Science.gov

Sample records for alters cardiovascular responses

  1. Age alters the cardiovascular response to direct passive heating

    NASA Technical Reports Server (NTRS)

    Minson, C. T.; Wladkowski, S. L.; Cardell, A. F.; Pawelczyk, J. A.; Kenney, W. L.

    1998-01-01

    During direct passive heating in young men, a dramatic increase in skin blood flow is achieved by a rise in cardiac output (Qc) and redistribution of flow from the splanchnic and renal vascular beds. To examine the effect of age on these responses, seven young (Y; 23 +/- 1 yr) and seven older (O; 70 +/- 3 yr) men were passively heated with water-perfused suits to their individual limit of thermal tolerance. Measurements included heart rate (HR), Qc (by acetylene rebreathing), central venous pressure (via peripherally inserted central catheter), blood pressures (by brachial auscultation), skin blood flow (from increases in forearm blood flow by venous occlusion plethysmography), splanchnic blood flow (by indocyanine green clearance), renal blood flow (by p-aminohippurate clearance), and esophageal and mean skin temperatures. Qc was significantly lower in the older than in the young men (11.1 +/- 0.7 and 7.4 +/- 0.2 l/min in Y and O, respectively, at the limit of thermal tolerance; P < 0. 05), despite similar increases in esophageal and mean skin temperatures and time to reach the limit of thermal tolerance. A lower stroke volume (99 +/- 7 and 68 +/- 4 ml/beat in Y and O, respectively, P < 0.05), most likely due to an attenuated increase in inotropic function during heating, was the primary factor for the lower Qc observed in the older men. Increases in HR were similar in the young and older men; however, when expressed as a percentage of maximal HR, the older men relied on a greater proportion of their chronotropic reserve to obtain the same HR response (62 +/- 3 and 75 +/- 4% maximal HR in Y and O, respectively, P < 0.05). Furthermore, the older men redistributed less blood flow from the combined splanchnic and renal circulations at the limit of thermal tolerance (960 +/- 80 and 720 +/- 100 ml/min in Y and O, respectively, P < 0. 05). As a result of these combined attenuated responses, the older men had a significantly lower increase in total blood flow directed to

  2. Short-term physical training alters cardiovascular autonomic response amplitude and latencies.

    PubMed

    Sharma, Rajesh K; Deepak, K K; Bijlani, R L; Rao, P S

    2004-04-01

    This study reports the results of 15 days of exercise training in 25 adult males on cardiovascular autonomic response amplitude and latencies. A standard battery of autonomic function tests including both activity (tone) and reactivity was used. Parasympathetic activity as evaluated from Heart rate variability (HRV) showed no statistically significant change in both time and frequency domain measures, similarly Sympathetic activity as measured by QT/QS2 ratio showed no statistically significant change, but there was a trend of a decrease in sympathetic activity and an increase in parasympathetic activity. There were no changes in the parameters measuring parasympathetic reactivity. Sympathetic reactivity as evaluated by diastolic blood pressure responses to hand grip test (HGT) and cold pressor test (CPT) showed significant decreases. Time domain assessment of autonomic responses was done by measuring tachycardia and bradycardia latencies during Valsalva maneuver (VM) and lying to standing test (LST). Physical training resulted in a decrease in tachycardia latency during LST and a decrease in bradycardia latency during VM. We conclude from the present study that 15 days of physical training is not enough to alter autonomic activity and PNS reactivity but can result in changes in SNS reactivity and latency parameters. We hypothesize that a decrease in bradycardia latency during VM signifies a faster recovery of heart rate during VM and a decrease in tachycardia latency during LST denotes a delayed activation of the system both of which are favorable cardiovascular responses.

  3. Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions in humans.

    PubMed

    Sidhu, Simranjit K; Weavil, Joshua C; Venturelli, Massimo; Rossman, Matthew J; Gmelch, Benjamin S; Bledsoe, Amber D; Richardson, Russell S; Amann, Markus

    2015-11-01

    We investigated the influence of aging on the group III/IV muscle afferents in the exercise pressor reflex-mediated cardiovascular response to rhythmic exercise. Nine old (OLD; 68 ± 2 yr) and nine young (YNG; 24 ± 2 yr) males performed single-leg knee extensor exercise (15 W, 30 W, 80% max) under control conditions and with lumbar intrathecal fentanyl impairing feedback from group III/IV leg muscle afferents. Mean arterial pressure (MAP), cardiac output, leg blood flow (QL), systemic (SVC) and leg vascular conductance (LVC) were continuously determined. With no hemodynamic effect at rest, fentanyl blockade during exercise attenuated both cardiac output and QL ∼17% in YNG, while the decrease in cardiac output in OLD (∼5%) was significantly smaller with no impact on QL (P = 0.8). Therefore, in the face of similar significant ∼7% reduction in MAP during exercise with fentanyl blockade in both groups, LVC significantly increased ∼11% in OLD, but decreased ∼8% in YNG. The opposing direction of change was reflected in SVC with a significant ∼5% increase in OLD and a ∼12% decrease in YNG. Thus while cardiac output seems to account for the majority of group III/IV-mediated MAP responses in YNG, the impact of neural feedback on the heart may decrease with age and alterations in SVC become more prominent in mediating the similar exercise pressor reflex in OLD. Interestingly, in terms of peripheral hemodynamics, while group III/IV-mediated feedback plays a clear role in increasing LVC during exercise in the YNG, these afferents seem to actually reduce LVC in OLD. These peripheral findings may help explain the limited exercise-induced peripheral vasodilation often associated with aging.

  4. Island tameness: an altered cardiovascular stress response in Galápagos marine iguanas.

    PubMed

    Vitousek, Maren N; Romero, L Michael; Tarlow, Elisa; Cyr, Nicole E; Wikelski, Martin

    2010-03-30

    Island tameness is a widely documented phenomenon in which island species, particularly those that have evolved with no or few natural predators, show a greatly reduced behavioral response when faced with unfamiliar predators. This insufficient anti-predator response has led to widespread population declines among many island species exposed to novel predators, and has become a serious conservation problem. Despite its prevalence, the underlying physiology of island tameness is not known. Here we report that although Galápagos marine iguanas (Amblyrhynchus cristatus) initiated flight from an evolutionarily recent and unfamiliar potential predator (humans), they failed to show the cardiovascular stress response that facilitates successful escape, even after a prior capture experience. In contrast, when approached by a native predator (the Galápagos hawk; Buteo galapagoensis), marine iguanas show markedly increased heart rate independent of initiating escape movement. The secretion of catecholamines appears to be central to the initiation of escape behavior: naïve animals remotely injected with epinephrine immediately increased flight initiation distance, whereas those injected with corticosterone did not. Our results provide the first evidence that muted escape behavior in predator-naïve species is indicative of both a cognitive deficit in recognizing potential predators and a catecholamine deficit in response. Understanding how the response to predators differs in predator-naïve species could enable the design of maximally effective techniques for inducing an anti-predator response in these vulnerable species.

  5. Chronic environmental warming alters cardiovascular and haematological stress responses in European perch (Perca fluviatilis).

    PubMed

    Ekström, Andreas; Jutfelt, Fredrik; Fredrik Sundström, L; Adill, Anders; Aho, Teija; Sandblom, Erik

    2016-12-01

    Environmental warming and acute stress increase cardiorespiratory activity in ectothermic animals like fish. While thermal acclimation can buffer the direct thermal effects on basal cardiorespiratory function during chronic warming, little is known about how acclimation affects stress-induced cardiorespiratory responses. We compared cardiovascular and haematological responses to chasing stress in cannulated wild European perch (Perca fluviatilis) from a reference area at natural temperature (16 °C) with perch from the 'Biotest enclosure'; an experimental system chronically warmed (22 °C) by effluents from a nuclear power plant. Routine blood pressure was similar, but Biotest perch had slightly higher resting heart rate (59.9 ± 2.8 vs 51.3 ± 2.9 beats min(-1)), although the Q 10 for heart rate was 1.3, indicating pronounced thermal compensation. Chasing stress caused hypertension and a delayed tachycardia in both groups, but the maximum heart rate increase was 2.5-fold greater in Biotest fish (43.3 ± 4.3 vs 16.9 ± 2.7 beats min(-1)). Moreover, the pulse pressure response after stress was greater in reference fish, possibly due to the less pronounced tachycardia or a greater ventricular pressure generating capacity and thermally mediated differences in aortic compliance. Baseline haematological status was also similar, but after chasing stress, the haematocrit was higher in Biotest fish due to exacerbated red blood cell swelling. This study highlights that while eurythermal fishes can greatly compensate routine cardiorespiratory functions through acclimation processes, stress-induced responses may still differ markedly. This knowledge is essential when utilising cardiorespiratory variables to quantify and compare stress responses across environmental temperatures, and to forecast energetic costs and physiological constraints in ectothermic animals under global warming.

  6. Acrolein Inhalation Alters Arterial Blood Gases and Triggers Carotid Body Mediated Cardiovascular Responses in Hypertensive Rats

    EPA Science Inventory

    Exposure to air pollution increases risk of cardiovascular morbidity and mortality, especially in individuals with underlying cardiopulmonary disease. While the mechanisms accounting for these effects are unclear, several epidemiological studies have reported decreases in oxygen ...

  7. [Cardiovascular alterations associated with doping].

    PubMed

    Thieme, D; Büttner, A

    2015-05-01

    Doping -the abuse of anabolic-androgenic steroids in particular- is widespread in amateur and recreational sports and does not solely represent a problem of professional sports. Excessive overdose of anabolic steroids is well documented in bodybuilding or powerlifting leading to significant side effects. Cardiovascular damages are most relevant next to adverse endocrine effects.Clinical cases as well as forensic investigations of fatalities or steroid consumption in connection with trafficking of doping agents provide only anecdotal evidence of correlations between side effects and substance abuse. Analytical verification and self-declarations of steroid users have repeatedly confirmed the presumption of weekly dosages between 300 and 2000 mg, extra to the fact that co-administration of therapeutics to treat side-effects represent a routine procedure. Beside the most frequent use of medications used to treat erectile dysfunction or estrogenic side-effects, a substantial number of antihypertensive drugs of various classes, i.e. beta-blockers, diuretics, angiotensin II receptor antagonists, calcium channel blockers, as well as ACE inhibitors were recently confiscated in relevant doping cases. The presumptive correlation between misuse of anabolic steroids and self-treatment of cardiovascular side effects was explicitly confirmed by detailed user statements.Two representative fatalities of bodybuilders were introduced to outline characteristic, often lethal side effects of excessive steroid abuse. Moreover, illustrative autopsy findings of steroid acne, thrombotic occlusion of Ramus interventricularis anterior and signs of cardiac infarctions are presented.A potential steroid abuse should be carefully considered in cases of medical consultations of patients exhibiting apparent constitutional modifications and corresponding adverse effects. Moreover, common self-medications -as frequently applied by steroid consumers- should be taken into therapeutic considerations.

  8. Cardiovascular Deconditioning in Humans: Alteration in Cardiovascular Regulation and Function During Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cohen, Richard

    1999-01-01

    Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In this project we apply a powerful, new method - cardiovascular system identification (CSI) - for the study of the effects of space flight on the cardiovascular system so that effective countermeasures can be developed. CSI involves the mathematical analysis of second-to-second fluctuations in non-invasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV - respiratory activity) in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of all the physiologic mechanisms coupling these signals, CSI provides a model of the closed-loop cardiovascular regulatory state in an individual subject. The model includes quantitative descriptions of the heart rate baroreflex, autonomic function, as well as other important physiologic mechanisms. We are in the process of incorporating beat-to-beat fluctuations of stroke volume into the CSI technique in order to quantify additional physiologic mechanisms such as those involved in control of peripheral vascular resistance and alterations in cardiac contractility. We apply CSI in conjunction with the two general protocols of the Human Studies Core project. The first protocol involves ground-based, human head down tilt bed rest to simulate microgravity and acute stressors - upright tilt, standing and bicycle exercise - to provide orthostatic and exercise challenges. The second protocol is intended to be the same as the first but with the addition of sleep deprivation to determine whether

  9. Cardiovascular response to thermoregulatory challenges

    PubMed Central

    Liu, Cuiqing; Yavar, Zubin

    2015-01-01

    A growing number of extreme climate events are occurring in the setting of ongoing climate change, with an increase in both the intensity and frequency. It has been shown that ambient temperature challenges have a direct and highly varied impact on cardiovascular health. With a rapidly growing amount of literature on this issue, we aim to review the recent publications regarding the impact of cold and heat on human populations with regard to cardiovascular disease (CVD) mortality/morbidity while also examining lag effects, vulnerable subgroups, and relevant mechanisms. Although the relative risk of morbidity/mortality associated with extreme temperature varied greatly across different studies, both cold and hot temperatures were associated with a positive mean excess of cardiovascular deaths or hospital admissions. Cause-specific study of CVD morbidity/mortality indicated that the sensitivity to temperature was disease-specific, with different patterns for acute and chronic ischemic heart disease. Vulnerability to temperature-related mortality was associated with some characteristics of the populations, including sex, age, location, socioeconomic condition, and comorbidities such as cardiac diseases, kidney diseases, diabetes, and hypertension. Temperature-induced damage is thought to be related to enhanced sympathetic reactivity followed by activation of the sympathetic nervous system, renin-angiotensin system, as well as dehydration and a systemic inflammatory response. Future research should focus on multidisciplinary adaptation strategies that incorporate epidemiology, climatology, indoor/building environments, energy usage, labor legislative perfection, and human thermal comfort models. Studies on the underlying mechanism by which temperature challenge induces pathophysiological response and CVD await profound and lasting investigation. PMID:26432837

  10. Cardiovascular response to thermoregulatory challenges.

    PubMed

    Liu, Cuiqing; Yavar, Zubin; Sun, Qinghua

    2015-12-01

    A growing number of extreme climate events are occurring in the setting of ongoing climate change, with an increase in both the intensity and frequency. It has been shown that ambient temperature challenges have a direct and highly varied impact on cardiovascular health. With a rapidly growing amount of literature on this issue, we aim to review the recent publications regarding the impact of cold and heat on human populations with regard to cardiovascular disease (CVD) mortality/morbidity while also examining lag effects, vulnerable subgroups, and relevant mechanisms. Although the relative risk of morbidity/mortality associated with extreme temperature varied greatly across different studies, both cold and hot temperatures were associated with a positive mean excess of cardiovascular deaths or hospital admissions. Cause-specific study of CVD morbidity/mortality indicated that the sensitivity to temperature was disease-specific, with different patterns for acute and chronic ischemic heart disease. Vulnerability to temperature-related mortality was associated with some characteristics of the populations, including sex, age, location, socioeconomic condition, and comorbidities such as cardiac diseases, kidney diseases, diabetes, and hypertension. Temperature-induced damage is thought to be related to enhanced sympathetic reactivity followed by activation of the sympathetic nervous system, renin-angiotensin system, as well as dehydration and a systemic inflammatory response. Future research should focus on multidisciplinary adaptation strategies that incorporate epidemiology, climatology, indoor/building environments, energy usage, labor legislative perfection, and human thermal comfort models. Studies on the underlying mechanism by which temperature challenge induces pathophysiological response and CVD await profound and lasting investigation.

  11. Cardiovascular alterations heralded by intrathecal baclofen bolus.

    PubMed

    Rifici, Carmela; D'Aleo, Giangaetano; D'Aleo, Piercataldo; Bramanti, Placido; Saltuari, Leopold; Kofler, Markus

    2011-01-01

    We describe two patients in whom serious bradycardia and arterial hypotension occurred after a small intrathecal baclofen (ITB) test bolus. Both patients suffered from severe spasticity (one due to brain injury, one due to spinal cord injury). Medical history and diagnostic examinations revealed no previous cardiological problems. Ten minutes following a 50 μg ITB bolus, patient 1 developed bradycardia (58 bpm) and incomplete right branch block, lasting for 3 hours. In patient 2, a 20 μg ITB bolus was followed after 5 minutes by severe bradycardia (30 bpm) and hypotension (60/30 mmHg), without loss of consciousness, lasting for 10 minutes. Exaggerated muscle tone was alleviated in both patients after 2 hours by the applied doses. Neither patient underwent implantation of a permanent pump system, both were continued on oral baclofen. Despite numerous unremarkable repeat cardiological exams, both patients suffered fatal cardiac arrest one and two months later, respectively. Our observations suggest that ITB may herald cardiovascular dysfunction in predisposed patients. Careful cardiological examination before ITB treatment, and close monitoring during ITB testing in particular, is advised.

  12. Central autonomic network mediates cardiovascular responses to acute inflammation: Relevance to increased cardiovascular risk in depression?

    PubMed Central

    Harrison, Neil A.; Cooper, Ella; Voon, Valerie; Miles, Ken; Critchley, Hugo D.

    2013-01-01

    Inflammation is a risk factor for both depression and cardiovascular disease. Depressed mood is also a cardiovascular risk factor. To date, research into mechanisms through which inflammation impacts cardiovascular health rarely takes into account central effects on autonomic cardiovascular control, instead emphasizing direct effects of peripheral inflammatory responses on endothelial reactivity and myocardial function. However, brain responses to inflammation engage neural systems for motivational and homeostatic control and are expressed through depressed mood state and changes in autonomic cardiovascular regulation. Here we combined an inflammatory challenge, known to evoke an acute reduction in mood, with neuroimaging to identify the functional brain substrates underlying potentially detrimental changes in autonomic cardiovascular control. We first demonstrated that alterations in the balance of low to high frequency (LF/HF) changes in heart rate variability (a measure of baroreflex sensitivity) could account for some of the inflammation-evoked changes in diastolic blood pressure, indicating a central (rather than solely local endothelial) origin. Accompanying alterations in regional brain metabolism (measured using 18FDG-PET) were analysed to localise central mechanisms of inflammation-induced changes in cardiovascular state: three discrete regions previously implicated in stressor-evoked blood pressure reactivity, the dorsal anterior and posterior cingulate and pons, strongly mediated the relationship between inflammation and blood pressure. Moreover, activity changes within each region predicted the inflammation-induced shift in LF/HF balance. These data are consistent with a centrally-driven component originating within brain areas supporting stressor evoked blood pressure reactivity. Together our findings highlight mechanisms binding psychological and physiological well-being and their perturbation by peripheral inflammation. PMID:23416033

  13. Characteristics of Vibration that Alter Cardiovascular Parameters in Mice.

    PubMed

    Li, Yao; Rabey, Karyne N; Schmitt, Daniel; Norton, John N; Reynolds, Randall P

    2015-07-01

    We hypothesized that short-term exposure of mice to vibration within a frequency range thought to be near the resonant frequency range of mouse tissue and at an acceleration of 0 to 1 m/s(2) would alter heart rate (HR) and mean arterial pressure (MAP). We used radiotelemetry to evaluate the cardiovascular response to vibration in C57BL/6 and CD1 male mice exposed to vertical vibration of various frequencies and accelerations. MAP was consistently increased above baseline values at an acceleration near 1 m/s(2) and a frequency of 90 Hz in both strains, and HR was increased also in C57BL/6 mice. In addition, MAP increased at 80 Hz in individual mice of both strains. When both strains were analyzed together, mean MAP and HR were increased at 90 Hz at 1 m/s(2), and HR was increased at 80 Hz at 1 m/s(2). No consistent change in MAP or HR occurred when mice were exposed to frequencies below 80 Hz or above 90 Hz. The increase in MAP and HR occurred only when the mice had conscious awareness of the vibration, given that these changes did not occur when anesthetized mice were exposed to vibration. Tested vibration acceleration levels lower than 0.75 m/s(2) did not increase MAP or HR at 80 or 90 Hz, suggesting that a relatively high level of vibration is necessary to increase these parameters. These data are important to establish the harmful frequencies and accelerations of environmental vibration that should be minimized or avoided in mouse facilities.

  14. Cardiovascular responses to hypogravic environments

    NASA Technical Reports Server (NTRS)

    Sandler, H.

    1983-01-01

    The cardiovascular deconditioning observed during and after space flight is characterized in a review of human space and simulation studies and animal simulations. The various simulation techniques (horizontal bed rest, head-down tilt, and water immersion in man, and immobilization of animals) are examined, and sample results are presented in graphs. Countermeasures such as exercise regimens, fluid replacement, drugs, venous pooling, G-suits, oscillating beds, electrostimulation of muscles, lower-body negative pressure, body-surface cooling, and hypoxia are reviewed and found to be generally ineffective or unreliable. The need for future space experimentation in both humans and animals is indicated.

  15. Alterations in Cardiovascular Regulation and Function During Long-Term Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J.

    1999-01-01

    The Cardiovascular Alterations Team is conducting studies of hemodynamic regulation and susceptibility to arrhythmias resulting from sixteen days of simulated microgravity exposure. In these studies very intensive measurements are made during a short duration of bed rest. In this collaborative effort are making many of the same measurements, however much less frequently, on subjects who are exposed to a much longer duration of simulated microgravity. Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In addition, numerous reports from the past 30 years suggest that the incidence of ventricular arrhythmias among astronauts is increased during space flight. However, the effects of space flight and the associated physiologic stresses on cardiac conduction processes are not known, and an increase in cardiac susceptibility to arrhythmias has never been quantified. In this project we are applying the most powerful technologies available to determine, in a ground-based study of long duration space flight, the mechanisms by which space flight affects cardiovascular function, and then on the basis of an understanding of these mechanisms to develop rational and specific countermeasures. To this end we are conducting a collaborative project with the Bone Demineralization/Calcium Metabolism Team of the National Space Biomedical Research Institute (NSBRI). The Bone Team is conducting bed rest studies in human subjects lasting 17 weeks, which provides a unique opportunity to study the effects of long duration microgravity exposure on the human cardiovascular system. We are applying a number of powerful new

  16. Cardiovascular responses to cold exposure.

    PubMed

    Sun, Zhongjie

    2010-01-01

    The prevalence of hypertension is increased in winter and in cold regions of the world. Cold temperatures make hypertension worse and trigger cardiovascular complications (stroke, myocardial infarction, heart failure, etc.). Chronic or intermittent exposure to cold causes hypertension and cardiac hypertrophy in animals. The purpose of this review is to provide the recent advances in the mechanistic investigation of cold-induced hypertension (CIH). Cold temperatures increase the activities of the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS). The SNS initiates CIH via the RAS. Cold exposure suppresses the expression of eNOS and formation of NO, increases the production of endothelin-1 (ET-1), up-regulates ETA receptors, but down-regulates ETB receptors. The roles of these factors and their relations in CIH will be reviewed.

  17. Cardiovascular responses to cold exposure

    PubMed Central

    Sun, Zhongjie

    2010-01-01

    The prevalence of hypertension is increased in winter and in cold regions of the world. Cold temperatures make hypertension worse and trigger cardiovascular complications (stroke, myocardial infarction, heart failure, etc.). Chronic or intermittent exposure to cold causes hypertension and cardiac hypertrophy in animals. The purpose of this review is to provide the recent advances in the mechanistic investigation of cold-induced hypertension (CIH). Cold temperatures increase the activities of the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS). The SNS initiates CIH via the RAS. Cold exposure suppresses the expression of eNOS and formation of NO, increases the production of endothelin-1 (ET-1), up-regulates ETA receptors, but down-regulates ETB receptors. The roles of these factors and their relations in CIH will be reviewed. PMID:20036896

  18. Cardiovascular responses to static exercise in distance runners and weight lifters

    NASA Technical Reports Server (NTRS)

    Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.

    1980-01-01

    Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.

  19. The cardiovascular response to the AGS

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.

    1993-01-01

    This paper reports the preliminary results of experiments on human subjects conducted to study the cardiovascular response to various g-levels and exposure times using an artificial gravity simulator (AGS). The AGS is a short arm centrifuge consisting of a turntable, a traction system, a platform and four beds. Data collection hardware is part of the communication system. The AGS provides a steep acceleration gradient in subjects in the supine position.

  20. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  1. Physical fitness and cardiovascular response to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Rohm-Young, D.; Blomqvist, C. G.

    1984-01-01

    Klein et al. (1977) have questioned the concept of endurance training as an appropriate means of preparing for prolonged space flights. Their opinion was mainly based on reports of endurance athletes who had a decreased tolerance to orthostatic or gravitational stress induced by lower body negative pressure (LBNP), upright tilt, or whole body water immersion. The present investigation had the objective to determine if the hemodynamic response to LBNP is different between a high and average fit group of subjects. In addition, the discrete aspect of cardiovascular function which had been altered by chronic training was to be identified. On the basis of the results of experiments conducted with 14 young male volunteers, it is concluded that the reflex response to central hypovolemia is altered by endurance exercise training.

  2. Implications of fundamental signalling alterations in diabetes mellitus-associated cardiovascular disease .

    PubMed

    Balakumar, Pitchai

    2014-12-01

    The chronic diabetes mellitus (DM) is a major risk factor for cardiovascular disease. The incidence of cardiovascular disease might be a foremost cause of morbidity and mortality in patients afflicted with DM. In fact, DM is associated with multi-factorial cardiovascular signalling alterations via significant modulation of expression pattern, activation or release of PI3K, PKB, eNOS, EDRF, NADPH oxidase, EDHF, CGRP, adenosine, iNOS, ROCK, PKC-β2, CaMKII, microRNA (miR)-126 and miR-130a, which could result in inadequate maintenance of cardiovascular physiology and subsequent development of cardiovascular pathology. This review highlights the possible adverse implications of fundamental cardiovascular signalling alteration in DM-associated cardiovascular disease pathology.

  3. Cardiovascular responses of snakes to hypergravity

    NASA Technical Reports Server (NTRS)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Rosenberg, H. I.

    1997-01-01

    Snakes have provided useful vertebrate models for understanding circulatory adaptation to gravity, attributable to their elongate body shape and evolutionary diversificaton in terms of ecology and behavior. Recently we have studied cardiovascular responses of snakes to hypergravic acceleration forces produced acutely in the head-to-tail direction (+Gz) on a short-arm centrifuge. Snakes were held in a nearly straight position within a horizontal plastic tube and subjected to a linear force gradient during acceleration. Carotid blood flow provided an integrated measure of cardiovascular performance. Thus, cardiovascular tolerance of snakes to stepwise increments of Gz was measured as the caudal Gz force at which carotid blood flow ceased. Tolerance to increasing Gz varies according to adaptive evolutionary history inferred from the ecology and behavior of species. With respect to data for six species we investigated, multiple regression analysis demonstrates that Gz tolerance correlates with gravitational habitat, independently of body length. Relative to aquatic and non-climbing species, carotid blood flow is better maintained in arboreal or scansorial species, which tolerate hypergravic forces of +2 to +3.5 Gz. Additionally, semi-arboreal rat snakes (Elaphe obsoleta) exhibit plasticity of responses to long-term, intermittent +1.5 Gz stress. Compared to non-acclimated controls, acclimated snakes show greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of prostaglandin ratios favorable to maintenance of arterial blood pressure, and medial hypertrophy in major arteries and veins. As in other vertebrates, Gz tolerance of snakes is enhanced by acclimation, high arterial pressure, comparatively large blood volume, and body movements. Vascular studies of snakes suggest the importance to acclimation of local responses involving vascular tissue, in addition to

  4. Airway reflexes, autonomic function, and cardiovascular responses.

    PubMed Central

    Widdicombe, J; Lee, L Y

    2001-01-01

    In this article, we review the cardiovascular responses to the inhalation of irritants and pollutants. Many sensory receptors in the respiratory system, from nose to alveoli, respond to these irritants and set up powerful reflex changes, including those in the cardiovascular system. Systemic hypotension or hypertension, pulmonary hypertension, bradycardia, tachycardia, and dysrhythmias have all been described previously. Most of the experiments have been acute and have been performed on anesthetized experimental animals. Experiments on humans suggest we have similar sensory systems and reflex responses. However, we must use caution when applying the animal results to humans. Most animal experiments, unlike those with humans, have been performed using general anesthesia, with irritants administered in high concentrations, and often to a restricted part of the respiratory tract. Species differences in the response to irritants are well established. We must be even more careful when applying the results of acute experiments in animals to the pathophysiologic changes observed in prolonged exposure to environmental pollution in humans. PMID:11544167

  5. Modeling of Cardiovascular Response to Weightlessness

    NASA Technical Reports Server (NTRS)

    Sharp, M. Keith

    1999-01-01

    It was the hypothesis of this Project that the Simple lack of hydrostatic pressure in microgravity generates several purely physical reactions that underlie and may explain, in part, the cardiovascular response to weightlessness. For instance, hydrostatic pressure within the ventricles of the heart may improve cardiac performance by promoting expansion of ventricular volume during diastole. The lack of hydrostatic pressure in microgravity might, therefore, reduce diastolic filling and cardiac performance. The change in transmural pressure is possible due to the difference in hydrostatic pressure gradients between the blood inside the ventricle and the lung tissue surrounding the ventricle due to their different densities. On the other hand, hydrostatic pressure within the vasculature may reduce cardiac inlet pressures because of the typical location of the heart above the hydrostatic indifference level (the level at which pressure remains constant throughout changes in gravity). Additional physical responses of the body to changing gravitational conditions may influence cardiovascular performance. For instance, fluid shifts from the lower body to the thorax in microgravity may serve to increase central venous pressure (CVP) and boost cardiac output (CO). The concurrent release of gravitational force on the rib cage may tend to increase chest girth and decrease pedcardial pressure, augmenting ventricular filling. The lack of gravity on pulmonary tissue may allow an upward shifting of lung mass, causing a further decrease in pericardial pressure and increased CO. Additional effects include diuresis early in the flight, interstitial fluid shifts, gradual spinal extension and movement of abdominal mass, and redistribution of circulatory impedance because of venous distention in the upper body and the collapse of veins in the lower body. In this project, the cardiovascular responses to changes in intraventricular hydrostatic pressure, in intravascular hydrostatic

  6. Cardiovascular adaptations during long-term altered gravity

    NASA Technical Reports Server (NTRS)

    Popovic, V. P.

    1982-01-01

    Cardiovascular studies were performed on unrestrained, unanesthetized rats and on the same animals in head-down hypokinetic conditions as well as during readaptation of the same animals to free activity. Possible circulatory mechanisms that evolved in mammals during long-lasting gravity exposure are considered. These mechanisms are likely to be affected during exposure to 0-g forces.

  7. Cardiovascular Responses of Snakes to Gravitational Gradients

    NASA Technical Reports Server (NTRS)

    Hsieh, Shi-Tong T.; Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.

  8. FINE AMBIENT AIR PARTICULAR MATTER EXPOSURE INDUCES MOLECULAR ALTERATIONS INDICATIVE OF CARDIOVASCULAR DISEASE PROGRESSION IN ATHEROSCLEROTIC SUSCEPTIBLE MICE

    EPA Science Inventory

    Epidemiological, clinical, and toxicological studies have demonstrated that exposure to ambient air particulate matter (PM) can alter cardiovascular function and may influence cardiovascular disease (CVD). It has been shown that exposure to concentrated ambient air particles (CA...

  9. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.

    PubMed

    Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min

    2016-01-01

    Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.

  10. Endothelium and Its Alterations in Cardiovascular Diseases: Life Style Intervention

    PubMed Central

    Paganelli, Corrado; Buffoli, Barbara; Rodella, Luigi Fabrizio; Rezzani, Rita

    2014-01-01

    The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions. PMID:24719887

  11. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia

    PubMed Central

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-01-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. PMID:25908097

  12. Metabolic and Cardiovascular Responses of Children during Prolonged Physical Activity.

    ERIC Educational Resources Information Center

    Chausow, Sharon A.; And Others

    1984-01-01

    Metabolic and cardiovascular responses during 45 minutes of continuous moderate intensity exercise were investigated in 11 children, 8-11 years of age. Results indicate that children exhibit metabolic and cardiovascular adjustments similar to those noted in adults during prolonged exercise. (Author/JMK)

  13. Simultaneous cerebrovascular and cardiovascular responses during presyncope

    NASA Technical Reports Server (NTRS)

    Bondar, R. L.; Kassam, M. S.; Stein, F.; Dunphy, P. T.; Fortney, S.; Riedesel, M. L.

    1995-01-01

    BACKGROUND AND PURPOSE: Presyncope, characterized by symptoms and signs indicative of imminent syncope, can be aborted in many situations before loss of consciousness occurs. The plasticity of cerebral autoregulation in healthy humans and its behavior during this syncopal prodrome are unclear, although systemic hemodynamic instability has been suggested as a key factor in the precipitation of syncope. Using lower body negative pressure (LBNP) to simulate central hypovolemia, we previously observed falling mean flow velocities (MFVs) with maintained mean arterial blood pressure (MABP). These findings, and recent reports suggesting increased vascular tone within the cerebral vasculature at presyncope, cannot be explained by the classic static cerebral autoregulation curve; neither can they be totally explained by a recent suggestion of a rightward shift in this curve. METHODS: Four male and five female healthy volunteers were exposed to presyncopal LBNP to evaluate their cerebrovascular and cardiovascular responses by use of continuous acquisition of MFV from the right middle cerebral artery with transcranial Doppler sonography, MABP (Finapres), and heart rate (ECG). RESULTS: At presyncope, MFV dropped on average by 27.3 +/- 14% of its baseline value (P < .05), while MABP remained at 2.0 +/- 27% above its baseline level. Estimated cerebrovascular resistance increased during LBNP. The percentage change from baseline to presyncope in MFV and MABP revealed consistent decreases in MFV before MABP. CONCLUSIONS: Increased estimated cerebrovascular resistance, falling MFV, and constant MABP are evidence of an increase in cerebral vascular tone with falling flow, suggesting a downward shift in the cerebral autoregulation curve. Cerebral vessels may have a differential sensitivity to sympathetic drive or more than one type of sympathetic innervation. Future work to induce dynamic changes in MABP during LBNP may help in assessing the plasticity of the cerebral autoregulation

  14. Cloth Ballistic Vest Alters Response to Blast

    DTIC Science & Technology

    1988-01-01

    Detrick, Frederick, MD 21701-501 ELEMENT NO. NO. NO. jACCESSION NO. 11. TITLE (include Security Classification) CLOTH BALLSISTIC VEST ALTERS RESPONSE...Suppl. ’rintd in USA Cloth Ballistic Vest Alters Response to Blast YANCY Y. PHILLIPS, M.D., THOMAS G. MUNDIE, PH.D., JOHN T. YELVERTON, M.S., AND DONALD R...RICHMOND, PH.D. Ballistic wounds have been and will remain the principal cause of casualties in combat. Cloth ballistic vests (CBV) play an

  15. Cardiovascular Alterations during the Interictal Period in Awake and Pithed Amygdala-Kindled Rats.

    PubMed

    Ruiz-Salinas, Inna; Rocha, Luisa; Marichal-Cancino, Bruno A; Villalón, Carlos M

    2016-08-01

    Epileptic seizures are often accompanied by increased sympathetic cardiovascular activity (even interictally), but it remains unknown whether this increased activity is of central and/or peripheral origin. Hence, this study investigated the cardiovascular alterations produced by amygdala kindling in awake and pithed Wistar rats. Blood pressure (BP) and heart rate (HR) were initially recorded by tail cuff plethysmography in awake control, sham-operated and amygdala-kindled rats before and 24 hr after the kindling process. The after-discharge threshold (ADT) was measured under different conditions to correlate brain excitability with BP and HR in kindled rats. Twenty-four hours after the last kindling seizure, (i) HR, systolic and diastolic BP were increased and (ii) only higher HR values correlated with lower ADT values. Forty-eight hr after the last kindled seizure, all rats were pithed and prepared for analysing the tachycardic, vasopressor and vasodepressor responses by (i) stimulation of the sympathetic or sensory vasodepressor CGRPergic out-flows (stimulus-response curves, S-R curves) and (ii) intravenous injections of noradrenaline or α-CGRP (dose-response curves, D-R curves). Interestingly, (i) the tachycardic S-R and D-R curves were attenuated, whilst the CGRPergic S-R and D-R curves were potentiated in kindled rats, and (ii) the vasopressor noradrenergic S-R and D-R curves were not significantly different in all groups. Therefore, the kindling process may be associated with overstimulation in the central sympathetic and sensory out-flows interictally, producing (i) peripheral attenuation of cardiac sympathetic out-flow and β-adrenoceptor activity and (ii) peripheral potentiation of vasodepressor sensory CGRPergic out-flow and CGRP receptor activity.

  16. ALTERATIONS OF FE HOMEOSTASIS IN RAT CARDIOVASCULAR DISEASE MODELS AND ITS CONTRIBUTION TO CARDIOPULMONARY TOXICITY

    EPA Science Inventory

    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  17. BIOAVAILABLE AIR PARTICULATE POLLUTION CONSTITUENTS DIRECTLY ALTER CARDIOVASCULAR FUNCTION EX VIVO

    EPA Science Inventory

    Epidemiological studies have reported associations between particulate air pollution exposure and cardiovascular (CV) effects within susceptible individuals. Particle characteristics and biological mechanisms responsible for these observations are not known. We examined whether s...

  18. Gender-based differences in the cardiovascular response to standing

    NASA Technical Reports Server (NTRS)

    Gotshall, Robert W.; Tsai, Pai-Feng; Frey, Mary A. B.

    1991-01-01

    The cardiovascular responses of men and women to the stand test were compared by measuring respective values for heart rate, blood pressure, stroke volume, cardiac output, and total peripheral resistance during a 5-min supine and a 5-min standing test in ten subjects of each gender. It was found that, while the male and female subjects had similar heart rate values, all other responses exhibited greater changes in men than in women. While differences in the height of the subjects did not account for differences in cardiovascular responses, no mechanism responsible for these differences could be identified.

  19. Computer model of cardiovascular control system responses to exercise

    NASA Technical Reports Server (NTRS)

    Croston, R. C.; Rummel, J. A.; Kay, F. J.

    1973-01-01

    Approaches of systems analysis and mathematical modeling together with computer simulation techniques are applied to the cardiovascular system in order to simulate dynamic responses of the system to a range of exercise work loads. A block diagram of the circulatory model is presented, taking into account arterial segments, venous segments, arterio-venous circulation branches, and the heart. A cardiovascular control system model is also discussed together with model test results.

  20. Altered Nitric Oxide System in Cardiovascular and Renal Diseases

    PubMed Central

    Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2016-01-01

    Nitric oxide (NO) is synthesized by a family of NO synthases (NOS), including neuronal, inducible, and endothelial NOS (n/i/eNOS). NO-mediated effects can be beneficial or harmful depending on the specific risk factors affecting the disease. In hypertension, the vascular relaxation response to acetylcholine is blunted, and that to direct NO donors is maintained. A reduction in the activity of eNOS is mainly responsible for the elevation of blood pressure, and an abnormal expression of iNOS is likely to be related to the progression of vascular dysfunction. While eNOS/nNOS-derived NO is protective against the development of atherosclerosis, iNOS-derived NO may be proatherogenic. eNOS-derived NO may prevent the progression of myocardial infarction. Myocardial ischemia/reperfusion injury is significantly enhanced in eNOS-deficient animals. An important component of heart failure is the loss of coronary vascular eNOS activity. A pressure-overload may cause severer left ventricular hypertrophy and dysfunction in eNOS null mice than in wild-type mice. iNOS-derived NO has detrimental effects on the myocardium. NO plays an important role in regulating the angiogenesis and slowing the interstitial fibrosis of the obstructed kidney. In unilateral ureteral obstruction, the expression of eNOS was decreased in the affected kidney. In triply n/i/eNOS null mice, nephrogenic diabetes insipidus developed along with reduced aquaporin-2 abundance. In chronic kidney disease model of subtotal-nephrectomized rats, treatment with NOS inhibitors decreased systemic NO production and induced left ventricular systolic dysfunction (renocardiac syndrome). PMID:27231671

  1. Cardiovascular responses to metipranolol and timolol eyedrops in healthy volunteers.

    PubMed Central

    Bacon, P J; Brazier, D J; Smith, R; Smith, S E

    1989-01-01

    1. Intraocular pressure and cardiovascular responses to metipranolol 0.1% and 0.3% and timolol 0.25% eyedrops were measured in a balanced single dose placebo-controlled crossover study in eight healthy volunteers aged 34-58 years. 2. Timolol 0.25% and metipranolol 0.3% reduced intraocular pressure throughout the 6 h period of observation to a similar extent. Metipranolol 0.1% was marginally less effective, significantly reducing pressure up to 4 h only. 3. No drug treatment significantly altered resting heart rate or blood pressure. Timolol 0.25% significantly reduced exercise tachycardia (P less than 0.05), an effect which was not shown by metipranolol 0.1 or 0.3%. Exertional pain in the legs occurred more frequently after timolol 0.25% and metipranolol 0.3% than after metipranolol 0.1% or placebo eyedrops. 4. Octan-1-ol/pH 7.4 buffer distribution coefficients at 37 degrees C were found to be: metipranolol 5.19, timolol 0.84, indicating that metipranolol has an approximately 6-fold greater lipid solubility. 5. It is concluded that, by comparison with timolol, metipranolol in eyedrop concentrations up to 0.3%, despite its greater lipid solubility, reaches concentrations in the systemic circulation which are less likely to affect the heart. PMID:2565117

  2. Gender-Related Differences in Cardiovascular Responses to Orthostatic Stress

    NASA Technical Reports Server (NTRS)

    Fritsch-Yelle, Janice M.; DAunno, Dominick S.; Waters, Wendy W.; Freeman-Perez, Sondra

    1999-01-01

    There is evidence that men and women have different cardiovascular responses to standing, and that women are more susceptible to orthostatic hypotension than men. The present study seeks to determine if decreased orthostatic tolerance in women is caused by diminished vasoconstrictive responses.

