Sample records for alters brain development

  1. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism.

    PubMed

    Ferris, Heather A; Perry, Rachel J; Moreira, Gabriela V; Shulman, Gerald I; Horton, Jay D; Kahn, C Ronald

    2017-01-31

    Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function.

  2. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism

    PubMed Central

    Ferris, Heather A.; Perry, Rachel J.; Moreira, Gabriela V.; Shulman, Gerald I.; Horton, Jay D.; Kahn, C. Ronald

    2017-01-01

    Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function. PMID:28096339

  3. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  4. [The child's brain: normal (unaltered) development and development altered by perinatal injury].

    PubMed

    Marín-Padilla, Miguel

    2013-09-06

    In this study we analyse some of the morphological and functional aspects of normal and altered development (the latter due to perinatal injury) in the child's brain. Both normal and altered development are developmental processes that progressively interconnect the different regions. The neuropathological development of subpial and periventricular haemorrhages, as well as that of white matter infarct, are analysed in detail. Any kind of brain damage causes a local lesion with possible remote repercussions. All the components (neurons, fibres, blood capillaries and neuroglias) of the affected region undergo alterations. Those that are destroyed are eliminated by the inflammatory process and those that survive are transformed. The pyramidal neurons with amputated apical dendrites are transformed and become stellate cells, the axonal terminals and those of the radial glial cells are regenerated and the region involved is reinnervated and revascularised with an altered morphology and function (altered local corticogenesis). The specific microvascular system of the grey matter protects its neurons from infarction of the white matter. Although it survives, the grey matter is left disconnected from the afferent and efferent fibres, amputated by the infarct with alterations affecting its morphology and possibly its functioning (altered local corticogenesis). Any local lesion can modify the morphological and functional development of remote regions that are functionally interconnected with it (altered remote corticogenesis). We suggest that any local brain injury can alter the morphology and functioning of the regions that are morphologically and functionally interconnected with it and thus end up affecting the child's neurological and psychological development. These changes can cross different regions of the brain (epileptic auras) and, if they eventually reach the motor region, will give rise to the motor storm that characterises epilepsy.

  5. Early alterations of social brain networks in young children with autism

    PubMed Central

    Kojovic, Nada; Rihs, Tonia Anahi; Jan, Reem Kais; Franchini, Martina; Plomp, Gijs; Vulliemoz, Serge; Eliez, Stephan; Michel, Christoph Martin; Schaer, Marie

    2018-01-01

    Social impairments are a hallmark of Autism Spectrum Disorders (ASD), but empirical evidence for early brain network alterations in response to social stimuli is scant in ASD. We recorded the gaze patterns and brain activity of toddlers with ASD and their typically developing peers while they explored dynamic social scenes. Directed functional connectivity analyses based on electrical source imaging revealed frequency specific network atypicalities in the theta and alpha frequency bands, manifesting as alterations in both the driving and the connections from key nodes of the social brain associated with autism. Analyses of brain-behavioural relationships within the ASD group suggested that compensatory mechanisms from dorsomedial frontal, inferior temporal and insular cortical regions were associated with less atypical gaze patterns and lower clinical impairment. Our results provide strong evidence that directed functional connectivity alterations of social brain networks is a core component of atypical brain development at early stages of ASD. PMID:29482718

  6. Growth-Related Neural Reorganization and the Autism Phenotype: A Test of the Hypothesis that Altered Brain Growth Leads to Altered Connectivity

    ERIC Educational Resources Information Center

    Lewis, John D.; Elman, Jeffrey L.

    2008-01-01

    Theoretical considerations, and findings from computational modeling, comparative neuroanatomy and developmental neuroscience, motivate the hypothesis that a deviant brain growth trajectory will lead to deviant patterns of change in cortico-cortical connectivity. Differences in brain size during development will alter the relative cost and…

  7. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    PubMed

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life. Copyright © 2015 the authors 0270-6474/15/3510822-10$15.00/0.

  8. Perinatal Asphyxia and Brain Development: Mitochondrial Damage Without Anatomical or Cellular Losses.

    PubMed

    Lima, Jean Pierre Mendes; Rayêe, Danielle; Silva-Rodrigues, Thaia; Pereira, Paula Ribeiro Paes; Mendonca, Ana Paula Miranda; Rodrigues-Ferreira, Clara; Szczupak, Diego; Fonseca, Anna; Oliveira, Marcus F; Lima, Flavia Regina Souza; Lent, Roberto; Galina, Antonio; Uziel, Daniela

    2018-03-26

    Perinatal asphyxia remains a significant cause of neonatal mortality and is associated with long-term neurodegenerative disorders. In the present study, we evaluated cellular and subcellular damages to brain development in a model of mild perinatal asphyxia. Survival rate in the experimental group was 67%. One hour after the insult, intraperitoneally injected Evans blue could be detected in the fetuses' brains, indicating disruption of the blood-brain barrier. Although brain mass and absolute cell numbers (neurons and non-neurons) were not reduced after perinatal asphyxia immediately and in late brain development, subcellular alterations were detected. Cortical oxygen consumption increased immediately after asphyxia, and remained high up to 7 days, returning to normal levels after 14 days. We observed an increased resistance to mitochondrial membrane permeability transition, and calcium buffering capacity in asphyxiated animals from birth to 14 days after the insult. In contrast to ex vivo data, mitochondrial oxygen consumption in primary cell cultures of neurons and astrocytes was not altered after 1% hypoxia. Taken together, our results demonstrate that although newborns were viable and apparently healthy, brain development is subcellularly altered by perinatal asphyxia. Our findings place the neonate brain mitochondria as a potential target for therapeutic protective interventions.

  9. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis.

    PubMed

    Kight, Katherine E; McCarthy, Margaret M

    2014-12-01

    Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia.

    PubMed

    Kesby, James P; Cui, Xiaoying; Burne, Thomas H J; Eyles, Darryl W

    2013-01-01

    Schizophrenia is a heterogeneous group of disorders with unknown etiology. Although abnormalities in multiple neurotransmitter systems have been linked to schizophrenia, alterations in dopamine (DA) neurotransmission remain central to the treatment of this disorder. Given that schizophrenia is considered a neurodevelopmental disorder we have hypothesized that abnormal DA signaling in the adult patient may result from altered DA signaling during fetal brain development. Environmental and genetic risk factors can be modeled in rodents to allow for the investigation of early neurodevelopmental pathogenesis that may lead to clues into the etiology of schizophrenia. To address this we created an animal model of one such risk factor, developmental vitamin D (DVD) deficiency. DVD-deficient adult rats display an altered behavioral profile in response to DA releasing and blocking agents that are reminiscent of that seen in schizophrenia patients. Furthermore, developmental studies revealed that DVD deficiency also altered cell proliferation, apoptosis, and neurotransmission across the embryonic brain. In particular, DVD deficiency reduces the expression of crucial dopaminergic specification factors and alters DA metabolism in the developing brain. We speculate such alterations in fetal brain development may change the trajectory of DA neuron ontogeny to induce the behavioral abnormalities observed in adult offspring. The widespread evidence that both dopaminergic and structural changes are present in people who develop schizophrenia prior to onset also suggest that early alterations in development are central to the disease. Taken together, early alterations in DA ontogeny may represent a core feature in the pathology of schizophrenia. Such a mechanism could bring together evidence from multiple risk factors and genetic vulnerabilities to form a convergent pathway in disease pathophysiology.

  11. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    PubMed

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  12. Metabolic alterations in developing brain after injury – knowns and unknowns

    PubMed Central

    McKenna, Mary C.; Scafidi, Susanna; Robertson, Courtney L.

    2016-01-01

    Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed. PMID:26148530

  13. Altered Network Oscillations and Functional Connectivity Dynamics in Children Born Very Preterm.

    PubMed

    Moiseev, Alexander; Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Grunau, Ruth E

    2015-09-01

    Structural brain connections develop atypically in very preterm children, and altered functional connectivity is also evident in fMRI studies. Such alterations in brain network connectivity are associated with cognitive difficulties in this population. Little is known, however, about electrophysiological interactions among specific brain networks in children born very preterm. In the present study, we recorded magnetoencephalography while very preterm children and full-term controls performed a visual short-term memory task. Regions expressing task-dependent activity changes were identified using beamformer analysis, and inter-regional phase synchrony was calculated. Very preterm children expressed altered regional recruitment in distributed networks of brain areas, across standard physiological frequency ranges including the theta, alpha, beta and gamma bands. Reduced oscillatory synchrony was observed among task-activated brain regions in very preterm children, particularly for connections involving areas critical for executive abilities, including middle frontal gyrus. These findings suggest that inability to recruit neurophysiological activity and interactions in distributed networks including frontal regions may contribute to difficulties in cognitive development in children born very preterm.

  14. Anatomy and Physiology of the Blood-Brain Barrier

    PubMed Central

    Serlin, Yonatan; Shelef, Ilan; Knyazer, Boris; Friedman, Alon

    2015-01-01

    Essential requisite for the preservation of normal brain activity is to maintain a narrow and stable homeostatic control in the neuronal environment of the CNS. Blood flow alterations and altered vessel permeability are considered key determinants in the pathophysiology of brain injuries. We will review the present-day literature on the anatomy, development and physiological mechanisms of the blood-brain barrier, a distinctive and tightly regulated interface between the CNS and the peripheral circulation, playing a crucial role in the maintenance of the strict environment required for normal brain function. PMID:25681530

  15. Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling.

    PubMed

    Kozberg, Mariel G; Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Hillman, Elizabeth M C

    2016-06-22

    In the adult brain, increases in neural activity lead to increases in local blood flow. However, many prior measurements of functional hemodynamics in the neonatal brain, including functional magnetic resonance imaging (fMRI) in human infants, have noted altered and even inverted hemodynamic responses to stimuli. Here, we demonstrate that localized neural activity in early postnatal mice does not evoke blood flow increases as in the adult brain, and elucidate the neural and metabolic correlates of these altered functional hemodynamics as a function of developmental age. Using wide-field GCaMP imaging, the development of neural responses to somatosensory stimulus is visualized over the entire bilaterally exposed cortex. Neural responses are observed to progress from tightly localized, unilateral maps to bilateral responses as interhemispheric connectivity becomes established. Simultaneous hemodynamic imaging confirms that spatiotemporally coupled functional hyperemia is not present during these early stages of postnatal brain development, and develops gradually as cortical connectivity is established. Exploring the consequences of this lack of functional hyperemia, measurements of oxidative metabolism via flavoprotein fluorescence suggest that neural activity depletes local oxygen to below baseline levels at early developmental stages. Analysis of hemoglobin oxygenation dynamics at the same age confirms oxygen depletion for both stimulus-evoked and resting-state neural activity. This state of unmet metabolic demand during neural network development poses new questions about the mechanisms of neurovascular development and its role in both normal and abnormal brain development. These results also provide important insights for the interpretation of fMRI studies of the developing brain. This work demonstrates that the postnatal development of neuronal connectivity is accompanied by development of the mechanisms that regulate local blood flow in response to neural activity. Novel in vivo imaging reveals that, in the developing mouse brain, strong and localized GCaMP neural responses to stimulus fail to evoke local blood flow increases, leading to a state in which oxygen levels become locally depleted. These results demonstrate that the development of cortical connectivity occurs in an environment of altered energy availability that itself may play a role in shaping normal brain development. These findings have important implications for understanding the pathophysiology of abnormal developmental trajectories, and for the interpretation of functional magnetic resonance imaging data acquired in the developing brain. Copyright © 2016 the authors 0270-6474/16/366704-14$15.00/0.

  16. Sex and the Migraine Brain

    PubMed Central

    Borsook, D; Erpelding, N; Lebel, A; Linnman, C; Veggeberg, R; Grant, PE; Buettner, C; Becerra, L; Burstein, R

    2014-01-01

    The brain responds differently to environmental and internal signals that relates to the stage of development of neural systems. While genetic and epigenetic factors contribute to a premorbid state, hormonal fluctuations in women may alter the set point of migraine. The cyclic surges of gonadal hormones may directly alter neuronal, glial and astrocyte function throughout the brain. Estrogen is mainly excitatory and progesterone inhibitory on brain neuronal systems. These changes contribute to the allostatic load of the migraine condition that most notably starts at puberty in girls. PMID:24662368

  17. Cytokines and the neurodevelopmental basis of mental illness

    PubMed Central

    Ratnayake, Udani; Quinn, Tracey; Walker, David W.; Dickinson, Hayley

    2013-01-01

    Epidemiological studies suggest that prenatal exposure to different types of viral or bacterial infections may be associated with similar outcomes; i.e., an increased risk of mental illness disorders in the offspring. Infections arising from various causes have similar debilitating effects in later life, suggesting that the exact pathogen may not be the critical factor in determining the neurological and cognitive outcome in the offspring. Instead, it is thought that response of the innate immune system, specifically the increased production of inflammatory cytokines, may be the critical mediator in altering fetal brain development pre-disposing the offspring to mental illness disorders later in life. Inflammatory cytokines are essential for normal brain development. Factors such as the site of cytokine production, a change in balance between anti- and pro- inflammatory cytokines, placental transfer of cytokines, the effects of cytokines on glial cells, and the effects of glucocorticoids are important when evaluating the impact of maternal infection on fetal brain development. Although it is clear that cytokines are altered in the fetal brain following maternal infection, further evidence is required to determine if cytokines are the critical factor that alters the trajectory of brain development, subsequently leading to postnatal behavioral and neurological abnormalities. PMID:24146637

  18. Choline availability during embryonic development alters the localization of calretinin in developing and aging mouse hippocampus.

    PubMed

    Albright, Craig D; Siwek, Donald F; Craciunescu, Corneliu N; Mar, Mei-Heng; Kowall, Neil W; Williams, Christina L; Zeisel, Steven H

    2003-04-01

    Choline availability in the diet during pregnancy alters fetal brain biochemistry with resulting behavioral changes that persist throughout the lifetime of the offspring. In the present study, the effects of dietary choline on the onset of GABAergic neuronal differentiation in developing fetal brain, as demarcated by the expression of calcium binding protein calretinin, are described. In these studies, timed-pregnant mice were fed choline supplemented, control or choline deficient AIN-76 diet from day 12-17 of pregnancy and the brains of their fetuses were studied on day 17 of gestation. In the primordial dentate gyrus, we found that pups from choline deficient-dams had more calretinin protein (330% increase), and pups from choline supplemented-dams had less calretinin protein (70% decrease), than did pups from control-dams. Importantly, decreased calretinin protein was still detectable in hippocampus in aged, 24-month-old mice, born of choline supplemented-dams and maintained since birth on a control diet. Thus, alterations in the level of calretinin protein in fetal brain hippocampus could underlie the known, life long effects of maternal dietary choline availability on brain development and behavior.

  19. THE EFFECTS OF LOW DOSE PTU ON ENDPOINTS OF THYROID HORMONE ACTION IN THE DEVELOPING BRAIN.

    EPA Science Inventory

    Thyroid hormone (TH) is essential for normal brain development. Therefore, there is concern that any factor that reduces TH levels may permanently alter brain development. As part of an EPA Cooperative Agreement, the goal of this work was to characterize the degree to which cir...

  20. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    PubMed

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  1. Early endocrine alterations reflect prolonged stress and relate to 1-year functional outcome in patients with severe brain injury.

    PubMed

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette; Liebach, Annette; Feldt-Rasmussen, Ulla

    2015-06-01

    Severe brain injury may increase the risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective of the present study was to assess the pattern and prevalence of pituitary hormone alterations 3 months after a severe brain injury with relation to functional outcome at a 1-year follow-up. Prospective study at a tertiary university referral centre. A total of 163 patients admitted to neurorehabilitation after severe traumatic brain injury (TBI, n=111) or non-TBI (n=52) were included. The main outcome measures were endocrine alterations 3.3 months (median) after the brain injury and their relationship to the functioning and ability of the patients at a 1-year follow-up, as measured by the Functional Independence Measure and the Glasgow Outcome Scale-Extended. Three months after the injury, elevated stress hormones (i.e. 30 min stimulated cortisol, prolactin and/or IGF1) and/or suppressed gonadal or thyroid hormones were recorded in 68 and 32% of the patients respectively. At 1 year after the injury, lower functioning level (Functional Independence Measure) and lower capability of performing normal life activities (Glasgow Outcome Scale-Extended) were related to both the elevated stress hormones (P≤0.01) and the reduced gonadal and/or thyroid hormones (P≤0.01) measured at 3 months. The present study suggests that brain injury-related endocrine alterations that mimic secondary hypogonadism and hypothyroidism and that occur with elevated stress hormones most probably reflect a prolonged stress response 2-5 months after severe brain injury, rather than pituitary insufficiency per se. These endocrine alterations thus seem to reflect a more severe disease state and relate to 1-year functional outcome. © 2015 European Society of Endocrinology.

  2. PERINATAL EXPOSURE TO POLYCHLORINATED BIPHENYLS AROCLOR 1016 OR 1254 DID NOT ALTER BRAIN CATECHOLAMINES NOR DELAYED ALTERNATION PERFORMANCE IN LONG EVANS RATS

    EPA Science Inventory

    Several reports have indicated that polychlorinated biphenyls (PCB) altered development of biogenic amine systems in the brain, impaired behavioral performances and disrupted maturation of the thyroid axis. The current study examines whether these developmental effects of PCB ar...

  3. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age

    PubMed Central

    Doesburg, Sam M.; Chau, Cecil M.; Cheung, Teresa P.L.; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T.; Miller, Steven P.; Cepeda, Ivan L.; Synnes, Anne; Grunau, Ruth E.

    2013-01-01

    Children born very prematurely (≤32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; ≤28 weeks) may have heightened vulnerability to neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal painrelated stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. PMID:23711638

  4. In Utero Administration of Drugs Targeting Microglia Improves the Neurodevelopmental Outcome Following Cytomegalovirus Infection of the Rat Fetal Brain

    PubMed Central

    Cloarec, Robin; Bauer, Sylvian; Teissier, Natacha; Schaller, Fabienne; Luche, Hervé; Courtens, Sandra; Salmi, Manal; Pauly, Vanessa; Bois, Emilie; Pallesi-Pocachard, Emilie; Buhler, Emmanuelle; Michel, François J.; Gressens, Pierre; Malissen, Marie; Stamminger, Thomas; Streblow, Daniel N.; Bruneau, Nadine; Szepetowski, Pierre

    2018-01-01

    Congenital cytomegalovirus (CMV) infections represent one leading cause of neurodevelopmental disorders. Recently, we reported on a rat model of CMV infection of the developing brain in utero, characterized by early and prominent infection and alteration of microglia—the brain-resident mononuclear phagocytes. Besides their canonical function against pathogens, microglia are also pivotal to brain development. Here we show that CMV infection of the rat fetal brain recapitulated key postnatal phenotypes of human congenital CMV including increased mortality, sensorimotor impairment reminiscent of cerebral palsy, hearing defects, and epileptic seizures. The possible influence of early microglia alteration on those phenotypes was then questioned by pharmacological targeting of microglia during pregnancy. One single administration of clodronate liposomes in the embryonic brains at the time of CMV injection to deplete microglia, and maternal feeding with doxycyxline throughout pregnancy to modify microglia in the litters' brains, were both associated with dramatic improvements of survival, body weight gain, sensorimotor development and with decreased risk of epileptic seizures. Improvement of microglia activation status did not persist postnatally after doxycycline discontinuation; also, active brain infection remained unchanged by doxycycline. Altogether our data indicate that early microglia alteration, rather than brain CMV load per se, is instrumental in influencing survival and the neurological outcomes of CMV-infected rats, and suggest that microglia might participate in the neurological outcome of congenital CMV in humans. Furthermore this study represents a first proof-of-principle for the design of microglia-targeted preventive strategies in the context of congenital CMV infection of the brain. PMID:29559892

  5. Schizophrenia, vitamin D, and brain development.

    PubMed

    Mackay-Sim, Alan; Féron, François; Eyles, Darryl; Burne, Thomas; McGrath, John

    2004-01-01

    Schizophrenia research is invigorated at present by the recent discovery of several plausible candidate susceptibility genes identified from genetic linkage and gene expression studies of brains from persons with schizophrenia. It is a current challenge to reconcile this gathering evidence for specific candidate susceptibility genes with the "neurodevelopmental hypothesis," which posits that schizophrenia arises from gene-environment interactions that disrupt brain development. We make the case here that schizophrenia may result not from numerous genes of small effect, but a few genes of transcriptional regulation acting during brain development. In particular we propose that low vitamin D during brain development interacts with susceptibility genes to alter the trajectory of brain development, probably by epigenetic regulation that alters gene expression throughout adult life. Vitamin D is an attractive "environmental" candidate because it appears to explain several key epidemiological features of schizophrenia. Vitamin D is an attractive "genetic" candidate because its nuclear hormone receptor regulates gene expression and nervous system development. The polygenic quality of schizophrenia, with linkage to many genes of small effect, maybe brought together via this "vitamin D hypothesis." We also discuss the possibility of a broader set of environmental and genetic factors interacting via the nuclear hormone receptors to affect the development of the brain leading to schizophrenia.

  6. Effects of early serotonin programming on behavior and central monoamine concentrations in an avian model

    USDA-ARS?s Scientific Manuscript database

    Serotonin (5-HT) acts as a neurogenic compound in the developing brain; however serotonin altering drugs such as SSRIs are often prescribed to pregnant and lactating mothers. Early agonism of 5-HT receptors could alter the development of serotonergic circuitry, altering neurotransmission and behavio...

  7. Microstructural and functional connectivity in the developing preterm brain

    PubMed Central

    Lubsen, Julia; Vohr, Betty; Myers, Eliza; Hampson, Michelle; Lacadie, Cheryl; Schneider, Karen C.; Katz, Karol H.; Constable, R. Todd; Ment, Laura R.

    2011-01-01

    Prematurely born children are at increased risk for cognitive deficits, but the neurobiological basis of these findings remains poorly understood. Since variations in neural circuitry may influence performance on cognitive tasks, recent investigations have explored the impact of preterm birth on connectivity in the developing brain. Diffusion tensor imaging studies demonstrate widespread alterations in fractional anisotropy, a measure of axonal integrity and microstructural connectivity, throughout the developing preterm brain. Functional connectivity studies report that preterm neonates, children and adolescents exhibit alterations in both resting state and task-based connectivity when compared to term control subjects. Taken together, these data suggest that neurodevelopmental impairment following preterm birth may represent a disease of neural connectivity. PMID:21255705

  8. Radiopharmaceuticals for Assessment of Altered Metabolism and Biometal Fluxes in Brain Aging and Alzheimer's Disease with Positron Emission Tomography.

    PubMed

    Xie, Fang; Peng, Fangyu

    2017-01-01

    Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.

  9. Potential protective effects of cannabidiol on neuroanatomical alterations in cannabis users and psychosis: a critical review.

    PubMed

    Hermann, Derik; Schneider, Miriam

    2012-01-01

    Cannabis use and the development of schizophrenic psychoses share a variety of similarities. Both start during late adolescence; go along with neuropsychological deficits, reduced activity, motivation deficits, and hallucinations suggesting impairment of similar brain structures. In cannabis heavy users diminished regional gray and white matter volume was reported. Similar alterations were observed in the large literature addressing structural abnormalities in schizophrenia. Furthermore, in cannabis using schizophrenic patients, these brain alterations were especially pronounced. Close relatives of schizophrenic patients showed greater cannabis-associated brain tissue loss than non-relatives indicating a genetically mediated particular sensitivity to brain tissue loss. Possible mechanisms for the induction of structural brain alterations are here discussed including impairments of neurogenesis, disturbance of endocannabinoids and diminished neuroplasticity. Especially direct THC effects (or via endocannabinoids) may mediate diminished glutamatergic neurotransmission usually driving neuroplasticity. Correspondingly, alterations of the kynurenic acid blocking NMDA receptors may contribute to brain structure alterations. However, different cannabis compounds may exert opposite effects on the neuroanatomical changes underlying psychosis. In particular, cannabidiol (CBD) was shown to prevent THC associated hippocampal volume loss in a small pilot study. This finding is further supported by several animal experiments supporting neuroprotective properties of CBD mainly via anti-oxidative effects, CB2 receptors or adenosine receptors. We will discuss here the mechanisms by which CBD may reduce brain volume loss, including antagonism of THC, interactions with endocannabinoids, and mechanisms that specifically underlie antipsychotic properties of CBD.

  10. Smoking and the developing brain: altered white matter microstructure in attention-deficit/hyperactivity disorder and healthy controls.

    PubMed

    van Ewijk, Hanneke; Groenman, Annabeth P; Zwiers, Marcel P; Heslenfeld, Dirk J; Faraone, Stephen V; Hartman, Catharina A; Luman, Marjolein; Greven, Corina U; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan; Oosterlaan, Jaap

    2015-03-01

    Brain white matter (WM) tracts, playing a vital role in the communication between brain regions, undergo important maturational changes during adolescence and young adulthood, a critical period for the development of nicotine dependence. Attention-deficit/hyperactivity disorder (ADHD) is associated with increased smoking and widespread WM abnormalities, suggesting that the developing ADHD brain might be especially vulnerable to effects of smoking. This study aims to investigate the effect of smoking on (WM) microstructure in adolescents and young adults with and without ADHD. Diffusion tensor imaging was performed in an extensively phenotyped sample of nonsmokers (n = 95, 50.5% ADHD), irregular smokers (n = 41, 58.5% ADHD), and regular smokers (n = 50, 82.5% ADHD), aged 14-24 years. A whole-brain voxelwise approach investigated associations of smoking, ADHD and their interaction, with WM microstructure as measured by fractional anisotropy (FA) and mean diffusivity (MD). Widespread alterations in FA and MD were found for regular smokers compared to irregular and nonsmokers, mainly located in the corpus callosum and WM tracts surrounding the basal ganglia. Several regions overlapped with regions of altered FA for ADHD versus controls, albeit in different directions. Irregular and nonsmokers did not differ, and ADHD and smoking did not interact. Results implicate that smoking and ADHD have independent effects on WM microstructure, and possibly do not share underlying mechanisms. Two mechanisms may play a role in the current results. First, smoking may cause alterations in WM microstructure in the maturing brain. Second, pre-existing WM microstructure differences possibly reflect a risk factor for development of a smoking addiction. © 2014 Wiley Periodicals, Inc.

  11. Alterations in Sociability and Functional Brain Connectivity Caused by Early-Life Seizures is Reversed by Bumetanide

    PubMed Central

    Holmes, Gregory L.; Tian, Chengju; Hernan, Amanda E.; Flynn, Sean; Camp, Devon; Barry, Jeremy

    2015-01-01

    There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P) day 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure threshold. Taken together these findings indicate that early-life seizures alter the development of oscillations and result in autistic-like behaviors. The altered communication between these brain regions could reflect the physiological underpinnings underlying social cognitive deficits seen in autism spectrum disorders. PMID:25766676

  12. Maternal Brain Reactive Antibodies and Autism Spectrum Disorder

    DTIC Science & Technology

    2016-10-01

    a child with ASD can affect fetal brain development and lead to behaviors analogous to ASD phenotypes. These studies indeed move the field forward...from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry 3, e278 (2013). 6...maternal immune contribution has been the focus of studies demonstrating that autoimmune disorders, infections, and maternal brain-reactive antibodies

  13. Transgenerational Epigenetic Programming of the Brain Transcriptome and Anxiety Behavior

    PubMed Central

    Skinner, Michael K.; Anway, Matthew D.; Savenkova, Marina I.; Gore, Andrea C.; Crews, David

    2008-01-01

    Embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Further analysis of this transgenerational phenotype on the brain demonstrated reproducible changes in the brain transcriptome three generations (F3) removed from the exposure. The transgenerational alterations in the male and female brain transcriptomes were distinct. In the males, the expression of 92 genes in the hippocampus and 276 genes in the amygdala were transgenerationally altered. In the females, the expression of 1,301 genes in the hippocampus and 172 genes in the amygdala were transgenerationally altered. Analysis of specific gene sets demonstrated that several brain signaling pathways were influenced including those involved in axon guidance and long-term potentiation. An investigation of behavior demonstrated that the vinclozolin F3 generation males had a decrease in anxiety-like behavior, while the females had an increase in anxiety-like behavior. These observations demonstrate that an embryonic exposure to an environmental compound appears to promote a reprogramming of brain development that correlates with transgenerational sex-specific alterations in the brain transcriptomes and behavior. Observations are discussed in regards to environmental and transgenerational influences on the etiology of brain disease. PMID:19015723

  14. Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard

    2016-04-01

    The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Overcrowding-mediated stress alters cell proliferation in key neuroendocrine areas during larval development in Rhinella arenarum.

    PubMed

    Distler, Mijal J; Jungblut, Lucas D; Ceballos, Nora R; Paz, Dante A; Pozzi, Andrea G

    2016-02-01

    Exposure to adverse environmental conditions can elicit a stress response, which results in an increase in endogenous corticosterone levels. In early life stages, it has been thoroughly demonstrated that amphibian larval growth and development is altered as a consequence of chronic stress by interfering with the metamorphic process, however, the underlying mechanisms involved have only been partially disentangled. We examined the effect of intraspecific competition on corticosterone levels during larval development of the toad Rhinella arenarum and its ultimate effects on cell proliferation in particular brain areas as well as the pituitary gland. While overcrowding altered the number of proliferating cells in the pituitary gland, hypothalamus, and third ventricle of the brain, no differences were observed in areas which are less associated with neuroendocrine processes, such as the first ventricle of the brain. Apoptosis was increased in hypothalamic regions but not in the pituitary. With regards to pituitary cell populations, thyrotrophs but not somatoatrophs and corticotrophs showed a decrease in the cell number in overcrowded larvae. Our study shows that alterations in growth and development, produced by stress, results from an imbalance in the neuroendocrine systems implicated in orchestrating the timing of metamorphosis. © 2016 Wiley Periodicals, Inc.

  16. Nicotine during pregnancy: changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention.

    PubMed

    Kohlmeier, K A

    2015-06-01

    Prenatal exposure to nicotine, occurring either via maternal smoking or via use of transdermal nicotine patches to facilitate cigarette abstinence by pregnant women, is associated with ∼ 13% of pregnancies worldwide. Nicotine exposure during gestation has been correlated with several negative physiological and psychosocial outcomes, including heightened risk for aberrant behaviors involving alterations in processing of attention as well as an enhanced liability for development of drug dependency. Nicotine is a terotogen, altering neuronal development of various neurotransmitter systems, and it is likely these alterations participate in postnatal deficits in attention control and facilitate development of drug addiction. This review discusses the alterations in neuronal development within the brain's major neurotransmitter systems, with special emphasis placed on alterations within the laterodorsal tegmental nucleus, in light of the role this cholinergic nucleus plays in attention and addiction. Changes induced within this nucleus by gestational exposure to nicotine, in combination with changes induced in other brain regions, are likely to contribute to the transgenerational burden imposed by nicotine. Although neuroplastic changes induced by nicotine are not likely to act in isolation, and are expected to interact with epigenetic changes induced by preconception exposure to drugs of abuse, unraveling these changes within the developing brain will facilitate eventual development of targeted treatments for the unique vulnerability for arousal disorders and development of addiction within the population of individuals who have been prenatally exposed to nicotine.

  17. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging.

    PubMed

    Uranga, Romina M; Bruce-Keller, Annadora J; Morrison, Christopher D; Fernandez-Kim, Sun Ok; Ebenezer, Philip J; Zhang, Le; Dasuri, Kalavathi; Keller, Jeffrey N

    2010-07-01

    Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.

  18. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age.

    PubMed

    Doesburg, Sam M; Chau, Cecil M; Cheung, Teresa P L; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Cepeda, Ivan L; Synnes, Anne; Grunau, Ruth E

    2013-10-01

    Children born very prematurely (< or =32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; < or =28 weeks) may have heightened vulnerability to neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal pain-related stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.

    PubMed

    Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L

    2016-06-01

    White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.

  20. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder

    PubMed Central

    Travers, Brittany G.; Adluru, Nagesh; Tromp, Do P.M.; Destiche, Daniel J.; Samsin, Danica; Prigge, Molly B.; Zielinski, Brandon A.; Fletcher, P. Thomas; Anderson, Jeffrey S.; Froehlich, Alyson L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.; Alexander, Andrew L.

    2016-01-01

    Abstract White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD. PMID:27021440

  1. Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy.

    PubMed

    Lei, Jun; Calvo, Pilar; Vigh, Richard; Burd, Irina

    2018-01-01

    Fetal brain development is known to be affected by adverse environmental exposures during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review introduces the physiologic autophagy pathways in the fetal brain. Next, methods to detect and monitor fetal brain autophagy activity are outlined. An additional discussion explores possible mechanisms by which environmental exposures during pregnancy alter fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity with the observed postnatal phenotype is attempted. Our main purpose is to provide the current understanding or a lack thereof mechanisms on autophagy, underlying the fetal brain injury exposed to environmental insults.

  2. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder

    PubMed Central

    Grabrucker, Stefanie; Haderspeck, Jasmin C.; Sauer, Ann Katrin; Kittelberger, Nadine; Asoglu, Harun; Abaei, Alireza; Rasche, Volker; Schön, Michael; Boeckers, Tobias M.; Grabrucker, Andreas M.

    2018-01-01

    A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD) patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD) mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1) in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice. PMID:29379414

  3. Early development of structural networks and the impact of prematurity on brain connectivity.

    PubMed

    Batalle, Dafnis; Hughes, Emer J; Zhang, Hui; Tournier, J-Donald; Tusor, Nora; Aljabar, Paul; Wali, Luqman; Alexander, Daniel C; Hajnal, Joseph V; Nosarti, Chiara; Edwards, A David; Counsell, Serena J

    2017-04-01

    Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25 +3 and 45 +6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. ErbB4 in Laminated Brain Structures: A Neurodevelopmental Approach to Schizophrenia

    PubMed Central

    Perez-Garcia, Carlos G.

    2015-01-01

    The susceptibility genes for schizophrenia Neuregulin-1 (NRG1) and ErbB4 have critical functions during brain development and in the adult. Alterations in the ErbB4 signaling pathway cause a variety of neurodevelopmental defects including deficiencies in neuronal migration, synaptic plasticity, and myelination. I have used the ErbB4-/- HER4heart KO mice to study the neurodevelopmental insults associated to deficiencies in the NRG1-ErbB4 signaling pathway and their potential implication with brain disorders such as schizophrenia, a chronic psychiatric disease affecting 1% of the population worldwide. ErbB4 deletion results in an array of neurodevelopmental deficits that are consistent with a schizophrenic model. First, similar defects appear in multiple brain structures, from the cortex to the cerebellum. Second, these defects affect multiple aspects of brain development, from deficits in neuronal migration to impairments in excitatory/inhibitory systems, including reductions in brain volume, cortical and cerebellar heterotopias, alterations in number and distribution of specific subpopulations of interneurons, deficiencies in the astrocytic and oligodendrocytic lineages, and additional insults in major brain structures. This suggests that alterations in specific neurodevelopmental genes that play similar functions in multiple neuroanatomical structures might account for some of the symptomatology observed in schizophrenic patients, such as defects in cognition. ErbB4 mutation uncovers flaws in brain development that are compatible with a neurodevelopmental model of schizophrenia, and it establishes a comprehensive model to study the basis of the disorder before symptoms are detected in the adult. PMID:26733804

  5. Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings.

    PubMed

    Bralten, Janita; Greven, Corina U; Franke, Barbara; Mennes, Maarten; Zwiers, Marcel P; Rommelse, Nanda N J; Hartman, Catharina; van der Meer, Dennis; O'Dwyer, Laurence; Oosterlaan, Jaap; Hoekstra, Pieter J; Heslenfeld, Dirk; Arias-Vasquez, Alejandro; Buitelaar, Jan K

    2016-06-01

    Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8-30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research.

  6. Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings

    PubMed Central

    Bralten, Janita; Greven, Corina U.; Franke, Barbara; Mennes, Maarten; Zwiers, Marcel P.; Rommelse, Nanda N.J.; Hartman, Catharina; van der Meer, Dennis; O’Dwyer, Laurence; Oosterlaan, Jaap; Hoekstra, Pieter J.; Heslenfeld, Dirk; Arias-Vasquez, Alejandro; Buitelaar, Jan K.

    2016-01-01

    Background Data on structural brain alterations in patients with attention-deficit/hyperactivity disorder (ADHD) have been inconsistent. Both ADHD and brain volumes have a strong genetic loading, but whether brain alterations in patients with ADHD are familial has been underexplored. We aimed to detect structural brain alterations in adolescents and young adults with ADHD compared with healthy controls. We examined whether these alterations were also found in their unaffected siblings, using a uniquely large sample. Methods We performed voxel-based morphometry analyses on MRI scans of patients with ADHD, their unaffected siblings and typically developing controls. We identified brain areas that differed between participants with ADHD and controls and investigated whether these areas were different in unaffected siblings. Influences of medication use, age, sex and IQ were considered. Results Our sample included 307 patients with ADHD, 169 unaffected siblings and 196 typically developing controls (mean age 17.2 [range 8–30] yr). Compared with controls, participants with ADHD had significantly smaller grey matter volume in 5 clusters located in the precentral gyrus, medial and orbitofrontal cortex, and (para)cingulate cortices. Unaffected siblings showed intermediate volumes significantly different from controls in 4 of these clusters (all except the precentral gyrus). Medication use, age, sex and IQ did not have an undue influence on the results. Limitations Our sample was heterogeneous, most participants with ADHD were taking medication, and the comparison was cross-sectional. Conclusion Brain areas involved in decision making, motivation, cognitive control and motor functioning were smaller in participants with ADHD than in controls. Investigation of unaffected siblings indicated familiality of 4 of the structural brain differences, supporting their potential in molecular genetic analyses in ADHD research. PMID:26679925

  7. Substance use modulates stress reactivity: Behavioral and physiological outcomes.

    PubMed

    Fosnocht, Anne Q; Briand, Lisa A

    2016-11-01

    Drug addiction is a major public health concern in the United States costing taxpayers billions in health care costs, lost productivity and law enforcement. However, the availability of effective treatment options remains limited. The development of novel therapeutics will not be possible without a better understanding of the addicted brain. Studies in both clinical and preclinical models indicate that chronic drug use leads to alterations in the body and brain's response to stress. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis may shed light on the ability of stress to increase vulnerability to relapse. Further, within both the HPA axis and limbic brain regions, corticotropin-releasing factor (CRF) is critically involved in the brain's response to stress. Alterations in both central and peripheral CRF activity seen following chronic drug use provide a mechanism by which substance use can alter stress reactivity, thus mediating addictive phenotypes. While many reviews have focused on how stress alters drug-mediated changes in physiology and behavior, the goal of this review is to focus on how substance use alters responses to stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    PubMed Central

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  9. Brain Connectivity Alterations Are Associated with the Development of Dementia in Parkinson's Disease.

    PubMed

    Bertrand, Josie-Anne; McIntosh, Anthony R; Postuma, Ronald B; Kovacevic, Natasha; Latreille, Véronique; Panisset, Michel; Chouinard, Sylvain; Gagnon, Jean-François

    2016-04-01

    Dementia affects a high proportion of Parkinson's disease (PD) patients and poses a burden on caregivers and healthcare services. Electroencephalography (EEG) is a common nonevasive and nonexpensive technique that can easily be used in clinical settings to identify brain functional abnormalities. Only few studies had identified EEG abnormalities that can predict PD patients at higher risk for dementia. Brain connectivity EEG measures, such as multiscale entropy (MSE) and phase-locking value (PLV) analyses, may be more informative and sensitive to brain alterations leading to dementia than previously used methods. This study followed 62 dementia-free PD patients for a mean of 3.4 years to identify cerebral alterations that are associated with dementia. Baseline resting state EEG of patients who developed dementia (N = 18) was compared to those of patients who remained dementia-free (N = 44) and of 37 healthy subjects. MSE and PLV analyses were performed. Partial least squares statistical analysis revealed group differences associated with the development of dementia. Patients who developed dementia showed higher signal complexity and lower PLVs in low frequencies (mainly in delta frequency) than patients who remained dementia-free and controls. Conversely, both patient groups showed lower signal variability and higher PLVs in high frequencies (mainly in gamma frequency) compared to controls, with the strongest effect in patients who developed dementia. These findings suggest that specific disruptions of brain communication can be measured before PD patients develop dementia, providing a new potential marker to identify patients at highest risk of developing dementia and who are the best candidates for neuroprotective trials.

  10. Alterations of parenchymal microstructure, neuronal connectivity and cerebrovascular resistance at adolescence following mild to moderate traumatic brain injury in early development.

    PubMed

    Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar

    2018-06-01

    TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.

  11. The Elsevier trophoblast research award lecture: Impacts of placental growth factor and preeclampsia on brain development, behaviour, and cognition.

    PubMed

    Rätsep, Matthew T; Hickman, Andrew F; Croy, B Anne

    2016-12-01

    Preeclampsia (PE) is a significant gestational disorder affecting 3-5% of all human pregnancies. In many PE pregnancies, maternal plasma is deficient in placental growth factor (PGF), a placentally-produced angiokine. Beyond immediate fetal risks associated with acute termination of the pregnancy, offspring of PE pregnancies (PE-F1) have higher long-term risks for hypertension, stroke, and cognitive impairment compared to F1s from uncomplicated pregnancies. At present, mechanisms that explain PE-F1 gains in postpartum risks are poorly understood. Our laboratory found that mice genetically-deleted for Pgf have altered fetal and adult brain vascular development. This is accompanied by sexually dimorphic alterations in anatomic structure in the adult Pgf -/- brain and impaired cognitive functions. We hypothesize that cerebrovascular and neurological aberrations occur in fetuses exposed to the progressive development of PE and that these brain changes impair cognitive functioning, enhance risk for stroke, elevate severity of stroke, and lead to worse stroke outcomes. These brain and placental outcomes may be linked to down-regulated PGF gene expression in early pre-implantation embryos, prior to gastrulation. This review explores our hypothesis that there are mechanistic links between low PGF detection in maternal plasma prodromal to PE, PE, and altered brain vascular, structural, and functional development amongst PE-F1s. We also include a summary of preliminary outcomes from a pilot study of 7-10 year old children that is the first to report magnetic resonance imaging, magnetic resonance angiography, and functional brain region assessment by eye movement control studies in PE-F1s. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Developmentally stable whole-brain volume reductions and developmentally sensitive caudate and putamen volume alterations in those with attention-deficit/hyperactivity disorder and their unaffected siblings.

    PubMed

    Greven, Corina U; Bralten, Janita; Mennes, Maarten; O'Dwyer, Laurence; van Hulzen, Kimm J E; Rommelse, Nanda; Schweren, Lizanne J S; Hoekstra, Pieter J; Hartman, Catharina A; Heslenfeld, Dirk; Oosterlaan, Jaap; Faraone, Stephen V; Franke, Barbara; Zwiers, Marcel P; Arias-Vasquez, Alejandro; Buitelaar, Jan K

    2015-05-01

    Attention-deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental disorder. It has been linked to reductions in total brain volume and subcortical abnormalities. However, owing to heterogeneity within and between studies and limited sample sizes, findings on the neuroanatomical substrates of ADHD have shown considerable variability. Moreover, it remains unclear whether neuroanatomical alterations linked to ADHD are also present in the unaffected siblings of those with ADHD. To examine whether ADHD is linked to alterations in whole-brain and subcortical volumes and to study familial underpinnings of brain volumetric alterations in ADHD. In this cross-sectional study, we included participants from the large and carefully phenotyped Dutch NeuroIMAGE sample (collected from September 2009-December 2012) consisting of 307 participants with ADHD, 169 of their unaffected siblings, and 196 typically developing control individuals (mean age, 17.21 years; age range, 8-30 years). Whole-brain volumes (total brain and gray and white matter volumes) and volumes of subcortical regions (nucleus accumbens, amygdala, caudate nucleus, globus pallidus, hippocampus, putamen, thalamus, and brainstem) were derived from structural magnetic resonance imaging scans using automated tissue segmentation. Regression analyses revealed that relative to control individuals, participants with ADHD had a 2.5% smaller total brain (β = -31.92; 95% CI, -52.69 to -11.16; P = .0027) and a 3% smaller total gray matter volume (β = -22.51; 95% CI, -35.07 to -9.96; P = .0005), while total white matter volume was unaltered (β = -10.10; 95% CI, -20.73 to 0.53; P = .06). Unaffected siblings had total brain and total gray matter volumes intermediate to participants with ADHD and control individuals. Significant age-by-diagnosis interactions showed that older age was linked to smaller caudate (P < .001) and putamen (P = .01) volumes (both corrected for total brain volume) in control individuals, whereas age was unrelated to these volumes in participants with ADHD and their unaffected siblings. Attention-deficit/hyperactivity disorder was not significantly related to the other subcortical volumes. Global differences in gray matter volume may be due to alterations in the general mechanisms underlying normal brain development in ADHD. The age-by-diagnosis interaction in the caudate and putamen supports the relevance of different brain developmental trajectories in participants with ADHD vs control individuals and supports the role of subcortical basal ganglia alterations in the pathophysiology of ADHD. Alterations in total gray matter and caudate and putamen volumes in unaffected siblings suggest that these volumes are linked to familial risk for ADHD.

  13. The interconnectivity of mind, brain, and behavior in altered states of consciousness: focus on shamanism.

    PubMed

    Wright, P A

    1995-07-01

    This paper examines possible interconnections between mind, brain, and behavior in the area of shamanism and altered states of consciousness. It offers a neurophysiological theory of shamanic altered states of consciousness that integrates theories by Mandell, Persinger, Prince, Winkelman, and Wright. Topics include the shamanic call and temporal lobe phenomena, possible neurological correlates of shamanic ecstasy, and the neurophysiological roles of endorphins, plant substances, and genetic factors in shamanic altered states of consciousness. The difficulty of developing such a theory because of the complexity of human physiology and psychological experience and because of the paucity of neurophysiological data from the field is acknowledged.

  14. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  15. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain###

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  16. Engineering the Brain: Ethical Issues and the Introduction of Neural Devices.

    PubMed

    Klein, Eran; Brown, Tim; Sample, Matthew; Truitt, Anjali R; Goering, Sara

    2015-01-01

    Neural devices now under development stand to interact with and alter the human brain in ways that may challenge standard notions of identity, normality, authority, responsibility, privacy and justice.

  17. Biochemical and hematological effects of lead ingestion in nestling American kestrels (Falco sparverius)

    USGS Publications Warehouse

    Hoffman, D.J.; Franson, J.C.; Pattee, O.H.; Bunck, C.M.; Murray, H.C.

    1985-01-01

    1. One-day old American kestrel (Faico sparverius) nestlings were orally dosed daily with 5 μl/g of corn oil (controls), 25, 125 or 625 mg/kg of metallic lead in corn oil for 10 days.2. Forty per cent of the nestlings receiving 625 mg/kg of lead died after 6 days and growth rates were significantly depressed in the two highest lead dosed groups. At 10 days hematocrit values were significantly lower in the two highest lead treated groups, and hemoglobin content and red blood cell (δ-aminolevulinic acid dehydratase (ALAD) activity was depressed in all lead treated groups. Plasma creatine phosphokinase decreased in the two highest treatment groups.3. Brain, liver and kidney ALAD activities, brain RNA to protein ratio and liver protein concentration decreased after lead exposure whereas liver DNA, DNA to RNA ratio and DNA to protein ratio increased. Brain monoamine oxidase and ATPase were not significantly altered.4. Measurements of the ontogeny of hematological variants and enzymes in normal development, using additional untreated nestlings, revealed decreases in red blood cell ALAD, plasma aspartate amino transferase, lactate dehydrogenase, brain DNA and RNA and liver DNA, whereas hematocrit, hemoglobin, plasma alkaline phosphatase, brain monoamine oxidase, brain ALAD and liver ALAD increased during the first 10 days of posthatching development.5. Biochemical and hematological alterations were more severe than those reported in adult kestrels or precocial young birds exposed to lead. Alterations may be due in part to delayed development.

  18. CHEMICALS THAT DISRUPT THE THYROID AXIS: COLLABORATION BETWEEN ORD AND STAR GRANT RECIPIENTS.

    EPA Science Inventory

    For effective regulation, the EPA must determine the potential adverse consequences of mild disturbances of the thyroid axis on brain development. Severe hypothyroidism has long been known to lead to profound alterations in brain development and mental retardation. However, the s...

  19. Comparison of a modified mid-coronal sectioning technique and Wilson's technique when conducting eye and brain examinations in rabbit teratology studies.

    PubMed

    Ziejewski, Mary K; Solomon, Howard M; Rendemonti, Joyce; Stanislaus, Dinesh

    2015-02-01

    There are two methods used when examining fetal rabbit eyes and brain in teratology studies. One method employs prior fixation before serial sectioning (Wilson's technique) and the other uses fresh tissue (mid-coronal sectioning). We modified the mid-coronal sectioning technique to include removal of eyes and brain for closer examination and to increase the number of structures that can be evaluated and compared it to the Wilson's technique. We found that external examination of the head, in conjunction with either sectioning method, is equally sensitive in identifying developmental defects. We evaluated 40,401 New Zealand White (NZW) and Dutch-Belted (DB) rabbit fetuses for external head alterations, of which 28,538 fetuses were further examined for eye and brain alterations using the modified mid-coronal sectioning method (16,675 fetuses) or Wilson's technique (11,863 fetuses). The fetuses were from vehicle control or drug-treated pregnant rabbits in embryo-fetal development studies conducted to meet international regulatory requirements for the development of new drugs. Both methods detected the more common alterations (microphthalmia and dilated lateral cerebral ventricles) and other less common findings (changes in size and/or shape of eye and brain structures). While both methods are equally sensitive at detecting common and rare developmental defects, the modified mid-coronal sectioning technique eliminates the use of chemicals and concomitant fixation artifacts that occur with the Wilson's technique and allows for examination of 100% intact fetuses thereby increasing potential for detecting eye and brain alterations as these findings occur infrequently in rabbits. © 2015 Wiley Periodicals, Inc.

  20. Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics.

    PubMed

    Bruno, Jennifer Lynn; Hosseini, S M Hadi; Saggar, Manish; Quintin, Eve-Marie; Raman, Mira Michelle; Reiss, Allan L

    2017-03-01

    Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Early brain injury alters the blood-brain barrier phenotype in parallel with β-amyloid and cognitive changes in adulthood.

    PubMed

    Pop, Viorela; Sorensen, Dane W; Kamper, Joel E; Ajao, David O; Murphy, M Paul; Head, Elizabeth; Hartman, Richard E; Badaut, Jérôme

    2013-02-01

    Clinical studies suggest that traumatic brain injury (TBI) hastens cognitive decline and development of neuropathology resembling brain aging. Blood-brain barrier (BBB) disruption following TBI may contribute to the aging process by deregulating substance exchange between the brain and blood. We evaluated the effect of juvenile TBI (jTBI) on these processes by examining long-term alterations of BBB proteins, β-amyloid (Aβ) neuropathology, and cognitive changes. A controlled cortical impact was delivered to the parietal cortex of male rats at postnatal day 17, with behavioral studies and brain tissue evaluation at 60 days post-injury (dpi). Immunoglobulin G extravasation was unchanged, and jTBI animals had higher levels of tight-junction protein claudin 5 versus shams, suggesting the absence of BBB disruption. However, decreased P-glycoprotein (P-gp) on cortical blood vessels indicates modifications of BBB properties. In parallel, we observed higher levels of endogenous rodent Aβ in several brain regions of the jTBI group versus shams. In addition at 60 dpi, jTBI animals displayed systematic search strategies rather than relying on spatial memory during the water maze. Together, these alterations to the BBB phenotype after jTBI may contribute to the accumulation of toxic products, which in turn may induce cognitive differences and ultimately accelerate brain aging.

  2. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease: Brain protein O-GlcNAcylation in Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sheng; Yang, Feng; Petyuk, Vladislav A.

    Protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer’s disease. Herein we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in post-mortem human brains with and without Alzheimer’s using isobaric tandem mass tags labeling, chemoenzymatic photocleavage enrichment and liquid chromatography coupled to mass spectrometry. A total of 1,850 O-GlcNAc peptides covering 1,094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. 128 O-GlcNAc peptides covering 78 proteins were altered significantly in Alzheimer’s brain as compared to controls (q<0.05). Moreover, alteration of the O-GlcNAc peptide abundance could bemore » attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic Alzheimer’s disease.« less

  3. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology.

    PubMed

    Layé, Sophie; Nadjar, Agnès; Joffre, Corinne; Bazinet, Richard P

    2018-01-01

    Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. DEVELOPMENTAL HYPOTHYROIDISM INDUCES A NEURONAL HETEROTOPIA IN THE CORPUS CALLOSUM OF THE RAT.

    EPA Science Inventory

    It is well established that severe hypothyroidism leads to profound alterations in brain development and mental retardation. In this study we examined the effect of subtle decreases in maternal thyroid hormones (TH) on brain development in the rat. To induce TH insufficiency pr...

  5. Neurobiological signatures associated with alcohol and drug use in the human adolescent brain

    PubMed Central

    Silveri, Marisa M.; Dager, Alecia D.; Cohen-Gilbert, Julia E.; Sneider, Jennifer T.

    2017-01-01

    Magnetic resonance (MR) techniques provide opportunities to non-invasively characterize neurobiological milestones of adolescent brain development. Juxtaposed to the critical finalization of brain development is initiation of alcohol and substance use, and increased frequency and quantity of use, patterns that can lead to abuse and addiction. This review provides a comprehensive overview of existing MR studies of adolescent alcohol and drug users. The most common alteration reported across substance used and MR modalities is in the frontal lobe (63% of published studies). This is not surprising, given that this is the last region to reach neurobiological adulthood. Comparatively, evidence is less consistent regarding alterations in regions that mature earlier (e.g., amygdala, hippocampus), however newer techniques now permit investigations beyond regional approaches that are uncovering network-level vulnerabilities. Regardless of whether neurobiological signatures exist prior to the initiation of use, this body of work provides important direction for ongoing prospective investigations of adolescent brain development, and the significant impact of alcohol and substance use on the brain during the second decade of life. PMID:27377691

  6. Neurobiological signatures associated with alcohol and drug use in the human adolescent brain.

    PubMed

    Silveri, Marisa M; Dager, Alecia D; Cohen-Gilbert, Julia E; Sneider, Jennifer T

    2016-11-01

    Magnetic resonance (MR) techniques provide opportunities to non-invasively characterize neurobiological milestones of adolescent brain development. Juxtaposed to the critical finalization of brain development is initiation of alcohol and substance use, and increased frequency and quantity of use, patterns that can lead to abuse and addiction. This review provides a comprehensive overview of existing MR studies of adolescent alcohol and drug users. The most common alterations reported across substance used and MR modalities are in the frontal lobe (63% of published studies). This is not surprising, given that this is the last region to reach neurobiological adulthood. Comparatively, evidence is less consistent regarding alterations in regions that mature earlier (e.g., amygdala, hippocampus), however newer techniques now permit investigations beyond regional approaches that are uncovering network-level vulnerabilities. Regardless of whether neurobiological signatures exist prior to the initiation of use, this body of work provides important direction for ongoing prospective investigations of adolescent brain development, and the significant impact of alcohol and substance use on the brain during the second decade of life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Neurotoxicity of Thyroid Disrupting Contaminants

    EPA Science Inventory

    Thyroid hormones playa critical role in the normal development ofthe mammalian brain. Thyroid disrupting chemicals (TDCs) are environmental contaminants that alter the structure or function ofthe thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeost...

  8. The Major Histocompatibility Complex and Autism Spectrum Disorder

    PubMed Central

    Needleman, Leigh A.; McAllister, A. Kimberley

    2015-01-01

    Autism spectrum disorder (ASD) is a complex disorder that appears to be caused by interactions between genetic changes and environmental insults during early development. A wide range of factors have been linked to the onset of ASD, but recently both genetic associations and environmental factors point to a central role for immune- related genes and immune responses to environmental stimuli. Specifically, many of the proteins encoded by the major histocompatibility complex (MHC) play a vital role in the formation, refinement, maintenance, and plasticity of the brain. Manipulations of levels of MHC molecules have illustrated how disrupted MHC signaling can significantly alter brain connectivity and function. Thus, an emerging hypothesis in our field is that disruptions in MHC expression in the developing brain caused by mutations and/or immune dysregulation may contribute to the altered brain connectivity and function characteristic of ASD. This review provides an overview of the structure and function of the three classes of MHC molecules in the immune system, healthy brain, and their possible involvement in ASD. PMID:22760919

  9. Effects of Early Serotonin Programming on Fear Response, Memory and Aggression

    USDA-ARS?s Scientific Manuscript database

    The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter development of serotonergic circuitry, altering behaviors mediated by 5-HT signaling, including memory, fear and aggression. The present study was desi...

  10. Effects of Postnatal Serotonin Agonism on Fear Response and Memory

    USDA-ARS?s Scientific Manuscript database

    The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter the development of the serotonergic circuitry, altering behaviors mediated by 5-HT signaling, such as memory, fear and aggression. White leghorn chicks...

  11. Altered spontaneous brain activity in Cushing's disease: a resting-state functional MRI study.

    PubMed

    Jiang, Hong; He, Na-Ying; Sun, Yu-Hao; Jian, Fang-Fang; Bian, Liu-Guan; Shen, Jian-Kang; Yan, Fu-Hua; Pan, Si-Jian; Sun, Qing-Fang

    2017-03-01

    Cushing's disease (CD) provides a unique and naturalist model for studying the influence of hypercortisolism on the human brain and the reversibility of these effects after resolution of the condition. This cross-sectional study used resting-state fMRI (rs-fMRI) to investigate the altered spontaneous brain activity in CD patients and the trends for potential reversibility after the resolution of the hypercortisolism. We also aim to determine the relationship of these changes with clinical characteristics and cortisol levels. Active CD patients (n = 18), remitted CD patients (n = 14) and healthy control subjects (n = 22) were included in this study. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were calculated to represent spontaneous brain activity. Our study resulted in three major findings: (i) active CD patients showed significantly altered spontaneous brain activity in the posterior cingulate cortex (PCC)/precuneus (PCu), occipital lobe (OC)/cerebellum, thalamus, right postcentral gyrus (PoCG) and left prefrontal cortex (PFC); (ii) trends for partial restoration of altered spontaneous brain activity after the resolution hypercortisolism were found in several brain regions; and (iii) active CD patients showed a significant correlation between cortisol levels and ALFF/ReHo values in the PCC/PCu, a small cluster in the OC and the right IPL. This study provides a new approach to investigating brain function abnormalities in patients with CD and enhances our understanding of the effect of hypercortisolism on the human brain. Furthermore, our explorative potential reversibility study of patients with CD may facilitate the development of future longitudinal studies. © 2016 John Wiley & Sons Ltd.

  12. Medulloblastoma | Office of Cancer Genomics

    Cancer.gov

    The Medulloblastoma Project was developed to apply newly emerging genomic methods towards the discovery of novel genetic alterations in medulloblastoma (MB). MB is the most common malignant brain tumor in children, accounting for approximately 20% of all pediatric brain tumors.

  13. Is Traumatic and Non-Traumatic Neck Pain Associated with Brain Alterations? - A Systematic Review.

    PubMed

    DePauw, Robby; Coppieters, Iris; Meeus, Mira; Caeyenberghs, Karen; Danneels, Lieven; Cagnie, Barbara

    2017-05-01

    Chronic neck pain affects 50% - 85% of people who have experienced an acute episode. This transition and the persistence of chronic complaints are believed to be mediated by brain alterations among different central mechanisms. This study aimed to systematically review and critically appraise the current existing evidence regarding structural and functional brain alterations in patients with whiplash associated disorders (WAD) and idiopathic neck pain (INP). Additionally, associations between brain alterations and clinical symptoms reported in neck pain patients were evaluated. Systematic review. The present systematic review was performed according to the PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were searched. First, the obtained articles were screened based on title and abstract. Secondly, the screening was based on the full text. Risk of bias in included studies was investigated. Twelve studies met the inclusion criteria. Alterations in brain morphology and function, including perfusion, neurotransmission, and blood oxygenation level dependent-signal, were demonstrated in chronic neck pain patients. There is some to moderate evidence for both structural and functional brain alterations in patients with chronic neck pain. In contrast, no evidence for structural brain alterations in acute neck pain patients was found. Only 12 articles were included, which allows only cautious conclusions to be drawn. Brain alterations were observed in both patients with chronic WAD and chronic INP. Furthermore, more evidence exists for brain alterations in chronic WAD, and different underlying mechanisms might be present in both pathologies. In addition, pain and disability were correlated with the observed brain alterations. Accordingly, morphological and functional brain alterations should be further investigated in patients with chronic WAD and chronic INP with newer and more sensitive techniques, and associative clinical measurements seem indispensable in future research.

  14. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    PubMed Central

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of arsenic results in altered fetal programming of the glucocorticoid system. PMID:25459689

  15. Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse

    PubMed Central

    Barila, Guillermo O.; Hester, Michael S.; Elovitz, Michal A.

    2017-01-01

    Introduction Exposure to prenatal inflammation is associated with diverse adverse neurobehavioral outcomes in exposed offspring. The mechanism by which inflammation negatively impacts the developing brain is poorly understood. Metabolomic profiling provides an opportunity to identify specific metabolites, and novel pathways, which may reveal mechanisms by which exposure to intrauterine inflammation promotes fetal and neonatal brain injury. Therefore, we investigated whether exposure to intrauterine inflammation altered the metabolome of the amniotic fluid, fetal and neonatal brain. Additionally, we explored whether changes in the metabolomic profile from exposure to prenatal inflammation occurs in a sex-specific manner in the neonatal brain. Methods CD-1, timed pregnant mice received an intrauterine injection of lipopolysaccharide (50 μg/dam) or saline on embryonic day 15. Six and 48 hours later mice were sacrificed and amniotic fluid, and fetal brains were collected (n = 8/group). Postnatal brains were collected on day of life 1 (n = 6/group/sex). Global biochemical profiles were determined using ultra performance liquid chromatography/tandem mass spectrometry (Metabolon Inc.). Statistical analyses were performed by comparing samples from lipopolysaccharide and saline treated animals at each time point. For the P1 brains, analyses were stratified by sex. Results/Conclusions Exposure to intrauterine inflammation induced unique, temporally regulated changes in the metabolic profiles of amniotic fluid, fetal brain and postnatal brain. Six hours after exposure to intrauterine inflammation, the amniotic fluid and the fetal brain metabolomes were dramatically altered with significant enhancements of amino acid and purine metabolites. The amniotic fluid had enhanced levels of several members of the (hypo) xanthine pathway and this compound was validated as a potential biomarker. By 48 hours, the number of altered biochemicals in both the fetal brain and the amniotic fluid had declined, yet unique profiles existed. Neonatal pups exposed to intrauterine inflammation have significant alterations in their lipid metabolites, in particular, fatty acids. These sex-specific metabolic changes within the newborn brain offer an explanation regarding the sexual dimorphism of certain psychiatric and neurobehavioral disorders associated with exposure to prenatal inflammation. PMID:29049352

  16. The effects of vitamin D on brain development and adult brain function.

    PubMed

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Differential brain responses to cries of infants with autistic disorder and typical development: an fMRI study.

    PubMed

    Venuti, Paola; Caria, Andrea; Esposito, Gianluca; De Pisapia, Nicola; Bornstein, Marc H; de Falco, Simona

    2012-01-01

    This study used fMRI to measure brain activity during adult processing of cries of infants with autistic disorder (AD) compared to cries of typically developing (TD) infants. Using whole brain analysis, we found that cries of infants with AD compared to those of TD infants elicited enhanced activity in brain regions associated with verbal and prosodic processing, perhaps because altered acoustic patterns of AD cries render them especially difficult to interpret, and increased activity in brain regions associated with emotional processing, indicating that AD cries also elicit more negative feelings and may be perceived as more aversive and/or arousing. Perceived distress engendered by AD cries related to increased activation in brain regions associated with emotional processing. This study supports the hypothesis that cry is an early and meaningful anomaly displayed by children with AD. It could be that cries associated with AD alter parent-child interactions much earlier than the time that reliable AD diagnosis normally occurs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    PubMed

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Dietary docosahexaenoic acid supplementation modulates hippocampal development in the Pemt-/- mouse.

    PubMed

    da Costa, Kerry-Ann; Rai, Kiranmai S; Craciunescu, Corneliu N; Parikh, Komal; Mehedint, Mihai G; Sanders, Lisa M; McLean-Pottinger, Audrey; Zeisel, Steven H

    2010-01-08

    The development of fetal brain is influenced by nutrients such as docosahexaenoic acid (DHA, 22:6) and choline. Phosphatidylethanolamine-N-methyltransferase (PEMT) catalyzes the biosynthesis of phosphatidylcholine from phosphatidylethanolamine enriched in DHA and many humans have functional genetic polymorphisms in the PEMT gene. Previously, it was reported that Pemt(-/-) mice have altered hippocampal development. The present study explores whether abnormal phosphatidylcholine biosynthesis causes altered incorporation of DHA into membranes, thereby influencing brain development, and determines whether supplemental dietary DHA can reverse some of these changes. Pregnant C57BL/6 wild type (WT) and Pemt(-/-) mice were fed a control diet, or a diet supplemented with 3 g/kg of DHA, from gestational day 11 to 17. Brains from embryonic day 17 fetuses derived from Pemt(-/-) dams fed the control diet had 25-50% less phospholipid-DHA as compared with WT (p < 0.05). Also, they had 60% more neural progenitor cell proliferation (p < 0.05), 60% more neuronal apoptosis (p < 0.01), and 30% less calretinin expression (p < 0.05; a marker of neuronal differentiation) in the hippocampus compared with WT. The DHA-supplemented diet increased fetal brain Pemt(-/-) phospholipid-DHA to WT levels, and abrogated the neural progenitor cell proliferation and apoptosis differences. Although this diet did not change proliferation in the WT group, it halved the rate of apoptosis (p < 0.05). In both genotypes, the DHA-supplemented diet increased calretinin expression 2-fold (p < 0.05). These results suggest that the changes in hippocampal development in the Pemt(-/-) mouse could be mediated by altered DHA incorporation into membrane phospholipids, and that maternal dietary DHA can influence fetal brain development.

  20. Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI

    PubMed Central

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-01-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model—the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the “critical” GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. PMID:28111189

  1. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI.

    PubMed

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-04-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Anesthesia, brain changes, and behavior: Insights from neural systems biology.

    PubMed

    Colon, Elisabeth; Bittner, Edward A; Kussman, Barry; McCann, Mary Ellen; Soriano, Sulpicio; Borsook, David

    2017-06-01

    Long-term consequences of anesthetic exposure in humans are not well understood. It is possible that alterations in brain function occur beyond the initial anesthetic administration. Research in children and adults has reported cognitive and/or behavioral changes after surgery and general anesthesia that may be short lived in some patients, while in others, such changes may persist. The changes observed in humans are corroborated by a large body of evidence from animal studies that support a role for alterations in neuronal survival (neuroapoptosis) or structure (altered dendritic and glial morphology) and later behavioral deficits at older age after exposure to various anesthetic agents during fetal or early life. The potential of anesthetics to induce long-term alterations in brain function, particularly in vulnerable populations, warrants investigation. In this review, we critically evaluate the available preclinical and clinical data on the developing and aging brain, and in known vulnerable populations to provide insights into potential changes that may affect the general population of patients in a more, subtle manner. In addition this review summarizes underlying processes of how general anesthetics produce changes in the brain at the cellular and systems level and the current understanding underlying mechanisms of anesthetics agents on brain systems. Finally, we present how neuroimaging techniques currently emerge as promising approaches to evaluate and define changes in brain function resulting from anesthesia, both in the short and the long-term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain.

    PubMed

    Jašarević, Eldin; Howerton, Christopher L; Howard, Christopher D; Bale, Tracy L

    2015-09-01

    The neonate is exposed to the maternal vaginal microbiota during parturition, providing the primary source for normal gut colonization, host immune maturation, and metabolism. These early interactions between the host and microbiota occur during a critical window of neurodevelopment, suggesting early life as an important period of cross talk between the developing gut and brain. Because perturbations in the prenatal environment such as maternal stress increase neurodevelopmental disease risk, disruptions to the vaginal ecosystem could be a contributing factor in significant and long-term consequences for the offspring. Therefore, to examine the hypothesis that changes in the vaginal microbiome are associated with effects on the offspring gut microbiota and on the developing brain, we used genomic, proteomic and metabolomic technologies to examine outcomes in our mouse model of early prenatal stress. Multivariate modeling identified broad proteomic changes to the maternal vaginal environment that influence offspring microbiota composition and metabolic processes essential for normal neurodevelopment. Maternal stress altered proteins related to vaginal immunity and abundance of Lactobacillus, the prominent taxa in the maternal vagina. Loss of maternal vaginal Lactobacillus resulted in decreased transmission of this bacterium to offspring. Further, altered microbiota composition in the neonate gut corresponded with changes in metabolite profiles involved in energy balance, and with region- and sex-specific disruptions of amino acid profiles in the developing brain. Taken together, these results identify the vaginal microbiota as a novel factor by which maternal stress may contribute to reprogramming of the developing brain that may predispose individuals to neurodevelopmental disorders.

  4. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    PubMed

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat brain. Copyright © 2017 ISDN. All rights reserved.

  5. [In search for neurophysiological criteria of altered consciousness].

    PubMed

    Sviderskaia, N E

    2002-01-01

    Neurophysiological approaches to brain mechanisms of consciousness are discussed. The concept of spatial synchronization of nervous processes developed by M.N. Livanov is applied to neurophysiological analysis of higher brain functions. However, the spatial synchronization of brain potentials is only a condition for information processing and does not represent it as such. This imposes restrictions on conclusions about the neural mechanisms of consciousness. It is more adequate to use the concept of spatial synchronization in views of consciousness as a psychophysiological level along with sub- and superconsciousness in three-level structure of mind according to P.V. Simonov. Forms of consciousness interaction with other levels concern the problem of altered consciousness and may be reflected in various patterns of spatial organization of brain potentials.

  6. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    PubMed

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. IDENTIFICATION OF NEURAL BIOMARKERS OF ALTERED SEXUAL DIFFERENTIATION FOLLOWING GESTATIONAL EXPOSURE***

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  8. Identification of neural biomarkers of altered sexual differentiation following gestational exposure

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) during...

  9. Identification of neural biomarkers of altered sexual differentiation following gestational exposure###

    EPA Science Inventory

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  10. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective.

    PubMed

    Wilhelm, Clare J; Guizzetti, Marina

    2015-01-01

    Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.

  11. Effects of prenatal maternal stress on serotonin and fetal development.

    PubMed

    St-Pierre, Joey; Laurent, Laetitia; King, Suzanne; Vaillancourt, Cathy

    2016-12-01

    Fetuses are exposed to many environmental perturbations that can influence their development. These factors can be easily identifiable such as drugs, chronic diseases or prenatal maternal stress. Recently, it has been demonstrated that the serotonin synthetized by the placenta was crucial for fetal brain development. Moreover, many studies show the involvement of serotonin system alteration in psychiatric disease during childhood and adulthood. This review summarizes existing studies showing that prenatal maternal stress, which induces alteration of serotonin systems (placenta and fetal brain) during a critical window of early development, could lead to alteration of fetal development and increase risks of psychiatric diseases later in life. This phenomenon, termed fetal programming, could be moderated by the sex of the fetus. This review highlights the need to better understand the modification of the maternal, placental and fetal serotonin systems induced by prenatal maternal stress in order to find early biomarkers of psychiatric disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Developmental pattern of diacylglycerol lipase-α (DAGLα) immunoreactivity in brain regions important for song learning and control in the zebra finch (Taeniopygia guttata).

    PubMed

    Soderstrom, Ken; Wilson, Ashley R

    2013-11-01

    Zebra finch song is a learned behavior dependent upon successful progress through a sensitive period of late-postnatal development. This learning is associated with maturation of distinct brain nuclei and the fiber tract interconnections between them. We have previously found remarkably distinct and dense CB1 cannabinoid receptor expression within many of these song control brain regions, implying a normal role for endocannabinoid signaling in vocal learning. Activation of CB1 receptors via daily treatments with exogenous agonist during sensorimotor stages of song learning (but not in adulthood) results in persistent alteration of song patterns. Now we are working to understand physiological changes responsible for this cannabinoid-altered vocal learning. We have found that song-altering developmental treatments are associated with changes in expression of endocannabinoid signaling elements, including CB1 receptors and the principal CNS endogenous agonist, 2-AG. Within CNS, 2-AG is produced largely through activity of the α isoform of the enzyme diacylglycerol lipase (DAGLα). To better appreciate the role of 2-AG production in normal vocal development we have determined the spatial distribution of DAGLα expression within zebra finch CNS during vocal development. Early during vocal development at 25 days, DAGLα staining is typically light and of fibroid processes. Staining peaks late in the sensorimotor stage of song learning at 75 days and is characterized by fiber, neuropil and some staining of both small and large cell somata. Results provide insight to the normal role for endocannabinoid signaling in the maturation of brain regions responsible for song learning and vocal-motor output, and suggest mechanisms by which exogenous cannabinoid exposure alters acquisition of this form of vocal communication. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Detection of somatic mutations in the mitochondrial DNA control region D-loop in brain tumors: The first report in Malaysian patients.

    PubMed

    Mohamed Yusoff, Abdul Aziz; Mohd Nasir, Khairol Naaim; Haris, Khalilah; Mohd Khair, Siti Zulaikha Nashwa; Abdul Ghani, Abdul Rahman Izaini; Idris, Zamzuri; Abdullah, Jafri Malin

    2017-11-01

    Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.

  14. Examination of Physiological Function and Biochemical Disorders in a Rat Model of Prolonged Asphyxia-Induced Cardiac Arrest followed by Cardio Pulmonary Bypass Resuscitation

    PubMed Central

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A.; Pappan, Kirk L.; Lampe, Joshua W.; Becker, Lance B.

    2014-01-01

    Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage. PMID:25383962

  15. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A; Pappan, Kirk L; Lampe, Joshua W; Becker, Lance B

    2014-01-01

    Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.

  16. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders.

    PubMed

    O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J

    2017-10-11

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca 2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits.

  17. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders

    PubMed Central

    Gonçalves, J Tiago; Portera-Cailliau, Carlos

    2017-01-01

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits. PMID:29019321

  18. Neurobehavioral changes and alteration of gene expression in the brains of metallothionein-I/II null mice exposed to low levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Masako; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2011-10-01

    This study examined the neurobehavioral changes and alteration in gene expression in the brains of metallothionein (MT)-I/II null mice exposed to low-levels of mercury vapor (Hg(0)) during postnatal development. MT-I/II null and wild-type mice were repeatedly exposed to Hg(0) at 0.030 mg/m(3) (range: 0.023-0.043 mg/m(3)), which was similar to the current threshold value (TLV), for 6 hr per day until the 20th day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning ability in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. Hg(0)-exposed MT-I/II null mice showed a significant decrease in total locomotor activity in females, though learning ability and spatial learning ability were not affected. Immediately after Hg(0) exposure, mercury concentrations in the brain did not exceed 0.5 µg/g in any animals. Hg(0) exposure resulted in significant alterations in gene expression in the brains of both strains using DNA microarray analysis. The number of altered genes in MT-I/II null mice was higher than that in wild-type mice and calcium-calmodulin kinase II (Camk2a) involved in learning and memory in down-regulated genes was detected. These results provide useful information to elucidate the development of behavioral toxicity following low-level exposure to Hg(0).

  19. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease-a Critical Review.

    PubMed

    Sochocka, Marta; Donskow-Łysoniewska, Katarzyna; Diniz, Breno Satler; Kurpas, Donata; Brzozowska, Ewa; Leszek, Jerzy

    2018-06-23

    One of the most important scientific discoveries of recent years was the disclosure that the intestinal microflora takes part in bidirectional communication between the gut and the brain. Scientists suggest that human gut microflora may even act as the "second brain" and be responsible for neurodegenerative disorders like Alzheimer's disease (AD). Although human-associated microbial communities are generally stable, they can be altered by common human actions and experiences. Enteric bacteria, commensal, and pathogenic microorganisms, may have a major impact on immune system, brain development, and behavior, as they are able to produce several neurotransmitters and neuromodulators like serotonin, kynurenine, catecholamine, etc., as well as amyloids. However, brain destructive mechanisms, that can lead to dementia and AD, start with the intestinal microbiome dysbiosis, development of local and systemic inflammation, and dysregulation of the gut-brain axis. Increased permeability of the gut epithelial barrier results in invasion of different bacteria, viruses, and their neuroactive products that support neuroinflammatory reactions in the brain. It seems that, inflammatory-infectious hypothesis of AD, with the great role of the gut microbiome, starts to gently push into the shadow the amyloid cascade hypothesis that has dominated for decades. It is strongly postulated that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. This is promising area for therapeutic intervention. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention, alter microbial partners and their products including amyloid protein, will probably become a new treatment for AD.

  20. Neuroimaging is a novel tool to understand the impact of environmental chemicals on neurodevelopment.

    PubMed

    Horton, Megan K; Margolis, Amy E; Tang, Cheuk; Wright, Robert

    2014-04-01

    The prevalence of childhood neurodevelopmental disorders has been increasing over the last several decades. Prenatal and early childhood exposure to environmental toxicants is increasingly recognized as contributing to the growing rate of neurodevelopmental disorders. Very little information is known about the mechanistic processes by which environmental chemicals alter brain development. We review the recent advances in brain imaging modalities and discuss their application in epidemiologic studies of prenatal and early childhood exposure to environmental toxicants. Neuroimaging techniques (volumetric and functional MRI, diffusor tensor imaging, and magnetic resonance spectroscopy) have opened unprecedented access to study the developing human brain. These techniques are noninvasive and free of ionization radiation making them suitable for research applications in children. Using these techniques, we now understand much about structural and functional patterns in the typically developing brain. This knowledge allows us to investigate how prenatal exposure to environmental toxicants may alter the typical developmental trajectory. MRI is a powerful tool that allows in-vivo visualization of brain structure and function. Used in epidemiologic studies of environmental exposure, it offers the promise to causally link exposure with behavioral and cognitive manifestations and ultimately to inform programs to reduce exposure and mitigate adverse effects of exposure.

  1. Anomalous Development of Brain Structure and Function in Spina Bifida Myelomeningocele

    ERIC Educational Resources Information Center

    Juranek, Jenifer; Salman, Michael S.

    2010-01-01

    Spina bifida myelomeningocele (SBM) is a specific type of neural tube defect whereby the open neural tube at the level of the spinal cord alters brain development during early stages of gestation. Some structural anomalies are virtually unique to individuals with SBM, including a complex pattern of cerebellar dysplasia known as the Chiari II…

  2. DEVELOPMENTAL HYPOTHYROIDISM IMPAIRS HIPPOCAMPAL LEARNING AND SYNAPTIC TRANSMISSION IN VIVO.

    EPA Science Inventory

    A number of environmental chemicals have been reported to alter thyroid hormone (TH) function. It is well established that severe hypothyroidism during critical periods of brain development leads to alterations in hippocampal structure and learning deficits, yet evaluation of ...

  3. Brain structural alterations associated with young women with subthreshold depression

    PubMed Central

    Li, Haijiang; Wei, Dongtao; Sun, Jiangzhou; Chen, Qunlin; Zhang, Qinglin; Qiu, Jiang

    2015-01-01

    Neuroanatomical abnormalities in patients with major depression disorder (MDD) have been attracted great research attention. However, the structural alterations associated with subthreshold depression (StD) remain unclear and, therefore, require further investigation. In this study, 42 young women with StD, and 30 matched non-depressed controls (NCs) were identified based on two-time Beck Depression Inventory scores. Whole-brain voxel-based morphometry (VBM) and region of interest method were used to investigate altered gray matter volume (GMV) and white matter volume (WMV) among a non-clinical sample of young women with StD. VBM results indicated that young women with StD showed significantly decreased GMV in the right inferior parietal lobule than NCs; increased GMV in the amygdala, posterior cingulate cortex, and precuneus; and increased WMV in the posterior cingulate cortex and precuneus. Together, structural alterations in specific brain regions, which are known to be involved in the fronto-limbic circuits implicated in depression may precede the occurrence of depressive episodes and influence the development of MDD. PMID:25982857

  4. Altered brain activity for phonological manipulation in dyslexic Japanese children.

    PubMed

    Kita, Yosuke; Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi

    2013-12-01

    Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children.

  5. Altered brain activity for phonological manipulation in dyslexic Japanese children

    PubMed Central

    Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi

    2013-01-01

    Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children. PMID:24052613

  6. Brain development, environment and sex: what can we learn from studying graviperception, gravitransduction and the gravireaction of the developing CNS to altered gravity?

    PubMed

    Sajdel-Sulkowska, Elizabeth M

    2008-01-01

    As man embarks on space exploration and contemplates space habitation, there is a critical need for basic understanding of the impact of the environmental factors of space, and in particular gravity, on human survival, health, reproduction and development. This review summarizes our present knowledge on the effect of altered gravity on the developing CNS with respect to the response of the developing CNS to altered gravity (gravireaction), the physiological changes associated with altered gravity that could contribute to this effect (gravitransduction), and the possible mechanisms involved in the detection of altered gravity (graviperception). Some of these findings transcend gravitational research and are relevant to our understanding of the impact of environmental factors on CNS development on Earth.

  7. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  8. Developmental Thyroid Hormone Insufficiency Impairs Visual Contrast Sensitivity in Adult Male Offspring.

    EPA Science Inventory

    Severe thyroid hormone (TH) insufficiency during early development results in alterations in brain structure and function. Many environmental agents produce subtle alterations in TH status, but the dose-response relationships for such effects are unclear. We have previously demon...

  9. Differential vulnerability to adverse nutritional conditions in male and female rats: Modulatory role of estradiol during development.

    PubMed

    Pinos, Helena; Carrillo, Beatriz; Díaz, Francisca; Chowen, Julie A; Collado, Paloma

    2018-01-01

    Many studies have shown the importance of an adequate nutritional environment during development to optimally establish the neurohormonal circuits that regulate feeding behavior. Under- or over-nutrition during early stages of life can lead to alterations in the physiology and brain networks that control food intake, resulting in a greater vulnerability to suffer maladjustments in energy metabolism in adulthood. These alterations produced by under- or over-nourishment during development differ between males and females, as does the modulatory action that estradiol exerts on the alterations produced by malnutrition. Estradiol regulates metabolism and brain metabolic circuits through the same transcription factor pathway, STAT3, that leptin and ghrelin use to program feeding circuits. Although more research is needed to disentangle the actual role of estradiol during development on the programming of feeding circuits, a synergistic role together with leptin and/or ghrelin might be hypothesized. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transient Maternal Hypothyroidism Alters Neural Progenitor Expression Resulting in Abnormal Brain Development

    EPA Science Inventory

    Heterotopias are a birth defect of the brain, and have varying etiologies in humans. They are characterized as clusters of mislocalized neurons, and are associated with disorders such as autism, epilepsy, and learning disabilities. We have previously characterized the robust pene...

  11. Transient Maternal Hypothyroidism Alters Neural Progenitors Resulting in Abnormal Brain Development

    EPA Science Inventory

    Heterotopias are a birth defect of the brain and have varying etiologies in humans. They are characterized as clusters of mislocalized neurons and are associated with disorders such as autism, epilepsy, and learning disabilities. We have previously characterized the robust penetr...

  12. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.

    PubMed

    Desbonnet, Lieve; Clarke, Gerard; Traplin, Alexander; O'Sullivan, Orla; Crispie, Fiona; Moloney, Rachel D; Cotter, Paul D; Dinan, Timothy G; Cryan, John F

    2015-08-01

    There is growing appreciation for the importance of bacteria in shaping brain development and behaviour. Adolescence and early adulthood are crucial developmental periods during which exposure to harmful environmental factors can have a permanent impact on brain function. Such environmental factors include perturbations of the gut bacteria that may affect gut-brain communication, altering the trajectory of brain development, and increasing vulnerability to psychiatric disorders. Here we assess the effects of gut bacterial depletion from weaning onwards on adult cognitive, social and emotional behaviours and markers of gut-brain axis dysfunction in mice. Mice were treated with a combination of antibiotics from weaning onwards and effects on behaviours and potential gut-brain axis neuromodulators (tryptophan, monoamines, and neuropeptides) and BDNF expression were assessed in adulthood. Antibiotic-treatment depleted and restructured gut microbiota composition of caecal contents and decreased spleen weights in adulthood. Depletion of the gut microbiota from weaning onwards reduced anxiety, induced cognitive deficits, altered dynamics of the tryptophan metabolic pathway, and significantly reduced BDNF, oxytocin and vasopressin expression in the adult brain. Microbiota depletion from weaning onwards by means of chronic treatment with antibiotics in mice impacts on anxiety and cognitive behaviours as well as key neuromodulators of gut-brain communication in a manner that is similar to that reported in germ-free mice. This model may represent a more amenable alternative for germ-free mice in the assessment of microbiota modulation of behaviour. Finally, these data suggest that despite the presence of a normal gut microbiome in early postnatal life, reduced abundance and diversity of the gut microbiota from weaning influences adult behaviours and key neuromodulators of the microbiota-gut-brain axis suggesting that dysregulation of this axis in the post-weaning period may contribute to the pathogenesis of disorders associated with altered anxiety and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development

    PubMed Central

    Garay, Paula A.; Hsiao, Elaine Y.; Patterson, Paul H.; McAllister, A. Kimberley

    2012-01-01

    Maternal infection is a risk factor for autism spectrum disorder (ASD) and schizophrenia (SZ). Indeed, modeling this risk factor in mice through maternal immune activation (MIA) causes ASD- and SZ-like neuropathologies and behaviors in the offspring. Although MIA upregulates pro-inflammatory cytokines in the fetal brain, whether MIA leads to long-lasting changes in brain cytokines during postnatal development remains unknown. Here, we tested this possibility by measuring protein levels of 23 cytokines in the blood and three brain regions from offspring of poly(I:C)- and saline-injected mice at five postnatal ages using multiplex arrays. Most cytokines examined are present in sera and brains throughout development. MIA induces changes in the levels of many cytokines in the brains and sera of offspring in a region- and age-specific manner. These MIA-induced changes follow a few, unexpected and distinct patterns. In frontal and cingulate cortices, several, mostly pro-inflammatory, cytokines are elevated at birth, followed by decreases during periods of synaptogenesis and plasticity, and increases again in the adult. Cytokines are also altered in postnatal hippocampus, but in a pattern distinct from the other regions. The MIA-induced changes in brain cytokines do not correlate with changes in serum cytokines from the same animals. Finally, these MIA-induced cytokine changes are not accompanied by breaches in the blood-brain barrier, immune cell infiltration or increases in microglial density. Together, these data indicate that MIA leads to long-lasting, region-specific changes in brain cytokines in offspring—similar to those reported for ASD and SZ—that may alter CNS development and behavior. PMID:22841693

  14. Region-, age-, and sex-specific effects of fetal diazepam exposure on the postnatal development of neurosteroids

    PubMed Central

    Kellogg, Carol K.; Kenjarski, Thomas P.; Pleger, Gloria L.; Frye, Cheryl A.

    2013-01-01

    Fetal exposure to diazepam (DZ), a positive modulator of GABAA receptors and an agonist at mitochondrial benzodiazine receptors, induces long-term neural and behavioral effects. This study evaluated whether the early manipulation influenced the normal development of brain levels of neurosteroids or altered steroid action at GABAA receptors. Pregnant dams were injected over gestation days 14 through 20 with DZ (2.5 mg/kg) or the vehicle. Male and female offspring were analyzed at five postnatal ages. The levels of progesterone (P), dihydroprogesterone (DHP), 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP), testosterone (T), dihydrotestosterone, and 5α-androstan-3α,17β diol were measured in the cerebral cortex and diencephalon. The results indicated that development of brain steroid levels and the impact of fetal DZ exposure were region- and sex-specific. Age-related changes in brain steroids did not mirror associated changes in circulating P and T. Age regulated the levels of all 3 progestins in the cerebral cortex, and fetal DZ exposure interacted with the development of P and DHP. The development of 3α,5α-THP in the cortex was markedly influenced by sex, with levels in males decreasing over postnatal development whereas they increased over postpubertal development in females. An adolescent surge in T levels was observed in male cortex and fetal DZ exposure prevented that surge. Steroid levels in the diencephalon were altered by age mainly in females, and DZ exposure had little effect in this region. The data support region-specific regulation of brain steroid synthesis. Only in the cerebral cortex are relevant mechanisms readily modifiable by fetal DZ exposure. However, neither sex nor fetal DZ exposure altered the response of GABAA receptors in adult cortex to neurosteroid. PMID:16376310

  15. The Role of BDNF in the Development of Fear Learning.

    PubMed

    Dincheva, Iva; Lynch, Niccola B; Lee, Francis S

    2016-10-01

    Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders. © 2016 Wiley Periodicals, Inc.

  16. Reinforcement of the Brain's Rich-Club Architecture Following Early Neurodevelopmental Disruption Caused by Very Preterm Birth

    PubMed Central

    Karolis, Vyacheslav R.; Froudist-Walsh, Sean; Brittain, Philip J.; Kroll, Jasmin; Ball, Gareth; Edwards, A. David; Dell'Acqua, Flavio; Williams, Steven C.; Murray, Robin M.; Nosarti, Chiara

    2016-01-01

    The second half of pregnancy is a crucial period for the development of structural brain connectivity, and an abrupt interruption of the typical processes of development during this phase caused by the very preterm birth (<33 weeks of gestation) is likely to result in long-lasting consequences. We used structural and diffusion imaging data to reconstruct the brain structural connectome in very preterm-born adults. We assessed its rich-club organization and modularity as 2 characteristics reflecting the capacity to support global and local information exchange, respectively. Our results suggest that the establishment of global connectivity patterns is prioritized over peripheral connectivity following early neurodevelopmental disruption. The very preterm brain exhibited a stronger rich-club architecture than the control brain, despite possessing a relative paucity of white matter resources. Using a simulated lesion approach, we also investigated whether putative structural reorganization takes place in the very preterm brain in order to compensate for its anatomical constraints. We found that connections between the basal ganglia and (pre-) motor regions, as well as connections between subcortical regions, assumed an altered role in the structural connectivity of the very preterm brain, and that such alterations had functional implications for information flow, rule learning, and verbal IQ. PMID:26742566

  17. Volume transmission-mediated encephalopathies: a possible new concept?

    PubMed

    Hartung, Hans-Peter; Dihné, Marcel

    2012-03-01

    There is strong evidence that the composition of cerebrospinal fluid (CSF) influences brain development, neurogenesis, and behavior. The bidirectional exchange of CSF and interstitial fluid (ISF) across the ependymal and pia-glial membranes is required for these phenomena to occur. Because ISF surrounds the parenchymal compartment, neuroactive substances in the CSF and ISF can influence neuronal activity. Functionally important neuroactive substances are distributed to distant sites of the central nervous system by the convection and diffusion of CSF and ISF, a process known as volume transmission. It has recently been shown that pathologically altered CSF from patients with acute traumatic brain injury suppresses in vitro neuronal network activity (ivNNA) recorded by multielectrode arrays measuring synchronously bursting neural populations. Functionally relevant substances in pathologically altered CSF have been biochemically identified, and ivNNA has been partially recovered by pharmacologic intervention. It remains unclear whether the in vivo parenchymal compartment remains unaffected by pathologically altered CSF that significantly impairs ivNNA. We hypothesize that pathologic CSF alterations are not just passive indicators of brain diseases but that they actively and directly evoke functional disturbances in global brain activity through the distribution of neuroactive substances, for instance, secondary to focal neurologic disease. For this mechanism, we propose the new term volume transmission-mediated encephalopathies (VTE). Recording ivNNA in the presence of pure human CSF could help to identify and monitor functionally relevant CSF alterations that directly result in VTEs, and the collected data might point to therapeutic ways to antagonize these alterations.

  18. Neurobehavioral changes in response to alterations in gene expression profiles in the brains of mice exposed to low and high levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Akiko; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2014-08-01

    This study examined the relationship between neurobehavioral changes and alterations in gene expression profiles in the brains of mice exposed to different levels of Hg(0) during postnatal development. Neonatal mice were repeatedly exposed to mercury vapor (Hg(0)) at a concentration of 0.057 mg/m(3) (low level), which was close to the current threshold value (TLV), and 0.197 mg/m(3) (high level) for 24 hr until the 20(th) day postpartum. Behavioral responses were evaluated based on changes in locomotor activity in the open field test (OPF), learning ability in the passive avoidance response test (PA), and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. No significant differences were observed in the three behavioral measurements between mice exposed to the low level of Hg(0) and control mice. On the other hand, total locomotive activity in mice exposed to the high level of Hg(0) was significantly decreased and central locomotion was reduced in the OPF task. Mercury concentrations were approximately 0.4 μg/g and 1.9 μg/g in the brains of mice exposed to the low and high levels of Hg(0), respectively. Genomic analysis revealed that the expression of 2 genes was up-regulated and 18 genes was down-regulated in the low-level exposure group, while the expression of 3 genes was up-regulated and 70 genes was down-regulated in the high-level exposure group. Similar alterations in the expression of seven genes, six down-regulated genes and one up-regulated gene, were observed in both groups. The results indicate that an increase in the number of altered genes in the brain may be involved in the emergence of neurobehavioral effects, which may be associated with the concentration of mercury in the brain. Moreover, some of the commonly altered genes following exposure to both concentrations of Hg(0) with and without neurobehavioral effects may be candidates as sensitive biomarker genes for assessing behavioral effects in the early stages of development.

  19. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    PubMed

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Neurocognitive and electrophysiological evidence of altered face processing in parents of children with autism: implications for a model of abnormal development of social brain circuitry in autism.

    PubMed

    Dawson, Geraldine; Webb, Sara Jane; Wijsman, Ellen; Schellenberg, Gerard; Estes, Annette; Munson, Jeffrey; Faja, Susan

    2005-01-01

    Neuroimaging and behavioral studies have shown that children and adults with autism have impaired face recognition. Individuals with autism also exhibit atypical event-related brain potentials to faces, characterized by a failure to show a negative component (N170) latency advantage to face compared to nonface stimuli and a bilateral, rather than right lateralized, pattern of N170 distribution. In this report, performance by 143 parents of children with autism on standardized verbal, visual-spatial, and face recognition tasks was examined. It was found that parents of children with autism exhibited a significant decrement in face recognition ability relative to their verbal and visual spatial abilities. Event-related brain potentials to face and nonface stimuli were examined in 21 parents of children with autism and 21 control adults. Parents of children with autism showed an atypical event-related potential response to faces, which mirrored the pattern shown by children and adults with autism. These results raise the possibility that face processing might be a functional trait marker of genetic susceptibility to autism. Discussion focuses on hypotheses regarding the neurodevelopmental and genetic basis of altered face processing in autism. A general model of the normal emergence of social brain circuitry in the first year of life is proposed, followed by a discussion of how the trajectory of normal development of social brain circuitry, including cortical specialization for face processing, is altered in individuals with autism. The hypothesis that genetic-mediated dysfunction of the dopamine reward system, especially its functioning in social contexts, might account for altered face processing in individuals with autism and their relatives is discussed.

  1. Congenital heart disease affects cerebral size but not brain growth.

    PubMed

    Ortinau, Cynthia; Inder, Terrie; Lambeth, Jennifer; Wallendorf, Michael; Finucane, Kirsten; Beca, John

    2012-10-01

    Infants with congenital heart disease (CHD) have delayed brain maturation and alterations in brain volume. Brain metrics is a simple measurement technique that can be used to evaluate brain growth. This study used brain metrics to test the hypothesis that alterations in brain size persist at 3 months of age and that infants with CHD have slower rates of brain growth than control infants. Fifty-seven infants with CHD underwent serial brain magnetic resonance imaging (MRI). To evaluate brain growth across the first 3 months of life, brain metrics were undertaken using 19 tissue and fluid spaces shown on MRIs performed before surgery and again at 3 months of age. Before surgery, infants with CHD have smaller frontal, parietal, cerebellar, and brain stem measures (p < 0.001). At 3 months of age, alterations persisted in all measures except the cerebellum. There was no difference between control and CHD infants in brain growth. However, the cerebellum trended toward greater growth in infants with CHD. Somatic growth was the primary factor that related to brain growth. Presence of focal white matter lesions before and after surgery did not relate to alterations in brain size or growth. Although infants with CHD have persistent alterations in brain size at 3 months of age, rates of brain growth are similar to that of healthy term infants. Somatic growth was the primary predictor of brain growth, emphasizing the importance of optimal weight gain in this population.

  2. Transient Maternal Hypothyroidism Alters Neural Progenitor Cells Resulting in Abnormal Brain Development

    EPA Science Inventory

    Heterotopias are a birth defect of the brain and have varying etiologies in humans. They are characterized as clusters of mislocalized neurons and are associated with disorders such as autism and epilepsy. We have previously characterized the robust penetrance of a cortical heter...

  3. Altered structural brain changes and neurocognitive performance in pediatric HIV.

    PubMed

    Yadav, Santosh K; Gupta, Rakesh K; Garg, Ravindra K; Venkatesh, Vimala; Gupta, Pradeep K; Singh, Alok K; Hashem, Sheema; Al-Sulaiti, Asma; Kaura, Deepak; Wang, Ena; Marincola, Francesco M; Haris, Mohammad

    2017-01-01

    Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI) on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  4. Sex-based differences in brain alterations across chronic pain conditions

    PubMed Central

    Gupta, Arpana; Mayer, Emeran A; Fling, Connor; Labus, Jennifer S; Naliboff, Bruce D; Hong, Jui-Yang; Kilpatrick, Lisa A

    2016-01-01

    Common brain mechanisms are thought to play a significant role across a multitude of chronic pain syndromes. In addition, there is strong evidence for the existence of sex differences in the prevalence of chronic pain and in the neurobiology of pain. Thus, it is important to consider sex when developing general principals of pain neurobiology. The goal of the current review is to evaluate what is known about sex-specific brain alterations across multiple chronic pain populations. A total of 15 sex difference and 143 single-sex manuscripts were identified out of 412 chronic pain neuroimaging manuscripts. Results from sex difference studies indicate more prominent primary sensorimotor structural and functional alterations in female chronic pain patients compared to male chronic pain patients; differences in the nature and degree of insula alterations, with greater insula reactivity in male patients; differences in the degree of anterior cingulate structural alterations; and differences in emotional-arousal reactivity. Qualitative comparisons of male-specific and female-specific studies appear to be consistent with the results from sex difference studies. Given these differences, mixed-sex studies of chronic pain risk creating biased data or missing important information and single-sex studies have limited generalizability. The advent of large scale neuroimaging databases will likely aid in building a more comprehensive understanding of sex differences and commonalities in brain mechanisms underlying chronic pain. PMID:27870423

  5. Sex-based differences in brain alterations across chronic pain conditions.

    PubMed

    Gupta, Arpana; Mayer, Emeran A; Fling, Connor; Labus, Jennifer S; Naliboff, Bruce D; Hong, Jui-Yang; Kilpatrick, Lisa A

    2017-01-02

    Common brain mechanisms are thought to play a significant role across a multitude of chronic pain syndromes. In addition, there is strong evidence for the existence of sex differences in the prevalence of chronic pain and in the neurobiology of pain. Thus, it is important to consider sex when developing general principals of pain neurobiology. The goal of the current Mini-Review is to evaluate what is known about sex-specific brain alterations across multiple chronic pain populations. A total of 15 sex difference and 143 single-sex articles were identified from among 412 chronic pain neuroimaging articles. Results from sex difference studies indicate more prominent primary sensorimotor structural and functional alterations in female chronic pain patients compared with male chronic pain patients: differences in the nature and degree of insula alterations, with greater insula reactivity in male patients; differences in the degree of anterior cingulate structural alterations; and differences in emotional-arousal reactivity. Qualitative comparisons of male-specific and female-specific studies appear to be consistent with the results from sex difference studies. Given these differences, mixed-sex studies of chronic pain risk creating biased data or missing important information and single-sex studies have limited generalizability. The advent of large-scale neuroimaging databases will likely aid in building a more comprehensive understanding of sex differences and commonalities in brain mechanisms underlying chronic pain. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, Estefania G.; Department of Physiological Sciences, State University of Londrina, Londrina, PR; Yu Xiaozhong

    2010-06-15

    Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles acrossmore » doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10 mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.« less

  7. Characterization of impaired processing of neuropeptides in the brains of endoprotease knockout mice.

    PubMed

    Beinfeld, Margery C

    2011-01-01

    With the development of mice in which individual proteolytic enzymes have been inactivated, it has been of great interest to see how loss of these enzymes alters the processing of neuropeptides. In the course of studying changes in the peptide cholecystokinin (CCK) and other neuropeptides in several of these knockout mice, it has become clear that neuropeptide processing is complex and regionally specific. The enzyme responsible for processing in one part of the brain may not be involved in other parts of the brain. It is essential to do a detailed dissection of the brain and analyze peptide levels in many brain regions to fully understand the role of the enzymes. Because loss of these proteases may trigger compensatory mechanisms which involve expression of the neuropeptides being studied or other proteases or accessory proteins, it is also important to examine how loss of an enzyme alters expression of the neuropeptides being studied as well as other proteins thought to be involved in neuropeptide processing. By determining how loss of an enzyme alters the molecular form(s) of the peptide that are made, additional mechanistic information can be obtained. This review will describe established methods to achieve these research goals.

  8. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions.

    PubMed

    Pannek, Kerstin; Boyd, Roslyn N; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E

    2014-01-01

    Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Data of 50 children with unilateral CP caused by periventricular white matter lesions (5-17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7-16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm(2)) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment-AHA) was assessed in connections that showed significant differences in FA compared to CTD. FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r(2) = 0.16-0.44; p < 0.05). This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention.

  9. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory.

    PubMed

    Gould, Joanna M; Smith, Phoebe J; Airey, Chris J; Mort, Emily J; Airey, Lauren E; Warricker, Frazer D M; Pearson-Farr, Jennifer E; Weston, Eleanor C; Gould, Philippa J W; Semmence, Oliver G; Restall, Katie L; Watts, Jennifer A; McHugh, Patrick C; Smith, Stephanie J; Dewing, Jennifer M; Fleming, Tom P; Willaime-Morawek, Sandrine

    2018-06-25

    Maternal protein malnutrition throughout pregnancy and lactation compromises brain development in late gestation and after birth, affecting structural, biochemical, and pathway dynamics with lasting consequences for motor and cognitive function. However, the importance of nutrition during the preimplantation period for brain development is unknown. We have previously shown that maternal low-protein diet (LPD) confined to the preimplantation period (Emb-LPD) in mice, with normal nutrition thereafter, is sufficient to induce cardiometabolic and locomotory behavioral abnormalities in adult offspring. Here, using a range of in vivo and in vitro techniques, we report that Emb-LPD and sustained LPD reduce neural stem cell (NSC) and progenitor cell numbers at E12.5, E14.5, and E17.5 through suppressed proliferation rates in both ganglionic eminences and cortex of the fetal brain. Moreover, Emb-LPD causes remaining NSCs to up-regulate the neuronal differentiation rate beyond control levels, whereas in LPD, apoptosis increases to possibly temper neuron formation. Furthermore, Emb-LPD adult offspring maintain the increase in neuron proportion in the cortex, display increased cortex thickness, and exhibit short-term memory deficit analyzed by the novel-object recognition assay. Last, we identify altered expression of fragile X family genes as a potential molecular mechanism for adverse programming of brain development. Collectively, these data demonstrate that poor maternal nutrition from conception is sufficient to cause abnormal brain development and adult memory loss.

