expression of CLK1 kinase is regulated by HIFs. Reduction of CLK1 cellular expression levels reduces hypoxia-dependent full-length carbonic anhydrase IX (CAIX) mRNA and CAIX protein formation and changes hypoxia-dependent cysteine-rich angiogenic inducer 61 (Cyr61) mRNA isoform formation profiles. PMID:26023237

  20. Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch

    SciTech Connect

    Hou, Victor C.; Lersch, Robert; Gee, Sherry L.; Ponthier, Julie L.; Lo, Annie J.; Wu, Michael; Turck, Chris W.; Koury, Mark; Krainer, Adrian R.; Mayeda, Akila; Conboy, John G.

    2002-10-17

    A physiologically important alternative pre-mRNA splicing switch, involving activation of protein 4.1R exon 16 (E16) splicing, is required for establishing proper mechanical integrity of the erythrocyte membrane during erythropoiesis. Here we identify a conserved exonic splicing silencer element (CE16) in E16 that interacts with hnRNP A/B proteins and plays a role in repression of E16 splicing during early erythropoiesis. Experiments with model pre-mRNAs showed that CE16 can repress splicing of upstream introns, and that mutagenesis or replacement of CE16 can relieve this inhibition. An affinity selection assay with biotinylated CE16 RNA demonstrated specific binding of hnRNP A/B proteins. Depletion of hnRNP A/B proteins from nuclear extract significantly increased E16 inclusion, while repletion with recombinant hnRNP A/B restored E16 silencing. Most importantly, differentiating mouse erythroblasts exhibited a stage-specific activation of the E16 splicing switch in concert with a drama tic and specific down-regulation of hnRNP A/B protein expression. These findings demonstrate that natural developmental changes in hnRNP A/B proteins can effect physiologically important switches in pre-mRNA splicing.

  1. Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data

    PubMed Central

    Folk, Petr

    2016-01-01

    Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5′ and 3′ splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions. PMID:28050562

  2. Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data.

    PubMed

    Převorovský, Martin; Hálová, Martina; Abrhámová, Kateřina; Libus, Jiří; Folk, Petr

    2016-01-01

    Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5' and 3' splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.

  3. Single-Molecule Imaging of RNA Splicing in Live Cells.

    PubMed

    Rino, José; Martin, Robert M; Carvalho, Célia; de Jesus, Ana C; Carmo-Fonseca, Maria

    2015-01-01

    Expression of genetic information in eukaryotes involves a series of interconnected processes that ultimately determine the quality and amount of proteins in the cell. Many individual steps in gene expression are kinetically coupled, but tools are lacking to determine how temporal relationships between chemical reactions contribute to the output of the final gene product. Here, we describe a strategy that permits direct measurements of intron dynamics in single pre-mRNA molecules in live cells. This approach reveals that splicing can occur much faster than previously proposed and opens new avenues for studying how kinetic mechanisms impact on RNA biogenesis.

  4. Novel alternative splicing isoform biomarkers identification from high-throughput plasma proteomics profiling of breast cancer

    PubMed Central

    2013-01-01

    Background In the biopharmaceutical industry, biomarkers define molecular taxonomies of patients and diseases and serve as surrogate endpoints in early-phase drug trials. Molecular biomarkers can be much more sensitive than traditional lab tests. Discriminating disease biomarkers by traditional method such as DNA microarray has proved challenging. Alternative splicing isoform represents a new class of diagnostic biomarkers. Recent scientific evidence is demonstrating that the differentiation and quantification of individual alternative splicing isoforms could improve insights into disease diagnosis and management. Identifying and characterizing alternative splicing isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods used for alternative splicing isoform determination such as transcriptome-level, low level of coverage and poor focus on alternative splicing. Results Therefore, we presented a peptidomics approach to searching novel alternative splicing isoforms in clinical proteomics. Our results showed that the approach has significant potential in enabling discovery of new types of high-quality alternative splicing isoform biomarkers. Conclusions We developed a peptidomics approach for the proteomics community to analyze, identify, and characterize alternative splicing isoforms from MS-based proteomics experiments with more coverage and exclusive focus on alternative splicing. The approach can help generate novel hypotheses on molecular risk factors and molecular mechanisms of cancer in early stage, leading to identification of potentially highly specific alternative splicing isoform biomarkers for early detection of cancer. PMID:24565027

  5. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing.

    PubMed

    Zhang, Li; Tran, Ngoc-Tung; Su, Hairui; Wang, Rui; Lu, Yuheng; Tang, Haiping; Aoyagi, Sayura; Guo, Ailan; Khodadadi-Jamayran, Alireza; Zhou, Dewang; Qian, Kun; Hricik, Todd; Côté, Jocelyn; Han, Xiaosi; Zhou, Wenping; Laha, Suparna; Abdel-Wahab, Omar; Levine, Ross L; Raffel, Glen; Liu, Yanyan; Chen, Dongquan; Li, Haitao; Townes, Tim; Wang, Hengbin; Deng, Haiteng; Zheng, Y George; Leslie, Christina; Luo, Minkui; Zhao, Xinyang

    2015-11-17

    RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia.