  3. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    PubMed Central

    Iturriaga, Rodrigo; Andrade, David C.; Del Rio, Rodrigo

    2014-01-01

    The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure, and obstructive sleep apnea (OSA). Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH), a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation. PMID:25520668

  4. Orthopaedic Surgeons’ Cardiovascular Response During Total Hip Arthroplasty

    PubMed Central

    Orlic, Dubravko

    2008-01-01

    The literature contains limited and contradictory information regarding the amount of physical effort and/or emotional stress needed to perform surgery. We therefore investigated cardiovascular response to psychophysical stress in orthopaedic surgeons while they were performing surgery. We monitored 29 male orthopaedic surgeons from four university centers while they performed total hip arthroplasties. Changes in their cardiovascular parameters were recorded by ambulatory monitoring methods. Exercise stress testing of each participant was used as a control state. We compared the cardiovascular response during surgery to energy requirements of everyday activities. Preoperative and postoperative testing showed lower values of cardiovascular parameters than during physically less difficult parts of the operation; physically more difficult phases of the operation additionally increased the values of parameters. We concluded performing total hip arthroplasty increases surgeons’ cardiovascular parameters because of psychologic stress and physical effort. Excitement of the cardiovascular system during total hip arthroplasty appears similar to the excitement during moderate-intensity daily activities, such as walking the dog, leisurely bicycling, or climbing stairs. PMID:18196425

  5. Orthopaedic surgeons' cardiovascular response during total hip arthroplasty.

    PubMed

    Bergovec, Marko; Orlic, Dubravko

    2008-02-01

    The literature contains limited and contradictory information regarding the amount of physical effort and/or emotional stress needed to perform surgery. We therefore investigated cardiovascular response to psychophysical stress in orthopaedic surgeons while they were performing surgery. We monitored 29 male orthopaedic surgeons from four university centers while they performed total hip arthroplasties. Changes in their cardiovascular parameters were recorded by ambulatory monitoring methods. Exercise stress testing of each participant was used as a control state. We compared the cardiovascular response during surgery to energy requirements of everyday activities. Preoperative and postoperative testing showed lower values of cardiovascular parameters than during physically less difficult parts of the operation; physically more difficult phases of the operation additionally increased the values of parameters. We concluded performing total hip arthroplasty increases surgeons' cardiovascular parameters because of psychologic stress and physical effort. Excitement of the cardiovascular system during total hip arthroplasty appears similar to the excitement during moderate-intensity daily activities, such as walking the dog, leisurely bicycling, or climbing stairs.

  6. Human cardiovascular response to sympathomimetic agents during head-down bed rest: the effect of dietary sodium

    NASA Technical Reports Server (NTRS)

    Williams, W. J.; Stuart, C. A.; Fortney, S. M.; Pietrzyk, R. A.; Chen, Y. M.; Whitson, P. A.

    1994-01-01

    Changes in sympathoadrenal function and cardiovascular deconditioning have long been recognized as a feature of the physiological adaptation to microgravity. The deconditioning process, coupled with altered hydration status, is thought to significantly contribute to orthostatic intolerance upon return to Earth gravity. The cardiovascular response to stimulation by sympathomimetic agents before, during, and after exposure to simulated microgravity was determined in healthy volunteers equilibrated on normal or high sodium diets in order to further the understanding of the deconditioning process.

  7. Cardiovascular responses of women to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Frey, M. A. B.; Mathes, K. L.; Hoffler, G. W.

    1986-01-01

    The effects of lower body negative pressure (LBNP) on the cardiovascular response of 20 women between 23-43 years are evaluated. Calf circumference and cardiovascular data were recorded for women in the follicular and luteal phases of the menstrual cycle at -30, -40, and -50 mm Hg LBNP. The data reveal that the two menstrual phases did not cause differences in the way women respond to LBNP. It is observed that during LBNP calf circumference is enlarged; transthoracic impedance, and heart rate are increased; stroke volume, left ventricular ejection time, the Heather Index of contractility and systolic pressure, and cardiac output are reduced; and total peripheral resistance is elevated. The experimental data are compared to Montgomery et al. (1979). It is noted that the response of women to -50 mm Hg LBNP is similar to that of men; however, women adapt to stresses on the cardiovascular system with greater heart rate adjustments.

  8. CARDIOVASCULAR RESPONSES TO ULTRAFINE CARBON PARTICLE EXPOSURES IN RATS

    EPA Science Inventory

    TD-02-042 (U. KODAVANTI) GPRA # 10108

    Cardiovascular Responses to Ultrafine Carbon Particle Exposures in Rats.
    V. Harder1, B. Lentner1, A. Ziesenis1, E. Karg1, L. Ruprecht1, U. Kodavanti2, A. Stampfl3, J. Heyder1, H. Schulz1
    GSF- Institute for Inhalation Biology1, I...

  9. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links.

    PubMed

    Stapleton, Phoebe A; Abukabda, Alaeddin B; Hardy, Steven L; Nurkiewicz, Timothy R

    2015-11-15

    The cardiovascular response to xenobiotic particle exposure has been increasingly studied over the last two decades, producing an extraordinary scope and depth of research findings. With the flourishing of nanotechnology, the term "xenobiotic particles" has expanded to encompass not only air pollution particulate matter (PM) but also anthropogenic particles, such as engineered nanomaterials (ENMs). Historically, the majority of research in these fields has focused on pulmonary exposure and the adverse physiological effects associated with a host inflammatory response or direct particle-tissue interactions. Because these hypotheses can neither account entirely for the deleterious cardiovascular effects of xenobiotic particle exposure nor their time course, the case for substantial neurological involvement is apparent. Indeed, considerable evidence suggests that not only is neural involvement a significant contributor but also a reality that needs to be investigated more thoroughly when assessing xenobiotic particle toxicities. Therefore, the scope of this review is several-fold. First, we provide a brief overview of the major anatomical components of the central and peripheral nervous systems, giving consideration to the potential biologic targets affected by inhaled particles. Second, the autonomic arcs and mechanisms that may be involved are reviewed. Third, the cardiovascular outcomes following neurological responses are discussed. Lastly, unique problems, future risks, and hurdles associated with xenobiotic particle exposure are discussed. A better understanding of these neural issues may facilitate research that in conjunction with existing research, will ultimately prevent the untoward cardiovascular outcomes associated with PM exposures and/or identify safe ENMs for the advancement of human health.

  10. Cardiovascular Response Patterns to Sympathetic Stimulation by Central Hypovolemia

    PubMed Central

    Bronzwaer, Anne-Sophie G. T.; Verbree, Jasper; Stok, Wim J.; van Buchem, Mark A.; Daemen, Mat J. A. P.; van Osch, Matthias J. P.; van Lieshout, Johannes. J.

    2016-01-01

    In healthy subjects, variation in cardiovascular responses to sympathetic stimulation evoked by submaximal lower body negative pressure (LBNP) is considerable. This study addressed the question whether inter-subject variation in cardiovascular responses coincides with consistent and reproducible responses in an individual subject. In 10 healthy subjects (5 female, median age 22 years), continuous hemodynamic parameters (finger plethysmography; Nexfin, Edwards Lifesciences), and time-domain baroreflex sensitivity (BRS) were quantified during three consecutive 5-min runs of LBNP at −50 mmHg. The protocol was repeated after 1 week to establish intra-subject reproducibility. In response to LBNP, 5 subjects (3 females) showed a prominent increase in heart rate (HR; 54 ± 14%, p = 0.001) with no change in total peripheral resistance (TPR; p = 0.25) whereas the other 5 subjects (2 females) demonstrated a significant rise in TPR (7 ± 3%, p = 0.017) with a moderate increase in HR (21 ± 9%, p = 0.004). These different reflex responses coincided with differences in resting BRS (22 ± 8 vs. 11 ± 3 ms/mmHg, p = 0.049) and resting HR (57 ± 8 vs. 71 ± 12 bpm, p = 0.047) and were highly reproducible over time. In conclusion, we found distinct cardiovascular response patterns to sympathetic stimulation by LBNP in young healthy individuals. These patterns of preferential autonomic blood pressure control appeared related to resting cardiac BRS and HR and were consistent over time. PMID:27378944

  11. Can bread processing conditions alter glycaemic response?

    PubMed

    Lau, Evelyn; Soong, Yean Yean; Zhou, Weibiao; Henry, Jeyakumar

    2015-04-15

    Bread is a staple food that is traditionally made from wheat flour. This study aimed to compare the starch digestibility of western baked bread and oriental steamed bread. Four types of bread were prepared: western baked bread (WBB) and oriental steamed bread (OSB), modified baked bread (MBB) made with the OSB recipe and WBB processing, and modified steamed bread (MSB) made with the WBB recipe and OSB processing. MBB showed the highest starch digestibility in vitro, followed by WBB, OSB and MSB. A similar trend was observed for glycaemic response in vivo. MBB, WBB, OSB and MSB had a glycaemic index of 75±4, 71±5, 68±5 and 65±4, respectively. Processing differences had a more pronounced effect on starch digestibility in bread, and steamed bread was healthier in terms of glycaemic response. The manipulation of processing conditions could be an innovative route to alter the glycaemic response of carbohydrate-rich foods.

  12. Sex, outcome expectancy, and cardiovascular response to a masculine challenge.

    PubMed

    Wright, Rex A; Lockard, Stephanie

    2006-03-01

    Male and female participants were led to believe they could secure a low or high chance of winning a prize by meeting a modest standard on a purportedly masculine task, that is, a task on which men ostensibly had higher ability. As expected, systolic blood pressure responses measured during performance were greater for women than men when the chance of winning was high, but low for both groups when the chance of winning was low. Similar effects were observed for diastolic and mean arterial pressure responses, although analysis of the mean arterial pressure data produced only a main effect for the chance factor. These results conceptually replicate cardiovascular findings obtained in a previous sex difference study. They also confirm the implication of previous ability perception studies that effort-related cardiovascular responses should be low for both sexes when the importance of meeting a gender-relevant challenge is low.

  13. Role of arterial baroreceptors in mediating cardiovascular response to exercise

    NASA Technical Reports Server (NTRS)

    Mcritchie, R. J.; Vatner, S. F.; Patrick, T. A.; Braunwald, E.; Boettcher, D.; Heyndrickx, G. R.

    1976-01-01

    Experiments were conducted to define the role of the major arterial baroreceptors during moderately severe exercise by comparing the responses of untethered conscious dogs instrumented for the measurement of aortic pressure and cardiac output with those of dogs with total arterial baroreceptor denervation. The reflex heart rate responses to intravenous bolus doses of methoxamine were also examined in intact animals, both at rest and during exercise. Methoxamine is found to cause striking bradycardia at rest, but little bradycardia during exercise. Experimental findings suggest that the arterial baroreceptor reflex is normally inhibited during severe exercise and therefore plays little role in modulating the cardiovascular response to exercise.

  14. Family history of cardiovascular disease is associated with cardiovascular responses to stress in healthy young men and women.

    PubMed

    Wright, Caroline E; O'Donnell, Katie; Brydon, Lena; Wardle, Jane; Steptoe, Andrew

    2007-03-01

    Heightened cardiovascular stress responsivity is associated with cardiovascular disease, but the origins of heightened responsivity are unclear. The present study investigated whether disturbances in cardiovascular responsivity were evident in individuals with a family history of cardiovascular disease risk. Data were collected from 60 women and 31 men with an average age of 21.4 years. Family history of cardiovascular disease risk was defined by the presence of coronary heart disease, hypertension, diabetes or high cholesterol in participants' parents and grandparents; 75 participants had positive, and 16 had negative family histories. Systolic and diastolic blood pressure (BP), heart rate and heart rate variability were measured continuously for 5 min periods at baseline, during two mental stress tasks (Stroop and speech task) and at 10-15 min, 25-30 min and 40-45 min post-stress. Individuals with a positive family history exhibited significantly greater diastolic BP reactivity and poorer systolic and diastolic BP recovery from the stressors in comparison with family history negative individuals. In addition, female participants with a positive family history had heightened heart rate and heart rate variability reactivity to stressors. These effects were independent of baseline cardiovascular activity, body mass index, waist to hip ratio and smoking status. Family history of hypertension alone was not associated with stress responsivity. The findings indicate that a family history of cardiovascular disease risk influences stress responsivity which may in turn contribute to risk of future cardiovascular disorders.

  15. Defensive Hostility: Psychosocial Correlates and Associations with Cardiovascular Responses

    DTIC Science & Technology

    1993-04-21

    caffeinated drinks ( coffee , tea, most sodas) for two hours before your scheduled appointment. The completion of the questionnaires should take...high HR reactors were not different from low HR reactors on resting HR, blood pressu re, or serum lipid concentration . A second study replicated...individuals who endorsed suppression of anger items exhibited the greatest cardiovascular responses during Stroop and a math task. Furthermore, Mills

  16. Cardiovascular

    NASA Video Gallery

    Overview of Cardiovascular research which addresses risks of space flight, including adaptive changes to the cephalad fluid shift (such as reduced circulating blood volume), potential for heart rhy...

  17. Cardiovascular responses to water drinking: does osmolality play a role?

    PubMed

    Brown, Clive M; Barberini, Luc; Dulloo, Abdul G; Montani, Jean-Pierre

    2005-12-01

    Water drinking activates the autonomic nervous system and induces acute hemodynamic changes. The actual stimulus for these effects is undetermined but might be related to either gastric distension or to osmotic factors. In the present study, we tested whether the cardiovascular responses to water drinking are related to water's relative hypoosmolality. Therefore, we compared the cardiovascular effects of a water drink (7.5 ml/kg body wt) with an identical volume of a physiological (0.9%) saline solution in nine healthy subjects (6 male, 3 female, aged 26 +/- 2 years), while continuously monitoring beat-to-beat blood pressure (finger plethysmography), cardiac intervals (electrocardiography), and cardiac output (thoracic impedance). Total peripheral resistance was calculated as mean blood pressure/cardiac output. Cardiac interval variability (high-frequency power) was assessed by spectral analysis as an index of cardiac vagal tone. Baroreceptor sensitivity was evaluated using the sequence technique. Drinking water, but not saline, decreased heart rate (P = 0.01) and increased total peripheral resistance (P < 0.01), high-frequency cardiac interval variability (P = 0.03), and baroreceptor sensitivity (P = 0.01). Neither water nor saline substantially increased blood pressure. These responses suggest that water drinking simultaneously increases sympathetic vasoconstrictor activity and cardiac vagal tone. That these effects were absent after drinking physiological saline indicate that the cardiovascular responses to water drinking are influenced by its hypoosmotic properties.

  18. A unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks

    PubMed Central

    Duan, Zhong-Hui; Surampudi, Venkata Suresh K.; Liu, Chang-Gong; Kotwal, Ashwin; Moravec, Christine S.; Starling, Randall C.; Perez, Dianne M.; Sen, Subha; Wu, Qingyu; Plow, Edward F.; Karnik, Sadashiva

    2017-01-01

    It is well established that the gene expression patterns are substantially altered in cardiac hypertrophy and heart failure, however, less is known about the reasons behind such global differences. MicroRNAs (miRNAs) are short non-coding RNAs that can target multiple molecules to regulate wide array of proteins in diverse pathways. The goal of the study was to profile alterations in miRNA expression using end-stage human heart failure samples with an aim to build signaling network pathways using predicted targets for the altered miRNA and to determine nodal molecules regulating individual networks. Profiling of miRNAs using custom designed microarray and validation with an independent set of samples identified eight miRNAs that are altered in human heart failure including one novel miRNA yet to be implicated in cardiac pathology. To gain an unbiased perspective on global regulation by top eight altered miRNAs, functional relationship of predicted targets for these eight miRNAs were examined by network analysis. Ingenuity Pathways Analysis network algorithm was used to build global signaling networks based on the targets of altered miRNAs which allowed us to identify participating networks and nodal molecules that could contribute to cardiac pathophysiology. Majority of the nodal molecules identified in our analysis are targets of altered miRNAs and known regulators of cardiovascular signaling. Cardio-genomics heart failure gene expression public data base was used to analyze trends in expression pattern for target nodal molecules and indeed changes in expression of nodal molecules inversely correlated to miRNA alterations. We have used NF kappa B network as an example to show that targeting other molecules in the network could alter the nodal NF kappa B despite not being a miRNA target suggesting an integrated network response. Thus, using network analysis we show that altering key functional target proteins may regulate expression of the myriad signaling pathways

  19. Coconut fragrance and cardiovascular response to laboratory stress: results of pilot testing.

    PubMed

    Mezzacappa, Elizabeth Sibolboro; Arumugam, Uma; Chen, Sylvia Yue; Stein, Traci R; Oz, Mehmet; Buckle, Jane

    2010-01-01

    There is preliminary evidence that pleasant fragrances may alter response to stressors in different settings. This pilot study examined the effect of coconut fragrance on cardiovascular response to standard laboratory stressors. While inhaling coconut fragrance (n = 17) or air (n = 15), subjects performed a Stroop color-word task and a mental arithmetic task. Heart rate (HR), heart period variability (HPV) and blood pressure were measured during the 5-minute baseline, the task, and the recovery periods. The results indicated that subjects breathing coconut fragrance had higher HR and lower HPV than those who performed tasks while breathing air. HR response to mental arithmetic seemed to be blunted in the subjects breathing coconut; however, the lack of a difference in HPV seems to indicate that the blunting may be due to decreased sympathetic response, not decreased parasympathetic withdrawal under stress. Blood pressure recovery was slightly enhanced in subjects under coconut fragrance. Thus, the results of this pilot test suggest that coconut fragrance may alter cardiovascular activity both at rest and in response to stressors. Future experimentation should attempt to replicate and extend these findings in larger samples in clinical settings.

  20. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links

    PubMed Central

    Stapleton, Phoebe A.; Abukabda, Alaeddin B.; Hardy, Steven L.

    2015-01-01

    The cardiovascular response to xenobiotic particle exposure has been increasingly studied over the last two decades, producing an extraordinary scope and depth of research findings. With the flourishing of nanotechnology, the term “xenobiotic particles” has expanded to encompass not only air pollution particulate matter (PM) but also anthropogenic particles, such as engineered nanomaterials (ENMs). Historically, the majority of research in these fields has focused on pulmonary exposure and the adverse physiological effects associated with a host inflammatory response or direct particle-tissue interactions. Because these hypotheses can neither account entirely for the deleterious cardiovascular effects of xenobiotic particle exposure nor their time course, the case for substantial neurological involvement is apparent. Indeed, considerable evidence suggests that not only is neural involvement a significant contributor but also a reality that needs to be investigated more thoroughly when assessing xenobiotic particle toxicities. Therefore, the scope of this review is several-fold. First, we provide a brief overview of the major anatomical components of the central and peripheral nervous systems, giving consideration to the potential biologic targets affected by inhaled particles. Second, the autonomic arcs and mechanisms that may be involved are reviewed. Third, the cardiovascular outcomes following neurological responses are discussed. Lastly, unique problems, future risks, and hurdles associated with xenobiotic particle exposure are discussed. A better understanding of these neural issues may facilitate research that in conjunction with existing research, will ultimately prevent the untoward cardiovascular outcomes associated with PM exposures and/or identify safe ENMs for the advancement of human health. PMID:26386111

  1. Cardiovascular and respiratory responses during musical mood induction.

    PubMed

    Etzel, Joset A; Johnsen, Erica L; Dickerson, Julie; Tranel, Daniel; Adolphs, Ralph

    2006-07-01

    Music is used to induce moods in experimental settings as well as for therapeutic purposes. Prior studies suggest that subjects listening to certain types of music experience strong moods and show physiological responses associated with the induced emotions. We hypothesized that cardiovascular and respiratory patterns could discriminate moods induced via music. 18 healthy subjects listened to 12 music clips, four each to induce happiness, sadness, and fear, while cardiovascular and respiratory responses were recorded using an electrocardiogram and chest strain-gauge belt. After each clip subjects completed a questionnaire. Subjects consistently reported experiencing the targeted mood, suggesting successful mood induction. Cardiovascular activity was measured by calculating time domain measures and heart rate changes during each clip. Respiratory activity was measured by total, inspiration, and expiration lengths as well as changes in mean respiration rate during each clip. Evaluation of individuals' patterns and mixed-model analyses were performed. Contrary to expectations, the time domain measures of subjects' cardiovascular responses did not vary significantly between the induced moods, although a heart rate deceleration was found during the sadness inductions and acceleration during the fear inductions. The time domain respiratory measures varied with clip type: the mean breath length was longest for the sad induction, intermediate during fear, and shortest during the happiness induction. However, analysis using normalized least mean squares adaptive filters to measure time correlation indicated that much of this difference may be attributable to entrainment of respiration to characteristics of the music which varied between the stimuli. Our findings point to the difficulty in detecting psychophysiological correlates of mood induction, and further suggest that part of this difficulty may arise from failure to differentiate it from tempo-related contributions

  2. Cardiovascular Autonomic Response to Amlodipine in Primary Hypertension

    PubMed Central

    Radjab, Youssouf; Aboudrar, Souad; Milouk, Fatima Zahra; Rkain, Hanan; EL Bakkali, Mustapha; Dakka, Taoufiq; Coghlan, Leslie; Benjelloun, Halima

    2012-01-01

    Sympathetic hyperactivity may be involved in primary hypertension. The purpose of this study was to evaluate both sympathetic and vagal activity responses in patients receiving amlodipine as antihypertensive agent. Patients and Methods. This prospective study included a group of primary hypertensive patients (N = 32, mean age 54.6 ± 7.6 years). The cardiovascular autonomic tests performed in this group, before and after 3 months of daily oral administration of amlodipine, included deep breathing, hand-grip, and mental stress tests. Statistical analysis was done using the Student's t-test. Results. Cardiovascular autonomic reflexes responses before and after 3 months of amlodipine oral administration were as follows: the mental stress test stimulation method produced a central alpha adrenergic response of 23.9 ± 8.7% versus 11.2 ± 2.0% (P < 0.05), a central beta sympathetic response of 16.7 ± 9.2% versus 10.4 ± 1.3% (P < 0.05), a blood pressure increase in response to hand grip test of 20.5 ± 7.3% versus 10.7 ± 2.4% (P < 0.05), vagal response to deep breathing test was 21.2 ± 6.5% versus 30.8 ± 2.9%, (P < 0.05). Conclusion. The results attest that amlodipine may have an anti-sympathetic effect. PMID:22919515

  3. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats

    PubMed Central

    Semionatto, Isadora Ferraz; Raminelli, Adrieli Oliveira; Alves, Angelica Cristina; Capitelli, Caroline Santos; Chriguer, Rosangela Soares

    2017-01-01

    Background Isotonic blood volume expansion (BVE) induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. Objective To evaluate the effect of saline or serotonergic agonist (DOI) administration in the hypothalamic paraventricular nucleus (PVN) on cardiovascular responses after BVE. Methods We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP), systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and the sympathetic-vagal ratio (LF/HF) of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. Results No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17); SBP (147.23±14.31 vs 129.39±10.70); DBP (98.01 ±4.91 vs 87.31±8.61); HR (421.02±43.32 vs 356.35±41.99); and LF/HF ratio (2.32±0.80 vs 0.27±0.32). Discussion The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. Conclusion These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats. PMID:28099586

  4. Cardiovascular regulation by central adrenergic mechanisms and its alteration by hypotensive drugs.

    PubMed

    Haeusler, G

    1975-06-01

    seems that two central adrenergic systems exist with opposing effects on cardiovascular control. These are an excitatory hypothalamic and an inhibitory bulbar adrenergic system. Partial destruction of central adrenergic neurons by intraventricularly injected 6-hydroxydopamine prevents the development of DOCA/NaCl, renal, and neurogenic hypertension and alters the pattern of blood pressure rise in spontaneously hypertensive rats. Impairment of central adrenergic function or imbalance of the two central adrenergic mechanisms may represent a trigger mechanism for the initiation of hypertension.

  5. Sleep duration and cardiovascular responses to stress in undergraduate men.

    PubMed

    Mezick, Elizabeth J; Matthews, Karen A; Hall, Martica H; Richard Jennings, J; Kamarck, Thomas W

    2014-01-01

    Short sleep has been related to incident cardiovascular disease, but physiological mechanisms accounting for this relationship are largely unknown. This study examines sleep duration and cardiovascular stress responses in 79 healthy, young men. Sleep duration was assessed by wrist actigraphy for seven nights. Participants then completed a series of laboratory stress tasks while heart rate and blood pressure were monitored. Shorter total sleep time was related to a greater reduction in high-frequency heart rate variability during stress tasks, and to prolonged elevations in heart rate and diastolic pressure following tasks. Associations were independent of age, race, body mass index, caffeine intake, and smoking status. In sum, healthy young men with shorter actigraphy-assessed sleep exhibit less cardiac vagal activity, and poorer heart rate and diastolic blood pressure recovery, upon encountering stressful stimuli, than those with longer sleep.

  6. Exaggerated Exercise Blood Pressure Response and Future Cardiovascular Disease.

    PubMed

    Tzemos, Nikolaos; Lim, Pitt O; Mackenzie, Isla S; MacDonald, Thomas M

    2015-11-01

    Exaggerated blood pressure (BP) response to exercise predicts future hypertension. However, there is considerable lack of understanding regarding the mechanism of how this abnormal response is generated, and how it relates to the future establishment of cardiovascular disease. The authors studied 82 healthy male volunteers without cardiovascular risk factors. The participants were categorized into two age-matched groups depending on their exercise systolic BP (ExSBP) rise after 3 minutes of exercise using a submaximal step test: exaggerated ExSBP group (hyper-responders [peak SBP ≥ 180 mm Hg]) and low ExSBP responder group (hypo-responders [peak SBP <180 mm Hg]). Forearm venous occlusion plethysmography and intra-arterial infusions of acetylcholine (ACh), N(G)-monomethyl-L-arginine (L-NMMA), sodium nitroprusside (SNP), and norepinephrine (NE) were used to assess vascular reactivity. Proximal aortic compliance was assessed with ultrasound, and neurohormonal blood sampling was performed at rest and during peak exercise. The hyper-responder group exhibited a significantly lower increase in forearm blood flow (FBF) with ACh compared with the hypo-responder group (ΔFBF 215% [14] vs 332.3% [28], mean [standard error of the mean]; P<.001), as well as decreased proximal aortic compliance. The vasoconstrictive response to L-NMMA was significantly impaired in the hyper-responder group in comparison to the hypo-responder group (ΔFBF -40.2% [1.6] vs -50.2% [2.6]; P<.05). In contrast, the vascular response to SNP and NE were comparable in both groups. Peak exercise plasma angiotensin II levels were significantly higher in the hyper-responder group (31 [1] vs 23 [2] pg/mL, P=.01). An exaggerated BP response to exercise is related to endothelial dysfunction, decreased proximal aortic compliance, and increased exercise-related neurohormonal activation, the constellation of which may explain future cardiovascular disease.

  7. Here we go again: bullying history and cardiovascular responses to social exclusion.

    PubMed

    Newman, Matthew L

    2014-06-22

    Previous research suggests that social exclusion-both acute and chronic-may be associated with a pattern of blunted cardiovascular responding. But it is unknown to what extent acute and chronic exclusion interact. That is, what happens when victims of long-term social rejection encounter an instance of exclusion later in life? The goal of the present study was to test whether prior experience being bullied would alter cardiovascular responses to an acute experience of social exclusion. Participants took part in a short online chat, during which they were either included or excluded from the conversation. Consistent with hypotheses, all participants showed an increase in sympathetic activity in the exclusion condition, but this response was significantly blunted among those with more chronic history of bullying victimization. No differences were observed for parasympathetic activity. This pattern suggests that a history of chronic victimization magnifies the cardiovascular "blunting" shown previously among victims of ostracism. This line of work suggests that bullying victims may develop regulatory mechanisms in response to social threats, and this may ultimately provide valuable information for helping victims become more resilient.

  8. Success importance and urge magnitude as determinants of cardiovascular response to a behavioral restraint challenge.

    PubMed

    Agtarap, Stephanie D; Wright, Rex A; Mlynski, Christopher; Hammad, Rawan; Blackledge, Sabrina

    2016-04-01

    Decades of research have investigated a conceptual analysis concerned with determinants and cardiovascular correlates of effort in people confronted with performance challenges, that is, opportunities to alter some course of events by acting. One suggestion is that effort and associated cardiovascular responses should be determined jointly by the difficulty of meeting a challenge and the importance of doing so. The present experiment tested this in a context involving behavioral restraint, that is, effortful resistance against a behavioral impulse or urge. Participants were presented a mildly evocative violent film clip (restraint difficulty low) or a strongly evocative violent film clip (restraint difficulty high) with instructions to refrain from showing any facial response. Success was made more or less important through coordinated manipulations of outcome expectancy, ego-involvement and social evaluation. As expected, SBP responses assessed during the work period were proportional to clip evocativeness - i.e., the difficulty of the restraint challenge - when importance was high, but low regardless of clip evocativeness when importance was low. Findings conceptually replicate previous cardiovascular results and support extension of the guiding analysis to the behavioral restraint realm.

  9. Gravitational effects on human cardiovascular responses to isometric muscle contractions

    NASA Astrophysics Data System (ADS)

    Bonde-Petersen, Flemmig; Suzuki, Yoji; Sadamoto, Tomoko

    Isometric exercise induces profound cardiovascular adaptations increasing mean arterial pressure and heart rate. We investigated effects of simulated +Gz and -Gz respectively on the central and peripheral cardiovascular system. Sustained handgrip exercise was performed at 40% of maximum for 2 minutes in five subjects. This maneuver increased mean arterial pressure by 40-45 mm Hg both during head out water immersion which simulates weightlessness, as well as bedrest during -25, 0, and +25 degrees tilt from the horizontal. Lower body negative pressure (-60 mm Hg for 10 min) attenuated the response to handgrip exercise to 30 mm Hg. It also increased the heart rate minimally by about 20 beats per minute while the water immersion, as well as head up, head down and horizontal bedrest showed increments of about 50 beats per min. It was concluded that the response to isometric contraction is mediated through the high pressure baroreceptors, because similar responses were seen during stresses producing a wide variation in central venous pressure. During lower body negative pressure the increased sympathetic nervous activity itself increased resting heart rate and mean arterial pressure. The responses to static exercise were, therefore, weaker.

  10. Cardiovascular responses to glucagon - Physiologic measurement by external recordings.

    NASA Technical Reports Server (NTRS)

    Byrne, M. J.; Pigott, V.; Spodick, D. H.

    1972-01-01

    Assessment by noninvasive polygraphic techniques of the cardiovascular responses of normal subjects to intravenous injections of glucagon and glucagon diluent. A blinding procedure which eliminated observer bias was used during the reading of tracings. Analysis of group results showed that glucagon provoked uniformly significant changes, including increase in heart rate, blood pressure, pressure-rate product, and ejection time index, and decrease in prejection period, mechanical and electromechanical systole, left ventricular ejection time, and the ratio PEP/LVET. The principal results correlated well with those of previous studies of the hemodynamic effects of glucagon.

  11. Cardiovascular responses to heat stress in chronic heart failure

    PubMed Central

    Cui, Jian; Sinoway, Lawrence I.

    2014-01-01

    Clinical reports have suggested that patients with heart diseases may be particularly vulnerable to heat injury. This review examines the effects of heat stress on cardiovascular and autonomic functions in patients with chronic heart failure (CHF). Laboratory investigations have shown that cutaneous vasodilator responses to heating are impaired in patients, whereas activation of skin sympathetic nerve activation is not attenuated in CHF as compared to controls. Attenuated cutaneous vasodilation may increase the risk of a heat related illness when CHF subjects are exposed to hyperthermic conditions. PMID:24599558

  12. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  13. Cardiovascular responses to intrathecal administration of endomorphins in anesthetized rats.

    PubMed

    Wang, Chang-Lin; Yu, Ye; Lai, Lu-Hao; Cui, Yun; Wang, Xiang; Wang, Rui

    2007-04-01

    Endomorphins (EMs), the endogenous, potent and selective mu-opioid receptor agonists, have been shown to decrease systemic arterial pressure (SAP) in rats after intravenous (i.v.) administration. In the present study, cardiovascular responses to intrathecal (i.t.) injection of EMs were investigated in urethane-anesthetized rats. It is noteworthy that EMs elicited decreases in SAP and heart rate (HR) in a dose-dependent manner; 10-300nmol/kg were injected intrathecally. Furthermore, these vasodepressor and bradycardic effects were significantly antagonized by naloxone (0.5mg/kg, i.t.). Interestingly, i.t. (5mg/kg) or i.v. (50mg/kg) administrations of N(omega)-nitro-l-arginine methylester (l-NAME) attenuated the vasodepressor and bradycardic effects. Moreover, pretreatment of the rats with muscarinic receptor antagonist atropine (2mg/kg, i.v.) and alpha-adrenoceptor antagonist phentolamine (1mg/kg, i.v.) significantly reduced the vasodepressor effects of EMs. Nevertheless, pretreatment with beta-adrenoceptor antagonist propranolol (2mg/kg, i.v.) could only block the bradycardia effects induced by EMs, but had no significant effects on the hypotension. In summary, all the results suggested that i.t. administration of EMs decreased SAP and HR which were possibly mediated by the activation of opioid receptors in the rat spinal cord. In addition, nitric oxide (NO) release in both the spinal cord and in peripheral tissues might regulate the cardiovascular activities of EMs, and the muscarinic receptor and adrenoceptor played an important role in the regulation of the cardiovascular responses to i.t. administration of EMs.

  14. The cardiovascular response to passive movement is joint dependent.

    PubMed

    Burns, Keith J; Pollock, Brandon S; McDaniel, John

    2016-03-01

    The cardiovascular responses to passive limb movement (PLM) at the knee are well established, however, responses to PLM at other joints involving smaller muscle volume are unknown. To compare the cardiovascular responses to passive movement at other joints, 10 participants underwent a PLM protocol in which the wrist, elbow, ankle, and knee joints were passively extended and flexed at 1 Hz for 1 min. Heart rate (HR), mean arterial blood pressure (MAP), and arterial blood flow to that limb segment (BF) were measured and vascular conductance (VC) was calculated for a 30-sec baseline period and for 3-sec intervals throughout PLM protocols. PLM of the knee and elbow resulted in significant increases in BF and VC from baseline values with peak values 180% (P < 0.001) greater than baseline. PLM of the elbow resulted in significant increases in BF and VC from baseline values with peak values 109% and 115% (P < 0.001) greater than baseline, respectively. No changes in BF and VC were observed in the ankle and wrist. Furthermore, the greater increase in blood flow per limb segment volume in the thigh and upper arm (62.8 ± 36.5 and 55.5 ± 30.3 mL min(-1) L(-1), respectively) compared to the forearm and lower leg (23.6 ± 16.7 and 19.1 ± 10.3 mL min(-1) L(-1), respectively) indicates the limb volume is not solely responsible for the differences in the hyperemic responses. These data indicate that the use of PLM to assess vascular function or as a rehabilitation modality to maintain vascular health may be most appropriate for the muscles that span the elbow and knee.

  15. Exposure to Maternal Gestational Diabetes Is Associated With Higher Cardiovascular Responses to Stress in Adolescent Indians

    PubMed Central

    Veena, Sargoor R.; Jones, Alexander; Srinivasan, Krishnamachari; Osmond, Clive; Karat, Samuel C.; Kurpad, Anura V.; Fall, Caroline H. D.

    2015-01-01

    Context: Altered endocrinal and autonomic nervous system responses to stress may link impaired intra-uterine growth with later cardiovascular disease. Objective: To test the hypothesis that offspring of gestational diabetic mothers (OGDM) have high cortisol and cardiosympathetic responses during the Trier Social Stress Test for Children (TSST-C). Design: Adolescents from a birth cohort in India (n = 213; mean age, 13.5 y), including 26 OGDM, 22 offspring of diabetic fathers (ODF), and 165 offspring of nondiabetic parents (controls) completed 5 minutes each of public speaking and mental arithmetic tasks in front of two unfamiliar “evaluators” (TSST-C). Salivary cortisol concentrations were measured at baseline and at regular intervals after the TSST-C. Heart rate, blood pressure (BP), stroke volume, cardiac output, and total peripheral resistance were measured continuously at baseline, during the TSST-C, and for 10 minutes after the test using a finger cuff; the beat-to-beat values were averaged for these periods. Results: Cortisol and cardiosympathetic parameters increased from baseline during stress (P < .001). OGDM had greater systolic BP (mean difference, 5.6 mm Hg), cardiac output (0.5 L/min), and stroke volume (4.0 mL) increases and a lower total peripheral resistance rise (125 dyn · s/cm5) than controls during stress. ODF had greater systolic BP responses than controls (difference, 4.1 mm Hg); there was no difference in other cardiosympathetic parameters. Cortisol responses were similar in all three groups. Conclusions: Maternal diabetes during pregnancy is associated with higher cardiosympathetic stress responses in the offspring, which may contribute to their higher cardiovascular disease risk. Further research may confirm stress-response programming as a predictor of cardiovascular risk in OGDM. PMID:25478935

  16. Dose Response Effects of Hypertonic Saline and Dextran on Cardiovascular Responses in Sheep

    DTIC Science & Technology

    1995-02-01

    137-144, 1995 DOSE RESPONSE EFFECTS OF HYPERTONIC SALINE AND DEXTRAN ON CARDIOVASCULAR RESPONSES AND PLASMA VOLUME EXPANSION IN SHEEP Michael A...addressed the dose - response effects of HS or D-70 solutions or their possible synergistic combinations to evaluate optimal concentrations of the HS and D...205-217, 1989. 13. Halvorsen L, Günther RA, Dubick MA, Holcroft JW: Dose response characteristics of hypertonic saline dextran solution. J Trauma

  17. Test anxiety and cardiovascular responses to daily academic stressors.

    PubMed

    Conley, Kristen M; Lehman, Barbara J

    2012-02-01

    Routine academic events may cause stress and produce temporary elevations in blood pressure. Students who experience test anxiety may be especially prone to cardiovascular activation in response to academic stress. This study drew on self-reported stress and ambulatory blood pressure measurements provided by 99 undergraduate participants (30% men, mean age=21 years) who participated over 4 days. Posture, activity level, recent consumption and the previous same-day reading were considered as covariates in a series of hierarchical linear models. Results indicate elevations in systolic blood pressure at times of acute academic stressors; neither diastolic blood pressure nor heart rate was linked with academic stress. In addition, those participants higher in test anxiety exhibited especially pronounced elevations in systolic blood pressure during times of acute academic stress. This research suggests that everyday academic stressors are linked with temporary increases in blood pressure and that test anxiety may contribute to these elevations. Test anxiety has implications for future academic and job success, and cardiovascular responses to everyday stress may contribute to health problems later in life.

  18. Role of autonomic reflex arcs in cardiovascular responses to air pollution exposure.

    PubMed

    Perez, Christina M; Hazari, Mehdi S; Farraj, Aimen K

    2015-01-01

    The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome of these reflexes, particularly with respect to the cardiovascular system. Modulation of autonomic neural input to the heart and vasculature following direct activation of sensory nerves in the respiratory system, elicitation of oxidative stress and inflammation, or through other mechanisms is one of the primary ways that exposure to air pollution affects normal cardiovascular function. Any homeostatic process that utilizes the autonomic nervous system to regulate organ function might be affected. Thus, air pollution and other inhaled environmental irritants have the potential to alter both local airway function and baro- and chemoreflex responses, which modulate autonomic control of blood pressure and detect concentrations of key gases in the body. While each of these reflex pathways causes distinct responses, the systems are heavily integrated and communicate through overlapping regions of the brainstem to cause global effects. This short review summarizes the function of major pulmonary sensory receptors, baroreceptors, and carotid body chemoreceptors and discusses the impacts of air pollution exposure on these systems.

  19. Hormonal and cardiovascular responses to DDAVP in man.

    PubMed

    Williams, T D; Lightman, S L; Leadbeater, M J

    1986-01-01

    Hormonal and cardiovascular responses to 1-desamino-8-D-arginine vasopressin (DDAVP) were investigated in six normal adult volunteers. After overnight fluid deprivation, an intravenous injection of either DDAVP (0.4 microgram/kg) or the same volume of normal saline was administered. One hour later an intravenous infusion of hypertonic saline was commenced and continued over two hours. Five minutes following the DDAVP injection, facial flushing, a fall in diastolic blood pressure by an average of 13% and a rise in pulse rate by an average of 18% were observed. There was a significant increase in plasma renin activity and plasma cortisol concentration, but no significant changes were observed in plasma concentrations of LH, FSH, TSH, prolactin or GH. Following osmotic stimulation by hypertonic saline plasma AVP rose to the same extent in both the DDAVP and control studies. DDAVP (0.4 microgram/kg) was also administered to five subjects with cranial diabetes insipidus. Again facial flushing, increased facial temperature, a fall in diastolic pressure and a rise in heart rate were all observed, suggesting that DDAVP exerts its cardiovascular actions by a mechanism other than antagonism of circulating endogenous AVP.

  20. Essential Hypertension: Cardiovascular Response to Breath Hold Combined with Exercise.

    PubMed

    Hoffmann, U; Urban, P; Koschate, J; Drescher, U; Pfister, R; Michels, G

    2015-07-01

    Essential hypertension (EH) is a widespread disease and might be prevalent in apnea divers and master athletes. Little is known about the influence of EH and the antihypertensive drugs (AHD) on cardiovascular reactions to combined breath hold (BH) and exercise. In this pilot study, healthy divers (HCON) were compared with treated hypertensive divers with regard to heart rate (HR) and mean blood-pressure (MAP) responses to BH, exercise and the combination of both. Ten subjects with EH and ten healthy divers were tested. 3 different 20 s stimuli were applied: BH combined with 30 W or 150 W and 150 W without BH. The time-charts during the stress intervals and during recovery were compared. Subjects treated with an angiotensin-converting enzyme (ACE) inhibitor showed higher changes for MAP values if breath hold was performed. HR responses were obviously changed if a β-blocker was part of the medication. One subject showed extreme MAP responses to all stimuli and conspicuous HR if BH was involved. The modulation of HR-/MAP-response in EH subjects depends on the mechanisms of antihypertensive agents. The combination of an ACE inhibitor and a β-blocker may give the best protection. It is recommended to include short apnea tests in the fitness-to-dive examination to individually predict potential endangerment.

  1. Effect of hindlimb suspension on cardiovascular responses to sympathomimetics and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Overton, J. Michael; Tipton, Charles M.