  10. Effect of Gestational Exposure of Cypermethrin on Postnatal Development of Brain Cytochrome P450 2D1 and 3A1 and Neurotransmitter Receptors.

    PubMed

    Singh, Anshuman; Mudawal, Anubha; Shukla, Rajendra K; Yadav, Sanjay; Khanna, Vinay K; Sethumadhavan, Rao; Parmar, Devendra

    2015-08-01

    Oral administration of low doses (1.25, 2.5, or 5 mg/kg) of cypermethrin to pregnant Wistar rats from gestation days 5 to 21 led to dose-dependent differences in the induction of cytochrome P450 2D1 (CYP2D1) and 3A1 messenger RNA (mRNA) and protein in brain regions isolated from the offsprings postnatally at 3 weeks that persisted up to adulthood (12 weeks). Similar alterations were observed in the expression of GABAergic, muscarinic, dopaminergic, and serotonergic neurotransmitter receptors in brain regions of rat offsprings. Rechallenge of the prenatally exposed offsprings at adulthood (12 weeks old) with cypermethrin (p.o., 10 mg/kg for 6 days) led to a greater magnitude of alterations in the expression of CYPs, neurotransmitter receptors, and neurotransmitter receptor binding in the brain regions when compared to the control offsprings treated at adulthood with cypermethrin or prenatally exposed offsprings. A greater magnitude of decrease was also observed in the spontaneous locomotor activity (SLA) in prenatally exposed offsprings rechallenged with cypermethrin. The present data indicating similarities in the alterations in the expression of CYPs (2D1 and 3A1) and neurotransmitter receptors in brain has led us to suggest that endogenous function regulating CYPs is possibly associated with neurotransmission processes. A greater magnitude of alterations in CYP2D1, 3A1, neurotransmitter receptors, and SLA in rechallenged animals has further provided evidence that alterations in CYPs are possibly linked with neurotransmission processes.

  11. Cortical Brain Malformation and Learning Impairments Induced by Developmental Thyroid Hormone Insufficiency: A Cross-Fostering Study

    EPA Science Inventory

    Although it is clear that severe reductions in thyroid hormones (TH) during development alter brain structure and function, the impact of low level, timing, and duration of TH insufficiency is less well understood. We have previously reported the presence of a cortical heterotopi...

  12. Neuroimaging is a novel tool to understand the impact of environmental chemicals on neurodevelopment

    PubMed Central

    Horton, Megan K.; Margolis, Amy E.; Tang, Cheuk; Wright, Robert

    2014-01-01

    Purpose of review The prevalence of childhood neurodevelopmental disorders (ND) has been increasing over the last several decades. Prenatal and early childhood exposure to environmental toxicants is increasingly recognized as contributing to the growing rate of NDs. Very little is known about the mechanistic processes by which environmental chemicals alter brain development. We review recent advances in brain imaging modalities and discuss their application in epidemiologic studies of prenatal and early childhood exposure to environmental toxicants. Recent findings Neuroimaging techniques (volumetric and functional magnetic resonance imaging (MRI), diffusor tensor imaging (DTI), magnetic resonance spectroscopy (MRS)) have opened unprecedented access to study the developing human brain. These techniques are non-invasive and free of ionization radiation making them suitable for research applications in children. Using these techniques, we now understand much about structural and functional patterns in the typically developing brain. This knowledge allows us to investigate how prenatal exposure to environmental toxicants may alter the typical developmental trajectory. Summary MRI is a powerful tool that allows in vivo visualization of brain structure and function. Used in epidemiologic studies of environmental exposure, it offers the promise to causally link exposure with behavioral and cognitive manifestations and ultimately to inform programs to reduce exposure and mitigate adverse effects of exposure. PMID:24535497

  13. Violent Video Games Alter Brain Function in Young Men

    MedlinePlus

    ... the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men At A Glance Using ... video games for one week causes changes in brain function. The brain regions affected by violent video ...

  14. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, R.A.

    1986-12-01

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatizationmore » of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period.« less

  15. Current state of the use of neuroimaging techniques to understand and alter appetite control in humans.

    PubMed

    Spetter, Maartje S

    2018-06-20

    It is in the brain where the decision is made what and how much to eat. In the last decades neuroimaging research has contributed extensively to new knowledge about appetite control by revealing the underlying brain processes. Interestingly, there is the fast growing idea of using these methods to develop new treatments for obesity and eating disorders. In this review, we summarize the findings of the importance of the use of neuropharmacology and neuroimaging techniques in understanding and modifying appetite control. Appetite control is a complex interplay between homeostatic, hedonic, and cognitive processes. Administration of the neuropeptides insulin and oxytocin curb food intake and alter brain responses in reward and cognitive control areas. Additionally, these areas can be targeted for neuromodulation or neurofeedback to reduce food cravings and increase self-control to alter food intake. The recent findings reveal the potential of intranasal administration of hormones or modifying appetite control brain networks to reduce food consumption in volunteers with overweight and obesity or individuals with an eating disorder. Although long-term clinical studies are still needed.

  16. Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders.

    PubMed

    D'Mello, Charlotte; Swain, Mark G

    2014-01-01

    Chronic inflammatory liver diseases are often accompanied by behavior alterations including fatigue, mood disorders, cognitive dysfunction and sleep disturbances. These altered behaviors can adversely affect patient quality of life. The communication pathways between the inflamed liver and the brain that mediate changes in central neural activity leading to behavior alterations during liver inflammation are poorly understood. Neural and humoral communication pathways have been most commonly implicated as driving peripheral inflammation to brain signaling. Classically, the cytokines TNFα, IL-1β and IL-6 have received the greatest scientific attention as potential mediators of this communication pathway. In mice with liver inflammation we have identified a novel immune-mediated liver-to-brain communication pathway whereby CCR2(+) monocytes found within the peripheral circulation transmigrate into the brain parenchyma in response to MCP-1/CCL2 expressing activated microglia. Inhibition of cerebral monocyte infiltration in these mice significantly improved liver inflammation associated sickness behaviors. Importantly, in recent work we have found that at an earlier time point, when cerebral monocyte infiltration is not evident in mice with liver inflammation, increased monocyte:cerebral endothelial cell adhesive interactions are observed using intravital microscopy of the brain. These monocyte:cerebral endothelial cell adhesive interactions are P-selectin mediated, and inhibition of these interactions attenuated microglial activation and sickness behavior development. Delineating the pathways that the periphery uses to communicate with the brain during inflammatory liver diseases, and the central neurotransmitter systems that are altered through these communication pathways (e.g., serotonin, corticotrophin releasing hormone) to give rise to liver inflammation-associated sickness behaviors, will allow for the identification of novel therapeutic targets to decrease the burden of debilitating symptoms in these patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  18. Local brain connectivity across development in autism spectrum disorder: A cross-sectional investigation

    PubMed Central

    Dajani, Dina R.; Uddin, Lucina Q.

    2015-01-01

    Lay Abstract There is a general consensus that autism spectrum disorder (ASD) is accompanied by alterations in brain connectivity. Much of the neuroimaging work has focused on assessing long-range connectivity disruptions in ASD. However, evidence from both animal models and postmortem examination of the human brain suggests that local connections may also be disrupted in individuals with ASD. Here we investigated the development of local connectivity across three age cohorts of individuals with ASD and typically developing (TD) individuals. We find that in typical development, children exhibit high levels of local connectivity across the brain, while adolescents exhibit lower levels of local connectivity, similar to adult levels. On the other hand, children with ASD exhibit marginally lower local connectivity than TD children, and adolescents and adults with ASD exhibit levels of local connectivity comparable to that observed in neurotypical individuals. During all developmental stages -- childhood, adolescence, and adulthood -- individuals with ASD exhibited lower local connectivity in brain regions involved in sensory processing and higher local connectivity in brain regions involved in complex information processing. Further, higher local connectivity in ASD corresponded to more severe ASD symptomatology. Thus we demonstrate that local connectivity is disrupted in autism across development, with the most pronounced differences occurring in childhood. Scientific Abstract There is a general consensus that autism spectrum disorder (ASD) is accompanied by alterations in brain connectivity. Much of the neuroimaging work has focused on assessing long-range connectivity disruptions in ASD. However, evidence from both animal models and postmortem examination of the human brain suggests that local connections may also be disrupted in individuals with the disorder. Here we investigated how regional homogeneity (ReHo), a measure of similarity of a voxel’s timeseries to its nearest neighbors, varies across age in individuals with ASD and typically developing (TD) individuals using a cross-sectional design. Resting-state fMRI data obtained from a publicly available database were analyzed to determine group differences in ReHo between three age cohorts: children, adolescents, and adults. In typical development, ReHo across the entire brain was higher in children than in adolescents and adults. In contrast, children with ASD exhibited marginally lower ReHo than TD children, while adolescents and adults with ASD exhibited similar levels of local connectivity as age-matched neurotypical individuals. During all developmental stages, individuals with ASD exhibited lower local connectivity in sensory processing brain regions and higher local connectivity in complex information processing regions. Further, higher local connectivity in ASD corresponded to more severe ASD symptomatology. These results demonstrate that local connectivity is disrupted in ASD across development, with the most pronounced differences occurring in childhood. Developmental changes in ReHo do not mirror findings from fMRI studies of long-range connectivity in ASD, pointing to a need for more nuanced accounts of brain connectivity alterations in the disorder. PMID:26058882

  19. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    PubMed Central

    Rogers, G B; Keating, D J; Young, R L; Wong, M-L; Licinio, J; Wesselingh, S

    2016-01-01

    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut–brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies. PMID:27090305

  20. Developmental vitamin D deficiency causes abnormal brain development.

    PubMed

    Eyles, D W; Feron, F; Cui, X; Kesby, J P; Harms, L H; Ko, P; McGrath, J J; Burne, T H J

    2009-12-01

    There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that vitamin D acts as a neurosteroid with direct effects on brain development.

  1. Growth-related neural reorganization and the autism phenotype: a test of the hypothesis that altered brain growth leads to altered connectivity

    PubMed Central

    Lewis, John D.; Elman, Jeffrey L.

    2009-01-01

    Theoretical considerations, and findings from computational modeling, comparative neuroanatomy and developmental neuroscience, motivate the hypothesis that a deviant brain growth trajectory will lead to deviant patterns of change in cortico-cortical connectivity. Differences in brain size during development will alter the relative cost and effectiveness of short- and long-distance connections, and should thus impact the growth and retention of connections. Reduced brain size should favor long-distance connectivity; brain overgrowth should favor short-distance connectivity; and inconsistent deviations from the normal growth trajectory – as occurs in autism – should result in potentially disruptive changes to established patterns of functional and physical connectivity during development. To explore this hypothesis, neural networks which modeled inter-hemispheric interaction were grown at the rate of either typically developing children or children with autism. The influence of the length of the inter-hemispheric connections was analyzed at multiple developmental time-points. The networks that modeled autistic growth were less affected by removal of the inter-hemispheric connections than those that modeled normal growth – indicating a reduced reliance on long-distance connections – for short response times, and this difference increased substantially at approximately 24 simulated months of age. The performance of the networks showed a corresponding decline during development. And direct analysis of the connection weights showed a parallel reduction in connectivity. These modeling results support the hypothesis that the deviant growth trajectory in autism spectrum disorders may lead to a disruption of established patterns of functional connectivity during development, with potentially negative behavioral consequences, and a subsequent reduction in physical connectivity. The results are discussed in relation to the growing body of evidence of reduced functional and structural connectivity in autism, and in relation to the behavioral phenotype, particularly the developmental aspects. PMID:18171375

  2. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring.

    PubMed

    Bahous, Renata H; Jadavji, Nafisa M; Deng, Liyuan; Cosín-Tomás, Marta; Lu, Jessica; Malysheva, Olga; Leung, Kit-Yi; Ho, Ming-Kai; Pallàs, Mercè; Kaliman, Perla; Greene, Nicholas D E; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid. © The Author 2017. Published by Oxford University Press.

  3. Fetal and Neonatal Iron Deficiency Exacerbates Mild Thyroid Hormone Insufficiency Effects on Male Thyroid Hormone Levels and Brain Thyroid Hormone-Responsive Gene Expression

    PubMed Central

    Bastian, Thomas W.; Prohaska, Joseph R.; Georgieff, Michael K.

    2014-01-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression. PMID:24424046

  4. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets

    PubMed Central

    Santagata, Sandro; Cahill, Daniel P.; Taylor-Weiner, Amaro; Jones, Robert T.; Van Allen, Eliezer M.; Lawrence, Michael S.; Horowitz, Peleg M.; Cibulskis, Kristian; Ligon, Keith L.; Tabernero, Josep; Seoane, Joan; Martinez-Saez, Elena; Curry, William T.; Dunn, Ian F.; Paek, Sun Ha; Park, Sung-Hye; McKenna, Aaron; Chevalier, Aaron; Rosenberg, Mara; Barker, Frederick G.; Gill, Corey M.; Van Hummelen, Paul; Thorner, Aaron R.; Johnson, Bruce E.; Hoang, Mai P.; Choueiri, Toni K.; Signoretti, Sabina; Sougnez, Carrie; Rabin, Michael S.; Lin, Nancy U.; Winer, Eric P.; Stemmer-Rachamimov, Anat; Meyerson, Matthew; Garraway, Levi; Gabriel, Stacey; Lander, Eric S.; Beroukhim, Rameen; Batchelor, Tracy T.; Baselga, Jose; Louis, David N.

    2016-01-01

    Brain metastases are associated with a dismal prognosis. Whether brain metastases harbor distinct genetic alterations beyond those observed in primary tumors is unknown. We performed whole-exome sequencing of 86 matched brain metastases, primary tumors and normal tissue. In all clonally related cancer samples, we observed branched evolution, where all metastatic and primary sites shared a common ancestor yet continued to evolve independently. In 53% of cases, we found potentially clinically informative alterations in the brain metastases not detected in the matched primary-tumor sample. In contrast, spatially and temporally separated brain metastasis sites were genetically homogenous. Distal extracranial and regional lymph node metastases were highly divergent from brain metastases. We detected alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in the brain metastases. Genomic analysis of brain metastases provides an opportunity to identify potentially clinically informative alterations not detected in clinically sampled primary tumors, regional lymph nodes, or extracranial metastases. PMID:26410082

  5. Dietary protein restriction causes modification in aluminum-induced alteration in glutamate and GABA system of rat brain

    PubMed Central

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2003-01-01

    Background Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity. Results Protein restriction does not have any significant impact on regional aluminum and γ-aminobutyrate contents of rat brain. Significant interaction of dietary protein restriction and aluminum intoxication to alter regional brain glutamate level was observed in the tested brain regions except cerebellum. Alteration in glutamate α-decarboxylase and γ-aminobutyrate transaminase activities were found to be significantly influenced by interaction of aluminum intoxication and dietary protein restriction in all the tested brain regions. In case of regional brain succinic semialdehyde content, this interaction was significant only in cerebrum and thalamic area. Conclusion The alterations of regional brain glutamate and γ-aminobutyrate levels by aluminum are region specific as well as dependent on dietary protein intake. The impact of aluminum exposure on the metabolism of these amino acid neurotransmitters are also influenced by dietary protein level. Thus, modification of dietary protein level or manipulation of the brain amino acid homeostasis by any other means may be an useful tool to find out a path to restrict amino acid neurotransmitter alterations in aluminum-associated neurodisorders. PMID:12657166

  6. Maternal high-fat feeding leads to alterations of brain glucose metabolism in the offspring: positron emission tomography study in a porcine model.

    PubMed

    Sanguinetti, Elena; Liistro, Tiziana; Mainardi, Marco; Pardini, Silvia; Salvadori, Piero A; Vannucci, Alessandro; Burchielli, Silvia; Iozzo, Patricia

    2016-04-01

    Maternal obesity negatively affects fetal development. Abnormalities in brain glucose metabolism are predictive of metabolic-cognitive disorders. We studied the offspring (aged 0, 1, 6, 12 months) of minipigs fed a normal vs high-fat diet (HFD), by positron emission tomography (PET) to measure brain glucose metabolism, and ex vivo assessments of brain insulin receptors (IRβ) and GLUT4. At birth, brain glucose metabolism and IRβ were twice as high in the offspring of HFD-fed than control mothers. During infancy and youth, brain glucose uptake, GLUT4 and IRβ increased in the offspring of control mothers and decreased in those of HFD-fed mothers, leading to a 40-85% difference (p < 0.05), and severe glycogen depletion, lasting until adulthood. Maternal high-fat feeding leads to brain glucose overexposure during fetal development, followed by long-lasting depression in brain glucose metabolism in minipigs. These features may predispose the offspring to develop metabolic-neurodegenerative diseases.

  7. Alterations of LKB1 and KRAS and risk of brain metastasis: comprehensive characterization by mutation analysis, copy number, and gene expression in non-small-cell lung carcinoma.

    PubMed

    Zhao, Ni; Wilkerson, Matthew D; Shah, Usman; Yin, Xiaoying; Wang, Anyou; Hayward, Michele C; Roberts, Patrick; Lee, Carrie B; Parsons, Alden M; Thorne, Leigh B; Haithcock, Benjamin E; Grilley-Olson, Juneko E; Stinchcombe, Thomas E; Funkhouser, William K; Wong, Kwok-Kin; Sharpless, Norman E; Hayes, D Neil

    2014-11-01

    Brain metastases are one of the most malignant complications of lung cancer and constitute a significant cause of cancer related morbidity and mortality worldwide. Recent years of investigation suggested a role of LKB1 in NSCLC development and progression, in synergy with KRAS alteration. In this study, we systematically analyzed how LKB1 and KRAS alteration, measured by mutation, gene expression (GE) and copy number (CN), are associated with brain metastasis in NSCLC. Patients treated at University of North Carolina Hospital from 1990 to 2009 with NSCLC provided frozen, surgically extracted tumors for analysis. GE was measured using Agilent 44,000 custom-designed arrays, CN was assessed by Affymetrix GeneChip Human Mapping 250K Sty Array or the Genome-Wide Human SNP Array 6.0 and gene mutation was detected using ABI sequencing. Integrated analysis was conducted to assess the relationship between these genetic markers and brain metastasis. A model was proposed for brain metastasis prediction using these genetic measurements. 17 of the 174 patients developed brain metastasis. LKB1 wild type tumors had significantly higher LKB1 CN (p<0.001) and GE (p=0.002) than the LKB1 mutant group. KRAS wild type tumors had significantly lower KRAS GE (p<0.001) and lower CN, although the latter failed to be significant (p=0.295). Lower LKB1 CN (p=0.039) and KRAS mutation (p=0.007) were significantly associated with more brain metastasis. The predictive model based on nodal (N) stage, patient age, LKB1 CN and KRAS mutation had a good prediction accuracy, with area under the ROC curve of 0.832 (p<0.001). LKB1 CN in combination with KRAS mutation predicted brain metastasis in NSCLC. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Antenatal Steroids and the IUGR Fetus: Are Exposure and Physiological Effects on the Lung and Cardiovascular System the Same as in Normally Grown Fetuses?

    PubMed Central

    Morrison, Janna L.; Botting, Kimberley J.; Soo, Poh Seng; McGillick, Erin V.; Hiscock, Jennifer; Zhang, Song; McMillen, I. Caroline; Orgeig, Sandra

    2012-01-01

    Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR) is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia. PMID:23227338

  9. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights into Altered Brain Maturation

    PubMed Central

    Morton, Paul D.; Ishibashi, Nobuyuki; Jonas, Richard A.

    2017-01-01

    In the past two decades it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however the underlying etiologies remain largely unknown and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential in order to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. PMID:28302742

  10. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    PubMed

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The motivation for very early intervention for infants at high risk for autism spectrum disorders.

    PubMed

    Webb, Sara Jane; Jones, Emily J H; Kelly, Jean; Dawson, Geraldine

    2014-02-01

    The first Autism Research Matrix (IACC, 2003) listed the identification of behavioural and biological markers of risk for autism as a top priority. This emphasis was based on the hypothesis that intervention with infants at-risk, at an early age when the brain is developing and before core autism symptoms have emerged, could significantly alter the developmental trajectory of children at risk for the disorder and impact long-range outcome. Research has provided support for specific models of early autism intervention (e.g., Early Start Denver Model) for improving outcomes in young children with autism, based on both behavioural and brain activity measures. Although great strides have been made in ability to identify risk markers for autism in younger infant/toddler samples, how and when to intervene during the prodromal state remains a critical question. Emerging evidence suggests that abnormal brain circuitry in autism precedes altered social behaviours; thus, an intervention designed to promote early social engagement and reciprocity potentially could steer brain development back toward the normal trajectory and remit or reduce the expression of symptoms.

  12. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights Into Altered Brain Maturation.

    PubMed

    Morton, Paul D; Ishibashi, Nobuyuki; Jonas, Richard A

    2017-03-17

    In the past 2 decades, it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however, the underlying causes remain largely unknown, and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. © 2017 American Heart Association, Inc.

  13. Rapid Morphological Brain Abnormalities during Acute Methamphetamine Intoxication in the Rat. An Experimental study using Light and Electron Microscopy

    PubMed Central

    Sharma, Hari S.; Kiyatkin, Eugene A.

    2009-01-01

    This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood-brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (iv) catheter were exposed to METH (9 mg/kg) at standard (23°C) and warm (29°C) ambient temperatures, allowing for the observation of hyperthermia ranging from mild to pathological levels (38–42°C). When brain temperature peaked or reached a level suggestive of possible lethality (>41.5°C), rats were injected with Evans blue (EB), rapidly anesthetized, perfused, and their brains were taken for further analyses. Four brain areas (cortex, hippocampus, thalamus and hypothalamus) were analyzed for EB extravasation, water and electrolyte (Na+, K+, Cl−) contents, immunostained for albumin and glial fibrillary acidic protein, and examined for neuronal, glial and axonal alterations using standard light and electron microscopy. These examinations revealed profound abnormalities in neuronal, glial, and endothelial cells, which were stronger with METH administered at 29°C than 23°C and tightly correlated with brain and body hyperthermia. These changes had some structural specificity, but in each structure they tightly correlated with increases in EB levels, the numbers of albumin-positive cells, and water and ion contents, suggesting leakage of the BBB, acutely developing brain edema, and serious shifts in brain ion homeostasis as leading factors underlying brain abnormalities. While most of these acute structural and functional abnormalities appear to be reversible, they could trigger subsequent cellular alterations in the brain and accelerate neurodegeneration—the most dangerous complication of chronic amphetamine-like drug abuse. PMID:18773954

  14. Epileptogenesis in experimental models.

    PubMed

    Pitkänen, Asla; Kharatishvili, Irina; Karhunen, Heli; Lukasiuk, Katarzyna; Immonen, Riikka; Nairismägi, Jaak; Gröhn, Olli; Nissinen, Jari

    2007-01-01

    Epileptogenesis refers to a phenomenon in which the brain undergoes molecular and cellular alterations after a brain-damaging insult, which increase its excitability and eventually lead to the occurrence of recurrent spontaneous seizures. Common epileptogenic factors include traumatic brain injury (TBI), stroke, and cerebral infections. Only a subpopulation of patients with any of these brain insults, however, will develop epilepsy. Thus, there are two great challenges: (1) identifying patients at risk, and (2) preventing and/or modifying the epileptogenic process. Target identification for antiepileptogenic treatments is difficult in humans because patients undergoing epileptogenesis cannot currently be identified. Animal models of epileptogenesis are therefore necessary for scientific progress. Recent advances in the development of experimental models of epileptogenesis have provided tools to investigate the molecular and cellular alterations and their temporal appearance, as well as the epilepsy phenotype after various clinically relevant epileptogenic etiologies, including TBI and stroke. Studying these models will lead to answers to critical questions such as: Do the molecular mechanisms of epileptogenesis depend on the etiology? Is the spectrum of network alterations during epileptogenesis the same after various clinically relevant etiologies? Is the temporal progression of epileptogenesis similar? Work is ongoing, and answers to these questions will facilitate the identification of molecular targets for antiepileptogenic treatments, the design of treatment paradigms, and the determination of whether data from one etiology can be extrapolated to another.

  15. The impact of junk foods on the adolescent brain.

    PubMed

    Reichelt, Amy C; Rank, Michelle M

    2017-12-01

    Adolescence is a significant period of physical, social, and emotional development, and is characterized by prominent neurobiological changes in the brain. The maturational processes that occur in brain regions responsible for cognitive control and reward seeking may underpin excessive consumption of palatable high fat and high sugar "junk" foods during adolescence. Recent studies have highlighted the negative impact of these foods on brain function, resulting in cognitive impairments and altered reward processing. The increased neuroplasticity during adolescence may render the brain vulnerable to the negative effects of these foods on cognition and behavior. In this review, we describe the mechanisms by which junk food diets influence neurodevelopment during adolescence. Diet can lead to alterations in dopamine-mediated reward signaling, and inhibitory neurotransmission controlled by γ-aminobutyric acid (GABA), two major neurotransmitter systems that are under construction across adolescence. We propose that poor dietary choices may derail the normal adolescent maturation process and influence neurodevelopmental trajectories, which can predispose individuals to dysregulated eating and impulsive behaviors. © 2017 Wiley Periodicals, Inc.

  16. Functional imaging studies in cannabis users.

    PubMed

    Chang, Linda; Chronicle, Edward P

    2007-10-01

    Cannabis remains the most widely used illegal drug in the United States. This update examines the available literature on neuroimaging studies of the brains of cannabis users. The majority of studies examining the acute effects of delta-9-tetrahydrocannabinol (THC) administration used PET methods and concluded that administration of THC leads to increased activation in frontal and paralimbic regions and the cerebellum. These increases in activation are broadly consistent with the behavioral effects of the drug. Although there is only equivocal evidence that chronic cannabis use might result in structural brain changes, blood-oxygenation-level-dependent-fMRI studies in chronic users consistently show alterations, or neuroadaptation, in the activation of brain networks responsible for higher cognitive functions. It is not yet certain whether these changes are reversible with abstinence. Given the high prevalence of cannabis use among adolescents, studies are needed to evaluate whether cannabis use might affect the developing brain. Considerable further work, employing longitudinal designs, is also required to determine whether cannabis use causes permanent functional alterations in the brains of adults.

  17. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  18. Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens

    PubMed Central

    Rehman, Zaib Ur; Qiu, Xusheng; Sun, Yingjie; Liao, Ying; Tan, Lei; Song, Cuiping; Yu, Shengqing; Ding, Zhuang; Nair, Venugopal; Meng, Chunchun; Ding, Chan

    2018-01-01

    Newcastle disease (ND), characterized by visceral, respiratory, and neurological pathologies, causes heavy economic loss in the poultry industry around the globe. While significant advances have been made in effective diagnosis and vaccine development, molecular mechanisms of ND virus (NDV)-induced neuropathologies remain elusive. In this study, we report the magnitude of oxidative stress and histopathological changes induced by the virulent NDV (ZJ1 strain) and assess the impact of vitamin E in alleviating these pathologies. Comparative profiling of plasma and brains from mock and NDV-infected chicken demonstrated alterations in several oxidative stress makers such as nitric oxide, glutathione, malondialdehyde, total antioxidant capacity, glutathione S-transferase, superoxide dismutase, and catalases. While decreased levels of glutathione and total antioxidant capacity and increased concentrations of malondialdehyde and nitric oxide were observed in NDV-challenged birds at all time points, these alterations were eminent at latter time points (5 days post infection). Additionally, significant decreases in the activities of glutathione S-transferase, superoxide dismutase, and catalase were observed in the plasma and brains collected from NDV-infected chickens. Intriguingly, we observed that supplementation of vitamin E can significantly reduce the alteration of oxidative stress parameters. Under NDV infection, extensive histopathological alterations were observed in chicken brain including neural inflammation, capillary hyperemia, necrosis, and loss of prominent axons, which were reduced with the treatment of vitamin E. Taken together, our findings highlight that neurotropic NDV induces extensive tissue damage in the brain and alters plasma oxidative stress profiles. These findings also demonstrate that supplementing vitamin E ameliorates these pathologies in chickens and proposes its supplementation for NDV-induced stresses. PMID:29614025

  19. Brain functional connectivity changes in children that differ in impulsivity temperamental trait

    PubMed Central

    Inuggi, Alberto; Sanz-Arigita, Ernesto; González-Salinas, Carmen; Valero-García, Ana V.; García-Santos, Jose M.; Fuentes, Luis J.

    2014-01-01

    Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior. PMID:24834038

  20. Brain functional connectivity changes in children that differ in impulsivity temperamental trait.

    PubMed

    Inuggi, Alberto; Sanz-Arigita, Ernesto; González-Salinas, Carmen; Valero-García, Ana V; García-Santos, Jose M; Fuentes, Luis J

    2014-01-01

    Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior.

  1. Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder.

    PubMed

    Forbes, Erika E; Hariri, Ahmad R; Martin, Samantha L; Silk, Jennifer S; Moyles, Donna L; Fisher, Patrick M; Brown, Sarah M; Ryan, Neal D; Birmaher, Boris; Axelson, David A; Dahl, Ronald E

    2009-01-01

    Alterations in reward-related brain function and phenomenological aspects of positive affect are increasingly examined in the development of major depressive disorder. The authors tested differences in reward-related brain function in healthy and depressed adolescents, and the authors examined direct links between reward-related brain function and positive mood that occurred in real-world contexts. Fifteen adolescents with major depressive disorder and 28 adolescents with no history of psychiatric disorder, ages 8-17 years, completed a functional magnetic resonance imaging guessing task involving monetary reward. Participants also reported their subjective positive affect in natural environments during a 4-day cell-phone-based ecological momentary assessment. Adolescents with major depressive disorder exhibited less striatal response than healthy comparison adolescents during reward anticipation and reward outcome, but more response in dorsolateral and medial prefrontal cortex. Diminished activation in a caudate region associated with this depression group difference was correlated with lower subjective positive affect in natural environments, particularly within the depressed group. Results support models of altered reward processing and related positive affect in young people with major depressive disorder and indicate that depressed adolescents' brain response to monetary reward is related to their affective experience in natural environments. Additionally, these results suggest that reward-processing paradigms capture brain function relevant to real-world positive affect.

  2. Nicotine increases brain functional network efficiency.

    PubMed

    Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R

    2012-10-15

    Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.

  3. Nicotine Increases Brain Functional Network Efficiency

    PubMed Central

    Wylie, Korey P.; Rojas, Donald C.; Tanabe, Jody; Martin, Laura F.; Tregellas, Jason R.

    2012-01-01

    Despite the use of cholinergic therapies in Alzheimer’s disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting-state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network’s tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer’s disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. PMID:22796985

  4. Dermatoglyphics in relation to brain volumes in twins concordant and discordant for bipolar disorder.

    PubMed

    Vonk, R; van der Schot, A C; van Baal, G C M; van Oel, C J; Nolen, W A; Kahn, R S

    2014-12-01

    Palmar and finger dermatoglyphics are formed between the 10th and the 17th weeks of gestation and their morphology can be influenced by genetic or environmental factors, interfering with normal intrauterine development. As both the skin and the brain develop from the same embryonal ectoderm, dermatoglyphic alterations may be informative for early abnormal neurodevelopmental processes in the brain. We investigated whether dermatoglyphic alterations are related to structural brain abnormalities in bipolar disorder and to what extent they are of a genetic and of an environmental origin. Dermatoglyphics and volumetric data from structural MRI were obtained in 53 twin pairs concordant or discordant for bipolar disorder and 51 healthy matched control twin pairs. Structural equation modeling was used. Bipolar disorder was significantly positively associated with palmar a-b ridge count (ABRC), indicating higher ABRC in bipolar patients (rph=.17 (CI .04-.30)). Common genes appear to be involved because the genetic correlation with ABRC was significant (rph-A=.21 (CI .05-.36). Irrespective of disease, ABRC showed a genetically mediated association with brain volume, indicated by a significant genetic correlation rph-A of respectively -.36 (CI -.52 to -.22) for total brain, -.34 (CI -.51 to -.16) total cortical volume, -.27 (CI -.43 to -.08) cortical gray matter and -.23 (CI -.41 to -.04) cortical white matter. In conclusion, a genetically determined abnormal development of the foetal ectoderm between the 10th and 15th week of gestation appears related to smaller brain volumes in (subjects at risk for) bipolar disorder. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  5. Gut-Brain Axis and Behavior.

    PubMed

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  6. Altered Markers of Brain Development in Crohn’s Disease with Extraintestinal Manifestations – A Pilot Study

    PubMed Central

    Thomann, Philipp A.; Wolf, Robert C.; Hirjak, Dusan; Schmahl, Christian; Ebert, Matthias P.; Szabo, Kristina; Reindl, Wolfgang; Griebe, Martin

    2016-01-01

    Background and Objective Alterations of brain morphology in Crohn’s disease have been reported, but data is scarce and heterogenous and the possible impact of disease predisposition on brain development is unknown. Assuming a systemic course of the disease, brain involvement seems more probable in presence of extraintestinal manifestations, but this question has not yet been addressed. The present study examined the relationship between Crohn’s disease and brain structure and focused on the connection with extraintestinal manifestations and markers of brain development. Methods In a pilot study, brains of 15 patients with Crohn’s disease (of which 9 had a history of extraintestinal manifestations, i.e. arthritis, erythema nodosum and primary sclerosing cholangitis) were compared to matched healthy controls using high resolution magnetic resonance imaging. Patients and controls were tested for depression, fatigue and global cognitive function. Cortical thickness, surface area and folding were determined via cortical surface modeling. Results The overall group comparison (i.e. all patients vs. controls) yielded no significant results. In the patient subgroup with extraintestinal manifestations, changes in cortical area and folding, but not thickness, were identified: Patients showed elevated cortical surface area in the left middle frontal lobe (p<0.05) and hypergyrification in the left lingual gyrus (p<0.001) compared to healthy controls. Hypogyrification of the right insular cortex (p<0.05) and hypergyrification of the right anterior cingulate cortex (p<0.001) were detected in the subgroup comparison of patients with against without extraintestinal manifestations. P-values are corrected for multiple comparisons. Conclusions Our findings lend further support to the hypothesis that Crohn’s disease is associated with aberrant brain structure and preliminary support for the hypothesis that these changes are associated with a systemic course of the disease as indicated by extraintestinal manifestations. Changes in cortical surface area and folding suggest a possible involvement of Crohn’s disease or its predisposition during brain development. PMID:27655165

  7. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    PubMed Central

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  8. Brain Injury Alters Volatile Metabolome

    PubMed Central

    Cohen, Akiva S.; Gordon, Amy R.; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N.; Beauchamp, Gary K.

    2016-01-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function—which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. PMID:26926034

  9. Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis.

    PubMed

    Zhou, Fuqing; Zhuang, Ying; Gong, Honghan; Zhan, Jie; Grossman, Murray; Wang, Ze

    2016-01-01

    Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS) and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS.

  10. Changes in Imaging and Cognition in Juvenile Rats After Whole-Brain Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert J.; Jun, Brandon J.; Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California

    Purpose: In pediatric cancer survivors treated with whole-brain irradiation (WBI), long-term cognitive deficits and morbidity develop that are poorly understood and for which there is no treatment. We describe similar cognitive defects in juvenile WBI rats and correlate them with alterations in diffusion tensor imaging and magnetic resonance spectroscopy (MRS) during brain development. Methods and Materials: Juvenile Fischer rats received clinically relevant fractionated doses of WBI or a high-dose exposure. Diffusion tensor imaging and MRS were performed at the time of WBI and during the subacute (3-month) and late (6-month) phases, before behavioral testing. Results: Fractional anisotropy in the spleniummore » of the corpus callosum increased steadily over the study period, reflecting brain development. WBI did not alter the subacute response, but thereafter there was no further increase in fractional anisotropy, especially in the high-dose group. Similarly, the ratios of various MRS metabolites to creatine increased over the study period, and in general, the most significant changes after WBI were during the late phase and with the higher dose. The most dramatic changes observed were in glutamine-creatine ratios that failed to increase normally between 3 and 6 months after either radiation dose. WBI did not affect the ambulatory response to novel open field testing in the subacute phase, but locomotor habituation was impaired and anxiety-like behaviors increased. As for cognitive measures, the most dramatic impairments were in novel object recognition late after either dose of WBI. Conclusions: The developing brains of juvenile rats given clinically relevant fractionated doses of WBI show few abnormalities in the subacute phase but marked late cognitive alterations that may be linked with perturbed MRS signals measured in the corpus callosum. This pathomimetic phenotype of clinically relevant cranial irradiation effects may be useful for modeling, mechanistic evaluations, and testing of mitigation approaches.« less

  11. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease

    PubMed Central

    Butterfield, D. Allan; Boyd-Kimball, Debra

    2018-01-01

    Oxidative stress is implicated in the pathogenesis and progression of Alzheimer’s disease (AD) and its earlier stage, amnestic mild cognitive impairment (aMCI). One source of oxidative stress in AD and aMCI brains is that associated with amyloid-β peptide, Aβ1-42 oligomers. Our laboratory first showed in AD elevated oxidative stress occurred in brain regions rich in Aβ1-42, but not in Aβ1-42-poor regions, and was among the first to demonstrate Aβ peptides led to lipid peroxidation (indexed by HNE) in AD and aMCI brains. Oxidatively modified proteins have decreased function and contribute to damaged key biochemical and metabolic pathways in which these proteins normally play a role. Identification of oxidatively modified brain proteins by the methods of redox proteomics was pioneered in the Butterfield laboratory. Four recurring altered pathways secondary to oxidative damage in brain from persons with AD, aMCI, or Down syndrome with AD are interrelated and contribute to neuronal death. This “Quadrilateral of Neuronal Death” includes altered: glucose metabolism, mTOR activation, proteostasis network, and protein phosphorylation. Some of these pathways are altered even in brains of persons with preclinical AD. We opine that targeting these pathways pharmacologically and with lifestyle changes potentially may provide strategies to slow or perhaps one day, prevent, progression or development of this devastating dementing disorder. This invited review outlines both in vitro and in vivo studies from the Butterfield laboratory related to Aβ1-42 and AD and discusses the importance and implications of some of the major achievements of the Butterfield laboratory in AD research. PMID:29562527

  12. Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.

    PubMed

    Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L

    2016-11-01

    Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Altered Proteins in the Aging Brain

    PubMed Central

    Elobeid, Adila; Libard, Sylwia; Leino, Marina; Popova, Svetlana N.

    2016-01-01

    We assessed the prevalence of common altered brain proteins in 296 cognitively unimpaired subjects ranging from age 50 to 102 years. The incidence and the stage of hyperphosphorylated-τ (HPτ), β-amyloid, α-synuclein (αS), and transactive response DNA (TDP) binding protein 43 (TDP43)-immunoreactivity (-IR) increased with age. HPτ-IR was observed in 98% of the subjects; the locus coeruleus was solely affected in 46%, and 79% of the subjects were in Braak stages a to II. β-Amyloid was seen in 47% of subjects and the Thal phase correlated with the HPτ Braak stage and age. Intermediate Alzheimer disease-related pathology (ADRP) was seen in 12%; 52% of the subjects with HPτ-IR fulfilled criteria for definite primary age-related tauopathy (PART). The incidence of concomitant pathology (αS, TDP43) did not differ between those with PART and those with ADRP but the former were younger. TDP43-IR was observed in 36%; the most frequently affected region was the medulla; αS-IR was observed in 19% of subjects. In 41% of the subjects from 80 to 89 years at death, 3 altered proteins were seen in the brain. Thus, altered proteins are common in the brains of cognitively unimpaired aged subjects; this should be considered while developing diagnostic biomarkers, particularly for identifying subjects at early stages of neurodegenerative diseases. PMID:26979082

  14. Bipolar disorder: a neural network perspective on a disorder of emotion and motivation.

    PubMed

    Wessa, Michèle; Kanske, Philipp; Linke, Julia

    2014-01-01

    Bipolar disorder (BD) is a severe, chronic disease with a heritability of 60-80%. BD is frequently misdiagnosed due to phenomenological overlap with other psychopathologies, an important issue that calls for the identification of biological and psychological vulnerability and disease markers. Altered structural and functional connectivity, mainly between limbic and prefrontal brain areas, have been proposed to underlie emotional and motivational dysregulation in BD and might represent relevant vulnerability and disease markers. In the present laboratory review we discuss functional and structural neuroimaging findings on emotional and motivational dysregulation from our research group in BD patients and healthy individuals at risk to develop BD. As a main result of our studies, we observed altered orbitofrontal and limbic activity and reduced connectivity between dorsal prefrontal and limbic brain regions, as well as reduced integrity of fiber tracts connecting prefrontal and subcortical brain structures in BD patients and high-risk individuals. Our results provide novel insights into pathophysiological mechanisms of bipolar disorder. The current laboratory review provides a specific view of our group on altered brain connectivity and underlying psychological processes in bipolar disorder based on our own work, integrating relevant findings from others. Thereby we attempt to advance neuropsychobiological models of BD.

  15. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    PubMed Central

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  16. Does Somatosensory Discrimination Activate Different Brain Areas in Children with Unilateral Cerebral Palsy Compared to Typically Developing Children? An fMRI Study

    ERIC Educational Resources Information Center

    Van de Winckel, Ann; Verheyden, Geert; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Desloovere, Kaat; Eyssen, Maria; Feys, Hilde

    2013-01-01

    Aside from motor impairment, many children with unilateral cerebral palsy (CP) experience altered tactile, proprioceptive, and kinesthetic awareness. Sensory deficits are addressed in rehabilitation programs, which include somatosensory discrimination exercises. In contrast to adult stroke patients, data on brain activation, occurring during…

  17. Thermodynamic laws apply to brain function.

    PubMed

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  18. The Future of Preschool Prevention, Assessment, and Intervention.

    PubMed

    Hudziak, Jim; Archangeli, Christopher

    2017-07-01

    Preschoolers are in the most rapid period of brain development. Environment shapes the structure and function of the developing brain. Promoting brain health requires cultivation of healthy environments at home, school, and in the community. This improves the emotional-behavioral and physical health of all children, can prevent problems in children at risk, and can alter the trajectory of children already suffering. For clinicians, this starts with assessing and treating the entire family, equipping parents with the principles of parent management training, and incorporating wellness prescriptions for nutrition, physical activity, music, and mindfulness. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions

    PubMed Central

    Pannek, Kerstin; Boyd, Roslyn N.; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E.

    2014-01-01

    Background Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. Aim The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Methods Data of 50 children with unilateral CP caused by periventricular white matter lesions (5–17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7–16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm2) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment—AHA) was assessed in connections that showed significant differences in FA compared to CTD. Results FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r2 = 0.16–0.44; p < 0.05). Conclusion This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention. PMID:25003031

  20. Dendritic Spine Pathology in Schizophrenia

    PubMed Central

    Glausier, Jill R.; Lewis, David A.

    2012-01-01

    Schizophrenia is a neurodevelopmental disorder whose clinical features include impairments in perception, cognition and motivation. These impairments reflect alterations in neuronal circuitry within and across multiple brain regions that are due, at least in part, to deficits in dendritic spines, the site of most excitatory synaptic connections. Dendritic spine alterations have been identified in multiple brain regions in schizophrenia, but are best characterized in layer 3 of the neocortex, where pyramidal cell spine density is lower. These spine deficits appear to arise during development, and thus are likely the result of disturbances in the molecular mechanisms that underlie spine formation, pruning, and/or maintenance. Each of these mechanisms may provide insight into novel therapeutic targets for preventing or repairing the alterations in neural circuitry that mediate the debilitating symptoms of schizophrenia. PMID:22546337

  1. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity

    PubMed Central

    Horzmann, Katharine A.; Freeman, Jennifer L.

    2016-01-01

    Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed. PMID:28730152

  2. Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood.

    PubMed

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2004-01-01

    Brain alpha2-adrenergic receptors (alpha2-ARs) have been implicated in the regulation of anxiety, which is associated with stress. Environmental treatments during neonatal development could modulate the level of brain alpha2-AR expression and alter anxiety in adults, suggesting possible involvement of these receptors in early-life programming of anxiety state. The present study was undertaken to determine whether the reduction of the expression of A subtype of these receptors most abundant in the neonatal brain affects anxiety-related behavior in adulthood. We attenuated the expression of alpha2A-ARs during neonatal life by two different sequence specific approaches, antisense technology and RNA interference. Treatment of rats with the antisense oligodeoxynucleotide or short interfering RNA (siRNA) against alpha2A-ARs on the days 2-4 of their life, produced a marked acute decrease in the levels of both alpha2A-AR mRNA and [3H]RX821002 binding sites in the brainstem into which drugs were injected. The decrease of alpha2A-AR expression in the neonatal brainstem influenced the development of this receptor system in the brain regions as evidenced by the increased number of [3H]RX821002 binding sites in the hypothalamus of adult animals with both neonatal alpha2A-AR knockdown treatments; also in the frontal cortex of antisense-treated, and in the hippocampus of siRNA-treated adult rats. These adult animals also demonstrated a decreased anxiety in the elevated plus-maze as evidenced by an increased number of the open arm entries, greater proportion of time spent in the open arms, and more than a two-fold increase in the number of exploratory head dips. The results provide the first evidence that the reduction in the brain expression of a gene encoding for alpha2A-AR during neonatal life led to the long-term neurochemical and behavioral alterations. The data suggests that alterations in the expression of the receptor-specific gene during critical periods of brain development may be involved in early-life programming of anxiety-related behavior.

  3. Nicotine and the adolescent brain

    PubMed Central

    Yuan, Menglu; Cross, Sarah J; Loughlin, Sandra E; Leslie, Frances M

    2015-01-01

    Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse. PMID:26018031

  4. Ambra1 Shapes Hippocampal Inhibition/Excitation Balance: Role in Neurodevelopmental Disorders.

    PubMed

    Nobili, Annalisa; Krashia, Paraskevi; Cordella, Alberto; La Barbera, Livia; Dell'Acqua, Maria Concetta; Caruso, Angela; Pignataro, Annabella; Marino, Ramona; Sciarra, Francesca; Biamonte, Filippo; Scattoni, Maria Luisa; Ammassari-Teule, Martine; Cecconi, Francesco; Berretta, Nicola; Keller, Flavio; Mercuri, Nicola Biagio; D'Amelio, Marcello

    2018-02-27

    Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra +/- ) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1 +/- females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.

  5. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

    PubMed Central

    Leclercq, Sophie; Mian, Firoz M.; Stanisz, Andrew M.; Bindels, Laure B.; Cambier, Emmanuel; Ben-Amram, Hila; Koren, Omry; Forsythe, Paul; Bienenstock, John

    2017-01-01

    There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investigate whether low-dose penicillin in late pregnancy and early postnatal life induces long-term effects in the offspring of mice. We find that penicillin has lasting effects in both sexes on gut microbiota, increases cytokine expression in frontal cortex, modifies blood–brain barrier integrity and alters behaviour. The antibiotic-treated mice exhibit impaired anxiety-like and social behaviours, and display aggression. Concurrent supplementation with Lactobacillus rhamnosus JB-1 prevents some of these alterations. These results warrant further studies on the potential role of early-life antibiotic use in the development of neuropsychiatric disorders, and the possible attenuation of these by beneficial bacteria. PMID:28375200

  6. Childhood poverty and recruitment of adult emotion regulatory neurocircuitry

    PubMed Central

    Ma, Sean T.; Okada, Go; Shaun Ho, S.; Swain, James E.; Evans, Gary W.

    2015-01-01

    One in five American children grows up in poverty. Childhood poverty has far-reaching adverse impacts on cognitive, social and emotional development. Altered development of neurocircuits, subserving emotion regulation, is one possible pathway for childhood poverty’s ill effects. Children exposed to poverty were followed into young adulthood and then studied using functional brain imaging with an implicit emotion regulation task focused. Implicit emotion regulation involved attention shifting and appraisal components. Early poverty reduced left dorsolateral prefrontal cortex recruitment in the context of emotional regulation. Furthermore, this emotion regulation associated brain activation mediated the effects of poverty on adult task performance. Moreover, childhood poverty also predicted enhanced insula and reduced hippocampal activation, following exposure to acute stress. These results demonstrate that childhood poverty can alter adult emotion regulation neurocircuitry, revealing specific brain mechanisms that may underlie long-term effects of social inequalities on health. The role of poverty-related emotion regulatory neurocircuitry appears to be particularly salient during stressful conditions. PMID:25939653

  7. Sleep Variability in Adolescence is Associated with Altered Brain Development

    PubMed Central

    Telzer, Eva H.; Goldenberg, Diane; Fuligni, Andrew J.; Lieberman, Matthew D.; Galvan, Adriana

    2015-01-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. PMID:26093368

  8. The developing brain in a multitasking world.

    PubMed

    Rothbart, Mary K; Posner, Michael I

    2015-03-01

    To understand the problem of multitasking, it is necessary to examine the brain's attention networks that underlie the ability to switch attention between stimuli and tasks and to maintain a single focus among distractors. In this paper we discuss the development of brain networks related to the functions of achieving the alert state, orienting to sensory events, and developing self-control. These brain networks are common to everyone, but their efficiency varies among individuals and reflects both genes and experience. Training can alter brain networks. We consider two forms of training: (1) practice in tasks that involve particular networks, and (2) changes in brain state through such practices as meditation that may influence many networks. Playing action video games and multitasking are themselves methods of training the brain that can lead to improved performance but also to overdependence on media activity. We consider both of these outcomes and ideas about how to resist overdependence on media. Overall, our paper seeks to inform the reader about what has been learned about attention that can influence multitasking over the course of development.

  9. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging.

    PubMed

    Wei, Shu; Hua, Hai-Rong; Chen, Qian-Quan; Zhang, Ying; Chen, Fei; Li, Shu-Qing; Li, Fan; Li, Jia-Li

    2017-03-18

    Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews ( Tupaia belangeri chinensis ). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.

  10. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  11. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  12. Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety.

    PubMed

    Geng, Haiyang; Wang, Yi; Gu, Ruolei; Luo, Yue-Jia; Xu, Pengfei; Huang, Yuxia; Li, Xuebing

    2018-06-08

    In the research field of anxiety, previous studies generally focus on emotional responses following threat. A recent model of anxiety proposes that altered anticipation prior to uncertain threat is related with the development of anxiety. Behavioral findings have built the relationship between anxiety and distinct anticipatory processes including attention, estimation of threat, and emotional responses. However, few studies have characterized the brain organization underlying anticipation of uncertain threat and its role in anxiety. In the present study, we used an emotional anticipation paradigm with functional magnetic resonance imaging (fMRI) to examine the aforementioned topics by employing brain activation and general psychophysiological interactions (gPPI) analysis. In the activation analysis, we found that high trait anxious individuals showed significantly increased activation in the thalamus, middle temporal gyrus (MTG), and dorsomedial prefrontal cortex (dmPFC), as well as decreased activation in the precuneus, during anticipation of uncertain threat compared to the certain condition. In the gPPI analysis, the key regions including the amygdala, dmPFC, and precuneus showed altered connections with distributed brain areas including the ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex (dlPFC), inferior parietal sulcus (IPS), insula, para-hippocampus gyrus (PHA), thalamus, and MTG involved in anticipation of uncertain threat in anxious individuals. Taken together, our findings indicate that during the anticipation of uncertain threat, anxious individuals showed altered activations and functional connectivity in widely distributed brain areas, which may be critical for abnormal perception, estimation, and emotion reactions during the anticipation of uncertain threat. © 2018 Wiley Periodicals, Inc.

  13. LACK OF ALTERATIONS IN THYROID HORMONES FOLLOWING EXPOSURE TO POLYBROMINATED DIPHENYL ETHER 47 DURING A PERIOD OF RAPID BRAIN DEVELOPMENT IN MICE

    EPA Science Inventory

    Polybrominated diphenyl ether 47 (PBDE-47) is one of a class of commonly used flame retardants that are accumulating in the environment, including human tissues. There are reports of thyroid alterations following exposure to PBDE mixtures, and it is possible that disruptions in t...

  14. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    PubMed Central

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  15. Network Analysis: Applications for the Developing Brain

    PubMed Central

    Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.