  6. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing

    PubMed Central

    Zhang, Li; Tran, Ngoc-Tung; Su, Hairui; Wang, Rui; Lu, Yuheng; Tang, Haiping; Aoyagi, Sayura; Guo, Ailan; Khodadadi-Jamayran, Alireza; Zhou, Dewang; Qian, Kun; Hricik, Todd; Côté, Jocelyn; Han, Xiaosi; Zhou, Wenping; Laha, Suparna; Abdel-Wahab, Omar; Levine, Ross L; Raffel, Glen; Liu, Yanyan; Chen, Dongquan; Li, Haitao; Townes, Tim; Wang, Hengbin; Deng, Haiteng; Zheng, Y George; Leslie, Christina; Luo, Minkui; Zhao, Xinyang

    2015-01-01

    RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia. DOI: http://dx.doi.org/10.7554/eLife.07938.001 PMID:26575292

  7. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing

    PubMed Central

    Schor, Ignacio E.; Rascovan, Nicolás; Pelisch, Federico; Alló, Mariano; Kornblihtt, Alberto R.

    2009-01-01

    In search for physiological pathways affecting alternative splicing through its kinetic coupling with transcription, we found that membrane depolarization of neuronal cells triggers the skipping of exon 18 from the neural cell adhesion molecule (NCAM) mRNA, independently of the calcium/calmodulin protein kinase IV pathway. We show that this exon responds to RNA polymerase II elongation, because its inclusion is increased by a slow polymerase II mutant. Depolarization affects the chromatin template in a specific way, by causing H3K9 hyper-acetylation restricted to an internal region of the NCAM gene surrounding the alternative exon. This intragenic histone hyper-acetylation is not paralleled by acetylation at the promoter, is associated with chromatin relaxation, and is linked to H3K36 tri-methylation. The effects on acetylation and splicing fully revert when the depolarizing conditions are withdrawn and can be both duplicated and potentiated by the histone deacetylase inhibitor trichostatin A. Our results are consistent with a mechanism involving the kinetic coupling of splicing and transcription in response to depolarization through intragenic epigenetic changes on a gene that is relevant for the differentiation and function of neuronal cells. PMID:19251664

  8. Identification of a novel alternative splicing variant of hemocyanin from shrimp Litopenaeus vannamei.

    PubMed

    Zhao, Shan; Lu, Xin; Zhang, Yueling; Zhao, Xianliang; Zhong, Mingqi; Li, Shengkang; Lun, Jingsheng

    2013-01-01

    Recent evidences suggest that invertebrates express families of immune molecules with high levels of sequence diversity. Hemocyanin is an important non-specific immune molecule present in the hemolymph of both mollusks and arthropods. In the present study, we characterized a novel alternative splicing variant of hemocyanin (cHE1) from Litopenaeus vannamei that produced mRNA transcript of 2579 bp in length. The isoform contained two additional sequences of 296 and 267 bp in the 5'- and 3'-terminus respectively, in comparison to that of wild type hemocyanin (cHE). Sequence of cHE1 shows 100% identity to that of hemocyanin genomic DNA (HE, which does not form an open reading frame), suggesting that cHE1 might be an alternative splicing variant due to intron retention. Moreover, cHE1 could be detected by RT-PCR from five tissues (heart, gill, stomach, intestine and brain), and from shrimps at stages from nauplius to mysis larva. Further, cHE1 mRNA transcripts were significantly increased in hearts after 12h of infection with Vibrio parahemolyticus or poly I: C, while no significant difference in the transcript levels of hepatopancreas cHE was detected in the pathogen-treated shrimps during the period. In summary, these studies suggested a novel splicing variant of hemocyanin in shrimp, which might be involved in shrimp resistance to pathogenic infection.

  9. APPRIS: annotation of principal and alternative splice isoforms.

    PubMed

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform.

  10. Primary structure of rat plasma membrane Ca(2+)-ATPase isoform 4 and analysis of alternative splicing patterns at splice site A.

    PubMed Central

    Keeton, T P; Shull, G E

    1995-01-01

    We have determined the primary structure of the rat plasma membrane Ca(2+)-ATPase isoform 4 (PMCA4), and have analysed its mRNA tissue distribution and alternative splicing patterns at splice site A. Rat PMCA4 (rPMCA4) genomic clones were isolated and used to determine the coding sequences and intron/exon organization of the 5'-end of the gene, and the remaining coding sequence was determined from PCR-amplified cDNA fragments. Pairwise comparisons reveal that the amino acid sequence of rPMCA4 has diverged substantially from those of rPMCA isoforms 1, 2 and 3 (73-76% identity) and from that of human PMCA4 (87%). Despite the high degree of sequence divergence between the two species, comparisons of intron and untranslated mRNA sequences with the corresponding human sequences confirm the identity of this rat isoform as PMCA4. Northern blot studies demonstrate that the PMCA4 mRNA is expressed in all rat tissues examined except liver, with the highest levels in uterus and stomach. A combination of PCR analysis of alternative splicing patterns and sequence analysis of the gene demonstrate that a 36 nt exon at site A is included in PMCA4 mRNAs of most tissues but is largely excluded in heart and testis. Alternative splicing of both the 36 nt exon and a previously characterized 175 nt exon at splice site C, each of which can be either included or excluded in a highly tissue-specific manner, leads to the production of four different PMCA4 variants ranging in size from 1157 to 1203 amino acids. Images Figure 1 Figure 5 Figure 6 PMID:7702574