    1990-01-01

    To determine whether hindlimb suspension is associated with the development of cardiovascular deconditioning, male rats were studied before and after undergoing one of three treatment conditions for 9 days: (1) cage control (n = 15, CON), (2) horizontal suspension (n = 15, HOZ), and (3) head-down suspension (n = 18, HDS). Testing included lower body negative pressure administered during chloralose-urethan anesthesia and graded doses of sympathomimetic agents (norepinephrine, phenylephrine, and tyramine) administered to conscious unrestrained animals. Both HDS and HOZ were associated with a small decrease in the hypotensive response to lower body negative pressure. The HOZ group, but not the HDS group, exhibited augmented reflex tachycardia. Furthermore, both HDS and HOZ groups manifested reduced pressor responses to phenylephrine after treatment. These reductions were associated with significantly attenuated increases in mesenteric vascular resistance. However, baroreflex control of heart rate was not altered by the treatment conditions. Collectively, these results indicate that 9 days of HDS in rats does not elicit hemodynamic response patterns generally associated with cardiovascular deconditioning induced by hypogravic conditions.

  2. Cardiovascular and phrenic nerve responses to stimulation of the amygdala central nucleus in the anaesthetized rabbit.

    PubMed Central

    Cox, G E; Jordan, D; Paton, J F; Spyer, K M; Wood, L M

    1987-01-01

    1. The cardiovascular responses to electrical stimulation of the central nucleus of the amygdala (c.n.) have been studied in chloralose-anaesthetized rabbits. A pattern of response involving bradycardia, hypotension and hind-limb vasodilatation, accompanied by an increase in the rate of phrenic nerve discharge, was evoked only in response to stimulation within the medial portion of the c.n. 2. The cardiovascular responses were not secondary to the changes in respiratory activity since they were unaffected by altering central respiratory drive by either hypo- or hyperventilation of the animal. 3. The bradycardia was attenuated by the administration of atropine sulphate and abolished by the subsequent administration of propranolol, which when given alone attenuated the bradycardia. Atropine or propranolol given alone also attenuated the hypotension evoked by medial c.n. stimulation but the concurrent hind-limb vasodilatation was unaffected. 4. Atenolol, which unlike propranolol does not cross the blood-brain barrier, had little effect on the bradycardia in response to medial c.n. stimulation, but the subsequent administration of atropine abolished it. The hypotension in response to medial c.n. stimulation was also unaffected by atenolol. 5. The vasodilatation in response to medial c.n. stimulation was abolished by administration of guanethidine even after restoration of hind-limb perfusion pressure to control values by the infusion of angiotensin II into the hind-limb perfusion circuit. 6. Electrical stimulation of areas within 0.5 mm of the medial c.n. also resulted in bradycardia but then it was accompanied by hypertension and hind-limb vasoconstriction. Stimulation of areas 1.0 mm distant to the medial c.n. resulted in small and inconsistent cardiovascular responses. 7. These results show that hind-limb vasodilatation, mediated by withdrawal of sympathetic tone, occurs in response to stimulation within the medial c.n. of the rabbit and is in part responsible for

  3. Cardiovascular alterations after injection of 2% lidocaine with norepinephrine 1:50,000 (xylestesin) in rats.

    PubMed

    Faraco, Fatima Neves; Armonia, Paschoal Laercio; Malamed, Stanley F

    2007-01-01

    The purpose of the present study is to determine the cardiovascular effects produced by intravascular injection of 2% lidocaine with 20 microg/mL of norepinephrine on systolic, diastolic, and mean arterial pressures and heart rate of rats at the following times: control period, during the injection (first 15 seconds), during the first minute, and at the end of 1, 2, 3, 4, 5, 10, 15, 20, 25, and 30 minutes after drug administration. The study was performed on 13 male Wistar rats with weights between 200 grams and 220 grams that were awake during the recording of these parameters. The dose administered was proportional to 1 cartridge of local anesthetic (1.8 mL) in an average-size human, which is equivalent to 0.51 mg/kg of lidocaine hydrochloride and 0.51 microg/kg of norepinephrine hydrochloride. The average time of injection was 15.7 seconds. The results of this study showed significant increases in systolic, diastolic, and mean arterial pressure and a noticeable decrease in heart rate. The greatest variation occurred in the systolic blood pressure. The greatest alterations occurred during injection and within the first minute following administration of the anesthetic solution. We would anticipate these changes in the parameters analyzed to be clinically significant. Thus, dentists using 2% lidocaine with norepinephrine 20 mug/mL should be very careful to avoid intravascular injection.

  4. Cardiovascular Alterations After Injection of 2% Lidocaine With Norepinephrine 1:50,000 (Xylestesin) in Rats

    PubMed Central

    Faraco, Fatima Neves; Armonia, Paschoal Laercio; Malamed, Stanley F

    2007-01-01

    The purpose of the present study is to determine the cardiovascular effects produced by intravascular injection of 2% lidocaine with 20 μg/mL of norepinephrine on systolic, diastolic, and mean arterial pressures and heart rate of rats at the following times: control period, during the injection (first 15 seconds), during the first minute, and at the end of 1, 2, 3, 4, 5, 10, 15, 20, 25, and 30 minutes after drug administration. The study was performed on 13 male Wistar rats with weights between 200 grams and 220 grams that were awake during the recording of these parameters. The dose administered was proportional to 1 cartridge of local anesthetic (1.8 mL) in an average-size human, which is equivalent to 0.51 mg/kg of lidocaine hydrochloride and 0.51 μg/kg of norepinephrine hydrochloride. The average time of injection was 15.7 seconds. The results of this study showed significant increases in systolic, diastolic, and mean arterial pressure and a noticeable decrease in heart rate. The greatest variation occurred in the systolic blood pressure. The greatest alterations occurred during injection and within the first minute following administration of the anesthetic solution. We would anticipate these changes in the parameters analyzed to be clinically significant. Thus, dentists using 2% lidocaine with norepinephrine 20 μg/mL should be very careful to avoid intravascular injection. PMID:17579502

  5. Response patterns and cardiovascular effects during response sequence acquisition by humans.

    PubMed Central

    Kelly, T H; Fischman, M W; Foltin, R W; Brady, J V

    1991-01-01

    The effects of temporal delays imposed between successive responses and of vitamin C administration were examined on the acquisition of response sequences and on cardiovascular reactivity during sequence acquisition. Thirteen adult subjects (6 female, 7 male), in good health, gave written consent prior to participating in 12 weekly 45-min sessions. Points, exchanged for money after each session, were presented when subjects completed 15-response sequences on a touch-sensitive three-response keypad. A position counter increased from 0 to 14 as subjects emitted correct responses in the sequence. Four novel 15-response sequences were presented each session. No delays were imposed between successive responses during the acquisition of one sequence; delays were imposed immediately following each response during the acquisition of a second sequence, thereby delaying response feedback; delays were imposed following feedback during acquisition of a third sequence, resulting in the removal of the stimulus correlated with sequence position; and, as a control condition, delays were imposed following feedback, but stimuli correlated with sequence position were reinstated prior to the next response during acquisition of a fourth sequence. Subjects were exposed to one of two delay durations (0.2 and 0.5 or 0.5 and 1.0 s) each session, and delay durations alternated every session. During Weeks 5 to 8, subjects received 3 grams of vitamin C per day, whereas during Weeks 1 to 4 and 9 to 12, subjects received placebo under single-blind conditions. All subjects acquired the sequences, as evidenced by decreasing percentages of incorrect responses across trials. When temporal delays were imposed between successive responses during sequence acquisition, acquisition efficiency was enhanced. Examination of response latencies suggested that the status of preceding responses (i.e., correct or incorrect) rather than the status of the position counter influenced subsequent responding

  6. Prior Exercise Alters Responses to Hemorrhage

    DTIC Science & Technology

    2010-07-01

    for the swine in our laboratory (4, 17). Plasma renin activ- ity (PRA), aldosterone, cortisol, and adrenocorticotropic hormone (ACTH) were measured...could aid in their care. Exercise acutely reduces blood volume, increases plasma lactate concentrations, and alters the hormonal /immunologic milieu...concentration was measured enzymatically with a commercial kit (Sigma Chemical Co, St Louis, Mo). Hormone concentrations were measured with tech- niques validated

  7. Transient middle cerebral artery occlusion and reperfusion alters inducible NOS expression within the ventrolateral medulla and modulates cardiovascular function during static exercise.

    PubMed

    Ally, Ahmmed; Maher, Timothy J

    2011-09-01

    A major cause of stroke is cerebral ischemia in regions supplied by the middle cerebral artery (MCA). In this study, we hypothesized that compromised cardiovascular function during static exercise may involve altered expression of inducible NOS (iNOS) protein within the rostral ventrolateral medulla (RVLM) and caudal ventrolateral medulla (CVLM). We compared cardiovascular responses and iNOS protein expression within the left and right sides of both RVLM and CVLM in sham-operated rats and in rats with a 90 min left-sided MCA occlusion (MCAO) followed by 24 h of reperfusion. Increases in blood pressure during a static muscle contraction were attenuated in MCAO rats compared with sham-operated rats. Also, iNOS expression within the left RVLM was augmented compared with the right RVLM in MCAO rats and compared with both RVLM quadrants in sham-operated rats. In contrast, compared with sham-operated rats and the right CVLM of MCAO rats, iNOS expression was attenuated in the left CVLM in left-sided MCAO rats. These data suggest that the attenuation of pressor responses during static exercise in MCAO rats involves overexpression of iNOS within the ipsilateral RVLM and attenuation in iNOS within the ipsilateral CVLM. Differential expression of iNOS within the medulla plays a role in mediating cardiovascular responses during static exercise following stroke.

  8. Cardiovascular and inflammatory response to cholecystokinin during endotoxemic shock.

    PubMed

    Saia, Rafael Simone; Bertozi, Giuliana; Mestriner, Fabíola Leslie; Antunes-Rodrigues, José; Queiróz Cunha, Fernando; Cárnio, Evelin Capellari

    2013-01-01

    Cholecystokinin (CCK) was first described as a gastrointestinal hormone, but its receptors have been located in cardiac and vascular tissues, as well as in immune cells. Our aims were to investigate the role of CCK on lipopolysaccharide (LPS)-induced hypotension and its ability to modulate previously reported inflammatory mediators, therefore affecting cardiovascular function. To conduct these experiments, rats had their jugular vein cannulated for drug administration, and also, the femoral artery cannulated for mean arterial pressure (MAP) and heart rate records. Endotoxemia induced by LPS from Escherichia coli (1.5 mg/kg; i.v.) stimulated the release of CCK, a progressive drop in MAP, and increase in heart rate. Plasma tumor necrosis factor α (TNF-α), interleukin 10 (IL-10), nitrate, vasopressin, and lactate levels were elevated in the endotoxemic rats. The pretreatment with proglumide (nonselective CCK antagonist; 30 mg/kg; i.p.) aggravated the hypotension and also increased plasma TNF-α and lactate levels. On the other hand, CCK (0.4 μg/kg; i.v.) administered before LPS significantly restored MAP, reduced aortic and hepatic inducible nitric oxide synthase (iNOS) production, and elevated plasma vasopressin and IL-10 concentrations; it did not affect TNF-α. Physiological CCK concentration reduced nitrite and iNOS synthesis by peritoneal macrophages, possibly through a self-regulatory IL-10-dependent mechanism. Together, these data suggest a new role for the peptide CCK in modulating MAP, possibly controlling the inflammatory response, stimulating the anti-inflammatory cytokine, IL-10, and reducing vascular and macrophage iNOS-derived nitric oxide production. Based on these findings, CCK could be used as an adjuvant therapeutic agent to improve cardiovascular function.

  9. Metabolic and Cardiovascular Response to Shallow Water Exercise in Young and Older Women.

    ERIC Educational Resources Information Center

    Campbell, Jennifer A.; D'Acquisto, Leo J.; D'Acquisto, Debra M.; Cline, Michael G.

    2003-01-01

    Compared the metabolic and cardiovascular responses of young and older women while performing shallow water exercise (SWE). Overall, SWE elicited metabolic and cardiovascular responses that met American College of Sports Medicine's guidelines for establishing health benefits. Older females self-selected a greater relative exercise intensity during…

  10. The Effects of Behavior Therapy, Self-Relaxation, and Transcendental Meditation on Cardiovascular Stress Response.

    ERIC Educational Resources Information Center

    Puente, Antonio E.; Beiman, Irving

    1980-01-01

    Compared Behavior Therapy (BT), self-relaxation (SR), transcendental meditation (TM), and a waiting-list control group (WL) on measures of cardiovascular and subjective stress response. Results indicate that BT and SR were more effective than either TM or WL in reducing cardiovascular stress response. (Author)

  11. Computational modeling of cardiovascular response to orthostatic stress

    NASA Technical Reports Server (NTRS)

    Heldt, Thomas; Shim, Eun B.; Kamm, Roger D.; Mark, Roger G.

    2002-01-01

    The objective of this study is to develop a model of the cardiovascular system capable of simulating the short-term (< or = 5 min) transient and steady-state hemodynamic responses to head-up tilt and lower body negative pressure. The model consists of a closed-loop lumped-parameter representation of the circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes. Model parameters are largely based on literature values. Model verification was performed by comparing the simulation output under baseline conditions and at different levels of orthostatic stress to sets of population-averaged hemodynamic data reported in the literature. On the basis of experimental evidence, we adjusted some model parameters to simulate experimental data. Orthostatic stress simulations are not statistically different from experimental data (two-sided test of significance with Bonferroni adjustment for multiple comparisons). Transient response characteristics of heart rate to tilt also compare well with reported data. A case study is presented on how the model is intended to be used in the future to investigate the effects of post-spaceflight orthostatic intolerance.

  12. Ultrastructural alterations in allylamine cardiovascular toxicity. Late myocardial and vascular lesions.

    PubMed Central

    Boor, P. J.; Ferrans, V. J.

    1985-01-01

    The late myocardial and vascular ultrastructural changes in rat hearts following consumption of the cardiovascular toxin allylamine were studied. Rats were given 0.1% allylamine HCl in drinking water for 10-104 days. From 10 to 21 days, there was organization of acute myocardial necrosis by macrophages and scattered polymorphonuclear leukocytes with prominent interstitial-cell proliferation. Alterations at 21-104 days included extensive scarring with formation of dense mature collagen with scattered fibroblasts present, grossly evident left-ventricular aneurysm, and gross and microscopic changes similar to those observed in the secondary form of endocardial fibroelastosis. Areas of scar contained highly cellular foci of smooth-muscle cells, myofibroblasts, and abundant extracellular elastin. Cardiac myocytes frequently showed markedly disorganized myofilaments, bizarrely distorted mitochondria with condensed cristae, and other severe degenerative changes. Small vessels within and adjacent to scar showed proliferation of intimal smooth-muscle cells. Endothelial lesions or recent or organized thrombi were not seen. Focal endocardial metaplasia, consisting of both chondroid and osseous tissue, was found in areas of transmural scarring, or ventricular aneurysm. Chondrocytes had the overall nuclear and cellular morphology, abundant rough endoplasmic reticulum, and surrounding lacunae typical of mature fibrocartilage. In some areas, the collagen matrix was undergoing calcification with the typical cross-banded pattern of calcifying connective tissue. Osteocytes were located in a densely calcified bone matrix and displayed characteristic cellular extensions into surrounding canaliculi. These findings indicate a severe myocardial, small-vessel, and endocardial injury during the course of chronic allylamine intoxication. Images Figure 13 Figure 14 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 15 Figure

  13. Cardiovascular response to bouts of exercise with blood flow restriction

    PubMed Central

    Bunevicius, Kestutis; Sujeta, Arturas; Poderiene, Kristina; Zachariene, Birute; Silinskas, Viktoras; Minkevicius, Rimantas; Poderys, Jonas

    2016-01-01

    [Purpose] Occlusion training with low-intensity resistance exercises and blood flow restriction increases muscle cross-sectional area and strength. This form of training is used in rehabilitation; therefore, the aim of this study was to examine the effect of one occlusion training session on the cardiovascular response to bouts of exercise. [Subjects and Methods] Two groups took part: a control group without blood flow restriction and an experimental group with blood flow restriction. A single training session was used with the exercise intensity set at 40% of the one repetition maximum. Maximum voluntary contraction, arterial blood pressure, and electrocardiogram measurements were performed. [Results] Heart rate was slightly higher in the control group. The performed training had no effect on diastolic blood pressure in either group, however, a tendency for a small systolic blood pressure increase was observed during the session in the experimental group. JT interval changes did not reveal significant differences between groups. There were no significant changes in ST-segment depression during the exercise or at rest. A lower tendency for JT/RR increases was observed during the repeated exercise tasks with partial blood flow restriction. [Conclusion] Low intensity exercises carried out with a partial blood flow restriction do not result in significant overload of cardiac function. PMID:28174436

  14. Potentiation of cardiovascular responses to hydralazine by diverse hydrazine derivatives.

    PubMed

    Vidrio, H

    1994-10-01

    After the observation that in anesthetized rats the antitubercular agent isoniazid potentiates the hypotensive effect of the vasodilator hydralazine (H) and transforms the accompanying reflex tachycardia to bradycardia, a number of hydrazine (HYD) derivatives were tested for this interaction in pentobarbital-anesthetized rats. All HYDs studied elicited this response in varying degrees, isoniazid, thiosemicarbazide and thiocarbohydrazide being the most active. Experiments were then carried out to explore the possibility of an influence of the HYDs on reflex reactions to H due to interaction with pyridoxal, inhibition of glutamic acid decarboxylase and decreased levels of brain gamma-aminobutyric acid. Although the H-HYDs interaction was prevented by vagotomy, it was unaffected by exogenous pyridoxal, did not occur with the alpha adrenergic antagonist prazosin and was not mimicked by non-HYD pyridoxal reactors. In other experiments, pharmacokinetic interactions and monoamine oxidase inhibition were ruled out as alternative explanations for this phenomenon. It was concluded that the H-HYDs interaction is not related to a possible influence of these drugs on central gamma-aminobutyric acid cardiovascular regulation and that other presently unknown mechanisms are involved.

  15. Cardiovascular responses to microgravity - Adaptation, maladjustment, and countermeasures

    NASA Technical Reports Server (NTRS)

    Gaffney, F. Andrew

    1989-01-01

    Humans have worked in space for up to 237 days without significant inflight limitations, although major cardiovascular disability is seen following space flight of even a few days duration. Most of the cardiovascular research on microgravity deconditioning has been observational in character. Detailed studies of mechanisms and causes of postflight exercise intolerance, low blood pressure and fainting in astronauts and cosmonauts have not been done, despite almost 30 years of manned space flight. A review of possible mechanisms of postflight cardiovascular deconditioning and directions for study is provided.

  16. Poor Response to Periodontal Treatment May Predict Future Cardiovascular Disease.

    PubMed

    Holmlund, A; Lampa, E; Lind, L

    2017-03-01

    Periodontal disease has been associated with cardiovascular disease (CVD), but whether the response to the treatment of periodontal disease affects this association has not been investigated in any large prospective study. Periodontal data obtained at baseline and 1 y after treatment were available in 5,297 individuals with remaining teeth who were treated at a specialized clinic for periodontal disease. Poor response to treatment was defined as having >10% sites with probing pocket depth >4 mm deep and bleeding on probing at ≥20% of the sites 1 y after active treatment. Fatal/nonfatal incidence rate of CVD (composite end point of myocardial infarction, stroke, and heart failure) was obtained from the Swedish cause-of-death and hospital discharge registers. Poisson regression analysis was performed to analyze future risk of CVD. During a median follow-up of 16.8 y (89,719 person-years at risk), those individuals who did not respond well to treatment (13.8% of the sample) had an increased incidence of CVD ( n = 870) when compared with responders (23.6 vs. 15.3%, P < 0.001). When adjusting for calendar time, age, sex, educational level, smoking, and baseline values for bleeding on probing, probing pocket depth >4 mm, and number of teeth, the incidence rate ratio for CVD among poor responders was 1.28 (95% CI, 1.07 to 1.53; P = 0.007) as opposed to good responders. The incidence rate ratio among poor responders increased to 1.39 (95% CI, 1.13 to 1.73; P = 0.002) for those with the most remaining teeth. Individuals who did not respond well to periodontal treatment had an increased risk for future CVD, indicating that successful periodontal treatment might influence progression of subclinical CVD.

  17. Acute Cardiovascular and Hemodynamic Responses to Low Intensity Eccentric Resistance Exercise with Blood Flow Restriction

    PubMed Central

    Bazgir, Behzad; Rezazadeh Valojerdi, Mojtaba; Rajabi, Hamid; Fathi, Rouhollah; Ojaghi, Seyed Mojtaba; Emami Meybodi, Mohammad Kazem; Neto, Gabriel R.; Rahimi, Mostafa; Asgari, Alireza

    2016-01-01

    Background Recently it has been suggested that low intensity (LI) resistance exercise (RE) alone or in combination with blood flow restriction (BFR) can be applied for cardiovascular function improvement or rehabilitation. Objectives The aim of the present study was to investigate the acute effects of LI eccentric RE with and without BFR on heart rate (HR), rate pressure product (RPP), blood pressure (BP) parameters [systolic, diastolic, and mean arterial pressure (MAP)], oxygen saturation (SpO2) and rate of perceived exertion (RPE). Methods In a semi-experimental study 16 young adults (26.18 ± 3.67 years) volunteered and performed LI (30% maximum voluntary contraction) eccentric RE alone or combined with BFR. Results The results indicated that HR, RPP, and RPE increased significantly within both groups (P < 0.05); SBP and DBP increased significantly only with BFR (P < 0.05); MAP increased significantly during exercise without BFR (P < 0.05); and no change was observed in SpO2 in either groups (P > 0.05). Furthermore, studied parameters did not vary amongst different groups (P > 0.05). Conclusions It is concluded that LI eccentric RE with BFR positively regulated the hemodynamic and cardiovascular responses. Therefore, the eccentric RE combined with BFR seems to be a good option for future studies with the aim of time efficacy, since it alters these parameters within normal values. PMID:28144415

  18. Cardiovascular responses to arm static exercise in men with thoracic spinal cord lesions.

    PubMed

    Sakamoto, Keiko; Nakamura, Takeshi; Umemoto, Yasunori; Koike, Yumi; Sasaki, Yusuke; Tajima, Fumihiro

    2012-02-01

    Isometric muscle contraction (static exercise) induces circulatory response. Static exercise in individuals with thoracic spinal cord injury (TSCI) induces cardiovascular response and blood redistribution to the non-exercising muscles. The aim of our study was to determine the circulatory response during arm static exercise in individuals with TSCI and able-bodied (AB) controls. Mean blood pressure (MBP), heart rate (HR), cardiac output (CO), leg skin blood flow (SBF), and leg muscle blood flow (MBF) were recorded noninvasively, total peripheral resistance (TPR) was estimated by dividing MBP by CO, and hormonal changes were measured before, during and after static 35% maximal voluntary contraction (MVC) of the arm flexor muscles in seven male individuals with TSCI (T7-T11) and seven age-comparable AB control (32.2 ± 7.6 and 31.0 ± 4.7 years, respectively). The 35% MVC was similar in TSCI and AB individuals (107.3 ± 28.2 and 101.0 ± 22.5 N, respectively). HR, CO, MBP, TPR, SBF and MBF increased in both groups during arm static exercise. Plasma epinephrine concentration increased during arm static exercise in AB controls only (P < 0.05). Circulation to leg muscles was similar in TSCI and AB individuals and the lack of sympathetic vasoconstriction in the paralyzed leg area did not alter the cardiovascular responses during 35% MVC of arm static exercise. We conclude that sympathetic vasoconstriction in the resting leg area did not contribute to the pressor reflex during 35% MVC of arm static exercise.

  19. Dietary methionine restriction in mice elicits an adaptive cardiovascular response to hyperhomocysteinemia.

    PubMed

    Ables, Gene P; Ouattara, Amadou; Hampton, Thomas G; Cooke, Diana; Perodin, Frantz; Augie, Ines; Orentreich, David S

    2015-03-06

    Dietary methionine restriction (MR) in rodents increased lifespan despite higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia, which are symptoms associated with increased risk for cardiovascular disease. We investigated this paradoxical effect of MR on cardiac function using young, old, and apolipoprotein E-deficient (ApoE-KO) mice. Indeed, MR animals exhibited higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia with a molecular pattern consistent with cardiac stress while maintaining the integrity of cardiac structure. Baseline cardiac function, which was measured by non-invasive electrocardiography (ECG), showed that young MR mice had prolonged QRS intervals compared with control-fed (CF) mice, whereas old and ApoE-KO mice showed similar results for both groups. Following β-adrenergic challenge, responses of MR mice were either similar or attenuated compared with CF mice. Cardiac contractility, which was measured by isolated heart retrograde perfusion, was similar in both groups of old mice. Finally, the MR diet induced secretion of cardioprotective hormones, adiponectin and fibroblast growth factor 21 (FGF21), in MR mice with concomitant alterations in cardiac metabolic molecular signatures. Our findings demonstrate that MR diet does not alter cardiac function in mice despite the presence of hyperhomocysteinemia because of the adaptive responses of increased adiponectin and FGF21 levels.

  20. Anxious women do not show the expected decrease in cardiovascular stress responsiveness as pregnancy advances.

    PubMed

    Braeken, M A K A; Jones, A; Otte, R A; Widjaja, D; Van Huffel, S; Monsieur, G J Y J; van Oirschot, C M; Van den Bergh, B R H

    2015-10-01

    Altered stress responsiveness is a risk factor for mental and physical illness. In non-pregnant populations, it is well-known that anxiety can alter the physiological regulation of stress reactivity. Characterization of corresponding risks for pregnant women and their offspring requires greater understanding of how stress reactivity and recovery are influenced by pregnancy and women's anxiety feelings. In the current study, women were presented repeatedly with mental arithmetic stress tasks in the first and third pregnancy trimester and reported their trait anxiety using the state trait anxiety inventory. Cardiovascular stress reactivity in late pregnancy was lower than reactivity in the first pregnancy trimester (heart rate (HR): t(197)=4.98, p<.001; high frequency heart rate variability (HF HRV): t(196)=-2.09, p=.04). Less attenuation of stress reactivity occurred in more anxious women (HR: b=0.15, SE=0.06, p=.008; HF HRV: b=-10.97, SE=4.79, p=.02). The study design did not allow the influence of habituation to repeated stress task exposure to be assessed separately from the influence of pregnancy progression. Although this is a limitation, the clear differences between anxious and non-anxious pregnant women are important, regardless of the extent to which differing habituation between the groups is responsible. Less dampened stress reactivity through pregnancy may pose long-term risks for anxious women and their offspring. Follow-up studies are required to determine these risks.

  1. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus.

    PubMed

    Beltrán, Luis M; Rubio-Navarro, Alfonso; Amaro-Villalobos, Juan Manuel; Egido, Jesús; García-Puig, Juan; Moreno, Juan Antonio

    2015-01-01

    Patients infected with the human immunodeficiency virus (HIV) have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.

  2. Hostility and Anger Expression: Behavioral and Cardiovascular Responses to Mental Stress Among Cardiovascular Disease Patients

    DTIC Science & Technology

    2002-01-01

    among cardiovascular disease patients (e.g. Everson, Goldberg, Kaplan, Julkunen, & Salonen, 1998; Porter, Stone & Schwartz, 1999; Arrighi et al...harassment intervention. Psychosomatic Medicine, 21, 568 (Abstract). Arrighi , J.A., Burg, M., Cohen, I.S., Kao, A.H., Pfau, S., Caulin-Glaser, T

  3. Chronic ocular hypertension alters local retinal responsiveness.

    PubMed Central

    Ofri, R; Dawson, W W; Foli, K; Gelatt, K N

    1993-01-01

    Electrophysiological responses of the retina and visual cortex to a series of grating stimuli (6-768 minutes of arc) were recorded in seven sessions using normal beagles, 21 sessions using beagles afflicted with inherited ocular hypertension, and 12 sessions using rhesus monkeys. A 15 degrees field centred around the animal's area centralis or fovea was used to stimulate the central retina. A 30 degrees field, centred on the same spot, was then used to stimulate the larger area. Two recording series were completed on each animal, with both field sizes presented in each recording session. The first recording took place 30 minutes after and the second 2 hours after the injection of thiamylal sodium. Only the signals from the toroidal 15 degrees of the retina of the hypertensive dogs were remarkably larger during the second recording (p = 0.001). No significant differences were found between the two recordings from the retinas of normal dogs or monkeys, nor were there any significant differences between the two recordings from above the cortex in any group. Several hypotheses are proposed to explain the basis for the interaction of thiamylal with the more peripheral retinal function in clinically glaucomatous dogs. PMID:8025048

  4. Mathematical modeling of human cardiovascular system for simulation of orthostatic response

    NASA Technical Reports Server (NTRS)

    Melchior, F. M.; Srinivasan, R. S.; Charles, J. B.

    1992-01-01

    This paper deals with the short-term response of the human cardiovascular system to orthostatic stresses in the context of developing a mathematical model of the overall system. It discusses the physiological issues involved and how these issues have been handled in published cardiovascular models for simulation of orthostatic response. Most of the models are stimulus specific with no demonstrated capability for simulating the responses to orthostatic stimuli of different types. A comprehensive model incorporating all known phenomena related to cardiovascular regulation would greatly help to interpret the various orthostatic responses of the system in a consistent manner and to understand the interactions among its elements. This paper provides a framework for future efforts in mathematical modeling of the entire cardiovascular system.

  5. An experimental design for quantification of cardiovascular responses to music stimuli in humans.

    PubMed

    Chang, S-H; Luo, C-H; Yeh, T-L

    2004-01-01

    There have been several researches on the relationship between music and human physiological or psychological responses. However, there are cardiovascular index factors that have not been explored quantitatively due to the qualitative nature of acoustic stimuli. This study proposes and demonstrates an experimental design for quantification of cardiovascular responses to music stimuli in humans. The system comprises two components: a unit for generating and monitoring quantitative acoustic stimuli and a portable autonomic nervous system (ANS) analysis unit for quantitative recording and analysis of the cardiovascular responses. The experimental results indicate that the proposed system can exactly achieve the goal of full control and measurement for the music stimuli, and also effectively support many quantitative indices of cardiovascular response in humans. In addition, the analysis results are discussed and predicted in the future clinical research.

  6. Abnormal cardiovascular responses induced by localized high power microwave exposure

    SciTech Connect

    Lu, S.-T; Brown, D.O.; Johnson, C.E.; Mathur, S.P. ); Elson, E.C. )

    1992-05-01

    A hypothesis of microwave-induced circulatory under perfusion was tested in ketamine anesthetized rats whose heart rate, mean arterial pressure, pulse pressure, respiration rate, and body temperatures were monitored continuously. Fifty-eight ventral head and neck exposures in a waveguide consisted of sham-exposure and exposure to continuous wave (CW) and pulsed 1.25 GHz microwaves for 5 min. The 0.5 Hz and 16 Hz pulsemodulated microwaves were delivered at 400 kW peak power. The CW microwaves were 2 and 6.4 W. The average specific absorption rate was 4.75 W/kg per watt transmitted in the brain and 17.15 W/kg per watt transmitted in the neck. Respiration rate and mean arterial pressure were not altered. Changes in heart rate and pulse pressure were observed in rats exposed to higher power but not to the lower average power microwaves. Depression of pulse pressure, an indication of a decrease in stroke volume, and increased or decreased heart rate were noted in presence of whole-body hyperthermia. The cardiac output of those animals exposed to higher average power microwaves was considered to be below normal as hypothesized. Decreased cardiac output and normal mean arterial pressure resulted in an increase in the total peripheral resistance which was contrary to the anticipated thermal response of animals.

  7. Predictions of cardiovascular responses during STS reentry using mathematical models

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Srinivasan, R.

    1985-01-01

    The physiological adaptation to weightless exposure includes cardiovascular deconditioning arising in part from a loss of total circulating blood volume and resulting in a reduction of orthostatic tolerance. The crew of the Shuttle orbiter are less tolerant to acceleration forces in the head-to-foot direction during the reentry phase of the flight at a time they must function at a high level of performance. The factors that contribute to orthostatic intolerance during and following reentry and to predict the likelihood of impaired crew performance are evaluated. A computer simulation approach employing a mathematical model of the cardiovascular system is employed. It is shown that depending on the severity of blood volume loss, the reentry acceleration stress may be detrimental to physiologic function and may place the physiologic status of the crew near the borderline of some type of impairment. They are in agreement with conclusions from early ground-based experiments and from observations of early Shuttle flights.

  8. A Computational Model for Thrombus Formation in Response to Cardiovascular Implantable Devices

    NASA Astrophysics Data System (ADS)

    Horn, John; Ortega, Jason; Maitland, Duncan

    2014-11-01

    Cardiovascular implantable devices elicit complex physiological responses within blood. Notably, alterations in blood flow dynamics and interactions between blood proteins and biomaterial surface chemistry may lead to the formation of thrombus. For some devices, such as stents and heart valves, this is an adverse outcome. For other devices, such as embolic aneurysm treatments, efficient blood clot formation is desired. Thus a method to study how biomedical devices induce thrombosis is paramount to device development and optimization. A multiscale, multiphysics computational model is developed to predict thrombus formation within the vasculature. The model consists of a set of convection-diffusion-reaction partial differential equations for blood protein constituents involved in the progression of the clotting cascades. This model is used to study thrombus production from endovascular devices with the goal of optimizing the device design to generate the desired clotting response. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. EFFECTS OF AEROBIC CONDITIONING ON CARDIOVASCULAR SYMPATHETIC RESPONSE TO AND RECOVERY FROM CHALLENGE

    PubMed Central

    Lindgren, M; Alex, C; Shapiro, PA; McKinley, PS; Brondolo, EN; Myers, MM; Choi, CJ; Lopez-Pintado, S; Sloan, RP

    2013-01-01

    Objective Exercise has widely-documented cardioprotective effects but the mechanisms behind these effects are still poorly understood. Here, we test the hypothesis that aerobic training lowers cardiovascular sympathetic responses to and speeds recovery from challenge. Methods We conducted a randomized controlled trial contrasting aerobic versus strength training on indices of cardiac (pre-ejection period, PEP) and vascular (low-frequency blood pressure variability, LF-BPV) sympathetic responses to and recovery from psychological and orthostatic challenge in 149 young, healthy and sedentary adults. Results Aerobic and strength training did not alter PEP or LF-BPV reactivity to or recovery from challenge. Conclusions These findings, from a large randomized controlled trial using an intent-to-treat design, show that moderate aerobic exercise training has no effect on PEP and LF BPV reactivity to or recovery from psychological or orthostatic challenge. In healthy young adults, the cardioprotective effects of exercise training are unlikely to be mediated by changes in sympathetic activity. PMID:23889039

  10. Activated oxygen alters cerebral microvascular responses in newborn pigs

    SciTech Connect

    Leffler, C.W.; Busiia, D.W.; Armstead, W.M.; Mirro, R.; Thelin, O. )

    1990-02-26

    In piglets, cerebral ischemia/reperfusion blocks prostanoid dependent cerebral vasodilation to hypercapnia (CO{sub 2}) and hypotension but not prostanoid independent dilation to isoproterenol (Isu) or constriction to norepinephrine (NE). Ischemia/reperfusion increases activated-O{sub 2} production by piglet brains. Using cranial windows in piglets, the authors investigated the hypothesis that activated oxygen can block prostanoid dependent cerebral vasodilator responses to CO{sub 2} and hypotension without altering responses to Isu and NE. Exposure to an activated oxygen generating system of xanthine oxidase, hypoxanthine, and Fe that made about 3 times the activated-O{sub 2} on the brain surface as ischemia/reperfusion caused reversible pial arteriolar dilation. After exposure, pial arteriolar dilation was reduced to CO{sub 2} and hypotension but not to Isu. NE constrictor responses were also unaltered. H{sub 2}O{sub 2} or H{sub 2}O{sub 2} + Fe caused constriction followed by reversible dilation. After exposure, pial arteriolar dilation in response to CO{sub 2} and hypotension was not altered. However, addition of xanthine oxidase and hypoxanthine with H{sub 2}O{sub 2} and Fe totally eliminated pial arteriolar dilator responses to CO{sub 2} and hypotension but did not decrease dilation caused by Isu or constriction caused by NE. The authors conclude that activated oxygen could produce the altered prostanoid dependent pial arteriolar responses observed following ischemia in piglets.

  11. Hydrologic Alteration and Response of Ecosystem Functions to River Restoration

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Stanley, E. H.

    2005-12-01

    Stream ecology theory suggests that physical and hydrologic setting is often a dominant determinant of ecosystem structure in fluvial systems. Restorationist practitioners may work under the assumption that if the hydrologic parameters that control biological processes are restored, biotic components of interest should be restored as well. This method is sometimes called passive habitat restoration, or an eco-hydromorphic approach. An alternate to this hypothesis is that biological recovery is constrained by a number of other limitations such as distance to a source population, site history, and presence of invasive species. In this scenario, systems will not be restored by hydrologic alterations alone. To address the influence physical setting has on ecological process, we measured three specific ecological responses of streams to hydrologic manipulations separate restoration projects in Central Wisconsin. The projects shared the common trait of being primarily hydrologic alterations. We measured phosphorus retention capacity in a second-order stream before and after a pair of small dam removals, denitrification rates following the reflooding of a leveed floodplain and an approximately 50-year time series of vegetation recolonization on exposed mud flats following dam removal. In each case the measured responses showed unexpectedly large variability and there was not close correlation between physical and ecologic parameters. Such high variability in response to alterations also made it difficult to determine if the restorations met their goals. One conclusion of these studies may be that we need to move beyond hydrologic alterations to address additional manipulations to better meet the goals of specific projects.

  12. Cardiovascular Response Identification Based on Nonlinear Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.

    This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.

  13. Cardiovascular responses of the anterior claustrum; its mechanism; contribution of medial prefrontal cortex.

    PubMed

    Hatam, Masoumeh; Sheybanifar, Mehrnoosh; Nasimi, Ali

    2013-12-01

    The anterior claustrum (CLa) has bilateral connections with the areas involved in cardiovascular regulation, though its role in cardiovascular control is not yet understood. This study was performed to find the cardiovascular responsive region of the CLa by stimulating all parts of the CLa with l-glutamate, and to find the possible mechanisms mediating its responses in urethane-anesthetized rats. We also investigated the possible involvement of the medial prefrontal cortex in the cardiovascular responses of the CLa. The effect of microinjection of l-glutamate (50-100 nl, 0.25 M) was tested throughout the Cla and only in one area at 2.7 mm rostral to bregma, 1.8-2.0 midline and 4.5-5.6mm vertical, significant decreases in arterial pressure were elicited (-21.71±2.1 mmHg, P<0.001, t-test) with no significant change in heart rate. Administration (i.v.) of the muscarinic receptor blocker, atropine, had no effect on the change in mean arterial pressure in response to glutamate stimulation, suggesting that the parasympathetic system was not involved in this response. However, administration (i.v.) of the nicotinic receptor blocker, hexamethonium dichloride abolished the depressor response to glutamate, suggesting that CLa stimulation decreases sympathetic outflow to the cardiovascular system. In addition, microinjection of the reversible synaptic blocker, cobalt chloride, into the medial prefrontal cortex greatly attenuated the depressor response elicited by microinjection of glut into the CLa. Thus for the first time, we found the cardiovascular responsive region of the anterior claustrum. Also we showed that its response is mediated through the medial prefrontal cortex.

  14. Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function.

    PubMed

    Golob, Mark J; Tian, Lian; Wang, Zhijie; Zimmerman, Todd A; Caneba, Christine A; Hacker, Timothy A; Song, Guoqing; Chesler, Naomi C

    2015-02-05

    Aging is associated with conduit artery stiffening that is a risk factor for and can precede hypertension and ventricular dysfunction. Increases in mitochondria DNA (mtDNA) frequency have been correlated with aging. Mice with a mutation in the encoding domain (D257A) of a proof-reading deficient version of mtDNA polymerase-γ (POLG) have musculoskeletal features of premature aging and a shortened lifespan. However, few studies using these mice have investigated the effects of mtDNA mutations on cardiovascular function. We hypothesized that the proof-reading deficient mtDNA POLG leads to arterial stiffening, hypertension, and ventricular hypertrophy. Ten to twelve month-old D257A mice (n=13) and age- and sex-matched wild-type controls (n=13) were catheterized for hemodynamic and ventricular function measurements. Left common carotid arteries (LCCA) were harvested for mechanical tests followed by histology. Male D257A mice had pulmonary and systemic hypertension, arterial stiffening, larger LCCA diameter (701±45 vs. 597±60μm), shorter LCCA axial length (8.96±0.56 vs. 10.10±0.80mm), and reduced hematocrit (29.1±6.1 vs. 41.3±8.1; all p<0.05). Male and female D257A mice had biventricular hypertrophy (p<0.05). Female D257A mice did not have significant increases in pressure or arterial stiffening, suggesting that the mechanisms of hypertension or arterial stiffening from mtDNA mutations differ based on sex. Our results lend insight into the mechanisms of age-related cardiovascular disease and may point to novel treatment strategies to address cardiovascular mortality in the elderly.

  15. Altered cardiovascular reactivity and osmoregulation during hyperosmotic stress in adult rats developmentally exposed to polybrominated diphenyl ethers (PBDEs)

    SciTech Connect

    Shah, Ashini; Coburn, Cary G.; Watson-Siriboe, Abena; Whitley, Rebecca; Shahidzadeh, Anoush; Gillard, Elizabeth R.; Nichol, Robert; Leon-Olea, Martha; Gaertner, Mark; Kodavanti, Prasada Rao S.