    2011-01-01

    Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762

  16. The association between regular cannabis exposure and alterations of human brain morphology: an updated review of the literature.

    PubMed

    Lorenzetti, Valentina; Solowij, Nadia; Fornito, Alex; Lubman, Dan Ian; Yucel, Murat

    2014-01-01

    Cannabis is the most widely used illicit drug worldwide, though it is unclear whether its regular use is associated with persistent alterations in brain morphology. This review examines evidence from human structural neuroimaging investigations of regular cannabis users and focuses on achieving three main objectives. These include examining whether the literature to date provides evidence that alteration of brain morphology in regular cannabis users: i) is apparent, compared to non-cannabis using controls; ii) is associated with patterns of cannabis use; and with iii) measures of psychopathology and neurocognitive performance. The published findings indicate that regular cannabis use is associated with alterations in medial temporal, frontal and cerebellar brain regions. Greater brain morphological alterations were evident among samples that used at higher doses for longer periods. However, the evidence for an association between brain morphology and cannabis use parameters was mixed. Further, there is poor evidence for an association between measures of brain morphology and of psychopathology symptoms/neurocognitive performance. Overall, numerous methodological issues characterize the literature to date. These include investigation of small sample sizes, heterogeneity across studies in sample characteristics (e.g., sex, comorbidity) and in employed imaging techniques, as well as the examination of only a limited number of brain regions. These factors make it difficult to draw firm conclusions from the existing findings. Nevertheless, this review supports the notion that regular cannabis use is associated with alterations of brain morphology, and highlights the need to consider particular methodological issues when planning future cannabis research.

  17. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain

    PubMed Central

    Taylor, Sabrina R.; Smith, Colin M.; Keeley, Kristen L.; McGuone, Declan; Dodge, Carter P.; Duhaime, Ann-Christine; Costine, Beth A.

    2016-01-01

    Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU+ neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that were born prior to PND 5. This platform may be useful to continue to study potential complications of white matter injury and alterations of postnatal population of brain regions, which may contribute to the chronic effects of TBI in children. PMID:27601978

  18. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring

    PubMed Central

    Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei

    2018-01-01

    Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536

  19. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2013-01-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143

  20. Altered metabolic activity in the developing brain of rats predisposed to high versus low depression-like behavior

    PubMed Central

    Melendez-Ferro, Miguel; Perez-Costas, Emma; Glover, Matthew E.; Jackson, Nateka L.; Stringfellow, Sara A.; Pugh, Phyllis C.; Fant, Andrew D.; Clinton, Sarah M.

    2016-01-01

    Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051

  1. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol

    PubMed Central

    Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao

    2014-01-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy. PMID:24810329

  2. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol.

    PubMed

    Sawant, Onkar B; Ramadoss, Jayanth; Hankins, Gary D; Wu, Guoyao; Washburn, Shannon E

    2014-08-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.

  3. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia

    PubMed Central

    Yu, Qingbao; Erhardt, Erik B.; Sui, Jing; Du, Yuhui; He, Hao; Hjelm, Devon; Cetin, Mustafa S.; Rachakonda, Srinivas; Miller, Robyn L.; Pearlson, Godfrey; Calhoun, Vince D.

    2014-01-01

    Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia which may underscore the abnormal brain performance in this mental illness. PMID:25514514

  4. Typical and atypical brain development: a review of neuroimaging studies

    PubMed Central

    Dennis, Emily L.; Thompson, Paul M.

    2013-01-01

    In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders. PMID:24174907

  5. Typical and atypical brain development: a review of neuroimaging studies.

    PubMed

    Dennis, Emily L; Thompson, Paul M

    2013-09-01

    In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders.

  6. Local brain connectivity across development in autism spectrum disorder: A cross-sectional investigation.

    PubMed

    Dajani, Dina R; Uddin, Lucina Q

    2016-01-01

    There is a general consensus that autism spectrum disorder (ASD) is accompanied by alterations in brain connectivity. Much of the neuroimaging work has focused on assessing long-range connectivity disruptions in ASD. However, evidence from both animal models and postmortem examination of the human brain suggests that local connections may also be disrupted in individuals with the disorder. Here, we investigated how regional homogeneity (ReHo), a measure of similarity of a voxel's timeseries to its nearest neighbors, varies across age in individuals with ASD and typically developing (TD) individuals using a cross-sectional design. Resting-state fMRI data obtained from a publicly available database were analyzed to determine group differences in ReHo between three age cohorts: children, adolescents, and adults. In typical development, ReHo across the entire brain was higher in children than in adolescents and adults. In contrast, children with ASD exhibited marginally lower ReHo than TD children, while adolescents and adults with ASD exhibited similar levels of local connectivity as age-matched neurotypical individuals. During all developmental stages, individuals with ASD exhibited lower local connectivity in sensory processing brain regions and higher local connectivity in complex information processing regions. Further, higher local connectivity in ASD corresponded to more severe ASD symptomatology. These results demonstrate that local connectivity is disrupted in ASD across development, with the most pronounced differences occurring in childhood. Developmental changes in ReHo do not mirror findings from fMRI studies of long-range connectivity in ASD, pointing to a need for more nuanced accounts of brain connectivity alterations in the disorder. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  7. Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.

    PubMed

    Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek

    2015-06-01

    The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.

  8. Methylphenidate and the Juvenile Brain: Enhancement of Attention at the Expense of Cortical Plasticity?

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2013-01-01

    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug for juveniles and adolescents. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, it has been regarded as a relatively safe medication for the past several decades. However, a thorough review of the literature reveals that the age-dependent activities of the drug, as well as potential developmental effects, are largely ignored. In addition, the diagnosis of ADHD is subjective, leaving open the possibility of misdiagnosis and excessive prescription of the drug. Recent studies have suggested that early life exposure of healthy rodent models to methylphenidate resulted in altered sleep/wake cycle, heightened stress reactivity, and, in fact, a dosage previously thought of as therapeutic depressed neuronal function in juvenile rats. Furthermore, juvenile rats exposed to low-dose methylphenidate displayed alterations in neural markers of plasticity, indicating that the drug might alter the basic properties of prefrontal cortical circuits. In this review of the current literature, we propose that juvenile exposure to methylphenidate may cause abnormal prefrontal function and impaired plasticity in the healthy brain, strengthening the case for developing a more thorough understanding of methylphenidate’s actions on the developing, juvenile brain, as well as better diagnostic measures for ADHD. PMID:24095262

  9. Toxic Stress: Implications for Policy & Practice. An Interview with Developmental Psychologist Megan R. Gunnar

    ERIC Educational Resources Information Center

    Gunnar, Megan R.

    2006-01-01

    A growing body of science shows the critical effects of an extreme and sustained stressful environment for children on their developing brain architecture and the expression of genes in later life. Toxic stress can shift the brain into surviving in a way that's more rigid and less adaptive. For example, as a result of biologically altered brain…

  10. Advantages in functional imaging of the brain.

    PubMed

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  11. Body Maps in the Infant Brain

    PubMed Central

    Marshall, Peter J.; Meltzoff, Andrew N.

    2015-01-01

    Researchers have examined representations of the body in the adult brain, but relatively little attention has been paid to ontogenetic aspects of neural body maps in human infants. Novel applications of methods for recording brain activity in infants are delineating cortical body maps in the first months of life. Body maps may facilitate infants’ registration of similarities between self and other—an ability that is foundational to developing social cognition. Alterations in interpersonal aspects of body representations might also contribute to social deficits in certain neurodevelopmental disorders. PMID:26231760

  12. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    PubMed Central

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both), an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM) and rearrangement of the cortical gray matter microstructure (P < 0.001, for both), while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both). During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001), while a decrease in space was observed for the ventral internal capsule (P < 0.001). For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001). To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions studied, the changes in mechanical properties were modest. Moreover, the effect of ventricular enlargement is not limited to the CC+PVWM and ventral internal capsule, the extent of microstructural changes vary between brain regions, and there is regional and temporal variation in brain tissue stiffness during hydrocephalus development. PMID:26848844

  13. Effects of Weightlessness on Vestibular Development of Quail

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd; Bruce, Laura L.

    1997-01-01

    The lack of gravity is known to alter vestibular responses in developing and adult vertebrates. One cause of these altered responses may be changes in the connections between the vestibular receptor and the brain. Therefore we propose to investigate the effects of gravity on the formations of connections between the gravity receptors of the ear and the brain in developing quail incubated in space beginning at an age before these connections are established (incubation day three) until near the time of hatching, when they are to some extent functional. This investigation will make use of a novel technique, the diffusion of a lipophilic dye, DiI, in fixed tissue. This technique can thus be used to analyze the connections in specimens fixed in orbit, thus eliminating changes due to the earth's gravity. The evaluation of the data will enable us to detect gross deviations from normal patterns as well as detailed quantitative deviations.

  14. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options.

    PubMed

    Konturek, Peter C; Brzozowski, T; Konturek, S J

    2011-12-01

    Stress, which is defined as an acute threat to homeostasis, shows both short- and long-term effects on the functions of the gastrointestinal tract. Exposure to stress results in alterations of the brain-gut interactions ("brain-gut axis") ultimately leading to the development of a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases, food antigen-related adverse responses, peptic ulcer and gastroesophageal reflux disease (GERD). The major effects of stress on gut physiology include: 1) alterations in gastrointestinal motility; 2) increase in visceral perception; 3) changes in gastrointestinal secretion; 4) increase in intestinal permeability; 5) negative effects on regenerative capacity of gastrointestinal mucosa and mucosal blood flow; and 6) negative effects on intestinal microbiota. Mast cells (MC) are important effectors of brain-gut axis that translate the stress signals into the release of a wide range of neurotransmitters and proinflammatory cytokines, which may profoundly affect the gastrointestinal physiology. IBS represents the most important gastrointestinal disorder in humans, and is characterized by chronic or recurrent pain associated with altered bowel motility. The diagnostic testing for IBS patients include routine blood tests, stool tests, celiac disease serology, abdominal sonography, breath testing to rule out carbohydrate (lactose, fructose, etc.) intolerance and small intestinal bacterial overgrowth. Colonoscopy is recommended if alarming symptoms are present or to obtain colonic biopsies especially in patients with diarrhoea predominant IBS. The management of IBS is based on a multifactorial approach and includes pharmacotherapy targeted against the predominant symptom, behavioural and psychological treatment, dietary alterations, education, reassurance and effective patient-physician relationship. When evaluating for the stress-induced condition in the upper GI tract, the diagnostic testing includes mainly blood tests and gastroscopy to rule out GERD and peptic ulcer disease. The therapy for these conditions is mainly based on the inhibition of gastric acid by proton pump inhibitors and eradication of Helicobacter pylori-infection. Additionally, melatonin an important mediator of brain gut axis has been shown to exhibit important protective effects against stress-induced lesions in the gastrointestinal tract. Finally, probiotics may profoundly affect the brain-gut interactions ("microbiome-gut-brain axis") and attenuate the development of stress-induced disorders in both the upper and lower gastrointestinal tract. Further studies on the brain-gut axis are needed to open new therapeutic avenues in the future.

  15. Hypersexuality or altered sexual preference following brain injury.

    PubMed Central

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury. Images PMID:3746322

  16. Simulation of Local Blood Flow in Human Brain under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    In addition to the altered gravitational forces, specific shapes and connections of arteries in the brain vary in the human population (Cebral et al., 2000; Ferrandez et al., 2002). Considering the geometric variations, pulsatile unsteadiness, and moving walls, computational approach in analyzing altered blood circulation will offer an economical alternative to experiments. This paper presents a computational approach for modeling the local blood flow through the human brain under altered gravity. This computational approach has been verified through steady and unsteady experimental measurements and then applied to the unsteady blood flows through a carotid bifurcation model and an idealized Circle of Willis (COW) configuration under altered gravity conditions.

  17. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.

    2018-04-01

    Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  18. Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.

    PubMed

    Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M

    2018-04-01

    Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  19. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    PubMed Central

    Guillermo, Rosamond B.; Yang, Panzao; Vickers, Mark H.; McJarrow, Paul; Guan, Jian

    2015-01-01

    Background Supplementation with complex milk lipids (CML) during postnatal brain development has been shown to improve spatial reference learning in rats. Objective The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design The study used the brain tissues from the rats (male Wistar, 80 days of age) after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01), but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05), but did not alter glutamate receptors, myelination or vascular density. Conclusion CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling. PMID:25818888

  20. Can a few non‐coding mutations make a human brain?

    PubMed Central

    Franchini, Lucía F.

    2015-01-01

    The recent finding that the human version of a neurodevelopmental enhancer of the Wnt receptor Frizzled 8 (FZD8) gene alters neural progenitor cell cycle timing and brain size is a step forward to understanding human brain evolution. The human brain is distinctive in terms of its cognitive abilities as well as its susceptibility to neurological disease. Identifying which of the millions of genomic changes that occurred during human evolution led to these and other uniquely human traits is extremely challenging. Recent studies have demonstrated that many of the fastest evolving regions of the human genome function as gene regulatory enhancers during embryonic development and that the human‐specific mutations in them might alter expression patterns. However, elucidating molecular and cellular effects of sequence or expression pattern changes is a major obstacle to discovering the genetic bases of the evolution of our species. There is much work to do before human‐specific genetic and genomic changes are linked to complex human traits. Also watch the Video Abstract. PMID:26350501

  1. Sleep variability in adolescence is associated with altered brain development.

    PubMed

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury.

    PubMed

    Spain, Aisling; Daumas, Stephanie; Lifshitz, Jonathan; Rhodes, Jonathan; Andrews, Peter J D; Horsburgh, Karen; Fowler, Jill H

    2010-08-01

    Mild traumatic brain injury (TBI) accounts for up to 80% of clinical TBI and can result in cognitive impairment and white matter damage that may develop and persist over several years. Clinically relevant models of mild TBI for investigation of neurobiological changes and the development of therapeutic strategies are poorly developed. In this study we investigated the temporal profile of axonal and somal injury that may contribute to cognitive impairments in a mouse model of mild TBI. Neuronal perikaryal damage (hematoxylin and eosin and Fluoro-Jade C), myelin integrity (myelin basic protein and myelin-associated glycoprotein), and axonal damage (amyloid precursor protein), were evaluated by immunohistochemistry at 4 h, 24 h, 72 h, 4 weeks, and 6 weeks after mild lateral fluid percussion brain injury (0.9 atm; righting time 167 +/- 15 sec). At 3 weeks post-injury spatial reference learning and memory were tested in the Morris water maze (MWM). Levels of damage to neuronal cell bodies were comparable in the brain-injured and sham groups. Myelin integrity was minimally altered following injury. Clear alterations in axonal damage were observed at various time points after injury. Axonal damage was localized to the cingulum at 4 h post-injury. At 4 and 6 weeks post-injury, axonal damage was evident in the external capsule, and was seen at 6 weeks in the dorsal thalamic nuclei. At 3 weeks post-injury, injured mice showed an impaired ability to learn the water maze task, suggesting injury-induced alterations in search strategy learning. The evolving localization of axonal damage points to ongoing degeneration after injury that is concomitant with a deficit in learning.

  3. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581

  4. Metabolic alterations and neurodevelopmental outcome of infants with transposition of the great arteries.

    PubMed

    Park, I Sook; Yoon, S Young; Min, J Yeon; Kim, Y Hwue; Ko, J Kok; Kim, K Soo; Seo, D Man; Lee, J Hee

    2006-01-01

    Abnormal neurodevelopment has been reported for infants who were born with transposition of the great arteries (TGA) and underwent arterial switch operation (ASO). This study evaluates the cerebral metabolism of TGA infants at birth and before ASO and neurodevelopment 1 year after ASO. Proton magnetic resonance spectroscopy (1H-MRS) was performed on 16 full-term TGA brains before ASO within 3-6 days after birth. The brain metabolite ratios of [NAA/Cr], [Cho/Cr], and [mI/Cr] evaluated measured. Ten infants were evaluated at 1 year using the Bayley Scales of Infants Development II (BSED II). Cerebral metabolism of infants with TGA was altered in parietal white matter (PWM) and occipital gray matter (OGM) at birth before ASO. One year after ASO, [Cho/Cr] in PWM remained altered, but all metabolic ratios in OGM were normal. The results of BSID II at 1 year showed delayed mental and psychomotor development. This delayed neurodevelopmental outcome may reflect consequences of the altered cerebral metabolism in PWM measured by 1H-MRS. It is speculated that the abnormal hemodynamics due to TGA in utero may be responsible for the impaired cerebral metabolism and the subsequent neurodevelopmental deficit.

  5. The developing brain in a multitasking world

    PubMed Central

    Rothbart, Mary K.; Posner, Michael I.

    2015-01-01

    To understand the problem of multitasking, it is necessary to examine the brain’s attention networks that underlie the ability to switch attention between stimuli and tasks and to maintain a single focus among distractors. In this paper we discuss the development of brain networks related to the functions of achieving the alert state, orienting to sensory events, and developing self-control. These brain networks are common to everyone, but their efficiency varies among individuals and reflects both genes and experience. Training can alter brain networks. We consider two forms of training: (1) practice in tasks that involve particular networks, and (2) changes in brain state through such practices as meditation that may influence many networks. Playing action video games and multitasking are themselves methods of training the brain that can lead to improved performance but also to overdependence on media activity. We consider both of these outcomes and ideas about how to resist overdependence on media. Overall, our paper seeks to inform the reader about what has been learned about attention that can influence multitasking over the course of development. PMID:25821335

  6. The Immune System and Developmental Programming of Brain and Behavior

    PubMed Central

    Bilbo, Staci D.; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535

  7. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    PubMed

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. GLUT3 Gene Expression is Critical for Embryonic Growth, Brain Development and Survival

    PubMed Central

    Carayannopoulos, Mary O.; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U.

    2015-01-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. PMID:24529979

  9. Altered Expression of Diabetes-Related Genes in Alzheimer's Disease Brains: The Hisayama Study

    PubMed Central

    Hokama, Masaaki; Oka, Sugako; Leon, Julio; Ninomiya, Toshiharu; Honda, Hiroyuki; Sasaki, Kensuke; Iwaki, Toru; Ohara, Tomoyuki; Sasaki, Tomio; LaFerla, Frank M.; Kiyohara, Yutaka; Nakabeppu, Yusaku

    2014-01-01

    Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM. PMID:23595620

  10. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease.

    PubMed

    Wang, Sheng; Yang, Feng; Petyuk, Vladislav A; Shukla, Anil K; Monroe, Matthew E; Gritsenko, Marina A; Rodland, Karin D; Smith, Richard D; Qian, Wei-Jun; Gong, Cheng-Xin; Liu, Tao

    2017-09-01

    Protein modification by O-linked β-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer's disease (AD); however, detailed molecular characterization of this important protein post-translational modification at the proteome level has been highly challenging, owing to its low stoichiometry and labile nature. Herein, we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in postmortem human brain tissues with and without AD by the use of isobaric tandem mass tag labelling, chemoenzymatic photocleavage enrichment, and liquid chromatography coupled to mass spectrometry. A total of 1850 O-GlcNAc peptides covering 1094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. One hundred and thirty-one O-GlcNAc peptides covering 81 proteins were altered in AD brains as compared with controls (q < 0.05). Moreover, alteration of O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic AD. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment Induce Changes in the Structure and Neurochemistry of Inhibitory Neurons of the Adult Amygdala and Prefrontal Cortex.

    PubMed

    Castillo-Gómez, Esther; Pérez-Rando, Marta; Bellés, María; Gilabert-Juan, Javier; Llorens, José Vicente; Carceller, Héctor; Bueno-Fernández, Clara; García-Mompó, Clara; Ripoll-Martínez, Beatriz; Curto, Yasmina; Sebastiá-Ortega, Noelia; Moltó, María Dolores; Sanjuan, Julio; Nacher, Juan

    2017-01-01

    The exposure to aversive experiences during early life influences brain development and leads to altered behavior. Moreover, the combination of these experiences with subtle alterations in neurodevelopment may contribute to the emergence of psychiatric disorders, such as schizophrenia. Recent hypotheses suggest that imbalances between excitatory and inhibitory (E/I) neurotransmission, especially in the prefrontal cortex and the amygdala, may underlie their etiopathology. In order to understand better the neurobiological bases of these alterations, we studied the impact of altered neurodevelopment and chronic early-life stress on these two brain regions. Transgenic mice displaying fluorescent excitatory and inhibitory neurons, received a single injection of MK801 (NMDAR antagonist) or vehicle solution at postnatal day 7 and/or were socially isolated from the age of weaning until adulthood (3 months old). We found that anxiety-related behavior, brain volume, neuronal structure, and the expression of molecules related to plasticity and E/I neurotransmission in adult mice were importantly affected by early-life stress. Interestingly, many of these effects were potentiated when the stress paradigm was applied to mice perinatally injected with MK801 ("double-hit" model). These results clearly show the impact of early-life stress on the adult brain, especially on the structure and plasticity of inhibitory networks, and highlight the double-hit model as a valuable tool to study the contribution of early-life stress in the emergence of neurodevelopmental psychiatric disorders, such as schizophrenia.

  12. Environmental Alterations of Epigenetics Prior to the Birth

    PubMed Central

    Lo, Chiao-Ling; Zhou, Feng C.

    2014-01-01

    The etiology of many brain diseases remains allusive to date after intensive investigation of genomic background and symptomatology from the day of birth. Emerging evidences indicate that a third factor, epigenetics prior to the birth, can exert profound influence on the development and functioning of the brain and over many neurodevelopmental syndromes. This chapter reviews how aversive environmental exposure to parents might predispose or increase vulnerability of offspring to neurodevelopmental deficit through alteration of epigenetics. These epigenetic altering environmental factors will be discussed in the category of addictive agents, nutrition or diet, prescriptive medicine, environmental pollutant, and stress. Epigenetic alterations induced by these aversive environmental factors cover all aspects of epigenetics including DNA methylation, histone modification, non-coding RNA, and chromatin modification. Next, the mechanisms how these environmental inputs influence epigenetics will be discussed. Finally, how environmentally altered epigenetic marks affect neurodevelopment is exemplified by the alcohol-induced fetal alcohol syndrome. It is hoped that a thorough understanding of the nature of prenatal epigenetic inputs will enable researchers with a clear vision to better unravel neurodevelopmental deficit, late onset neuropsychiatric diseases, or idiosyncratic mental disorders. PMID:25131541

  13. Environmental alterations of epigenetics prior to the birth.

    PubMed

    Lo, Chiao-Ling; Zhou, Feng C

    2014-01-01

    The etiology of many brain diseases remains allusive to date after intensive investigation of genomic background and symptomatology from the day of birth. Emerging evidences indicate that a third factor, epigenetics prior to the birth, can exert profound influence on the development and functioning of the brain and over many neurodevelopmental syndromes. This chapter reviews how aversive environmental exposure to parents might predispose or increase vulnerability of offspring to neurodevelopmental deficit through alteration of epigenetics. These epigenetic altering environmental factors will be discussed in the category of addictive agents, nutrition or diet, prescriptive medicine, environmental pollutant, and stress. Epigenetic alterations induced by these aversive environmental factors cover all aspects of epigenetics including DNA methylation, histone modification, noncoding RNA, and chromatin modification. Next, the mechanisms how these environmental inputs influence epigenetics will be discussed. Finally, how environmentally altered epigenetic marks affect neurodevelopment is exemplified by the alcohol-induced fetal alcohol syndrome. It is hoped that a thorough understanding of the nature of prenatal epigenetic inputs will enable researchers with a clear vision to better unravel neurodevelopmental deficit, late-onset neuropsychiatric diseases, or idiosyncratic mental disorders. © 2014 Elsevier Inc. All rights reserved.

  14. Disrupted global metastability and static and dynamic brain connectivity across individuals in the Alzheimer’s disease continuum

    NASA Astrophysics Data System (ADS)

    Córdova-Palomera, Aldo; Kaufmann, Tobias; Persson, Karin; Alnæs, Dag; Doan, Nhat Trung; Moberget, Torgeir; Lund, Martina Jonette; Barca, Maria Lage; Engvig, Andreas; Brækhus, Anne; Engedal, Knut; Andreassen, Ole A.; Selbæk, Geir; Westlye, Lars T.

    2017-01-01

    As findings on the neuropathological and behavioral components of Alzheimer’s disease (AD) continue to accrue, converging evidence suggests that macroscale brain functional disruptions may mediate their association. Recent developments on theoretical neuroscience indicate that instantaneous patterns of brain connectivity and metastability may be a key mechanism in neural communication underlying cognitive performance. However, the potential significance of these patterns across the AD spectrum remains virtually unexplored. We assessed the clinical sensitivity of static and dynamic functional brain disruptions across the AD spectrum using resting-state fMRI in a sample consisting of AD patients (n = 80) and subjects with either mild (n = 44) or subjective (n = 26) cognitive impairment (MCI, SCI). Spatial maps constituting the nodes in the functional brain network and their associated time-series were estimated using spatial group independent component analysis and dual regression, and whole-brain oscillatory activity was analyzed both globally (metastability) and locally (static and dynamic connectivity). Instantaneous phase metrics showed functional coupling alterations in AD compared to MCI and SCI, both static (putamen, dorsal and default-mode) and dynamic (temporal, frontal-superior and default-mode), along with decreased global metastability. The results suggest that brains of AD patients display altered oscillatory patterns, in agreement with theoretical premises on cognitive dynamics.

  15. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  16. Mice repeatedly exposed to Group-A β-Haemolytic Streptococcus show perseverative behaviors, impaired sensorimotor gating, and immune activation in rostral diencephalon

    PubMed Central

    Macrì, Simone; Ceci, Chiara; Onori, Martina Proietti; Invernizzi, Roberto William; Bartolini, Erika; Altabella, Luisa; Canese, Rossella; Imperi, Monica; Orefici, Graziella; Creti, Roberta; Margarit, Immaculada; Magliozzi, Roberta; Laviola, Giovanni

    2015-01-01

    Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities. PMID:26304458

  17. Mice repeatedly exposed to Group-A β-Haemolytic Streptococcus show perseverative behaviors, impaired sensorimotor gating, and immune activation in rostral diencephalon.

    PubMed

    Macrì, Simone; Ceci, Chiara; Onori, Martina Proietti; Invernizzi, Roberto William; Bartolini, Erika; Altabella, Luisa; Canese, Rossella; Imperi, Monica; Orefici, Graziella; Creti, Roberta; Margarit, Immaculada; Magliozzi, Roberta; Laviola, Giovanni

    2015-08-25

    Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities.

  18. Attention-Deficit Hyperactivity Disorder.

    ERIC Educational Resources Information Center

    Barkley, Russell A.

    1998-01-01

    Attention deficit hyperactivity disorder (ADHD) may arise when key brain circuits do not develop properly, perhaps due to an altered gene or genes. Describes ADHD in detail and introduces a psychological model of ADHD. (ASK)

  19. Steroids

    MedlinePlus

    ... Family More Drugs & Your Family Drugs & Your Family Social Media: Understanding a Teen's World Signs of Drug Use ... Consequences Consequences How Drugs Alter Brain Development and Affect Teens The Negative Health Effects of Marijuana Use State and Federal ...

  20. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    PubMed

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Puberty and Adolescence as a Time of Vulnerability to Stressors that Alter Neurobehavioral Processes

    PubMed Central

    Holder, Mary K.; Blaustein, Jeffrey D.

    2013-01-01

    Puberty and adolescence are major life transitions during which an individual’s physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain’s response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood. PMID:24184692

  2. Tracking down the footprints of bad paternal relationships in dissociative disorders: A diffusion tensor imaging study.

    PubMed

    Basmacı Kandemir, Sultan; Bayazıt, Hüseyin; Selek, Salih; Kılıçaslan, Nihat; Kandemir, Hasan; Karababa, İbrahim Fatih; Katı, Mahmut; Çeçe, Hasan

    2016-01-01

    Preclinical studies indicate that stress early in life can cause long-term alterations in brain development. Studies have shown alterations in the brain functions of patients after experiencing trauma. Our aim is to examine whether the integrity of white matter tracts might be affected in dissociative disorder (DD) patients. A total of 15 DD patients and 15 healthy controls were studied, with the groups matched by age and gender. Diffusion-weighted echoplanar brain images were obtained using a 1.5 Tesla magnetic resonance imaging scanner. Regions of interest were manually placed on directional maps based on principal anisotropy. Apparent diffusion coefficient and fractional anisotropy (FA) values of white matter were measured bilaterally in the anterior corona radiata (ACR) and by diffusion tensor imaging in the genu and splenium of the corpus callosum. Significantly lower FA values were observed in the right ACR of DD patients versus healthy individuals. We also found an association between bad paternal relationships and lower FA in the genu of the corpus callosum in female patients. Alterations in the right ACR suggest that diffusion anisotropy measurement can be used as a quantitative biomarker for DD. Paternal relationships may also affect the brain's microstructure in women with DD.

  3. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

    NASA Astrophysics Data System (ADS)

    Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2017-03-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

  4. Nicotine and the adolescent brain.

    PubMed

    Yuan, Menglu; Cross, Sarah J; Loughlin, Sandra E; Leslie, Frances M

    2015-08-15

    Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  5. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice.

    PubMed

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2017-06-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.

  6. Alterations of Hippocampal Myelin Sheath and Axon Sprouting by Status Convulsion and Regulating Lingo-1 Expression with RNA Interference in Immature and Adult Rats.

    PubMed

    Song, Xiao-Jie; Han, Wei; He, Rong; Li, Tian-Yi; Xie, Ling-Ling; Cheng, Li; Chen, Heng-Sheng; Jiang, Li

    2018-03-01

    Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.

  7. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring

    ERIC Educational Resources Information Center

    Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario

    2016-01-01

    Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell…

  8. 77 FR 38632 - Findings of Research Misconduct

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... counts of nigrostriatal neurons in brains of several mice and rats by copying a single data file from a... Used Herbicide, Atrazine: Altered Function and Loss of Neurons in Brain Monamine Systems.'' Environ... 2004 and 2006; Falsifying a bar graph representing brain proteasomal activity, by selectively altering...

  9. Alteration of the Expression of Pesticide-Metabolizing Enzymes in Pregnant Mice: Potential Role in the Increased Vulnerability of the Developing Brain

    PubMed Central

    Fortin, Marie C.; Aleksunes, Lauren M.

    2013-01-01

    Studies on therapeutic drug disposition in humans have shown significant alterations as the result of pregnancy. However, it is not known whether pesticide metabolic capacity changes throughout pregnancy, which could affect exposure of the developing brain. We sought to determine the effect of pregnancy on the expression of hepatic enzymes involved in the metabolism of pesticides. Livers were collected from virgin and pregnant C57BL/6 mice at gestational days (GD)7, GD11, GD14, GD17, and postpartum days (PD)1, PD15, and PD30. Relative mRNA expression of several enzymes involved in the metabolism of pesticides, including hepatic cytochromes (Cyp) P450s, carboxylesterases (Ces), and paraoxonase 1 (Pon1), were assessed in mice during gestation and the postpartum period. Compared with virgin mice, alterations in the expression occurred at multiple time points, with the largest changes observed on GD14. At this time point, the expression of most of the Cyps involved in pesticide metabolism in the liver (Cyp1a2, Cyp2d22, Cyp2c37, Cyp2c50, Cyp2c54, and Cyp3a11) were downregulated by 30% or more. Expression of various Ces isoforms and Pon1 were also decreased along with Pon1 activity. These data demonstrate significant alterations in the expression of key enzymes that detoxify pesticides during pregnancy, which could alter exposure of developing animals to these chemicals. PMID:23223497

  10. Early paternal deprivation alters levels of hippocampal brain-derived neurotrophic factor and glucocorticoid receptor and serum corticosterone and adrenocorticotropin in a sex-specific way in socially monogamous mandarin voles.

    PubMed

    Wu, Ruiyong; Song, Zhenzhen; Wang, Siyang; Shui, Li; Tai, Fadao; Qiao, Xufeng; He, Fengqin

    2014-01-01

    In monogamous mammals, fathers play an important role in the development of the brain and typical behavior in offspring, but the exact nature of this process is not well understood. In particular, little research has addressed whether the presence or absence of paternal care alters levels of hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF), and basal levels of serum corticosterone (CORT) and adrenocorticotropin (ACTH). Here, we explored this concept using socially monogamous mandarin voles (Microtus mandarinus), a species in which fathers display high levels of paternal care toward their pups. Our immunohistochemical study shows that paternal deprivation (PD) significantly decreased levels of GR and BDNF protein in the CA1 and CA2/3 of the hippocampus. In the dental gyrus, decreases in GR and BDNF induced by PD were evident in females but not in males. Additionally, enzyme-linked immunosorbent assay results show that PD significantly upregulated levels of serum CORT and ACTH in females, but not males. These findings demonstrate that PD alters HPA axis activity in a sex-specific way. The changes in stress hormones documented here may be associated with alteration in hippocampal BDNF and GR levels. © 2014 S. Karger AG, Basel.

  11. Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet

    PubMed Central

    Lee, Linda L.; Puchowicz, Michelle; Golub, Mari S.; Befroy, Douglas E.; Wilson, Dennis W.; Anderson, Steven; Cline, Gary; Bini, Jason; Borkowski, Kamil; Knotts, Trina A.; Rutledge, John C.

    2018-01-01

    Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways. PMID:29444171

  12. Transcriptomic alterations in the brain of painted turtles (Chrysemys picta) developmentally exposed to bisphenol A or ethinyl estradiol.

    PubMed

    Manshack, Lindsey K; Conard, Caroline M; Bryan, Sara J; Deem, Sharon L; Holliday, Dawn K; Bivens, Nathan J; Givan, Scott A; Rosenfeld, Cheryl S

    2017-04-01

    Developmental exposure of turtles and other reptiles to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE), can stimulate partial to full gonadal sex-reversal in males. We have also recently shown that in ovo exposure to either EDC can induce similar sex-dependent behavioral changes typified by improved spatial learning and memory or possibly feminized brain responses. Observed behavioral changes are presumed to be due to BPA- and EE-induced brain transcriptomic alterations during development. To test this hypothesis, we treated painted turtles ( Chrysemys picta ) at developmental stage 17 , incubated at 26°C (male-inducing temperature), with 1 ) BPA (1 ng/µl), 2 ) EE (4 ng/µl), or 3 ) vehicle ethanol (control group). Ten months after hatching and completion of the behavioral tests, juvenile turtles were euthanized, brains were collected and frozen in liquid nitrogen, and RNA was isolated for RNA-Seq analysis. Turtles exposed to BPA clustered separately from EE-exposed and control individuals. More transcripts and gene pathways were altered in BPA vs. EE individuals. The one transcript upregulated in both BPA- and EE-exposed individuals was the mitochondrial-associated gene, ND5, which is involved in oxidative phosphorylation. Early exposure of turtles to BPA increases transcripts linked with ribosomal and mitochondrial functions, especially bioenergetics, which has been previously linked with improved cognitive performance. In summary, even though both BPA and EE resulted in similar behavioral alterations, they diverge in the pattern of neural transcript alterations with early BPA significantly upregulating several genes involved in oxidative phosphorylation, mitochondrial activity, and ribosomal function, which could enhance cognitive performance. Copyright © 2017 the American Physiological Society.

  13. Maternal Immune Activation During the Third Trimester Is Associated with Neonatal Functional Connectivity of the Salience Network and Fetal to Toddler Behavior.

    PubMed

    Spann, Marisa N; Monk, Catherine; Scheinost, Dustin; Peterson, Bradley S

    2018-03-14

    Prenatal maternal immune activation (MIA) is associated with altered brain development and risk of psychiatric disorders in offspring. Translational human studies of MIA are few in number. Alterations of the salience network have been implicated in the pathogenesis of the same psychiatric disorders associated with MIA. If MIA is pathogenic, then associated abnormalities in the salience network should be detectable in neonates immediately after birth. We tested the hypothesis that third trimester MIA of adolescent women who are at risk for high stress and inflammation is associated with the strength of functional connectivity in the salience network of their neonate. Thirty-six women underwent blood draws to measure interleukin-6 (IL-6) and C-reactive protein (CRP) and electrocardiograms to measure fetal heart rate variability (FHRV) at 34-37 weeks gestation. Resting-state imaging data were acquired in the infants at 40-44 weeks postmenstrual age (PMA). Functional connectivity was measured from seeds placed in the anterior cingulate cortex and insula. Measures of cognitive development were obtained at 14 months PMA using the Bayley Scales of Infant and Toddler Development-Third Edition (BSID-III). Both sexes were studied. Regions in which the strength of the salience network correlated with maternal IL-6 or CRP levels included the medial prefrontal cortex, temporoparietal junction, and basal ganglia. Maternal CRP level correlated inversely with FHRV acquired at the same gestational age. Maternal CRP and IL-6 levels correlated positively with measures of cognitive development on the BSID-III. These results suggest that MIA is associated with short- and long-term influences on offspring brain and behavior. SIGNIFICANCE STATEMENT Preclinical studies in rodents and nonhuman primates and epidemiological studies in humans suggest that maternal immune activation (MIA) alters the development of brain circuitry and associated behaviors, placing offspring at risk for psychiatric illness. Consistent with preclinical findings, we show that maternal third trimester interleukin-6 and C-reactive protein levels are associated with neonatal functional connectivity and with both fetal and toddler behavior. MIA-related functional connectivity was localized to the salience, default mode, and frontoparietal networks, which have been implicated in the pathogenesis of psychiatric disorders. Our results suggest that MIA alters functional connectivity in the neonatal brain, that those alterations have consequences for cognition, and that these findings may provide pathogenetic links between preclinical and epidemiological studies associating MIA with psychiatric risk in offspring. Copyright © 2018 the authors 0270-6474/18/382877-10$15.00/0.

  14. Changes in frontal-parietal activation and math skills performance following adaptive number sense training: Preliminary results from a pilot study

    PubMed Central

    Kesler, Shelli R.; Sheau, Kristen; Koovakkattu, Della; Reiss, Allan L.

    2011-01-01

    Number sense is believed to be critical for math development. It is putatively an implicitly learned skill and may therefore have limitations in terms of being explicitly trained, particularly in individuals with altered neurodevelopment. A case series study was conducted using an adaptive, computerized program that focused on number sense and general problem solving skills was designed to investigate training effects on performance as well as brain function in a group of children with Turner syndrome who are at risk for math difficulties and altered development of math-related brain networks. Standardized measurements of math and math-related cognitive skills as well as functional magnetic resonance imaging (fMRI) were used to assess behavioral and neurobiologic outcomes following training. Participants demonstrated significantly increased basic math skills, including number sense, and calculation as well as processing speed, cognitive flexibility and visual-spatial processing skills. With the exception of calculation, increased scores also were clinically significant (i.e. recovered) based on reliable change analysis. Participants additionally demonstrated significantly increased bilateral parietal lobe activation and decreased frontal-striatal and mesial temporal activation following the training program. These findings show proof of concept for an accessible training approach that may be potentially associated with improved number sense, math and related skills, as well as functional changes in math-related neural systems, even among individuals at risk for altered brain development. PMID:21714745

  15. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    PubMed

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2017-07-01

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The intersection of stress, drug abuse and development.

    PubMed

    Thadani, Pushpa V

    2002-01-01

    Use or abuse of licit and illicit substances is often associated with environmental stress. Current clinical evidence clearly demonstrates neurobehavioral, somatic growth and developmental deficits in children born to drug-using mothers. However, the effects of environmental stress and its interaction with prenatal drug exposure on a child's development is unknown. Studies in pregnant animals under controlled conditions show drug-induced long-term alterations in brain structures and functions of the offspring. These cytoarchitecture alterations in the brain are often associated with perturbations in neurotransmitter systems that are intimately involved in the regulation of the stress responses. Similar abnormalities have been observed in the brains of animals exposed to other adverse exogenous (e.g., environmental stress) and/or endogenous (e.g., glucocorticoids) experiences during early life. The goal of this article is to: (1) provide evidence and a perspective that common neural systems are influenced during development both by perinatal drug exposure and early stress exposure; and (2) identify gaps and encourage new research examining the effects of early stress and perinatal drug exposure, in animal models, that would elucidate how stress- and drug-induced perturbations in neural systems influence later vulnerability to abused drugs in adult offspring.

  17. Impact of Hypoglycemia on Brain Metabolism During Diabetes.

    PubMed

    Rehni, Ashish K; Dave, Kunjan R

    2018-04-10

    Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

  18. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    PubMed

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  19. A review on neuroimaging studies of genetic and environmental influences on early brain development.

    PubMed

    Gao, Wei; Grewen, Karen; Knickmeyer, Rebecca C; Qiu, Anqi; Salzwedel, Andrew; Lin, Weili; Gilmore, John H

    2018-04-16

    The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effects of cannabis on the adolescent brain.

    PubMed

    Jacobus, Joanna; Tapert, Susan F

    2014-01-01

    This article reviews neuroimaging, neurocognitive, and preclinical findings on the effects of cannabis on the adolescent brain. Marijuana is the second most widely used intoxicant in adolescence, and teens who engage in heavy marijuana use often show disadvantages in neurocognitive performance, macrostructural and microstructural brain development, and alterations in brain functioning. It remains unclear whether such disadvantages reflect pre-existing differences that lead to increased substances use and further changes in brain architecture and behavioral outcomes. Future work should focus on prospective investigations to help disentangle dose-dependent effects from pre-existing effects, and to better understand the interactive relationships with other commonly abused substances (e.g., alcohol) to better understand the role of regular cannabis use on neurodevelopmental trajectories.

  1. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    PubMed

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-03

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  2. A Comparative Review of microRNA Expression Patterns in Autism Spectrum Disorder.

    PubMed

    Hicks, Steven D; Middleton, Frank A

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a wide spectrum of deficits in social interaction, communication, and behavior. There is a significant genetic component to ASD, yet no single gene variant accounts for >1% of incidence. Posttranscriptional mechanisms such as microRNAs (miRNAs) regulate gene expression without altering the genetic code. They are abundant in the developing brain and are dysregulated in children with ASD. Patterns of miRNA expression are altered in the brain, blood, saliva, and olfactory precursor cells of ASD subjects. The ability of miRNAs to regulate broad molecular pathways in response to environmental stimuli makes them an intriguing player in ASD, a disorder characterized by genetic predisposition with ill-defined environmental triggers. In addition, the availability and extracellular stability of miRNAs make them an ideal candidate for biomarker discovery. Here, we discuss 27 miRNAs with overlap across ASD studies, including 3 miRNAs identified in 3 or more studies (miR-23a, miR-146a, and miR-106b). Together, these 27 miRNAs have 1245 high-confidence mRNA targets, a significant number of which are expressed in the brain. Furthermore, these mRNA targets demonstrate over-representation of autism-related genes with enrichment of neurotrophic signaling molecules. Brain-derived neurotrophic factor, a molecule involved in hippocampal neurogenesis and altered in ASD, is targeted by 6 of the 27 miRNAs of interest. This neurotrophic pathway represents one intriguing mechanism by which perturbations in miRNA signaling might influence central nervous system development in children with ASD.

  3. Childhood poverty and recruitment of adult emotion regulatory neurocircuitry.

    PubMed

    Liberzon, Israel; Ma, Sean T; Okada, Go; Ho, S Shaun; Swain, James E; Evans, Gary W

    2015-11-01

    One in five American children grows up in poverty. Childhood poverty has far-reaching adverse impacts on cognitive, social and emotional development. Altered development of neurocircuits, subserving emotion regulation, is one possible pathway for childhood poverty's ill effects. Children exposed to poverty were followed into young adulthood and then studied using functional brain imaging with an implicit emotion regulation task focused. Implicit emotion regulation involved attention shifting and appraisal components. Early poverty reduced left dorsolateral prefrontal cortex recruitment in the context of emotional regulation. Furthermore, this emotion regulation associated brain activation mediated the effects of poverty on adult task performance. Moreover, childhood poverty also predicted enhanced insula and reduced hippocampal activation, following exposure to acute stress. These results demonstrate that childhood poverty can alter adult emotion regulation neurocircuitry, revealing specific brain mechanisms that may underlie long-term effects of social inequalities on health. The role of poverty-related emotion regulatory neurocircuitry appears to be particularly salient during stressful conditions. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Perspectives from the symposium: The role of nutrition in infant and toddler brain and behavioral development.

    PubMed

    Rosales, Francisco J; Zeisel, Steven H

    2008-06-01

    This symposium examined current trends in neuroscience and developmental psychology as they apply to assessing the effects of nutrients on brain and behavioral development of 0-6-year-olds. Although the spectrum of nutrients with brain effects has not changed much in the last 25 years, there has been an explosion in new knowledge about the genetics, structure and function of the brain. This has helped to link the brain mechanistic pathway by which these nutrients act with cognitive functions. A clear example of this is linking of brain structural changes due to hypoglycemia versus hyperglycemia with cognitive functions by using magnetic resonance imaging (MRI) to assess changes in brain-region volumes in combination with cognitive test of intelligence, memory and processing speed. Another example is the use of event-related potential (ERP) studies to show that infants of diabetic mothers have impairments in memory from birth through 8 months of age that are consistent with alterations in mechanistic pathways of memory observed in animal models of perinatal iron deficiency. However, gaps remain in the understanding of how nutrients and neurotrophic factors interact with each other in optimizing brain development and function.

  5. Perinatal Risk Factors Altering Regional Brain Structure in the Preterm Infant

    ERIC Educational Resources Information Center

    Thompson, Deanne K.; Warfield, Simon K.; Carlin, John B.; Pavlovic, Masa; Wang, Hong X.; Bear, Merilyn; Kean, Michael J.; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.

    2007-01-01

    Neuroanatomical structure appears to be altered in preterm infants, but there has been little insight into the major perinatal risk factors associated with regional cerebral structural alterations. MR images were taken to quantitatively compare regional brain tissue volumes between term and preterm infants and to investigate associations between…

  6. Identification of alterations associated with age in the clustering structure of functional brain networks.

    PubMed

    Guzman, Grover E C; Sato, Joao R; Vidal, Maciel C; Fujita, Andre

    2018-01-01

    Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals' functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.

  7. ATP6AP2 over-expression causes morphological alterations in the hippocampus and in hippocampus-related behaviour.

    PubMed

    Bracke, A; Schäfer, S; von Bohlen Und Halbach, V; Klempin, F; Bente, K; Bracke, K; Staar, D; van den Brandt, J; Harzsch, S; Bader, M; Wenzel, U O; Peters, J; von Bohlen Und Halbach, O

    2018-02-23

    The (pro)renin receptor [(P)RR], also known as ATP6AP2 [ATPase 6 accessory protein 2], is highly expressed in the brain. ATP6AP2 plays a role in early brain development, adult hippocampal neurogenesis and in cognitive functions. Lack of ATP6AP2 has deleterious effects, and mutations of ATP6AP2 in humans are associated with, e.g. X-linked intellectual disability. However, little is known about the effects of over-expression of ATP6AP2 in the adult brain. We hypothesized that mice over-expressing ATP6AP2 in the brain might exhibit altered neuroanatomical features and behavioural responses. To this end, we investigated heterozygous transgenic female mice and confirmed increased levels of ATP6AP2 in the brain. Our data show that over-expression of ATP6AP2 does not affect adult hippocampal neurogenesis, exercise-induced cell proliferation, or dendritic spine densities in the hippocampus. Only a reduced ventricular volume on the gross morphological level was found. However, ATP6AP2 over-expressing mice displayed altered exploratory behaviour with respect to the hole-board and novel object recognition tests. Moreover, primary adult hippocampal neural stem cells over-expressing ATP6AP2 exhibit a faster cell cycle progression and increased cell proliferation. Together, in contrast to the known deleterious effects of ATP6AP2 depletion, a moderate over-expression results in moderate behavioural changes and affects cell proliferation rate in vitro.

  8. Chronology of parasite-induced alteration of fish behaviour: effects of parasite maturation and host experience.

    PubMed

    Shirakashi, S; Goater, C P

    2005-02-01

    We monitored temporal changes in the magnitude of altered host behaviour in minnows (Pimephales promelas) experimentally infected with metacercariae of a brain-encysting trematode (Ornithodiplostomum ptychocheilus). This parasite develops and then encysts in a region of the brain that mediates the optomotor response (OMR), an innate behaviour that links visual stimuli with motor performance. The OMR of infected and uninfected minnows was evaluated between 0 and 10 weeks post-infection (p.i.), an interval spanning the development period of metacercariae to infectivity in birds. Trials involved monitoring the time an individual minnow spent following a spinning drum that had been painted with alternating black and white stripes. At 2 and 4 weeks p.i., infected minnows followed the drum 40% less often than controls. Differences between controls and infected fish declined thereafter, and were undetectable by 10 weeks p.i. Both control and infected fish habituated equally rapidly to the spinning drum. However, the difference in performance between controls and infected fish was 29% for experienced fish and 48% for fish that had never experienced the drum. Because maximum parasite-induced reduction in OMR coincided with the period of maximum parasite development, the behavioural effects are most likely due to unavoidable pathology in the brain associated with developing larvae.

  9. Age-related functional brain changes in young children.

    PubMed

    Long, Xiangyu; Benischek, Alina; Dewey, Deborah; Lebel, Catherine

    2017-07-15

    Brain function and structure change significantly during the toddler and preschool years. However, most studies focus on older or younger children, so the specific nature of these changes is unclear. In the present study, we analyzed 77 functional magnetic resonance imaging datasets from 44 children aged 2-6 years. We extracted measures of both local (amplitude of low frequency fluctuation and regional homogeneity) and global (eigenvector centrality mapping) activity and connectivity, and examined their relationships with age using robust linear correlation analysis and strict control for head motion. Brain areas within the default mode network and the frontoparietal network, such as the middle frontal gyrus, the inferior parietal lobule and the posterior cingulate cortex, showed increases in local and global functional features with age. Several brain areas such as the superior parietal lobule and superior temporal gyrus presented opposite development trajectories of local and global functional features, suggesting a shifting connectivity framework in early childhood. This development of functional connectivity in early childhood likely underlies major advances in cognitive abilities, including language and development of theory of mind. These findings provide important insight into the development patterns of brain function during the preschool years, and lay the foundation for future studies of altered brain development in young children with brain disorders or injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Neurodevelopmental Versus Neurodegenerative Model of Schizophrenia and Bipolar Disorder: Comparison with Physiological Brain Development and Aging.

    PubMed

    Buoli, Massimiliano; Serati, Marta; Caldiroli, Alice; Cremaschi, Laura; Altamura, Alfredo Carlo

    2017-03-01

    Available data support a contribution of both neurodevelopmental and neurodegenerative factors in the etiology of schizophrenia (SCH) and bipolar disorder (BD). Of note, one of the most important issue of the current psychiatric research is to identify the specific factors that contribute to impaired brain development and neurodegeneration in SCH and BD, and especially how these factors alter normal brain development and physiological aging process. Our hypothesis is that only specific damages, taking place in precise brain development stages, are associated with future SCH /BD onset and that neurodegeneration consists of an acceleration of brain aging after SCH /BD onset. In support of our hypothesis, the results of the present narrative mini-review shows as neurodevelopmental damages generally contribute to neuropsychiatric syndromes (e.g. hypothyroidism or treponema pallidum), but only some of them are specifically associated with adult SCH and BD (e.g. toxoplasma or substance abuse), particularly if they happen in specific stages of brain development. On the other hand, cognitive impairment and brain changes, associated with long duration of SCH /BD, look like what happens during aging: memory, executive domains and prefrontal cortex are implicated both in aging and in SCH /BD progression. Future research will explore possible validity of this etiological model for SCH and BD.

  11. Review: Neuroinflammation in intrauterine growth restriction.

    PubMed

    Wixey, Julie A; Chand, Kirat K; Colditz, Paul B; Bjorkman, S Tracey

    2017-06-01

    Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. DEVELOPMENTAL THYROID HORMONE INSUFFICIENCY ALTERS THE AMPLITUDE OF THE ACOUSTIC STARTLE RESPONSE IN RATS

    EPA Science Inventory

    Purpose: The thyroid hormone (TH) system is one of the targets of endocrine disrupting chemicals. Since TH is essential for proper brain development, disruption by exposure to chemicals during development can result in adverse neurological outcomes. Previous studies revealed th...