  11. Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer

    PubMed Central

    Meseure, Didier; Vacher, Sophie; Lallemand, François; Alsibai, Kinan Drak; Hatem, Rana; Chemlali, Walid; Nicolas, Andre; De Koning, Leanne; Pasmant, Eric; Callens, Celine; Lidereau, Rosette; Morillon, Antonin; Bieche, Ivan

    2016-01-01

    Background: Epigenetic deregulation is considered as a new hallmark of cancer. The long non-coding RNA MALAT1 has been implicated in several cancers; however, its role in breast cancer is still little known. Methods: We used RT–PCR, in situ hybridisation, and RPPA methods to quantify (i) the full-length (FL) and an alternatively spliced variant (Δsv) of MALAT1, and (ii) a panel of transcripts and proteins involved in MALAT1 pathways, in a large series of breast tumours from patients with known clinical/pathological status and long-term outcome. Results: MALAT1 was overexpressed in 14% (63/446) of the breast tumours. MALAT1-overexpressed tumour epithelial cells showed marked diffuse nuclear signals and numerous huge nuclear speckles. Screening of the dbEST database led to the identification of Δsv-MALAT1, a major alternatively spliced MALAT1 transcript, with a very different expression pattern compared with FL-MALAT1. This alternative Δsv-MALAT1 transcript was mainly underexpressed (18.8%) in our breast tumour series. Multivariate analysis showed that alternative Δsv-MALAT1 transcript is an independent prognostic factor. Δsv-MALAT1 expression was associated with alterations of the pre-mRNAs alternative splicing machinery, and of the Drosha-DGCR8 complex required for non-coding RNA biogenesis. Alternative Δsv-MALAT1 transcript expression was associated to YAP protein status and with an activation of the PI3K-AKT pathway. Conclusions: Our results reveal a complex expression pattern of various MALAT1 transcript variants in breast tumours, and suggest that this pattern of expressions should be taken into account to evaluate MALAT1 as predictive biomarker and therapeutic target. PMID:27172249

  12. Designing Efficient Double RNA trans-Splicing Molecules for Targeted RNA Repair

    PubMed Central

    Hüttner, Clemens; Murauer, Eva M.; Hainzl, Stefan; Kocher, Thomas; Neumayer, Anna; Reichelt, Julia; Bauer, Johann W.; Koller, Ulrich

    2016-01-01

    RNA trans-splicing is a promising tool for mRNA modification in a diversity of genetic disorders. In particular, the substitution of internal exons of a gene by combining 3′ and 5′ RNA trans-splicing seems to be an elegant way to modify especially large pre-mRNAs. Here we discuss a robust method for designing double RNA trans-splicing molecules (dRTM). We demonstrate how the technique can be implemented in an endogenous setting, using COL7A1, the gene encoding type VII collagen, as a target. An RTM screening system was developed with the aim of testing the replacement of two internal COL7A1 exons, harbouring a homozygous mutation, with the wild-type version. The most efficient RTMs from a pool of randomly generated variants were selected via our fluorescence-based screening system and adapted for use in an in vitro disease model system. Transduction of type VII collagen-deficient keratinocytes with the selected dRTM led to accurate replacement of two internal COL7A1 exons resulting in a restored wild-type RNA sequence. This is the first study demonstrating specific exon replacement by double RNA trans-splicing within an endogenous transcript in cultured cells, corroborating the utility of this technology for mRNA repair in a variety of genetic disorders. PMID:27669223

  13. Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor

    PubMed Central

    Huertas, César S.; Domínguez-Zotes, Santos; Lechuga, Laura M.

    2017-01-01

    Personalized medicine is a promising tool not only for prevention, screening and development of more efficient treatment strategies, but also for diminishing the side effects caused by current therapies. Deciphering gene regulation pathways provides a reliable prognostic analysis to elucidate the origin of grave diseases and facilitate the selection of the most adequate treatment for each individual. Alternative splicing of mRNA precursors is one of these gene regulation pathways and enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression constituting a relevant and innovative class of biomarker. Herein we report a highly selective and sensitive nanophotonic biosensor based on the direct monitoring of the aberrant alternative splicing of Fas gene. Unlike conventional methods, the nanobiosensor performs a real-time detection of the specific isoforms in the fM-pM range without any cDNA synthesis or PCR amplification requirements. The nanobiosensor has been proven isoform-specific with no crosshybridization, greatly minimizing detection biases. The demonstrated high sensitivity and specificity make our nanobiosensor ideal for examining significant tumor-associated expression shifts of alternatively spliced isoforms for the early and accurate theranostics of cancer. PMID:28120920

  14. 20-hydroxyecdysone mediates non-canonical regulation of mosquito vitellogenins through alternative splicing.