    2011-10-15

    Polybrominated diphenyl ethers (PBDEs) and the structurally similar chemicals polychlorinated biphenyls (PCBs) disrupt the function of multiple endocrine systems. PCBs and PBDEs disrupt the secretion of vasopressin (VP) from the hypothalamus during osmotic activation. Since the peripheral and central vasopressinergic axes are critical for osmotic and cardiovascular regulation, we examined whether perinatal PBDE exposure could impact these functions during physiological activation. Rats were perinatally dosed with a commercial PBDE mixture, DE-71. Dams were given 0 (corn oil control), 1.7 (low dose) or 30.6 mg/kg/day (high dose) in corn oil from gestational day (GD) 6 through postnatal day (PND) 21 by oral gavage. In the male offspring exposed to high dose PBDE plasma thyroxine and triiodothyronine levels were reduced at PND 21 and recovered to control levels by PND 60 when thyroid stimulating hormone levels were elevated. At 14-18 months of age, cardiovascular responses were measured in four groups of rats: Normal (Oil, normosmotic condition), Hyper (Oil, hyperosmotic stress), Hyper PBDE low (1.7 mg/kg/day DE-71 perinatally, hyperosmotic stress), and Hyper PBDE high (30.6 mg/kg/day DE-71 perinatally, hyperosmotic stress). Systolic blood pressure (BP), diastolic BP, and heart rate (HR) were determined using tail cuff sphygmomanometry and normalized to pretreatment values (baseline) measured under basal conditions. Hyperosmotic treatment yielded significant changes in systolic BP in PBDE exposed rats only. Hyper PBDE low and high dose rats showed 36.1 and 64.7% greater systolic BP responses at 3 h post hyperosmotic injection relative to pretreatment baseline, respectively. No treatment effects were measured for diastolic BP and HR. Hyper and Hyper PBDE rats showed increased mean plasma osmolality values by 45 min after injection relative to normosmotic controls. In contrast to Hyper rats, Hyper PBDE (high) rats showed a further increase in mean plasma osmolality at 3

  16. CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration

    EPA Pesticide Factsheets

    Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.

  17. I got it! Transient cardiovascular response to the perception of humor.

    PubMed

    Lackner, Helmut K; Weiss, Elisabeth M; Schulter, Günter; Hinghofer-Szalkay, Helmut; Samson, Andrea C; Papousek, Ilona

    2013-04-01

    The aim of the present study was to examine the transient cardiovascular response to the perception of humor, that is, the impact of the cognitive process of insight as well as the modulation of the response by the affective appraisal of the humor. To this end transient heart rate, stroke volume, cardiac output, and blood pressure responses were obtained in the immediate context of detecting the punch line in cartoons. Fine-grained analysis of the transient behavior of cardiovascular variables during viewing the cartoons was contrasted to non-humorous cartoon-like pictures. The detection of a punch line was accompanied by relative heart rate acceleration in conjunction with increased cardiac output, which was more pronounced the more amusing the cartoons were perceived. These results provide first evidence of the usefulness of cardiovascular variables for detecting the moment of insight and the quantification of the size of the emotional response accompanying it.

  18. Cardiovascular Responses to Psychosocial Stress Reflect Motivation State in Adults Born at Extremely Low Birth Weight

    PubMed Central

    Pyhälä, Riikka; Hovi, Petteri; Räikkönen, Katri; Van Lieshout, Ryan J.; Boyle, Michael H.; Saigal, Saroj; Morrison, Katherine M.; Kajantie, Eero; Schmidt, Louis A.

    2015-01-01

    Background. Adults born extremely preterm appear to have more difficulty managing the stresses of early adulthood than their term-born peers. Objective. To examine the effects of being born at extremely low birth weight (ELBW; birth weight < 1000 g) versus at full term on cardiovascular responses to stress. Method. Cardiovascular responses were elicited during administration of a widely used laboratory stressor, the Trier Social Stress Test (TSST). Results. Term-born adults exhibited a larger decrease in total peripheral resistance and larger increase in cardiac output for TSST performance, reflecting greater resilience, than did ELBW adults. Furthermore, in ELBW participants but not controls, cardiovascular responses were correlated with anxiety, suggesting that their responses reflected feelings of stress. Conclusions. Skills-training and practice with relevant stressors may be necessary to increase the personal resources of ELBW participants for managing stress as they transition to adulthood. PMID:27335948

  19. Cardiovascular regulatory response to lower body negative pressure following blood volume loss

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Ghista, D. N.; Sandler, H.

    1979-01-01

    An attempt is made to explain the cardiovascular regulatory responses to lower body negative pressure (LBNP) stress, both in the absence of and following blood or plasma volume loss, the latter being factors regularly observed with short- or long-term recumbency or weightlessness and associated with resulting cardiovascular deconditioning. Analytical expressions are derived for the responses of mean venous pressure and blood volume pooled in the lower body due to LBNP. An analysis is presented for determining the HR change due to LBNP stress following blood volume loss. It is concluded that the reduced orthostatic tolerance following long-term space flight or recumbency can be mainly attributed to blood volume loss, and that the associated cardiovascular responses characterizing this orthostatic intolerance is elicited by the associated central venous pressure response.

  20. Training and cardiovascular responses from cigarette smoke exposure.

    PubMed

    de Sá, Felipe Gonçalves Dos Santos; da Mota, Gustavo Ribeiro; Sant'Ana, Paula Grippa; da Cunha, Márcia Regina Holanda; Marocolo, Moacir; Castardeli, Edson

    2014-12-31

    The aim of this study was to evaluate the early effect of the endurance training (ET) on systolic blood pressure (SBP), heart rate (HR) and rate pressure-product (RPP) after acute cigarette smoke exposure. Twenty male Wistar rats were randomly allocated into two groups: trained (TEx; n = 10) and control (CEx; n = 10), exposed to smoke. TEx rats undertook ET during 2 weeks (swimming, 5 days/week; 1 h/session) and CEx group was kept in sedentary lifestyle. After ET protocol both groups were exposed to cigarette smoke only once (total 1 h; 2 × 30 min with interval of 10 min between exposures; rate of 10 cigarettes/30 min). SBP, HR and RPP were measured after 2 weeks and just after (5 min) acute cigarette smoke (tail plethysmograph). All parameters did not differ (P > 0.05) between TEx (RPP = 45018 ± 1970 mmHg/bpm) and CEx (43695 ± 2579 mmHg/bpm) after ET protocol. However, all cardiovascular parameters increased (P < 0.05) only for CEx just after the cigarette smoke exposure. We concluded that ET can attenuate the aggression from acute smoking to cardiovascular system, with a few days of training and even with no chronic effect on these parameters at basal condition.

  1. Contribution of infralimbic cortex in the cardiovascular response to acute stress.

    PubMed

    Müller-Ribeiro, Flávia Camargos de Figueirêdo; Zaretsky, Dmitry V; Zaretskaia, Maria V; Santos, Robson A S; DiMicco, Joseph A; Fontes, Marco Antônio Peliky

    2012-09-15

    The infralimbic region of the medial prefrontal cortex (IL) modulates autonomic and neuroendocrine function via projections to subcortical structures involved in the response to stress. We evaluated the contribution of the IL to the cardiovascular response evoked by acute stress. Under anesthesia (80 mg/kg ketamine-11.5 mg/kg xylazine), rats were implanted with telemetry probes or arterial lines for recording heart rate and blood pressure. Guide cannulas were implanted to target the IL for microinjection of muscimol (100 pmol/100 nl), N-methyl-d-aspartate (NMDA) (6 pmol/100 nl), or vehicle (100 nl). Microinjection of muscimol, an agonist of GABA(A) receptors, into the IL had no effect on stress-evoked cardiovascular and thermogenic changes in any of the paradigms evaluated (cage switch, restraint plus air-jet noise, or air-jet stress). However, microinjection of the excitatory amino acid NMDA into the IL attenuated the pressor and tachycardic response to air-jet stress. Pretreatment with the selective NMDA antagonist dl-2-amino-5-phosphonopentanoic acid (AP-5, 100 pmol/100 nl) blocked the effect of NMDA on the cardiovascular response to air-jet stress. We conclude that 1) the IL region is not tonically involved in cardiovascular or thermogenic control during stress or under baseline conditions, and 2) activation of NMDA receptors in the IL can suppress the cardiovascular response to acute stress exposure.

  2. Alterations in vascular function in primary aldosteronism: a cardiovascular magnetic resonance imaging study.

    PubMed

    Mark, P B; Boyle, S; Zimmerli, L U; McQuarrie, E P; Delles, C; Freel, E M

    2014-02-01

    Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV). We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass. Subjects with PA had significantly lower aortic distensibility and higher PWV compared with EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including ageing. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular ageing. As expected, aortic distensibility and PWV were closely correlated. These results demonstrate that PA patients display increased arterial stiffness compared with EH, independent of vascular ageing. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study.

  3. Fungal symbionts alter plant responses to global change.

    PubMed

    Kivlin, Stephanie N; Emery, Sarah M; Rudgers, Jennifer A

    2013-07-01

    While direct plant responses to global change have been well characterized, indirect plant responses to global change, via altered species interactions, have received less attention. Here, we examined how plants associated with four classes of fungal symbionts (class I leaf endophytes [EF], arbuscular mycorrhizal fungi [AMF], ectomycorrhizal fungi [ECM], and dark septate endophytes [DSE]) responded to four global change factors (enriched CO2, drought, N deposition, and warming). We performed a meta-analysis of 434 studies spanning 174 publications to search for generalizable trends in responses of plant-fungal symbioses to future environments. Specifically, we addressed the following questions: (1) Can fungal symbionts ameliorate responses of plants to global change? (2) Do fungal symbiont groups differ in the degree to which they modify plant response to global change? (3) Do particular global change factors affect plant-fungal symbioses more than others? In all global change scenarios, except elevated CO2, fungal symbionts significantly altered plant responses to global change. In most cases, fungal symbionts increased plant biomass in response to global change. However, increased N deposition reduced the benefits of symbiosis. Of the global change factors we considered, drought and N deposition resulted in the strongest fungal mediation of plant responses. Our analysis highlighted gaps in current knowledge for responses of particular fungal groups and revealed the importance of considering not only the nonadditive effects of multiple global change factors, but also the interactive effects of multiple fungal symbioses. Our results show that considering plant-fungal symbioses is critical to predicting ecosystem response to global change.

  4. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2.

    PubMed Central

    Thomas, D W; Mannon, R B; Mannon, P J; Latour, A; Oliver, J A; Hoffman, M; Smithies, O; Koller, B H; Coffman, T M

    1998-01-01

    Thromboxane A2 (TXA2) is a labile metabolite of arachidonic acid that has potent biological effects. Its actions are mediated by G protein-coupled thromboxane-prostanoid (TP) receptors. TP receptors have been implicated in the pathogenesis of cardiovascular diseases. To investigate the physiological functions of TP receptors, we generated TP receptor-deficient mice by gene targeting. Tp-/- animals reproduce and survive in expected numbers, and their major organ systems are normal. Thromboxane agonist binding cannot be detected in tissues from Tp-/- mice. Bleeding times are prolonged in Tp-/- mice and their platelets do not aggregate after exposure to TXA2 agonists. Aggregation responses after collagen stimulation are also delayed, although ADP-stimulated aggregation is normal. Infusion of the TP receptor agonist U-46619 causes transient increases in blood pressure followed by cardiovascular collapse in wild-type mice, but U-46619 caused no hemodynamic effect in Tp-/- mice. Tp-/- mice are also resistant to arachidonic acid-induced shock, although arachidonic acid signifi-cantly reduced blood pressure in Tp-/- mice. In summary, Tp-/- mice have a mild bleeding disorder and altered vascular responses to TXA2 and arachidonic acid. Our studies suggest that most of the recognized functions of TXA2 are mediated by the single known Tp gene locus. PMID:9835625

  5. Does mental arithmetic before head up tilt have an effect on the orthostatic cardiovascular and hormonal responses?

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Lackner, Helmut Karl; Papousek, Ilona; Montani, Jean-Pierre; Jezova, Daniela; Hinghofer-Szalkay, Helmut G.

    2011-05-01

    Passive head up tilt (HUT) and mental arithmetic (MA) are commonly used for providing mental and orthostatic challenges, respectively. In animal experiments, even a single exposure to a stressor has been shown to modify the response to subsequent stress stimulus. We investigated whether MA applied before HUT elicits synergistic responses in orthostatic heart rate (HR), cardiac output (CO), heart rate variability and arterial blood pressure. The 15 healthy young males were subjected to two randomized protocols: (a) HUT and (b) HUT preceded by MA, with sessions randomized and ≥2 weeks apart. Beat to beat continuous hemodynamic variables were measured and saliva samples taken for hormonal assay. HUT alone increased HR from 59±7 (baseline) to 80±10 bpm (mean±SD) and mean blood pressure (MBP) from 88±10 to 91±14 mmHg. HUT results after MA were not different from those with HUT alone. The activity of alpha amylase showed differences during the experiments irrespective of the protocols. We conclude that mental challenge does not affect orthostatic cardiovascular responses when applied before; the timing of mental loading seems to be critical if it is intended to alter cardiovascular responses to upright standing.

  6. Fish consumption and cardiovascular response during mental stress

    PubMed Central

    2012-01-01

    Background Frequent fish consumption is related to a lower risk of coronary heart disease. However, the physiological mechanisms underlying this cardioprotective effect are as yet unknown. We therefore examined certain cardiovascular physiological variables of fish eaters during rest, whilst conducting mental arithmetic, and during recovery. Findings The participants were 12 fish eaters (eating baked fish more than 3–4 times/week) and 13 controls (eating fish less than 1–2 times/week). Analysis of the collected data revealed that heart rate, blood pressure, and pulse wave velocity were significantly lower and pre-ejection period and baroreflex sensitivity were significantly higher in the fish eaters than in the controls during both rest and mental arithmetic, and that systolic and mean blood pressure recovery from mental arithmetic were faster in the fish eaters than in the controls. Conclusions These findings suggest a possible physiological mechanism that may explain why frequent fish consumption reduces coronary heart disease risk. PMID:22695000

  7. Psychophysiological stress testing in postinfarction patients. Psychological correlates of cardiovascular arousal and abnormal cardiac responses.

    PubMed

    Zotti, A M; Bettinardi, O; Soffiantino, F; Tavazzi, L; Steptoe, A

    1991-04-01

    The psychophysiological responses to two mental stress tests (mental arithmetic and an interactive concentration task) were assessed in 168 unmedicated, male, postinfarction patients 36-69 years old. Patients also completed a standard battery of psychological tests. Psychophysiological responses were generally unrelated to age and education. Comparison of patients scoring high (more than 75%) and low (less than 25%) relative to the normal population on psychological measures indicated that heart rate and blood pressure responses to mental stress tests were significantly greater in those reporting low than in those reporting high neuroticism. The study population was subsequently divided into high, medium, and low cardiovascular responders on the basis of rate-pressure product reactions to the two stress tests. The three cardiovascular response groups did not differ in age, interval between myocardial infarction and stress testing, ejection fraction, incidence of exercise-induced ischemia, or ischemic signs during Holter monitoring. However, the high cardiovascular responders were more likely to manifest possible or definite electrocardiographic signs of ischemia or significant arrhythmia during mental stress testing than were the medium or low cardiovascular responders (50% versus 19.6% and 7%, respectively). High cardiovascular responders also reported lower levels of trait anxiety, neuroticism, psychophysiological symptoms, and depression.

  8. Response-restriction analysis: II. Alteration of activity preferences.

    PubMed Central

    Hanley, Gregory P; Iwata, Brian A; Roscoe, Eileen M; Thompson, Rachel H; Lindberg, Jana S

    2003-01-01

    We used response-restriction (RR) assessments to identify the preferences of 7 individuals with mental retardation for a variety of vocational and leisure activities. We subsequently increased their engagement in nonpreferred activities using several procedures: response restriction per se versus a Premack-type contingency (Study 1), supplemental reinforcement for engagement in target activities (Study 2), and noncontingent pairing of reinforcers with nonpreferred activities (Study 3). Results indicated that preferences are not immutable and can be altered through a variety of relatively benign interventions and that the results of RR assessments may be helpful in determining which types of procedures may be most effective on an individual basis. PMID:12723867

  9. Effects of sex and gender on adaptation to space: cardiovascular alterations.

    PubMed

    Platts, Steven H; Bairey Merz, C Noel; Barr, Yael; Fu, Qi; Gulati, Martha; Hughson, Richard; Levine, Benjamin D; Mehran, Roxana; Stachenfeld, Nina; Wenger, Nanette K

    2014-11-01

    Sex and gender differences in the cardiovascular adaptation to spaceflight were examined with the goal of optimizing the health and safety of male and female astronauts at the forefront of space exploration. Female astronauts are more susceptible to orthostatic intolerance after space flight; the visual impairment intracranial pressure syndrome predominates slightly in males. Since spaceflight simulates vascular aging, sex-specific effects on vascular endothelium and thrombotic risk warrant examination as predisposing factors to atherosclerosis, important as the current cohort of astronauts ages. Currently, 20% of astronauts are women, and the recently selected astronaut recruits are 50% women. Thus there should be expectation that future research will reflect the composition of the overall population to determine potential benefits or risks. This should apply both to clinical studies and to basic science research.

  10. Effects of Sex and Gender on Adaptation to Space: Cardiovascular Alterations

    PubMed Central

    Bairey Merz, C. Noel; Barr, Yael; Fu, Qi; Gulati, Martha; Hughson, Richard; Levine, Benjamin D.; Mehran, Roxana; Stachenfeld, Nina; Wenger, Nanette K.

    2014-01-01

    Abstract Sex and gender differences in the cardiovascular adaptation to spaceflight were examined with the goal of optimizing the health and safety of male and female astronauts at the forefront of space exploration. Female astronauts are more susceptible to orthostatic intolerance after space flight; the visual impairment intracranial pressure syndrome predominates slightly in males. Since spaceflight simulates vascular aging, sex-specific effects on vascular endothelium and thrombotic risk warrant examination as predisposing factors to atherosclerosis, important as the current cohort of astronauts ages. Currently, 20% of astronauts are women, and the recently selected astronaut recruits are 50% women. Thus there should be expectation that future research will reflect the composition of the overall population to determine potential benefits or risks. This should apply both to clinical studies and to basic science research. PMID:25401939

  11. Histamine in the posterodorsal medial amygdala modulates cardiovascular reflex responses in awake rats.

    PubMed

    Quagliotto, E; Neckel, H; Riveiro, D F; Casali, K R; Mostarda, C; Irigoyen, M C; Dall'ago, P; Rasia-Filho, A A

    2008-12-10

    Centrally injected histamine (HA) affects heart rate (HR), arterial blood pressure (BP), and sympathetic activity in rats. The posterodorsal medial amygdala (MePD) has high levels of histidine decarboxylase, connections with brain areas involved with the modulation of cardiovascular responses, and is relevant for the pathogenesis of hypertension. However, there is no report demonstrating the role of the MePD histaminergic activity on the cardiovascular function in awake rats. The aims of the present work were: 1) to study the effects of two doses (10-100 nM) of HA microinjected in the MePD on basal cardiovascular recordings and on baroreflex- and chemoreflex-mediated responses; 2) to reveal whether cardiovascular reflex responses could be affected by MePD microinjections of (R)-alpha-methylhistamine (AH3), an agonist of the inhibitory autoreceptor H3; and, 3) to carry out a power spectral analysis to evaluate the contribution of the sympathetic and parasympathetic components in the variability of the HR and BP recordings. When compared with the control group (microinjected with saline, 0.3 microl), HA (10 nM) promoted an increase in the MAP50, i.e. the mean value of BP at half of the HR range evoked by the baroreflex response. Histamine (100 nM) did not affect the baroreflex activity, but significantly decreased the parasympathetic component of the HR variability, increased the sympathetic/parasympathetic balance at basal conditions (these two latter evaluated by the power spectral analysis), and promoted an impairment in the chemoreflex bradycardic response. Microinjection of AH3 (10 microM) led to mixed results, which resembled the effects of both doses of HA employed here. Present data suggest that cardiovascular changes induced by baroreceptors and chemoreceptors involve the histaminergic activity in the MePD. This neural regulation of reflex cardiovascular responses can have important implications for homeostatic and allostatic conditions and possibly for the

  12. Altered thermoregulatory responses to clonidine in streptozotocin-diabetic rats.

    PubMed Central

    O'Donnell, J. M.; Banyasz, T.; Kovacs, T.

    1996-01-01

    1. The effects of streptozotocin (STZ) treatment on alpha 2-adrenoceptor regulation of body temperature were studied by monitoring the response of colonic temperature to administration of clonidine. 2. A dose-dependent fall in colonic temperature occurred in control rats given clonidine challenge (0.05-2.0 mg kg-1, s.c.); this response was inhibited by prior administration of either yohimbine or idazoxan (2 mg kg-1, s.c.) but not by the peripherally-acting alpha 2-adrenoceptor antagonist L-659,066 (10 mg kg-1, s.c.). 3. In rats treated with STZ (65 mg kg-1, i.v.) administration of clonidine elicited a dose-independent hyperthermia (circa 1 degree C.); this effect was unaltered by prior administration of yohimbine or idazoxan. 4. Naloxone (5 mg kg-1, s.c.) elicited a small fall in temperature (< 1 degree C.) in both control and STZ-treated rats; naloxone pretreatment did not alter the temperature response to clonidine in either group. 5. Nicotinic acid (10 mg kg-1, s.c.) caused a similar small elevation in temperature in both groups. 6. Administration of replacement insulin to STZ-treated rats maintained weight gain and low blood glucose while the thermoregulatory response to clonidine slowly reverted to normal. 7. These results show that altered central temperature control is an element of the generalised abnormality of alpha 2-receptor function induced by STZ. PMID:8851514

  13. An altered peripheral IL6 response in major depressive disorder.

    PubMed

    Money, Kelli M; Olah, Zita; Korade, Zeljka; Garbett, Krassimira A; Shelton, Richard C; Mirnics, Karoly

    2016-05-01

    Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of anti-depressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated pro-inflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1β, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in

  14. Curious cases: Altered dose-response relationships in addiction genetics.

    PubMed

    Uhl, George R; Drgonova, Jana; Hall, F Scott

    2014-03-01

    Dose-response relationships for most addictive substances are "inverted U"-shaped. Addictive substances produce both positive features that include reward, euphoria, anxiolysis, withdrawal-relief, and negative features that include aversion, dysphoria, anxiety and withdrawal symptoms. A simple model differentially associates ascending and descending limbs of dose-response curves with rewarding and aversive influences, respectively. However, Diagnostic and Statistical Manual (DSM) diagnoses of substance dependence fail to incorporate dose-response criteria and don't directly consider balances between euphoric and dysphoric drug effects. Classical genetic studies document substantial heritable influences on DSM substance dependence. Linkage and genome-wide association studies identify modest-sized effects at any locus. Nevertheless, clusters of SNPs within selected genes display 10(-2)>p>10(-8) associations with dependence in many independent samples. For several of these genes, evidence for cis-regulatory, level-of-expression differences supports the validity of mouse models in which levels of expression are also altered. This review documents surprising, recently defined cases in which convergent evidence from humans and mouse models supports central influences of altered dose-response relationships in mediating the impact of relevant genomic variation on addiction phenotypes. For variation at loci for the α5 nicotinic acetylcholine receptor, cadherin 13, receptor type protein tyrosine phosphatase Δ and neuronal cell adhesion molecule genes, changed dose-response relationships conferred by gene knockouts in mice are accompanied by supporting human data. These observations emphasize desirability of carefully elucidating dose-response relationships for both rewarding and aversive features of abused substances wherever possible. They motivate consideration of individual differences in dose-response relationships in addiction nosology and therapeutics.

  15. Altered Nitric Oxide Bioavailability Contributes to Diesel Exhaust Inhalation‐Induced Cardiovascular Dysfunction in Man

    PubMed Central

    Langrish, Jeremy P.; Unosson, Jon; Bosson, Jenny; Barath, Stefan; Muala, Ala; Blackwell, Scott; Söderberg, Stefan; Pourazar, Jamshid; Megson, Ian L.; Treweeke, Andrew; Sandström, Thomas; Newby, David E.; Blomberg, Anders; Mills, Nicholas L.

    2013-01-01

    Background Diesel exhaust inhalation causes cardiovascular dysfunction including impaired vascular reactivity, increased blood pressure, and arterial stiffness. We investigated the role of nitric oxide (NO) bioavailability in mediating these effects. Methods and Results In 2 randomized double‐blind crossover studies, healthy nonsmokers were exposed to diesel exhaust or filtered air. Study 1: Bilateral forearm blood flow was measured during intrabrachial infusions of acetylcholine (ACh; 5 to 20 μg/min) and sodium nitroprusside (SNP; 2 to 8 μg/min) in the presence of the NO clamp (NO synthase inhibitor NG‐monomethyl‐l‐arginine (l‐NMMA) 8 μg/min coinfused with the NO donor SNP at 90 to 540 ng/min to restore basal blood flow). Study 2: Blood pressure, arterial stiffness, and cardiac output were measured during systemic NO synthase inhibition with intravenous l‐NMMA (3 mg/kg). Following diesel exhaust inhalation, plasma nitrite concentrations were increased (68±48 versus 41±32 nmol/L; P=0.006) despite similar l‐NMMA–induced reductions in basal blood flow (−20.6±14.7% versus −21.1±14.6%; P=0.559) compared to air. In the presence of the NO clamp, ACh and SNP caused dose‐dependent vasodilatation that was not affected by diesel exhaust inhalation (P>0.05 for both). Following exposure to diesel exhaust, l‐NMMA caused a greater increase in blood pressure (P=0.048) and central arterial stiffness (P=0.007), but reductions in cardiac output and increases in systemic vascular resistance (P>0.05 for both) were similar to those seen with filtered air. Conclusions Diesel exhaust inhalation disturbs normal vascular homeostasis with enhanced NO generation unable to compensate for excess consumption. We suggest the adverse cardiovascular effects of air pollution are, in part, mediated through reduced NO bioavailability. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifiers: NCT00845767 and NCT01060930. PMID:23525434

  16. Is the risk of cardiovascular disease altered with anti-inflammatory therapies? Insights from rheumatoid arthritis

    PubMed Central

    Kraakman, Michael J; Dragoljevic, Dragana; Kammoun, Helene L; Murphy, Andrew J

    2016-01-01

    Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Atherosclerosis is the most common form of CVD, which is complex and multifactorial with an elevated risk observed in people with either metabolic or inflammatory diseases. Accumulating evidence now links obesity with a state of chronic low-grade inflammation and has renewed our understanding of this condition and its associated comorbidities. An emerging theme linking disease states with atherosclerosis is the increased production of myeloid cells, which can initiate and exacerbate atherogenesis. Although anti-inflammatory drug treatments exist and have been successfully used to treat inflammatory conditions such as rheumatoid arthritis (RA), a commonly observed side effect is dyslipidemia, inadvertently, a major risk factor for the development of atherosclerosis. The mechanisms leading to dyslipidemia associated with anti-inflammatory drug use and whether CVD risk is actually increased by this dyslipidemia are of great therapeutic importance and currently remain poorly understood. Here we review recent data providing links between inflammation, hematopoiesis, dyslipidemia and CVD risk in the context of anti-inflammatory drug use. PMID:27350883

  17. Cardiovascular and emotional responses in women: the role of hostility and harassment.

    PubMed

    Suarez, E C; Harlan, E; Peoples, M C; Williams, R B

    1993-11-01

    The relation of hostility and harassment to cardiovascular and emotional responses was examined by having 51 women (ages 18-26) high and low in hostility complete a task with or without harassment. Harassed high hostile Ss showed greater systolic blood pressure (SBP) increases during task and recovery periods than did harassed low hostile Ss and nonharassed Ss. Harassed low hostile Ss evidenced greater SBP increases during task and recovery periods than did nonharassed Ss. Among high hostile women, cardiovascular elevations during the task were associated with self-reported levels of negative affect. Antagonistic hostility, relative to neurotic hostility, was positively associated with harassment-induced SBP changes. These results support the hypothesis that hostile people exhibit excessive behaviorally induced cardiovascular responses to interpersonally challenging tasks that evoke anger-related emotional states.

  18. Cardiovascular responses during orthostasis - Effect of an increase in maximal O2 uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Montgomery, L. D.; Greenleaf, J. E.

    1984-01-01

    A study is described which tests the hypothesis that changes in aerobic activity (increases in maximum oxygen uptake) will reduce the effectiveness of cardiovascular reflexes to regulate blood pressure during orthostasis. The hypothesis was tested by measuring heart rate, blood pressure and blood volume responses in eight healthy male subjects before and after an eight-day endurance regimen. The results of the study suggest that the physiologic responses to orthostasis are dependent upon the rate of plasma volume loss and pooling, and are associated with training-induced hypervolemia. It is indicated that endurance type exercise training enhances cardiovascular adjustments during tilt. The implications of these results for the use of exercise training as a countermeasure and/or therapeutic method for the prevention of cardiovascular instability during orthostatic stress are discussed.

  19. Cardiovascular and organ responses and adaptation responses to hypogravity in an experimental animal model.

    NASA Astrophysics Data System (ADS)

    Biondi, R.; Capodicasa, E.; Tassi, C.; Mezzasomal, L.; Benedetti, C.; Valiani, M.; Marconi, P.; Rossi, R.

    1995-10-01

    The head-down suspension (i.e antiorthostatic hypokinesia) rat is used to simulate weightlessness. However, little is known about cardiovascular and organ adaptation responses which, over a long time, can become pathologically significant. The purpose of this study was therefore to evaluate regional changes in the hematology parameters, Endotheline-1 (ET-1) concentration and urinary excretion of N-acetyl-β-D-glucosaminidase (EC 3.2.1.30) (NAG) in an experimental antiorthostatic rat model. The data indicate significant variations in the plasma ET-1 level in time, in the superior and inferior cava vessel blood of animals maintained for 10 days in hypogravity with respect to controls. These changes do not seem to be due to hemoconcentration. The increase in urinary NAG was observed during the first 24h of experiment, indicating renal stress, probably due to adverse blood flow variations within the organ. We conclude that the plasma ET-1 level changes could be responsible, overall for the blood flow variations in the kidney and renal stress could be the consequence of extended antiorthostatic hypokinesia. The ET-1 behaviour and urinary NAG excretion in rats exposed to antiorthostatic hypokjnetic hydynamia offer possibilities for understanding if these changes might be reversible or when they become pathological. This could give some relevant information about the effects of prolonged hypogravity during the space voyage.

  20. Cardiovascular and organ responses and adaptation responses to hypogravity in an experimental animal model.

    PubMed

    Biondi, R; Capodicasa, E; Tassi, C; Mezzasoma, L; Benedetti, C; Valiani, M; Marconi, P; Rossi, R

    1995-10-01

    The head-down suspension (i.e. antiorthostatic hypokinesia) rat is used to simulate weightlessness. However, little is known about cardiovascular and organ adaptation responses which, over a long time, can become pathologically significant. The purpose of this study was therefore to evaluate regional changes in the hematology parameters. Endotheline-1 (ET-1) concentration and urinary excretion of N-acetyl-beta-D-glucosaminidase (EC 3.2.1.30) (NAG) in an experimental antiorthostatic rat model. The data indicate significant variations in the plasma ET-1 level in time, in the superior and inferior cava vessel blood of animals maintained for 10 days in hypogravity with respect to controls. These changes do not seem to be due to hemoconcentration. The increase in urinary NAG was observed during the first 24h of experiment, indicating renal stress, probably due to adverse blood flow variations within the organ. We conclude that the plasma ET-1 level changes could be responsible, overall for the blood flow variations in the kidney and renal stress could be the consequence of extended antiorthostatic hypokinesia. The ET-1 behaviour and urinary NAG excretion in rats exposed to antiorthostatic hypokinetic hydynamia offer possibilities for understanding if these changes might be reversible or when they become pathological. This could give some relevant information about the effects of prolonged hypogravity during the space voyage.

  1. Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles

    PubMed Central

    Donato, Anthony J; Lesniewski, Lisa A; Delp, Michael D

    2007-01-01

    Ageing is associated with increased leg vascular resistance and reductions in leg blood flow during rest and exercise, potentially predisposing older adults to a host of functional and cardiovascular complications. The purpose of these studies was to examine the effects and possible mechanisms of ageing and exercise training on arteriolar adrenergic vasoreactivity. Young and old male Fischer 344 rats were divided into young sedentary (YS), old sedentary (OS), young exercise-trained (YT) or old exercise-trained (OT) groups, where training consisted of chronic treadmill exercise. Isolated soleus (SOL) and gastrocnemius (GAS) muscle arterioles were studied in vitro. Responses to noradrenaline in endothelium-intact and endothelium-denuded arterioles, as well as during nitric oxide synthase (NOS) inhibition were determined. Vasodilator responses to isoproterenol and forskolin were also determined. Results: Noradrenaline-mediated vasoconstriction was increased in SOL arterioles with ageing, and exercise training in old rats attenuated α-adrenergic vasoconstriction in arterioles from both muscle types. Removal of the endothelium and NOS inhibition eliminated these ageing and training effects. Isoproterenol-mediated vasodilatation was impaired with ageing in SOL and GAS arterioles, and exercise training had little effect on this response. Forskolin-induced vasodilatation was not affected by age. The data demonstrate that ageing augments α-adrenergic vasoconstriction while exercise training attenuates this response, and both of these alterations are mediated through an endothelial α-receptor-NOS-signalling pathway. In contrast, ageing diminishes β-receptor-mediated vasodilatation, but this impairment is specific to the smooth muscle. These studies indicate that α- and β-adrenergic mechanisms may serve to increase systemic vascular resistance with ageing, and that the effects of exercise training on adrenergic vasomotor properties could contribute to the beneficial

  2. Cardiovascular imaging with computed tomography: responsible steps to balancing diagnostic yield and radiation exposure.

    PubMed

    Halliburton, Sandra S; Schoenhagen, Paul

    2010-05-01

    Cardiovascular computed tomography (CT) is at the center of the risk-benefit debate about ionizing radiation exposure to the public from medical procedures. Although the risk has been sensationalized, the cardiovascular CT community has responded to the scrutiny by increasing efforts to ensure the responsible use of this young technology. Efforts to date have primarily included the development of appropriateness criteria and the implementation of dose-lowering techniques. Still needed is the development of standards that incorporate radiation exposure optimization into scan protocol selection. Such standards must consider applied radiation in the context of the clinical indication as well as the characteristics of the patient and provide guidance with regard to specific parameter settings. This editorial viewpoint demonstrates the need for comprehensive, individualized review of the clinical scenario before performing a cardiovascular CT, as well as the need for standards. If cardiovascular CT is the appropriate test and scan parameters are optimized with respect to radiation exposure, benefit should necessarily outweigh potential risk. However, efforts to promote responsible cardiovascular CT imaging must continue to ensure this is true for every patient.

  3. Frontal brain asymmetry and transient cardiovascular responses to the perception of humor.

    PubMed

    Papousek, Ilona; Schulter, Günter; Weiss, Elisabeth M; Samson, Andrea C; Freudenthaler, H Harald; Lackner, Helmut K

    2013-04-01

    The study examined the relationship of individual differences in prefrontal brain asymmetry, measured by the EEG in resting conditions, to the individual's responsivity in the context of humor (n=42). Several weeks after the EEG recording, immediate cardiovascular responses to the perception of humor and behavioral indicators of humor processing were obtained in an experimental paradigm involving non-verbal cartoons. Relatively greater resting activity in the left than right prefrontal cortex, particularly at the ventrolateral positions, was associated with faster detection of humor, a more pronounced cardiac response to the perception of humor (heart rate and cardiac output), and more accessible internal positive affective states (indicated by faster reports of amusement levels). The study confirms and extends findings of the relevance of prefrontal brain asymmetry to affective responsivity, contributing evidence in the domain of positive affect and humor, and demonstrating relationships to the immediate cardiovascular response pattern to an emotional event.

  4. Key ecological responses to nitrogen are altered by climate change

    NASA Astrophysics Data System (ADS)

    Greaver, T. L.; Clark, C. M.; Compton, J. E.; Vallano, D.; Talhelm, A. F.; Weaver, C. P.; Band, L. E.; Baron, J. S.; Davidson, E. A.; Tague, C. L.; Felker-Quinn, E.; Lynch, J. A.; Herrick, J. D.; Liu, L.; Goodale, C. L.; Novak, K. J.; Haeuber, R. A.

    2016-09-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  5. Key ecological responses to nitrogen are altered by climate change

    USGS Publications Warehouse

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, J. S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  6. Sulforaphane ameliorates the insulin responsiveness and the lipid profile but does not alter the antioxidant response in diabetic rats.

    PubMed

    de Souza, Carolina Guerini; da Motta, Leonardo Lisbôa; de Assis, Adriano Martimbianco; Rech, Anderson; Bruch, Ricardo; Klamt, Fábio; Souza, Diogo Onofre

    2016-04-01

    Diabetes is one of the most prevalent chronic non-communicable diseases and is characterized by hyperglycemia and increased oxidative stress. These two alterations are also responsible for the main diabetic complications: cardiovascular disease, retinopathy, nephropathy and peripheral neuropathy. Diabetes progression is governed by pancreatic β-cell failure, and recent studies showed that sulforaphane (SFN) might be able to prevent this change, preserving insulin production. Consequently, our goal was to test the effects of SFN on metabolic parameters related to diabetic complications and antioxidant defenses (superoxide dismutase, catalase and sulfhydryl groups) in the pancreas, liver and kidney of non-diabetic and diabetic rats. Male Wistar rats were treated with water or 0.5 mg kg(-1) SFN i.p. for 21 days after diabetes induction. In diabetic animals treated with SFN, the serum levels of total cholesterol, non-HDL cholesterol and triacylglycerols were similar to those of non-diabetic animals, and the insulin responsiveness was higher than that of the diabetic animals that did not receive the compound. No effect of SFN on the superoxide dismutase and catalase activity or sulfhydryl groups was observed in the pancreas, liver or kidney of the treated animals. We conclude that SFN ameliorates some features of clinical diabetic complications particularly the lipid profile and insulin responsiveness, but it does not modulate the antioxidant response induced by superoxide dismutase, catalase and sulfhydryl groups in the evaluated organs.

  7. Produced water exposure alters bacterial response to biocides.

    PubMed

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2014-11-04

    Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity.

  8. Concord grape juice polyphenols and cardiovascular risk factors: dose-response relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pure fruit juices provide nutritional value with evidence suggesting some of their benefits on biomarkers of cardiovascular disease risk may be derived from their constituent polyphenols, particularly flavonoids. However, few data from clinical trials are available on the dose-response relationship ...

  9. Appraisal, Coping, Task Performance, and Cardiovascular Responses during the Evaluated Speaking Task.

    ERIC Educational Resources Information Center

    Baggett, H. Lane; And Others

    1996-01-01

    Appraisal, coping, task performance, and cardiovascular responses were examined among men high and low in speech anxiety who prepared and performed a speech under evaluative conditions. Speech-anxious men saw the task as more threatening. They were more stressed, anxious, distracted, and aware of their emotions, focused on the passage of time, and…

  10. Cardiovascular responses to l-glutamate microinjection into the NTS are abrogated by reduced glutathione.

    PubMed

    Granato, Álisson Silva; Gomes, Paula Magalhães; Martins Sá, Renato William; Borges, Gabriel Silva Marques; Alzamora, Andréia Carvalho; de Oliveira, Lisandra Brandino; Toney, Glenn M; Cardoso, Leonardo M

    2017-03-06

    Redox imbalance in regions of the CNS controlling blood pressure is increasingly recognized as a leading factor for hypertension. Nucleus tractus solitarius (NTS) of the dorsomedial medulla is the main region receiving excitatory visceral sensory inputs that modulate autonomic efferent drive to the cardiovascular system. This study sought to determine the capacity of reduced glutathione, a major bioactive antioxidant, to modulate NTS-mediated control of cardiovascular function in unanaesthetized rats. Male Fischer 344 rats were used for microinjection experiments. Cardiovascular responses to l-glutamate were first used to verify accurate placement of injections into the dorsomedial region comprising the NTS. Next, responses to GSH or vehicle were recorded followed by responses to l-glutamate again at the same site. GSH microinjection increased mean arterial pressure (MAP) compared to vehicle and abrogated responses to subsequent injection of l-glutamate. These data indicate that GSH microinjection into the NTS affects blood pressure regulation by dorsomedial neuronal circuits and blunts l-glutamate driven excitation in this region. These findings raise the possibility that increased antioxidant actions of GSH in NTS could contribute to autonomic control dysfunctions of the cardiovascular system.

  11. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications.

    PubMed

    Levkau, Bodo

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction.

  12. Adaptive Responses to Prochloraz Exposure That Alter Dose-Response and Time-Course Behaviors

    EPA Science Inventory

    Dose response and time-course (DRTC) are, along with exposure, the major determinants of health risk. Adaptive changes within exposed organisms in response to environmental stress are common, and alter DRTC behaviors to minimize the effects caused by stressors. In this project, ...

  13. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  14. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    PubMed

    Marcu, Oana; Lera, Matthew P; Sanchez, Max E; Levic, Edina; Higgins, Laura A; Shmygelska, Alena; Fahlen, Thomas F; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-11

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  15. Cardiovascular responses to head-up tilt after an endurance exercise program.

    PubMed

    Pawelczyk, J A; Kenney, W L; Kenney, P

    1988-02-01

    The cardiovascular responses to 10 min of orthostasis were assessed before and after an aerobic exercise program. Five men and five women (18-25 years old) exercised for 7 weeks, four times per week, for 50 min per session at 70% of maximal heart rate (HR). Before and after the exercise program, maximal aerobic power (VO2max) was determined, and HR, systolic (SBP), diastolic (DBP), and pulse (PP) blood pressures were measured each minute during 5 min of supine rest, 10 min of foot-supported 70 degree head-up tilt (HUT), and 5 min of supine rest. Orthostatic tolerance was not determined. Calf compliance was measured in five of the subjects before and after the program as the change in leg volume at occluding pressures of 20, 40, 60, 80, and 100 mm Hg. Following the program, VO2max increased by 8.7% (p = 0.012), while decreases were noted in resting HR (9.4%, p = 0.041), SBP (5.0%, p less than 0.0005), and DBP (14.2%, p less than 0.0005). Despite a greater HR increase during HUT (7.1 beat.min-1, p = 0.034), SBP decreased by 3.4 mm Hg during HUT after the exercise program (p = 0.008). No differences were noted in the changes in DBP, MAP, or PP upon tilting (p greater than 0.05). After the program, the amount of fluid pooled in the calf at high occluding pressures (80 and 100 mm Hg) increased by 0.96 +/- 0.24 and 1.10 +/- 0.33 ml.100 ml tissue-1 (X +/- S.E.M., p = 0.017 and p = 0.028, respectively). We suggest that control of blood pressure during 10 min of orthostasis may be altered by endurance exercise training.