  13. GHB - Gamma-Hydroxybutyric Acid

    MedlinePlus

    ... Family More Drugs & Your Family Drugs & Your Family Social Media: Understanding a Teen's World Signs of Drug Use ... Consequences Consequences How Drugs Alter Brain Development and Affect Teens The Negative Health Effects of Marijuana Use State and Federal ...

  14. Microglia in the developing brain: a potential target with lifetime effects

    PubMed Central

    Harry, G. Jean; Kraft, Andrew D.

    2012-01-01

    Microglia are a heterogeneous group of monocyte-derived cells serving multiple roles within the brain, many of which are associated with immune and macrophage like properties. These cells are known to serve a critical role during brain injury and to maintain homeostasis; yet, their defined roles during development have yet to be elucidated. Microglial actions appear to influence events associated with neuronal proliferation and differentiation during development, as well as, contribute to processes associated with the removal of dying neurons or cellular debris and management of synaptic connections. These long-lived cells display changes during injury and with aging that are critical to the maintenance of the neuronal environment over the lifespan of the organism. These processes may be altered by changes in the colonization of the brain or by inflammatory events during development. This review addresses the role of microglia during brain development, both structurally and functionally, as well as the inherent vulnerability of the developing nervous system. A framework is presented considering microglia as a critical nervous system-specific cell that can influence multiple aspects of brain development (e.g., vascularization, synaptogenesis, and myelination) and have a long term impact on the functional vulnerability of the nervous system to a subsequent insult, whether environmental, physical, age-related, or disease-related. PMID:22322212

  15. PPARγ and Stress: Implications for Aging

    PubMed Central

    Ulrich-Lai, Yvonne M.; Ryan, Karen K.

    2012-01-01

    Complex interactions link psychological stress and aging - stress generally promotes aging processes, and conversely, aging can contribute to stress dysregulation. Stress and aging have remarkably similar effects on brain. Both induce neuroinflammation and alter neuronal metabolism and activity, which to varying extents are causally-linked to the development of stress and aging pathology. As such, induction of one or more of these brain disturbances by either stress or aging could predispose for the development of dysfunction in the other. Notably, peroxisome proliferator-activated receptor γ (PPARγ) is expressed in brain regions that regulate both stress and aging (e.g., hippocampus) and can act to prevent the consequences of aging and stress on the brain. In addition, PPARγ agonists reduce the physiological stress response itself. Thus, PPARγ may represent a critical mechanistic link between brain aging and stress that could hold therapeutic potential for the prevention and treatment of age-related cognitive and mood disorders. PMID:22960592

  16. Cellular Senescence, Neurological Function, and Redox State.

    PubMed

    Maciel-Barón, Luis Ángel; Moreno-Blas, Daniel; Morales-Rosales, Sandra Lizbeth; González-Puertos, Viridiana Yazmín; López-Díazguerrero, Norma Edith; Torres, Claudio; Castro-Obregón, Susana; Königsberg, Mina

    2018-06-20

    Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.

  17. Serotonin Receptor 6 Mediates Defective Brain Development in Monoamine Oxidase A-deficient Mouse Embryos

    PubMed Central

    Wang, Chi Chiu; Man, Gene Chi Wai; Chu, Ching Yan; Borchert, Astrid; Ugun-Klusek, Aslihan; Billett, E. Ellen; Kühn, Hartmut; Ufer, Christoph

    2014-01-01

    Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5–E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations. PMID:24497636

  18. Genome instability: Linking ageing and brain degeneration.

    PubMed

    Barzilai, Ari; Schumacher, Björn; Shiloh, Yosef

    2017-01-01

    Ageing is a multifactorial process affected by cumulative physiological changes resulting from stochastic processes combined with genetic factors, which together alter metabolic homeostasis. Genetic variation in maintenance of genome stability is emerging as an important determinant of ageing pace. Genome instability is also closely associated with a broad spectrum of conditions involving brain degeneration. Similarities and differences can be found between ageing-associated decline of brain functionality and the detrimental effect of genome instability on brain functionality and development. This review discusses these similarities and differences and highlights cell classes whose role in these processes might have been underestimated-glia and microglia. Copyright © 2016. Published by Elsevier B.V.

  19. Exercise challenge in Gulf War Illness reveals two subgroups with altered brain structure and function.

    PubMed

    Rayhan, Rakib U; Stevens, Benson W; Raksit, Megna P; Ripple, Joshua A; Timbol, Christian R; Adewuyi, Oluwatoyin; VanMeter, John W; Baraniuk, James N

    2013-01-01

    Nearly 30% of the approximately 700,000 military personnel who served in Operation Desert Storm (1990-1991) have developed Gulf War Illness, a condition that presents with symptoms such as cognitive impairment, autonomic dysfunction, debilitating fatigue and chronic widespread pain that implicate the central nervous system. A hallmark complaint of subjects with Gulf War Illness is post-exertional malaise; defined as an exacerbation of symptoms following physical and/or mental effort. To study the causal relationship between exercise, the brain, and changes in symptoms, 28 Gulf War veterans and 10 controls completed an fMRI scan before and after two exercise stress tests to investigate serial changes in pain, autonomic function, and working memory. Exercise induced two clinical Gulf War Illness subgroups. One subgroup presented with orthostatic tachycardia (n = 10). This phenotype correlated with brainstem atrophy, baseline working memory compensation in the cerebellar vermis, and subsequent loss of compensation after exercise. The other subgroup developed exercise induced hyperalgesia (n = 18) that was associated with cortical atrophy and baseline working memory compensation in the basal ganglia. Alterations in cognition, brain structure, and symptoms were absent in controls. Our novel findings may provide an understanding of the relationship between the brain and post-exertional malaise in Gulf War Illness.

  20. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    PubMed

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Autism as an adaptive common variant pathway for human brain development.

    PubMed

    Johnson, Mark H

    2017-06-01

    While research on focal perinatal lesions has provided evidence for recovery of function, much less is known about processes of brain adaptation resulting from mild but widespread disturbances to neural processing over the early years (such as alterations in synaptic efficiency). Rather than being viewed as a direct behavioral consequence of life-long neural dysfunction, I propose that autism is best viewed as the end result of engaging adaptive processes during a sensitive period. From this perspective, autism is not appropriately described as a disorder of neurodevelopment, but rather as an adaptive common variant pathway of human functional brain development. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  2. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    PubMed Central

    Janušonis, Skirmantas

    2005-01-01

    Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies. PMID:16029508

  3. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities.

    PubMed

    Janusonis, Skirmantas

    2005-07-19

    A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies.

  4. Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet 13C-NMR of the adult mouse brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Malloy, Craig R.; Patel, Mulchand S.; Pascual, Juan M.

    2013-01-01

    The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the 13C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-13C2]glucose (oxidized by both neurons and glia) and [1,2-13C2]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by 13C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of 13C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The 13C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-13C]acetate relative to [1,6-13C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain. PMID:22884585

  5. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    PubMed

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  6. Alterations of functional connectivities from early to middle adulthood: Clues from multivariate pattern analysis of resting-state fMRI data.

    PubMed

    Tian, Lixia; Ma, Lin; Wang, Linlin

    2016-04-01

    In contrast to extended research interests in the maturation and aging of human brain, alterations of brain structure and function from early to middle adulthood have been much less studied. The aim of the present study was to investigate the extent and pattern of the alterations of functional interactions between brain regions from early to middle adulthood. We carried out the study by multivariate pattern analysis of resting-state fMRI (RS-fMRI) data of 63 adults aged 18 to 45 years. Specifically, using elastic net, we performed brain age estimation and age-group classification (young adults aged 18-28 years vs. middle-aged adults aged 35-45 years) based on the resting-state functional connectivities (RSFCs) between 160 regions of interest (ROIs) evaluated on the RS-fMRI data of each subject. The results indicate that the estimated brain ages were significantly correlated with the chronological age (R=0.78, MAE=4.81), and a classification rate of 94.44% and area under the receiver operating characteristic curve (AUC) of 0.99 were obtained when classifying the young and middle-aged adults. These results provide strong evidence that functional interactions between brain regions undergo notable alterations from early to middle adulthood. By analyzing the RSFCs that contribute to brain age estimation/age-group classification, we found that a majority of the RSFCs were inter-network, and we speculate that inter-network RSFCs might mature late but age early as compared to intra-network ones. In addition, the strengthening/weakening of the RSFCs associated with the left/right hemispheric ROIs, the weakening of cortico-cerebellar RSFCs and the strengthening of the RSFCs between the default mode network and other networks contributed much to both brain age estimation and age-group classification. All these alterations might reflect that aging of brain function is already in progress in middle adulthood. Overall, the present study indicated that the RSFCs undergo notable alterations from early to middle adulthood and highlighted the necessity of careful considerations of possible influences of these alterations in related studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Role of Glucose Transporters in Brain Disease: Diabetes and Alzheimer’s Disease

    PubMed Central

    Shah, Kaushik; DeSilva, Shanal; Abbruscato, Thomas

    2012-01-01

    The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain. PMID:23202918

  8. Prenatal Bisphenol A Exposure Alters Sex-Specific Estrogen Receptor Expression in the Neonatal Rat Hypothalamus and Amygdala

    PubMed Central

    Patisaul, Heather B.

    2013-01-01

    Bisphenol A (BPA) exposure is ubiquitous, and in laboratory animals, early-life BPA exposure has been shown to alter sex-specific neural organization, neuroendocrine physiology, and behavior. The specific mechanisms underlying these brain-related outcomes, however, remain largely unknown, constraining the capacity to ascertain the potential human relevance of neural effects observed in animal models. In the perinatal rat brain, estrogen is masculinizing, suggesting that BPA-induced perturbation of estrogen receptor (ESR) expression may underpin later in-life neuroendocrine effects. We hypothesized that prenatal BPA exposure alters sex-specific ESR1 (ERα) and ESR2 (ERβ) expression in postnatal limbic nuclei. Sprague Dawley rats were mated and gavaged on gestational days (GDs) 6–21 with vehicle, 2.5 or 25 μg/kg bw/day BPA, or 5 or 10 μg/kg bw/day ethinyl estradiol. An additional group was restrained but not gavaged (naïve control). Offspring were sacrificed the day after birth to quantify ESR gene expression throughout the hypothalamus and amygdala by in situ hybridization. Relative to the vehicle group, significant effects of BPA were observed on ESR1 and ESR2 expression throughout the mediobasal hypothalamus and amygdala in both sexes. Significant differences in ESR expression were also observed in the mediobasal hypothalamus and amygdala of the naïve control group compared with the vehicle group, highlighting the potential for gavage to influence gene expression in the developing brain. These results indicate that ESR expression in the neonatal brain of both sexes can be altered by low-dose prenatal BPA exposure. PMID:23457122

  9. Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment Induce Changes in the Structure and Neurochemistry of Inhibitory Neurons of the Adult Amygdala and Prefrontal Cortex

    PubMed Central

    Bellés, María; Gilabert-Juan, Javier; Llorens, José Vicente; Bueno-Fernández, Clara; Ripoll-Martínez, Beatriz; Curto, Yasmina; Sebastiá-Ortega, Noelia; Sanjuan, Julio

    2017-01-01

    Abstract The exposure to aversive experiences during early life influences brain development and leads to altered behavior. Moreover, the combination of these experiences with subtle alterations in neurodevelopment may contribute to the emergence of psychiatric disorders, such as schizophrenia. Recent hypotheses suggest that imbalances between excitatory and inhibitory (E/I) neurotransmission, especially in the prefrontal cortex and the amygdala, may underlie their etiopathology. In order to understand better the neurobiological bases of these alterations, we studied the impact of altered neurodevelopment and chronic early-life stress on these two brain regions. Transgenic mice displaying fluorescent excitatory and inhibitory neurons, received a single injection of MK801 (NMDAR antagonist) or vehicle solution at postnatal day 7 and/or were socially isolated from the age of weaning until adulthood (3 months old). We found that anxiety-related behavior, brain volume, neuronal structure, and the expression of molecules related to plasticity and E/I neurotransmission in adult mice were importantly affected by early-life stress. Interestingly, many of these effects were potentiated when the stress paradigm was applied to mice perinatally injected with MK801 ("double-hit" model). These results clearly show the impact of early-life stress on the adult brain, especially on the structure and plasticity of inhibitory networks, and highlight the double-hit model as a valuable tool to study the contribution of early-life stress in the emergence of neurodevelopmental psychiatric disorders, such as schizophrenia. PMID:28466069

  10. A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine.

    PubMed

    van Vliet, Erwin; Morath, Siegfried; Eskes, Chantra; Linge, Jens; Rappsilber, Juri; Honegger, Paul; Hartung, Thomas; Coecke, Sandra

    2008-01-01

    There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48 h with the neurotoxicant methyl mercury chloride (0.1-100 microM) and the brain stimulant caffeine (1-100 microM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1 microM), and treatment-dependent cluster formations for caffeine (1-100 microM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential for the development of a neurotoxicity prediction model. With such results it could be useful to perform a validation study to determine the reliability, relevance and applicability of this approach to neurotoxicity screening. Thus, for the first time we show the benefits and utility of in vitro metabolomics to comprehensively detect neurotoxicity and to discover new biomarkers.

  11. Alterations of brain activity in fibromyalgia patients.

    PubMed

    Sawaddiruk, Passakorn; Paiboonworachat, Sahattaya; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Fibromyalgia is a chronic pain syndrome, characterized by widespread musculoskeletal pain with diffuse tenderness at multiple tender points. Despite intense investigations, the pathophysiology of fibromyalgia remains elusive. Evidence shows that it could be due to changes in either the peripheral or central nervous system (CNS). For the CNS changes, alterations in the high brain area of fibromyalgia patients have been investigated but the definite mechanisms are still unclear. Magnetic Resonance Imaging (MRI) and Functional Magnetic Resonance (fMRI) have been used to gather evidence regarding the changes of brain morphologies and activities in fibromyalgia patients. Nevertheless, due to few studies, limited knowledge for alterations in brain activities in fibromyalgia is currently available. In this review, the changes in brain activity in various brain areas obtained from reports in fibromyalgia patients are comprehensively summarized. Changes of the grey matter in multiple regions such as the superior temporal gyrus, posterior thalamus, amygdala, basal ganglia, cerebellum, cingulate cortex, SII, caudate and putamen from the MRI as well as the increase of brain activities in the cerebellum, prefrontal cortex, anterior cingulate cortex, thalamus, somatosensory cortex, insula in fMRI studies are presented and discussed. Moreover, evidence from pharmacological interventions offering benefits for fibromyalgia patients by reducing brain activity is presented. Because of limited knowledge regarding the roles of brain activity alterations in fibromyalgia, this summarized review will encourage more future studies to elucidate the underlying mechanisms involved in the brains of these patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks.

    PubMed

    Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R

    2012-01-01

    In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.

  13. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  14. Brain Structural and Vascular Anatomy Is Altered in Offspring of Pre-Eclamptic Pregnancies: A Pilot Study.

    PubMed

    Rätsep, M T; Paolozza, A; Hickman, A F; Maser, B; Kay, V R; Mohammad, S; Pudwell, J; Smith, G N; Brien, D; Stroman, P W; Adams, M A; Reynolds, J N; Croy, B A; Forkert, N D

    2016-05-01

    Pre-eclampsia is a serious clinical gestational disorder occurring in 3%-5% of all human pregnancies and characterized by endothelial dysfunction and vascular complications. Offspring born of pre-eclamptic pregnancies are reported to exhibit deficits in cognitive function, higher incidence of depression, and increased susceptibility to stroke. However, no brain imaging reports exist on these offspring. We aimed to assess brain structural and vascular anatomy in 7- to 10-year-old offspring of pre-eclamptic pregnancies compared with matched controls. Offspring of pre-eclamptic pregnancies and matched controls (n = 10 per group) were recruited from an established longitudinal cohort examining the effects of pre-eclampsia. Children underwent MR imaging to identify brain structural and vascular anatomic differences. Maternal plasma samples collected at birth were assayed for angiogenic factors by enzyme-linked immunosorbent assay. Offspring of pre-eclamptic pregnancies exhibited enlarged brain regional volumes of the cerebellum, temporal lobe, brain stem, and right and left amygdalae. These offspring displayed reduced cerebral vessel radii in the occipital and parietal lobes. Enzyme-linked immunosorbent assay analysis revealed underexpression of the placental growth factor among the maternal plasma samples from women who experienced pre-eclampsia. This study is the first to report brain structural and vascular anatomic alterations in the population of offspring of pre-eclamptic pregnancies. Brain structural alterations shared similarities with those seen in autism. Vascular alterations may have preceded these structural alterations. This pilot study requires further validation with a larger population to provide stronger estimates of brain structural and vascular outcomes among the offspring of pre-eclamptic pregnancies. © 2016 by American Journal of Neuroradiology.

  15. Maternal High-Fat Diet Programming of the Neuroendocrine System and Behavior

    PubMed Central

    Sullivan, Elinor L.; Riper, Kellie M.; Lockard, Rachel; Valleau, Jeanette C.

    2015-01-01

    Maternal obesity, metabolic state, and diet during gestation have profound effects on offspring development. The prevalence of neurodevelopmental and mental health disorders has risen rapidly in the last several decades in parallel with the rise in obesity rates. Evidence from epidemiological studies indicates that maternal obesity and metabolic complications increase the risk of offspring developing behavioral disorders such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASD), and schizophrenia. Animal models show that a maternal diet high in fat similarly disrupts behavioral programming of offspring, with animals showing social impairments, increased anxiety and depressive behaviors, reduced cognitive development, and hyperactivity. Maternal obesity, metabolic conditions, and high fat diet consumption increase maternal leptin, insulin, glucose, triglycerides, and inflammatory cytokines. This leads to increased risk of placental dysfunction, and altered fetal neuroendocrine development. Changes in brain development that likely contribute to the increased risk of behavioral and mental health disorders include increased inflammation in the brain, as well as alterations in the serotonergic system, dopaminergic system and hypothalamic pituitary adrenal (HPA) axis. PMID:25913366

  16. Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.

    PubMed

    Sharma, Aruna; Menon, Preeti; Muresanu, Dafin F; Ozkizilcik, Asya; Tian, Z Ryan; Lafuente, José V; Sharma, Hari S

    2016-01-01

    The blood-brain barrier (BBB) is a physiological regulator of transport of essential items from blood to brain for the maintenance of homeostasis of the central nervous system (CNS) within narrow limits. The BBB is also responsible for export of harmful or metabolic products from brain to blood to keep the CNS fluid microenvironment healthy. However, noxious insults to the brain caused by trauma, ischemia or environmental/chemical toxins alter the BBB function to small as well as large molecules e.g., proteins. When proteins enter the CNS fluid microenvironment, development of brain edema occurs due to altered osmotic balance between blood and brain. On the other hand, almost all neurodegenerative diseases and traumatic insults to the CNS and subsequent BBB dysfunction lead to edema formation and cell injury. To treat these brain disorders suitable drug therapy reaching their brain targets is needed. However, due to edema formation or only a focal disruption of the BBB e.g., around brain tumors, many drugs are unable to reach their CNS targets in sufficient quantity. This results in poor therapeutic outcome. Thus, new technology such as nanodelivery is needed for drugs to reach their CNS targets and be effective. In this review, use of nanowires as a possible novel tool to enhance drug delivery into the CNS in various disease models is discussed based on our investigations. These data show that nanowired delivery of drugs may have superior neuroprotective ability to treat several CNS diseases effectively indicating their role in future therapeutic strategies.

  17. The Role of Ephs and Ephrins in Memory Formation

    PubMed Central

    Dines, Monica

    2016-01-01

    The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer’s disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases. PMID:26371183

  18. Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging.

    PubMed

    Counsell, Serena J; Boardman, James P

    2005-10-01

    Preterm birth is associated with a high prevalence of neuropsychiatric impairment in childhood and adolescence, but the neural correlates underlying these disorders are not fully understood. Quantitative magnetic resonance imaging techniques have been used to investigate subtle differences in cerebral growth and development among children and adolescents born preterm or with very low birth weight. Diffusion tensor imaging and computer-assisted morphometric techniques (including voxel-based morphometry and deformation-based morphometry) have identified abnormalities in tissue microstructure and cerebral morphology among survivors of preterm birth at different ages, and some of these alterations have specific functional correlates. This chapter reviews the literature reporting differential brain development following preterm birth, with emphasis on the morphological changes that correlate with neuropsychiatric impairment.

  19. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions

    PubMed Central

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-01-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxicischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other for brain disorders. PMID:22627492

  20. The intricate mechanisms of neurodegeneration in prion diseases

    PubMed Central

    Soto, Claudio; Satani, Nikunj

    2010-01-01

    Prion diseases are a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission, involving a protein-only infectious agent that propagates the disease by transmitting protein conformational changes. The disease results from extensive and progressive brain degeneration. The molecular mechanisms involved in neurodegeneration are not entirely known but involve multiple processes operating simultaneously and synergistically in the brain, including spongiform degeneration, synaptic alterations, brain inflammation, neuronal death and the accumulation of protein aggregates. Here, we review the pathways implicated in prion-induced brain damage and put the pieces together into a possible model of neurodegeneration in prion disorders. A more comprehensive understanding of the molecular basis of brain degeneration is essential to develop a much needed therapy for these devastating diseases. PMID:20889378

  1. Effects of Cannabis on the Adolescent Brain

    PubMed Central

    Jacobus, Joanna; Tapert, Susan F.

    2014-01-01

    This article reviews neuroimaging, neurocognitive, and preclinical findings on the effects of cannabis on the adolescent brain. Marijuana is the second most widely used intoxicant in adolescence, and teens who engage in heavy marijuana use often show disadvantages in neurocognitive performance, macrostructural and microstructural brain development, and alterations in brain functioning. It remains unclear whether such disadvantages reflect pre-existing differences that lead to increased substances use and further changes in brain architecture and behavioral outcomes. Future work should focus on prospective investigations to help disentangle dose-dependent effects from pre-existing effects, and to better understand the interactive relationships with other commonly abused substances (e.g., alcohol) to better understand the role of regular cannabis use on neurodevelopmental trajectories. PMID:23829363

  2. Alteration of the endocannabinoid system in mouse brain during prion disease.

    PubMed

    Petrosino, S; Ménard, B; Zsürger, N; Di Marzo, V; Chabry, J

    2011-03-17

    Prion diseases are neurodegenerative disorders characterized by deposition of the pathological prion protein (PrPsc) within the brain of affected humans and animals. Microglial cell activation is a common feature of prion diseases; alterations of various neurotransmitter systems and neurotransmission have been also reported. Owing to its ability to modulate both neuroimmune responses and neurotransmission, it was of interest to study the brain endocannabinoid system in a prion-infected mouse model. The production of the endocannabinoid, 2-arachidonoyglycerol (2-AG), was enhanced 10 weeks post-infection, without alteration of the other endocannabinoid, anandamide. The CB2 receptor expression was up-regulated in brains of prion-infected mice as early as 10 weeks and up to 32 weeks post-infection whereas the mRNAs of other cannabinoid receptors (CBRs) remain unchanged. The observed alterations of the endocannabinoid system were specific for prion infection since no significant changes were observed in the brain of prion-resistant mice, that is, mice devoid of the Prnp gene. Our study highlights important alterations of the endocannabinoid system during early stages of the disease long before the clinical signs of the disease. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. ALK: a tyrosine kinase target for cancer therapy

    PubMed Central

    Holla, Vijaykumar R.; Elamin, Yasir Y.; Bailey, Ann Marie; Johnson, Amber M.; Litzenburger, Beate C.; Khotskaya, Yekaterina B.; Sanchez, Nora S.; Zeng, Jia; Shufean, Md Abu; Shaw, Kenna R.; Mendelsohn, John; Mills, Gordon B.; Meric-Bernstam, Funda; Simon, George R.

    2017-01-01

    The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations. PMID:28050598

  4. Neonatal RU-486 (mifepristone) exposure increases androgen receptor immunoreactivity and sexual behavior in male rats.

    PubMed

    Forbes-Lorman, Robin; Auger, Anthony P; Auger, Catherine J

    2014-01-16

    Progesterone and progestin receptors (PRs) are known to play a role in the development of brain physiology and behavior in many different species. The distribution and regulation of PRs within the developing brain suggest that they likely contribute to the organization of the brain and behavior in a sex-specific manner. We examined the role of PR signaling during development on the organization of adult sexual behavior and androgen receptor (AR) expression in the brain. We administered the PR antagonist, RU-486, subcutaneously to male and female rats on postnatal days 1-7 (0=day of birth) and examined adult sexual behavior and AR-immunoreactivity (AR-ir) in the adult brain. A typical sex difference in lordosis quotient (LQ) was observed and neonatal RU-486 treatment did not alter this behavior. In contrast, neonatal RU-486 treatment increased adult male sexual behavior and AR-ir in several brain areas in males. These data indicate that a transient disruption in PR signaling during development can have lasting consequences on the male brain and may increase male sexual behavior in part by increasing AR expression, and therefore androgen sensitivity, in adulthood. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Anterior Cingulate Volumetric Alterations in Treatment-Naive Adults with ADHD: A Pilot Study

    ERIC Educational Resources Information Center

    Makris, Nikos; Seidman, Larry J.; Valera, Eve M.; Biederman, Joseph; Monuteaux, Michael C.; Kennedy, David N.; Caviness, Verne S., Jr.; Bush, George; Crum, Katherine; Brown, Ariel B.; Faraone, Stephen V.

    2010-01-01

    Objective: We sought to examine preliminary results of brain alterations in anterior cingulate cortex (ACC) in treatment-naive adults with ADHD. The ACC is a central brain node for the integration of cognitive control and allocation of attention, affect and drive. Thus its anatomical alteration may give rise to impulsivity, hyperactivity and…

  6. Premature brain aging in humans exposed to maternal nutrient restriction during early gestation.

    PubMed

    Franke, Katja; Gaser, Christian; Roseboom, Tessa J; Schwab, Matthias; de Rooij, Susanne R

    2018-06-01

    Prenatal exposure to undernutrition is widespread in both developing and industrialized countries, causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now enabling studies of the effects of prenatal undernutrition during gestation on brain aging in late adulthood. We hypothesized that study participants prenatally exposed to maternal nutrient restriction (MNR) would demonstrate altered brain structure resembling premature brain aging in late adulthood, expecting the effect being stronger in men. Utilizing the Dutch famine birth cohort (n = 118; mean age: 67.5 ± 0.9 years), this study implements an innovative biomarker for individual brain aging, using structural neuroimaging. BrainAGE was calculated using state-of-the-art pattern recognition methods, trained on an independent healthy reference sample, then applied to the Dutch famine MRI sample, to evaluate the effects of prenatal undernutrition during early gestation on individual brain aging in late adulthood. Exposure to famine in early gestation was associated with BrainAGE scores indicative of an older-appearing brain in the male sample (mean difference to subjects born before famine: 4.3 years, p < 0.05). Furthermore, in explaining the observed variance in individual BrainAGE scores in the male sample, maternal age at birth, head circumference at birth, medical treatment of hypertension, history of cerebral incidences, actual heart rate, and current alcohol intake emerged to be the most influential variables (adjusted R 2  = 0.63, p < 0.01). The findings of our study on exposure to prenatal undernutrition being associated with a status of premature brain aging during late adulthood, as well as individual brain structure being shaped by birth- and late-life health characteristics, are strongly supporting the critical importance of sufficient nutrient supply during pregnancy. Interestingly, the status of premature brain aging in participants exposed to the Dutch famine during early gestation occurred in the absence of fetal growth restriction at birth as well as vascular pathology in late-life. Additionally, the neuroimaging brain aging biomarker presented in this study will further enable tracking effects of environmental influences or (preventive) treatments on individual brain maturation and aging in epidemiological and clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The role of immune dysfunction in the pathophysiology of autism

    PubMed Central

    Onore, Charity; Careaga, Milo; Ashwood, Paul

    2012-01-01

    Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD. PMID:21906670

  8. Influence of altered gravity on brain cellular energy and plasma membrane metabolism of developing lower aquatic vertebrates

    NASA Astrophysics Data System (ADS)

    Slenzka, K.; Appel, R.; Kappel, Th.; Rahmann, H.

    Biochemical analyses of the brain of cichlid fish larvae, exposed for 7 days to increased acceleration of 3g (hyper-g), revealed an increase in energy availability (succinate dehydrogenase activity, SDH), and in mitochondrial energy transformation (creatine kinase, Mi_a-CK), but no changes in an energy consumptive process (high-affinity Ca^2+-ATPase). Brain glucose-6-phosphate dehydrogenase (G6PDH) of developing fish was previously found to be increased after hyper-g exposure. Three respectively 5 hours thereafter dramatic fluctuations in enzyme activity were registered. Analysing the cytosolic or plasma membrane-located brain creatine kinase (BB-CK) of clawed toad larvae after long-term hyper-g exposure a significant increase in enzyme activity was demonstrated, whereas the activity of a high affinity Ca^2+-ATPase remained unaffected.

  9. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.

    PubMed

    Miller, Suzanne L; Huppi, Petra S; Mallard, Carina

    2016-02-15

    Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. Resting state brain network function in major depression - Depression symptomatology, antidepressant treatment effects, future research.

    PubMed

    Brakowski, Janis; Spinelli, Simona; Dörig, Nadja; Bosch, Oliver Gero; Manoliu, Andrei; Holtforth, Martin Grosse; Seifritz, Erich

    2017-09-01

    The alterations of functional connectivity brain networks in major depressive disorder (MDD) have been subject of a large number of studies. Using different methodologies and focusing on diverse aspects of the disease, research shows heterogeneous results lacking integration. Disrupted network connectivity has been found in core MDD networks like the default mode network (DMN), the central executive network (CEN), and the salience network, but also in cerebellar and thalamic circuitries. Here we review literature published on resting state brain network function in MDD focusing on methodology, and clinical characteristics including symptomatology and antidepressant treatment related findings. There are relatively few investigations concerning the qualitative aspects of symptomatology of MDD, whereas most studies associate quantitative aspects with distinct resting state functional connectivity alterations. Such depression severity associated alterations are found in the DMN, frontal, cerebellar and thalamic brain regions as well as the insula and the subgenual anterior cingulate cortex. Similarly, different therapeutical options in MDD and their effects on brain function showed patchy results. Herein, pharmaceutical treatments reveal functional connectivity alterations throughout multiple brain regions notably the DMN, fronto-limbic, and parieto-temporal regions. Psychotherapeutical interventions show significant functional connectivity alterations in fronto-limbic networks, whereas electroconvulsive therapy and repetitive transcranial magnetic stimulation result in alterations of the subgenual anterior cingulate cortex, the DMN, the CEN and the dorsal lateral prefrontal cortex. While it appears clear that functional connectivity alterations are associated with the pathophysiology and treatment of MDD, future research should also generate a common strategy for data acquisition and analysis, as a least common denominator, to set the basis for comparability across studies and implementation of functional connectivity as a scientifically and clinically useful biomarker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Financial Exploitation Is Associated With Structural and Functional Brain Differences in Healthy Older Adults

    PubMed Central

    Spreng, R. Nathan; Cassidy, Benjamin N; Darboh, Bri S; DuPre, Elizabeth; Lockrow, Amber W; Setton, Roni; Turner, Gary R

    2017-01-01

    Abstract Background Age-related brain changes leading to altered socioemotional functioning may increase vulnerability to financial exploitation. If confirmed, this would suggest a novel mechanism leading to heightened financial exploitation risk in older adults. Development of predictive neural markers could facilitate increased vigilance and prevention. In this preliminary study, we sought to identify structural and functional brain differences associated with financial exploitation in older adults. Methods Financially exploited older adults (n = 13, 7 female) and a matched cohort of older adults who had been exposed to, but avoided, a potentially exploitative situation (n = 13, 7 female) were evaluated. Using magnetic resonance imaging, we examined cortical thickness and resting state functional connectivity. Behavioral data were collected using standardized cognitive assessments, self-report measures of mood and social functioning. Results The exploited group showed cortical thinning in anterior insula and posterior superior temporal cortices, regions associated with processing affective and social information, respectively. Functional connectivity encompassing these regions, within default and salience networks, was reduced, while between network connectivity was increased. Self-reported anger and hostility was higher for the exploited group. Conclusions We observed financial exploitation associated with brain differences in regions involved in socioemotional functioning. These exploratory and preliminary findings suggest that alterations in brain regions implicated in socioemotional functioning may be a marker of financial exploitation risk. Large-scale, prospective studies are necessary to validate this neural mechanism, and develop predictive markers for use in clinical practice. PMID:28369260

  12. Alterations in Pericyte Subpopulations are Associated with Elevated Blood-Tumor Barrier Permeability in Experimental Brain Metastasis of Breast Cancer

    PubMed Central

    Lyle, L. Tiffany; Lockman, Paul R.; Adkins, Chris E.; Mohammad, Afroz Shareef; Sechrest, Emily; Hua, Emily; Palmieri, Diane; Liewehr, David J.; Steinberg, Seth M.; Kloc, Wojciech; Izycka-Swieszewska, Ewa; Duchnowska, Renata; Nayyar, Naema; Brastianos, Priscilla K.; Steeg, Patricia S.; Gril, Brunilde

    2016-01-01

    Purpose The blood-brain barrier (BBB) is modified to a blood-tumor barrier (BTB) as a brain metastasis develops from breast or other cancers. We (a) quantified the permeability of experimental brain metastases; (b) determined the composition of the BTB; (c) identified which elements of the BTB distinguished metastases of lower permeability from those with higher permeability. Experimental Design A SUM190-BR3 experimental inflammatory breast cancer brain metastasis subline was established. Experimental brain metastases from this model system and two previously reported models (triple-negative MDA-231-BR6, HER2+ JIMT-1-BR3) were serially sectioned; low and high permeability lesions were identified with systemic 3kDa Texas Red dextran dye. Adjoining sections were used for quantitative immunofluorescence to known BBB and neuroinflammatory components. One-sample comparisons against a hypothesized value of one were performed with the Wilcoxon signed-rank test. Results When uninvolved brain was compared to any brain metastasis, alterations in endothelial, pericytic, astrocytic, and microglial components were observed. When metastases with relatively low- and high permeability were compared, increased expression of a desmin+ subpopulation of pericytes was associated with higher permeability (231-BR6 p=0.0002; JIMT-1-BR3 p=0.004; SUM190-BR3 p=0.008); desmin+ pericytes were also identified in human craniotomy specimens. Trends of reduced CD13+ pericytes (231-BR6 p=0.014; JIMT-1-BR3 p=0.002, SUM190-BR3, NS) and laminin α2 (231-BR6 p=0.001; JIMT-1-BR3 p=0.049; SUM190-BR3 p=0.023) were also observed with increased permeability. Conclusions We provide the first account of the composition of the BTB in experimental brain metastasis. Desmin+ pericytes and laminin α2 are potential targets for the development of novel approaches to increase chemotherapeutic efficacy. PMID:27245829

  13. Alterations in Pericyte Subpopulations Are Associated with Elevated Blood-Tumor Barrier Permeability in Experimental Brain Metastasis of Breast Cancer.

    PubMed

    Lyle, L Tiffany; Lockman, Paul R; Adkins, Chris E; Mohammad, Afroz Shareef; Sechrest, Emily; Hua, Emily; Palmieri, Diane; Liewehr, David J; Steinberg, Seth M; Kloc, Wojciech; Izycka-Swieszewska, Ewa; Duchnowska, Renata; Nayyar, Naema; Brastianos, Priscilla K; Steeg, Patricia S; Gril, Brunilde

    2016-11-01

    The blood-brain barrier (BBB) is modified to a blood-tumor barrier (BTB) as a brain metastasis develops from breast or other cancers. We (i) quantified the permeability of experimental brain metastases, (ii) determined the composition of the BTB, and (iii) identified which elements of the BTB distinguished metastases of lower permeability from those with higher permeability. A SUM190-BR3 experimental inflammatory breast cancer brain metastasis subline was established. Experimental brain metastases from this model system and two previously reported models (triple-negative MDA-231-BR6, HER2 + JIMT-1-BR3) were serially sectioned; low- and high-permeability lesions were identified with systemic 3-kDa Texas Red dextran dye. Adjoining sections were used for quantitative immunofluorescence to known BBB and neuroinflammatory components. One-sample comparisons against a hypothesized value of one were performed with the Wilcoxon signed-rank test. When uninvolved brain was compared with any brain metastasis, alterations in endothelial, pericytic, astrocytic, and microglial components were observed. When metastases with relatively low and high permeability were compared, increased expression of a desmin + subpopulation of pericytes was associated with higher permeability (231-BR6 P = 0.0002; JIMT-1-BR3 P = 0.004; SUM190-BR3 P = 0.008); desmin + pericytes were also identified in human craniotomy specimens. Trends of reduced CD13 + pericytes (231-BR6 P = 0.014; JIMT-1-BR3 P = 0.002, SUM190-BR3, NS) and laminin α2 (231-BR6 P = 0.001; JIMT-1-BR3 P = 0.049; SUM190-BR3 P = 0.023) were also observed with increased permeability. We provide the first account of the composition of the BTB in experimental brain metastasis. Desmin + pericytes and laminin α2 are potential targets for the development of novel approaches to increase chemotherapeutic efficacy. Clin Cancer Res; 22(21); 5287-99. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia.

    PubMed

    Pujol, Jesus; Fenoll, Raquel; Macià, Dídac; Martínez-Vilavella, Gerard; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Deus, Joan; Blanco-Hinojo, Laura; Querol, Xavier; Sunyer, Jordi

    2016-06-01

    Children are more vulnerable to the effects of environmental elements. A variety of air pollutants are among the identified factors causing neural damage at toxic concentrations. It is not obvious, however, to what extent the tolerated high levels of air pollutants are able to alter brain development. We have specifically investigated the neurotoxic effects of airborne copper exposure in school environments. Speed and consistency of motor response were assessed in 2836 children aged from 8 to 12 years. Anatomical MRI, diffusion tensor imaging, and functional MRI were used to directly test the brain repercussions in a subgroup of 263 children. Higher copper exposure was associated with poorer motor performance and altered structure of the basal ganglia. Specifically, the architecture of the caudate nucleus region was less complete in terms of both tissue composition and neural track water diffusion. Functional MRI consistently showed a reciprocal connectivity reduction between the caudate nucleus and the frontal cortex. The results establish an association between environmental copper exposure in children and alterations of basal ganglia structure and function.

  15. Altered gene expression in the brain and ovaries of zebrafish (Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis and hypothesis generation.

    PubMed

    Villeneuve, L; Wang, Rong-Lin; Bencic, David C; Biales, Adam D; Martinović, Dalma; Lazorchak, James M; Toth, Gregory; Ankley, Gerald T

    2009-08-01

    As part of a research effort examining system-wide responses of the hypothalamic-pituitary-gonadal (HPG) axis in fish to endocrine-active chemicals (EACs) with different modes of action, zebrafish (Danio rerio) were exposed to 25 or 100 microg/L of the aromatase inhibitor fadrozole for 24, 48, or 96 h. Global transcriptional response in brain and ovarian tissue of fish exposed to 25 microg/L of fadrozole was compared to that in control fish using a commercially available, 22,000-gene oligonucleotide microarray. Transcripts altered in brain were functionally linked to differentiation, development, DNA replication, and cell cycle. Additionally, multiple genes associated with the one-carbon pool by folate pathway (KEGG 00670) were significantly up-regulated. Transcripts altered in ovary were functionally linked to cell-cell adhesion, extracellular matrix, vasculogenesis, and development. Promoter motif analysis identified GATA-binding factor 2, Ikaros 2, alcohol dehydrogenase gene regulator 1, myoblast-determining factor, and several heat shock factors as being associated with coexpressed gene clusters that were differentially expressed following exposure to fadrozole. Based on the transcriptional changes observed, it was hypothesized that fadrozole elicits neurodegenerative stress in brain tissue and that fish cope with this stress through proliferation of radial glial cells. Additionally, it was hypothesized that changes of gene expression in the ovary of fadrozole-exposed zebrafish reflect disruption of oocyte maturation and ovulation because of impaired vitellogenesis. These hypotheses and others derived from the microarray results provide a foundation for future studies aimed at understanding responses of the HPG axis to EACs and other chemical stressors.

  16. Normalization of similarity-based individual brain networks from gray matter MRI and its association with neurodevelopment in infants with intrauterine growth restriction.

    PubMed

    Batalle, Dafnis; Muñoz-Moreno, Emma; Figueras, Francesc; Bargallo, Nuria; Eixarch, Elisenda; Gratacos, Eduard

    2013-12-01

    Obtaining individual biomarkers for the prediction of altered neurological outcome is a challenge of modern medicine and neuroscience. Connectomics based on magnetic resonance imaging (MRI) stands as a good candidate to exhaustively extract information from MRI by integrating the information obtained in a few network features that can be used as individual biomarkers of neurological outcome. However, this approach typically requires the use of diffusion and/or functional MRI to extract individual brain networks, which require high acquisition times and present an extreme sensitivity to motion artifacts, critical problems when scanning fetuses and infants. Extraction of individual networks based on morphological similarity from gray matter is a new approach that benefits from the power of graph theory analysis to describe gray matter morphology as a large-scale morphological network from a typical clinical anatomic acquisition such as T1-weighted MRI. In the present paper we propose a methodology to normalize these large-scale morphological networks to a brain network with standardized size based on a parcellation scheme. The proposed methodology was applied to reconstruct individual brain networks of 63 one-year-old infants, 41 infants with intrauterine growth restriction (IUGR) and 22 controls, showing altered network features in the IUGR group, and their association with neurodevelopmental outcome at two years of age by means of ordinal regression analysis of the network features obtained with Bayley Scale for Infant and Toddler Development, third edition. Although it must be more widely assessed, this methodology stands as a good candidate for the development of biomarkers for altered neurodevelopment in the pediatric population. © 2013 Elsevier Inc. All rights reserved.

  17. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury.

    PubMed

    Liu, Yan-Yun; Brent, Gregory A

    2018-06-01

    Thyroid hormone (TH) is essential for normal brain development and may also promote recovery and neuronal regeneration after brain injury. TH acts predominantly through the nuclear receptors, TH receptor alpha (THRA) and beta (THRB). Additional factors that impact TH action in the brain include metabolism, activation of thyroxine (T4) to triiodothyronine (T3) by the enzyme 5'-deiodinase Type 2 (Dio2), inactivation by the enzyme 5-deiodinase Type 3 (Dio3) to reverse T3 (rT3), which occurs in glial cells, and uptake by the Mct8 transporter in neurons. Traumatic brain injury (TBI) is associated with inflammation, metabolic alterations and neural death. In clinical studies, central hypothyroidism, due to hypothalamic and pituitary dysfunction, has been found in some individuals after brain injury. TH has been shown, in animal models, to be protective for the damage incurred from brain injury and may have a role to limit injury and promote recovery. Although clinical trials have not yet been reported, findings from in vitro and in vivo models inform potential treatment strategies utilizing TH for protection and promotion of recovery after brain injury. Published by Elsevier Inc.

  18. Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder.

    PubMed

    Rashid, Barnaly; Blanken, Laura M E; Muetzel, Ryan L; Miller, Robyn; Damaraju, Eswar; Arbabshirani, Mohammad R; Erhardt, Erik B; Verhulst, Frank C; van der Lugt, Aad; Jaddoe, Vincent W V; Tiemeier, Henning; White, Tonya; Calhoun, Vince

    2018-03-30

    Recent advances in neuroimaging techniques have provided significant insights into developmental trajectories of human brain function. Characterizations of typical neurodevelopment provide a framework for understanding altered neurodevelopment, including differences in brain function related to developmental disorders and psychopathology. Historically, most functional connectivity studies of typical and atypical development operate under the assumption that connectivity remains static over time. We hypothesized that relaxing stationarity assumptions would reveal novel features of both typical brain development related to children on the autism spectrum. We employed a "chronnectomic" (recurring, time-varying patterns of connectivity) approach to evaluate transient states of connectivity using resting-state functional MRI in a population-based sample of 774 6- to 10-year-old children. Dynamic connectivity was evaluated using a sliding-window approach, and revealed four transient states. Internetwork connectivity increased with age in modularized dynamic states, illustrating an important pattern of connectivity in the developing brain. Furthermore, we demonstrated that higher levels of autistic traits and ASD diagnosis were associated with longer dwell times in a globally disconnected state. These results provide a roadmap to the chronnectomic organization of the developing brain and suggest that characteristics of functional brain connectivity are related to children on the autism spectrum. © 2018 Wiley Periodicals, Inc.

  19. Intrinsic Brain Activity in Altered States of Consciousness

    PubMed Central

    Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.

    2010-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474

  20. Iron assessment to protect the developing brain.

    PubMed

    Georgieff, Michael K

    2017-12-01

    Iron deficiency (ID) before the age of 3 y can lead to long-term neurological deficits despite prompt diagnosis of ID anemia (IDA) by screening of hemoglobin concentrations followed by iron treatment. Furthermore, pre- or nonanemic ID alters neurobehavioral function and is 3 times more common than IDA in toddlers. Given the global prevalence of ID and the enormous societal cost of developmental disabilities across the life span, better methods are needed to detect the risk of inadequate concentrations of iron for brain development (i.e., brain tissue ID) before dysfunction occurs and to monitor its amelioration after diagnosis and treatment. The current screening and treatment strategy for IDA fails to achieve this goal for 3 reasons. First, anemia is the final state in iron depletion. Thus, the developing brain is already iron deficient when IDA is diagnosed owing to the prioritization of available iron to red blood cells over all other tissues during negative iron balance in development. Second, brain ID, independently of IDA, is responsible for long-term neurological deficits. Thus, starting iron treatment after the onset of IDA is less effective than prevention. Multiple studies in humans and animal models show that post hoc treatment strategies do not reliably prevent ID-induced neurological deficits. Third, most currently used indexes of ID are population statistical cutoffs for either hematologic or iron status but are not bioindicators of brain ID and brain dysfunction in children. Furthermore, their relation to brain iron status is not known. To protect the developing brain, there is a need to generate serum measures that index brain dysfunction in the preanemic stage of ID, assess the ability of standard iron indicators to detect ID-induced brain dysfunction, and evaluate the efficacy of early iron treatment in preventing ID-induced brain dysfunction. © 2017 American Society for Nutrition.

  1. Brain network connectivity in women exposed to intimate partner violence: a graph theory analysis study.

    PubMed

    Roos, Annerine; Fouche, Jean-Paul; Stein, Dan J

    2017-12-01

    Evidence suggests that women who suffer from intimate partner violence (IPV) and posttraumatic stress disorder (PTSD) have structural and functional alterations in specific brain regions. Yet, little is known about how brain connectivity may be altered in individuals with IPV, but without PTSD. Women exposed to IPV (n = 18) and healthy controls (n = 18) underwent structural brain imaging using a Siemens 3T MRI. Global and regional brain network connectivity measures were determined, using graph theory analyses. Structural covariance networks were created using volumetric and cortical thickness data after controlling for intracranial volume, age and alcohol use. Nonparametric permutation tests were used to investigate group differences. Findings revealed altered connectivity on a global and regional level in the IPV group of regions involved in cognitive-emotional control, with principal involvement of the caudal anterior cingulate, the middle temporal gyrus, left amygdala and ventral diencephalon that includes the thalamus. To our knowledge, this is the first evidence showing different brain network connectivity in global and regional networks in women exposed to IPV, and without PTSD. Altered cognitive-emotional control in IPV may underlie adaptive neural mechanisms in environments characterized by potentially dangerous cues.

  2. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder.

    PubMed

    Needham, Brittany D; Tang, Weiyi; Wu, Wei-Li

    2018-05-01

    Social impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior. In a top-down approach, researchers have attempted to correlate behavioral abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet (MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social behavior. The combination of both approaches will hopefully pinpoint specific bacterial communities that control host social behavior. Further discussion of how brain development and circuitry is impacted by depletion of gut microbiota is also included. The converging evidence strongly suggests that gut microbes affect host social behavior through the alteration of brain neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any bidirectional communication between the gut and brain and provide alternative therapeutic targets for ASD. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 474-499, 2018. © 2018 Wiley Periodicals, Inc.

  3. Mean girls: sex differences in the effects of mild traumatic brain injury on the social dynamics of juvenile rat play behaviour.

    PubMed

    Mychasiuk, R; Hehar, H; Farran, A; Esser, M J

    2014-02-01

    Clinical studies indicate that children who experience a traumatic brain injury (TBI) are often the victim of peer rejection, have very few mutual friends, and are at risk for long-term behavioural and social impairments. Owing to the fact that peer play is critical for healthy development, it is possible that the long-term impairments are associated not only with the TBI, but also altered play during this critical period of brain development. This study was designed to determine if social dynamics and juvenile play are altered in rats that experience a mild TBI (mTBI) early in life. Play-fighting behaviours were recorded and analyzed for young male and female Sprague Dawley rats that were given either an mTBI or a sham injury. The study found that the presence of an mTBI altered the play fighting relationship, and the nature of the alterations were dependent upon the sex of the pairing and the injury status of their peers. Sham rats were significantly less likely to initiate play with an mTBI rat, and were more likely to respond to a play initiation from an mTBI rat with an avoidant strategy. This effect was significantly more pronounced in female rats, whereby it appeared that female rats with an mTBI were particularly rejected and most often excluded from play experiences. Male rats with an mTBI learned normal play strategies from their sham peers (when housed in mixed cages), whereas female rats with an mTBI show heightened impairment in these conditions. Play therapy may need to be incorporated into treatment strategies for children with TBI. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Slc25a12 disruption alters myelination and neurofilaments: a model for a hypomyelination syndrome and childhood neurodevelopmental disorders.

    PubMed

    Sakurai, Takeshi; Ramoz, Nicolas; Barreto, Marta; Gazdoiu, Mihaela; Takahashi, Nagahide; Gertner, Michael; Dorr, Nathan; Gama Sosa, Miguel A; De Gasperi, Rita; Perez, Gissel; Schmeidler, James; Mitropoulou, Vivian; Le, H Carl; Lupu, Mihaela; Hof, Patrick R; Elder, Gregory A; Buxbaum, Joseph D

    2010-05-01

    SLC25A12, a susceptibility gene for autism spectrum disorders that is mutated in a neurodevelopmental syndrome, encodes a mitochondrial aspartate-glutamate carrier (aspartate-glutamate carrier isoform 1 [AGC1]). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate production. We characterized mice with a disruption of the Slc25a12 gene, followed by confirmatory in vitro studies. Slc25a12-knockout mice, which showed no AGC1 by immunoblotting, were born normally but displayed delayed development and died around 3 weeks after birth. In postnatal day 13 to 14 knockout brains, the brains were smaller with no obvious alteration in gross structure. However, we found a reduction in myelin basic protein (MBP)-positive fibers, consistent with a previous report. Furthermore, the neocortex of knockout mice contained abnormal neurofilamentous accumulations in neurons, suggesting defective axonal transport and/or neurodegeneration. Slice cultures prepared from knockout mice also showed a myelination defect, and reduction of Slc25a12 in rat primary oligodendrocytes led to a cell-autonomous reduction in MBP expression. Myelin deficits in slice cultures from knockout mice could be reversed by administration of pyruvate, indicating that reduction in AGC1 activity leads to reduced production of aspartate/N-acetylaspartate and/or alterations in the dihydronicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide(+) ratio, resulting in myelin defects. Our data implicate AGC1 activity in myelination and in neuronal structure and indicate that while loss of AGC1 leads to hypomyelination and neuronal changes, subtle alterations in AGC1 expression could affect brain development, contributing to increased autism susceptibility. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    PubMed

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  6. Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism.

    PubMed

    Butterfield, D Allan; Lange, Miranda L Bader

    2009-11-01

    Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified alpha-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, alpha-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.