    PubMed

    Provost-Javier, K N; Rasgon, J L

    2014-08-01

    Vitellogenesis is one of the most well-studied physiological processes in mosquitoes. Expression of mosquito vitellogenin genes is classically described as being restricted to female adult reproduction. We report premature vitellogenin transcript expression in three vector mosquitoes: Culex tarsalis, Aedes aegypti and Anopheles gambiae. Vitellogenins expressed during non-reproductive stages are alternatively spliced to retain their first intron and encode premature termination codons. We show that intron retention results in transcript degradation by translation-dependent nonsense-mediated mRNA decay. This is probably an example of regulated unproductive splicing and translation (RUST), a mechanism known to regulate gene expression in numerous organisms but which has never been described in mosquitoes. We demonstrate that the hormone 20-hydroxyecdysone (20E) is responsible for regulating post-transcriptional splicing of vitellogenin. After exposure of previtellogenic fat bodies to 20E, vitellogenin expression switches from a non-productive intron-retaining transcript to a spliced protein-coding transcript. This effect is independent of factors classically known to influence transcription, such as juvenile hormone-mediated competence and amino acid signalling through the target of rapamycin pathway. Non-canonical regulation of vitellogenesis through RUST is a novel role for the multifunctional hormone 20E, and may have important implications for general patterns of gene regulation in mosquitoes.

  15. Plasma proteomics, the Human Proteome Project, and cancer-associated alternative splice variant proteins.

    PubMed

    Omenn, Gilbert S

    2014-05-01

    This article addresses three inter-related subjects: the development of the Human Plasma Proteome Peptide Atlas, the launch of the Human Proteome Project, and the emergence of alternative splice variant transcripts and proteins as important features of evolution and pathogenesis. The current Plasma Peptide Atlas provides evidence on which peptides have been detected for every protein confidently identified in plasma; there are links to their spectra and their estimated abundance, facilitating the planning of targeted proteomics for biomarker studies. The Human Proteome Project (HPP) combines a chromosome-centric C-HPP with a biology and disease-driven B/D-HPP, upon a foundation of mass spectrometry, antibody, and knowledgebase resource pillars. The HPP aims to identify the approximately 7000 "missing proteins" and to characterize all proteins and their many isoforms. Success will enable the larger research community to utilize newly-available peptides, spectra, informative MS transitions, and databases for targeted analyses of priority proteins for each organ and disease. Among the isoforms of proteins, splice variants have the special feature of greatly enlarging protein diversity without enlarging the genome; evidence is accumulating of striking differential expression of splice variants in cancers. In this era of RNA-sequencing and advanced mass spectrometry, it is no longer sufficient to speak simply of increased or decreased expression of genes or proteins without carefully examining the splice variants in the protein mixture produced from each multi-exon gene. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.

  16. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells

    PubMed Central

    Alló, Mariano; Agirre, Eneritz; Bessonov, Sergey; Bertucci, Paola; Gómez Acuña, Luciana; Buggiano, Valeria; Bellora, Nicolás; Singh, Babita; Petrillo, Ezequiel; Blaustein, Matías; Miñana, Belén; Dujardin, Gwendal; Pozzi, Berta; Pelisch, Federico; Bechara, Elías; Agafonov, Dmitry E.; Srebrow, Anabella; Lührmann, Reinhard; Valcárcel, Juan; Eyras, Eduardo; Kornblihtt, Alberto R.

    2014-01-01

    The roles of Argonaute proteins in cytoplasmic microRNA and RNAi pathways are well established. However, their implication in small RNA-mediated transcriptional gene silencing in the mammalian cell nucleus is less understood. We have recently shown that intronic siRNAs cause chromatin modifications that inhibit RNA polymerase II elongation and modulate alternative splicing in an Argonaute-1 (AGO1)-dependent manner. Here we used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to investigate the genome-wide distribution of AGO1 nuclear targets. Unexpectedly, we found that about 80% of AGO1 clusters are associated with cell-type-specific transcriptional enhancers, most of them (73%) overlapping active enhancers. This association seems to be mediated by long, rather than short, enhancer RNAs and to be more prominent in intragenic, rather than intergenic, enhancers. Paradoxically, crossing ChIP-seq with RNA-seq data upon AGO1 depletion revealed that enhancer-bound AGO1 is not linked to the global regulation of gene transcription but to the control of constitutive and alternative splicing, which was confirmed by an individual gene analysis explaining how AGO1 controls inclusion levels of the cassette exon 107 in the SYNE2 gene. PMID:25313066

  17. Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells.

    PubMed

    Alló, Mariano; Agirre, Eneritz; Bessonov, Sergey; Bertucci, Paola; Gómez Acuña, Luciana; Buggiano, Valeria; Bellora, Nicolás; Singh, Babita; Petrillo, Ezequiel; Blaustein, Matías; Miñana, Belén; Dujardin, Gwendal; Pozzi, Berta; Pelisch, Federico; Bechara, Elías; Agafonov, Dmitry E; Srebrow, Anabella; Lührmann, Reinhard; Valcárcel, Juan; Eyras, Eduardo; Kornblihtt, Alberto R

    2014-11-04

    The roles of Argonaute proteins in cytoplasmic microRNA and RNAi pathways are well established. However, their implication in small RNA-mediated transcriptional gene silencing in the mammalian cell nucleus is less understood. We have recently shown that intronic siRNAs cause chromatin modifications that inhibit RNA polymerase II elongation and modulate alternative splicing in an Argonaute-1 (AGO1)-dependent manner. Here we used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to investigate the genome-wide distribution of AGO1 nuclear targets. Unexpectedly, we found that about 80% of AGO1 clusters are associated with cell-type-specific transcriptional enhancers, most of them (73%) overlapping active enhancers. This association seems to be mediated by long, rather than short, enhancer RNAs and to be more prominent in intragenic, rather than intergenic, enhancers. Paradoxically, crossing ChIP-seq with RNA-seq data upon AGO1 depletion revealed that enhancer-bound AGO1 is not linked to the global regulation of gene transcription but to the control of constitutive and alternative splicing, which was confirmed by an individual gene analysis explaining how AGO1 controls inclusion levels of the cassette exon 107 in the SYNE2 gene.