  16. Comparing Visible and Invisible Social Support: Non-evaluative Support Buffers Cardiovascular Responses to Stress.

    PubMed

    Kirsch, Julie A; Lehman, Barbara J

    2015-12-01

    Previous research suggests that in contrast to invisible social support, visible social support produces exaggerated negative emotional responses. Drawing on work by Bolger and colleagues, this study disentangled social support visibility from negative social evaluation in an examination of the effects of social support on negative emotions and cardiovascular responses. As part of an anticipatory speech task, 73 female participants were randomly assigned to receive no social support, invisible social support, non-confounded visible social support or visible social support as delivered in a 2007 study by Bolger and Amarel. Twelve readings, each for systolic blood pressure, diastolic blood pressure and heart rate were taken at 5-min intervals throughout the periods of baseline, reactivity and recovery. Cardiovascular outcomes were tested by incorporating a series of theoretically driven planned contrasts into tests of stress reactivity conducted through piecewise growth curve modelling. Linear and quadratic trends established cardiovascular reactivity to the task. Further, in comparison to the control and replication conditions, the non-confounded visible and invisible social support conditions attenuated cardiovascular reactivity over time. Pre- and post-speech negative emotional responses were not affected by the social support manipulations. These results suggest that appropriately delivered visible social support may be as beneficial as invisible social support.

  17. Cultural context moderates the relationship between emotion control values and cardiovascular challenge versus threat responses.

    PubMed

    Mauss, Iris B; Butler, Emily A

    2010-07-01

    Cultural context affects people's values regarding emotions, as well as their experiential and behavioral but not autonomic physiological responses to emotional situations. Little research, however, has examined how cultural context influences the relationships among values and emotional responding. Specifically, depending on their cultural context, individuals' values about emotion control (ECV; the extent to which they value emotion control) may have differing meanings, and as such, be associated with differing responses in emotional situations. We examined this possibility by testing the effect of two cultural contexts (28 female Asian-American (AA) versus 28 female European-American (EA) undergraduate students) on the associations between individuals' ECV and emotional responding (experiential, behavioral, and cardiovascular) to a relatively neutral film clip and a laboratory anger provocation. In the AA group, greater ECV were associated with reduced anger experience and behavior, and a challenge pattern of cardiovascular responding. In the EA group, greater ECV were associated with reduced anger behavior but not anger experience, and a threat pattern of cardiovascular responding. These results are consistent with the notion that individuals' values about emotion are associated with different meanings in different cultural contexts, and in turn, with different emotional and cardiovascular responses.

  18. Agentic extraversion as a predictor of effort-related cardiovascular response.

    PubMed

    Kemper, Christoph J; Leue, Anja; Wacker, Jan; Chavanon, Mira-Lynn; Hennighausen, Erwin; Stemmler, Gerhard

    2008-05-01

    The present study examined an extraversion-based extension of the integrative model of cardiovascular effort regulation by Wright and Kirby [Wright, R.A., Kirby, L.D., 2001. Effort determination of cardiovascular response: an integrative analysis with applications in social psychology. In: Zanna, M.P. (Ed.), Advances in Experimental Social Psychology, Academic Press, San Diego, CA, pp. 255-307.]. This model explains cardiovascular effort reactivity in terms of task difficulty, ability appraisal, and success importance. Aggregate measures of cardiovascular variables (alpha-adrenergic, beta-adrenergic, and cholinergic activation components) were used to measure extraversion-based differences in effort. Subjects performed a sequential letter task (n-back verbal working memory task) with four levels of difficulty. Agentic extraverts (n=10) appraised their ability and happiness as significantly higher than introverts (n=10). Introverts showed the expected shark-fin shaped pattern of effort-related cardiovascular reactivity for the alpha-adrenergic and cholinergic activation components. Effort decreased after the moderately difficult 2-back task. Results provide first evidence for an extraversion-based extension of the model and are discussed with regard to mood and resource allocation as possible mechanisms.

  19. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight

    NASA Technical Reports Server (NTRS)

    Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.

    2000-01-01

    BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.

  20. Cardiovascular activity in blood-injection-injury phobia during exposure: evidence for diphasic response patterns?

    PubMed

    Ritz, Thomas; Meuret, Alicia E; Simon, Erica

    2013-08-01

    Exposure to feared stimuli in blood-injection-injury (BII)-phobia is thought to elicit a diphasic response pattern, with an initial fight-flight-like cardiovascular activation followed by a marked deactivation and possible fainting (vasovagal syncope). However, studies have remained equivocal on the importance of such patterns. We therefore sought to determine the prevalence and clinical relevance of diphasic responses using criteria that require a true diphasic response to exceed cardiovascular activation of an emotional episode of a negative valence and to exceed deactivation of an emotionally neutral episode. Sixty BII-phobia participants and 20 healthy controls were exposed to surgery, anger and neutral films while measuring heart rate, blood pressure, respiratory pattern, and end-tidal partial pressure of carbon dioxide (as indicator of hyperventilation). Diphasic response patterns were observed in up to 20% of BII-phobia participants and 26.6% of healthy controls for individual cardiovascular parameters. BII-phobia participants with diphasic patterns across multiple parameters showed more fear of injections and blood draws, reported the strongest physical symptoms during the surgery film, and showed the strongest tendency to hyperventilate. Thus, although only a minority of individuals with BII phobia shows diphasic responses, their occurrence indicates significant distress. Respiratory training may add to the treatment of BII phobia patients that show diphasic response patterns.

  1. Cardiovascular response to apneic immersion in cool and warm water

    NASA Technical Reports Server (NTRS)

    Folinsbee, L.

    1974-01-01

    The influence of prior exposure to cool water and the influence of lung volume on the responses to breath holding were examined. The bradycardia and vasoconstriction that occur during breath-hold diving in man are apparently the resultant of stimuli from apnea, relative expansion of the thorax, lung volume, esophageal pressure, face immersion, and thermal receptor stimulation. It is concluded that the bradycardia and vasoconstriction associated with breath holding during body immersion are not attenuated by a preexisting bradycardia and vasoconstriction due to cold.

  2. Cardiovascular Responses Associated with Daily Walking in Subacute Stroke

    PubMed Central

    Prajapati, Sanjay K.; Gage, William H.; McIlroy, William E.

    2013-01-01

    Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1) walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%–60% heart rate reserve) or (2) heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve). Eight individuals with subacute stroke attending in-patient rehabilitation were recruited. Participants wore heart rate monitors and accelerometers during a typical rehabilitation day. Walking-related changes in heart rate and walking bout duration were determined. Patients did not meet the minimum cumulative requirements of walking intensity (>40% heart rate reserve) and duration (>10 minutes continuously) necessary for cardiorespiratory benefit. Only one patient exceeded 80% heart rate reserve. The absence of significant increases in heart rate associated with walking reveals that patients chose to walk at speeds well below a level that has meaningful cardiorespiratory health benefits. Additionally, cardiorespiratory workload is unlikely to limit participation in walking. Measurement of heart rate and walking during in-patient rehabilitation may be a useful approach to encourage patients to increase the overall physical activity and to help facilitate recovery. PMID:23476892

  3. Cardiovascular responses to railway noise during sleep in young and middle-aged adults.

    PubMed

    Tassi, Patricia; Saremi, Mahnaz; Schimchowitsch, Sarah; Eschenlauer, Arnaud; Rohmer, Odile; Muzet, Alain

    2010-03-01

    The aim of this study was to investigate the effects of nocturnal railway noise on cardiovascular reactivity in young (25.8 +/- 2.6 years) and middle-aged (52.2 +/- 2.5 years) adults during sleep. Thirty-eight subjects slept three nights in the laboratory at 1-week interval. They were exposed to 48 randomized pass-bys of Freight, Passenger and Automotive trains either at an 8-h equivalent sound level of 40 dBA (Moderate) and 50 dBA (High) or at a silent Control night. Heart rate response (HRR), heart response amplitude (HRA), heart response latency (HRL) and finger pulse response (FPR), finger pulse amplitude (FPA) and finger pulse latency (FPL) were recorded to measure cardiovascular reactivity after each noise onset and for time-matched pseudo-noises in the control condition. Results show that Freight trains produced the highest cardiac response (increased HRR, HRA and HRL) compared to Passenger and Automotive. But the vascular response was similar whatever the type of train. Juniors exhibited an increased HRR and HRA as compared to seniors, but there was no age difference on vasoconstriction, except a shorter FPL in seniors. Noise level produced dose-dependent effects on all the cardiovascular indices. Sleep stage at noise occurrence was ineffective for cardiac response, but FPA was reduced when noise occurred during REM sleep. In conclusion, our study is in favor of an important impact of nocturnal railway noise on the cardiovascular system of sleeping subjects. In the limit of the samples studied, Freight trains are the most harmful, probably more because of their special length (duration) than because of their speed (rise time).

  4. Bisphenol A Alters Autonomic Tone and Extracellular Matrix Structure and Induces Sex-Specific Effects on Cardiovascular Function in Male and Female CD-1 Mice

    PubMed Central

    Gear, Robin B.; Kendig, Eric L.

    2015-01-01

    The aim of this study was to determine whether bisphenol A (BPA) has adverse effects on cardiovascular functions in CD-1 mice and define sex-specific modes of BPA action in the heart. Dams and analyzed progeny were maintained on a defined diet containing BPA (0.03, 0.3, 3, 30, or 300 ppm) that resulted in BPA exposures from 4–5 to approximately 5000 μg/kg · d or a diet containing 17α-ethinyl estradiol (EE; ∼0.02, 0.2, and 0.15 μg/kg · d) as an oral bioavailable estrogen control. Assessment of electrocardiogram parameters using noninvasive methods found that ventricular functions in both male and female mice were not altered by either BPA or EE. However, exposure-related changes in the rates of ventricular contraction, suggestive of a shift in sympathovagal balance of heart rate control toward increased parasympathetic activity, were detected in males. Decreased systolic blood pressure was observed in males exposed to BPA above 5 μg/kg · d and in females from the highest BPA exposure group. Morphometric histological measures revealed sexually dimorphic changes in the composition of the cardiac collagen extracellular matrix, increases in fibrosis, and evidence of modest exposure-related remodeling. Experiments using the α-selective adrenergic agonist phenylephrine found that BPA enhanced reflex bradycardia in females, but not males, revealed that BPA and EE exposure sex specifically altered the sympathetic regulation of the baroreflex circuits. Increased sensitivity to the cardiotoxic effects of the β-adrenergic agonist isoproterenol was observed in BPA- and EE-exposed females. This effect was not observed in males, in which BPA or EE exposures were protective of isoproterenol-induced ischemic damage and hypertrophy. The results of RNA sequence analysis identified significant sex-specific changes in gene expression in response to BPA that were consistent with the observed exposure-related phenotypic changes in the collagenous and noncollagenous

  5. Ethnic differences in cardiovascular responses to laboratory stress: a comparison between asian and white americans.

    PubMed

    Shen, Biing-Jiun; Stroud, Laura R; Niaura, Raymond

    2004-01-01

    Compared to other ethnic groups, Asian Americans show significantly lower rates of cardiovascular disease (CVD). We tested the hypothesis that Asian Americans would show reduced cardiovascular responses to laboratory stressors than Caucasians. Forty-three Asians (18 men, 25 women) and 77 Caucasians (36 men, 41 women) with a mean age of 24 years (SD = 3.93) participated in a stress reactivity protocol consisting of four tasks (speech, serial subtraction, mirror tracing, handgrip) while heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured. Asian Americans demonstrated overall lower reactivity across tasks for SBP F(1,117 = 7.48, p < .01) and a trend toward lower HR response F(1,117 = 3.18, p < .10). A significant ethnicity by task interaction was observed for HR reactivity F(3,351 = 2.94, p < .05) such that Caucasians showed greater responses for the subtraction task.

  6. Endothelial Inflammatory Transcriptional Responses to an Altered Plasma Exposome Following Inhalation of Diesel Emissions

    EPA Science Inventory

    BACKGROUND:Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology.OBJECTIVES:Previously, we found that canonical inflammatory response tra...

  7. Cardiovascular responses during free-diving in the sea.

    PubMed

    Marongiu, E; Crisafulli, A; Ghiani, G; Olla, S; Roberto, S; Pinna, M; Pusceddu, M; Palazzolo, G; Sanna, I; Concu, A; Tocco, F

    2015-04-01

    Cardiac output has never been assessed during free-diving diving in the sea. Knowledge of human diving response in this setting is therefore scarce. 3 immersions were performed by 7 divers: at depths of 10 m, 20 m and 30 m. Each test consisted of 3 apnea phases: descent, static and ascent. An impedance cardiograph provided data on stroke volume, heart rate and cardiac output. Mean blood pressure, arterial O2 saturation and blood lactate values were also collected. Starting from a resting value of 4.5±1.6 L∙min(-1), cardiac output at 10 m showed an increase up to 7.1±2.2 L∙min(-1) (p<0.01) during the descent, while conditions during the static and ascent phases remained unchanged. At 20 m cardiac output values were 7.3±2.4 L∙min(-1) and 6.7(±1).2 L∙min(-1) during ascent and descent, respectively (p<0.01), and 4.3±0.9 L∙min(-1) during static phase. At 30 m cardiac output values were 6.5±1.8 L∙min(-1) and 7.5±2 L∙min(-1) during descent and ascent, respectively (p<0.01), and 4.7±2.1 L∙min(-1) during static phase. Arterial O2 saturation decreased with increasing dive depth, reaching 91.1±3.4% (p<0.001 vs. rest) upon emergence from a depth of 30 m. Blood lactate values increased to 4.1±1.2 mmol∙L(-1) at the end of the 30 m dive (p<0.001 vs. rest). Results seem to suggest that simultaneous activation of exercise and diving response could lead to an absence of cardiac output reduction aimed at an oxygen-conserving effect.

  8. Social support and networks: cardiovascular responses following recall on immigration stress among Chinese Americans.

    PubMed

    Lee, Yuen Shan Christine; Suchday, Sonia; Wylie-Rosett, Judith

    2015-04-01

    Social support has been shown to act as a buffer for cardiovascular responses to stress. However, little is known about how social support and networks are related to cardiovascular responses to immigration stress recall. The current study evaluated the impact of structural and functional support on cardiovascular reaction following immigrant stress recall provocation as well as the moderation effect of interdependent self-construal among first-generation Chinese immigrants. One hundred fifty Chinese immigrants were recruited in the New York Chinatown area. Participants completed questionnaires assessing their levels of social support and networks, and interdependent self-construal. Following adaptation, participants recalled a recent post-immigration stress-provoking situation. Cardiovascular measures were taken during adaptation, stressor task, and recovery period. Hierarchical multiple regression analysis was performed. Social network size and type, as well as perceived emotional support were positively predictive of systolic blood pressure (SBP) reactivity changes. Instrumental support seeking was a positive predictor of SBP and diastolic blood pressure (DBP) reactivity. The moderation effect between instrumental support seeking and interdependent self-construal were significantly predictive of DBP reactivity and recovery, suggesting that perceptions about themselves in relation to others is a crucial factor for determining whether support seeking is beneficial or not. Social support was not a direct buffer on cardiovascular responses to stress among Chinese immigrants. Chinese values of interdependence and collectivism may partly explain the disconfirming results. Still, when interdependent self-construal was taken into account, Chinese immigrants who had less interdependent self-construal, but solicited more instrumental support, had faster adaptation to stress over the long term.

  9. Social Support and Networks: Cardiovascular Responses Following Recall on Immigration Stress Among Chinese Americans

    PubMed Central

    Suchday, Sonia; Wylie-Rosett, Judith

    2014-01-01

    Social support has been shown to act as a buffer for cardiovascular responses to stress. However, little is known about how social support and networks are related to cardiovascular responses to immigration stress recall. The current study evaluated the impact of structural and functional support on cardiovascular reaction following immigrant stress recall provocation as well as the moderation effect of interdependent self-construal among first-generation Chinese immigrants. One hundred fifty Chinese immigrants were recruited in the New York Chinatown area. Participants completed questionnaires assessing their levels of social support and networks, and interdependent self-construal. Following adaptation, participants recalled a recent post-immigration stress-provoking situation. Cardiovascular measures were taken during adaptation, stressor task, and recovery period. Hierarchical multiple regression analysis was performed. Social network size and type, as well as perceived emotional support were positively predictive of systolic blood pressure (SBP) reactivity changes. Instrumental support seeking was a positive predictor of SBP and diastolic blood pressure (DBP) reactivity. The moderation effect between instrumental support seeking and interdependent self-construal were significantly predictive of DBP reactivity and recovery, suggesting that perceptions about themselves in relation to others is a crucial factor for determining whether support seeking is beneficial or not. Social support was not a direct buffer on cardiovascular responses to stress among Chinese immigrants. Chinese values of interdependence and collectivism may partly explain the disconfirming results. Still, when interdependent self-construal was taken into account, Chinese immigrants who had less interdependent self-construal, but solicited more instrumental support, had faster adaptation to stress over the long term. PMID:24288021

  10. Human endothelial cell responses to cardiovascular inspired pulsatile shear stress

    NASA Astrophysics Data System (ADS)

    Watson, Matthew; Baugh, Lauren; Black, Lauren, III; Kemmerling, Erica

    2016-11-01

    It is well established that hemodynamic shear stress regulates blood vessel structure and the development of vascular pathology. This process can be studied via in vitro models of endothelial cell responses to pulsatile shear stress. In this study, a macro-scale cone and plate viscometer was designed to mimic various shear stress waveforms found in the body and apply these stresses to human endothelial cells. The device was actuated by a PID-controlled DC gear-motor. Cells were exposed to 24 hours of pulsatile shear and then imaged and stained to track their morphology and secretions. These measurements were compared with control groups of cells exposed to constant shear and no shear. The results showed that flow pulsatility influenced levels of secreted proteins such as VE-cadherin and neuroregulin IHC. Cell morphology was also influenced by flow pulsatility; in general cells exposed to pulsatile shear stress developed a higher aspect ratio than cells exposed to no flow but a lower aspect ratio than cells exposed to steady flow.

  11. Growth-altering microbial interactions are responsive to chemical context

    PubMed Central

    2017-01-01

    Microbial interactions are ubiquitous in nature, and are equally as relevant to human wellbeing as the identities of the interacting microbes. However, microbial interactions are difficult to measure and characterize. Furthermore, there is growing evidence that they are not fixed, but dependent on environmental context. We present a novel workflow for inferring microbial interactions that integrates semi-automated image analysis with a colony stamping mechanism, with the overall effect of improving throughput and reproducibility of colony interaction assays. We apply our approach to infer interactions among bacterial species associated with the normal lung microbiome, and how those interactions are altered by the presence of benzo[a]pyrene, a carcinogenic compound found in cigarettes. We found that the presence of this single compound changed the interaction network, demonstrating that microbial interactions are indeed dynamic and responsive to local chemical context. PMID:28319121

  12. Growth-altering microbial interactions are responsive to chemical context.

    PubMed

    Liu, Angela; Archer, Anne M; Biggs, Matthew B; Papin, Jason A

    2017-01-01

    Microbial interactions are ubiquitous in nature, and are equally as relevant to human wellbeing as the identities of the interacting microbes. However, microbial interactions are difficult to measure and characterize. Furthermore, there is growing evidence that they are not fixed, but dependent on environmental context. We present a novel workflow for inferring microbial interactions that integrates semi-automated image analysis with a colony stamping mechanism, with the overall effect of improving throughput and reproducibility of colony interaction assays. We apply our approach to infer interactions among bacterial species associated with the normal lung microbiome, and how those interactions are altered by the presence of benzo[a]pyrene, a carcinogenic compound found in cigarettes. We found that the presence of this single compound changed the interaction network, demonstrating that microbial interactions are indeed dynamic and responsive to local chemical context.

  13. Compassion training alters altruism and neural responses to suffering.

    PubMed

    Weng, Helen Y; Fox, Andrew S; Shackman, Alexander J; Stodola, Diane E; Caldwell, Jessica Z K; Olson, Matthew C; Rogers, Gregory M; Davidson, Richard J

    2013-07-01

    Compassion is a key motivator of altruistic behavior, but little is known about individuals' capacity to cultivate compassion through training. We examined whether compassion may be systematically trained by testing whether (a) short-term compassion training increases altruistic behavior and (b) individual differences in altruism are associated with training-induced changes in neural responses to suffering. In healthy adults, we found that compassion training increased altruistic redistribution of funds to a victim encountered outside of the training context. Furthermore, increased altruistic behavior after compassion training was associated with altered activation in brain regions implicated in social cognition and emotion regulation, including the inferior parietal cortex and dorsolateral prefrontal cortex (DLPFC), and in DLPFC connectivity with the nucleus accumbens. These results suggest that compassion can be cultivated with training and that greater altruistic behavior may emerge from increased engagement of neural systems implicated in understanding the suffering of other people, executive and emotional control, and reward processing.

  14. Streamflow response to increasing precipitation extremes altered by forest management

    NASA Astrophysics Data System (ADS)

    Kelly, Charlene N.; McGuire, Kevin J.; Miniat, Chelcy Ford; Vose, James M.

    2016-04-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the impact of the interaction between forest management and precipitation. We use daily long-term data from paired watersheds that have undergone forest harvest or species conversion. We find that interactive effects of climate change, represented by changes in observed precipitation trends, and forest management regime, significantly alter expected streamflow most often during extreme events, ranging from a decrease of 59% to an increase of 40% in streamflow, depending upon management. Our results suggest that vegetation might be managed to compensate for hydrologic responses due to climate change to help mitigate effects of extreme changes in precipitation.

  15. A Proposed Study Examining Individual Differences in Temporal Profiles of Cardiovascular Responses to Head Down Tilt During Fluid Loading

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia; Toscano, William; Winther, Sean; Martinez, Jacqueline; Dominguez, Margaret

    2012-01-01

    Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. Hypovolemia, reduced plasma volume, is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore lost plasma volume by giving crew salt tablets and water prior to re-entry. The main purpose of the proposed study is to define the temporal profile of cardiac responses to simulated 0-G conditions before and following a fluid loading countermeasure. 8 men and 8 women will be tested during 4 hour exposures at 6o head down tilt (HDT). Each subject will be given two exposures to HDT on separate days, one with and one without fluid loading (one liter of 0.9% saline solution). Stand tests (orthostatic stress) will be done before and after each HDT. Cardiac measures will be obtained with both impedance cardiography and echo ultrasound

  16. Habitual alcohol consumption is associated with lower cardiovascular stress responses--a novel explanation for the known cardiovascular benefits of alcohol?

    PubMed

    Jones, Alexander; McMillan, Merlin R; Jones, Russell W; Kowalik, Grzegorz T; Steeden, Jennifer A; Pruessner, Jens C; Taylor, Andrew M; Deanfield, John E; Muthurangu, Vivek

    2013-07-01

    In contrast to heavy alcohol consumption, which is harmful, light to moderate drinking has been linked to reduced cardiovascular morbidity and mortality. Effects on lipid status or clotting do not fully explain these benefits. Exaggerated cardiovascular responses to mental stress are detrimental to cardiovascular health. We hypothesized that habitual alcohol consumption might reduce these responses, with potential benefits. Advanced magnetic resonance techniques were used to accurately measure cardiovascular responses to an acute mental stressor (Montreal Imaging Stress Task) in 88 healthy adults (∼1:1 male:female). Salivary cortisol and task performance measures were used to assess endocrine and cognitive responses. Habitual alcohol consumption and confounding factors were assessed by questionnaire. Alcohol consumption was inversely related to responses of heart rate (HR) (r = -0.31, p = 0.01), cardiac output (CO) (r = -0.32, p = 0.01), vascular resistance (r = 0.25, p = 0.04) and mean blood pressure (r = -0.31, p = 0.01) provoked by stress, but not to stroke volume (SV), or arterial compliance changes. However, high alcohol consumers had greater cortisol stress responses, compared to moderate consumers (3.5 versus 0.7 nmol/L, p = 0.04). Cognitive measures did not differ. Findings were not explained by variations in age, sex, social class, ethnicity, physical activity, adrenocortical activity, adiposity, smoking, menstrual phase and chronic stress. Habitual alcohol consumption is associated with reduced cardiac responsiveness during mental stress, which has been linked to lower risk of hypertension and vascular disease. Consistent with established evidence, our findings suggest a mechanism by which moderate alcohol consumption might reduce cardiovascular disease, but not high consumption, where effects such as greater cortisol stress responses may negate any benefits.

  17. The role of neuropeptide Y in the ovine fetal cardiovascular response to reduced oxygenation

    PubMed Central

    Sanhueza, Emilia M; Johansen-Bibby, Anja A; Fletcher, Andrew J W; Riquelme, Raquel A; Daniels, Alejandro J; Serón-Ferré, Maria; Gaete, Cristián R; Carrasco, Jorge E; Llanos, Aníbal J; Giussani, Dino A

    2003-01-01

    This study investigated the role of neuropeptide Y (NPY) in mediating cardiovascular responses to reduced oxygenation in the late gestation ovine fetus by: (1) comparing the effects on the cardiovascular system of an exogenous infusion of NPY with those elicited by moderate or severe reductions in fetal oxygenation; and (2) determining the effect of fetal i.v. treatment with a selective NPY-Y1 receptor antagonist on the fetal cardiovascular responses to acute moderate hypoxaemia. Under general anaesthesia, 14 sheep fetuses (0.8–0.9 of gestation) were surgically prepared with vascular and amniotic catheters. In 5 of these fetuses, a Transonic flow probe was also implanted around a femoral artery. Following at least 5 days of recovery, one group of fetuses (n = 9) was subjected to a 30 min treatment period with exogenous NPY (17 μg kg−1 bolus plus 0.85 μg kg−1 min−1 infusion). In this group, fetal blood pressure and heart rate were monitored continuously and the distribution of the fetal combined ventricular output was assessed via injection of radiolabelled microspheres before and during treatment. The second group of fetuses instrumented with the femoral flow probe (n = 5) were subjected to a 3 h experiment consisting of 1 h of normoxia, 1 h of hypoxaemia, and 1 h of recovery during a slow i.v. infusion of vehicle. One or two days later, the acute hypoxaemia protocol was repeated during fetal i.v. treatment with a selective NPY-Y1 receptor antagonist (50 μg kg−1bolus + 1.5 μg kg−1 min−1 infusion). In these fetuses, fetal arterial blood pressure, heart rate and femoral vascular resistance were recorded continuously. The results show that fetal treatment with exogenous NPY mimics the fetal cardiovascular responses to asphyxia, and that treatment of the sheep fetus with a selective NPY-Y1 receptor antagonist does not affect the fetal cardiovascular response to acute moderate hypoxaemia. These results support a greater role for NPY in mediating the

  18. Blocking systemic nitric oxide production alters neuronal activation in brain structures involved in cardiovascular regulation during polymicrobial sepsis.

    PubMed

    Bruhn, Fernando Henrique Pascoti; Corrêa, Pollyanna Barbosa Farias; Oliveira-Pelegrin, Gabriela Ravanelli; Rocha, Maria José Alves

    2009-04-10

    In a previous study, we concluded that overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) in the late phase of sepsis prevents hypothalamic activation, blunts vasopressin secretion and contributes to hypotension, irreversible shock and death. The aim of this follow-up study was to evaluate if the same neuronal activation pattern happens in brain structures related to cardiovascular functions. Male Wistar rats received intraperitoneal injections of aminoguanidine, an iNOS inhibitor, or saline 30 min before cecal ligation and puncture (CLP) or sham surgeries. The animals were perfused 6 or 24h after the surgeries and the brains were removed and processed for Fos immunocytochemistry. We observed an increase (P<0.001) in c-fos expression 6h after CLP in the area postrema (AP), nucleus of the tractus solitarius (NTS), ventral lateral medulla (VLM), locus coeruleus (LC) and parabrachial nucleus (PB). At 24h after CLP, however, c-fos expression was strongly decreased in all these nuclei (P<0.05), except for the VLM. Aminoguanidine reduced c-fos expression in the AP and NTS at 6h after CLP, but showed an opposite effect at 24h, with an increase in the AP, NTS, and also in the VLM. No such effect was observed in the LC and PB at 6 or 24h. In all control animals, c-fos expression was minimal or absent. We conclude that in the early phase of sepsis iNOS-derived NO may be partially responsible for the activation of brain structures related to cardiovascular regulation. During the late phase, however, this activation is reduced or abolished.

  19. Dissecting the genetic architecture of the cardiovascular and renal stress response.

    PubMed

    Snieder, Harold; Harshfield, Gregory A; Barbeau, Paule; Pollock, David M; Pollock, Jennifer S; Treiber, Frank A

    2002-10-01

    We review the evidence for a genetic basis of the cardiovascular and renal stress response. A bio-behavioral model of stress-induced hypertension is presented that explains how repeated exposure to stress in combination with genetic susceptibility might lead to the development of hypertension. In this model, we focus on three underlying physiological systems that mediate the stress response of the heart, vasculature and kidney: the sympathetic nervous system (SNS), the renin-angiotensin-aldosterone system (RAAS) and the endothelial system (ES). We then review the evidence for a genetic influence on cardiovascular reactivity to psychological stress and stress-induced sodium retention using data from twin and family studies and a limited number of candidate gene studies. Finally, by describing the underlying physiological systems of our model and their genetic underpinning we emphasize the importance of inclusion of genetic measurements in any future studies testing the reactivity hypothesis.

  20. The effect of adrenal demedullation on cardiovascular responses to environmental stimulation in conscious rats.

    PubMed Central

    Borkowski, K. R.; Kelly, E.

    1986-01-01

    Circulating plasma adrenaline has been implicated in the facilitation of neurogenic pressor responses and development of hypertension. Bilateral adrenal demedullation in rats did not affect body weight, urine output, urinary electrolyte (Na+, K+ and Cl-) excretion, nor plasma corticosterone concentration, indicating the selective nature of the demedullation procedure. Adrenal demedullation did induce significant reductions in adrenal catecholamine content, plasma adrenaline levels, resting blood pressure and heart rate in conscious rats, but did not affect alerting-induced increases in blood pressure. The adrenal medulla and circulating plasma adrenaline appear to contribute to the maintenance of resting cardiovascular parameters, but would not appear to be involved in nor facilitate the cardiovascular responses to environmental stimulation. PMID:3742165

  1. Cardiovascular responses at the onset of exercise with partial neuromuscular blockade in cat and man.

    PubMed Central

    Iwamoto, G A; Mitchell, J H; Mizuno, M; Secher, N H

    1987-01-01

    1. In decerebrated cats the cardiovascular, heart rate and blood pressure responses to static muscle contractions were followed from the onset of stimulation of the cut L7-S1 ventral roots. Heart rate and blood pressure were also followed during maximal voluntary and electrically induced static muscle contractions in man using one leg. In both cat and man contractions were performed under control conditions and tubocurarine-induced neuromuscular blockade. 2. In the cat, heart rate and blood pressure increased 1.7 s after the onset of the contraction. No cardiovascular responses were seen when the muscle contraction was blocked by tubocurarine. 3. In man, both heart rate and blood pressure increased at the onset of voluntary contractions. Partial curarization reduced strength to 39% of control. The heart rate response was unaffected by tubocurarine while the blood pressure response was reduced from 61 to 32 mmHg. 4. Electrical stimulation of the muscles resulted in 75% of voluntary strength in man. The heart rate response was delayed one R-R interval in the electrocardiogram but was as large as during voluntary contractions. During partial curarization the heart rate response was significantly smaller and the blood pressure response was reduced from 11 to 8 mmHg. 5. In conclusion, processes in active muscles elicit an increase in heart rate and blood pressure which depends on the intensity of the muscle contraction developed. However, the immediate cardiovascular responses at the onset of voluntary muscle contractions cannot be accounted for by reflexes generated in the working muscles alone. Images Fig. 2 PMID:3656150

  2. Mutants of PC12 cells with altered cyclic AMP responses

    SciTech Connect

    Block, T.; Kon, C.; Breckenridge, B.M.

    1984-10-01

    PCl2 cells, derived from a rat pheochromocytoma, were mutagenized and selected in media containing agents known to elevate intracellular concentrations of cyclic AMP (cAMP). More than 40 clones were isolated by selection with cholera toxin or 2-chloroadenosine or both. The variants that were deficient in accumulating cAMP were obtained by using a protocol in which 1 ..mu..m 8-bromo-cAMP was included in addition to the agonist. Certain of these variants were partially characterized with respect to the site of altered cAMP metabolism. The profiles of adenylate cyclase activity responsiveness of certain variants to guanosine-5'-(BETA,..gamma..-imido) triphosphate and to forskolin resembled those of UNC and cyc phenotypes of S49 lymphoma cells, which are functionally deficient in the GTP-sensitive coupling protein, N/sub s/. Other variants were characterized by increased cyclic nucleotide phosphodiesterase activity at low substrate concentration. Diverse morphological traits were observed among the variants, but it was not possible to assign them to a particular cAMP phenotype. Two revertants of a PCl2 mutant were isolated and observed to have regained a cellular cAMP response to 2-chloroadenosine and to forskolin. It is hoped that these PCl2 mutants will have utility for defining cAMP-mediated functions, including any links to the action of nerve growth factor, in cells derived from the neural crest.

  3. Computational Models of the Cardiovascular System and Its Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Kamm, Roger D.

    1999-01-01

    Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a

  4. Attenuation of Cardiovascular Response with Lidocaine 1.5 mg/kg and Labetalol 10 mg

    DTIC Science & Technology

    1990-07-01

    5 ug/ml). Low dose 7 IV Lidocaine has been demonstrated to decrease opioid requirements for post operative pain , and also has been shown to reduce...means of alleviating acute and chronic pain . As adjuncts to general anesthesia, infusions of lidocaine have been used to supplement thiopental and...REPORIV DOC~UMENTAT;O(.)N PAGE - - Ir . . . .. .. . . . . . . - 1990 THESISiEGGEREMM Attenuation of Cardiovascular Response with Lidocaine N 1.5 mg

  5. Cardiovascular responses to static exercise in man: central and reflex contributions.

    PubMed Central

    Gandevia, S C; Hobbs, S F

    1990-01-01

    1. To assess the contributions of muscle chemoreflexes and central signals of motor command to cardiovascular to static exercise, blood pressure and heart rate were measured during three separate conditions: (i) isometric handgrip contractions, (ii) entrapment of metabolites produced by these contractions within the contracting muscles (chemoreflex effect), and (iii) attempted contractions of acutely paralysed muscles at three levels of effort (command effect). 2. The chemoreflex was assessed during circulatory occlusion applied as the contraction ceased. Paralysis was produced by local infusion of lignocaine distal to a sphygmomanometer cuff inflated above systolic pressure. 3. Blood pressure and heart rate increased progressively during isometric contraction of 33 and 50% maximal voluntary strength (for 120 and 75 s respectively). Muscle chemoreflexes during occlusion also increased blood pressure in proportion to the duration of contraction but did not increase heart rate. During attempted contraction of paralysed muscles at three measured levels of motor command, blood pressure and heart rate increased, but only heart rate was graded with the level of command. 4. The pattern of cardiovascular response for the muscle chemoreflex (as indicated by the ratio of the changes in heart rate and blood pressure) differed from that for isometric contractions and for motor commands in isolation. The pattern for contractions and for moderate but not high intensities of motor command was similar. 5. These data suggest that cardiovascular responses to moderate intensities of static contraction can be produced primarily by motor command, but that both motor command and muscle chemoreflexes contribute to cardiovascular responses at higher intensities of static exercise. When studied in isolation, central motor command and muscle chemoreflexes do not produce the same pattern of circulatory responses. PMID:2086762

  6. Cardiovascular Responses to Unilateral, Bilateral, and Alternating Limb Resistance Exercise Performed Using Different Body Segments.

    PubMed

    Moreira, Osvaldo C; Faraci, Lucas L; de Matos, Dihogo G; Mazini Filho, Mauro L; da Silva, Sandro F; Aidar, Felipe José; Hickner, Robert C; de Oliveira, Cláudia E P

    2017-03-01

    Moreira, OC, Faraci, LL, de Matos, DG, Mazini Filho, ML, da Silva, SF, Aidar, FJ, Hickner, RC, and de Oliveira, CEP. Cardiovascular responses to unilateral, bilateral and alternating limb resistance exercise performed using different body segments. J Strength Cond Res 31(3): 644-652, 2017-The aim of this study was to verify and compare the cardiovascular responses to unilateral, bilateral, and alternating limb resistance exercise (RE) performed using different body segments. Fifteen men experienced in RE were studied during biceps curls, barbell rows, and knee extension exercises when performed bilaterally, unilaterally, and using alternating limbs. The protocol consisted of 3 sets of 10 repetitions at 80% of 10 repetition maximum with 2-minute rest between sets. Heart rate (HR) and blood pressure (BP) were measured after the last repetition. There was a statistically significant increase in HR, systolic blood pressure (SBP), and rate pressure product (RPP), from rest to postexercise. The RPP was higher in the third set of all exercises and in all 3 forms of execution, when compared with the first set. Bilateral biceps curls caused a greater increase in RPP (first and second sets) and HR, compared with the same exercise performed unilaterally. Furthermore, the performance of bilateral biceps curls induced greater HR and RPP, in all sets, compared with bilateral knee extension and barbell rows. There was also a significantly higher SBP for the alternating second and third sets and also for the bilateral third set of the knee extensions as compared with the barbell rows. It was concluded from the data of this study that the cardiovascular response was increased from rest to postexercise in all forms of exercise, especially immediately after the third set of RE. For exercises performed bilaterally with the upper body (biceps curls), there was a greater cardiovascular response when compared with the same exercise performed unilaterally or with lower-body exercise

  7. Cardiovascular and autonomic responses to whole-body cryostimulation in essential hypertension.

    PubMed

    Zalewski, Pawel; Buszko, Katarzyna; Zawadka-Kunikowska, Monika; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Sinski, Maciej; Newton, Julia

    2014-10-01

    Over recent years, a considerable increase in the popularity of cryostimulation and whole body cryotherapy (WBC) procedures has occurred both among healthy individuals and in various groups of patients, including those with primary untreated hypertension. The aim of this study was to compare the effects of WBC on the functional parameters of cardiovascular system in normotensive and primarily hypertensive individuals. The study included 26 young male volunteers with normal blood pressure range (NormoBP) and 13 with essential arterial hypertension (HyperBP). Each subject was exposed to cryotherapeutic factor (whole-body cryotherapy/cryostimulation, WBC) at a temperature of approximately -115°C to -125°C for a period of 3 min. The cardiovascular and autonomic parameters were measured noninvasively with Task Force® Monitor. Measurements in a supine position and tilt test were performed "before WBC" and "after WBC". Our study revealed that cryogenic temperatures exert strong modulatory effect on the cardiovascular system. Both groups showed adaptive changes of myocardial and vascular parameters in response to rapid cooling of virtually the whole body surface. While the profiles of some of these changes were similar in both the groups, also several considerable intergroup differences were documented. Consequently, the cryostimulation and cryotherapy treatment should be prescribed carefully to individuals who present with cardiovascular failure of any degree.

  8. The effect of blood volume loss on cardiovascular response to lower body negative pressure using a mathematical model

    NASA Technical Reports Server (NTRS)

    Karam, E. H.; Srinivasan, R. S.; Charles, J. B.; Fortney, S. M.

    1994-01-01

    Different mathematical models of varying complexity have been proposed in recent years to study the cardiovascular (CV) system. However, only a few of them specifically address the response to lower body negative pressure (LBNP), a stress that can be applied in weightlessness to predict changes in orthostatic tolerance. Also, the simulated results produced by these models agree only partially with experimental observations. In contrast, the model proposed by Melchior et al., and modified by Karam et al. is a simple representation of the CV system capable of accurately reproducing observed LBNP responses up to presyncopal levels. There are significant changes in LBNP response due to a loss of blood volume and other alterations that occur in weightlessness and related one-g conditions such as bedrest. A few days of bedrest can cause up to 15% blood volume loss (BVL), with consequent decreases in both stroke volume and cardiac output, and increases in heart rate, mean arterial pressure, and total peripheral resistance. These changes are more pronounced at higher levels of LBNP. This paper presents the results of a simulation study using our CV model to examine the effect of BVL on LBNP response.

  9. The energetic and cardiovascular response to treadmill walking and cycle ergometer exercise in obese women.

    PubMed

    Lafortuna, Claudio L; Agosti, Fiorenza; Galli, Raffaela; Busti, Carlo; Lazzer, Stefano; Sartorio, Alessandro

    2008-08-01

    Physical activity is essential in obesity management, but exercise capacity is compromised in obese individuals due to the excessive body mass, impacting on body movement's energetics, and to the dysfunctions of regulatory mechanisms, affecting cardiovascular responses. This study aims to compare the energetics and cardiovascular responses of walking and cycling in obese women, and to formulate recommendations regarding the most suitable type of exercise for obesity. Fifteen obese (OB) and six normal weight (NW) women exercised on treadmill (TM) and cycle ergometer (CE). During both exercise modalities, metabolic rate was higher in OB than in NW and correlated with measures of body mass. Leg movement metabolic rate during cycling depended upon individual adiposity, and when accounted for, mechanical efficiency was similar in the two groups. When accounting for extra mass, differences in metabolic rate among groups are abolished for CE, indicating no obesity impairment of muscle efficiency, but not for TM, suggesting that differences in biomechanics may explain the higher net cost of transport of OB. In both groups, HR was higher during CE than TM at the same oxygen uptake (VO(2)), but in OB the HR increment over VO(2) was greater for CE than for TM. Therefore, due to different cardiovascular responses to TM and CE in OB, walking is more convenient, enabling OB to attain target energy expenditure at lower HR or in a shorter time.

  10. Autonomic cardiovascular responses in acclimatized lowlanders on prolonged stay at high altitude: a longitudinal follow up study.