  7. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity.

    PubMed

    Wang, Junkai; Fan, Yunli; Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity.

  8. Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats

    PubMed Central

    Neth, Katharina; Lucio, Marianna; Walker, Alesia; Zorn, Julia; Schmitt-Kopplin, Philippe; Michalke, Bernhard

    2015-01-01

    Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism. PMID:26383269

  9. Brain Growth Rate Abnormalities Visualized in Adolescents with Autism

    PubMed Central

    Hua, Xue; Thompson, Paul M.; Leow, Alex D.; Madsen, Sarah K.; Caplan, Rochelle; Alger, Jeffry R.; O’Neill, Joseph; Joshi, Kishori; Smalley, Susan L.; Toga, Arthur W.; Levitt, Jennifer G.

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous disorder of brain development with wide-ranging cognitive deficits. Typically diagnosed before age 3, ASD is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared to those of typically developing children and adolescents. Using tensor-based morphometry (TBM), we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and 7 typically developing boys (mean age/inter-scan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole-brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (p = 0.03, corrected), especially in the parietal (p = 0.008), temporal (p = 0.03) and occipital lobes (p =0.02). We also visualized abnormal overgrowth in autism in some gray matter structures, such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. TBM revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. PMID:22021093

  10. Brain growth rate abnormalities visualized in adolescents with autism.

    PubMed

    Hua, Xue; Thompson, Paul M; Leow, Alex D; Madsen, Sarah K; Caplan, Rochelle; Alger, Jeffry R; O'Neill, Joseph; Joshi, Kishori; Smalley, Susan L; Toga, Arthur W; Levitt, Jennifer G

    2013-02-01

    Autism spectrum disorder is a heterogeneous disorder of brain development with wide ranging cognitive deficits. Typically diagnosed before age 3, autism spectrum disorder is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared with those of typically developing children and adolescents. Using tensor-based morphometry, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and seven typically developing boys (mean age/interscan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (P = 0.03, corrected), especially in the parietal (P = 0.008), temporal (P = 0.03), and occipital lobes (P = 0.02). We also visualized abnormal overgrowth in autism in gray matter structures such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. Tensor-based morphometry revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects. Copyright © 2011 Wiley Periodicals, Inc.

  11. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model.

    PubMed

    Guidi, Sandra; Stagni, Fiorenza; Bianchi, Patrizia; Ciani, Elisabetta; Giacomini, Andrea; De Franceschi, Marianna; Moldrich, Randal; Kurniawan, Nyoman; Mardon, Karine; Giuliani, Alessandro; Calzà, Laura; Bartesaghi, Renata

    2014-02-01

    Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored dendritic development, cortical and hippocampal synapse development and brain volume. Importantly, these effects were accompanied by recovery of behavioural performance. The cognitive deficits caused by Down's syndrome have long been considered irreversible. The current study provides novel evidence that a pharmacotherapy with fluoxetine during embryonic development is able to fully rescue the abnormal brain development and behavioural deficits that are typical of Down's syndrome. If the positive effects of fluoxetine on the brain of a mouse model are replicated in foetuses with Down's syndrome, fluoxetine, a drug usable in humans, may represent a breakthrough for the therapy of intellectual disability in Down's syndrome.

  12. Disrupted Structural Brain Network in AD and aMCI: A Finding of Long Fiber Degeneration.

    PubMed

    Fang, Rong; Yan, Xiao-Xiao; Wu, Zhi-Yuan; Sun, Yu; Yin, Qi-Hua; Wang, Ying; Tang, Hui-Dong; Sun, Jun-Feng; Miao, Fei; Chen, Sheng-Di

    2015-01-01

    Although recent evidence has emerged that Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients show both regional brain abnormalities and topological degeneration in brain networks, our understanding of the effects of white matter fiber aberrations on brain network topology in AD and aMCI is still rudimentary. In this study, we investigated the regional volumetric aberrations and the global topological abnormalities in AD and aMCI patients. The results showed a widely distributed atrophy in both gray and white matters in the AD and aMCI groups. In particular, AD patients had weaker connectivity with long fiber length than aMCI and normal control (NC) groups, as assessed by fractional anisotropy (FA). Furthermore, the brain networks of all three groups exhibited prominent economical small-world properties. Interestingly, the topological characteristics estimated from binary brain networks showed no significant group effect, indicating a tendency of preserving an optimal topological architecture in AD and aMCI during degeneration. However, significantly longer characteristic path length was observed in the FA weighted brain networks of AD and aMCI patients, suggesting dysfunctional global integration. Moreover, the abnormality of the characteristic path length was negatively correlated with the clinical ratings of cognitive impairment. Thus, the results therefore suggested that the topological alterations in weighted brain networks of AD are induced by the loss of connectivity with long fiber lengths. Our findings provide new insights into the alterations of the brain network in AD and may indicate the predictive value of the network metrics as biomarkers of disease development.

  13. Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments.

    PubMed

    Travaglia, A; La Mendola, D

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal development and survival, synaptic plasticity, and cognitive function. Dysregulation of BDNF signaling is involved in several neurodegenerative disorders, including Alzheimer's disease. Alteration of metal ion homeostasis is observed both in normal aging and in many neurodegenerative diseases. Interestingly, there is a significant overlap between brain areas characterized by metal ion dyshomeostasis and those where BDNF exerts its biological activity. Therefore, it is reasonable to speculate that metal ions, especially zinc, can modulate the activity of BDNF. The synthesis of BDNF peptidomimetic can be helpful both to understand the molecular interaction of BDNF with metal ions and to develop new drugs for neurodegenerative diseases. © 2017 Elsevier Inc. All rights reserved.

  14. Cerebellar Growth and Behavioural & Neuropsychological Outcome in Preterm Adolescents

    ERIC Educational Resources Information Center

    Parker, Jennifer; Mitchell, Ann; Kalpakidou, Anastasia; Walshe, Muriel; Jung, Hee-Yeon; Nosarti, Chiara; Santosh, Paramala; Rifkin, Larry; Wyatt, John; Murray, Robin M.; Allin, Matthew

    2008-01-01

    Adolescence is a time of social and cognitive development associated with changes in brain structure and function. These developmental changes may show an altered path in individuals born before 33 weeks' gestation (very preterm; VPT). The cerebellum is affected by VPT birth, but no studies have yet assessed the adolescent development of this…

  15. MDMA ("Ecstasy") and its association with cerebrovascular accidents: preliminary findings.

    PubMed

    Reneman, L; Habraken, J B; Majoie, C B; Booij, J; den Heeten, G J

    2000-01-01

    Abuse of the popular recreational drug "Ecstasy" (MDMA) has been linked to the occurrence of cerebrovascular accidents. It is known that MDMA alters brain serotonin (5-HT) concentrations and that brain postsynaptic 5-HT(2) receptors play a role in the regulation of brain microvasculature. Therefore, we used brain imaging to find out whether MDMA use predisposes one to cerebrovascular accidents by altering brain 5-HT neurotransmission. The effects of MDMA use on brain cortical 5-HT(2A) receptor densities were studied using [(123)I]R91150 single-photon emission CT in 10 abstinent recent MDMA users, five former MDMA users, and 10 healthy control subjects. Furthermore, to examine whether changes in brain 5-HT(2A) receptor densities are associated with alterations in blood vessel volumes, we calculated relative cerebral blood volume maps from dynamic MR imaging sets in five MDMA users and six healthy control subjects. An analysis of variance revealed that mean cortical [(123)I]R91150 binding ratios were significantly lower in recent MDMA users than in former MDMA users and control subjects. This finding suggests down-regulation of 5-HT(2) receptors caused by MDMA-induced 5-HT release. Furthermore, in MDMA users, low cortical 5-HT(2) receptor densities were significantly associated with low cerebral blood vessel volumes (implicating vasoconstriction) and high cortical 5-HT(2) receptor densities with high cerebral blood vessel volumes (implicating vasodilatation) in specific brain regions. These findings suggest a relationship between the serotonergic system and an altered regulation of 5-HT(2) receptors in human MDMA users. MDMA users may therefore be at risk for cerebrovascular accidents resulting from alterations in the 5-HT neurotransmission system.

  16. Neuroanatomic alterations and social and communication deficits in monozygotic twins discordant for autism disorder.

    PubMed

    Mitchell, Shanti R; Reiss, Allan L; Tatusko, Danielle H; Ikuta, Ichiro; Kazmerski, Dana B; Botti, Jo-Anna C; Burnette, Courtney P; Kates, Wendy R

    2009-08-01

    Investigating neuroanatomic differences in monozygotic twins who are discordant for autism can help unravel the relative contributions of genetics and environment to this pervasive developmental disorder. The authors used magnetic resonance imaging (MRI) to investigate several brain regions of interest in monozygotic twins who varied in degree of phenotypic discordance for narrowly defined autism. The subjects were 14 pairs of monozygotic twins between the ages of 5 and 14 years old and 14 singleton age- and gender-matched typically developing comparison subjects. The monozygotic twin group was a cohort of children with narrowly defined autistic deficits and their co-twins who presented with varying levels of autistic deficits. High-resolution MRIs were acquired and volumetric/area measurements obtained for the frontal lobe, amygdala, and hippocampus and subregions of the prefrontal cortex, corpus callosum, and cerebellar vermis. No neurovolumetric/area differences were found between twin pairs. Relative to typically developing comparison subjects, dorsolateral prefrontal cortex volumes and anterior areas of the corpus callosum were significantly altered in autistic twins, and volumes of the posterior vermis were altered in both autistic twins and co-twins. Intraclass correlation analysis of brain volumes between children with autism and their co-twins indicated that the degree of within-pair neuroanatomic concordance varied with brain region. In the group of subjects with narrowly defined autism only, dorsolateral prefrontal cortex, amygdala, and posterior vermis volumes were significantly associated with the severity of autism based on scores from the Autism Diagnostic Observation Schedule-Generic. These findings support previous research demonstrating alterations in the prefrontal cortex, corpus callosum, and posterior vermis in children with autism and further suggest that alterations are associated with the severity of the autism phenotype. Continued research involving twins who are concordant and discordant for autism is essential to disentangle the genetic and environmental contributions to autism.

  17. Early-life exposure to caffeine affects the construction and activity of cortical networks in mice.

    PubMed

    Fazeli, Walid; Zappettini, Stefania; Marguet, Stephan Lawrence; Grendel, Jasper; Esclapez, Monique; Bernard, Christophe; Isbrandt, Dirk

    2017-09-01

    The consumption of psychoactive drugs during pregnancy can have deleterious effects on newborns. It remains unclear whether early-life exposure to caffeine, the most widely consumed psychoactive substance, alters brain development. We hypothesized that maternal caffeine ingestion during pregnancy and the early postnatal period in mice affects the construction and activity of cortical networks in offspring. To test this hypothesis, we focused on primary visual cortex (V1) as a model neocortical region. In a study design mimicking the daily consumption of approximately three cups of coffee during pregnancy in humans, caffeine was added to the drinking water of female mice and their offspring were compared to control offspring. Caffeine altered the construction of GABAergic neuronal networks in V1, as reflected by a reduced number of somatostatin-containing GABA neurons at postnatal days 6-7, with the remaining ones showing poorly developed dendritic arbors. These findings were accompanied by increased synaptic activity in vitro and elevated network activity in vivo in V1. Similarly, in vivo hippocampal network activity was altered from the neonatal period until adulthood. Finally, caffeine-exposed offspring showed increased seizure susceptibility in a hyperthermia-induced seizure model. In summary, our results indicate detrimental effects of developmental caffeine exposure on mouse brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Maternal dietary tryptophan deficiency alters cardiorespiratory control in rat pups.

    PubMed

    Penatti, Eliana M; Barina, Alexis E; Raju, Sharat; Li, Aihua; Kinney, Hannah C; Commons, Kathryn G; Nattie, Eugene E

    2011-02-01

    Malnutrition during pregnancy adversely affects postnatal forebrain development; its effect upon brain stem development is less certain. To evaluate the role of tryptophan [critical for serotonin (5-HT) synthesis] on brain stem 5-HT and the development of cardiorespiratory function, we fed dams a diet ∼45% deficient in tryptophan during gestation and early postnatal life and studied cardiorespiratory variables in the developing pups. Deficient pups were of normal weight at postnatal day (P)5 but weighed less than control pups at P15 and P25 (P < 0.001) and had lower body temperatures at P15 (P < 0.001) and P25 (P < 0.05; females only). Oxygen consumption (Vo(2)) was unaffected. At P15, deficient pups had an altered breathing pattern and slower heart rates. At P25, they had significantly lower ventilation (Ve) and Ve-to-Vo(2) ratios in both air and 7% CO(2). The ventilatory response to CO(2) (% increase in Ve/Vo(2)) was significantly increased at P5 (males) and reduced at P15 and P25 (males and females). Deficient pups had 41-56% less medullary 5-HT (P < 0.01) compared with control pups, without a difference in 5-HT neuronal number. These data indicate important interactions between nutrition, brain stem physiology, and age that are potentially relevant to understanding 5-HT deficiency in the sudden infant death syndrome.

  19. Alterations of apoptosis and autophagy in developing brain of rats with epilepsy: Changes in LC3, P62, Beclin-1 and Bcl-2 levels.

    PubMed

    Li, Qinrui; Han, Ying; Du, Junbao; Jin, Hongfang; Zhang, Jing; Niu, Manman; Qin, Jiong

    2018-05-01

    Current studies have indicated that apoptotic and autophagic signaling pathways are triggered by epileptic seizures, but the precise roles of these processes in epilepsy-induced neuronal loss remain unclear. Identifying a concrete molecular mechanism may help researchers develop relevant epilepsy therapies that are more effective than existing treatments. Autophagy is a type of conserved degradation that contributes to cellular homeostasis. The involved signaling pathways allow us to observe alterations in autophagy and apoptosis during epileptic seizures over time. This study investigated the time-dependent changes in autophagy, apoptosis and neuronal morphology in developing brain of epilepsy model rats. At 48h after epileptic seizure onset, the number of neurons in neocortex decreased, and the number of apoptotic cells in neocortex increased. The ratio of microtubule-associated protein 1 light chain 3 (LC3) II to LC3 I and Beclin-1 protein levels increased from 12h to 48h after epileptic seizure onset. P62 protein and Bcl-2 protein levels decreased from 24h to 48h after epileptic seizure onset. The changes in the levels of these autophagy and apoptosis markers indicate that autophagy starts before apoptosis in rats with epilepsy, demonstrating a potential role of autophagy in epilepsy-induced neuronal loss in developing brain. Copyright © 2017. Published by Elsevier B.V.

  20. 1H magnetic resonance spectroscopy metabolite profiles of neonatal rat hippocampus and brainstem regions following early postnatal exposure to intermittent hypoxia

    NASA Astrophysics Data System (ADS)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor

    2017-03-01

    Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.

  1. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats.

    PubMed

    Thomas, Jennifer D; Abou, Elizabeth J; Dominguez, Hector D

    2009-01-01

    Prenatal alcohol exposure can lead to a range of physical, neurological, and behavioral alterations referred to as fetal alcohol spectrum disorders (FASD). Variability in outcome observed among children with FASD is likely related to various pre- and postnatal factors, including nutritional variables. Choline is an essential nutrient that influences brain and behavioral development. Recent animal research indicates that prenatal choline supplementation leads to long-lasting cognitive enhancement, as well as changes in brain morphology, electrophysiology and neurochemistry. The present study examined whether choline supplementation during ethanol exposure effectively reduces fetal alcohol effects. Pregnant dams were exposed to 6.0g/kg/day ethanol via intubation from gestational days (GD) 5-20; pair-fed and lab chow controls were included. During treatment, subjects from each group received choline chloride (250mg/kg/day) or vehicle. Physical development and behavioral development (righting reflex, geotactic reflex, cliff avoidance, reflex suspension and hindlimb coordination) were examined. Subjects prenatally exposed to alcohol exhibited reduced birth weight and brain weight, delays in eye opening and incisor emergence, and alterations in the development of all behaviors. Choline supplementation significantly attenuated ethanol's effects on birth and brain weight, incisor emergence, and most behavioral measures. In fact, behavioral performance of ethanol-exposed subjects treated with choline did not differ from that of controls. Importantly, choline supplementation did not influence peak blood alcohol level or metabolism, indicating that choline's effects were not due to differential alcohol exposure. These data indicate early dietary supplements may reduce the severity of some fetal alcohol effects, findings with important implications for children of women who drink alcohol during pregnancy.

  2. Neural Mechanisms and Children's Intellectual Development: Multiple Impacts of Environmental Factors.

    PubMed

    Takeuchi, Hikaru; Kawashima, Ryuta

    2016-12-01

    Human psychometric intelligence can predict a number of important social and academic outcomes. Substantial parts of the variances of human intelligence and the brain volume supporting those abilities are explained by environmental factors, and during childhood, human brains have higher plasticity and also 60% of variance of intelligence that is explained by environmental factors. Here, we review the representative environmental factors known to affect human intellectual development during each developmental stage. We describe what is (and what is not) being investigated to determine how these factors affect human brain development through analyses of volumetrical and cortical structures. In conclusion, environmental factors that affect children's intellectual development lead to three patterns of brain structural change. The first is global change in the brain structure, observed more often in the earlier phase of development. The second is structural changes concentrated in the medial prefrontal and adjacent areas and medial temporal areas, which are likely to be induced by stress in many cases. The third is sporadic region-specific change, likely to be primarily caused by use-dependent plasticity of the areas that is often observed in the later phase of development. These changes may underlie the alterations in children's intellectual development that is induced by environmental factors. © The Author(s) 2015.

  3. In vivo Electrochemical Biosensor for Brain Glutamate Detection: A Mini Review

    PubMed Central

    HAMDAN, Siti Kartika; MOHD ZAIN, ainiharyati

    2014-01-01

    Glutamate is one of the most prominent neurotransmitters in mammalian brains, which plays an important role in neuronal excitation. High levels of neurotransmitter cause numerous alterations, such as calcium overload and the dysfunction of mitochondrial and oxidative stress. These alterations may lead to excitotoxicity and may trigger multiple neuronal diseases, such as Alzheimer’s disease, stroke, and epilepsy. Excitotoxicity is a pathological process that damages nerve cells and kills cells via excessive stimulation by neurotransmitters. Monitoring the concentration level of brain glutamate via an implantable microbiosensor is a promising alternative approach to closely investigate in the function of glutamate as a neurotransmitter. This review outlines glutamate microbiosensor designs to enhance the sensitivity of glutamate detection with less biofouling occurrence and minimal detection of interference species. There are many challenges in the development of a reproducible and stable implantable microbiosensor because many factors and limitations may affect the detection performance. However, the incorporation of multiple scales is needed to address the basic issues and combinations across the various disciplines needed to achieve the success of the system to overcome the challenges in the development of an implantable glutamate biosensor. PMID:25941459

  4. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice.

    PubMed

    Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko

    2016-04-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. NEOCORTICAL HYPERTROPHY FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM IN RATS

    EPA Science Inventory

    Thyroid hormones (TH) are essential to the normal development of the brain. Although severe congenital hypothyroidism has long been associated with mental retardation and motor defects, it has only recently been established that even subtle decreases in maternal TH alter fetal br...

  6. Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development.

    PubMed

    Carrillo, Beatriz; Collado, Paloma; Díaz, Francisca; Chowen, Julie A; Pérez-Izquierdo, Mª Ángeles; Pinos, Helena

    2017-07-11

    Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.

  7. Prenatal Alcohol Exposure Alters Fetal Iron Distribution and Elevates Hepatic Hepcidin in a Rat Model of Fetal Alcohol Spectrum Disorders123

    PubMed Central

    Huebner, Shane M; Blohowiak, Sharon E; Kling, Pamela J; Smith, Susan M

    2016-01-01

    Background: Prenatal alcohol exposure (PAE) causes neurodevelopmental disabilities, and gestational iron deficiency (ID) selectively worsens learning and neuroanatomical and growth impairments in PAE. It is unknown why ID worsens outcomes in alcohol-exposed offspring. Objective: We hypothesized that PAE alters maternal-fetal iron distribution or its regulation. Methods: Nulliparous, 10-wk-old, Long-Evans rats were mated and then fed iron-sufficient (100 mg Fe/kg) or iron-deficient (≤4 mg Fe/kg) diets. On gestational days 13.5–19.5, dams received either 5.0 g ethanol/kg body weight (PAE) or isocaloric maltodextrin by oral gavage. On gestational day 20.5, maternal and fetal clinical blood counts, tissue mineral and iron transport protein concentrations, and hepatic hepcidin mRNA expression were determined. Results: In fetal brain and liver (P < 0.001) and in maternal liver (P < 0.005), ID decreased iron (total and nonheme) and ferritin content by nearly 200%. PAE reduced fetal bodyweight (P < 0.001) and interacted with ID (P < 0.001) to reduce it by an additional 20%. Independent of maternal iron status, PAE increased fetal liver iron (30–60%, P < 0.001) and decreased brain iron content (total and nonheme, 15–20%, P ≤ 0.050). ID-PAE brains had lower ferritin, transferrin, and transferrin receptor content (P ≤ 0.002) than ID-maltodextrin brains. PAE reduced fetal hematocrit, hemoglobin, and red blood cell numbers (P < 0.003) independently of iron status. Unexpectedly, and also independent of iron status, PAE increased maternal and fetal hepatic hepcidin mRNA expression >300% (P < 0.001). Conclusions: PAE altered fetal iron distribution independent of maternal iron status in rats. The elevated iron content of fetal liver suggests that PAE may have limited iron availability for fetal erythropoiesis and brain development. Altered fetal iron distribution may partly explain why maternal ID substantially worsens growth and behavioral outcomes in PAE. PMID:27146918

  8. The Role of Medical Imaging in the Recharacterization of Mild Traumatic Brain Injury Using Youth Sports as a Laboratory.

    PubMed

    Talavage, Thomas M; Nauman, Eric A; Leverenz, Larry J

    2015-01-01

    The short- and long-term impact of mild traumatic brain injury (TBI) is an increasingly vital concern for both military and civilian personnel. Such injuries produce significant social and financial burdens and necessitate improved diagnostic and treatment methods. Recent integration of neuroimaging and biomechanical studies in youth collision-sport athletes has revealed that significant alterations in brain structure and function occur even in the absence of traditional clinical markers of "concussion." While task performance is maintained, athletes exposed to repetitive head accelerations exhibit structural changes to the underlying white matter, altered glial cell metabolism, aberrant vascular response, and marked changes in functional network behavior. Moreover, these changes accumulate with accrued years of exposure, suggesting a cumulative trauma mechanism that may culminate in categorization as "concussion" and long-term neurological deficits. The goal of this review is to elucidate the role of medical imaging in recharacterizing TBI, as a whole, to better identify at-risk individuals and improve the development of preventative and interventional approaches.

  9. 25 years of neuroimaging in amyotrophic lateral sclerosis.

    PubMed

    Foerster, Bradley R; Welsh, Robert C; Feldman, Eva L

    2013-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.

  10. 25 years of neuroimaging in amyotrophic lateral sclerosis

    PubMed Central

    Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850

  11. Tackling the ‘dyslexia paradox’: reading brain and behavior for early markers of developmental dyslexia

    PubMed Central

    Ozernov-Palchik, Ola; Gaab, Nadine

    2016-01-01

    Developmental dyslexia is an unexplained inability to acquire accurate or fluent reading that affects approximately 5–17% of children. Dyslexia is associated with structural and functional alterations in various brain regions that support reading. Neuroimaging studies in infants and pre-reading children suggest that these alterations predate reading instruction and reading failure, supporting the hypothesis that variant function in dyslexia susceptibility genes lead to atypical neural migration and/or axonal growth during early, most likely in utero, brain development. Yet, dyslexia is typically not diagnosed until a child has failed to learn to read as expected (usually in second grade or later). There is emerging evidence that neuroimaging measures, when combined with key behavioral measures, can enhance the accuracy of identification of dyslexia risk in prereading children but its sensitivity, specificity, and cost-efficiency is still unclear. Early identification of dyslexia risk carries important implications for dyslexia remediation and the amelioration of the psychosocial consequences commonly associated with reading failure. PMID:26836227

  12. Altered resting brain function and structure in professional badminton players.

    PubMed

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  13. In utero exposure to fine particulate matter results in an altered neuroimmune phenotype in adult mice.

    PubMed

    Kulas, Joshua A; Hettwer, Jordan V; Sohrabi, Mona; Melvin, Justine E; Manocha, Gunjan D; Puig, Kendra L; Gorr, Matthew W; Tanwar, Vineeta; McDonald, Michael P; Wold, Loren E; Combs, Colin K

    2018-05-22

    Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 μm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Isolation and characterization of neural stem cells from dystrophic mdx mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annese, Tiziana; Corsi, Patrizia; Ruggieri, Simona

    The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs).more » We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and β-dystroglycan (αDG, βDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier control occurring in the adult dystrophic brain.« less

  15. Developmental Hypothyroidism Alters Brain-Derived Neurotrophic Factor (BDNF) Expression in Adulthood.

    EPA Science Inventory

    Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...

  16. Exploration and Modulation of Brain Network Interactions with Noninvasive Brain Stimulation in Combination with Neuroimaging

    PubMed Central

    Shafi, Mouhsin M.; Westover, M. Brandon; Fox, Michael D.; Pascual-Leone, Alvaro

    2012-01-01

    Much recent work in systems neuroscience has focused on how dynamic interactions between different cortical regions underlie complex brain functions such as motor coordination, language, and emotional regulation. Various studies using neuroimaging and neurophysiologic techniques have suggested that in many neuropsychiatric disorders, these dynamic brain networks are dysregulated. Here we review the utility of combined noninvasive brain stimulation and neuroimaging approaches towards greater understanding of dynamic brain networks in health and disease. Brain stimulation techniques, such as transcranial magnetic stimulation and transcranial direct current stimulation, use electromagnetic principles to noninvasively alter brain activity, and induce focal but also network effects beyond the stimulation site. When combined with brain imaging techniques such as functional MRI, PET and EEG, these brain stimulation techniques enable a causal assessment of the interaction between different network components, and their respective functional roles. The same techniques can also be applied to explore hypotheses regarding the changes in functional connectivity that occur during task performance and in various disease states such as stroke, depression and schizophrenia. Finally, in diseases characterized by pathologic alterations in either the excitability within a single region or in the activity of distributed networks, such techniques provide a potential mechanism to alter cortical network function and architectures in a beneficial manner. PMID:22429242

  17. Microstructural Abnormalities Were Found in Brain Gray Matter from Patients with Chronic Myofascial Pain

    PubMed Central

    Xie, Peng; Qin, Bangyong; Song, Ganjun; Zhang, Yi; Cao, Song; Yu, Jin; Wu, Jianjiang; Wang, Jiang; Zhang, Tijiang; Zhang, Xiaoming; Yu, Tian; Zheng, Hong

    2016-01-01

    Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease. PMID:28066193

  18. Poor Brain Growth in Extremely Preterm Neonates Long Before the Onset of Autism Spectrum Disorder Symptoms.

    PubMed

    Padilla, Nelly; Eklöf, Eva; Mårtensson, Gustaf E; Bölte, Sven; Lagercrantz, Hugo; Ådén, Ulrika

    2017-02-01

    Preterm infants face an increased risk of autism spectrum disorder (ASD). The relationship between autism during childhood and early brain development remains unexplored. We studied 84 preterm children born at <27 weeks of gestation, who underwent neonatal magnetic resonance imaging (MRI) at term and were screened for ASD at 6.5 years. Full-scale intelligence quotient was measured and neonatal morbidities were recorded. Structural brain morphometric studies were performed in 33 infants with high-quality MRI and no evidence of focal brain lesions. Twenty-three (27.4%) of the children tested ASD positive and 61 (72.6%) tested ASD negative. The ASD-positive group had a significantly higher frequency of neonatal complications than the ASD-negative group. In the subgroup of 33 children, the ASD infants had reduced volumes in the temporal, occipital, insular, and limbic regions and in the brain areas involved in social/behavior and salience integration. This study shows that the neonatal MRI scans of extremely preterm children, subsequently diagnosed with ASD at 6.5 years, showed brain structural alterations, localized in the regions that play a key role in the core features of autism. Early detection of these structural alterations may allow the early identification and intervention of children at risk of ASD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.

    PubMed

    Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W

    2015-08-01

    Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer's Disease.

    PubMed

    Pérez, María J; Ponce, Daniela P; Osorio-Fuentealba, Cesar; Behrens, Maria I; Quintanilla, Rodrigo A

    2017-01-01

    The identification of an early biomarker to diagnose Alzheimer's disease (AD) remains a challenge. Neuropathological studies in animal and AD patients have shown that mitochondrial dysfunction is a hallmark of the development of the disease. Current studies suggest the use of peripheral tissues, like skin fibroblasts as a possibility to detect the early pathological alterations present in the AD brain. In this context, we studied mitochondrial function properties (bioenergetics and morphology) in cultured fibroblasts obtained from AD, aged-match and young healthy patients. We observed that AD fibroblasts presented a significant reduction in mitochondrial length with important changes in the expression of proteins that control mitochondrial fusion. Moreover, AD fibroblasts showed a distinct alteration in proteolytic processing of OPA1, a master regulator of mitochondrial fusion, compared to control fibroblasts. Complementary to these changes AD fibroblasts showed a dysfunctional mitochondrial bioenergetics profile that differentiates these cells from aged-matched and young patient fibroblasts. Our findings suggest that the human skin fibroblasts obtained from AD patients could replicate mitochondrial impairment observed in the AD brain. These promising observations suggest that the analysis of mitochondrial bioenergetics could represent a promising strategy to develop new diagnostic methods in peripheral tissues of AD patients.

  1. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology.

    PubMed

    Parrott, Jennifer M; O'Connor, Jason C

    2015-01-01

    Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases.

  2. Kynurenine 3-Monooxygenase: An Influential Mediator of Neuropathology

    PubMed Central

    Parrott, Jennifer M.; O’Connor, Jason C.

    2015-01-01

    Mounting evidence demonstrates that kynurenine metabolism may play an important pathogenic role in the development of multiple neurological and neuropsychiatric disorders. The kynurenine pathway consists of two functionally distinct branches that generate both neuroactive and oxidatively reactive metabolites. In the brain, the rate-limiting enzyme for one of these branches, kynurenine 3-monooxygenase (KMO), is predominantly expressed in microglia and has emerged as a pivotal point of metabolic regulation. KMO substrate and expression levels are upregulated by pro-inflammatory cytokines and altered by functional genetic mutations. Increased KMO metabolism results in the formation of metabolites that activate glutamate receptors and elevate oxidative stress, while recent evidence has revealed neurodevelopmental consequences of reduced KMO activity. Together, the evidence suggests that KMO is positioned at a critical metabolic junction to influence the development or trajectory of a myriad of neurological diseases. Understanding the mechanism(s) by which alterations in KMO activity are able to impair neuronal function, and viability will enhance our knowledge of related disease pathology and provide insight into novel therapeutic opportunities. This review will discuss the influence of KMO on brain kynurenine metabolism and the current understanding of molecular mechanisms by which altered KMO activity may contribute to neurodevelopment, neurodegenerative, and neuropsychiatric diseases. PMID:26347662

  3. Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer's Disease

    PubMed Central

    Pérez, María J.; Ponce, Daniela P.; Osorio-Fuentealba, Cesar; Behrens, Maria I.; Quintanilla, Rodrigo A.

    2017-01-01

    The identification of an early biomarker to diagnose Alzheimer's disease (AD) remains a challenge. Neuropathological studies in animal and AD patients have shown that mitochondrial dysfunction is a hallmark of the development of the disease. Current studies suggest the use of peripheral tissues, like skin fibroblasts as a possibility to detect the early pathological alterations present in the AD brain. In this context, we studied mitochondrial function properties (bioenergetics and morphology) in cultured fibroblasts obtained from AD, aged-match and young healthy patients. We observed that AD fibroblasts presented a significant reduction in mitochondrial length with important changes in the expression of proteins that control mitochondrial fusion. Moreover, AD fibroblasts showed a distinct alteration in proteolytic processing of OPA1, a master regulator of mitochondrial fusion, compared to control fibroblasts. Complementary to these changes AD fibroblasts showed a dysfunctional mitochondrial bioenergetics profile that differentiates these cells from aged-matched and young patient fibroblasts. Our findings suggest that the human skin fibroblasts obtained from AD patients could replicate mitochondrial impairment observed in the AD brain. These promising observations suggest that the analysis of mitochondrial bioenergetics could represent a promising strategy to develop new diagnostic methods in peripheral tissues of AD patients. PMID:29056898

  4. Borderline personality disorder and childhood trauma: exploring the affected biological systems and mechanisms.

    PubMed

    Cattane, Nadia; Rossi, Roberta; Lanfredi, Mariangela; Cattaneo, Annamaria

    2017-06-15

    According to several studies, the onset of the Borderline Personality Disorder (BPD) depends on the combination between genetic and environmental factors (GxE), in particular between biological vulnerabilities and the exposure to traumatic experiences during childhood. We have searched for studies reporting possible alterations in several biological processes and brain morphological features in relation to childhood trauma experiences and to BPD. We have also looked for epigenetic mechanisms as they could be mediators of the effects of childhood trauma in BPD vulnerability. We prove the role of alterations in Hypothalamic-Pituitary-Adrenal (HPA) axis, in neurotrasmission, in the endogenous opioid system and in neuroplasticity in the childhood trauma-associated vulnerability to develop BPD; we also confirm the presence of morphological changes in several BPD brain areas and in particular in those involved in stress response. Not so many studies are available on epigenetic changes in BPD patients, although these mechanisms are widely investigated in relation to stress-related disorders. A better comprehension of the biological and epigenetic mechanisms, affected by childhood trauma and altered in BPD patients, could allow to identify "at high risk" subjects and to prevent or minimize the development of the disease later in life.

  5. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions.

    PubMed

    Ruffolo, Gabriele; Iyer, Anand; Cifelli, Pierangelo; Roseti, Cristina; Mühlebner, Angelika; van Scheppingen, Jackelien; Scholl, Theresa; Hainfellner, Johannes A; Feucht, Martha; Krsek, Pavel; Zamecnik, Josef; Jansen, Floor E; Spliet, Wim G M; Limatola, Cristina; Aronica, Eleonora; Palma, Eleonora

    2016-11-01

    Tuberous sclerosis complex (TSC) is a rare multi-system genetic disease characterized by several neurological disorders, the most common of which is the refractory epilepsy caused by highly epileptogenic cortical lesions. Previous studies suggest an alteration of GABAergic and glutamatergic transmission in TSC brain indicating an unbalance of excitation/inhibition that can explain, at least in part, the high incidence of epilepsy in these patients. Here we investigate whether TSC cortical tissues could retain GABAA and AMPA receptors at early stages of human brain development thus contributing to the generation and recurrence of seizures. Given the limited availability of pediatric human brain specimens, we used the microtransplantation method of injecting Xenopus oocytes with membranes from TSC cortical tubers and control brain tissues. Moreover, qPCR was performed to investigate the expression of GABAA and AMPA receptor subunits (GABAA α1-5, β3, γ2, δ; GluA1, GluA2) and cation chloride co-transporters NKCC1 and KCC2. The evaluation of nine human cortical brain samples, from 15 gestation weeks to 15years old, showed a progressive shift towards more hyperpolarized GABAA reversal potential (EGABA). This shift was associated with a differential expression of the chloride cotransporters NKCC1 and KCC2. Furthermore, the GluA1/GluA2 mRNA ratio of expression paralleled the development process. On the contrary, in oocytes micro-transplanted with epileptic TSC tuber tissue from seven patients, neither the GABAA reversal potential nor the GluA1/GluA2 expression showed similar developmental changes. Our data indicate for the first time, that in the same cohort of TSC patients, the pattern of both GABAAR and GluA1/GluA2 functions retains features that are typical of an immature brain. These observations support the potential contribution of altered receptor function to the epileptic disorder of TSC and may suggest novel therapeutic approaches. Furthermore, our findings strengthen the novel hypothesis that other developmental brain diseases can share the same hallmarks of immaturity leading to intractable seizures. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory.

    PubMed

    Koebele, Stephanie V; Bimonte-Nelson, Heather A

    2017-08-01

    Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. These fluctuations span from early development, to cyclic changes associated with the menstrual or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline at reproductive senescence. While the transition to reproductive senescence is not yet fully understood, the vast majority of mammals experience this spontaneous, natural phenomenon with age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, and its transition, involves significant and enduring physiological changes, including considerably altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian hormone levels, and aging and reproductive senescence are both associated with changes in memory performance. This review explores how menopause is related to cognitive aging, and discusses some of the key neural systems and molecular factors altered with age and reproductive hormone level changes, with an emphasis on brain regions important for learning and memory. Copyright © 2017. Published by Elsevier Inc.

  7. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders

    PubMed Central

    Ciranna, Lucia; Catania, Maria Vincenza

    2014-01-01

    Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD. PMID:25221471

  8. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain.more » As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult brain due to aberrant expression of epigenetic machinery based on region and sex. - Highlights: • Brain tissue from adult mice with developmental arsenic exposure (DAE) was used. • DAE impacted histone methylation and associated methyltransferases based on sex. • DAE differentially altered histone acetylation based on brain region. • DAE altered HATs in males and HDACs in females. • Epigenetic modifier expression correlated with the associated histone modification.« less

  9. How does brain insulin resistance develop in Alzheimer's disease?

    PubMed

    De Felice, Fernanda G; Lourenco, Mychael V; Ferreira, Sergio T

    2014-02-01

    Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  10. Developmental programming of brain and behavior by perinatal diet: focus on inflammatory mechanisms

    PubMed Central

    Bolton, Jessica L.; Bilbo, Staci D.

    2014-01-01

    Obesity is now epidemic worldwide. Beyond associated diseases such as diabetes, obesity is linked to neuropsychiatric disorders such as depression. Alarmingly maternal obesity and high-fat diet consumption during gestation/lactation may “program” offspring longterm for increased obesity themselves, along with increased vulnerability to mood disorders. We review the evidence that programming of brain and behavior by perinatal diet is propagated by inflammatory mechanisms, as obesity and high-fat diets are independently associated with exaggerated systemic levels of inflammatory mediators. Due to the recognized dual role of these immune molecules (eg, interleukin [IL]-6, 11-1β) in placental function and brain development, any disruption of their delicate balance with growth factors or neurotransmitters (eg, serotonin) by inflammation early in life can permanently alter the trajectory of fetal brain development. Finally, epigenetic regulation of inflammatory pathways is a likely candidate for persistent changes in metabolic and brain function as a consequence of the perinatal environment. PMID:25364282

  11. Brain Mitochondria, Aging, and Parkinson's Disease.

    PubMed

    Rango, Mario; Bresolin, Nereo

    2018-05-11

    This paper reconsiders the role of mitochondria in aging and in Parkinson's Disease (PD). The most important risk factor for PD is aging. Alterations in mitochondrial activity are typical of aging. Mitochondrial aging is characterized by decreased oxidative phosphorylation, proteasome activity decrease, altered autophagy, and mitochondrial dysfunction. Beyond declined oxidative phosphorylation, mitochondrial dysfunction consists of a decline of beta-oxidation as well as of the Krebs cycle. Not inherited mitochondrial DNA (mtDNA) mutations are acquired over time and parallel the decrease in oxidative phosphorylation. Many of these mitochondrial alterations are also found in the PD brain specifically in the substantia nigra (SN). mtDNA deletions and development of respiratory chain deficiency in SN neurons of aged individuals as well as of individuals with PD converge towards a shared pathway, which leads to neuronal dysfunction and death. Finally, several nuclear genes that are mutated in hereditary PD are usually implicated in mitochondrial functioning to a various extent and their mutation may cause mitochondrial impairment. In conclusion, a tight link exists between mitochondria, aging, and PD.

  12. Early environmental predictors of the affective and interpersonal constructs of psychopathy.

    PubMed

    Daversa, Maria T

    2010-02-01

    Early childhood maltreatment (i.e., physical, sexual, emotional abuse) and caregiver disruptions are hypothesized to be instrumental in altering the neurobiology of the brain, particularly the amygdala, and contributing to the development of the affective deficits examined in individuals with psychopathy. Exposure to early untoward life events in models of rodent and nonhuman primates changes the neurobiology of the stress response. It is hypothesized that these changes may permanently shape brain regions that mediate stress and emotion and therefore play a role in the etiology of affective disorders in humans. The significance of experience (e.g., the intensity/severity, chronicity/duration, and developmental timing of experiences) and how the accompanying changes in the activity of the hypothalamic-pituitary-adrenocortical system affect alterations in the amygdala are discussed as critical contributors to the etiology of psychopathy. A model is proposed in which early maltreatment experiences contribute to alterations to the amygdala and produce a blunted or dissociative response to stress, a key factor in the affective deficits observed in psychopaths.

  13. Adolescent Cannabis Use: What is the Evidence for Functional Brain Alteration?

    PubMed

    Lorenzetti, Valentina; Alonso-Lana, Silvia; Youssef, George J; Verdejo-Garcia, Antonio; Suo, Chao; Cousijn, Janna; Takagi, Michael; Yücel, Murat; Solowij, Nadia

    2016-01-01

    Cannabis use typically commences during adolescence, a period during which the brain undergoes profound remodeling in areas that are high in cannabinoid receptors and that mediate cognitive control and emotion regulation. It is therefore important to determine the impact of adolescent cannabis use on brain function. We investigate the impact of adolescent cannabis use on brain function by reviewing the functional magnetic resonance imaging studies in adolescent samples. We systematically reviewed the literature and identified 13 functional neuroimaging studies in adolescent cannabis users (aged 13 to 18 years) performing working memory, inhibition and reward processing tasks. The majority of the studies found altered brain function, but intact behavioural task performance in adolescent cannabis users versus controls. The most consistently reported differences were in the frontal-parietal network, which mediates cognitive control. Heavier use was associated with abnormal brain function in most samples. A minority of studies controlled for the influence of confounders that can also undermine brain function, such as tobacco and alcohol use, psychopathology symptoms, family history of psychiatric disorders and substance use. Emerging evidence shows abnormal frontal-parietal network activity in adolescent cannabis users, particularly in heavier users. Brain functional alterations may reflect a compensatory neural mechanism that enables normal behavioural performance. It remains unclear if cannabis exposure drives these alterations, as substance use and mental health confounders have not been systematically examined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  15. The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation

    PubMed Central

    2016-01-01

    Recent imaging studies in cerebral palsy (CP) have described several brain structural changes, functional alterations, and neuroplastic processes that take place after brain injury during early development. These changes affect motor pathways as well as sensorimotor networks. Several of these changes correlate with behavioral measures of motor and sensory disability. It is now widely acknowledged that management of sensory deficits is relevant for rehabilitation in CP. Playing a musical instrument demands the coordination of hand movements with integrated auditory, visual, and tactile feedback, in a process that recruits multiple brain regions. These multiple demands during instrument playing, together with the entertaining character of music, have led to the development and investigation of music-supported therapies, especially for rehabilitation with motor disorders resulting from brain damage. We review scientific evidence that supports the use of musical instrument playing for rehabilitation in CP. We propose that active musical instrument playing may be an efficient means for triggering neuroplastic processes necessary for the development of sensorimotor skills in patients with early brain damage. We encourage experimental research on neuroplasticity and on its impact on the physical and personal development of individuals with CP. PMID:27867664

  16. The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation.

    PubMed

    Alves-Pinto, Ana; Turova, Varvara; Blumenstein, Tobias; Lampe, Renée

    2016-01-01

    Recent imaging studies in cerebral palsy (CP) have described several brain structural changes, functional alterations, and neuroplastic processes that take place after brain injury during early development. These changes affect motor pathways as well as sensorimotor networks. Several of these changes correlate with behavioral measures of motor and sensory disability. It is now widely acknowledged that management of sensory deficits is relevant for rehabilitation in CP. Playing a musical instrument demands the coordination of hand movements with integrated auditory, visual, and tactile feedback, in a process that recruits multiple brain regions. These multiple demands during instrument playing, together with the entertaining character of music, have led to the development and investigation of music-supported therapies, especially for rehabilitation with motor disorders resulting from brain damage. We review scientific evidence that supports the use of musical instrument playing for rehabilitation in CP. We propose that active musical instrument playing may be an efficient means for triggering neuroplastic processes necessary for the development of sensorimotor skills in patients with early brain damage. We encourage experimental research on neuroplasticity and on its impact on the physical and personal development of individuals with CP.

  17. New Therapeutic Drugs from Bioactive Natural Molecules: the Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.

    PubMed

    Di Meo, Francesco; Donato, Stella; Di Pardo, Alba; Maglione, Vittorio; Filosa, Stefania; Crispi, Stefania

    2018-04-03

    The gut-brain axis is considered a neuroendocrine system, which connects brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for healthy conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. Gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Recent advances in gut microbiota analyses indicate that the gut bacterial community plays a key role in maintaining normal brain functions. Recent metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both gut bacterial composition and brain biochemistry. Modifications of microbiota composition by natural bioactive molecules could be used to restore the altered brain functions, which characterize neurodegenerative diseases, leading to consider these compounds as novel therapeutic strategies for the treatment of neuropathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    PubMed

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  19. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment.

    PubMed

    Puga, Sónia; Pereira, Patrícia; Pinto-Ribeiro, Filipa; O'Driscoll, Nelson J; Mann, Erin; Barata, Marisa; Pousão-Ferreira, Pedro; Canário, João; Almeida, Armando; Pacheco, Mário

    2016-11-01

    The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg -1 ), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where homeostatic mechanisms prevented circumstantially morphometric alterations in the brain and behavioral shifts. Although it has become clear the complexity of matching brain morphometric changes and behavioral shifts, motor-related alterations induced by MeHg seem to depend on a combination of disruptions in different brain regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Different alterations in brain functional networks according to direct and indirect topological connections in patients with schizophrenia.

    PubMed

    Park, Chang-Hyun; Lee, Seungyup; Kim, Taewon; Won, Wang Yeon; Lee, Kyoung-Uk

    2017-10-01

    Schizophrenia displays connectivity deficits in the brain, but the literature has shown inconsistent findings about alterations in global efficiency of brain functional networks. We supposed that such inconsistency at the whole brain level may be due to a mixture of different portions of global efficiency at sub-brain levels. Accordingly, we considered measuring portions of global efficiency in two aspects: spatial portions by considering sub-brain networks and topological portions by considering contributions to global efficiency according to direct and indirect topological connections. We proposed adjacency and indirect adjacency as new network parameters attributable to direct and indirect topological connections, respectively, and applied them to graph-theoretical analysis of brain functional networks constructed from resting state fMRI data of 22 patients with schizophrenia and 22 healthy controls. Group differences in the network parameters were observed not for whole brain and hemispheric networks, but for regional networks. Alterations in adjacency and indirect adjacency were in opposite directions, such that adjacency increased, but indirect adjacency decreased in patients with schizophrenia. Furthermore, over connections in frontal and parietal regions, increased adjacency was associated with more severe negative symptoms, while decreased adjacency was associated with more severe positive symptoms of schizophrenia. This finding indicates that connectivity deficits associated with positive and negative symptoms of schizophrenia may involve topologically different paths in the brain. In patients with schizophrenia, although changes in global efficiency may not be clearly shown, different alterations in brain functional networks according to direct and indirect topological connections could be revealed at the regional level. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Chemo brain or tumor brain - that is the question: the presence of extracranial tumors profoundly affects molecular processes in the prefrontal cortex of TumorGraft mice

    PubMed Central

    Kovalchuk, Anna; Ilnytskyy, Yaroslav; Rodriguez-Juarez, Rocio; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Katz, Amanda; Sidransky, David; Kovalchuk, Olga; Kolb, Bryan

    2017-01-01

    Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain. PMID:28758896

  2. Brain and Bone Damage in KARAP/DAP12 Loss-of-Function Mice Correlate with Alterations in Microglia and Osteoclast Lineages

    PubMed Central

    Nataf, Serge; Anginot, Adrienne; Vuaillat, Carine; Malaval, Luc; Fodil, Nassima; Chereul¶, Emmanuel; Langlois¶, Jean-Baptiste; Dumontel, Christiane; Cavillon, Gaelle; Confavreux, Christian; Mazzorana, Marlène; Vico, Laurence; Belin, Marie-Franaçoise; Vivier, Eric; Tomasello, Elena; Jurdic, Pierre

    2005-01-01

    Human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy, also known as Nasu-Hakola disease, has been described to be associated with mutations affecting the immunoreceptor tyrosine-based activation motif-bearing KARAP/DAP12 immunoreceptor gene. Patients present bone fragilities and severe neurological alterations leading to presenile dementia. Here we investigated whether the absence of KARAP/DAP12-mediated signals in loss-of-function (KΔ75) mice also leads to bone and central nervous system pathological features. Histological analysis of adult KΔ75 mice brains revealed a diffuse hypomyelination predominating in anterior brain regions. As this was not accompanied by oligodendrocyte degeneration or microglial cell activation it suggests a developmental defect of myelin formation. Interestingly, in postnatal KΔ75 mice, we observed a dramatic reduction in microglial cell numbers similar to in vitro microglial cell differentiation impairment. Our results raise the intriguing possibility that defective microglial cell differentiation might be responsible for abnormal myelin development. Histomorphometry revealed that bone remodeling is also altered, because of a resorption defect, associated with a severe block of in vitro osteoclast differentiation. In addition, we show that, among monocytic lineages, KARAP/DAP12 specifically controls microglial and osteoclast differentiation. Our results confirm that KARAP/DAP12-mediated signals play an important role in the regulation of both brain and bone homeostasis. Yet, important differences exist between the symptoms observed in Nasu-Hakola patients and KΔ75 mice. PMID:15632019

  3. Assessing the marks of change: how psychotherapy alters the brain structure in women with borderline personality disorder.

    PubMed

    Mancke, Falk; Schmitt, Ruth; Winter, Dorina; Niedtfeld, Inga; Herpertz, Sabine C; Schmahl, Christian

    2017-12-13

    There is increasing evidence that psychotherapy can alter the function of the brain of patients with borderline personality disorder (BPD). However, it is not known whether psychotherapy can also modify the brain structure of patients with BPD. We used structural MRI data of female patients with BPD before and after participation in 12 weeks of residential dialectical behavioural therapy (DBT) and compared them to data from female patients with BPD who received treatment as usual (TAU). We applied voxel-based morphometry to study voxel-wise changes in grey matter volume over time. We included 31 patients in the DBT group and 17 in the TAU group. Patients receiving DBT showed an increase of grey matter volume in the anterior cingulate cortex, inferior frontal gyrus and superior temporal gyrus together with an alteration of grey matter volume in the angular gyrus and supramarginal gyrus compared with patients receiving TAU. Furthermore, therapy response correlated with increase of grey matter volume in the angular gyrus. Only women were investigated, and groups differed in size, medication (controlled for) and intensity of the treatment condition. We found that DBT increased grey matter volume of brain regions that are critically implicated in emotion regulation and higher-order functions, such as mentalizing. The role of the angular gyrus for treatment response may reside in its cross-modal integrative function. These findings enhance our understanding of psychotherapy mechanisms of change and may foster the development of neurobiologically informed therapeutic interventions.