  18. [Exon 5 alternative splicing of the cytochrome P450 aromatase could be a regulatory mechanism for estrogen production in humans].

    PubMed

    Pepe, Carolina M; Saraco, Nora I; Baquedano, María Sonia; Guercio, Gabriela; Vaiani, Elisa; Berensztein, Esperanza; Rivarola, Marco A; Belgorosky, Alicia

    2007-01-01

    P450 aromatase (P450Aro), involved in androgen to estrogen conversion, is encoded by the CYP19 gene. P450Aro c655G>A mutation described in heterozygous form in a girl and in homozygous form in an adult male with P450Aro deficiency results in an aberrant splicing due to disruption of a donor splice site. A truncated inactive protein would be expected if intron5 is retained. Surprisingly, the girl described with this mutation showed spontaneous breast development and pubertal estradiol (E2) levels suggesting residual P450Aro activity (AA). Formerly, we postulate the in frame E5 skipping as a consequence of this mutation generating a protein with some degree of activity. When P450Aro mRNA expression was analysed from patient's lymphocytes, an aberrant spliced mRNA lacking E5 (-E5mRNA) was detected, suggesting an association between E5 skipping and the presence of the mutation. Splicing assays in Y1 cells confirmed this association. -Ex5 cDNA expression in Y1 cells resulted in an inactive protein that could not explain patient's phenotype. Exon 5 might be predicted as a poorly defined exon suggesting a susceptibility to splicing mutations and physiological alternative splicing (AS) events. Therefore, -Ex5mRNA was assessed as a natural occurring alternative transcript in normal human steroidogenic tissues. As P450Aro -E5mRNA expression was detected in human term placenta, prepubertal testis and prepubertal adrenal, we might speculate that AS of P450Aro coding region would occur in humans and would be involved in the complex AA regulation. Furthermore, tissue specific regulation of AS might suggest low expression of +E5mRNA from the c655G>A allele explaining residual AA evidenced in the affected girl.

  19. SON controls cell-cycle progression by coordinated regulation of RNA splicing.

    PubMed

    Ahn, Eun-Young; DeKelver, Russell C; Lo, Miao-Chia; Nguyen, Tuyet Ann; Matsuura, Shinobu; Boyapati, Anita; Pandit, Shatakshi; Fu, Xiang-Dong; Zhang, Dong-Er

    2011-04-22

    It has been suspected that cell-cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell-cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing cofactor contributing to efficient splicing of cell-cycle regulators. Downregulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell-cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient cotranscriptional RNA processing. These results reveal a mechanism for controlling cell-cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications for its role in cancer and other human diseases.

  20. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini

    SciTech Connect

    Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

    2003-03-25

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

  1. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function.

    PubMed

    Ye, Junqiang; Beetz, Nadine; O'Keeffe, Sean; Tapia, Juan Carlos; Macpherson, Lindsey; Chen, Weisheng V; Bassel-Duby, Rhonda; Olson, Eric N; Maniatis, Tom

    2015-06-09

    We report that mice lacking the heterogeneous nuclear ribonucleoprotein U (hnRNP U) in the heart develop lethal dilated cardiomyopathy and display numerous defects in cardiac pre-mRNA splicing. Mutant hearts have disorganized cardiomyocytes, impaired contractility, and abnormal excitation-contraction coupling activities. RNA-seq analyses of Hnrnpu mutant hearts revealed extensive defects in alternative splicing of pre-mRNAs encoding proteins known to be critical for normal heart development and function, including Titin and calcium/calmodulin-dependent protein kinase II delta (Camk2d). Loss of hnRNP U expression in cardiomyocytes also leads to aberrant splicing of the pre-mRNA encoding the excitation-contraction coupling component Junctin. We found that the protein product of an alternatively spliced Junctin isoform is N-glycosylated at a specific asparagine site that is required for interactions with specific protein partners. Our findings provide conclusive evidence for the essential role of hnRNP U in heart development and function and in the regulation of alternative splicing.