    PubMed

    Dhar, Priyanka; Sharma, Vijay K; Hota, Kalpana B; Das, Saroj K; Hota, Sunil K; Srivastava, Ravi B; Singh, Shashi B

    2014-01-01

    Acute exposure to hypobaric hypoxia at high altitude is reported to cause sympathetic dominance that may contribute to the pathophysiology of high altitude illnesses. The effect of prolonged stay at high altitude on autonomic functions, however, remains to be explored. Thus, the present study aimed at investigating the effect of high altitude on autonomic neural control of cardiovascular responses by monitoring heart rate variability (HRV) during chronic hypobaric hypoxia. Baseline electrocardiography (ECG) data was acquired from the volunteers at mean sea level (MSL) (<250 m) in Rajasthan. Following induction of the study population to high altitude (4500-4800 m) in Ladakh region, ECG data was acquired from the volunteers after 6 months (ALL 6) and 18 months of induction (ALL 18). Out of 159 volunteers who underwent complete investigation during acquisition of baseline data, we have only included the data of 104 volunteers who constantly stayed at high altitude for 18 months to complete the final follow up after 18 months. HRV parameters, physiological indices and biochemical changes in serum were investigated. Our results show sympathetic hyperactivation along with compromise in parasympathetic activity in ALL 6 and ALL 18 when compared to baseline data. Reduction of sympathetic activity and increased parasympathetic response was however observed in ALL 18 when compared to ALL 6. Our findings suggest that autonomic response is regulated by two distinct mechanisms in the ALL 6 and ALL 18. While the autonomic alterations in the ALL 6 group could be attributed to increased sympathetic activity resulting from increased plasma catecholamine concentration, the sympathetic activity in ALL 18 group is associated with increased concentration of serum coronary risk factors and elevated homocysteine. These findings have important clinical implications in assessment of susceptibility to cardio-vascular risks in acclimatized lowlanders staying for prolonged duration at high

  11. Altered Functional Response to Risky Choice in HIV Infection

    PubMed Central

    Connolly, Colm G.; Bischoff-Grethe, Amanda; Jordan, Stephan J.; Woods, Steven Paul; Ellis, Ronald J.; Paulus, Martin P.; Grant, Igor

    2014-01-01

    Background Risky decision-making is commonly observed in persons at risk for and infected with HIV and is associated with executive dysfunction. Yet it is currently unknown whether HIV alters brain processing of risk-taking decision-making. Methods This study examined the neural substrate of a risky decision-making task in 21 HIV seropositive (HIV+) and 19 seronegative (HIV-) comparison participants. Functional magnetic resonance imaging was conducted while participants performed the risky-gains task, which involves choosing among safe (20 cents) and risky (40/80 cent win or loss) choices. Linear mixed effects analyses examining group and decision type were conducted. Robust regressions were performed to examine the relationship between nadir CD4 count and Kalichman sexual compulsivity and brain activation in the HIV+ group. The overlap between the task effects and robust regressions was explored. Results Although there were no serostatus effects in behavioral performance on the risky-gains task, HIV+ individuals exhibited greater activation for risky choices in the basal ganglia, i.e. the caudate nucleus, but also in the anterior cingulate, dorsolateral prefrontal cortex, and insula relative to the HIV- group. The HIV+ group also demonstrated reduced functional responses to safe choices in the anterior cingulate and dorsolateral prefrontal cortex relative to the HIV- group. HIV+ individuals with higher nadir CD4 count and greater sexual compulsivity displayed lower differential responses to safe versus risky choices in many of these regions. Conclusions This study demonstrated fronto-striatal loop dysfunction associated with HIV infection during risky decision-making. Combined with similar between-group task behavior, this suggests an adaptive functional response in regions critical to reward and behavioral control in the HIV+ group. HIV-infected individuals with higher CD4 nadirs demonstrated activation patterns more similar to seronegative individuals. This

  12. Effect of Pregabalin on Cardiovascular Responses to Exercise and Postexercise Pain and Fatigue in Fibromyalgia: A Randomized, Double-Blind, Crossover Pilot Study

    PubMed Central

    White, Andrea T.; Light, Kathleen C.; Bateman, Lucinda; Hughen, Ronald W.; Vanhaitsma, Timothy A.; Light, Alan R.

    2015-01-01

    Pregabalin, an approved treatment for fibromyalgia (FM), has been shown to decrease sympathetic nervous system (SNS) activity and inhibit sympathetically maintained pain, but its effects on exercise responses have not been reported. Methods. Using a randomized double-blind crossover design, we assessed the effect of 5 weeks of pregabalin (versus placebo) on acute cardiovascular and subjective responses to moderate exercise in 19 FM patients. Blood pressure (BP), heart rate (HR), and ratings of perceived exertion (RPE) during exercise and ratings of pain, physical fatigue, and mental fatigue before, during, and for 48 hours after exercise were compared in patients on pregabalin versus placebo and also versus 18 healthy controls. Results. On placebo, exercise RPE and BP were significantly higher in FM patients than controls (p < 0.04). Pregabalin responders (n = 12, defined by patient satisfaction and symptom changes) had significantly lower exercise BP, HR, and RPE on pregabalin versus placebo (p < 0.03) and no longer differed from controls (p > 0.26). Cardiovascular responses of nonresponders (n = 7) were not altered by pregabalin. In responders, pregabalin improved ratings of fatigue and pain (p < 0.04), but negative effects on pain and fatigue were seen in nonresponders. Conclusions. These preliminary findings suggest that pregabalin may normalize cardiovascular and subjective responses to exercise in many FM patients. PMID:27026828

  13. Altering dietary lysine: arginine ratio has little effect on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The effect of dietary protein type on cardiovascular risk factors and vascular reactivity, with specific focus on the lysine to arginine (Lys:Arg) ratio, has been studied sporadically. Objective: Determine effect of dietary Lys:Arg ratio on cardiovascular risk factors and vascular reacti...

  14. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Sheng; Oldham, William M.; Loscalzo, Joseph

    2014-10-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology.

  15. Spaceflight Did Not Impair Cardiovascular Responses to Upright Posture in an Elderly Astronaut

    NASA Technical Reports Server (NTRS)

    Rossum, Alfred C.; Ziegler, Michael G.; Meck, Janice V.

    2001-01-01

    Some of the cardiovascular changes associated with spaceflight have similarities to those associated with aging. We studied the neuroendocrine and hemodynamic responses to upright posture in a 77 year old astronaut before and after spaceflight and compared them to those of a group of 20 younger (41 plus or minus 1 years) astronauts. While arterial pressure responses to standing were similar between the young and old astronauts, hemodynamic profiles were quite different. The elderly astronaut achieved adequate standing arterial pressure primarily by maintaining stroke volume and thus cardiac output. In spite of very high norepinephrine release, he had very little increase in heart rate or total peripheral resistance. This pattern persisted on all test occasions. These responses suggest high sympathetic responses, down-regulated adrenergic receptors and decreased venous compliance typical of aging. In contrast, younger astronauts did not maintain stroke volume or cardiac output with standing, but had significant increases in heart rate and resistance. These results suggest that this elderly subject had cardiovascular responses to standing that are expected in an aged person. These responses were not deleteriously affected by spaceflight. We suggest that healthy, fit elderly individuals are able to withstand the stresses of extreme environments and are not necessarily limited in their activities simply due to their chronological age.

  16. Metabolic monosaccharides altered cell responses to anticancer drugs.

    PubMed

    Chen, Long; Liang, Jun F

    2012-06-01

    Metabolic glycoengineering has been used to manipulate the glycochemistry of cell surfaces and thus the cell/cell interaction, cell adhesion, and cell migration. However, potential application of glycoengineering in pharmaceutical sciences has not been studied until recently. Here, we reported that Ac(4)ManNAc, an analog of N-acetyl-D-mannosamine (ManNAc), could affect cell responses to anticancer drugs. Although cells from different tissues and organs responded to Ac(4)ManNAc treatment differently, treated cells with increased sialic acid contents showed dramatically reduced sensitivity (up to 130 times) to anti-cancer drugs as tested on various drugs with distinct chemical structures and acting mechanisms. Neither increased P-glycoprotein activity nor decreased drug uptake was observed during the course of Ac(4)ManNAc treatment. However, greatly altered intracellular drug distributions were observed. Most intracellular daunorubicin was found in the perinuclear region, but not the expected nuclei in the Ac(4)ManNAc treated cells. Since sialoglycoproteins and gangliosides were synthesized in the Golgi, intracellular glycans affected intracellular signal transduction and drug distributions seem to be the main reason for Ac(4)ManNAc affected cell sensitivity to anticancer drugs. It was interesting to find that although Ac(4)ManNAc treated breast cancer cells (MDA-MB-231) maintained the same sensitivity to 5-Fluorouracil, the IC(50) value of 5-Fluorouracil to the same Ac(4)ManNAc treated normal cells (MCF-10A) was increased by more than 20 times. Thus, this Ac(4)ManNAc treatment enlarged drug response difference between normal and tumor cells provides a unique opportunity to further improve the selectivity and therapeutic efficiency of anticancer drugs.

  17. Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine

    PubMed Central

    Kiraly, Drew D.; Walker, Deena M.; Calipari, Erin S.; Labonte, Benoit; Issler, Orna; Pena, Catherine J.; Ribeiro, Efrain A.; Russo, Scott J.; Nestler, Eric J.

    2016-01-01

    Addiction to cocaine and other psychostimulants represents a major public health crisis. The development and persistence of addictive behaviors comes from a complex interaction of genes and environment - the precise mechanisms of which remain elusive. In recent years a surge of evidence has suggested that the gut microbiome can have tremendous impact on behavioral via the microbiota-gut-brain axis. In this study we characterized the influence of the gut microbiota on cocaine-mediated behaviors. Groups of mice were treated with a prolonged course of non-absorbable antibiotics via the drinking water, which resulted in a substantial reduction of gut bacteria. Animals with reduced gut bacteria showed an enhanced sensitivity to cocaine reward and enhanced sensitivity to the locomotor-sensitizing effects of repeated cocaine administration. These behavioral changes were correlated with adaptations in multiple transcripts encoding important synaptic proteins in the brain’s reward circuitry. This study represents the first evidence that alterations in the gut microbiota affect behavioral response to drugs of abuse. PMID:27752130

  18. Loneliness accentuates age differences in cardiovascular responses to social evaluative threat.

    PubMed

    Ong, Anthony D; Rothstein, Jeremy D; Uchino, Bert N

    2012-03-01

    The effects of aging and loneliness on cardiovascular stress responses were examined in 91 young (18-30 years) and 91 older (65-80 years) normotensive adults. Participants completed the revised UCLA Loneliness Scale and a modified version of the Trier Social Stress Test. Piece-wise linear growth-curve analysis was used to model group differences in resting, reactivity, and recovery levels of systolic blood pressure (SBP) and diastolic blood pressure (DBP). Replicating and extending prior research, analyses revealed age-related increases in resting SBP and DBP. Adjusting for demographics and health covariates, interactions were found for SBP in which age differences in stress reactivity and recovery were greater among lonely than nonlonely participants. Findings provide further evidence that loneliness interacts with age to augment cardiovascular risk to social evaluative threat.

  19. Plastic alteration of vestibulo-cardiovascular reflex induced by 2 weeks of 3-G load in conscious rats.

    PubMed

    Abe, Chikara; Tanaka, Kunihiko; Awazu, Chihiro; Chen, Huayue; Morita, Hironobu

    2007-08-01

    Previous studies conducted in our laboratory have demonstrated that the vestibular system plays a significant role in controlling arterial pressure (AP) in conscious rats under conditions of transient microgravity. The vestibular system is known to be highly plastic, and on exposure to different gravitational environments, the sensitivity of the vestibular system-mediated AP response might be altered. In order to test this hypothesis, rats were maintained in a 3-G or a normal 1-G environment for 2 weeks, and the AP responses to free drop-induced microgravity were determined. In 1-G rats, the microgravity increased the AP by 37 +/- 3 mmHg; this pressor response was significantly attenuated by vestibular lesion (VL) (24 +/- 3 mmHg) or body stabilization (29 +/- 2 mmHg). Thus, the microgravity-induced pressor response was mediated by both the vestibular and nonvestibular systems; the input of the latter system was blocked by body stabilization. In the 3-G rats, the pressor responses were significantly suppressed compared to those in the corresponding 1-G rats; i.e., the AP increased by 24 +/- 2 mmHg in freely moving 3-G rats, by 10 +/- 4 mmHg in 3-G rats with VL, and by 13 +/- 4 mmHg in stabilized 3-G rats. Furthermore, there was no difference between the 1- and 3-G rats in terms of the pressor response induced by stressors such as a loud noise or an air jet. These results indicate that pre-exposure to 3-G for 2 weeks induces plasticity in both the vestibular- and nonvestibular-mediated AP responses to microgravity.

  20. Effect of an extruded pea or rice diet on postprandial insulin and cardiovascular responses in dogs.

    PubMed

    Adolphe, J L; Drew, M D; Silver, T I; Fouhse, J; Childs, H; Weber, L P

    2015-08-01

    Peas are increasing in popularity as a source of carbohydrate, protein and fibre in extruded canine diets. The aim of this study was to test the health effects of two canine diets with identical macronutrient profiles, but containing either yellow field peas or white rice as the carbohydrate source on metabolism, cardiovascular outcomes and adiposity. First, the acute glycemic, insulinemic and cardiovascular responses to the pea- or rice-based diets were determined in normal weight beagles (n = 7 dogs). The glycemic index did not differ between the pea diet (56 ± 12) and rice diet (63 ± 9). Next, obese beagles (n = 9) were fed the yellow field pea diet or white rice diet ad libitum for 12 weeks in a crossover study. Adiposity (measured using computed tomography), metabolic (oral glucose tolerance test, plasma leptin, adiponectin, C-reactive protein) and cardiovascular assessments (echocardiography and blood pressure) were performed before and after each crossover study period. After 12 weeks on each diet, peak insulin (p = 0.05) and area under the curve (AUC) for insulin after a 10 g oral glucose tolerance test (p = 0.05) were lower with the pea than the rice diet. Diet did not show a significant effect on body weight, fat distribution, cardiovascular variables, adiponectin or leptin. In conclusion, a diet containing yellow field peas reduced the postprandial insulin response after glucose challenge in dogs despite continued obesity, indicating improved metabolic health.

  1. Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system.

    PubMed

    Liang, Fuyou; Liu, Hao

    2006-02-01

    The Valsalva maneuver is a frequently used physiological test in evaluating the cardiovascular autonomic functions in human. Although a large pool of experimental data has provided substantial insights into different aspects of the mechanisms underlying the cardiovascular regulations during the Valsalva maneuver, so far a complete comprehension of these mechanisms and the interactions among them is unavailable. In the present study, a computational model of the cardiovascular system (CVS) and its interaction with the autonomic nervous system (ANS) was developed for the purpose of quantifying the individual roles of the CVS and the ANS in the hemodynamic regulations during the Valsalva maneuver. A detailed computational compartmental parameter model of the global CVS, a system of mathematical equations representing the autonomic nervous reflex regulatory functions, and an empirical cerebral autoregulation (CA) model formed the main body of the present model. Based on simulations of the Valsalva maneuvers at several typical postures, it was demonstrated that hemodynamic responses to the maneuver were not only determined by the ANS-mediated cardiovascular regulations, but also significantly affected by the postural-change-induced hemodynamic alterations preceding the maneuver. Moreover, the large-magnitude overshoot in cerebral perfusion immediately after the Valsalva maneuver was found to result from a combined effect of the circulatory autonomic functions, the CA, and the cerebral venous blood pressure.

  2. Prelimbic cortex GABAA receptors are involved in the mediation of restraint stress-evoked cardiovascular responses.

    PubMed

    Fassini, Aline; Resstel, Leonardo B M; Corrêa, Fernando M A

    2016-11-01

    Stress is a response of the organism to homeostasis-threatening stimuli and is coordinated by two main neural systems: the hypothalamic-pituitary-adrenal and the autonomic nervous system. Acute restraint stress (RS) is a model of unavoidable stress, which is characterized by autonomic responses including an increase in mean arterial pressure (MAP) and heart rate (HR), as well as a drop in tail temperature. The prelimbic cortex (PL) has been implicated in the modulation of functional responses caused by RS. The present study aimed to evaluate the role of PL GABAergic neurotransmission in the modulation of autonomic changes induced by RS. Bilateral microinjection of the GABAA receptor antagonist bicuculline methiodide into the PL reduced pressor and tachycardic responses evoked by RS, in a dose-dependent manner, without affecting the tail temperature drop evoked by RS. In order to investigate which peripheral autonomic effector modulated the reduction in RS-cardiovascular responses caused by the blockade of PL GABAA receptors, rats were intravenously pretreated with either atenolol or homatropine methylbromide. The blockade of the cardiac sympathetic nervous system with atenolol blunted the reducing effect of PL treatment with bicuculline methiodide on RS-evoked pressor and tachycardic responses. The blockade of the parasympathetic nervous system with homatropine methylbromide, regardless of affecting the beginning of the tachycardic response, did not impact on the reduction of RS-evoked tachycardic and pressor responses caused by the PL treatment with bicuculline methiodide. The present results indicate that both cardiac sympathetic and parasympathetic activities are involved in the reduction of RS-evoked cardiovascular responses evidenced after the blockade of PL GABAA receptors by bicuculline methiodide.

  3. Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.

  4. Cardiovascular responses to postural changes: differences with age for women and men

    NASA Technical Reports Server (NTRS)

    Frey, M. A.; Tomaselli, C. M.; Hoffler, W. G.

    1994-01-01

    The cardiovascular responses to postural change, and how they are affected by aging, are inadequately described in women. Therefore, the authors examined the influence of age and sex on the responses of blood pressure, cardiac output, heart rate, and other variables to change in posture. Measurements were made after 10 minutes each in the supine, seated, and standing positions in 22 men and 25 women who ranged in age from 21 to 59 years. Several variables differed, both by sex and by age, when subjects were supine. On rising, subjects' diastolic and mean arterial pressures, heart rate, total peripheral resistance (TPR), and thoracic impedance increased; cardiac output, stroke volume, and mean stroke ejection rate decreased; and changes in all variables, except heart rate, were greater from supine to sitting than sitting to standing. The increase in heart rate was greater in the younger subjects, and increases in TPR and thoracic impedance were greater in the older subjects. Stroke volume decreased less, and TPR and thoracic impedance increased more, in the women than in the men. The increase in TPR was particularly pronounced in the older women. These studies show that the cardiovascular responses to standing differ, in some respects, between the sexes and with age. The authors suggest that the sex differences are, in part, related to greater decrease of thoracic blood volume with standing in women than in men, and that the age differences result, in part, from decreased responsiveness of the high-pressure baroreceptor system.

  5. Halothane concentrations required to block the cardiovascular responses to incision (MAC CVR) in infants and children.

    PubMed

    Ishizawa, Y; Dohi, S

    1993-01-01

    The purpose of this study was to determine the halothane concentration in N2O required to block the cardiovascular responses to skin incision (MAC CVR) in infants and children. We studied 64 unpremedicated ASA 1 infants and children (one month to seven years). In each infant or child, anaesthesia was induced slowly with halothane and N2O, and an endotracheal tube was placed. The MAC CVR was assessed, after a steady state end-tidal halothane concentration had been established for ten minutes, by the "up and down technique" of Dixon. Positive responses were defined as an increase in MAP or HR > 10%. The MAC CVR50 values of halothane with 60% N2O were 1.16 +/- 0.23% at 1-6 mo, 1.17 +/- 0.18% at 7-12 mo, 0.95 +/- 0.26% at 1-3 yr, and 1.12 +/- 0.16% at 4-7 yr. The value at 1-3 years children was less than those in the other age groups (P < 0.05). The changes of MAP were correlated with changes of both HR and pupillary diameter. These results indicate that the values of MAC CVR50 of halothane in infants and children are higher than those required to block motor responses (MAC). The halothane requirement to block cardiovascular responses is lowest in the children aged one to three years.

  6. Fine Ambient Air Particulate Matter Exposure Induces Molecular Alterations Indicative of Cardiovascular Disease Progression in Atherosclerotic Susceptible Mice -- B

    EPA Science Inventory

    Background: Epidemiology studies have reported associations between increased mortality and morbidity with exposure to particulate air pollution, particularly within individuals with pre-existing cardiovascular disease (CVD). Clinical and toxicological studies have provided evide...

  7. Methods for study of cardiovascular adaptation of small laboratory animals during exposure to altered gravity. [hypothermia for cardiovascular control and cancer therapy

    NASA Technical Reports Server (NTRS)

    Popovic, V.

    1973-01-01

    Several new techniques are reported for studying cardiovascular circulation in small laboratory animals kept in metabolic chambers. Chronical cannulation, miniaturized membrane type heart-lung machines, a prototype walking chamber, and a fluorocarbon immersion method to simulate weightlessness are outlined. Differential hypothermia work on rat cancers provides localized embedding of radionuclides and other chemotherapeutical agents in tumors and increases at the same time blood circulation through the warmed tumor as compared to the rest of the cold body. Some successful clinical applications of combined chemotherapy and differential hypothermia in skin cancer, mammary tumors, and brain gliomas are described.

  8. The prelimbic cortex muscarinic M₃ receptor-nitric oxide-guanylyl cyclase pathway modulates cardiovascular responses in rats.

    PubMed

    Fassini, Aline; Antero, Leandro S; Corrêa, Fernando M A; Joca, Sâmia R; Resstel, Leonardo B M

    2015-05-01

    The prelimbic cortex (PL), a limbic structure, sends projections to areas involved in the control of cardiovascular responses. Stimulation of the PL with acetylcholine (ACh) evokes depressor and tachycardiac responses mediated by local PL muscarinic receptors. Early studies demonstrated that stimulation of muscarinic receptors induced nitric oxide (NO) synthesis and cyclic guanosine cyclic monophosphate (cGMP) formation. Hence, this study investigates which PL muscarinic receptor subtype is involved in the cardiovascular response induced by ACh and tests the hypothesis that cardiovascular responses caused by muscarinic receptor stimulation in the PL are mediated by local NO and cGMP formation. PL pretreatment with J104129 (an M3 receptor antagonist) blocked the depressor and tachycardiac response evoked by injection of ACh into the PL. Pretreatment with either pirenzepine (an M1 receptor antagonist) or AF-DX 116 (an M2 and M4 receptor antagonist) did not affect cardiovascular responses evoked by ACh. Moreover, similarly to the antagonism of PL M3 receptors, pretreatment with N(ω)-propyl-L-arginine (an inhibitor of neuronal NO synthase), carboxy-PTIO(S)-3-carboxy-4-hydroxyphenylglicine (an NO scavenger), or 1H-[1,2,4]oxadiazolol-[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) blocked both the depressor and the tachycardiac response evoked by ACh. The current results demonstrate that cardiovascular responses evoked by microinjection of ACh into the PL are mediated by local activation of the M3 receptor-NO-guanylate cyclase pathway.

  9. Effects of inducible nitric oxide synthase blockade within the periaqueductal gray on cardiovascular responses during mechanical, heat, and cold nociception.

    PubMed

    Chaitoff, Kevin A; Toner, Francis; Tedesco, Anthony; Maher, Timothy J; Ally, Ahmmed

    2012-02-01

    We have examined the role of inducible nitric oxide synthase (iNOS) within the dorsolateral periaqueductal gray mater (dlPAG) on cardiovascular responses during mechanical, thermal, and cold nociception in anesthetized rats. Mechanical stimulus was applied by a unilateral hindpaw pinch for 10 s that increased mean arterial pressure (MAP) and heart rate (HR). Bilateral microdialysis of a selective iNOS inhibitor, aminoguanidine (AGN; 10 μM), into the dlPAG for 30 min augmented MAP and HR responses during a mechanical stimulation. The cardiovascular responses recovered following discontinuation of the drug. Heat stimulus was generated by immersing one hindpaw metatarsus in a water bath at 52°C for 10 s, and this increased MAP and HR. Administration of AGN into the PAG potentiated these cardiovascular responses. Cardiovascular responses recovered following discontinuation of the drug. In contrast, application of a cold stimulus by immersing one hindpaw at 10°C for 10 s resulted in depressor and bradycardic responses. A second cold stimulus resulted in a response that was not significantly different from that prior to or after recovery from the AGN infusion. These results demonstrate that iNOS within the dlPAG plays a differential role in modulating cardiovascular responses during mechanical-, heat-, and cold-mediated nociception.

  10. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats.

    PubMed

    Quagliotto, E; Casali, K R; Dal Lago, P; Rasia-Filho, A A

    2015-02-01

    The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP50) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP50, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV.

  11. Does heat stress alter the pig's response to dietary fat?

    PubMed

    Kellner, T A; Baumgard, L H; Prusa, K J; Gabler, N K; Patience, J F

    2016-11-01

    PFTN; = 0.624). Jowl IV at market increased with increasing degree of unsaturation of the dietary fat (68.5 g/100 g for CNTR, 68.2 g/100 g for TAL, and 71.5 g/100 g for CO; < 0.001). Heat stress decreased mRNA abundance of and ( ≤ 0.041). Heat stress and CO increased mRNA abundance of ( ≤ 0.047), and CO increased abundance of ( = 0.011). In conclusion, HS does not alter the pig's response to dietary fat. However, HS leads to reduced ADG, ADFI, G:F, and caloric efficiency and a suppression of mRNA abundance of genes involved in the lipolytic cascade, which resulted in a phenotype that was fatter than PFTN.

  12. The absence of cardiovascular and respiratory responses to changes in right ventricular pressure in anaesthetized dogs.

    PubMed Central

    Crisp, A J; Hainsworth, R; Tutt, S M

    1988-01-01

    1. This study was undertaken to determine whether physiological changes in pressure localized to the right ventricle result in reflex cardiovascular or respiratory responses. 2. Right ventricular systolic pressure was changed using a preparation in which right atrial and carotid sinus pressures were held constant. The pulmonary and hence the systemic circulation were perfused at constant flow. Vascular resistance and respiratory activity were assessed from the systemic arterial pressure and the phrenic electroneurogram. 3. Changes in right ventricular systolic pressure did not result in any consistent changes in heart rate, systemic arterial blood pressure or phrenic nerve activity. 4. Expected responses occurred to changes in the stimuli to carotid baroreceptors and chemoreceptors, distension of pulmonary arterial baroreceptors, and injections of veratridine into the left ventricle and pulmonary circulation. This suggests that the absence of responses to right ventricular distension was unlikely to have been due to damage to nervous pathways. 5. These results indicate that it is unlikely that there are reflexes arising from the right ventricle which have a major role in cardiovascular or respiratory control. PMID:3256611

  13. Concord Grape Juice Polyphenols and Cardiovascular Risk Factors: Dose-Response Relationships.

    PubMed

    Blumberg, Jeffrey B; Vita, Joseph A; Chen, C-Y Oliver

    2015-12-02

    Pure fruit juices provide nutritional value with evidence suggesting some of their benefits on biomarkers of cardiovascular disease risk may be derived from their constituent polyphenols, particularly flavonoids. However, few data from clinical trials are available on the dose-response relationship of fruit juice flavonoids to these outcomes. Utilizing the results of clinical trials testing single doses, we have analyzed data from studies of 100% Concord grape juice by placing its flavonoid content in the context of results from randomized clinical trials of other polyphenol-rich foods and beverages describing the same outcomes but covering a broader range of intake. We selected established biomarkers determined by similar methods for measuring flow-mediated vasodilation (FMD), blood pressure, platelet aggregation, and the resistance of low density lipoprotein cholesterol (LDL) to oxidation. Despite differences among the clinical trials in the treatment, subjects, and duration, correlations were observed between the dose and FMD. Inverse dose-response relationships, albeit with lower correlation coefficients, were also noted for the other outcomes. These results suggest a clear relationship between consumption of even modest serving sizes of Concord grape juice, flavonoid intake, and effects on risk factors for cardiovascular disease. This approach to dose-response relationships may prove useful for testing other individual foods and beverages.

  14. Baseline values of cardiovascular and respiratory parameters predict response to acute hypoxia in young healthy men.

    PubMed

    Melnikov, V N; Krivoschekov, S G; Divert, V E; Komlyagina, T G; Consedine, N S

    2017-02-28

    The majority of the available works have studied distinct hypoxic responses of respiratory and cardiovascular systems. This study examines how these systems interact while responding to hypoxia and whether baseline metrics moderate reactions to a hypoxic challenge. Central hemodynamic, aortic wave reflection, and gas exchange parameters were measured in 27 trained young men before and after 10-min normobaric isocapnic hypoxia (10 % O2). Associations were assessed by correlation and multiple regression analyses. Hypoxic changes in the parameters of pulse wave analysis such as augmentation index (-114 %, p=0.007), pulse pressure amplification (+6 %, p=0.020), time to aortic reflection wave (+21 %, p<0.001) report on the increase in arterial distensibility. Specifically, initially compliant arteries blunt the positive cardiac chronotropic response to hypoxia and facilitate the myocardial workload. The degree of blood oxygen desaturation is directly correlated with both baseline values and hypoxic responses of aortic and peripheral blood pressures. The hypoxia-induced gain in ventilation (VE), while controlling for basal VE and heart rate (HR), is inversely associated with deltaHR and deltasystolic blood pressure. The study suggests that cardiovascular and respiratory systems mutually supplement each other when responding to hypoxic challenge.

  15. Concord Grape Juice Polyphenols and Cardiovascular Risk Factors: Dose-Response Relationships

    PubMed Central

    Blumberg, Jeffrey B.; Vita, Joseph A.; Chen, C. -Y. Oliver

    2015-01-01

    Pure fruit juices provide nutritional value with evidence suggesting some of their benefits on biomarkers of cardiovascular disease risk may be derived from their constituent polyphenols, particularly flavonoids. However, few data from clinical trials are available on the dose-response relationship of fruit juice flavonoids to these outcomes. Utilizing the results of clinical trials testing single doses, we have analyzed data from studies of 100% Concord grape juice by placing its flavonoid content in the context of results from randomized clinical trials of other polyphenol-rich foods and beverages describing the same outcomes but covering a broader range of intake. We selected established biomarkers determined by similar methods for measuring flow-mediated vasodilation (FMD), blood pressure, platelet aggregation, and the resistance of low density lipoprotein cholesterol (LDL) to oxidation. Despite differences among the clinical trials in the treatment, subjects, and duration, correlations were observed between the dose and FMD. Inverse dose-response relationships, albeit with lower correlation coefficients, were also noted for the other outcomes. These results suggest a clear relationship between consumption of even modest serving sizes of Concord grape juice, flavonoid intake, and effects on risk factors for cardiovascular disease. This approach to dose-response relationships may prove useful for testing other individual foods and beverages. PMID:26633488

  16. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes

    SciTech Connect

    Crestani, Carlos C.; Lopes da Silva, Andréia; Scopinho, América A.; Ruginsk, Silvia G.; Uchoa, Ernane T.; Correa, Fernando M.A.; Elias, Lucila L.K.; Antunes-Rodrigues, José; Resstel, Leonardo B.M.

    2014-10-15

    The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α{sub 1}-adrenoceptor protein in the mesenteric bed was enhanced at the first week, whereas β{sub 2}-adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT{sub 1A} receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension. - Highlights: • Mild hypertension was observed during the entire period of ethanol ingestion. • Ethanol facilitated vascular reactivity to vasoactive agents. • Changes in baroreflex activity

  17. The prodromal phase of obesity-related chronic kidney disease: early alterations in cardiovascular and renal function in obese children and adolescents.

    PubMed

    Doyon, Anke; Schaefer, Franz

    2013-11-01

    Childhood overweight and obesity is a relevant health condition with multi-organ involvement. Obesity shows significant tracking into adult life and is associated with an increased risk of serious adverse health outcomes both during childhood and later adulthood. The classical sequelae of obesity such as hypertension, metabolic syndrome and inflammation do develop at a paediatric age. Cardiovascular consequences, such as increased carotid intima-media thickness, and left ventricular hypertrophy, as well as functional alterations of the heart and arteries, are commonly traceable at an early age. Renal involvement can occur at a young age and is associated with a high probability of progressive chronic kidney disease. There is solid evidence suggesting that consequent treatment including both lifestyle changes and pharmacological therapy can reduce cardiovascular, metabolic and renal risks in obese children and adolescents.

  18. Chemosensitivity, Cardiovascular Risk, and the Ventilatory Response to Exercise in COPD

    PubMed Central

    Stickland, Michael K.; Fuhr, Desi P.; Edgell, Heather; Byers, Brad W.; Bhutani, Mohit; Wong, Eric Y. L.; Steinback, Craig D.

    2016-01-01

    COPD is associated with elevated cardiovascular risk and a potentiated ventilatory response to exercise. Enhanced carotid chemoreceptor (CC) activity/sensitivity is present in other clinical conditions, has been shown to contribute to sympathetic vasoconstrictor outflow, and is predictive of mortality. CC activity/sensitivity, and the resulting functional significance, has not been well examined in COPD. We hypothesized that CC activity/sensitivity would be elevated in COPD, and related to increased pulse wave velocity (a marker of CV risk) and the ventilatory response to exercise. Methods: 30 COPD patients and 10 healthy age-matched controls were examined. Participants performed baseline cardiopulmonary exercise and pulmonary function testing. CC activity was later evaluated by the drop in ventilation with breathing 100% O2, and CC sensitivity was then assessed by the ventilatory response to hypoxia (ΔVE/ΔSpO2). Peripheral arterial stiffness was subsequently evaluated by measurement of pulse wave velocity (PWV) using applanation tonometry while the subjects were breathing room air, and then following chemoreceptor inhibition by breathing 100% O2 for 2 minutes. Results: CC activity, CC sensitivity, PWV and the ventilatory response to exercise were all increased in COPD relative to controls. CC sensitivity was related to PWV; however, neither CC activity nor CC sensitivity was related to the ventilatory response to exercise in COPD. CC inhibition by breathing 100% O2 normalized PWV in COPD, while no effect was observed in controls. Conclusion: CC activity and sensitivity are elevated in COPD, and appear related to cardiovascular risk; however, CC activity/sensitivity does not contribute to the potentiated ventilatory response to exercise. PMID:27355356

  19. Adrenergic and vasopressinergic contributions to the cardiovascular response to acute hypoxaemia in the llama fetus

    PubMed Central

    Giussani, D A; Riquelme, R A; Sanhueza, E M; Hanson, M A; Blanco, C E; Llanos, A J

    1999-01-01

    The effects of fetal intravenous treatment with phentolamine or a vasopressinergic V1-receptor antagonist on the fetal cardiovascular responses to acute hypoxaemia in the llama were investigated. Six llama fetuses were surgically prepared between 60 and 70% of gestation under general halothane anaesthesia with vascular catheters and transit-time ultrasonic flow probes around a carotid artery and a femoral artery. At least 4 days after surgery all fetuses were subjected to a 3 h experiment: 1 h of normoxia, 1 h of hypoxaemia and 1 h of recovery while on slow i.v. infusion with saline. On separate days this experiment was repeated with fetal i.v. treatment with either phentolamine or a V1-receptor antagonist dissolved in saline. During saline infusion all llama fetuses responded to acute hypoxaemia with intense femoral vasoconstriction. Phentolamine during normoxia produced hypotension, tachycardia and vasodilatation in both the carotid and the femoral circulations. During hypoxaemia, fetuses treated with phentolamine did not elicit the pronounced femoral vasoconstriction and all died within 20 min of the onset of hypoxaemia. A V1-receptor antagonist produced a femoral vasodilatation during normoxia but did not affect the fetal cardiovascular responses to acute hypoxaemia. In conclusion, α-adrenergic and V1-vasopressinergic mechanisms contribute to a basal vasoconstrictor tone in the femoral circulation in the llama fetus. The enhanced femoral vasoconstriction during acute hypoxaemia in the llama fetus is not mediated by stimulation of V1-vasopressin receptors, but is dependent on α-adrenergic receptor stimulation. Such α-adrenergic efferent mechanisms are indispensable to fetal survival during hypoxaemia in the llama since their abolition leads to cardiovascular collapse and death. PMID:9925892

  20. Disruption of Responding Maintained by Conditioned Reinforcement: Alterations in Response-Conditioned-Reinforcer Relations

    ERIC Educational Resources Information Center

    Lieving, Gregory A.; Reilly, Mark P.; Lattal, Kennon A.

    2006-01-01

    An observing procedure was used to investigate the effects of alterations in response-conditioned-reinforcer relations on observing. Pigeons responded to produce schedule-correlated stimuli paired with the availability of food or extinction. The contingency between observing responses and conditioned reinforcement was altered in three experiments.…

  1. Exaggerated sympathetic and cardiovascular responses to stimulation of the mesencephalic locomotor region in spontaneously hypertensive rats

    PubMed Central

    Liang, Nan; Mitchell, Jere H.; Smith, Scott A.

    2015-01-01

    The sympathetic and pressor responses to exercise are exaggerated in hypertension. However, the underlying mechanisms causing this abnormality remain to be fully elucidated. Central command, a neural drive originating in higher brain centers, is known to activate cardiovascular and locomotor control circuits concomitantly. As such, it is a viable candidate for the generation of the augmented vascular response to exercise in this disease. We hypothesized that augmentations in central command function contribute to the heightened cardiovascular response to exercise in hypertension. To test this hypothesis, changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to electrical stimulation of mesencephalic locomotor region (MLR; 20–50 μA in 10-μA steps evoking fictive locomotion), a putative component of the central command pathway, were examined in decerebrate, paralyzed normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Tibial nerve discharge during MLR stimulation significantly increased in an intensity-dependent manner in both WKY and SHR but was not different between groups. Stimulation of the MLR evoked significantly larger increases in RSNA and MAP with increasing stimulation intensity in both groups. Importantly, the increases in sympathetic and pressor responses to this fictive locomotion were significantly greater in SHR compared with WKY across all stimulation intensities (e.g., at 50 μA, ΔRSNA: WKY 153±31%, SHR 287±42%; ΔMAP: WKY 87±9 mmHg, SHR 139±7 mmHg). These findings provide the first evidence that central command may be a critical contributor to the exaggerated rise in sympathetic activity and blood pressure during exercise in hypertension. PMID:26545711

  2. Exaggerated sympathetic and cardiovascular responses to stimulation of the mesencephalic locomotor region in spontaneously hypertensive rats.

    PubMed

    Liang, Nan; Mitchell, Jere H; Smith, Scott A; Mizuno, Masaki

    2016-01-01

    The sympathetic and pressor responses to exercise are exaggerated in hypertension. However, the underlying mechanisms causing this abnormality remain to be fully elucidated. Central command, a neural drive originating in higher brain centers, is known to activate cardiovascular and locomotor control circuits concomitantly. As such, it is a viable candidate for the generation of the augmented vascular response to exercise in this disease. We hypothesized that augmentations in central command function contribute to the heightened cardiovascular response to exercise in hypertension. To test this hypothesis, changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to electrical stimulation of mesencephalic locomotor region (MLR; 20-50 μA in 10-μA steps evoking fictive locomotion), a putative component of the central command pathway, were examined in decerebrate, paralyzed normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Tibial nerve discharge during MLR stimulation significantly increased in an intensity-dependent manner in both WKY and SHR but was not different between groups. Stimulation of the MLR evoked significantly larger increases in RSNA and MAP with increasing stimulation intensity in both groups. Importantly, the increases in sympathetic and pressor responses to this fictive locomotion were significantly greater in SHR compared with WKY across all stimulation intensities (e.g., at 50 μA, ΔRSNA: WKY 153 ± 31%, SHR 287 ± 42%; ΔMAP: WKY 87 ± 9 mmHg, SHR 139 ± 7 mmHg). These findings provide the first evidence that central command may be a critical contributor to the exaggerated rise in sympathetic activity and blood pressure during exercise in hypertension.

  3. Cardiovascular responses to cognitive stress in patients with migraine and tension-type headache

    PubMed Central

    Leistad, Rune B; Sand, Trond; Nilsen, Kristian B; Westgaard, Rolf H; Stovner, Lars Jacob

    2007-01-01

    Background The purpose of this study was to investigate the temporal relationship between autonomic changes and pain activation in migraine and tension-type headache induced by stress in a model relevant for everyday office-work. Methods We measured pain, blood pressure (BP), heart rate (HR) and skin blood flow (BF) during and after controlled low-grade cognitive stress in 22 migraineurs during headache-free periods, 18 patients with tension-type headache (TTH) and 44 healthy controls. The stress lasted for one hour and was followed by 30 minutes of relaxation. Results Cardiovascular responses to cognitive stress in migraine did not differ from those in control subjects. In TTH patients HR was maintained during stress, whereas it decreased for migraineurs and controls. A trend towards a delayed systolic BP response during stress was also observed in TTH. Finger BF recovery was delayed after stress and stress-induced pain was associated with less vasoconstriction in TTH during recovery. Conclusion It is hypothesized that TTH patients have different stress adaptive mechanisms than controls and migraineurs, involving delayed cardiovascular adaptation and reduced pain control system inhibition. PMID:17683636

  4. Cardiovascular responses to exercise as functions of absolute and relative work load

    NASA Technical Reports Server (NTRS)

    Lewis, S. F.; Taylor, W. F.; Graham, R. M.; Pettinger, W. A.; Schutte, J. E.; Blomqvist, C. G.

    1983-01-01

    The roles of absolute and relative oxygen uptake (VO2 and percent of muscle group specific VO2-max) as determinants of the cardiovascular and ventilatory responses to exercise over a wide range of active muscle mass are investigated. Experiments were conducted using four types of dynamic exercise: one-arm curl, one-arm cranking, and one and two-leg cycling at four different relative work loads (25, 50, 75, and 100 percent of VO2-max) for the corresponding muscle group. Results show that VO2 during maximal one-arm curl, one-arm cranking, and one-leg cycling averaged 20, 50, and 75 percent, respectively, of that for maximal two-leg cycling. Cardiac output was determined to be linearly related to VO2 with a similar slope and intercept for each type of exercise, and the heart rate at a given percent VO2-max was higher with larger active muscle mass. It is concluded that the cardiovascular responses to exercise was determined to a large extent by the active muscle mass and the absolute oxygen uptake, with the principal feature appearing to be the tight linkage between systematic oxygen transport and utilization.