  4. Tianeptine, olanzapine and fluoxetine show similar restoring effects on stress induced molecular changes in mice brain: An FT-IR study

    NASA Astrophysics Data System (ADS)

    Türker-Kaya, Sevgi; Mutlu, Oğuz; Çelikyurt, İpek K.; Akar, Furuzan; Ulak, Güner

    2016-05-01

    Chronic stress which can cause a variety of disorders and illness ranging from metabolic and cardiovascular to mental leads to alterations in content, structure and dynamics of biomolecules in brain. The determination of stress-induced changes along with the effects of antidepressant treatment on these parameters might bring about more effective therapeutic strategies. In the present study, we investigated unpredictable chronic mild stress (UCMS)-induced changes in biomolecules in mouse brain and the restoring effects of tianeptine (TIA), olanzapine (OLZ) and fluoxetine (FLX) on these variations, by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that chronic stress causes different membrane packing and an increase in lipid peroxidation, membrane fluidity. A significant increment for lipid/protein, Cdbnd O/lipid, CH3/lipid, CH2/lipid, PO-2/lipid, COO-/lipid and RNA/protein ratios but a significant decrease for lipid/protein ratios were also obtained. Additionally, altered protein secondary structure components were estimated, such as increment in random coils and beta structures. The administration of TIA, OLZ and FLX drugs restored these stress-induced variations except for alterations in protein structure and RNA/protein ratio. This may suggest that these drugs have similar restoring effects on the consequences of stress activity in brain, in spite of the differences in their action mechanisms. All findings might have importance in understanding molecular mechanisms underlying chronic stress and contribute to studies aimed for drug development.

  5. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    PubMed

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  6. Global Metabolomic Analyses of the Hemolymph and Brain during the Initiation, Maintenance, and Termination of Pupal Diapause in the Cotton Bollworm, Helicoverpa armigera

    PubMed Central

    Lu, Yu-Xuan; Zhang, Qi; Xu, Wei-Hua

    2014-01-01

    A strategy known as diapause (developmental arrest) has evolved in insects to increase their survival rate under harsh environmental conditions. Diapause causes a dramatic reduction in the metabolic rate and drastically extends lifespan. However, little is known about the mechanisms underlying the metabolic changes involved. Using gas chromatography-mass spectrometry, we compared the changes in the metabolite levels in the brain and hemolymph of nondiapause- and diapause-destined cotton bollworm, Helicoverpa armigera, during the initiation, maintenance, and termination of pupal diapause. A total of 55 metabolites in the hemolymph and 52 metabolites in the brain were detected. Of these metabolites, 21 and 12 metabolite levels were altered in the diapause pupal hemolymph and brain, respectively. During diapause initiation and maintenance, the number of metabolites with increased levels in the hemolymph of the diapausing pupae is far greater than the number in the nondiapause pupae. These increased metabolites function as an energy source, metabolic intermediates, and cryoprotectants. The number of metabolites with decreased levels in the brain of diapausing pupae is far greater than the number in the nondiapause pupae. Low metabolite levels are likely to directly or indirectly repress the brain metabolic activity. During diapause termination, most of the metabolite levels in the hemolymph of the diapausing pupae rapidly decrease because they function as energy and metabolic sources that promote pupa-adult development. In conclusion, the metabolites with altered levels in the hemolymph and brain serve as energy and metabolic resources and help to maintain a low brain metabolic activity during diapause. PMID:24926789

  7. Aging alters the immunological response to ischemic stroke.

    PubMed

    Ritzel, Rodney M; Lai, Yun-Ju; Crapser, Joshua D; Patel, Anita R; Schrecengost, Anna; Grenier, Jeremy M; Mancini, Nickolas S; Patrizz, Anthony; Jellison, Evan R; Morales-Scheihing, Diego; Venna, Venugopal R; Kofler, Julia K; Liu, Fudong; Verma, Rajkumar; McCullough, Louise D

    2018-05-11

    The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls. Microglia in young heterochronic mice (Old → Young) developed a senescent-like phenotype. After stroke, aged animals reconstituted with young marrow had reduced behavioral deficits compared to isochronic controls, and had significantly fewer brain-infiltrating neutrophils. Increased rates of hemorrhagic transformation were seen in young mice reconstituted with aged bone marrow. This work suggests that age alters the immunological response to stroke, and that this can be reversed by manipulation of the peripheral immune cells in the bone marrow.

  8. A Developmental Neuroscience Approach to the Search for Biomarkers in Autism Spectrum Disorder

    PubMed Central

    Varcin, Kandice J.; Nelson, Charles A.

    2016-01-01

    Purpose of review The delineation of biomarkers in autism spectrum disorder (ASD) offers a promising approach to inform precision-medicine based approaches to ASD diagnosis and treatment and to move toward a mechanistic description of the disorder. However, biomarkers with sufficient sensitivity or specificity for clinical application in ASD are yet to be realized. Here, we review recent evidence for early, low-level alterations in brain and behavior development that may offer promising avenues for biomarker development in ASD. Recent findings Accumulating evidence suggests that signs associated with ASD may unfold in a manner that maps onto the hierarchical organization of brain development. Genetic and neuroimaging evidence points towards perturbations in brain development early in life, and emerging evidence indicates that sensorimotor development may be amongst the earliest emerging signs associated with ASD, preceding social and cognitive impairment. Summary The search for biomarkers of risk, prediction and stratification in ASD may be advanced through a developmental neuroscience approach that looks outside of the core signs of ASD and considers the bottom-up nature of brain development alongside the dynamic nature of development over time. We provide examples of assays that could be incorporated in studies to target low-level circuits. PMID:26953849

  9. Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury

    PubMed Central

    Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.

    2009-01-01

    Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795

  10. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing.

    PubMed

    Yanes, Julio A; Riedel, Michael C; Ray, Kimberly L; Kirkland, Anna E; Bird, Ryan T; Boeving, Emily R; Reid, Meredith A; Gonzalez, Raul; Robinson, Jennifer L; Laird, Angela R; Sutherland, Matthew T

    2018-03-01

    Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.

  11. On the Necessity of Ethical Guidelines for Novel Neurotechnologies.

    PubMed

    Goering, Sara; Yuste, Rafael

    2016-11-03

    Because novel neurotechnologies may alter human identity and society in profound ways, we advocate for the early integration of ethics into neurotechnology. We recommend developing and adopting a set of guidelines, like the Belmont Report on human subject research, as a framework for development and use of brain-related technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Role of Chronic Hypoxia in the Development of Neurocognitive Abnormalities in Preterm Infants with Bronchopulmonary Dysplasia

    ERIC Educational Resources Information Center

    Raman, Lakshmi; Georgieff, Michael K.; Rao, Raghavendra

    2006-01-01

    Bronchopulmonary dysplasia is the most common pulmonary morbidity in preterm infants and is associated with chronic hypoxia. Animal studies have demonstrated structural, neurochemical and functional alterations due to chronic hypoxia in the developing brain. Long-term impairments in visual-motor, gross and fine motor, articulation, reading,…

  13. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome.

    PubMed

    Batalle, Dafnis; Eixarch, Elisenda; Figueras, Francesc; Muñoz-Moreno, Emma; Bargallo, Nuria; Illa, Miriam; Acosta-Rojas, Ruthy; Amat-Roldan, Ivan; Gratacos, Eduard

    2012-04-02

    Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the architecture of neural circuitry and developing imaging biomarkers of poor neurodevelopment outcome in infants with prenatal diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington Disease.

    PubMed

    Di Pardo, Alba; Amico, Enrico; Scalabrì, Francesco; Pepe, Giuseppe; Castaldo, Salvatore; Elifani, Francesca; Capocci, Luca; De Sanctis, Claudia; Comerci, Laura; Pompeo, Francesco; D'Esposito, Maurizio; Filosa, Stefania; Crispi, Stefania; Maglione, Vittorio

    2017-01-24

    Blood-brain barrier (BBB) breakdown, due to the concomitant disruption of the tight junctions (TJs), normally required for the maintenance of BBB function, and to the altered transport of molecules between blood and brain and vice-versa, has been suggested to significantly contribute to the development and progression of different brain disorders including Huntington's disease (HD). Although the detrimental consequence the BBB breakdown may have in the clinical settings, the timing of its alteration remains elusive for many neurodegenerative diseases. In this study we demonstrate for the first time that BBB disruption in HD is not confined to established symptoms, but occurs early in the disease progression. Despite the obvious signs of impaired BBB permeability were only detectable in concomitance with the onset of the disease, signs of deranged TJs integrity occur precociously in the disease and precede the onset of overt symptoms. To our perspective this finding may add a new dimension to the horizons of pathological mechanisms underlying this devastating disease, however much remains to be elucidated for understanding how specific BBB drug targets can be approached in the future.

  15. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  16. STRUCTURAL AND CONNECTOMIC NEUROIMAGING FOR THE PERSONALIZED STUDY OF LONGITUDINAL ALTERATIONS IN CORTICAL SHAPE, THICKNESS AND CONNECTIVITY AFTER TRAUMATIC BRAIN INJURY

    PubMed Central

    Irimia, A.; Goh, S.-Y. M.; Torgerson, C. M.; Vespa, P. M.; Van Horn, J. D.

    2014-01-01

    The integration of longitudinal brain structure analysis with neurointensive care strategies continues to be a substantial difficulty facing the traumatic brain injury (TBI) research community. For patient-tailored case analysis, it remains challenging to establish how lesion profile modulates longitudinal changes in cortical structure and connectivity, as well as how these changes lead to behavioral, cognitive and neural dysfunction. Additionally, despite the clinical potential of morphometric and connectomic studies, few analytic tools are available for their study in TBI. Here we review the state of the art in structural and connectomic neuroimaging for the study of TBI and illustrate a set of recently-developed, patient-tailored approaches for the study of TBI-related brain atrophy and alterations in morphometry as well as inter-regional connectivity. The ability of such techniques to quantify how injury modulates longitudinal changes in cortical shape, structure and circuitry is highlighted. Quantitative approaches such as these can be used to assess and monitor the clinical condition and evolution of TBI victims, and can have substantial translational impact, especially when used in conjunction with measures of neuropsychological function. PMID:24844173

  17. A Novel Perspective on Dopaminergic Processing of Human Addiction.

    PubMed

    Badgaiyan, Rajendra D

    2013-01-01

    Converging evidence from clinical, animal, and neuroimaging experiments suggests that the addictive behavior is associated with dysregulated dopamine neurotransmission. The precise role of dopamine in establishment and maintenance of addiction however is unclear. In this context animal studies on the brain reward system and the associative memory processing provide a novel insight. It was shown that both processing involve dopamine neurotransmission and both are disrupted in addiction. These findings indicate that dysregulated dopamine neurotransmission alters the brain processing of not only the reward system but also that of the memory of association between an addictive substance and reward. These alterations lead to maladaptive motivational behavior leading to chemical dependency. This concept however is based mostly on the data obtained in laboratory animals because of the paucity of human data. Due to lack of a reliable technique to study neurotransmission in the live human brain, it has been a problem to study the role of dopamine in human volunteers. A recently developed dynamic molecular imaging technique however, provides an opportunity to study these concepts in human volunteers because the technique allows detection, mapping and measurement of dopamine released in the live human brain during task performance.

  18. Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA Methylation and Telomere Length in the Brain of Adult Rat Offspring

    NASA Technical Reports Server (NTRS)

    Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.

    2017-01-01

    DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.

  19. A paradigm of undernourishing and neonatal rehabilitation in the newborn rat.

    PubMed

    Perez-Torrero, Esther; Torrerob, Carmen; Collado, Paloma; Salas, Manuel

    2003-04-01

    Perinatal undernutrition as a deficiency of nutrient availability, affects body and brain developmental processes and promotes recurrent health problems. Thus, altered mother-litter bonds and deficient environmental interactions may interfere with the brain pluripotential capabilities of the newborn. To gather information concerning the mechanisms underlying perinatal undernutrition we designed a paradigm of undernutrition and neonatal rehabilitation in the rat. An underfed group came from pregnant Wistar rats fed with 50% of the diet from G6 to G12 and with 60% from G13 until G21. After birth, pups were daily undernourished during 12 h daily by rotating a pair of lactating well-nourished dams which had one of their nipples subcutaneously ligated. The rehabilitated animals were undernourished pups neonatally fed by a pair of normally lactating dams. Controls received plenty of food during the pre- and neonatal periods. Pups were sacrificed at 12, 20 and 30 days of age. Perinatal underfeeding significantly reduced body and brain weights and neuronal morphometric parameters. Normal neonatal feeding in the newborn ameliorated the damages associated to food deprivation. The current undernourishing paradigm may be helpful to assess brain development alterations, as well as to study the compensatory mechanisms associated to salutary epigenetic influences.

  20. The Role of Ephs and Ephrins in Memory Formation.

    PubMed

    Dines, Monica; Lamprecht, Raphael

    2016-04-01

    The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer's disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  1. Anesthesia and perioperative stress: consequences on neural networks and postoperative behaviors.

    PubMed

    Borsook, David; George, Edward; Kussman, Barry; Becerra, Lino

    2010-12-01

    Anesthesia is a state of drug-induced unconsciousness with suppression of sensory perception, and consists of both hypnotic and analgesic components. The anesthesiologist monitors the clinical response to noxious stimuli and adjusts drug dosage(s) to achieve an adequate depth of anesthesia, with the aim of reducing operative stress. Acute stress in the perioperative period has four major contributors: anxiety, pain, the surgical stress response, and the potential neurotoxicity of anesthetic agents. Any or all of these may act deleteriously on multiple systems in the brain and have known significant effects on brain regions such as the hippocampus and the hypothalamic-pituitary-adrenal axis. Perioperative stress on the nervous system and the resultant central nervous system (CNS) changes are likely to be causative for altered behaviors that are seen postoperatively, including chronic pain, posttraumatic stress disorder, and learning difficulties. Improving the ability of the anesthesiologist to control all four components of acute perioperative stress could potentially reduce the negative impact of surgery on the brain. Currently, there is no objective measurement for any of these stressors. The development and application of objective measures for perioperative stressors is the first step towards controlling these risk factors and eliminating or reducing their serious postoperative consequences. In this paper we review known and likely effects of perioperative stressors on brain systems and how they may play a significant role in altered postoperative behaviors. We discuss the role of current (and developing) measures of brain function and their potential for monitoring perioperative stress, with an emphasis on functional neuroimaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Financial Exploitation Is Associated With Structural and Functional Brain Differences in Healthy Older Adults.

    PubMed

    Spreng, R Nathan; Cassidy, Benjamin N; Darboh, Bri S; DuPre, Elizabeth; Lockrow, Amber W; Setton, Roni; Turner, Gary R

    2017-10-01

    Age-related brain changes leading to altered socioemotional functioning may increase vulnerability to financial exploitation. If confirmed, this would suggest a novel mechanism leading to heightened financial exploitation risk in older adults. Development of predictive neural markers could facilitate increased vigilance and prevention. In this preliminary study, we sought to identify structural and functional brain differences associated with financial exploitation in older adults. Financially exploited older adults (n = 13, 7 female) and a matched cohort of older adults who had been exposed to, but avoided, a potentially exploitative situation (n = 13, 7 female) were evaluated. Using magnetic resonance imaging, we examined cortical thickness and resting state functional connectivity. Behavioral data were collected using standardized cognitive assessments, self-report measures of mood and social functioning. The exploited group showed cortical thinning in anterior insula and posterior superior temporal cortices, regions associated with processing affective and social information, respectively. Functional connectivity encompassing these regions, within default and salience networks, was reduced, while between network connectivity was increased. Self-reported anger and hostility was higher for the exploited group. We observed financial exploitation associated with brain differences in regions involved in socioemotional functioning. These exploratory and preliminary findings suggest that alterations in brain regions implicated in socioemotional functioning may be a marker of financial exploitation risk. Large-scale, prospective studies are necessary to validate this neural mechanism, and develop predictive markers for use in clinical practice. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America.

  3. Effects of nicotine exposure during prenatal or perinatal period on cell numbers in adult rat hippocampus and cerebellum: a stereology study.

    PubMed

    Chen, Wei-Jung A; King, Karen A; Lee, Ruby E; Sedtal, Christopher S; Smith, Andrew M

    2006-11-02

    Smoking during pregnancy poses a potential risk to unborn children. The present study examined the long-term effects of early nicotine exposure on the number of pyramidal and granule cells in the hippocampus, and Purkinje cells in the cerebellar vermis. The loss of neurons is the most severe form of brain injury with significant functional implications. In this study, rats were exposed to nicotine during either the prenatal (PRE) period or both the prenatal and early postnatal (PERI) period. It was hypothesized that nicotine treatment would result in long-term decreases in neuronal numbers, and that PERI treatment would be more detrimental to these cell populations than the PRE treatment. The results showed that neither PRE nor PERI nicotine exposure reduces the numbers of pyramidal, granule or Purkinje cells. Neither the regions where these cells reside, nor the cell densities were affected by nicotine. Although no significant cell loss was observed, the current nicotine exposure regimens may lead to alterations in cellular functions or cytoarchitectures. The present results in conjunction with previous reports showing significant cell loss from nicotine exposure during the brain growth spurt suggest that "patch-like" nicotine exposure during prenatal period may alter the sensitivity or the responsiveness of the developing brain to the injurious effects of nicotine during the most vulnerable stage of brain development - the brain growth spurt. Furthermore, the current stereology cell counting results are not in agreement with some reports in the literature, and this discrepancy may simply be a function of different cell counting techniques used.

  4. Prepartum and Postpartum Maternal Depressive Symptoms Are Related to Children's Brain Structure in Preschool.

    PubMed

    Lebel, Catherine; Walton, Matthew; Letourneau, Nicole; Giesbrecht, Gerald F; Kaplan, Bonnie J; Dewey, Deborah

    2016-12-01

    Perinatal maternal depression is a serious health concern with potential lasting negative consequences for children. Prenatal depression is associated with altered brain gray matter in children, though relations between postpartum depression and children's brains and the role of white matter are unclear. We studied 52 women who provided Edinburgh Postnatal Depression Scale (EPDS) scores during each trimester of pregnancy and at 3 months postpartum and their children who underwent magnetic resonance imaging at age 2.6 to 5.1 years. Associations between maternal depressive symptoms and magnetic resonance imaging measures of cortical thickness and white matter structure in the children were investigated. Women's second trimester EPDS scores negatively correlated with children's cortical thickness in right inferior frontal and middle temporal regions and with radial and mean diffusivity in white matter emanating from the inferior frontal area. Cortical thickness, but not diffusivity, correlations survived correction for postpartum EPDS. Postpartum EPDS scores negatively correlated with children's right superior frontal cortical thickness and with diffusivity in white matter originating from that region, even after correcting for prenatal EPDS. Higher maternal depressive symptoms prenatally and postpartum are associated with altered gray matter structure in children; the observed white matter correlations appear to be uniquely related to the postpartum period. The reduced thickness and diffusivity suggest premature brain development in children exposed to higher maternal perinatal depressive symptoms. These results highlight the importance of ensuring optimal women's mental health throughout the perinatal period, because maternal depressive symptoms appear to increase children's vulnerability to nonoptimal brain development. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder.

    PubMed

    Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M

    2017-01-01

    Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.

  6. A New Conditionally Immortalized Human Fetal Brain Pericyte Cell Line: Establishment and Functional Characterization as a Promising Tool for Human Brain Pericyte Studies.

    PubMed

    Umehara, Kenta; Sun, Yuchen; Hiura, Satoshi; Hamada, Koki; Itoh, Motoyuki; Kitamura, Keita; Oshima, Motohiko; Iwama, Atsushi; Saito, Kosuke; Anzai, Naohiko; Chiba, Kan; Akita, Hidetaka; Furihata, Tomomi

    2018-07-01

    While pericytes wrap around microvascular endothelial cells throughout the human body, their highest coverage rate is found in the brain. Brain pericytes actively contribute to various brain functions, including the development and stabilization of the blood-brain barrier (BBB), tissue regeneration, and brain inflammation. Accordingly, detailed characterization of the functional nature of brain pericytes is important for understanding the mechanistic basis of brain physiology and pathophysiology. Herein, we report on the development of a new human brain pericyte cell line, hereafter referred to as the human brain pericyte/conditionally immortalized clone 37 (HBPC/ci37). Developed via the cell conditionally immortalization method, these cells exhibited excellent proliferative ability at 33 °C. However, when cultured at 37 °C, HBPC/ci37 cells showed a differentiated phenotype that was marked by morphological alterations and increases in several pericyte-enriched marker mRNA levels, such as platelet-derived growth factor receptor β. It was also found that HBPC/ci37 cells possessed the facilitative ability of in vitro BBB formation and differentiation into a neuronal lineage. Furthermore, HBPC/ci37 cells exhibited the typical "reactive" features of brain pericytes in response to pro-inflammatory cytokines. To summarize, our results clearly demonstrate that HBPC/ci37 cells possess the ability to perform several key brain pericyte functions while also showing the capacity for extensive and continuous proliferation. Based on these findings, it can be expected that, as a unique human brain pericyte model, HBPC/ci37 cells have the potential to contribute to significant advances in the understanding of human brain pericyte physiology and pathophysiology.

  7. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children.

    PubMed

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena

    2011-08-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.

  8. Brain CYP2B induction can decrease nicotine levels in the brain.

    PubMed

    Garcia, Kristine L P; Lê, Anh Dzung; Tyndale, Rachel F

    2017-09-01

    Nicotine can be metabolized by the enzyme CYP2B; brain CYP2B is higher in rats and monkeys treated with nicotine, and in human smokers. A 7-day nicotine treatment increased CYP2B expression in rat brain but not liver, and decreased the behavioral response and brain levels (ex vivo) to the CYP2B substrate propofol. However, the effect of CYP2B induction on the time course and levels of circulating brain nicotine in vivo has not been demonstrated. Using brain microdialysis, nicotine levels following a subcutaneous nicotine injection were measured on day one and after a 7-day nicotine treatment. There was a significant time x treatment interaction (p = 0.01); peak nicotine levels (15-45 minutes post-injection) were lower after treatment (p = 0.04) consistent with CYP2B induction. Following a two-week washout period, brain nicotine levels increased to day one levels (p = 0.02), consistent with brain CYP2B levels returning to baseline. Brain pretreatment of the CYP2B inhibitor, C8-xanthate, increased brain nicotine levels acutely and after 7-day nicotine treatment, indicating the alterations in brain nicotine levels were due to changes in brain CYP2B activity. Plasma nicotine levels were not altered for any time or treatment sampled, confirming no effect on peripheral nicotine metabolism. These results demonstrate that chronic nicotine, by increasing brain CYP2B activity, reduces brain nicotine levels, which could alter nicotine's reinforcing effects. Higher brain CYP2B levels in smokers could lower brain nicotine levels; as this induction would occur following continued nicotine exposure it could increase withdrawal symptoms and contribute to sustaining smoking behavior. © 2016 Society for the Study of Addiction.

  9. Altered intrinsic functional brain architecture in female patients with bulimia nervosa

    PubMed Central

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun’Ai; Correll, Christoph U.; Mitchell, Philip B.; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-01-01

    Background Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. Methods We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. Results We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. Limitations We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Conclusion Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa. PMID:28949286

  10. Altered intrinsic functional brain architecture in female patients with bulimia nervosa.

    PubMed

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-11-01

    Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa.

  11. Environmental Enrichment Alters Neurotrophin Levels After Fetal Alcohol Exposure in Rats

    PubMed Central

    Parks, Elizabeth A.; McMechan, Andrew P.; Hannigan, John H.; Berman, Robert F.

    2014-01-01

    Background Prenatal alcohol exposure causes abnormal brain development, leading to behavioral deficits, some of which can be ameliorated by environmental enrichment. As both environmental enrichment and prenatal alcohol exposure can individually alter neurotrophin expression, we studied the interaction of prenatal alcohol and postweaning environmental enrichment on brain neurotrophin levels in rats. Methods Pregnant rats received alcohol by gavage, 0, 4, or 6 g / kg / d (Zero, Low, or High groups), or no treatment (Naïve group), on gestational days 8 to 20. After weaning on postnatal day 21, offspring were housed for 6 weeks in Isolated, Social, or Enriched conditions. Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were then measured in frontal cortex, occipital cortex, hippocampus, and cerebellar vermis. Results Prenatal alcohol exposure increased NGF levels in frontal cortex (High-dose group) and cerebellar vermis (High- and Low-dose groups); increased BDNF in frontal cortex, occipital cortex and hippocampus (Low-dose groups), and increased NT-3 in hippocampus and cerebellar vermis (High-dose). Environmental enrichment resulted in lower NGF, BDNF, and NT-3 levels in occipital cortex and lower NGF in frontal cortex. The only significant interaction between prenatal alcohol treatment and environment was in cerebellar vermis where NT-3 levels were higher for enriched animals after prenatal alcohol exposure, but not for animals housed under Isolated or Social conditions. Conclusions Both prenatal alcohol exposure and postweaning housing conditions alter brain neurotrophin levels, but the effects appear to be largely independent. Although environmental enrichment can improve functional outcomes, these results do not provide strong support for the hypothesis that rearing in a complex environment ameliorates prenatal alcohol effects on brain neurotrophin levels in rats. PMID:18652597

  12. Prenatal alcohol exposure affects vasculature development in the neonatal brain.

    PubMed

    Jégou, Sylvie; El Ghazi, Faiza; de Lendeu, Pamela Kwetieu; Marret, Stéphane; Laudenbach, Vincent; Uguen, Arnaud; Marcorelles, Pascale; Roy, Vincent; Laquerrière, Annie; Gonzalez, Bruno José

    2012-12-01

    In humans, antenatal alcohol exposure elicits various developmental disorders, in particular in the brain. Numerous studies focus on the deleterious effects of alcohol on neural cells. Although recent studies suggest that alcohol can affect angiogenesis in adults, the impact of prenatal alcohol exposure on brain microvasculature remains poorly understood. We used a mouse model to investigate effects of prenatal alcohol exposure on the cortical microvascular network in vivo and ex vivo and the action of alcohol, glutamate, and vascular endothelial growth factor A (VEGF) on activity, plasticity, and survival of microvessels. We used quantitative reverse transcriptase polymerase chain reaction, Western blot, immunohistochemistry, calcimetry, and videomicroscopy. We characterized the effect of prenatal alcohol exposure on the cortical microvascular network in human controls and fetal alcohol syndrome (FAS)/partial FAS (pFAS) patients at different developmental stages. In mice, prenatal alcohol exposure induced a reduction of cortical vascular density, loss of the radial orientation of microvessels, and altered expression of VEGF receptors. Time-lapse experiments performed on brain slices revealed that ethanol inhibited glutamate-induced calcium mobilization in endothelial cells, affected plasticity, and promoted death of microvessels. These effects were prevented by VEGF. In humans, we evidenced a stage-dependent alteration of the vascular network in the cortices of fetuses with pFAS/FAS. Whereas no modification was observed from gestational week 20 (WG20) to WG22, the radial organization of cortical microvessels was clearly altered in pFAS/FAS patients from WG30 to WG38. Prenatal alcohol exposure affects cortical angiogenesis both in mice and in pFAS/FAS patients, suggesting that vascular defects contribute to alcohol-induced brain abnormalities. Copyright © 2012 American Neurological Association.

  13. The impact of stress on the structure of the adolescent brain: Implications for adolescent mental health.

    PubMed

    Romeo, Russell D

    2017-01-01

    Adolescent development is associated with major changes in emotional and cognitive functions, as well as a rise in stress-related psychological disorders such as anxiety and depression. It is also a time of significant maturation of the brain, marked by structural alterations in many limbic and cortical regions. Though many elegant human neuroimaging studies have described the adolescent-related changes in these regions, relatively little is known about these changes in non-human animals. Moreover, both human and non-human data are lacking on how exposure to chronic stress may disrupt this structural maturation. Given the fundamental structure-function relationship in the nervous system, it will be important to understand how these normative and stress-induced structural alterations during adolescence influence psychological function, which in turn can modify future neural development. The purpose of this brief review is to describe the impact of stress on the structure of brain regions that continue to show structural maturation during adolescence and are highly sensitive to the effects of chronic stress exposure. Specifically, this review will focus on the amygdala, hippocampal formation, and prefrontal cortex, particularly from a morphological perspective. As many unanswered questions remain in this area of investigation, potential future lines of research are also discussed. A deeper appreciation of how stress affects adolescent brain development will be needed if we are to gain a better understanding of the mechanisms that mediate the increase in stress-related psychological dysfunctions often observed during this stage of development. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Diet-Induced Obesity and Diet-Resistant rats: differences in the rewarding and anorectic effects of D-amphetamine

    PubMed Central

    Valenza, Marta; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Rationale Obesity is a leading public health problem worldwide. Multiple lines of evidence associate deficits in the brain reward circuit with obesity. Objective Whether alterations in brain reward sensitivity precede or are a consequence of obesity is unknown. This study aimed to investigate both innate and obesity-induced differences in the sensitivity to the effects of an indirect dopaminergic agonist. Methods Rats genetically prone to diet-induced obesity (DIO) and their counterpart diet-resistant (DR) were fed a chow diet and their response to D-amphetamine on intracranial self-stimulation and food intake were assessed. The same variables were then evaluated after exposing the rats to a high-fat diet, after DIO rats selectively developed obesity. Finally, gene expression levels of dopamine receptor 1 and 2 as well as tyrosine hydroxylase were measured in reward-related brain regions. Results In a pre-obesity state, DIO rats showed innate decreased sensitivity to the reward-enhancing and anorectic effects of D-amphetamine, as compared to DR rats. In a diet-induced obese state, the insensitivity to the potentiating effects of D-amphetamine on ICSS threshold persisted and became more marked in DIO rats, while the anorectic effects were comparable between genotypes. Finally, innate and obesity-induced differences in the gene expression of dopamine receptors were observed. Conclusions Our results demonstrate that brain reward deficits antedate the development of obesity and worsen after obesity is fully developed, suggesting that these alterations represent vulnerability factors for its development. Moreover, our data suggests that the reward-enhancing and anorectic effects of D-amphetamine are dissociable in the context of obesity. PMID:26047964

  15. Neuroimaging effects of prenatal alcohol exposure on the developing human brain: a magnetic resonance imaging review.

    PubMed

    Donald, Kirsten Ann; Eastman, Emma; Howells, Fleur Margaret; Adnams, Colleen; Riley, Edward Patrick; Woods, Roger Paul; Narr, Katherine Louise; Stein, Dan Joseph

    2015-10-01

    This paper reviews the magnetic resonance imaging (MRI) literature on the effects of prenatal alcohol exposure on the developing human brain. A literature search was conducted through the following databases: PubMed, PsycINFO and Google Scholar. Combinations of the following search terms and keywords were used to identify relevant studies: 'alcohol', 'fetal alcohol spectrum disorders', 'fetal alcohol syndrome', 'FAS', 'FASD', 'MRI', 'DTI', 'MRS', 'neuroimaging', 'children' and 'infants'. A total of 64 relevant articles were identified across all modalities. Overall, studies reported smaller total brain volume as well as smaller volume of both the white and grey matter in specific cortical regions. The most consistently reported structural MRI findings were alterations in the shape and volume of the corpus callosum, as well as smaller volume in the basal ganglia and hippocampi. The most consistent finding from diffusion tensor imaging studies was lower fractional anisotropy in the corpus callosum. Proton magnetic resonance spectroscopy studies are few to date, but showed altered neurometabolic profiles in the frontal and parietal cortex, thalamus and dentate nuclei. Resting-state functional MRI studies reported reduced functional connectivity between cortical and deep grey matter structures. Discussion There is a critical gap in the literature of MRI studies in alcohol-exposed children under 5 years of age across all MRI modalities. The dynamic nature of brain maturation and appreciation of the effects of alcohol exposure on the developing trajectory of the structural and functional network argue for the prioritisation of studies that include a longitudinal approach to understanding this spectrum of effects and potential therapeutic time points.

  16. The autistic brain in the context of normal neurodevelopment.

    PubMed

    Ziats, Mark N; Edmonson, Catherine; Rennert, Owen M

    2015-01-01

    The etiology of autism spectrum disorders (ASDs) is complex and largely unclear. Among various lines of inquiry, many have suggested convergence onto disruptions in both neural circuitry and immune regulation/glial cell function pathways. However, the interpretation of the relationship between these two putative mechanisms has largely focused on the role of exogenous factors and insults, such as maternal infection, in activating immune pathways that in turn result in neural network abnormalities. Yet, given recent insights into our understanding of human neurodevelopment, and in particular the critical role of glia and the immune system in normal brain development, it is important to consider these putative pathological processes in their appropriate normal neurodevelopmental context. In this review, we explore the hypothesis that the autistic brain cellular phenotype likely represents intrinsic abnormalities of glial/immune processes constitutively operant in normal brain development that result in the observed neural network dysfunction. We review recent studies demonstrating the intercalated role of neural circuit development, the immune system, and glial cells in the normal developing brain, and integrate them with studies demonstrating pathological alterations in these processes in autism. By discussing known abnormalities in the autistic brain in the context of normal brain development, we explore the hypothesis that the glial/immune component of ASD may instead be related to intrinsic exaggerated/abnormal constitutive neurodevelopmental processes such as network pruning. Moreover, this hypothesis may be relevant to other neurodevelopmental disorders that share genetic, pathologic, and clinical features with autism.

  17. Brain stiffens post mortem.

    PubMed

    Weickenmeier, J; Kurt, M; Ozkaya, E; de Rooij, R; Ovaert, T C; Ehman, R L; Butts Pauly, K; Kuhl, E

    2018-04-22

    Alterations in brain rheology are increasingly recognized as a diagnostic marker for various neurological conditions. Magnetic resonance elastography now allows us to assess brain rheology repeatably, reproducibly, and non-invasively in vivo. Recent elastography studies suggest that brain stiffness decreases one percent per year during normal aging, and is significantly reduced in Alzheimer's disease and multiple sclerosis. While existing studies successfully compare brain stiffnesses across different populations, they fail to provide insight into changes within the same brain. Here we characterize rheological alterations in one and the same brain under extreme metabolic changes: alive and dead. Strikingly, the storage and loss moduli of the cerebrum increased by 26% and 60% within only three minutes post mortem and continued to increase by 40% and 103% within 45 minutes. Immediate post mortem stiffening displayed pronounced regional variations; it was largest in the corpus callosum and smallest in the brainstem. We postulate that post mortem stiffening is a manifestation of alterations in polarization, oxidation, perfusion, and metabolism immediately after death. Our results suggest that the stiffness of our brain-unlike any other organ-is a dynamic property that is highly sensitive to the metabolic environment. Our findings emphasize the importance of characterizing brain tissue in vivo and question the relevance of ex vivo brain tissue testing as a whole. Knowing the true stiffness of the living brain has important consequences in diagnosing neurological conditions, planning neurosurgical procedures, and modeling the brain's response to high impact loading. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. The effects of gut microbiota on CNS function in humans

    PubMed Central

    Tillisch, Kirsten

    2014-01-01

    The role of the gastrointestinal microbiota in human brain development and function is an area of increasing interest and research. Preclinical models suggest a role for the microbiota in broad aspects of human health, including mood, cognition, and chronic pain. Early human studies suggest that altering the microbiota with beneficial bacteria, or probiotics, can lead to changes in brain function, as well as subjective reports of mood. As the mechanisms of bidirectional communication between the brain and microbiota are better understood, it is expected that these pathways will be harnessed to provide novel methods to enhance health and treat disease. PMID:24838095

  19. DEVELOPMENTAL EXPOSURE TO POLYBROMINATED DIPHENYL ETHERS DOES NOT ALTER SYNAPTIC TRANSMISSION AND LTP IN HIPPOCAMPUS.

    EPA Science Inventory

    Polybrominated diphenyl ether (PDE) flame retardants bioaccumulate in the environment, in wildlife, and in humans. Concern has been raised over potential thyrotoxic effects of this class of xenobiotics. Severe hypothyroidism during critical periods of brain development leads to...

  20. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.

    PubMed

    van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K

    2018-04-01

    Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different regions, with a developmental peak around adolescence. These findings suggest an interplay in the abnormal development of the striatal, frontal, and temporal regions in ASD across the lifespan.

  1. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine.

    PubMed

    Forrest, C M; McNair, K; Pisar, M; Khalil, O S; Darlington, L G; Stone, T W

    2015-12-03

    Glutamate receptors sensitive to N-methyl-D-aspartate (NMDA) are involved in embryonic brain development but their activity may be modulated by the kynurenine pathway of tryptophan metabolism which includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at these receptors. Our previous work has shown that prenatal inhibition of the pathway produces abnormalities of brain development. In the present study kynurenine and probenecid (both 100mg/kg, doses known to increase kynurenic acid levels in the brain) were administered to female Wistar rats on embryonic days E14, E16 and E18 of gestation and the litter was allowed to develop to post-natal day P60. Western blotting revealed no changes in hippocampal expression of several proteins previously found to be altered by inhibition of the kynurenine pathway including the NMDA receptor subunits GluN1, GluN2A and GluN2B, as well as doublecortin, Proliferating Cell Nuclear Antigen (PCNA), sonic hedgehog and unco-ordinated (unc)-5H1 and 5H3. Mice lacking the enzyme kynurenine-3-monoxygenase (KMO) also showed no changes in hippocampal expression of several of these proteins or the 70-kDa and 100-kDa variants of Disrupted in Schizophrenia-1 (DISC1). Electrical excitability of pyramidal neurons in the CA1 region of hippocampal slices was unchanged, as was paired-pulse facilitation and inhibition. Long-term potentiation was decreased in the kynurenine-treated rats and in the KMO(-/-) mice, but galantamine reversed this effect in the presence of nicotinic receptor antagonists, consistent with evidence that it can potentiate glutamate at NMDA receptors. It is concluded that interference with the kynurenine pathway in utero can have lasting effects on brain function of the offspring, implying that the kynurenine pathway is involved in the regulation of early brain development. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine

    PubMed Central

    Forrest, C.M.; McNair, K.; Pisar, M.; Khalil, O.S.; Darlington, L.G.; Stone, T.W.

    2015-01-01

    Glutamate receptors sensitive to N-methyl-d-aspartate (NMDA) are involved in embryonic brain development but their activity may be modulated by the kynurenine pathway of tryptophan metabolism which includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at these receptors. Our previous work has shown that prenatal inhibition of the pathway produces abnormalities of brain development. In the present study kynurenine and probenecid (both 100 mg/kg, doses known to increase kynurenic acid levels in the brain) were administered to female Wistar rats on embryonic days E14, E16 and E18 of gestation and the litter was allowed to develop to post-natal day P60. Western blotting revealed no changes in hippocampal expression of several proteins previously found to be altered by inhibition of the kynurenine pathway including the NMDA receptor subunits GluN1, GluN2A and GluN2B, as well as doublecortin, Proliferating Cell Nuclear Antigen (PCNA), sonic hedgehog and unco-ordinated (unc)-5H1 and 5H3. Mice lacking the enzyme kynurenine-3-monoxygenase (KMO) also showed no changes in hippocampal expression of several of these proteins or the 70-kDa and 100-kDa variants of Disrupted in Schizophrenia-1 (DISC1). Electrical excitability of pyramidal neurons in the CA1 region of hippocampal slices was unchanged, as was paired-pulse facilitation and inhibition. Long-term potentiation was decreased in the kynurenine-treated rats and in the KMO(−/−) mice, but galantamine reversed this effect in the presence of nicotinic receptor antagonists, consistent with evidence that it can potentiate glutamate at NMDA receptors. It is concluded that interference with the kynurenine pathway in utero can have lasting effects on brain function of the offspring, implying that the kynurenine pathway is involved in the regulation of early brain development. PMID:26365611

  3. Development of a Dual Tracer PET Method for Imaging Dopaminergic Neuromodulation

    NASA Astrophysics Data System (ADS)

    Converse, Alexander K.; Dejesus, Onofre T.; Flores, Leo G.; Holden, James E.; Kelley, Ann E.; Moirano, Jeffrey M.; Nickles, Robert J.; Oakes, Terrence R.; Roberts, Andrew D.; Ruth, Thomas J.; Vandehey, Nicholas T.; Davidson, Richard J.

    2006-04-01

    The modulatory neurotransmittor dopamine (DA) is involved in movement and reward behaviors, and malfunctions in the dopamine system are implicated in a variety of prevalent and debilitating pathologies including Parkinson's disease, attention deficit/hyperactivity disorder, schizophrenia, and addiction. Positron emission tomography (PET) has been used to separately measure changes in DA receptor occupancy and blood flow in response to various interventions. Here we describe a dual tracer PET method to simultaneously measure both responses with the aim of comparing DA release in particular areas of the brain and associated alterations in neural activity throughout the brain. Significant correlations between reductions in DA receptor occupancy and blood flow alterations would be potential signs of dopaminergic modulation, i.e. modifications in signal processing due to increased levels of extracellular DA. Methodological development has begun with rats undergoing an amphetamine challenge while being scanned with the blood flow tracer [17F]fluoromethane and the dopamine D2 receptor tracer [18F]desmethoxyfallypride.

  4. [EEG correlates of geno-phenotypical features of the brain development in children of the native and newcomers' population of the Russian North-East].

    PubMed

    Soroko, S I; Bekshaev, S S; Rozhkov, V P

    2012-01-01

    Traditional and original methods of EEG analysis were used to study the brain electrical activity maturation in 156 children and adolescents from 7 to 17 years old who represented the native (Koryaks and Evenks) and newcomers' populations living in severe climatic and geographic conditions of the Russian North-East. New data revealing age-, sex- and ethnic-related features in quantitative EEG parameters are presented. Markers are obtained that characterize alterations in the structure of interaction between different EEG rhythms. The results demonstrate age-dependent transformation of this structure separated in time for both different cortical areas and different EEG frequency bands. These alterations show time lag from 2 to 3 years in children of native population compared to the newcomers. The revealed differences are assumed to reflect geno-phenotypical features of morpho-functional CNS development in children of the native and newcomers' population that depend on strong adaptation tension for extreme environmental conditions.

  5. Converging models of schizophrenia - Network alterations of prefrontal cortex underlying cognitive impairments

    PubMed Central

    Sakurai, Takeshi; Gamo, Nao J; Hikida, Takatoshi; Kim, Sun-Hong; Murai, Toshiya; Tomoda, Toshifumi; Sawa, Akira

    2015-01-01

    The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal. PMID:26408506

  6. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis

    PubMed Central

    Moya-Pérez, Angela; Luczynski, Pauline; Renes, Ingrid B.; Wang, Shugui; Borre, Yuliya; Anthony Ryan, C.; Knol, Jan; Stanton, Catherine; Dinan, Timothy G.

    2017-01-01

    Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations. PMID:28379454

  7. Observed Measures of Negative Parenting Predict Brain Development during Adolescence.

    PubMed

    Whittle, Sarah; Vijayakumar, Nandita; Dennison, Meg; Schwartz, Orli; Simmons, Julian G; Sheeber, Lisa; Allen, Nicholas B

    2016-01-01

    Limited attention has been directed toward the influence of non-abusive parenting behaviour on brain structure in adolescents. It has been suggested that environmental influences during this period are likely to impact the way that the brain develops over time. The aim of this study was to investigate the association between aggressive and positive parenting behaviors on brain development from early to late adolescence, and in turn, psychological and academic functioning during late adolescence, using a multi-wave longitudinal design. Three hundred and sixty seven magnetic resonance imaging (MRI) scans were obtained over three time points from 166 adolescents (11-20 years). At the first time point, observed measures of maternal aggressive and positive behaviors were obtained. At the final time point, measures of psychological and academic functioning were obtained. Results indicated that a higher frequency of maternal aggressive behavior was associated with alterations in the development of right superior frontal and lateral parietal cortical thickness, and of nucleus accumbens volume, in males. Development of the superior frontal cortex in males mediated the relationship between maternal aggressive behaviour and measures of late adolescent functioning. We suggest that our results support an association between negative parenting and adolescent functioning, which may be mediated by immature or delayed brain maturation.

  8. Observed Measures of Negative Parenting Predict Brain Development during Adolescence

    PubMed Central

    Whittle, Sarah; Vijayakumar, Nandita; Dennison, Meg; Schwartz, Orli; Simmons, Julian G.; Sheeber, Lisa; Allen, Nicholas B.

    2016-01-01

    Limited attention has been directed toward the influence of non-abusive parenting behaviour on brain structure in adolescents. It has been suggested that environmental influences during this period are likely to impact the way that the brain develops over time. The aim of this study was to investigate the association between aggressive and positive parenting behaviors on brain development from early to late adolescence, and in turn, psychological and academic functioning during late adolescence, using a multi-wave longitudinal design. Three hundred and sixty seven magnetic resonance imaging (MRI) scans were obtained over three time points from 166 adolescents (11–20 years). At the first time point, observed measures of maternal aggressive and positive behaviors were obtained. At the final time point, measures of psychological and academic functioning were obtained. Results indicated that a higher frequency of maternal aggressive behavior was associated with alterations in the development of right superior frontal and lateral parietal cortical thickness, and of nucleus accumbens volume, in males. Development of the superior frontal cortex in males mediated the relationship between maternal aggressive behaviour and measures of late adolescent functioning. We suggest that our results support an association between negative parenting and adolescent functioning, which may be mediated by immature or delayed brain maturation. PMID:26824348

  9. Thyroid Hormone Availability and Action during Brain Development in Rodents.

    PubMed

    Bárez-López, Soledad; Guadaño-Ferraz, Ana

    2017-01-01

    Thyroid hormones (THs) play an essential role in the development of all vertebrates; in particular adequate TH content is crucial for proper neurodevelopment. TH availability and action in the brain are precisely regulated by several mechanisms, including the secretion of THs by the thyroid gland, the transport of THs to the brain and neural cells, THs activation and inactivation by the metabolic enzymes deiodinases and, in the fetus, transplacental passage of maternal THs. Although these mechanisms have been extensively studied in rats, in the last decade, models of genetically modified mice have been more frequently used to understand the role of the main proteins involved in TH signaling in health and disease. Despite this, there is little knowledge about the mechanisms underlying THs availability in the mouse brain. This mini-review article gathers information from findings in rats, and the latest findings in mice regarding the ontogeny of TH action and the sources of THs to the brain, with special focus on neurodevelopmental stages. Unraveling TH economy and action in the mouse brain may help to better understand the physiology and pathophysiology of TH signaling in brain and may contribute to addressing the neurological alterations due to hypo and hyperthyroidism and TH resistance syndromes.

  10. In Pursuit of Neurophenotypes: The Consequences of Having Autism and a Big Brain

    PubMed Central

    Amaral, David G.; Li, Deana; Libero, Lauren; Solomon, Marjorie; Van de Water, Judy; Mastergeorge, Ann; Naigles, Letitia; Rogers, Sally; Nordahl, Christine Wu

    2017-01-01

    A consensus has emerged that despite common core features, autism spectrum disorder (ASD) has multiple etiologies and various genetic and biological characteristics. The fact that there are likely to be subtypes of ASD has complicated attempts to develop effective therapies. The UC Davis MIND Institute Autism Phenome Project is a longitudinal, multidisciplinary analysis of children with autism and age-matched typically developing controls; nearly 400 families are participating in this study. The overarching goal is to gather sufficient biological, medical, and behavioral data to allow definition of clinically meaningful subtypes of ASD. One reasonable hypothesis is that different subtypes of autism will demonstrate different patterns of altered brain organization or development i.e., different neurophenotypes. In this Commentary, we discuss one neurophenotype that is defined by megalencephaly, or having brain size that is large and disproportionate to body size. We have found that 15% of the boys with autism demonstrate this neurophenotype, though it is far less common in girls. We review behavioral and medical characteristics of the large-brained group of boys with autism in comparison to those with typically sized brains. While brain size in typically developing individuals is positively correlated with cognitive function, the children with autism and larger brains have more severe disabilities and poorer prognosis. This research indicates that phenotyping in autism, like genotyping, requires a very substantial cohort of subjects. Moreover, since brain and behavior relationships may emerge at different times during development, this effort highlights the need for longitudinal analyses to carry out meaningful phenotyping. PMID:28239961

  11. Alterations in CDH15 and KIRREL3 in Patients with Mild to Severe Intellectual Disability

    PubMed Central

    Bhalla, Kavita; Luo, Yue; Buchan, Tim; Beachem, Michael A.; Guzauskas, Gregory F.; Ladd, Sydney; Bratcher, Shelly J.; Schroer, Richard J.; Balsamo, Janne; DuPont, Barbara R.; Lilien, Jack; Srivastava, Anand K.

    2008-01-01

    Cell-adhesion molecules play critical roles in brain development, as well as maintaining synaptic structure, function, and plasticity. Here we have found the disruption of two genes encoding putative cell-adhesion molecules, CDH15 (cadherin superfamily) and KIRREL3 (immunoglobulin superfamily), by a chromosomal translocation t(11;16) in a female patient with intellectual disability (ID). We screened coding regions of these two genes in a cohort of patients with ID and controls and identified four nonsynonymous CDH15 variants and three nonsynonymous KIRREL3 variants that appear rare and unique to ID. These variations altered highly conserved residues and were absent in more than 600 unrelated patients with ID and 800 control individuals. Furthermore, in vivo expression studies showed that three of the CDH15 variations adversely altered its ability to mediate cell-cell adhesion. We also show that in neuronal cells, human KIRREL3 colocalizes and interacts with the synaptic scaffolding protein, CASK, recently implicated in X-linked brain malformation and ID. Taken together, our data suggest that alterations in CDH15 and KIRREL3, either alone or in combination with other factors, could play a role in phenotypic expression of ID in some patients. PMID:19012874

  12. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.

    PubMed

    Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit

    2017-03-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. Copyright © 2017 the American Physiological Society.

  13. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip

    PubMed Central

    Dauth, Stephanie; Maoz, Ben M.; Sheehy, Sean P.; Hemphill, Matthew A.; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M.; Budnik, Bogdan

    2017-01-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. PMID:28031399

  14. BDNF in fragile X syndrome.

    PubMed

    Castrén, Maija L; Castrén, Eero

    2014-01-01

    Fragile X syndrome (FXS) is a monogenic disorder that is caused by the absence of FMR1 protein (FMRP). FXS serves as an excellent model disorder for studies investigating disturbed molecular mechanisms and synapse function underlying cognitive impairment, autism, and behavioral disturbance. Abnormalities in dendritic spines and synaptic transmission in the brain of FXS individuals and mouse models for FXS indicate perturbations in the development, maintenance, and plasticity of neuronal network connectivity. However, numerous alterations are found during the early development in FXS, including abnormal differentiation of neural progenitors and impaired migration of newly born neurons. Several aspects of FMRP function are modulated by brain-derived neurotrophic factor (BDNF) signaling. Here, we review the evidence of the role for BDNF in the developing and adult FXS brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Microstructural White Matter Alterations in the Corpus Callosum of Girls With Conduct Disorder.

    PubMed

    Menks, Willeke Martine; Furger, Reto; Lenz, Claudia; Fehlbaum, Lynn Valérie; Stadler, Christina; Raschle, Nora Maria

    2017-03-01

    Diffusion tensor imaging (DTI) studies in adolescent conduct disorder (CD) have demonstrated white matter alterations of tracts connecting functionally distinct fronto-limbic regions, but only in boys or mixed-gender samples. So far, no study has investigated white matter integrity in girls with CD on a whole-brain level. Therefore, our aim was to investigate white matter alterations in adolescent girls with CD. We collected high-resolution DTI data from 24 girls with CD and 20 typically developing control girls using a 3T magnetic resonance imaging system. Fractional anisotropy (FA) and mean diffusivity (MD) were analyzed for whole-brain as well as a priori-defined regions of interest, while controlling for age and intelligence, using a voxel-based analysis and an age-appropriate customized template. Whole-brain findings revealed white matter alterations (i.e., increased FA) in girls with CD bilaterally within the body of the corpus callosum, expanding toward the right cingulum and left corona radiata. The FA and MD results in a priori-defined regions of interest were more widespread and included changes in the cingulum, corona radiata, fornix, and uncinate fasciculus. These results were not driven by age, intelligence, or attention-deficit/hyperactivity disorder comorbidity. This report provides the first evidence of white matter alterations in female adolescents with CD as indicated through white matter reductions in callosal tracts. This finding enhances current knowledge about the neuropathological basis of female CD. An increased understanding of gender-specific neuronal characteristics in CD may influence diagnosis, early detection, and successful intervention strategies. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Toxic effects of prenatal exposure to alcohol, tobacco and other drugs.