  2. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function

    PubMed Central

    Ye, Junqiang; Beetz, Nadine; O’Keeffe, Sean; Tapia, Juan Carlos; Macpherson, Lindsey; Chen, Weisheng V.; Bassel-Duby, Rhonda; Olson, Eric N.; Maniatis, Tom

    2015-01-01

    We report that mice lacking the heterogeneous nuclear ribonucleoprotein U (hnRNP U) in the heart develop lethal dilated cardiomyopathy and display numerous defects in cardiac pre-mRNA splicing. Mutant hearts have disorganized cardiomyocytes, impaired contractility, and abnormal excitation–contraction coupling activities. RNA-seq analyses of Hnrnpu mutant hearts revealed extensive defects in alternative splicing of pre-mRNAs encoding proteins known to be critical for normal heart development and function, including Titin and calcium/calmodulin-dependent protein kinase II delta (Camk2d). Loss of hnRNP U expression in cardiomyocytes also leads to aberrant splicing of the pre-mRNA encoding the excitation–contraction coupling component Junctin. We found that the protein product of an alternatively spliced Junctin isoform is N-glycosylated at a specific asparagine site that is required for interactions with specific protein partners. Our findings provide conclusive evidence for the essential role of hnRNP U in heart development and function and in the regulation of alternative splicing. PMID:26039991

  3. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF.

    PubMed Central

    Mayeda, A; Helfman, D M; Krainer, A R

    1993-01-01

    The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection. Images PMID:8474457

  4. The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells.

    PubMed

    Liang, Yu-Chih; Lin, Wei-Cheng; Lin, Ying-Ju; Lin, Jung-Chun

    2015-11-10

    Dysregulated splicing of pre-messenger (m)RNA is considered a molecular occasion of carcinogenesis. However, the underlying mechanism is complex and remains to be investigated. Herein, we report that the upregulated miR-92a reduced the RNA-binding motif 4 (RBM4) protein expression, leading to the imbalanced expression of the neuronal polypyrimidine tract-binding (nPTB) protein through alternative splicing-coupled nonsense mediated decay (NMD) mechanism. Increase in nPTB protein enhances the relative level of fibroblast growth factor receptor 2 IIIc (FGFR2) and pyruvate kinase M2 (PKM2) transcripts which contribute to the progression and metabolic signature of CRC cells. Expression profiles of RBM4 and downstream alternative splicing events are consistently observed in cancerous tissues compared to adjacent normal tissues. These results constitute a mechanistic understanding of RBM4 on repressing the carcinogenesis of colorectal cells.

  5. Alternative Splicing, DNA Damage and Modulating Drugs in Radiation Therapy for Cancer.

    PubMed

    Tang, Jen-Yang; Li, Ruei-Nian; Chen, Ping-Ho; Huang, Hurng-Wern; Hou, Ming-Feng; Chang, Hsueh-Wei

    2015-01-01

    Radiotherapy effectively destroys cancer cells in many sites of the body, but several limitations remain. This study investigated alternative splicing, which is a common mechanism of increased diversity in mRNAs and proteins. The relationships of alternative splicing to DNA damage and radiation such as UV and ionizing radiation were analyzed. The DNA damage responses of many genes involved in alternative splicing were compared between non-radiation and radiation treatments. Drugs that affect radioresistence or radiosensitization by modulating the effects of alternative splicing and radiation were also reviewed.

  6. PPS, a large multidomain protein, functions with sex-lethal to regulate alternative splicing in Drosophila.

    PubMed

    Johnson, Matthew L; Nagengast, Alexis A; Salz, Helen K

    2010-03-05

    Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal (Sxl). Sxl expression is controlled via a negative regulatory mechanism where inclusion of the translation-terminating male exon is blocked in females. Previous studies have shown that the mechanism leading to exon skipping is autoregulatory and requires the SXL protein to antagonize exon inclusion by interacting with core spliceosomal proteins, including the U1 snRNP protein Sans-fille (SNF). In studies begun by screening for proteins that interact with SNF, we identified PPS, a previously uncharacterized protein, as a novel component of the machinery required for Sxl male exon skipping. PPS encodes a large protein with four signature motifs, PHD, BRK, TFS2M, and SPOC, typically found in proteins involved in transcription. We demonstrate that PPS has a direct role in Sxl male exon skipping by showing first that loss of function mutations have phenotypes indicative of Sxl misregulation and second that the PPS protein forms a complex with SXL and the unspliced Sxl RNA. In addition, we mapped the recruitment of PPS, SXL, and SNF along the Sxl gene using chromatin immunoprecipitation (ChIP), which revealed that, like many other splicing factors, these proteins bind their RNA targets while in close proximity to the DNA. Interestingly, while SNF and SXL are specifically recruited to their predicted binding sites, PPS has a distinct pattern of accumulation along the Sxl gene, associating with a region that includes, but is not limited to, the SxlPm promoter. Together, these data indicate that PPS is different from other splicing factors involved in male-exon skipping and suggest, for the first time, a functional link between transcription and SXL-mediated alternative splicing. Loss of zygotic PPS function, however, is lethal to both sexes, indicating that its role may be of broad significance.

  7. Gene duplication followed by exon structure divergence substitutes for alternative splicing in zebrafish.

    PubMed

    Lambert, Matthew J; Olsen, Kyle G; Cooper, Cynthia D

    2014-08-10

    In this study we report novel findings regarding the evolutionary relationship between gene duplication and alternative splicing, two processes that increase proteomic diversity. By studying teleost fish, we find that gene duplication followed by exon structure divergence between paralogs, but not gene duplication alone, leads to a significant reduction in alternative splicing, as measured by both the proportion of genes that undergo alternative splicing as well as mean number of transcripts per gene. Additionally, we show that this effect is independent of gene family size and gene function. Furthermore, we provide evidence that the reduction in alternative splicing may be due to the partitioning of ancestral splice forms among the duplicate genes - a form of subfunctionalization. Taken together these results indicate that exon structure evolution subsequent to gene duplication may be a common substitute for alternative splicing.