  5. Acute cardiovascular responses while playing virtual games simulated by Nintendo Wii(®).

    PubMed

    Rodrigues, Gusthavo Augusto Alves; Felipe, Danilo De Souza; Silva, Elisangela; De Freitas, Wagner Zeferino; Higino, Wonder Passoni; Da Silva, Fabiano Fernandes; De Carvalho, Wellington Roberto Gomes; Aparecido de Souza, Renato

    2015-09-01

    [Purpose] This investigation evaluated the acute cardiovascular responses that occur while playing virtual games (aerobic and balance) emulated by Nintendo Wii(®). [Subjects] Nineteen healthy male volunteers were recruited. [Methods] The ergospirometric variables of maximum oxygen consumption, metabolic equivalents, and heart rate were obtained during the aerobic (Obstacle Course, Hula Hoop, and Free Run) and balance (Soccer Heading, Penguin Slide, and Table Tilt) games of Wii Fit Plus(®) software. To access and analyze the ergospirometric information, a VO2000 analyzer was used. Normalized data (using maximum oxygen consumption and heart rate) were analyzed using repeated measures analysis of variance and Scheffe's test. [Results] Significant differences were found among the balance and aerobic games in all variables analyzed. In addition, the Wii exercises performed were considered to be of light (balance games) and moderate (aerobic games) intensity in accordance with American College Sports Medicine exercise stratification. [Conclusion] Physical activity in a virtual environment emulated by Nintendo Wii(®) can change acute cardiovascular responses, primarily when Wii aerobic games are performed. These results support the use of the Nintendo Wii(®) in physical activity programs.

  6. Model-based parameter estimation using cardiovascular response to orthostatic stress

    NASA Technical Reports Server (NTRS)

    Heldt, T.; Shim, E. B.; Kamm, R. D.; Mark, R. G.

    2001-01-01

    This paper presents a cardiovascular model that is capable of simulating the short-term (< or approximately equal to 3 min) transient hemodynamic response to gravitational stress and a gradient-based optimization method that allows for the automated estimation of model parameters from simulated or experimental data. We perform a sensitivity analysis of the transient heart rate response to determine which parameters of the model impact the heart rate dynamics significantly. We subsequently include only those parameters in the estimation routine that impact the transient heart rate dynamics substantially. We apply the estimation algorithm to both simulated and real data and showed that restriction to the 20 most important parameters does not impair our ability to match the data.

  7. Cardiovascular responses of the chronically instrumented monkey during simulated space flight

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Carlson, E.; Mains, R. C.; Pace, N.; Rahlmann, D. F.; Sandler, H.

    1982-01-01

    A pod enclosure system designed by the Environmental Physiology Laboratory at the University of California at Berkeley is found to be eminently suitable for work with monkeys. The pattern of cardiovascular activity is found to vary. In the first half of the exposure, the hourly mean values suggest an initial period of instability, most marked for heart rate, beginning at 'launch.' In the second half of the exposure, the final three days, the responses appear much more ordered, with a stable phase relationship between circadian shifts in heart rate and mean aortic pressure. Since the latter stability is more normal, the assumption is made that the animal had become adjusted to its situation. Imposition of a daily lower body negative pressure (LBNP) stress shows characteristic responses.

  8. Effects of medullary administration of a nitric oxide precursor on cardiovascular responses and neurotransmission during static exercise following ischemic stroke.

    PubMed

    Phattanarudee, Siripan; Towiwat, Pasarapa; Maher, Timothy J; Ally, Ahmmed

    2013-07-01

    We have reported that in rats with a 90 min left middle cerebral artery occlusion (MCAO) and 24 h reperfusion, pressor responses during muscle contractions were attenuated, as were glutamate concentrations in the left rostral ventrolateral medulla (RVLM) and left caudal VLM (CVLM), but gamma-aminobutyric acid (GABA) levels increased in left RVLM and CVLM. This study determined the effects of L-arginine, a nitric oxide (NO) precursor, within the RVLM and (or) CVLM on cardiovascular activity and glutamate/GABA levels during static exercise in left-sided MCAO rats. Microdialysis of L-arginine into left RVLM had a greater attenuation of cardiovascular responses, a larger decrease in glutamate, and a significant increase in GABA levels during muscle contractions in stroke rats. Administration of N(G)-monomethyl-L-arginine, an NO-synthase inhibitor, reversed the effects. In contrast, L-arginine administration into left CVLM evoked a greater potentiation of cardiovascular responses, increased glutamate, and decreased GABA levels during contractions in stroked rats. However, L-arginine administration into both left RVLM and left CVLM elicited responses similar to its infusion into the left RVLM. These results suggest that NO within the RVLM and CVLM modulates cardiovascular responses and glutamate/GABA neurotransmission during static exercise following stroke, and that a RVLM-NO mechanism has a dominant effect in the medullary regulation of cardiovascular function.

  9. Associations between personal exposures to VOCs and alterations in cardiovascular physiology: Detroit Exposure and Aerosol Research Study (DEARS) - presentation

    EPA Science Inventory

    Introduction: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007...

  10. Associations between Personal Exposures to VOCs and Alterations in Cardiovascular Physiology: Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    Background: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007 (5 seas...

  11. Assessment of cardiovascular response to treadmill exercise in normal healthy Indian adolescents.

    PubMed

    Pande, Sushma S; Pande, Santosh R; Dhore, Rajendra B; Daphale, Ajay V; Parate, Vrushali R; Patel, Shishir S; Agrekar, Sushil H

    2012-01-01

    The study aims to assess the cardiovascular response to treadmill exercise test in healthy Indian adolescents. A group of 50 healthy adolescents took part in the study. Cardiovascular response was assessed by using treadmill exercise test as per Bruce protocol. Pulse rate, blood pressure and ECG were recorded before, during and after undertaking the treadmill test. Mean age and body mass index (BMI) were 18.7 +/- 0.51 yrs. and 21.4 +/- 3.44 kg/m2 respectively. Karl Pearson Correlation analysis showed highly significant negative correlation between BMI and exercise time (r = -0.598, P<0.001) and between resting DBP and Exercise Time (r = -0.424, P<0.002). While BMI and DBP showed highly significant positive correlation (r = 0.463, P<0.001). During exercise pulse and SBP rose and DBP fell. SBP rose from mean 122 to 175 (rise by 53 mm of Hg) and DBP fell from mean 78 to 65 (fall by 13 mm of Hg). One min recovery pulse was 156 indicating 22% fall from target heart rate. All the parameters returned to near resting value at 6 min recovery. In 30% students DBP showed exaggerated response i.e. rise during exercise. These students had more BMI and higher resting DBP as compared to other students, which could be the reason for exaggerated response in these participants. In ECG there were no significant ST/T changes during exercise or recovery period. This study provides normal data for small sample of healthy Indian adolescents when subjected to treadmill exercise test.

  12. Matricryptic sites control tissue injury responses in the cardiovascular system: relationships to pattern recognition receptor regulated events.

    PubMed

    Davis, George E

    2010-03-01

    This review addresses new concepts related to the importance of how cells within the cardiovascular system respond to matricryptic sites generated from the extracellular matrix (ECM) following tissue injury. A model is presented whereby matricryptic sites exposed from the ECM result in activation of multiple cell surface receptors including integrins, scavenger receptors, and toll-like receptors which together are hypothesized to coactivate downstream signaling pathways which alter cell behaviors following tissue injury. Of great interest are the relationships between matricryptic fragments of ECM called matricryptins and other stimuli that activate cells during injury states such as released components from cells (DNA, RNA, cytoskeletal components such as actin) or products from infectious agents in innate immunity responses. These types of cell activating molecules, which are composed of repeating molecular elements, are known to interact with pattern recognition receptors that (i) are expressed from cell surfaces, (ii) are released from cells following tissue injury, or (iii) circulate as components of plasma. Thus, cell recognition of matricryptic sites from the ECM appears to be an important component of a broad cell and tissue sensory system to detect and respond to environmental cues generated following varied types of tissue injury.

  13. Heart Rate and Cardiovascular Responses to Commercial Flights: Relationships with Physical Fitness

    PubMed Central

    Oliveira-Silva, Iransé; Leicht, Anthony S.; Moraes, Milton R.; Simões, Herbert G.; Del Rosso, Sebastián; Córdova, Cláudio; Boullosa, Daniel A.

    2016-01-01

    The aim of this study was to examine the influence of physical fitness on cardiac autonomic control in passengers prior to, during and following commercial flights. Twenty-two, physically active men (36.4 ± 6.4 years) undertook assessments of physical fitness followed by recordings of 24-h heart rate (HR), heart rate variability (HRV), and blood pressure (BP) on a Control (no flight) and Experimental (flight) day. Recordings were analyzed using a two-way analysis of variance for repeated measures with relationships between variables examined via Pearson product-moment correlation coefficients. Compared to the Control day, 24-h HR was significantly greater (>7%) and HRV measures (5–39%) significantly lower on the Experimental day. During the 1-h flight, HR (24%), and BP (6%) were increased while measures of HRV (26–45%) were reduced. Absolute values of HRV during the Experimental day and relative changes in HRV measures (Control-Experimental) were significantly correlated with measures of aerobic fitness (r = 0.43 to 0.51; −0.53 to −0.52) and body composition (r = −0.63 to −0.43; 0.48–0.61). The current results demonstrated that short-term commercial flying significantly altered cardiovascular function including the reduction of parasympathetic modulations. Further, greater physical fitness and lower body fat composition were associated with greater cardiac autonomic control for passengers during flights. Enhanced physical fitness and leaner body composition may enable passengers to cope better with the cardiovascular stress and high allostatic load associated with air travel for enhanced passenger well-being. PMID:28082914

  14. Cardiovascular and endocrine responses to acute hypoxaemia during and following dexamethasone infusion in the ovine fetus

    PubMed Central

    Fletcher, Andrew J W; Gardner, David S; Edwards, C Mark B; Fowden, Abigail L; Giussani, Dino A

    2003-01-01

    This study investigated the effects of fetal treatment with dexamethasone on ovine fetal cardiovascular defence responses to acute hypoxaemia, occurring either during or 48 h following the period of glucocorticoid exposure. To address the mechanisms underlying these responses, chemoreflex function and plasma concentrations of catecholamines, neuropeptide Y (NPY) and vasopressin were measured. Under general halothane anaesthesia, 26 Welsh Mountain sheep fetuses were surgically prepared for long-term recording at between 117 and 120 days of gestation (dGA; term is ∼145 days) with vascular catheters and a Transonic flow probe around a femoral artery. Following at least 5 days of recovery, fetuses were randomly assigned to one of two experimental groups. After 48 h of baseline recording, at 125 ± 1 dGA, half of the fetuses (n = 13) were continuously infused i.v. with dexamethasone for 48 h at a rate of 2.06 ± 0.13 μg kg−1 h−1. The remaining 13 fetuses were infused with heparinized saline at the same rate (controls). At 127 ± 1 dGA, 2 days from the onset of infusions, seven fetuses from each group were subjected to 1 h of acute hypoxaemia. At 129 ± 1 dGA, 2 days after the end of infusions, six fetuses from each group were subjected to 1 h of acute hypoxaemia. Similar reductions in fetal partial pressure of arterial oxygen occurred in control and dexamethasone-treated fetuses during the acute hypoxaemia protocols. In control fetuses, acute hypoxaemia led to transient bradycardia, femoral vasoconstriction and significant increases in plasma concentrations of catecholamines, vasopressin and NPY. In fetuses subjected to acute hypoxaemia during dexamethasone treatment, the increase in plasma NPY was enhanced, the bradycardic response was prolonged, and the plasma catecholamine and vasopressin responses were diminished. In fetuses subjected to acute hypoxaemia 48 h following dexamethasone treatment, femoral vasoconstriction and plasma catecholamine and vasopressin

  15. Assessment of the effect of anthropometric data on the alterations of cardiovascular parameters in Lithuanian elite male basketball players during physical load.

    PubMed

    Žumbakytė-Šermukšnienė, Renata; Kajėnienė, Alma; Berškienė, Kristina; Daunoravičienė, Algė; Sederevičiūtė-Kandratavičienė, Rasa

    2012-01-01

    OBJECTIVES. The aim of the study was to assess the effect of the anthropometric data of basketball players on the alterations of cardiovascular parameters during the physical load applying the model of integrated evaluation. MATERIAL AND METHODS. The research sample consisted of 113 healthy Caucasian male basketball players, candidates of the Lithuanian National men's basketball teams. Basketball players were divided into 2 groups: 69 taller and heavier male basketball players (with a higher percentage of body fat) (TMB) and 44 shorter and less heavy male basketball players (with a lower percentage of body fat) (SMB). The amount of fat, expressed in percentage, was measured using the body composition analyzer TBF-300. "Kaunas-Load," a computerized ECG analysis system, was used to evaluate the functional condition of the cardiovascular system during the load. RESULTS. The TMB group had a lower heart rate during the warming-up phase and the steady state of the load as compared with the SMB group (P<0.05). The JT interval in the TMB group was greater during the warming-up and the steady state as compared with the SMB group (P<0.05). The JT/RR ratio index in the TMB group was found to be lower in the warming-up phase and in the steady state compared with the respective parameter in the SMB group (P<0.05). CONCLUSIONS. The cardiovascular system of taller and heavier male basketball players with a greater relative amount of body fat functioned more economically.

  16. The role of autacoids and the autonomic nervous system in cardiovascular responses to radio-frequency energy heating.

    PubMed

    Jauchem, J R

    2006-04-01

    Among the potential effects of exposure to high levels of radio-frequency energy (RFE) (which includes microwaves), an increase in body temperature is the primary consequence. Release of autacoids and activity of the autonomic nervous system may influence (or be directly responsible for) some of the physiological changes that occur in conjunction with this hyperthermia. The main focus of this review is the interaction of autacoids and the autonomic nervous system with cardiovascular changes during heating. Differences between environmental and RFE-induced heating (such as rate of temperature change and degree of skin vs. core heating) may be important when considering these effects. Antihistamines exhibited no beneficial effect on circulatory collapse during RFE-induced heating. The serotonergic blocker methysergide decreased survival time in rats during terminal RFE exposure, despite no effects on heart rate (HR) or blood pressure. Although blockade of platelet-activating factor resulted in lower HR before RFE exposure, there was a lack of effect on the subsequent increase in HR during heating. Nitric oxide did not contribute to the hypotension that occurs due to rapid heating by RFE exposure. There have been either no or very limited studies of effects of prostaglandins, bradykinin, or angiotensin on RFE-induced heating responses. beta-Adrenoceptor antagonism with propranolol resulted in significantly decreased survival times and lower final colonic temperatures during RFE exposure. A lack of effects of nadolol on survival time and temperature, coupled with its poor ability to traverse the blood-brain barrier, suggests that central beta-adrenergic stimulation rather than peripheral stimulation may alter thermoregulation. Effects of the autonomic nervous system (as studied by adrenoceptor blockade) on potassium changes during heating have not been fully investigated. Such changes could be important in animals' responses to RFE and other modalities of heating, and

  17. Positive emotional style and subjective, cardiovascular and cortisol responses to acute laboratory stress.

    PubMed

    Bostock, Sophie; Hamer, Mark; Wawrzyniak, Andrew J; Mitchell, Ellen S; Steptoe, Andrew

    2011-09-01

    The relationships between positive emotional style and acute salivary cortisol and cardiovascular responses to laboratory stress tasks were examined in 40 young women (mean age=28.8 years). Positive emotional style (PES) was measured by aggregating daily positive mood rating scales over one week. Negative affect was assessed with the short form Profile of Mood States. Salivary cortisol was measured in response to two behavioural tasks, a 5 min speech task and a 5 min mirror tracing task. Blood pressure (BP) and heart rate responses were monitored using a Finometer during baseline, tasks and recovery. Higher PES was associated with more complete diastolic BP recovery (p=0.027) and lower acute cortisol response to stress (p=0.018), after adjusting for baseline measures, age, BMI and negative affect. Individuals with higher PES reported lower subjective tension during the tasks and perceived the tasks as more controllable. There were no differences in ratings of task involvement or in objective measures of task performance. A retrospective measure of positive affect (POMS vigour) was associated with diastolic BP recovery but not cortisol responses or subjective tension. The findings suggest that positive affective traits, assessed using repeated assessments of daily mood, are related to adaptive recovery from acute psychological stress. Our results reinforce evidence linking positive affect with adaptive diastolic BP recovery, while extending the results to cortisol. Investigations into the biological correlates of affective traits should consider utilising repeated measures of experienced affect.

  18. Repressed anger and patterns of cardiovascular, self-report and behavioral responses: effects of harassment.

    PubMed

    Burns, J W; Evon, D; Strain-Saloum, C

    1999-12-01

    We hypothesized that anger repressors would show discrepancies between self-reported anger and cardiovascular and behavioral responses only during harassment. Subjects (N=102) were assigned randomly to condition. In the nonharassment condition, subjects told stories about eight Thematic Apperception Test cards without any harassment. In the harassment condition, subjects told four stories without harassment, and then told four more stories with harassment. Words connoting aggressive behavior and angry/hostile affect were coded from story content. Subjects were classified into low anger expressor, anger repressor, high anger expressor, and defensive anger expressor categories based on median splits of the Anger-Out Subscale and Marlowe-Crowne Social Desirability Scale. Results showed that harassed anger repressors reported anger comparable to that of low anger expressors but less than high expressors, whereas their heart rate (HR) reactivity was comparable to high expressors, but greater than low anger expressors. Increases in anger words did not distinguish repressors from other groups. Repressed anger may represent a distinct anger management style characterized by a discrepancy between acknowledged anger and cardiovascular reactivity--effects that become fully manifest only during interpersonal provocation.

  19. Minimum anesthetic concentration and cardiovascular dose-response relationship of isoflurane in cinereous vultures (Aegypius monachus).

    PubMed

    Kim, Young K; Lee, Scott S; Suh, Euy H; Lee, Lyon; Lee, Hee C; Lee, Hyo J; Yeon, Seong C

    2011-09-01

    This study aimed to determine the minimum anesthetic concentration (MAC) and dose-related cardiovascular effects of isoflurane during controlled ventilation in cinereous vultures (Aegypius monachus). The MAC was determined for 10 cinereous vultures as the midpoint between the end-tidal isoflurane concentration that allows gross purposeful movement and that which prevents the movement in response to clamping a pedal digit. Immediately after the MAC was determined, the cardiovascular effects of isoflurane at 1.0, 1.5, and 2.0 times the MAC were investigated in seven of the 10 birds. The MAC of isoflurane for 10 cinereous vultures during controlled ventilation was 1.06 +/- 0.07% (mean +/- SD). When the isoflurane concentration was increased to 1.5 and 2.0 times the MAC, there was significant dose-dependent decrease in the arterial blood pressure. However, the heart rate did not change over a range of 1.0 to 2.0 times the MAC.

  20. Anhedonia and effort mobilization in dysphoria: reduced cardiovascular response to reward and punishment.

    PubMed

    Brinkmann, Kerstin; Schüpbach, Laurent; Joye, Isabelle Ancel; Gendolla, Guido H E

    2009-12-01

    Instigated by evidence for reduced responsiveness to reward in depression, the present two studies addressed the question if such anhedonic behavior would also become evident in reduced mobilization of mental effort in terms of cardiovascular reactivity. Undergraduates completed the Center for Epidemiologic Studies-Depression Scale (CES-D) and worked on mental tasks, expecting either no consequence, a performance-contingent reward, or a performance-contingent punishment. Study 1 revealed that participants with low CES-D scores showed high systolic blood pressure reactivity in the punishment condition, whereas participants with high CES-D scores showed low systolic reactivity. Study 2 corroborated this finding for reward: Nondysphoric participants expecting a reward showed higher reactivity of systolic blood pressure and pre-ejection period than participants in the neutral condition or than dysphoric participants. Together, the studies demonstrate that reward insensitivity in (subclinical) depression is also found in cardiovascular reactivity. Furthermore, dysphoric individuals do not respond to punishment either, suggesting a general insensitivity to hedonic consequences.

  1. Computer-mediated communication and time pressure induce higher cardiovascular responses in the preparatory and execution phases of cooperative tasks.

    PubMed

    Costa Ferrer, Raquel; Serrano Rosa, Miguel Ángel; Zornoza Abad, Ana; Salvador Fernández-Montejo, Alicia

    2010-11-01

    The cardiovascular (CV) response to social challenge and stress is associated with the etiology of cardiovascular diseases. New ways of communication, time pressure and different types of information are common in our society. In this study, the cardiovascular response to two different tasks (open vs. closed information) was examined employing different communication channels (computer-mediated vs. face-to-face) and with different pace control (self vs. external). Our results indicate that there was a higher CV response in the computer-mediated condition, on the closed information task and in the externally paced condition. These role of these factors should be considered when studying the consequences of social stress and their underlying mechanisms.

  2. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors.

    PubMed

    Pesquero, J B; Araujo, R C; Heppenstall, P A; Stucky, C L; Silva, J A; Walther, T; Oliveira, S M; Pesquero, J L; Paiva, A C; Calixto, J B; Lewin, G R; Bader, M

    2000-07-05

    Kinins are important mediators in cardiovascular homeostasis, inflammation, and nociception. Two kinin receptors have been described, B1 and B2. The B2 receptor is constitutively expressed, and its targeted disruption leads to salt-sensitive hypertension and altered nociception. The B1 receptor is a heptahelical receptor distinct from the B2 receptor in that it is highly inducible by inflammatory mediators such as bacterial lipopolysaccharide and interleukins. To clarify its physiological function, we have generated mice with a targeted deletion of the gene for the B1 receptor. B1 receptor-deficient animals are healthy, fertile, and normotensive. In these mice, bacterial lipopolysaccharide-induced hypotension is blunted, and there is a reduced accumulation of polymorphonuclear leukocytes in inflamed tissue. Moreover, under normal noninflamed conditions, they are analgesic in behavioral tests of chemical and thermal nociception. Using whole-cell patch-clamp recordings, we show that the B1 receptor was not necessary for regulating the noxious heat sensitivity of isolated nociceptors. However, by using an in vitro preparation, we could show that functional B1 receptors are present in the spinal cord, and their activation can facilitate a nociceptive reflex. Furthermore, in B1 receptor-deficient mice, we observed a reduction in the activity-dependent facilitation (wind-up) of a nociceptive spinal reflex. Thus, the kinin B1 receptor plays an essential physiological role in the initiation of inflammatory responses and the modulation of spinal cord plasticity that underlies the central component of pain. The B1 receptor therefore represents a useful pharmacological target especially for the treatment of inflammatory disorders and pain.

  3. Changing CS Features Alters Evaluative Responses in Evaluative Conditioning

    ERIC Educational Resources Information Center

    Unkelbach, Christian; Stahl, Christoph; Forderer, Sabine

    2012-01-01

    Evaluative conditioning (EC) refers to changes in people's evaluative responses toward initially neutral stimuli (CSs) by mere spatial and temporal contiguity with other positive or negative stimuli (USs). We investigate whether changing CS features from conditioning to evaluation also changes people's evaluative response toward these CSs. We used…

  4. Sympathetic and cardiovascular responses to venous distension in an occluded limb.

    PubMed

    Cui, Jian; Leuenberger, Urs A; Gao, Zhaohui; Sinoway, Lawrence I

    2011-12-01

    We recently showed that a fixed volume (i.e., 40 ml) of saline infused into the venous circulation of an arterially occluded vascular bed increases muscle sympathetic nerve activity (MSNA) and blood pressure. In the present report, we hypothesized that the volume and rate of infusion would influence the magnitude of the sympathetic response. Blood pressure, heart rate, and MSNA were assessed in 13 young healthy subjects during forearm saline infusions (arrested circulation). The effects of different volumes of saline (i.e., 2%, 3%, 4%, or 5% forearm volume at 30 ml/min) and different rates of infusion (i.e., 5% forearm volume at 10, 20, or 30 ml/min) were evaluated. MSNA and blood pressure responses were linked with the infusion volume. Infusion of 5% of forearm volume evoked greater MSNA responses than did infusion of 2% of forearm volume (Δ11.6 ± 1.9 vs. Δ3.1 ± 1.8 bursts/min and Δ332 ± 105 vs. Δ38 ± 32 units/min, all P < 0.05). Moreover, greater MSNA responses were evoked by saline infusion at 30 ml/min than 10 ml/min (P < 0.05). Sonographic measurements confirmed that the saline infusions induced forearm venous distension. The results suggest that volume and rate of saline infusion are important factors in evoking sympathetic activation. We postulate that venous distension contributes to cardiovascular autonomic adjustment in humans.

  5. Emergency Spatiotemporal Shift: The Response of Protein Kinase D to Stress Signals in the Cardiovascular System

    PubMed Central

    Wood, Brent M.; Bossuyt, Julie

    2017-01-01

    Protein Kinase D isoforms (PKD 1-3) are key mediators of neurohormonal, oxidative, and metabolic stress signals. PKDs impact a wide variety of signaling pathways and cellular functions including actin dynamics, vesicle trafficking, cell motility, survival, contractility, energy substrate utilization, and gene transcription. PKD activity is also increasingly linked to cancer, immune regulation, pain modulation, memory, angiogenesis, and cardiovascular disease. This increasing complexity and diversity of PKD function, highlights the importance of tight spatiotemporal control of the kinase via protein–protein interactions, post-translational modifications or targeting via scaffolding proteins. In this review, we focus on the spatiotemporal regulation and effects of PKD signaling in response to neurohormonal, oxidant and metabolic signals that have implications for myocardial disease. Precise targeting of these mechanisms will be crucial in the design of PKD-based therapeutic strategies. PMID:28174535

  6. WISE-2005: Integrative Cardiovascular Responses with LBNP during 60-Day Bed Rest in Women

    NASA Technical Reports Server (NTRS)

    Hughson, R. L.; Kerbeci, P.; Arbeille, Ph.; Mattar, L.; Shoemaker, J. K.

    2005-01-01

    During 2005, 24 women will take part in the Women International Space-simulation for Exploration (WISE). In this paper we report on the first phase that studied 4 Exercise (EX+LBNP), 4 nutrition (NUT), and 4 no countermeasure control (CON) subjects. The EX+LBNP group completed regular exercise on a treadmill inside LBNP, flywheel resistive exercise and static periods of LBNP, and had recovery days. The NUT group received daily protein supplements. Integrative cardiovascular responses were obtained and here we report data for heart rate during LBNP, blood volume and angiotensin 11. LBNP was applied at 0, -10, -20 and -30 mmHg for 2-minutes for each stage. Blood was sampled prebed rest and on HDT-60. After 60-days head down bed rest, HR in the CON group increased by 6.1+/-2.8 bpm at rest and by 20.7+/-5.0 bpm at -30 mmHg LBNP. The EX+LBNP group had increases of 3.6+/-5.6 and 11.6+/-5.4 bpm, while the NUT group HR increased 2.6+/-3.1 and 9.4+/-3.6 bpm. The EX+LBNP group had almost no change in blood volume or plasma angiotensin II from pre-bed rest to HDT60, while both the CON and NUT groups had larger increases in plasma volume and almost double concentrations of angiotensin II. These data show a positive effect in the EX+LBNP group on the heart rate response as well as an unexpected possible benefit in the NUT group. Further studies are required to confirm possible cardiovascular benefits of the protein supplement.

  7. WISE-2005: Integrative cardiovascular responses with LBNP during 60-day bed rest in women

    NASA Astrophysics Data System (ADS)

    Hughson, R. L.; Kerbeci, P.; Arbeille, P.; Mattar, L.; Shoemaker, J. K.

    2005-08-01

    During 2005, 24 women will take part in the Women International Space-simulation for Exploration (WISE). In this paper we report on the first phase that studied 4 Exercise (EX+LBNP), 4 nutrition (NUT), and 4 no countermeasure control (CON) subjects. The EX+LBNP group completed regular exercise on a treadmill inside LBNP, flywheel resistive exercise and static periods of LBNP, and had recovery days. The NUT group received daily protein supplements. Integrative cardiovascular responses were obtained and here we report data for heart rate during LBNP, blood volume and angiotensin II. LBNP was applied at 0, -10, -20 and -30 mmHg for 2-minutes for each stage. Blood was sampled pre- bed rest and on HDT-60. After 60-days head down bed rest, HR in the CON group increased by 6.1±2.8 bpm at rest and by 20.7±5.0 bpm at -30 mmHg LBNP. The EX+LBNP group had increases of 3.6±5.6 and 11.6±5.4 bpm, while the NUT group HR increased 2.6±3.1 and 9.4±3.6 bpm. The EX+LBNP group had almost no change in blood volume or plasma angiotensin II from pre-bed rest to HDT60, while both the CON and NUT groups had larger increases in plasma volume and almost double concentrations of angiotensin II. These data show a positive effect in the EX+LBNP group on the heart rate response as well as an unexpected possible benefit in the NUT group. Further studies are required to confirm possible cardiovascular benefits of the protein supplement.

  8. Effect of hydro-alcoholic extract of Rosa damascena on cardiovascular responses in normotensive rat

    PubMed Central

    Baniasad, Amir; Khajavirad, Abolfazl; Hosseini, Mahmoud; Shafei, Mohammad Naser; Aminzadah, Saeed; Ghavi, Mahmoud

    2015-01-01

    Objective: Rosa damascena mill L. (R. damascena) is a well-known plant with fragrant effects. Several therapeutic effects of this plant on respiratory, gastrointestinal and nervous systems have been reported. It is also suggested to have beneficial effect on cardiovascular system especially blood pressure regulation. The present study was carried out to evaluate acute cardiovascular effect of hydro-alcoholic extract of R. damascena. Materials and Methods: Thirty-two male Wistar rats were randomly divided into four groups (n= 8 for each group). After anesthesia, a catheter was inserted into the femoral artery and blood pressure and heart rate (HR) were continuously recorded by a power lab system. Animals received three doses of hydro-alcoholic extract (250, 500, and 1000 mg/kg) via peritoneal (i.p). After 30 min, systolic blood pressure (SBP), mean arterial pressure (MAP) and HR were recorded and maximal changes were compared to control group. Results: Injection of all doses of the extract did not significantly change HR compare to control group. The SBP, dose dependently, was decreased by all doses of the extract and the maximal response was significant compared to saline group (p<0.01 to p<0.001). Different doses of the extract also dose-dependently decreased maximal changes of MAP responses compared to control group. The effect of higher doses of the extract on SBP and MAP was significant compared to lower doses (p<0.05 to p<0.01). Conclusion: This study provides evidence of a hypotensive effect of hydro-alcoholic extract of R. damascena with no significant effect on HR. Therefore, R. damascena is suggested to have beneficial effect to control blood pressure. However, it needs to be more investigated. PMID:26442758

  9. Do Integrins Mediate the Skeletal Response to Altered Loading?

    NASA Technical Reports Server (NTRS)

    vanderMeulen, Marjolein C. H.

    2004-01-01

    In vivo experiments were performed to examine the role of B1 integrin in skeletal adaptation to reduced and increased loading. Transgenic mice were generated with a dominant negative form of the B1 integrin cytoplasmic domain with expression driven by the osteocalcin promoter (pOCb1DN). This fragment consists of the transmembrane and intracellular domains and interferes with endogenous integrin signalling in vitro. This promoter targets expression of the transgene to mature bone cells. Expression of the transgene was confirmed by immunoprecipitation and western blotting. Reduced loading was generated by hindlimb suspension and increased loading the resumption of normal loading following hindlimb suspension. Two groups of female 35-day old mice were examined: poCb1DN transgenic mice (TG) and wild-type littermate controls (WT). Animals were hindlimb suspended for 1 week (HU, n = l0/gp) or 4 weeks (HU, n = 4 - 7/gp) or suspended for 4 weeks followed by reloading by normal ambulation for 4 weeks (RL, n = l0/gp). Age-matched controls (CT) were pairfed based on the HU food intake. The protocols were approved by the NASA Ames Research Center IACUC. Upon completion of the experimental protocol, body mass was recorded and tissues of interest removed and analyzed following standard procedures. Femoral whole bone structural behavior was measured in torsion to failure to obtain whole bone strength (failure torque) and torsional rigidity. Ash content (ash) and fraction (% ash) were determined for the tibia. Total ash is indicative of bone size whereas %ash is a material property. Tibial curvature was measured from microradiographs. For each experiment, the effects of genotype (TG, WT) and treatment (CT, HU/RL) were assessed by two-factor ANOVA followed by the Tukey-Kramer posthoc to identify significant differences at an alpha level of 0.05. Our goal was to understand differences resulting from altered integrin function in the adaptation to altered loading.

  10. Cardiovascular Response to Exercise Testing in Children and Adolescents Late After Kawasaki Disease According to Coronary Condition Upon Onset.

    PubMed

    Gravel, Hugo; Curnier, Daniel; Dallaire, Frédéric; Fournier, Anne; Portman, Michael; Dahdah, Nagib

    2015-10-01

    Multiple cardiovascular sequelae have been reported late after Kawasaki disease (KD), especially in patients with coronary artery lesions. In this perspective, we hypothesized that exercise response was altered after KD in patients with coronary aneurysms (CAA-KD) compared to those without history of coronary aneurysms (NS-KD). This study is a post hoc analysis of exercise data from an international multicenter trial. A group of 133 CAA-KD subjects was compared to a group of 117 NS-KD subjects. Subjects underwent a Bruce treadmill test followed to maximal exertion. Heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were assessed at each stage of the test including recovery. Myocardial perfusion was evaluated by stress and rest Tc-99m sestamibi SPECT imaging. Endurance time was similar between NS-KD and CAA-KD (11.3 ± 2.6 vs. 11.0 ± 2.6 min; p = 0.343). HR, SBP, and DBP responses to exercise were similar between groups (p = 0.075-0.942). Myocardial perfusion defects were present in 16.5 % CAA-KD versus 22.2 % NS-KD (p = 0.255). Analysis based on myocardial perfusion status identified a lower heart rate at 1 min into recovery as well as lower DBP at 1 and 5 min into recovery in patients with abnormal SPECT imaging (p = 0.017-0.042). Compared to patients without CA involvement, the presence of coronary aneurysms at the subacute phase of KD does not induce a differential effect on exercise parameters. In contrast, exercise-induced myocardial perfusion defect late after the onset of KD correlates with abnormal recovery parameters.

  11. Adiposity Indexes as Phenotype-Specific Markers of Preclinical Metabolic Alterations and Cardiovascular Risk in Polycystic Ovary Syndrome: A Cross-Sectional Study.

    PubMed

    Mario, Fernanda Missio; Graff, Scheila Karen; Spritzer, Poli Mara

    2017-02-15

    Polycystic ovary syndrome (PCOS) is a common condition in women of reproductive age. 2 PCOS phenotypes (classic and ovulatory) are currently recognized as the most prevalent, with important differences in terms of cardiometabolic features. We studied the performance of different adiposity indexes to predict preclinical metabolic alterations and cardiovascular risk in 234 women with PCOS (173 with classic and 61 with ovulatory PCOS) and 129 controls. Performance of waist circumference, waist-to-height ratio, conicity index, lipid accumulation product, and visceral adiposity index was assessed based on HOMA-IR ≥ 3.8 as reference standard for screening preclinical metabolic alterations and cardiovascular risk factors in each group. Lipid accumulation product had the best accuracy for classic PCOS, and visceral adiposity index had the best accuracy for ovulatory PCOS. By applying the cutoff point of lipid accumulation product<34, we identified a subgroup of patients without cardiometabolic alterations (P<0.05) in the group with classic PCOS, a population at higher risk for hypertension, dyslipidemia, and impaired glucose tolerance. In ovulatory PCOS, visceral adiposity index ≥ 1.32 was capable of detecting women with significantly higher blood pressure and less favorable glycemic and lipid variables as compared to ovulatory PCOS with lower visceral adiposity index (P<0.05). These results suggest LAP ≥ 34 as the best marker for classic PCOS, and VAI ≥ 1.32 for ovulatory PCOS women. Both indexes can be easily calculated with measures obtained in routine clinical practice and may be useful to detect cardiometabolic risk and secure early interventions.

  12. Hormonal contraception use alters stress responses and emotional memory.

    PubMed

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women.

  13. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress.

    PubMed

    Wawrzyniak, Andrew J; Hamer, Mark; Steptoe, Andrew; Endrighi, Romano

    2016-05-01

    Cardiovascular (CV) responses to mental stress are prospectively associated with poor CV outcomes. The association between CV responses to mental stress and reaction times (RTs) in aging individuals may be important but warrants further investigation. The present study assessed RTs to examine associations with CV responses to mental stress in healthy, older individuals using robust regression techniques. Participants were 262 men and women (mean age = 63.3 ± 5.5 years) from the Whitehall II cohort who completed a RT task (Stroop) and underwent acute mental stress (mirror tracing) to elicit CV responses. Blood pressure, heart rate, and heart rate variability were measured at baseline, during acute stress, and through a 75-min recovery. RT measures were generated from an ex-Gaussian distribution that yielded three predictors: mu-RT, sigma-RT, and tau-RT, the mean, standard deviation, and mean of the exponential component of the normal distribution, respectively. Decreased intraindividual RT variability was marginally associated with greater systolic (B = -.009, SE = .005, p = .09) and diastolic (B = -.004, SE = .002, p = .08) blood pressure reactivity. Decreased intraindividual RT variability was associated with impaired systolic blood pressure recovery (B = -.007, SE = .003, p = .03) and impaired vagal tone (B = -.0047, SE = .0024, p = .045). Study findings offer tentative support for an association between RTs and CV responses. Despite small effect sizes and associations not consistent across predictors, these data may point to a link between intrinsic neuronal plasticity and CV responses.

  14. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress

    PubMed Central

    Hamer, Mark; Steptoe, Andrew; Endrighi, Romano

    2016-01-01

    Abstract Cardiovascular (CV) responses to mental stress are prospectively associated with poor CV outcomes. The association between CV responses to mental stress and reaction times (RTs) in aging individuals may be important but warrants further investigation. The present study assessed RTs to examine associations with CV responses to mental stress in healthy, older individuals using robust regression techniques. Participants were 262 men and women (mean age = 63.3 ± 5.5 years) from the Whitehall II cohort who completed a RT task (Stroop) and underwent acute mental stress (mirror tracing) to elicit CV responses. Blood pressure, heart rate, and heart rate variability were measured at baseline, during acute stress, and through a 75‐min recovery. RT measures were generated from an ex‐Gaussian distribution that yielded three predictors: mu‐RT, sigma‐RT, and tau‐RT, the mean, standard deviation, and mean of the exponential component of the normal distribution, respectively. Decreased intraindividual RT variability was marginally associated with greater systolic (B = −.009, SE = .005, p = .09) and diastolic (B = −.004, SE = .002, p = .08) blood pressure reactivity. Decreased intraindividual RT variability was associated with impaired systolic blood pressure recovery (B = −.007, SE = .003, p = .03) and impaired vagal tone (B = −.0047, SE = .0024, p = .045). Study findings offer tentative support for an association between RTs and CV responses. Despite small effect sizes and associations not consistent across predictors, these data may point to a link between intrinsic neuronal plasticity and CV responses. PMID:26894967

  15. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats

    PubMed Central

    DiNovo, Karyn. M.; Connolly, Tiffanny M.

    2010-01-01

    The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359

  16. Altering dietary lysine:arginine ratio has little effect on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults

    PubMed Central

    Vega-López, Sonia; Matthan, Nirupa R.; Ausman, Lynne M.; Harding, Scott V.; Rideout, Todd C.; Ai, Masumi; Otokozawa, Seiko; Freed, Alicia; Kuvin, Jeffrey T; Jones, Peter J; Schaefer, Ernst J; Lichtenstein, Alice H.

    2010-01-01

    Background Information is scarce regarding the effect of dietary protein type, with specific focus on the lysine to arginine (Lys:Arg) ratio, on cardiovascular risk factors and vascular reactivity in humans. Objective Determine effect of dietary Lys:Arg ratio on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults. Design Randomized cross-over design of two 35-day diet phases; thirty adults (21 females and 9 males, ≥50 y, LDL cholesterol ≥120 mg/dL). Diets had 20% energy (E) protein, 30%E fat, 50%E carbohydrate and were designed to have low (0.7) or high (1.4) Lys:Arg ratio. Measures included fasting and postprandial lipid, lipoprotein, apolipoprotein concentrations; fasting high sensitivity C-reactive protein (hsCRP), small dense LDL (sdLDL)-cholesterol, remnant lipoprotein cholesterol (RemLC), glycated albumin, adiponectin and immunoreactive insulin concentrations, endogenous cholesteryl ester transfer protein (CETP) and lecithin:cholesterol acyl transferase (LCAT) activities; cholesterol fractional synthesis rate (FSR); and flow mediated dilation (FMD) and peripheral artery tonometry (PAT). Results No differences were observed in fasting and/or postprandial total, LDL, HDL and sdLDL cholesterol, RemLC, Lp(a) or apo B concentrations, LCAT and CETP activities, FSR, glycated albumin, immunoreactive insulin, FMD or PAT. The low, relative to the high, Lys:Arg ratio diet resulted in lower postprandial VLDL cholesterol (−24%, P=0.001) and triglycerides (−23%, P=0.001), and small but significant differences in fasting (−3%, P=0.003) and postprandial (−3%, P=0.018) apo AI, and fasting adiponectin concentrations (+7%, P=0.035). Fasting and postprandial hsCRP concentrations were 23% lower after the low Lys:Arg ratio diet (P=0.020 for both). Conclusions Diets differing in Lys:Arg ratios had no or small effects on cardiovascular risk factors and vascular reactivity. PMID:20042191

  17. Cardiovascular alterations caused by the administration of 2% mepivacaine HCl with 1:20,000 levonordefrin (Carbocain) in dogs.