    PubMed

    Scott-Goodwin, A C; Puerto, M; Moreno, I

    2016-06-01

    Tobacco, alcohol, cannabis and cocaine are the most consumed psychoactive drugs throughout the population. Prenatal exposure to these drugs could alter normal foetal development and could threaten future welfare. The main changes observed in prenatal exposure to tobacco are caused by nicotine and carbon monoxide, which can impede nutrient and oxygen exchange between mother and foetus, restricting foetal growth. Memory, learning processes, hearing and behaviour can also be affected. Alcohol may cause physical and cognitive alterations in prenatally exposed infants, fundamentally caused by altered NMDAR and GABAR activity. Tetrahydrocannabinol, the psychoactive compound of cannabis, is capable of activating CB1R, inducing connectivity deficits during the foetal brain development. This fact could be linked to behavioural and cognitive deficits. Many of the effects from prenatal cocaine exposure are caused by altered cell proliferation, migration, differentiation and dendritic growth processes. Cocaine causes long term behavioural and cognitive alterations and also affects the uteroplacental unit. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mechanisms that Underlie Co-variation of the Brain and Face

    PubMed Central

    Marcucio, Ralph S.; Young, Nathan M.; Hu, Diane; Hallgrimsson, Benedikt

    2011-01-01

    The effect of the brain on the morphology of the face has long been recognized in both evolutionary biology and clinical medicine. In this paper we describe factors that are active between development of the brain and face and how these might impact craniofacial variation. First, there is the physical influence of the brain, which contributes to overall growth and morphology of the face through direct structural interactions. Second, there is the molecular influence of the brain, which signals to facial tissues to establish signaling centers that regulate patterned growth. Importantly, subtle alterations to these physical or molecular interactions may contribute to both normal and abnormal variation. These interactions are therefore critical to our understanding of how a diversity of facial morphologies can be generated both within species and across evolutionary time. PMID:21381182

  18. Altered Resting Brain Function and Structure in Professional Badminton Players

    PubMed Central

    Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan

    2012-01-01

    Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  19. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    PubMed Central

    Kimura-Kuroda, Junko; Nishito, Yasumasa; Yanagisawa, Hiroko; Kuroda, Yoichiro; Komuta, Yukari; Kawano, Hitoshi; Hayashi, Masaharu

    2016-01-01

    Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs) relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of long-term (14 days) and low dose (1 μM) exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold) between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain. PMID:27782041

  20. Craniosynostosis in 10q26 deletion patients: A consequence of brain underdevelopment or altered suture biology?

    PubMed

    Faria, Ágatha Cristhina; Rabbi-Bortolini, Eliete; Rebouças, Maria R G O; de S Thiago Pereira, Andréia L A; Frasson, Milena G Tonini; Atique, Rodrigo; Lourenço, Naila Cristina V; Rosenberg, Carla; Kobayashi, Gerson S; Passos-Bueno, Maria Rita; Errera, Flávia Imbroisi Valle

    2016-02-01

    Approximately a hundred patients with terminal 10q deletions have been described. They present with a wide range of clinical features always accompanied by delayed development, intellectual disability and craniofacial dysmorphisms. Here, we report a girl and a boy with craniosynostosis, developmental delay and other congenital anomalies. Karyotyping and molecular analysis including Multiplex Ligation dependent probe amplification (MLPA) and Array Comparative Genomic Hybridization (aCGH) were performed in both patients. We detected a 13.1 Mb pure deletion at 10q26.12-q26.3 in the girl and a 10.9 Mb pure deletion at 10q26.13-q26.3 in the boy, both encompassing about 100 genes. The clinical and molecular findings in these patients reinforce the importance of the DOCK1 smallest region of overlap I (SRO I), previously suggested to explain the clinical signs, and together with a review of the literature suggest a second 3.5 Mb region important for the phenotype (SRO II). Genotype-phenotype correlations and literature data suggest that the craniosynostosis is not directly related to dysregulated signaling in suture development, but may be secondary to alterations in brain development instead. Further, genes at 10q26 may be involved in the molecular crosstalk between brain and cranial vault. © 2015 Wiley Periodicals, Inc.

  1. Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation

    PubMed Central

    Kim, Junhwan; Lampe, Joshua W.; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B.

    2015-01-01

    Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a moderate increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation. PMID:26160279

  2. Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Lampe, Joshua W; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B

    2015-10-01

    Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a substantial increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation.

  3. Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy.

    PubMed

    Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon

    2017-01-01

    Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.

  4. The International Society for Developmental Psychobiology Annual Meeting Symposium: Impact of Early Life Experiences on Brain and Behavioral Development

    PubMed Central

    Sullivan, Regina; Wilson, Donald A.; Feldon, Joram; Yee, Benjamin K.; Meyer, Urs; Richter-Levin, Gal; Avi, Avital; Michael, Tsoory; Gruss, Michael; Bock, Jörg; Helmeke, Carina; Braun, Katharina

    2007-01-01

    Decades of research in the area of developmental psychobiology have shown that early life experience alters behavioral and brain development, which canalizes development to suit different environments. Recent methodological advances have begun to identify the mechanisms by which early life experiences cause these diverse adult outcomes. Here we present four different research programs that demonstrate the intricacies of early environmental influences on behavioral and brain development in both pathological and normal development. First, an animal model of schizophrenia is presented that suggests prenatal immune stimulation influences the postpubertal emergence of psychosis-related behavior in mice. Second, we describe a research program on infant rats that demonstrates how early odor learning has unique characteristics due to the unique functioning of the infant limbic system. Third, we present work on the rodent Octodon degus, which shows that early paternal and/or maternal deprivation alters development of limbic system synaptic density that corresponds to heightened emotionality. Fourth, ajuvenile model of stress is presented that suggests this developmental period is important in determining adulthood emotional well being. The approach of each research program is strikingly different, yet all succeed in delineating a specific aspect of early development and its effects on infant and adult outcome that expands our understanding of the developmental impact of infant experiences on emotional and limbic system development. Together, these research programs suggest that the developing organism’s developmental trajectory is influenced by environmental factors beginning in the fetus and extending through adolescence, although the specific timing and nature of the environmental influence has unique impact on adult mental health. PMID:17016842

  5. Developmental Ethanol Exposure Causes Reduced Feeding and Reveals a Critical Role for Neuropeptide F in Survival

    PubMed Central

    Guevara, Amanda; Gates, Hillary; Urbina, Brianna; French, Rachael

    2018-01-01

    Food intake is necessary for survival, and natural reward circuitry has evolved to help ensure that animals ingest sufficient food to maintain development, growth, and survival. Drugs of abuse, including alcohol, co-opt the natural reward circuitry in the brain, and this is a major factor in the reinforcement of drug behaviors leading to addiction. At the junction of these two aspects of reward are alterations in feeding behavior due to alcohol consumption. In particular, developmental alcohol exposure (DAE) results in a collection of physical and neurobehavioral disorders collectively referred to as Fetal Alcohol Spectrum Disorder (FASD). The deleterious effects of DAE include intellectual disabilities and other neurobehavioral changes, including altered feeding behaviors. Here we use Drosophila melanogaster as a genetic model organism to study the effects of DAE on feeding behavior and the expression and function of Neuropeptide F. We show that addition of a defined concentration of ethanol to food leads to reduced feeding at all stages of development. Further, genetic conditions that reduce or eliminate NPF signaling combine with ethanol exposure to further reduce feeding, and the distribution of NPF is altered in the brains of ethanol-supplemented larvae. Most strikingly, we find that the vast majority of flies with a null mutation in the NPF receptor die early in larval development when reared in ethanol, and provide evidence that this lethality is due to voluntary starvation. Collectively, we find a critical role for NPF signaling in protecting against altered feeding behavior induced by developmental ethanol exposure. PMID:29623043

  6. [Patterns of brain ageing].

    PubMed

    Fernández Viadero, Carlos; Verduga Vélez, Rosario; Crespo Santiago, Dámaso

    2017-06-01

    Neuroplasticity lends the brain a strong ability to adapt to changes in the environment that occur during ageing. Animal models have shown alterations in neurotransmission and imbalances in the expression of neural growth factor. Changes at the morphometric level are not constant. Volume loss is related to alterations in neuroplasticity and involvement of the cerebral neuropil. Although there are no conclusive data, physical exercise improves the molecular, biological, functional and behavioural-cognitive changes associated with brain ageing. The aged human brain has been described as showing weight and volume loss and increased ventricular size. However, neuroimaging shows significant variation and many healthy elderly individuals show no significant macroscopic changes. In most brain regions, the number of neurons remains stable throughout life. Neuroplasticity does not disappear with ageing, and changes in dendritic arborization and the density of spines and synapses are more closely related to brain activity than to age. At the molecular level, although the presence of altered Tau and β-amyloid proteins is used as a biomarker of neurodegenerative disease, postmortem studies show that these abnormal proteins are common in the brains of elderly people without dementia. Finally, due to the relationship between neurodegenerative diseases and metabolic alterations, this article analyses the influence of insulin-like growth factor and ageing, both in animal models and in humans, and the possible neuroprotective effect of insulin. Copyright © 2017 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Altered spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder: A resting-state fMRI study.

    PubMed

    Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei

    2018-03-15

    To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.

    PubMed

    Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin

    2018-04-16

    Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.

  9. Is the Brain Stuff Still the Right (or Left) Stuff?

    ERIC Educational Resources Information Center

    Lynch, Dudley

    1986-01-01

    The author presents evidence that supports the argument for the validity of right brain-left brain theories. Discusses the brain's "sense of the future," what the brain does with new information, and altering the brain's ability to process change. A bibliography of further readings is included. (CT)

  10. Is the Internet gaming-addicted brain close to be in a pathological state?

    PubMed

    Park, Chang-Hyun; Chun, Ji-Won; Cho, Huyn; Jung, Young-Chul; Choi, Jihye; Kim, Dai Jin

    2017-01-01

    Internet gaming addiction (IGA) is becoming a common and widespread mental health concern. Although IGA induces a variety of negative psychosocial consequences, it is yet ambiguous whether the brain addicted to Internet gaming is considered to be in a pathological state. We investigated IGA-induced abnormalities of the brain specifically from the network perspective and qualitatively assessed whether the Internet gaming-addicted brain is in a state similar to the pathological brain. Topological properties of brain functional networks were examined by applying a graph-theoretical approach to analyzing functional magnetic resonance imaging data acquired during a resting state in 19 IGA adolescents and 20 age-matched healthy controls. We compared functional distance-based measures, global and local efficiency of resting state brain functional networks between the two groups to assess how the IGA subjects' brain was topologically altered from the controls' brain. The IGA subjects had severer impulsiveness and their brain functional networks showed higher global efficiency and lower local efficiency relative to the controls. These topological differences suggest that IGA induced brain functional networks to shift toward the random topological architecture, as exhibited in other pathological states. Furthermore, for the IGA subjects, the topological alterations were specifically attributable to interregional connections incident on the frontal region, and the degree of impulsiveness was associated with the topological alterations over the frontolimbic connections. The current findings lend support to the proposition that the Internet gaming-addicted brain could be in the state similar to pathological states in terms of topological characteristics of brain functional networks. © 2015 Society for the Study of Addiction.

  11. Neuro- and sensoriphysiological Adaptations to Microgravity using Fish as Model System

    NASA Astrophysics Data System (ADS)

    Anken, R.

    The phylogenetic development of all organisms took place under constant gravity conditions, against which they achieved specific countermeasures for compensation and adaptation. On this background, it is still an open question to which extent altered gravity such as hyper- or microgravity (centrifuge/spaceflight) affects the normal individual development, either on the systemic level of the whole organism or on the level of individual organs or even single cells. The present review provides information on this topic, focusing on the effects of altered gravity on developing fish as model systems even for higher vertebrates including humans, with special emphasis on the effect of altered gravity on behaviour and particularly on the developing brain and vestibular system. Overall, the results speak in favour of the following concept: Short-term altered gravity (˜ 1 day) can induce transient sensorimotor disorders (kinetoses) due to malfunctions of the inner ear, originating from asymmetric otoliths. The regain of normal postural control is likely due to a reweighing of sensory inputs. During long-term altered gravity (several days and more), complex adptations on the level of the central and peripheral vestibular system occur. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  12. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala.

    PubMed

    O'Loughlin, Elaine; Pakan, Janelle M P; Yilmazer-Hanke, Deniz; McDermott, Kieran W

    2017-11-02

    Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism and schizophrenia, as well as seizure development. The amygdala is a brain region involved in the regulation of emotions, and amygdalar maldevelopment due to infection-induced MIA may lead to amygdala-related disorders. MIA priming of glial cells during development has been linked to abnormalities seen in later life; however, little is known about its effects on amygdalar biochemical and cytoarchitecture integrity. Time-mated C57BL6J mice were administered a single intraperitoneal injection of 50 μg/kg lipopolysaccharide (LPS) on embryonic day 12 (E12), and the effects of MIA were examined at prenatal, neonatal, and postnatal developmental stages using immunohistochemistry, real-time quantitative PCR, and stereological quantification of cytoarchitecture changes. Fetal brain expression of pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) was significantly upregulated at 4 h postinjection (E12) and remained elevated until the day of birth (P0). In offspring from LPS-treated dams, amygdalar expression of pro-inflammatory cytokines was also increased on day 7 (P7) and expression was sustained on day 40 (P40). Toll-like receptor (TLR-2, TLR-4) expression was also upregulated in fetal brains and in the postnatal amygdala in LPS-injected animals. Morphological examination of cells expressing ionized calcium-binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) suggested long-term microglial activation and astrogliosis in postnatal amygdalar regions. Our results showed that LPS-induced MIA at E12 induces a pro-inflammatory cytokine profile in the developing fetal brain that continues up to early adulthood in the amygdala. Inflammation elicited by MIA may activate cells in the fetal brain and lead to alterations in glial (microglia and astrocyte) cells observed in the postnatal amygdala. Moreover, increased pro-inflammatory cytokines and their effects on glial subpopulations may in turn have deleterious consequences for neuronal viability. These MIA-induced changes may predispose offspring to amygdala-related disorders such as heightened anxiety and depression and also neurodevelopmental disorders, such as autism spectrum disorders.

  13. Prenatal Ethanol Exposure and Neocortical Development: A Transgenerational Model of FASD.

    PubMed

    Abbott, Charles W; Rohac, David J; Bottom, Riley T; Patadia, Sahil; Huffman, Kelly J

    2017-07-06

    Fetal Alcohol Spectrum Disorders, or FASD, represent a range of adverse developmental conditions caused by prenatal ethanol exposure (PrEE) from maternal consumption of alcohol. PrEE induces neurobiological damage in the developing brain leading to cognitive-perceptual and behavioral deficits in the offspring. Alcohol-mediated alterations to epigenetic function may underlie PrEE-related brain dysfunction, with these changes potentially carried across generations to unexposed offspring. To determine the transgenerational impact of PrEE on neocortical development, we generated a mouse model of FASD and identified numerous stable phenotypes transmitted via the male germline to the unexposed third generation. These include alterations in ectopic intraneocortical connectivity, upregulation of neocortical Rzrβ and Id2 expression accompanied by both promoter hypomethylation of these genes and decreased global DNA methylation levels. DNMT expression was also suppressed in newborn PrEE cortex, providing further insight into how ethanol perturbs DNA methylation leading to altered regulation of gene transcription. These PrEE-induced, transgenerational phenotypes may be responsible for cognitive, sensorimotor, and behavioral deficits seen in humans with FASD. Thus, understanding the possible epigenetic mechanisms by which these phenotypes are generated may reveal novel targets for therapeutic intervention of FASD and lead to advances in human health. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control

    ERIC Educational Resources Information Center

    Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia

    2017-01-01

    Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest that early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present…

  15. Structural Abnormalities and Learning Impairments Induced by Low Level Thyroid Hormone Insufficiency: A Cross-Fostering Study

    EPA Science Inventory

    Severe reductions in thyroid hormones (TH) during development alter brain structure and impair learning. Uncertainty surrounds both the impact oflower levels of TH disruption and the sensitivity of available metrics to detect neurodevelopmental deficits of this disruption. We ha...

  16. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy

    PubMed Central

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.

    2014-01-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089

  17. Hypobaric Hypoxia Regulates Brain Iron Homeostasis in Rats.

    PubMed

    Li, Yaru; Yu, Peng; Chang, Shi-Yang; Wu, Qiong; Yu, Panpan; Xie, Congcong; Wu, Wenyue; Zhao, Baolu; Gao, Guofen; Chang, Yan-Zhong

    2017-06-01

    Disruption of iron homeostasis in brain has been found to be closely involved in several neurodegenerative diseases. Recent studies have reported that appropriate intermittent hypobaric hypoxia played a protective role in brain injury caused by acute hypoxia. However, the mechanisms of this protective effect have not been fully understood. In this study, Sprague-Dawley (SD) rat models were developed by hypobaric hypoxia treatment in an altitude chamber, and the iron level and iron related protein levels were determined in rat brain after 4 weeks of treatment. We found that the iron levels significantly decreased in the cortex and hippocampus of rat brain as compared to that of the control rats without hypobaric hypoxia treatment. The expression levels of iron storage protein L-ferritin and iron transport proteins, including transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin1 (FPN1), were also altered. Further studies found that the iron regulatory protein 2 (IRP2) played a dominant regulatory role in the changes of iron hemostasis, whereas iron regulatory protein 1 (IRP1) mainly acted as cis-aconitase. These results, for the first time, showed the alteration of iron metabolism during hypobaric hypoxia in rat models, which link the potential neuroprotective role of hypobaric hypoxia treatment to the decreased iron level in brain. This may provide insight into the treatment of iron-overloaded neurodegenerative diseases. J. Cell. Biochem. 118: 1596-1605, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Blood-Brain Barrier Alterations Provide Evidence of Subacute Diaschisis in an Ischemic Stroke Rat Model

    PubMed Central

    Garbuzova-Davis, Svitlana; Rodrigues, Maria C. O.; Hernandez-Ontiveros, Diana G.; Tajiri, Naoki; Frisina-Deyo, Aric; Boffeli, Sean M.; Abraham, Jerry V.; Pabon, Mibel; Wagner, Andrew; Ishikawa, Hiroto; Shinozuka, Kazutaka; Haller, Edward; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesario V.

    2013-01-01

    Background Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB) competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. Methodology/Principal Findings In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO), significant BBB alterations characterized by large Evans Blue (EB) parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. Conclusions/Significance These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke. PMID:23675488

  19. Pathophysiological links between traumatic brain injury and post-traumatic headaches

    PubMed Central

    Ruff, Robert L.; Blake, Kayla

    2016-01-01

    This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD. PMID:27635228

  20. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity.

    PubMed

    Palus, Martin; Vancova, Marie; Sirmarova, Jana; Elsterova, Jana; Perner, Jan; Ruzek, Daniel

    2017-07-01

    Alteration of the blood-brain barrier (BBB) is a hallmark of tick-borne encephalitis (TBE), a life-threating human viral neuroinfection. However, the mechanism of BBB breakdown during TBE, as well as TBE virus (TBEV) entry into the brain is unclear. Here, primary human microvascular endothelial cells (HBMECs) were infected with TBEV to study interactions with the BBB. Although the number of infected cells was relatively low in culture (<5%), the infection was persistent with high TBEV yields (>10 6 pfu/ml). Infection did not induce any significant changes in the expression of key tight junction proteins or upregulate the expression of cell adhesion molecules, and did not alter the highly organized intercellular junctions between HBMECs. In an in vitro BBB model, the virus crossed the BBB via a transcellular pathway without compromising the integrity of the cell monolayer. The results indicate that HBMECs may support TBEV entry into the brain without altering BBB integrity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Time, Memory, and Consciousness a View from the Brain

    NASA Astrophysics Data System (ADS)

    Markowitsch, Hans J.

    2005-10-01

    Memory can be defined as mental time traveling. Seen in this way, memory provides the glue which combines different time episodes and leads to a coherent view of one's own person. The importance of time becomes apparent in a neuroscientific comparison of animals and human beings. All kinds of animals have biorhythms -- times when they sleep, prefer or avoid sex, or move to warmer places. Mammalian brains have a number of time sensitive structures damage to which alters a subject's behavior to his or her environment. For human beings, damage to certain brain regions may alter the sense of time and consciousness of time in quite different ways. Furthermore, brain damage, drugs, or psychiatric disturbances may lead to an impaired perception of time, sometimes leading to major positive or negative accelerations in time perception. An impaired time perception alters consciousness and awareness of oneself. A proper synchronized action of time perception, brain activation, memory processing, and autonoetic (self-aware) consciousness provides the bases of an integrated personality.

  2. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications

    NASA Astrophysics Data System (ADS)

    Hiscox, Lucy V.; Johnson, Curtis L.; Barnhill, Eric; McGarry, Matt D. J.; Huston 3rd, John; van Beek, Edwin J. R.; Starr, John M.; Roberts, Neil

    2016-12-01

    Neurological disorders are one of the most important public health concerns in developed countries. Established brain imaging techniques such as magnetic resonance imaging (MRI) and x-ray computerised tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, although usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior to the onset of clinical symptoms—at a time when prognosis for treatment is more favourable. The mechanical properties of biological tissue provide information related to the strength and integrity of the cellular microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-invasively with magnetic resonance elastography (MRE), a particularly sensitive medical imaging technique that may increase the potential for early diagnosis. This review begins with an introduction to the various methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted to identify studies that have specifically utilised MRE to investigate the human brain. Through the conversion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a summary of results for global brain tissue and grey and white matter across studies is provided for healthy participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future MRE research and applications in neuroscience.

  3. Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming?

    PubMed

    Ziebell, Jenna M; Rowe, Rachel K; Muccigrosso, Megan M; Reddaway, Jack T; Adelson, P David; Godbout, Jonathan P; Lifshitz, Jonathan

    2017-01-01

    A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury and how aging with a TBI affects long-term recovery. TBI initiates pathophysiological processes that dismantle circuits in the brain. In response, reparative and restorative processes reorganize circuits to overcome the injury-induced damage. The extent of circuit dismantling and subsequent reorganization depends as much on the initial injury parameters as other contributing factors, such as genetics and age. Age-at-injury influences the way the brain is able to repair itself, as a result of developmental status, extent of cellular senescence, and injury-induced inflammation. Moreover, endocrine dysfunction can occur with TBI. Depending on the age of the individual at the time of injury, endocrine dysfunction may disrupt growth, puberty, influence social behaviors, and possibly alter the inflammatory response. In turn, activation of microglia, the brain's immune cells, after injury may continue to fuel endocrine dysfunction. With age, the immune system develops and microglia become primed to subsequent challenges. Sustained inflammation and microglial activation can continue for weeks to months post-injury. This prolonged inflammation can influence developmental processes, behavioral performance and age-related decline. Overall, brain injury may influence the aging process and expedite glial and neuronal alterations that impact mental health. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Growth of malignant extracranial tumors alters microRNAome in the prefrontal cortex of TumorGraft mice

    PubMed Central

    Kovalchuk, Anna; Ilnytskyy, Yaroslav; Rodriguez-Juarez, Rocio; Katz, Amanda; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga

    2017-01-01

    A wide array of central nervous system complications, neurological deficits, and cognitive impairments occur and persist as a result of systemic cancer and cancer treatments. This condition is known as chemo brain and it affects over half of cancer survivors. Recent studies reported that cognitive impairments manifest before chemotherapy and are much broader than chemo brain alone, thereby adding in tumor brain as a component. The molecular mechanisms of chemo brain are under-investigated, and the mechanisms of tumor brain have not been analyzed at all. The frequency and timing, as well as the long-term persistence, of chemo brain and tumor brain suggest they may be epigenetic in nature. MicroRNAs, small, single-stranded non-coding RNAs, constitute an important part of the cellular epigenome and are potent regulators of gene expression. miRNAs are crucial for brain development and function, and are affected by a variety of different stresses, diseases and conditions. However, nothing is known about the effects of extracranial tumor growth or chemotherapy agents on the brain microRNAome. We used the well-established TumorGraft ™ mouse models of triple negative (TNBC) and progesterone receptor positive (PR+BC) breast cancer, and profiled global microRNAome changes in tumor-bearing mice upon chemotherapy, as compared to untreated tumor-bearing mice and intact mice. Our analysis focused on the prefrontal cortex (PFC), based on its roles in memory, learning, and executive functions, and on published data showing the PFC is a target in chemo brain. This is the first study showing that tumor presence alone significantly impacted the small RNAome of PFC tissues. Both tumor growth and chemotherapy treatment affected the small RNAome and altered levels of miRNAs, piRNAs, tRNAs, tRNA fragments and other molecules involved in post-transcriptional regulation of gene expression. Amongst those, miRNA changes were the most pronounced, involving several miRNA families, such as the miR-200 family and miR-183/96/182 cluster; both were deregulated in tumor-bearing and chemotherapy-treated animals. We saw that miRNA deregulation was associated with altered levels of brain-derived neurotrophic factor (BDNF), which plays an important role in cognition and memory and is one of the known miRNA targets. BDNF downregulation has been associated with an array of neurological conditions and could be one of the mechanisms underlying tumor brain and chemo brain. In the future our study could serve as a roadmap for further analysis of cancer and chemotherapy’s neural side effects, and differentially expressed miRNAs should be explored as potential tumor brain and chemo brain biomarkers. PMID:29179434

  5. Mapping White Matter Microstructure in the One Month Human Brain.

    PubMed

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  6. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood.

    PubMed

    Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H

    2016-01-01

    Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning. © 2014 Society for the Study of Addiction.

  7. DEVELOPMENTAL CHANGES IN SEROTONIN SIGNALING: IMPLICATIONS FOR EARLY BRAIN FUNCTION, BEHAVIOR AND ADAPTATION

    PubMed Central

    BRUMMELTE, S.; GLANAGHY, E. MC; BONNIN, A.; OBERLANDER, T. F.

    2017-01-01

    The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as ‘plasticity’ rather than ‘risk’ factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk. PMID:26905950

  8. Congenital Amusia Persists in the Developing Brain after Daily Music Listening

    PubMed Central

    Mignault Goulet, Geneviève; Moreau, Patricia; Robitaille, Nicolas; Peretz, Isabelle

    2012-01-01

    Congenital amusia is a neurodevelopmental disorder that affects about 3% of the adult population. Adults experiencing this musical disorder in the absence of macroscopically visible brain injury are described as cases of congenital amusia under the assumption that the musical deficits have been present from birth. Here, we show that this disorder can be expressed in the developing brain. We found that (10–13 year-old) children exhibit a marked deficit in the detection of fine-grained pitch differences in both musical and acoustical context in comparison to their normally developing peers comparable in age and general intelligence. This behavioral deficit could be traced down to their abnormal P300 brain responses to the detection of subtle pitch changes. The altered pattern of electrical activity does not seem to arise from an anomalous functioning of the auditory cortex, because all early components of the brain potentials, the N100, the MMN, and the P200 appear normal. Rather, the brain and behavioral measures point to disrupted information propagation from the auditory cortex to other cortical regions. Furthermore, the behavioral and neural manifestations of the disorder remained unchanged after 4 weeks of daily musical listening. These results show that congenital amusia can be detected in childhood despite regular musical exposure and normal intellectual functioning. PMID:22606299

  9. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior.

    PubMed

    Matsuda, Ken Ichi; Mori, Hiroko; Nugent, Bridget M; Pfaff, Donald W; McCarthy, Margaret M; Kawata, Mitsuhiro

    2011-07-01

    Epigenetic histone modifications are emerging as important mechanisms for conveyance of and maintenance of effects of the hormonal milieu to the developing brain. We hypothesized that alteration of histone acetylation status early in development by sex steroid hormones is important for sexual differentiation of the brain. It was found that during the critical period for sexual differentiation, histones associated with promoters of essential genes in masculinization of the brain (estrogen receptor α and aromatase) in the medial preoptic area, an area necessary for male sexual behavior, were differentially acetylated between the sexes. Consistent with these findings, binding of histone deacetylase (HDAC) 2 and 4 to the promoters was higher in males than in females. To examine the involvement of histone deacetylation on masculinization of the brain at the behavioral level, we inhibited HDAC in vivo by intracerebroventricular infusion of the HDAC inhibitor trichostatin A or antisense oligodeoxynucleotide directed against the mRNA for HDAC2 and -4 in newborn male rats. Aspects of male sexual behavior in adulthood were significantly reduced by administration of either trichostatin A or antisense oligodeoxynucleotide. These results demonstrate that HDAC activity during the early postnatal period plays a crucial role in the masculinization of the brain via modifications of histone acetylation status.

  10. Effects of Lipoic Acid on High-Fat Diet-Induced Alteration of Synaptic Plasticity and Brain Glucose Metabolism: A PET/CT and 13C-NMR Study.

    PubMed

    Liu, Zhigang; Patil, Ishan; Sancheti, Harsh; Yin, Fei; Cadenas, Enrique

    2017-07-14

    High-fat diet (HFD)-induced obesity is accompanied by insulin resistance and compromised brain synaptic plasticity through the impairment of insulin-sensitive pathways regulating neuronal survival, learning, and memory. Lipoic acid is known to modulate the redox status of the cell and has insulin mimetic effects. This study was aimed at determining the effects of dietary administration of lipoic acid on a HFD-induced obesity model in terms of (a) insulin signaling, (b) brain glucose uptake and neuronal- and astrocytic metabolism, and (c) synaptic plasticity. 3-Month old C57BL/6J mice were divided into 4 groups exposed to their respective treatments for 9 weeks: (1) normal diet, (2) normal diet plus lipoic acid, (3) HFD, and (4) HFD plus lipoic acid. HFD resulted in higher body weight, development of insulin resistance, lower brain glucose uptake and glucose transporters, alterations in glycolytic and acetate metabolism in neurons and astrocytes, and ultimately synaptic plasticity loss evident by a decreased long-term potentiation (LTP). Lipoic acid treatment in mice on HFD prevented several HFD-induced metabolic changes and preserved synaptic plasticity. The metabolic and physiological changes in HFD-fed mice, including insulin resistance, brain glucose uptake and metabolism, and synaptic function, could be preserved by the insulin-like effect of lipoic acid.

  11. Longitudinal Structural and Functional Brain Network Alterations in a Mouse Model of Neuropathic Pain.

    PubMed

    Bilbao, Ainhoa; Falfán-Melgoza, Claudia; Leixner, Sarah; Becker, Robert; Singaravelu, Sathish Kumar; Sack, Markus; Sartorius, Alexander; Spanagel, Rainer; Weber-Fahr, Wolfgang

    2018-04-22

    Neuropathic pain affects multiple brain functions, including motivational processing. However, little is known about the structural and functional brain changes involved in the transition from an acute to a chronic pain state. Here we combined behavioral phenotyping of pain thresholds with multimodal neuroimaging to longitudinally monitor changes in brain metabolism, structure and connectivity using the spared nerve injury (SNI) mouse model of chronic neuropathic pain. We investigated stimulus-evoked pain responses prior to SNI surgery, and one and twelve weeks following surgery. A progressive development and potentiation of stimulus-evoked pain responses (cold and mechanical allodynia) were detected during the course of pain chronification. Voxel-based morphometry demonstrated striking decreases in volume following pain induction in all brain sites assessed - an effect that reversed over time. Similarly, all global and local network changes that occurred following pain induction disappeared over time, with two notable exceptions: the nucleus accumbens, which played a more dominant role in the global network in a chronic pain state and the prefrontal cortex and hippocampus, which showed lower connectivity. These changes in connectivity were accompanied by enhanced glutamate levels in the hippocampus, but not in the prefrontal cortex. We suggest that hippocampal hyperexcitability may contribute to alterations in synaptic plasticity within the nucleus accumbens, and to pain chronification. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs.

    PubMed

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these brain functional characteristics.

  13. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia.

    PubMed

    Nakagawa, Yutaka; Chiba, Kenji

    2016-09-01

    Development of social cognition, a unique and high-order function, depends on brain maturation from childhood to adulthood in humans. Autism spectrum disorder (ASD) and schizophrenia have similar social cognitive deficits, although age of onset in each disorder is different. Pathogenesis of these disorders is complex and contains several features, including genetic risk factors, environmental risk factors, and sites of abnormalities in the brain. Although several hypotheses have been postulated, they seem to be insufficient to explain how brain alterations associated with symptoms in these disorders develop at distinct developmental stages. Development of ASD appears to be related to cerebellar dysfunction and subsequent thalamic hyperactivation in early childhood. By contrast, schizophrenia seems to be triggered by thalamic hyperactivation in late adolescence, whereas hippocampal aberration has been possibly initiated in childhood. One of the possible culprits is metal homeostasis disturbances that can induce dysfunction of blood-cerebrospinal fluid barrier. Thalamic hyperactivation is thought to be induced by microglia-mediated neuroinflammation and abnormalities of intracerebral environment. Consequently, it is likely that the thalamic hyperactivation triggers dysregulation of the dorsolateral prefrontal cortex for lower brain regions related to social cognition. In this review, we summarize the brain aberration in ASD and schizophrenia and provide a possible mechanism underlying social cognitive deficits in these disorders based on their distinct ages of onset. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia.

    PubMed

    Sandeep, M S; Nandini, C D

    2017-08-01

    In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.

  15. Moderate prenatal alcohol exposure and quantification of social behavior in adult rats.

    PubMed

    Hamilton, Derek A; Magcalas, Christy M; Barto, Daniel; Bird, Clark W; Rodriguez, Carlos I; Fink, Brandi C; Pellis, Sergio M; Davies, Suzy; Savage, Daniel D

    2014-12-14

    Alterations in social behavior are among the major negative consequences observed in children with Fetal Alcohol Spectrum Disorders (FASDs). Several independent laboratories have demonstrated robust alterations in the social behavior of rodents exposed to alcohol during brain development across a wide range of exposure durations, timing, doses, and ages at the time of behavioral quantification. Prior work from this laboratory has identified reliable alterations in specific forms of social interaction following moderate prenatal alcohol exposure (PAE) in the rat that persist well into adulthood, including increased wrestling and decreased investigation. These behavioral alterations have been useful in identifying neural circuits altered by moderate PAE(1), and may hold importance for progressing toward a more complete understanding of the neural bases of PAE-related alterations in social behavior. This paper describes procedures for performing moderate PAE in which rat dams voluntarily consume ethanol or saccharin (control) throughout gestation, and measurement of social behaviors in adult offspring.

  16. Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells.

    PubMed

    Niculescu, Mihai D; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H

    2007-04-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210 microM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development.

  17. Diethanolamine Alters Proliferation and Choline Metabolism in Mouse Neural Precursor Cells

    PubMed Central

    Niculescu, Mihai D.; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H.

    2008-01-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210μM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development. PMID:17204582

  18. Perinatal Glyphosate-Based Herbicide Exposure in Rats Alters Brain Antioxidant Status, Glutamate and Acetylcholine Metabolism and Affects Recognition Memory.

    PubMed

    Gallegos, Cristina Eugenia; Baier, Carlos Javier; Bartos, Mariana; Bras, Cristina; Domínguez, Sergio; Mónaco, Nina; Gumilar, Fernanda; Giménez, María Sofía; Minetti, Alejandra

    2018-04-02

    Glyphosate-based herbicides (Gly-BHs) lead the world pesticide market. Although are frequently promoted as safe and of low toxicity, several investigations question its innocuousness. Previously, we described that oral exposure of rats to a Gly-BH during pregnancy and lactation decreased locomotor activity and anxiety in the offspring. The aim of the present study was to evaluate the mechanisms of neurotoxicity of this herbicide. Pregnant Wistar rats were supplied orally with 0.2 and 0.4% of Gly-BH (corresponding to 0.65 and 1.30 g/l of pure Gly, respectively) from gestational day (GD) 0, until weaning (postnatal day, PND, 21). Oxidative stress markers were determined in whole brain homogenates of PND90 offspring. The activity of acetylcholinesterase (AChE), transaminases, and alkaline phosphatase (AP) were assessed in prefrontal cortex (PFC), striatum, and hippocampus. Recognition memory was evaluated by the novel object recognition test. Brain antioxidant status was altered in Gly-BH-exposed rats. Moreover, AChE and transaminases activities were decreased and AP activity was increased in PFC, striatum and hippocampus by Gly-BH treatment. In addition, the recognition memory after 24 h was impaired in adult offspring perinatally exposed to Gly-BH. The present study reveals that exposure to a Gly-BH during early stages of rat development affects brain oxidative stress markers as well as the activity of enzymes involved in the glutamatergic and cholinergic systems. These alterations could contribute to the neurobehavioral variations reported previously by us, and to the impairment in recognition memory described in the present work.

  19. Assessing the marks of change: how psychotherapy alters the brain structure in women with borderline personality disorder

    PubMed Central

    Schmitt, Ruth; Winter, Dorina; Niedtfeld, Inga; Herpertz, Sabine C.; Schmahl, Christian

    2018-01-01

    Background There is increasing evidence that psychotherapy can alter the function of the brain of patients with borderline personality disorder (BPD). However, it is not known whether psychotherapy can also modify the brain structure of patients with BPD. Methods We used structural MRI data of female patients with BPD before and after participation in 12 weeks of residential dialectical behavioural therapy (DBT) and compared them to data from female patients with BPD who received treatment as usual (TAU). We applied voxel-based morphometry to study voxel-wise changes in grey matter volume over time. Results We included 31 patients in the DBT group and 17 in the TAU group. Patients receiving DBT showed an increase of grey matter volume in the anterior cingulate cortex, inferior frontal gyrus and superior temporal gyrus together with an alteration of grey matter volume in the angular gyrus and supramarginal gyrus compared with patients receiving TAU. Furthermore, therapy response correlated with increase of grey matter volume in the angular gyrus. Limitations Only women were investigated, and groups differed in size, medication (controlled for) and intensity of the treatment condition. Conclusion We found that DBT increased grey matter volume of brain regions that are critically implicated in emotion regulation and higher-order functions, such as mentalizing. The role of the angular gyrus for treatment response may reside in its cross-modal integrative function. These findings enhance our understanding of psychotherapy mechanisms of change and may foster the development of neurobiologically informed therapeutic interventions. PMID:29688873

  20. Altered metabolomic-genomic signature: A potential noninvasive biomarker of epilepsy.

    PubMed

    Wu, Helen C; Dachet, Fabien; Ghoddoussi, Farhad; Bagla, Shruti; Fuerst, Darren; Stanley, Jeffrey A; Galloway, Matthew P; Loeb, Jeffrey A

    2017-09-01

    This study aimed to identify noninvasive biomarkers of human epilepsy that can reliably detect and localize epileptic brain regions. Having noninvasive biomarkers would greatly enhance patient diagnosis, patient monitoring, and novel therapy development. At the present time, only surgically invasive, direct brain recordings are capable of detecting these regions with precision, which severely limits the pace and scope of both clinical management and research progress in epilepsy. We compared high versus low or nonspiking regions in nine medically intractable epilepsy surgery patients by performing integrated metabolomic-genomic-histological analyses of electrically mapped human cortical regions using high-resolution magic angle spinning proton magnetic resonance spectroscopy, cDNA microarrays, and histological analysis. We found a highly consistent and predictive metabolite logistic regression model with reduced lactate and increased creatine plus phosphocreatine and choline, suggestive of a chronically altered metabolic state in epileptic brain regions. Linking gene expression, cellular, and histological differences to these key metabolites using a hierarchical clustering approach predicted altered metabolic vascular coupling in the affected regions. Consistently, these predictions were validated histologically, showing both neovascularization and newly discovered, millimeter-sized microlesions. Using a systems biology approach on electrically mapped human cortex provides new evidence for spatially segregated, metabolic derangements in both neurovascular and synaptic architecture in human epileptic brain regions that could be a noninvasively detectable biomarker of epilepsy. These findings both highlight the immense power of a systems biology approach and identify a potentially important role that magnetic resonance spectroscopy can play in the research and clinical management of epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  1. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.

    PubMed

    Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente

    2015-09-01

    The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Role of Medical Imaging in the Recharacterization of Mild Traumatic Brain Injury Using Youth Sports as a Laboratory

    PubMed Central

    Talavage, Thomas M.; Nauman, Eric A.; Leverenz, Larry J.

    2016-01-01

    The short- and long-term impact of mild traumatic brain injury (TBI) is an increasingly vital concern for both military and civilian personnel. Such injuries produce significant social and financial burdens and necessitate improved diagnostic and treatment methods. Recent integration of neuroimaging and biomechanical studies in youth collision-sport athletes has revealed that significant alterations in brain structure and function occur even in the absence of traditional clinical markers of “concussion.” While task performance is maintained, athletes exposed to repetitive head accelerations exhibit structural changes to the underlying white matter, altered glial cell metabolism, aberrant vascular response, and marked changes in functional network behavior. Moreover, these changes accumulate with accrued years of exposure, suggesting a cumulative trauma mechanism that may culminate in categorization as “concussion” and long-term neurological deficits. The goal of this review is to elucidate the role of medical imaging in recharacterizing TBI, as a whole, to better identify at-risk individuals and improve the development of preventative and interventional approaches. PMID:26834695

  3. The Role of Stress Regulation on Neural Plasticity in Pain Chronification.

    PubMed

    Li, Xiaoyun; Hu, Li

    2016-01-01

    Pain, especially chronic pain, is one of the most common clinical symptoms and has been considered as a worldwide healthcare problem. The transition from acute to chronic pain is accompanied by a chain of alterations in physiology, pathology, and psychology. Increasing clinical studies and complementary animal models have elucidated effects of stress regulation on the pain chronification via investigating activations of the hypothalamic-pituitary-adrenal (HPA) axis and changes in some crucial brain regions, including the amygdala, prefrontal cortex, and hippocampus. Although individuals suffer from acute pain benefit from such physiological alterations, chronic pain is commonly associated with maladaptive responses, like the HPA dysfunction and abnormal brain plasticity. However, the causal relationship among pain chronification, stress regulation, and brain alterations is rarely discussed. To call for more attention on this issue, we review recent findings obtained from clinical populations and animal models, propose an integrated stress model of pain chronification based on the existing models in perspectives of environmental influences and genetic predispositions, and discuss the significance of investigating the role of stress regulation on brain alteration in pain chronification for various clinical applications.

  4. The Role of Stress Regulation on Neural Plasticity in Pain Chronification

    PubMed Central

    Li, Xiaoyun

    2016-01-01

    Pain, especially chronic pain, is one of the most common clinical symptoms and has been considered as a worldwide healthcare problem. The transition from acute to chronic pain is accompanied by a chain of alterations in physiology, pathology, and psychology. Increasing clinical studies and complementary animal models have elucidated effects of stress regulation on the pain chronification via investigating activations of the hypothalamic-pituitary-adrenal (HPA) axis and changes in some crucial brain regions, including the amygdala, prefrontal cortex, and hippocampus. Although individuals suffer from acute pain benefit from such physiological alterations, chronic pain is commonly associated with maladaptive responses, like the HPA dysfunction and abnormal brain plasticity. However, the causal relationship among pain chronification, stress regulation, and brain alterations is rarely discussed. To call for more attention on this issue, we review recent findings obtained from clinical populations and animal models, propose an integrated stress model of pain chronification based on the existing models in perspectives of environmental influences and genetic predispositions, and discuss the significance of investigating the role of stress regulation on brain alteration in pain chronification for various clinical applications. PMID:28053788

  5. Gene Expression in Developing Brain is Altered by Modest Reductions in Circulating Levels of Thyroid Hormone.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...

  6. ALTERED GENE EXPRESSION AND DEVELOPMENT OF POTENTIAL BIOMARKERS IN MEDAKA (ORYZIAS LATIPES) BRAIN, LIVER AND TESTIS FOLLOWING EXPOSURE TO FIBRATE PHARMACEUTICALS

    EPA Science Inventory

    To help address the consequences of increasing levels of environmental contaminants and to identify potentially novel markers of toxicity, we examined gene expression profiles from medaka (Oryzias latipes) exposed to a prototypical fibrate pharmaceutical. Changes in gene express...

  7. ONTOGENETIC ALTERATIONS IN PROTOTYPICAL FACTORS IN THE CEREBELLUM AND HIPPOCAMPUS FOLLOWING PERINATAL EXPOSURE TO A COMMERCIAL PCB MIXTURE.

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) are prevalent in the environment despite the ban of their use for decades and offers as a model to understand developmental neurotoxicity of persistent pollutants. Disturbances in brain development and cognition are among the neurotoxic manifestat...

  8. Alterations in Functional Connectivity for Language in Prematurely Born Adolescents

    ERIC Educational Resources Information Center

    Schafer, Robin J.; Lacadie, Cheryl; Vohr, Betty; Kesler, Shelli R.; Katz, Karol H.; Schneider, Karen C.; Pugh, Kenneth R.; Makuch, Robert W.; Reiss, Allan L.; Constable, R. Todd; Ment, Laura R.

    2009-01-01

    Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600-1250 g birth weight), without neonatal brain injury on neonatal…

  9. AROMATASE ACTIVITY IN THE OVARY AND BRAIN OF THE EASTERN MOSQUITOFISH, (GAMBUSIA HOLBROOKI) EXPOSED TO PAPER MILL EFFLUENT

    EPA Science Inventory

    Studies have shown that female mosquitofish living downstream of a paper mill located on the Fenholloway River, Florida, have masculinized secondary sex characteristics, including altered anal fin development and reproductive behavior. Masculinization can be caused by exposure to...

  10. Altered topography of intrinsic functional connectivity in childhood risk for social anxiety

    PubMed Central

    Taber-Thomas, Bradley C.; Morales, Santiago; Hillary, Frank G.; Pérez-Edgar, Koraly E.

    2016-01-01

    Background Extreme shyness in childhood arising from behavioral inhibition (BI) is among the strongest risk factors for developing social anxiety. Although no imaging studies of intrinsic brain networks in BI children have been reported, adults with a history of BI exhibit altered functioning of frontolimbic circuits and enhanced processing of salient, personally-relevant information. BI in childhood may be marked by increased coupling of salience (insula) and default (ventromedial prefrontal cortex) network hubs. Methods We tested this potential relation in 42 children ages 9 to 12, oversampled for high-BI. Participants provided resting-state functional magnetic resonance imaging. A novel topographical pattern analysis of salience network intrinsic functional connectivity was conducted, and the impact of salience-default coupling on the relation between BI and social anxiety symptoms was assessed via moderation analysis. Results High-BI children exhibit altered salience network topography, marked by reduced insula connectivity to dorsal anterior cingulate and increased insula connectivity to ventromedial prefrontal cortex. Whole-brain analyses revealed increased connectivity of salience, executive, and sensory networks with default network hubs in children higher in BI. Finally, the relation between insula-ventromedial prefrontal connectivity and social anxiety symptoms was strongest among the highest BI children. Conclusions BI is associated with an increase in connectivity to default network hubs that may bias processing toward personally-relevant information during development. These altered patterns of connectivity point to potential biomarkers of the neural profile of risk for anxiety in childhood. PMID:27093074

  11. Cannabis and adolescent brain development.

    PubMed

    Lubman, Dan I; Cheetham, Ali; Yücel, Murat

    2015-04-01

    Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    PubMed

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Germline Chd8 haploinsufficiency alters brain development in mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob

    The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less

  14. Germline Chd8 haploinsufficiency alters brain development in mouse

    DOE PAGES

    Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob; ...

    2017-06-26

    The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less

  15. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism.

    PubMed

    Kane, Michael J; Angoa-Peréz, Mariana; Briggs, Denise I; Sykes, Catherine E; Francescutti, Dina M; Rosenberg, David R; Kuhn, Donald M

    2012-01-01

    Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/-) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.

  16. The Down syndrome-related protein kinase DYRK1A phosphorylates p27Kip1 and Cyclin D1 and induces cell cycle exit and neuronal differentiation

    PubMed Central

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449

  17. Cortical Thickness Changes and Their Relationship to Dual-Task Performance following Mild Traumatic Brain Injury in Youth.

    PubMed

    Urban, Karolina J; Riggs, Lily; Wells, Greg D; Keightley, Michelle; Chen, Jen-Kai; Ptito, Alain; Fait, Philippe; Taha, Tim; Sinopoli, Katia J

    2017-02-15

    Mild traumatic brain injury (mTBI) is common in youth, especially in those who participate in sport. Recent investigations from our group have shown that asymptomatic children and adolescents with mTBI continue to exhibit alterations in neural activity and cognitive performance compared with those without a history of mTBI. This is an intriguing finding, given that current return-to-learn and return-to-play protocols rely predominately on subjective symptom reports, which may not be sensitive enough to detect subtle injury-related changes. As a result, youth may be at greater risk for re-injury and long-term consequences if they are cleared for activity while their brains continue to be compromised. It is currently unknown whether mTBI also affects brain microstructure in the developing brain, particularly cortical thickness, and whether such changes are also related to cognitive performance. The present study examined cortical thickness in 13 asymptomatic youth (10-14 years old) who had sustained an mTBI 3-8 months prior to testing compared with 14 age-matched typically developing controls. Cortical thickness was also examined in relation to working memory performance during single and dual task paradigms. The results show that youth who had sustained an mTBI had thinner cortices in the left dorsolateral prefrontal region and right anterior and posterior inferior parietal lobes. Additionally, cortical thinning was associated with slower reaction time during the dual-task condition in the injured youth only. The results also point to a possible relationship between functional and structural alterations as a result of mTBI in youth, and lend evidence for neural changes beyond symptom resolution.

  18. Altered expression of zonula occludens-2 precedes increased blood-brain barrier permeability in a murine model of fulminant hepatic failure.

    PubMed

    Shimojima, Naoki; Eckman, Christopher B; McKinney, Michael; Sevlever, Daniel; Yamamoto, Satoshi; Lin, Wenlang; Dickson, Dennis W; Nguyen, Justin H

    2008-01-01

    Brain edema secondary to increased blood-brain barrier (BBB) permeability is a lethal complication in fulminant hepatic failure (FHF). Intact tight junctions (TJ) between brain capillary endothelial cells are critical for normal BBB function. However, the role of TJ in FHF has not been explored. We hypothesized that alterations in the composition of TJ proteins would result in increased BBB permeability in FHF. In this study, FHF was induced in C57BL/6J mice by using azoxymethane. BBB permeability was assessed with sodium fluorescein. Expression of TJ proteins was determined by Western blot, and their cellular distribution was examined using immunofluorescent microscopy. Comatose FHF mice had significant cerebral sodium fluorescein extravasation compared with control and precoma FHF mice, indicating increased BBB permeability. Western blot analysis showed a significant decrease in zonula occludens (ZO)-2 expression starting in the precoma stage. Immunofluorescent microscopy showed a significantly altered distribution pattern of ZO-2 in isolated microvessels from precoma FHF mice. These changes were more prominent in comatose FHF animals. Significant alterations in ZO-2 expression and distribution in the tight junctions preceded the increased BBB permeability in FHF mice. These results suggest that ZO-2 may play an important role in the pathogenesis of brain edema in FHF.

  19. Reduced hemispheric asymmetry of brain anatomical networks in attention deficit hyperactivity disorder.

    PubMed

    Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin

    2018-05-11

    Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.

  20. RAPD Profiling, DNA Fragmentation, and Histomorphometric Examination in Brains of Wistar Rats Exposed to Indoor 2.5 Ghz Wi-Fi Devices Radiation.

    PubMed

    Ibitayo, A O; Afolabi, O B; Akinyemi, A J; Ojiezeh, T I; Adekoya, K O; Ojewunmi, O O

    2017-01-01

    The advent of Wi-Fi connected high technology devices in executing day-to-day activities is fast evolving especially in developing countries of the world and hence the need to assess its safety among others. The present study was conducted to investigate the injurious effect of radiofrequency emissions from installed Wi-Fi devices in brains of young male rats. Animals were divided into four equal groups; group 1 served as control while groups 2, 3, and 4 were exposed to 2.5 Ghz at intervals of 30, 45, and 60 consecutive days with free access to food and water ad libitum. Alterations in harvested brain tissues were confirmed by histopathological analyses which showed vascular congestion and DNA damage in the brain was assayed using agarose gel electrophoresis. Histomorphometry analyses of their brain tissues showed perivascular congestion and tissue damage as well.

Top