  8. Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria

    PubMed Central

    Valach, Matus; Moreira, Sandrine; Kiethega, Georgette N.; Burger, Gertraud

    2014-01-01

    Mitochondrial ribosomal RNAs (rRNAs) often display reduced size and deviant secondary structure, and sometimes are fragmented, as are their corresponding genes. Here we report a mitochondrial large subunit rRNA (mt-LSU rRNA) with unprecedented features. In the protist Diplonema, the rnl gene is split into two pieces (modules 1 and 2, 534- and 352-nt long) that are encoded by distinct mitochondrial chromosomes, yet the rRNA is continuous. To reconstruct the post-transcriptional maturation pathway of this rRNA, we have catalogued transcript intermediates by deep RNA sequencing and RT-PCR. Gene modules are transcribed separately. Subsequently, transcripts are end-processed, the module-1 transcript is polyuridylated and the module-2 transcript is polyadenylated. The two modules are joined via trans-splicing that retains at the junction ∼26 uridines, resulting in an extent of insertion RNA editing not observed before in any system. The A-tail of trans-spliced molecules is shorter than that of mono-module 2, and completely absent from mitoribosome-associated mt-LSU rRNA. We also characterize putative antisense transcripts. Antisense-mono-modules corroborate bi-directional transcription of chromosomes. Antisense-mt-LSU rRNA, if functional, has the potential of guiding concomitantly trans-splicing and editing of this rRNA. Together, these findings open a window on the investigation of complex regulatory networks that orchestrate multiple and biochemically diverse post-transcriptional events. PMID:24259427

  9. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing.

    PubMed

    Kong, Ka-Yiu Edwin; Tang, Hei-Man Vincent; Pan, Kewu; Huang, Zhe; Lee, Tsz-Hang Jimmy; Hinnebusch, Alan G; Jin, Dong-Yan; Wong, Chi-Ming

    2014-01-01

    Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.

  10. RNA splicing in regulation of Nitric Oxide receptor Soluble Guanylyl Cyclase

    PubMed Central

    Sharina, Iraida G.; Cote, Gilbert J.; Martin, Emil; Doursout, Marie-Francoise; Murad, Ferid

    2011-01-01

    Soluble guanylyl cyclase (sGC) is a key protein in the nitric oxide (NO)/-cGMP signaling pathway. sGC activity is involved in a number of important physiological processes including smooth muscle relaxation, neurotransmission and platelet aggregation and adhesion. Regulation of sGC expression and activity emerges as a crucial factor in control of sGC function in normal and pathological conditions. Recently accumulated evidence strongly indicates that the regulation of sGC expression is a complex process modulated on several levels including transcription, post-transcriptional regulation, translation and protein stability. Presently our understanding of mechanisms governing regulation of sGC expression remains very limited and awaits systematic investigation. Among other ways, the expression of sGC subunits is modulated at the levels of mRNA abundance and transcript diversity. In this review we summarize available information on different mechanisms (including transcriptional activation, mRNA stability and alternative splicing) involved in the modulation of mRNA levels of sGC subunits in response to various environmental clues. We also summarize and cross-reference the information on human sGC splice forms available in the literature and in genomic databases. This review highlights the fact that the study of the biological role and regulation of sGC splicing will bring new insights to our understanding of NO/cGMP biology. PMID:21867767

  11. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing.

    PubMed

    Xu, Yilin; Gao, Xin D; Lee, Jae-Hyung; Huang, Huilin; Tan, Haiyan; Ahn, Jaegyoon; Reinke, Lauren M; Peter, Marcus E; Feng, Yue; Gius, David; Siziopikou, Kalliopi P; Peng, Junmin; Xiao, Xinshu; Cheng, Chonghui

    2014-06-01

    Tumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT). Genome-wide deep sequencing analysis suggests that hnRNPM potentiates TGFβ signaling and identifies CD44 as a key downstream target of hnRNPM. hnRNPM ablation prevents TGFβ-induced EMT and inhibits breast cancer metastasis in mice, whereas enforced expression of the specific CD44 standard (CD44s) splice isoform overrides the loss of hnRNPM and permits EMT and metastasis. Mechanistically, we demonstrate that the ubiquitously expressed hnRNPM acts in a mesenchymal-specific manner to precisely control CD44 splice isoform switching during EMT. This restricted cell-type activity of hnRNPM is achieved by competition with ESRP1, an epithelial splicing regulator that binds to the same cis-regulatory RNA elements as hnRNPM and is repressed during EMT. Importantly, hnRNPM is associated with aggressive breast cancer and correlates with increased CD44s in patient specimens. These findings demonstrate a novel molecular mechanism through which tumor metastasis is endowed by the hnRNPM-mediated splicing program.

  12. Effect of 5-fluorouracil incorporation into pre-mRNA on RNA splicing in vitro

    SciTech Connect

    Doong, S.L.

    1988-01-01

    5-Fluorouracil(FUra) has been proven useful in the chemotherapy of a number of cancers. The mechanism underlying its cytotoxicity is controversial. We are interested in studying the FUra effect on the fidelity of the pre-mRNA splicing process. ({sup 32}P)-labeled human {beta}-globin pre-mRNA containing the first two exons and the first intervening sequence was synthesized in the presence of UTP, FUTP, or both. The appearance of a new minor spliced product was dependent on both the pH of the splicing reaction and the extent of FUra incorporation into pre-mRNA. At least 84% substitution of U by FUra was required to observe the presence of the abnormal splicing pathway. The new spliced product was sequenced and found to contain an additional 20 bases derived from the 3{prime} end of the intervening sequence. Nearest neighbor analysis, RNase T{sub 1} fingerprinting, and short primer extension experiments were carried out to assess the extent of transcription infidelity induced by FUra. Site directed mutagenesis was performed to determine the sequence(s) of FUra substitution which contribute to missplicing in vitro.

  13. RNA Trans-Splicing Targeting Endogenous β-Globin Pre-Messenger RNA in Human Erythroid Cells.

    PubMed

    Uchida, Naoya; Washington, Kareem N; Mozer, Brian; Platner, Charlotte; Ballantine, Josiah; Skala, Luke P; Raines, Lydia; Shvygin, Anna; Hsieh, Matthew M; Mitchell, Lloyd G; Tisdale, John F

    2017-02-14

    Sickle cell disease results from a point mutation in exon 1 of the β-globin gene (total 3 exons). Replacing sickle β-globin exon 1 (and exon 2) with a normal sequence by trans-splicing is a potential therapeutic strategy. Therefore, this study sought to develop trans-splicing targeting β-globin pre-messenger RNA among human erythroid cells. Binding domains from random β-globin sequences were comprehensively screened. Six candidates had optimal binding, and all targeted intron 2. Next, lentiviral vectors encoding RNA trans-splicing molecules were constructed incorporating a unique binding domain from these candidates, artificial 5' splice site, and γ-globin cDNA, and trans-splicing was evaluated in CD34(+) cell-derived erythroid cells from healthy individuals. Lentiviral transduction was efficient, with vector copy numbers of 9.7 to 15.3. The intended trans-spliced RNA product, including exon 3 of endogenous β-globin and γ-globin, was detected at the molecular level. Trans-splicing efficiency was improved to 0.07-0.09% by longer binding domains, including the 5' splice site of intron 2. In summary, screening was performed to select efficient binding domains for trans-splicing. Detectable levels of trans-splicing were obtained for endogenous β-globin RNA in human erythroid cells. These methods provide the basis for future trans-splicing directed gene therapy.

  14. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy

    PubMed Central

    Du, Hongqing; Cline, Melissa S.; Osborne, Robert J.; Tuttle, Daniel L.; Clark, Tyson A.; Donohue, John Paul; Hall, Megan P.; Shiue, Lily; Swanson, Maurice S.; Thornton, Charles A.; Ares, Manuel

    2009-01-01

    Myotonic dystrophy (DM1) is associated with expression of expanded CTG DNA repeats as RNA (CUGexp RNA). To test whether CUGexp RNA creates a global splicing defect, we compared skeletal muscle of two mouse DM1 models, one expressing a CTGexp transgene, and another homozygous for a defective Mbnl1 gene. Strong correlation in splicing changes for ~100 new Mbnl1-regulated exons indicates loss of Mbnl1 explains >80% of the splicing pathology due to CUGexp RNA. In contrast, only about half of mRNA level changes can be attributed to loss of Mbnl1, indicating CUGexp RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix (ECM) proteins. We propose that CUGexp RNA causes two separate effects: loss of Mbnl1 function, disrupting splicing, and loss of another function that disrupts ECM mRNA regulation, possibly mediated by MBNL2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies. PMID:20098426

  15. Polymorphism of alternative splicing of major histocompatibility complex transcripts in wild tiger salamanders.

    PubMed

    Bulut, Zafer; McCormick, Cory R; Bos, David H; DeWoody, J Andrew

    2008-07-01

    Alternative splicing (AS) of mRNA transcripts is increasingly recognized as a source of transcriptome diversity. To date, most AS studies have focused either on comparisons across taxa or on intragenomic comparisons across gene families. We generated a novel data set that represents one of the first population genetic comparisons of AS across individuals. In ambystomatid salamanders, AS of the major histocompatibility complex (MHC) class IIbeta gene (Amti-DAB) produces two transcripts, one full-length and one truncated. The full-length transcript is functional, but the truncated transcript is missing the critical beta1 domain that forms half of the peptide binding region in the intact MHC class II molecule. We captured wild salamander larvae (Ambystoma tigrinum tigrinum) and genotyped them at Amti-DAB via DNA sequencing. From these same larvae, we extracted RNA from gill and spleen and evaluated the relative expression level of Amti-DAB in each tissue. Across individuals, 21% of the transcripts were truncated (alternatively spliced), and the absolute level of alternative transcript expression was higher in gill. The high level of nucleotide variation among seven Amti-DAB alleles provides the ability to detect substitutions (or linked DNA polymorphisms) that might have influenced AS. The data reveal no correlation between AS and haplotype, allele, or zygosity. However, indirect evidence (comparative expression patterns across 3 million years