    PubMed

    Simone, J L; Tortamano, N; Armonia, P L; Rocha, R G

    1997-01-01

    We studied possible cardiovascular effects (systolic, diastolic, mean arterial blood pressures, and heart rate) caused by intraoral infiltrative administration of 2% mepivacaine HCl with 1:20,000 levonordefrin in dogs (Canis familiaris), using a Beckman electrophysiograph. Doses used were 0.514 and 1.542 mg/kg body weight corresponding to one and three 1.8-ml cartridges, respectively, in 70-kg average weight adult men. A statistically significant increase was observed in the systolic and the mean arterial blood pressures.

  18. Effect of fluid countermeasures of varying osmolarity on cardiovascular responses to orthostatic stress

    NASA Technical Reports Server (NTRS)

    Davis, John E.

    1989-01-01

    Current operational procedures for shuttle crewmembers include the ingestion of a fluid countermeasure approximately 2 hours before reentry into the earth's gravitational field. The ingestion of the fluid countermeasure is thought to restore plasma volume and improve orthostatic responses upon reentry. The present countermeasure consists of ingesting salt tablets and water to achieve an isotonic solution. It has yet to be determined whether this is the optimal drink to restore orthostatic tolerance. It is also not known whether the drink solution is effective in increasing plasma volume. The purpose here is to evaluate the effectiveness of drink solutions of different osmolarity on restoring plasma volume and orthostatic responses. A hypertonic drink solution was more effective in restoring plasma volume after dehydration than an isotonic solution. However, there were no differences in their effects on an orthostatic challenge. These data suggest that the plasma volume differences produced in this study were not sufficient to produce differences in the cardiovascular responses to an orthostatic challenge, or there are other changes that occur during space flight that are more important in determining orthostatic intolerance.

  19. Neural control of cardiovascular responses and of ventilation during dynamic exercise in man.

    PubMed Central

    Strange, S; Secher, N H; Pawelczyk, J A; Karpakka, J; Christensen, N J; Mitchell, J H; Saltin, B

    1993-01-01

    1. Nine subjects performed dynamic knee extension by voluntary muscle contractions and by evoked contractions with and without epidural anaesthesia. Four exercise bouts of 10 min each were performed: three of one-legged knee extension (10, 20 and 30 W) and one of two-legged knee extension at 2 x 20 W. Epidural anaesthesia was induced with 0.5% bupivacaine or 2% lidocaine. Presence of neural blockade was verified by cutaneous sensory anaesthesia below T8-T10 and complete paralysis of both legs. 2. Compared to voluntary exercise, control electrically induced exercise resulted in normal or enhanced cardiovascular, metabolic and ventilatory responses. However, during epidural anaesthesia the increase in blood pressure with exercise was abolished. Furthermore, the increases in heart rate, cardiac output and leg blood flow were reduced. In contrast, plasma catecholamines, leg glucose uptake and leg lactate release, arterial carbon dioxide tension and pulmonary ventilation were not affected. Arterial and venous plasma potassium concentrations became elevated but leg potassium release was not increased. 3. The results conform to the idea that a reflex originating in contracting muscle is essential for the normal blood pressure response to dynamic exercise, and that other neural, humoral and haemodynamic mechanisms cannot govern this response. However, control mechanisms other than central command and the exercise pressor reflex can influence heart rate, cardiac output, muscle blood flow and ventilation during dynamic exercise in man. PMID:8308750

  20. Action of adenosine receptor antagonists on the cardiovascular response to defence area stimulation in the rat.

    PubMed Central

    St Lambert, J H; Dawid-Milner, M S; Silva-Carvalho, L; Spyer, K M

    1994-01-01

    1. The action of adenosine in the mediation of the cardiovascular changes associated with the defence reaction has been investigated in the rat using two A1 receptor antagonists. 2. Cumulative doses of 1,3 dipropyl-cyclopentylxanthine (DPCPX) (0.3-3 mg kg-1) and ethanol (0.03-0.25 ml) and bolus doses of DPCPX (3 mg kg-1) and 8-sulphophenyltheophylline (8-SPT) (20 mg kg-1) were given into alpha-chloralose, paralysed and artificially ventilated rats. Recordings were made of arterial blood pressure and heart rate. 3. Ethanol, the vehicle for DPCPX, failed to modify the magnitude of the defence response; however, cumulative doses of DPCPX produced a dose-dependent decrease in the HDA (hypothalamic defence area)-evoked increase in arterial blood pressure, accompanied by a similar fall in the magnitude of the evoked heart rate response. 4. The evoked rise in arterial blood pressure was reduced significantly by intravenous injection of DPCPX (3 mg kg-1) but not 8-SPT (20 mg kg-1), a purely peripherally acting adenosine antagonist. 5. These results suggest that adenosine acting at A1 receptors located in the central nervous system, is involved in the HDA-evoked pressor response. Whilst the site of action of the A1 receptors is not known, possible locations are discussed. PMID:7812606

  1. Oxygen uptake and cardiovascular responses in control adults and acute myocardial infarction patients during bathing.

    PubMed

    Winslow, E H; Lane, L D; Gaffney, F A

    1985-01-01

    Physiological responses before, during, and after three types of baths were determined in 18 patients who were 5 to 17 days postinfarction and 22 control adults. In the patients, oxygen consumption (VO2) averaged 6, 7, and 7 ml/kg/min, peak heart rate 105, 108, and 112 beats per minute, and rate pressure product 115, 120, and 111 for basin, tub, and shower bathing, respectively. Oxygen consumption during bathing was less than 3 times resting levels. The patients had a significantly lower VO2 during bathing than the control subjects. The patients' peak heart rates were higher than anticipated for the level of exertion, and sometimes exceeded the target heart rates used in predischarge testing. Peak heart rate and occurrence of dysrhythmia did not differ significantly between the three types of baths. In the women patients, rate pressure product was significantly higher after tub bath than after basin bath or shower. The subjects had no cardiovascular symptoms during bathing, rated all three baths as light exertion, and disliked the basin bath. The data show that the physiologic costs of the three types of baths are similar, differences in responses to bathing seem more a function of subject variability than bath type, and many cardiac patients can take a tub bath or shower earlier in their hospitalization. However, more research is needed to predict patients likely to have an exaggerated response to bathing and to develop clear guidelines for bath method selection and progression.

  2. Keratins Are Altered in Intestinal Disease-Related Stress Responses

    PubMed Central

    Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  3. Endophytic fungi alter sucking bug responses to cotton reproductive structures.

    PubMed

    Sword, Gregory A; Tessnow, Ashley; Ek-Ramos, Maria Julissa

    2017-03-22

    All plants including cotton host a wide range of microorganisms as endophytes. There is a growing appreciation of the prevalence, ecological significance and management potential of facultative fungal endophytes in protecting plants from pests, pathogens and environmental stressors. Hemipteran sucking bugs have emerged as major pests across the US cotton belt, reducing yields directly by feeding on developing reproductive structures and indirectly by vectoring plant pathogens. We used no-choice and simultaneous choice assays to examine the host selection behavior of western tarnished plant bugs (Lygus hesperus) and southern green stink bugs (Nezara viridula) in response to developing flower buds and fruits from cotton plants colonized by one of two candidate beneficial fungal endophytes, Phialemonium inflatum or Beauveria bassiana. Both insect species exhibited strong negative responses to flower buds (L. hesperus) and fruits (N. viridula) from plants that had been colonized by candidate endophytic fungi relative to control plants under both no-choice and choice conditions. Behavioral responses of both species indicated that the insects were deterred prior to contact with plant tissues from endophyte-colonized plants, suggesting a putative role for volatile compounds in mediating the negative response. Our results highlight the role of fungal endophytes as plant mutualists that can have positive effects on plant resistance to pests. This article is protected by copyright. All rights reserved.

  4. Adaptive thermoregulation in endotherms may alter responses to climate change.

    PubMed

    Boyles, Justin G; Seebacher, Frank; Smit, Ben; McKechnie, Andrew E

    2011-11-01

    Climate change is one of the major issues facing natural populations and thus a focus of recent research has been to predict the responses of organisms to these changes. Models are becoming more complex and now commonly include physiological traits of the organisms of interest. However, endothermic species have received less attention than have ectotherms in these mechanistic models. Further, it is not clear whether responses of endotherms to climate change are modified by variation in thermoregulatory characteristics associated with phenotypic plasticity and/or adaptation to past selective pressures. Here, we review the empirical data on thermal adaptation and acclimatization in endotherms and discuss how those factors may be important in models of responses to climate change. We begin with a discussion of why thermoregulation and thermal sensitivity at high body temperatures should be co-adapted. Importantly, we show that there is, in fact, considerable variation in the ability of endotherms to tolerate high body temperatures and/or high environmental temperatures, but a better understanding of this variation will likely be critical for predicting responses to future climatic scenarios. Next, we discuss why variation in thermoregulatory characteristics should be considered when modeling the effects of climate change on heterothermic endotherms. Finally, we review some biophysical and biochemical factors that will limit adaptation and acclimation in endotherms. We consider both long-term, directional climate change and short-term (but increasingly common) anomalies in climate such as extreme heat waves and we suggest areas of important future research relating to both our basic understanding of endothermic thermoregulation and the responses of endotherms to climate change.

  5. [An analysis of the cardiovascular responses under hyper- and hypo-gravity environments using a mathematical model].

    PubMed

    Hirata, Y; Yoshimura, K; Nakatomi, T; Toda, N; Usui, S; Nagaoka, S

    1999-06-01

    Gravity affects cardiovascular control system remarkably. Internal control mechanism responsible for such cardiovascular changes under hypo- and hyper-gravity have not yet been fully understood, although many biological and physiological measurements as to cardiovascular system have been conducted since man's first exploration to space. One reason for this arises from the difficulty in continuous and simultaneous measurements of hemodynamics of many parts of the body. To overcome this difficulty, a mathematical model was constructed based on animal and human physiological evidence in our previous study. In the present study, the model is used for explaining hemodynamics during hyper- and hypo-gravity environments obtained during parabolic flight. The parabolic flight experiment was conducted by a small rear-jet MU300. Three university male students volunteered as subjects. Five to eleven parabolic flights per day were performed for 6 days. The subjects sat on a chair either in an upright position or a 45 degree reclining position. Electrocardiogram and finger blood pressure were measured continuously during the flights. Variable parameters of the model were adjusted so that heart rate and blood pressure of the model fit to those of the experiment. It was shown that the model can quantitatively reproduce and predict experimental heart rate and blood pressure during a parabolic flight. Analysis of internal property of the model revealed hemodynamics of the human cardiovascular system during a parabolic flight which explains the mechanisms of cardiovascular responses under hyper- and hypo-gravitational environments.

  6. Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle

    PubMed Central

    2012-01-01

    Background Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 μg/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 μL) injection into the 4th V. Results Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity. PMID:22463380

  7. Resource colimitation governs plant community responses to altered precipitation

    PubMed Central

    Eskelinen, Anu; Harrison, Susan P.

    2015-01-01

    Ecological theory and evidence suggest that plant community biomass and composition may often be jointly controlled by climatic water availability and soil nutrient supply. To the extent that such colimitation operates, alterations in water availability caused by climatic change may have relatively little effect on plant communities on nutrient-poor soils. We tested this prediction with a 5-y rainfall and nutrient manipulation in a semiarid annual grassland system with highly heterogeneous soil nutrient supplies. On nutrient-poor soils, rainfall addition alone had little impact, but rainfall and nutrient addition synergized to cause large increases in biomass, declines in diversity, and near-complete species turnover. Plant species with resource-conservative functional traits (low specific leaf area, short stature) were replaced by species with resource-acquisitive functional traits (high specific leaf area, tall stature). On nutrient-rich soils, in contrast, rainfall addition alone caused substantial increases in biomass, whereas fertilization had little effect. Our results highlight that multiple resource limitation is a critical aspect when predicting the relative vulnerability of natural communities to climatically induced compositional change and diversity loss. PMID:26438856

  8. Alterations in the Colonic Microbiota in Response to Osmotic Diarrhea

    PubMed Central

    Trajanoski, Slave; Lackner, Stefan; Stocker, Gernot; Hinterleitner, Thomas; Gülly, Christian; Högenauer, Christoph

    2013-01-01

    Background & Aims Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. Methods We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. Results Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. Conclusions Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used. PMID:23409050

  9. Microbial legacies alter decomposition in response to simulated global change

    PubMed Central

    Martiny, Jennifer BH; Martiny, Adam C; Weihe, Claudia; Lu, Ying; Berlemont, Renaud; Brodie, Eoin L; Goulden, Michael L; Treseder, Kathleen K; Allison, Steven D

    2017-01-01

    Terrestrial ecosystem models assume that microbial communities respond instantaneously, or are immediately resilient, to environmental change. Here we tested this assumption by quantifying the resilience of a leaf litter community to changes in precipitation or nitrogen availability. By manipulating composition within a global change experiment, we decoupled the legacies of abiotic parameters versus that of the microbial community itself. After one rainy season, more variation in fungal composition could be explained by the original microbial inoculum than the litterbag environment (18% versus 5.5% of total variation). This compositional legacy persisted for 3 years, when 6% of the variability in fungal composition was still explained by the microbial origin. In contrast, bacterial composition was generally more resilient than fungal composition. Microbial functioning (measured as decomposition rate) was not immediately resilient to the global change manipulations; decomposition depended on both the contemporary environment and rainfall the year prior. Finally, using metagenomic sequencing, we showed that changes in precipitation, but not nitrogen availability, altered the potential for bacterial carbohydrate degradation, suggesting why the functional consequences of the two experiments may have differed. Predictions of how terrestrial ecosystem processes respond to environmental change may thus be improved by considering the legacies of microbial communities. PMID:27740610

  10. Humoral immune response against contractile proteins (actin and myosin) during cardiovascular disease.

    PubMed

    De Scheerder, I K; De Buyzere, M; Delanghe, J; Maas, A; Clement, D L; Wieme, R

    1991-08-01

    Sensitive and highly specific ELISA assays were developed to determine humoral immune response against actin and myosin in 122 patients suffering from various cardiovascular diseases: acute viral myocarditis (n = 10, MYO), acute myocardial infarction (n = 28, AMI), valve surgery (n = 35, VALVE), coronary bypass surgery (n = 35, CABG), and peripheral vascular surgery (n = 14, VASC). Anti-actin and anti-myosin antibodies were determined on admission and serially during a period of 90 days. Anti-actin and anti-myosin immune response (IgG, IgM) was expressed comparing absorbance of the patients' serum with a reference serum. In the different patient groups significantly (P less than 0.01) higher anti-actin and anti-myosin antibody concentrations were found on admission compared with age-matched control groups. During follow-up, all patient groups except the vascular surgery group showed a significant immune response against actin and myosin, with an immune response ratio (peak/admission) for AMA IgG and IgM respectively of 2.12 and 2.40 in the VALVE group, 1.30 and 1.99 in the CABG group, 1.42 and 1.48 in the AMI group and 1.66 and 1.25 in the MYO group; and for AAA IgG and IgM respectively of 1.57 and 3.00 in the VALVE group, 1.54 and 1.64 in the CABG group, 1.25 and 1.07 in the AMI group, and 1.42 and 1.42 in the MYO group. A significant correlation between pre-cardiac injury and peak post-cardiac injury anti-myosin and anti-actin autoantibody levels could be demonstrated suggesting that pre-injury sensitization to these antigens plays an important role in evoking post-cardiac injury immune response.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Cardiovascular regulation in humans in response to oscillatory lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Levenhagen, D. K.; Evans, J. M.; Wang, M.; Knapp, C. F.

    1994-01-01

    The frequency response characteristics of human cardiovascular regulation during hypotensive stress have not been determined. We therefore exposed 10 male volunteers to seven frequencies (0.004-0.1 Hz) of oscillatory lower body negative pressure (OLBNP; 0-50 mmHg). Fourier spectra of arterial pressure (AP), central venous pressure (CVP), stroke volume (SV), cardiac output (CO), heart rate (HR), and total peripheral resistance (TPR) were determined and first harmonic mean, amplitude, and phase angles with respect to OLBNP are presented. AP was relatively well regulated as demonstrated by small oscillations in half amplitude (3.5 mmHg) that were independent of OLBNP frequency and similar to unstressed control spectra. Due to the biomechanics of the system, the magnitudes of oscillations in calf circumference (CC) and CVP decreased with increasing frequency; therefore, we normalized responses by these indexes of the fluid volume shifted. The ratios of oscillations in AP to oscillations in CC increased by an order of magnitude, whereas oscillations in CVP to oscillations in CC and oscillations in AP to oscillations in CVP both tripled between 0.004 and 0.1 Hz. Therefore, even though the amount of fluid shifted by OLBNP decreased with increasing frequency, the magnitude of both CVP and AP oscillations per volume of fluid shifted increased (peaking at 0.08 Hz). The phase relationships between variables, particularly the increasing lags in SV and TPR, but not CVP, indicated that efferent responses with lags of 5-6 s could account for the observed responses. We conclude that, at frequencies below 0.02 Hz, the neural system of humans functioned optimally in regulating AP; OLBNP-induced decreases in SV (by as much as 50%) were counteracted by appropriate oscillations in HR and TPR responses. As OLBNP frequency increased, SV, TPR, and HR oscillations increasingly lagged the input and became less optimally timed for AP regulation.

  12. Alterations in immune responses in prenatally irradiated dogs

    SciTech Connect

    Nold, J.B.; Benjamin, S.A.; Miller, G.K.

    1988-09-01

    Immunologic responses were studied in beagle dogs following prenatal (35 days gestation) irradiation to evaluate the effects of ionizing radiation on the developing immune system. Each dog received 1.5 Gy /sup 60/Co gamma irradiation or sham irradiation. Prenatally irradiated dogs exhibited a significant reduction in primary humoral antibody responses to inoculated sheep red blood cells, a T-dependent antigen, and a concurrent decrease in T-helper lymphocyte subpopulations in the peripheral blood at 3 to 4 months of age. Similarly, irradiated fetuses have been shown to have defects in epitheliostromal development of the thymus. It is suggested that the postnatal immunologic deficits may relate to the prenatal thymic injury.

  13. Anthropogenic noise alters dwarf mongoose responses to heterospecific alarm calls.

    PubMed

    Morris-Drake, Amy; Bracken, Anna M; Kern, Julie M; Radford, Andrew N

    2017-04-01

    Anthropogenic noise is an evolutionarily novel and widespread pollutant in both terrestrial and aquatic habitats. Despite increasing evidence that the additional noise generated by human activities can affect vocal communication, the majority of research has focused on the use of conspecific acoustic information, especially sexual signals. Many animals are known to eavesdrop on the alarm calls produced by other species, enhancing their likelihood of avoiding predation, but how this use of heterospecific information is affected by anthropogenic noise has received little empirical attention. Here, we use two field-based playback experiments on a habituated wild population of dwarf mongooses (Helogale parvula) to determine how anthropogenic noise influences the response of foragers to heterospecific alarm calls. We begin by demonstrating that dwarf mongooses respond appropriately to the alarm calls of sympatric chacma baboons (Papio ursinus) and tree squirrels (Paraxerus cepapi); fleeing only to the latter. We then show that mongoose foragers are less likely to exhibit this flee response to tree squirrel alarm calls during road-noise playback compared to ambient-sound playback. One explanation for the change in response is that noise-induced distraction or stress result in maladaptive behaviour. However, further analysis revealed that road-noise playback results in increased vigilance and that mongooses showing the greatest vigilance increase are those that do not subsequently exhibit a flee response to the alarm call. These individuals may therefore be acting appropriately: if the greater gathering of personal information indicates the absence of an actual predator despite an alarm call, the need to undertake costly fleeing behaviour can be avoided. Either way, our study indicates the potential for anthropogenic noise to interfere with the use of acoustic information from other species, and suggests the importance of considering how heterospecific networks are

  14. Low-level Pb and Cardiovascular Responses to Acute Stress in Children: The Role of Cardiac Autonomic Regulation

    PubMed Central

    Gump, Brooks B.; MacKenzie, James A.; Bendinskas, Kestutis; Morgan, Robert; Dumas, Amy K.; Palmer, Christopher D.; Parsons, Patrick J.

    2010-01-01

    Objective A number of studies suggest that Pb exposure increases cardiovascular disease risk in humans. As a potential mechanism for this effect, we recently reported a significant association between early childhood Pb levels and cardiovascular response to acute stress. The current study considers the association between current Pb levels and the autonomic nervous system activation pattern underlying the cardiovascular response to stress in a new cohort of children. Methods We assessed blood Pb levels as well as cardiovascular responses to acute stress in 9–11 year old children (N = 140). Sympathetic activation (measured with pre-ejection period) and parasympathetic activation (measured with high frequency heart rate variability) were also assessed. Results In a sample with very low levels of blood Pb (M = 1.01 μg/dL), we found that increasing blood Pb was associated with coinhibition of sympathetic and parasympathetic activation in response to acute stress. In addition, increasing Pb levels were associated with the hemodynamic stress response pattern typical of coinhibition – significantly greater vascular resistance and reduced stroke volume and cardiac output. Conclusions Blood Pb levels were associated with significant autonomic and cardiovascular dysregulation in response to acute psychological stress in children. Moreover, these effects were significant at Pb levels considered to be very low and notably well below the 10 μg/dL the Centers for Disease Control and Prevention definition of an elevated blood Pb level. The potential for autonomic dysregulation at levels of Pb typical for many US children would suggest potentially broad public health ramifications. PMID:20934510

  15. Cardiovascular responses in humans to experimental chewing of gums of different consistencies.

    PubMed

    Farella, M; Bakke, M; Michelotti, A; Marotta, G; Martina, R

    1999-10-01

    Although the cardiovascular effects of exercise have been extensively investigated in man, little attention has been paid to such responses to jaw muscle activity. The aim here was to investigate the general cardiovascular effects of chewing activity in a single-blind, cross-over design. Ten healthy individuals performed one of the following chewing tasks in four separate sessions: chewing a very hard gum, chewing a moderately hard gum, chewing a soft gum, and "empty chewing" without a bolus. Unilateral chewing of gum or empty chewing was performed for 20 min on the participant's most convenient chewing side at a constant rate of 80 cycles/min. In each session, heart rate and arterial blood pressure were recorded together with electromyographic activity in the masseter and anterior temporalis muscles on the chewing side. Ratings of perceived masticatory fatigue were recorded with visual analogue scales. The heart rate and blood pressure were significantly increased (ANOVA; p < or= 0.01) during the chewing tasks and the increases were, in parallel with the muscle activity, more pronounced the harder the gum. With the very hard gum, heart rate increased by up to 11 beats/min, the systolic blood pressure was 14 mmHg (1.9kPa) higher, and the diastolic blood pressure was 11 mmHg (1.5kPa) higher. The perceived fatigue was proportional to the level of muscle activity. After 10 min of recovery from exercise, heart rate and arterial blood pressures were slightly but still significantly elevated. The results demonstrate that chewing is associated with general circulatory effects proportional to the bolus resistance.

  16. The Role of Adrenomedullin in Cardiovascular Response to Exercise – A Review

    PubMed Central

    2016-01-01

    Abstract Adrenomedullin (ADM), the product of the vascular endothelial and smooth muscle cells, and cardiomyocytes, is considered to be a local factor controlling vascular tone, cardiac contractility and renal sodium excretion. The aim of this article was to review the existing data on the effect of different types of exercise on plasma ADM concentration in healthy men. The results of studies on the effect of dynamic exercise on the plasma ADM are contradictory. Some authors reported an increase in plasma ADM, while others showed a slight decrease or did not observe any changes. The inverse relationship between plasma ADM and mean blood pressure observed during maximal exercise support the concept that ADM might blunt the exercise-induced systemic blood pressure increase. Positive relationships between increases in plasma ADM and those in noradrenaline, atrial natriuretic peptide (ANP) or interleukin-6 observed during prolonged exercise suggest that the sympathetic nervous system and cytokine induction may be involved in ADM release. Increased secretion of ADM and ANP during this type of exercise may be a compensatory mechanism attenuating elevation of blood pressure and preventing deterioration of cardiac function. Studies performed during static exercise have showed an increase in plasma ADM only in older healthy men. Positive correlations between increases in plasma ADM and those in noradrenaline and endothelin-1 may indicate the interaction of these hormones in shaping the cardiovascular response to static exercise. Inverse relationships between exercise-induced changes in plasma ADM and those in cardiovascular indices may be at least partly associated with inotropic action of ADM on the heart. Interactions of ADM with vasoactive peptides, catecholamines and hemodynamic factors demonstrate the potential involvement of this peptide in the regulation of blood pressure and myocardial contractility during exercise. PMID:28149418

  17. Phosphorus source alters host plant response to ectomycorrhizal diversity.

    PubMed

    Baxter, James W; Dighton, John

    2005-11-01

    We examined the influence of phosphorus source and availability on host plant (Pinus rigida) response to ectomycorrhizal diversity under contrasting P conditions. An ectomycorrhizal richness gradient was established with equimolar P supplied as either inorganic phosphate or organic inositol hexaphosphate. We measured growth and N and P uptake of individual P. rigida seedlings inoculated with one, two, or four species of ectomycorrhizal fungi simultaneously and without mycorrhizas in axenic culture. Whereas colonization of P. rigida by individual species of ectomycorrhizal fungi decreased with increasing fungal richness, colonization of all species combined increased. Plant biomass and N content increased across the ectomycorrhizal richness gradient in the organic but not the inorganic P treatment. Plants grown under organic P conditions had higher N concentration than those grown under inorganic P conditions, but there was no effect of richness. Phosphorus content of plants grown in the organic P treatment increased with increasing ectomycorrhizal richness, but there was no response in the inorganic P treatment. Phosphorus concentration was higher in plants grown at the four-species richness level in the organic P treatment, but there was no effect of diversity under inorganic P conditions. Overall, few ectomycorrhizal composition effects were found on plant growth or nutrient status. Phosphatase activities of individual ectomycorrhizal fungi differed under organic P conditions, but there was no difference in total root system phosphatase expression between the inorganic or organic P treatments or across richness levels. Our results provide evidence that plant response to ectomycorrhizal diversity is dependent on the source and availability of P.

  18. Mindfulness may both moderate and mediate the effect of physical fitness on cardiovascular responses to stress: a speculative hypothesis

    PubMed Central

    Demarzo, Marcelo M. P.; Montero-Marin, Jesús; Stein, Phyllis K.; Cebolla, Ausiàs; Provinciale, Jaime G.; García-Campayo, Javier

    2014-01-01

    The psychological construct of mindfulness refers to an awareness that emerges by intentionally paying attention to the present experience in a non-judgmental or evaluative way. This particular quality of awareness has been associated to several indicators of physical and psychological health, and can be developed using mindfulness-based interventions (MBIs), and therefore MBIs have been successfully applied as preventive and complementary interventions and therapies in medicine and psychology. Together with quiet sitting and lying meditation practices, mindful physical exercises such as “mindful walking” and “mindful movement” are key elements in MBIs and couple muscular activity with an internally directed focus, improving interoceptive attention to bodily sensations. In addition, MBIs seem to share similar mechanisms with physical fitness (PF) by which they may influence cardiovascular responses to stress. Based on these facts, it is feasible to raise the question of whether physical training itself may induce the development of that particular quality of awareness associated with mindfulness, or if one's dispositional mindfulness (DM) (the tendency to be more mindful in daily life) could moderate the effects of exercise on cardiovascular response to stress. The role of mindfulness as a mediator or moderator of the effect of exercise training on cardiovascular responses to stress has barely been studied. In this study, we have hypothesized pathways (moderation and mediation) by which mindfulness could significantly influence the effects of PF on cardiovascular responses to stress and discussed potential practical ways to test these hypotheses. PMID:24723891

  19. Susceptibility of the aging Brown Norway rat to carbaryl, an anti-cholinesterase-based insecticide: Thermoregulatory and cardiovascular responses.

    EPA Science Inventory

    The proportion of aged in the United States is projected to expand markedly for the next several decades. Hence, the U.S.EPA is assessing if the aged are more susceptible to environmental toxicants. The thermoregulatory and cardiovascular responses of young adult, mature adult, a...

  20. Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease

    SciTech Connect

    Poulsen, Sarah S.; Saber, Anne T.; Mortensen, Alicja; Szarek, Józef; Wu, Dongmei; Williams, Andrew; Andersen, Ole; Jacobsen, Nicklas R.; Yauk, Carole L.; Wallin, Håkan; Halappanavar, Sabina; Vogel, Ulla

    2015-03-15

    Adverse lung effects following pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) are well documented in rodents. However, systemic effects are less understood. Epidemiological studies have shown increased cardiovascular disease risk after pulmonary exposure to airborne particles, which has led to concerns that inhalation exposure to MWCNTs might pose similar risks. We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of small, entangled (CNT{sub Small}, 0.8 ± 0.1 μm long) or large, thick MWCNTs (CNT{sub Large}, 4 ± 0.4 μm long). Liver tissues and plasma were harvested 1, 3 and 28 days post-exposure. In addition, global hepatic gene expression, hepatic cholesterol content and liver histology were used to assess hepatic effects. The two MWCNTs induced similar systemic responses despite their different physicochemical properties. APR proteins SAA3 and haptoglobin, plasma total cholesterol and low-density/very low-density lipoprotein were significantly increased following exposure to either MWCNTs. Plasma SAA3 levels correlated strongly with pulmonary Saa3 levels. Analysis of global gene expression revealed perturbation of the same biological processes and pathways in liver, including the HMG-CoA reductase pathway. Both MWCNTs induced similar histological hepatic changes, with a tendency towards greater response following CNT{sub Large} exposure. Overall, we show that pulmonary exposure to two different MWCNTs induces similar systemic and hepatic responses, including changes in plasma APR, lipid composition, hepatic gene expression and liver morphology. The results link pulmonary exposure to MWCNTs with risk of cardiovascular disease. - Highlights: • Systemic and hepatic alterations were evaluated in female mice following MWCNT instillation. • Despite being physicochemically

  1. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease

    PubMed Central

    Ding, Jingzhong; Reynolds, Lindsay M.; Zeller, Tanja; Müller, Christian; Lohman, Kurt; Nicklas, Barbara J.; Kritchevsky, Stephen B.; Huang, Zhiqing; de la Fuente, Alberto; Soranzo, Nicola; Settlage, Robert E.; Chuang, Chia-Chi; Howard, Timothy; Xu, Ning; Goodarzi, Mark O.; Chen, Y.-D. Ida; Rotter, Jerome I.; Siscovick, David S.; Parks, John S.; Murphy, Susan; Jacobs, David R.; Post, Wendy; Tracy, Russell P.; Wild, Philipp S.; Blankenberg, Stefan; Hoeschele, Ina; Herrington, David; McCall, Charles E.

    2015-01-01

    Obesity is linked to type 2 diabetes (T2D) and cardiovascular diseases; however, the underlying molecular mechanisms remain unclear. We aimed to identify obesity-associated molecular features that may contribute to obesity-related diseases. Using circulating monocytes from 1,264 Multi-Ethnic Study of Atherosclerosis (MESA) participants, we quantified the transcriptome and epigenome. We discovered that alterations in a network of coexpressed cholesterol metabolism genes are a signature feature of obesity and inflammatory stress. This network included 11 BMI-associated genes related to sterol uptake (↑LDLR, ↓MYLIP), synthesis (↑SCD, FADS1, HMGCS1, FDFT1, SQLE, CYP51A1, SC4MOL), and efflux (↓ABCA1, ABCG1), producing a molecular profile expected to increase intracellular cholesterol. Importantly, these alterations were associated with T2D and coronary artery calcium (CAC), independent from cardiometabolic factors, including serum lipid profiles. This network mediated the associations between obesity and T2D/CAC. Several genes in the network harbored C-phosphorus-G dinucleotides (e.g., ABCG1/cg06500161), which overlapped Encyclopedia of DNA Elements (ENCODE)-annotated regulatory regions and had methylation profiles that mediated the associations between BMI/inflammation and expression of their cognate genes. Taken together with several lines of previous experimental evidence, these data suggest that alterations of the cholesterol metabolism gene network represent a molecular link between obesity/inflammation and T2D/CAC. PMID:26153245

  2. Peripheral tumors alter neuroinflammatory responses to lipopolysaccharide in female rats.

    PubMed

    Pyter, Leah M; El Mouatassim Bih, Sarah; Sattar, Husain; Prendergast, Brian J

    2014-03-13

    Cancer is associated with an increased prevalence of depression. Peripheral tumors induce inflammatory cytokine production in the brain and depressive-like behaviors. Mounting evidence indicates that cytokines are part of a pathway by which peripheral inflammation causes depression. Neuroinflammatory responses to immune challenges can be exacerbated (primed) by prior immunological activation associated with aging, early-life infection, and drug exposure. This experiment tested the hypothesis that peripheral tumors likewise induce neuroinflammatory sensitization or priming. Female rats with chemically-induced mammary carcinomas were injected with either saline or lipopolysaccharide (LPS, 250μg/kg; i.p.), and expression of mRNAs involved in the pathway linking inflammation and depression (interleukin-1beta [Il-1β], CD11b, IκBα, indolamine 2,3-deoxygenase [Ido]) was quantified by qPCR in the hippocampus, hypothalamus, and frontal cortex, 4 or 24h post-treatment. In the absence of LPS, hippocampal Il-1β and CD11b mRNA expression were elevated in tumor-bearing rats, whereas Ido expression was reduced. Moreover, in saline-treated rats basal hypothalamic Il-1β and CD11b expression were positively correlated with tumor weight; heavier tumors, in turn, were characterized by more inflammatory, necrotic, and granulation tissue. Tumors exacerbated CNS proinflammatory gene expression in response to LPS: CD11b was greater in hippocampus and frontal cortex of tumor-bearing relative to tumor-free rats, IκBα was greater in hippocampus, and Ido was greater in hypothalamus. Greater neuroinflammatory responses in tumor-bearing rats were accompanied by attenuated body weight gain post-LPS. The data indicate that neuroinflammatory pathways are potentiated, or primed, in tumor-bearing rats, which may exacerbate future negative behavioral consequences.

  3. Neonatal Amygdala Lesions Alter Responsiveness to Objects in Juvenile Macaques

    PubMed Central

    Bliss-Moreau, Eliza; Toscano, Jessica E.; Bauman, Melissa; Mason, William A.; Amaral, David G.

    2013-01-01

    The amygdala is widely recognized to play a central role in emotional processing. In nonhuman primates, the amygdala appears to be critical for generating appropriate behavioral responses in emotionally salient contexts. One common finding is that macaque monkeys that receive amygdala lesions as adults are behaviorally uninhibited in the presence of potentially dangerous objects. While control animals avoid these objects, amygdala-lesioned animals readily interact with them. Despite a large literature documenting the role of the amygdala in emotional processing in adult rhesus macaques, little research has assessed the role of the amygdala across the macaque neurodevelopmental trajectory. We assessed the behavioral responses of three-year-old (juvenile) rhesus macaques that received bilateral ibotenic acid lesions of the amygdala or hippocampus at two weeks of age. Animals were presented with salient objects known to produce robust fear-related responses in macaques (e.g., snakes and reptile-like objects), mammal-like objects that included animal-like features (e.g., eyes and mouths) but not reptile-like features (e.g., scales), and non-animal objects. The visual complexity of objects was scaled to vary the objects' salience. In contrast to control and hippocampus-lesioned animals, amygdale-lesioned animals were uninhibited in the presence of potentially dangerous objects. They readily retrieved food rewards placed near these objects and physically explored the objects. Furthermore, while control and hippocampus-lesioned animals differentiated between levels of object complexity, amygdala-lesioned animals did not. Taken together, these findings suggest that early damage to the amygdala, like damage during adulthood, permanently compromises emotional processing. PMID:21215794

  4. Cardiovascular responses to cold-water immersions of the forearm and face, and their relationship to apnoea.

    PubMed

    Andersson, J; Schagatay, E; Gislén, A; Holm, B

    2000-12-01

    Apnoea as well as cold stimulation of the face or the extremities elicits marked cardiovascular reflexes in humans. The purpose of this study was to investigate whether forearm immersion in cold water has any effect on the cardiovascular responses to face immersion and apnoea. We recorded cardiovascular responses to coldwater immersions of the forearm and face in 19 (part I) and 23 subjects (part II). The experimental protocol was divided in two parts, each part containing four tests: I1, forearm immersion during eupnoea; I2, face immersion during eupnoea; I3, forearm and face immersion during eupnoea; I4, face immersion during apnoea; II1, apnoea without immersion; II2, forearm immersion during apnoea; II3, face immersion during apnoea; and II4, forearm and face immersion during apnoea. The water temperature was 9-11 degrees C. Cold-water immersion of either the forearm or face was enough to elicit the most pronounced thermoregulatory vasoconstriction during both eupnoea and apnoea. During eupnoea, heart rate responses to forearm immersion (3% increase) and face immersion (9% decrease) were additive during concurrent stimulation (3% decrease). During apnoea, the heart rate responses were not affected by the forearm immersion. The oxygen-conserving diving response seems to dominate over thermoregulatory responses in the threat of asphyxia. During breathing, however, the diving response serves no purpose and does not set thermoregulatory adjustments aside.

  5. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2002-01-01

    Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.

  6. Cardiovascular responses to repetitive exposure to hyper- and hypogravity states produced by parabolic flight

    NASA Technical Reports Server (NTRS)

    Mukai, C. N.; Lathers, C. M.; Charles, J. B.; Bennett, B. S.

    1994-01-01

    Physiologic changes to repetitive hyper- and hypogravity stresses occurring during eight to ten parabolas on NASA's KC-135 aircraft were studied. Hemodynamic responses in 11 subjects in 4 different postures (supine, standing, sitting, and semisupine Space Shuttle launch position) were determined using noninvasive impedance cardiography. Five seconds of heart rate, cardiac index, thoracic fluid index, stroke index, ejection velocity index, and ventricular ejection time data were averaged during four different gravity (g) states: 1.3g (before parabola onset); 1.9g (parabola entry); 0g (parabola peak); and 1.7g (parabola exit) for each subject. The standing position was associated with the largest changes in the cardiovascular response to hypo- and hypergravity. The thoracic fluid index did not indicate a headward redistribution during transition from a simulated launch position to weightlessness. Analysis of the eight to ten parabolas revealed that, in general, values obtained at 1.8g differed from 1.6g, 0g differed from 1.6 and 1.3g, and 1.6g differed from 1.3g. The factors of gravity, thoracic fluid index, and cardiac index exhibited significant differences that were most likely to occur between parabola 1 versus parabolas 6, 7, and 8, and parabola 2 versus parabolas 4 through 8. Only the parameter of thoracic fluid index exhibited significance for parabolas 3 versus parabolas 6 and 7.

  7. Cerebro- and Cardio-vascular Responses to Energy Drink in Young Adults: Is there a Gender Effect?

    PubMed Central

    Monnard, Cathríona R.; Montani, Jean-Pierre; Grasser, Erik K.

    2016-01-01

    Background and Purpose: Energy drinks (EDs) are suspected to induce potential adverse cardiovascular effects and have recently been shown to reduce cerebral blood flow velocity (CBFV) in young, healthy subjects. Gender differences in CBFV in response to EDs have not previously been investigated, despite the fact that women are more prone to cardiovascular disturbances such as neurocardiogenic syncope than men. Therefore, the aim of this study was to explore gender differences in cerebrovascular and cardiovascular responses to EDs. Methods: We included 45 subjects in a retrospective analysis of pooled data from two previous randomized trials carried out in our laboratory with similar protocols. Beat-to-beat blood pressure, impedance cardiography, transcranial Doppler, and end-tidal carbon dioxide (etCO2) measurements were made for at least 20 min baseline and for 80 min following the ingestion of 355 mL of a sugar-sweetened ED. Gender and time differences in cerebrovascular and cardiovascular parameters were investigated. Results: CBFV was significantly reduced in response to ED, with the greatest reduction observed in women compared with men (−12.3 ± 0.8 vs. −9.7 ± 0.8%, P < 0.05). Analysis of variance indicated significant time (P < 0.01) and gender × time (P < 0.01) effects. The percentage change in CBFV in response to ED was independent of body weight and etCO2. No significant gender difference in major cardiovascular parameters in response to ED was observed. Conclusions: ED ingestion reduced CBFV over time, with a greater reduction observed in women compared with men. Our results have potential implications for women ED consumers, as well as high-risk individuals. PMID:27559316

  8. Tamoxifen Alters the Plasma Concentration of Molecules Associated with Cardiovascular Risk in Women with Breast Cancer Undergoing Chemotherapy

    PubMed Central

    Romero, Walckiria G.; Da Silva, Fabrício B.; Borgo, Mariana V.; Bissoli, Nazaré S.; Gouvêa, Sonia A.

    2012-01-01

    Objectives. The objective of this study was to evaluate the effect of tamoxifen on blood markers that are associated with cardiovascular risk, such as C-reactive protein (CRP), apolipoprotein A-1 (Apo-A), and apolipoprotein B-100 (Apo-B), in women undergoing chemotherapy for breast cancer. Methods. Over a period of 12 months, we followed 60 women with breast cancer. The women were divided into the following groups: a group that received only chemotherapy (n = 23), a group that received chemotherapy plus tamoxifen (n = 21), and a group that received only tamoxifen (n = 16). Plasma CRP levels were assessed at 0, 3, 6, and 12 months, and Apo-A and Apo B levels as well as the Apo-B/Apo-A ratio were assessed at 0 and 12 months. Results. We found increases in the plasma concentration of CRP in the chemotherapy alone and chemotherapy plus tamoxifen groups after 3 and 6 months of treatment (before the introduction of tamoxifen). However, after 12 months of treatment, women who used tamoxifen (the chemotherapy plus tamoxifen and tamoxifen alone groups) showed a significant reduction in CRP and Apo-B levels and a decrease in the Apo-B/Apo-A ratio. A significant increase in serum Apo-A levels was observed in the group receiving chemotherapy alone as a treatment for breast cancer. Conclusion. The use of tamoxifen after chemotherapy for the treatment of breast cancer significantly reduces the levels of cardiovascular disease risk markers (CRP, Apo-B, and the Apo-B/Apo-A ratio). PMID:22491005

  9. Key ecological responses to nitrogen are altered by climate ...

    EPA Pesticide Factsheets

    Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity. Ecosystems are simultaneously exposed to multiple stressors; two dominant drivers threatening ecosystems are anthropogenic nitrogen loading and climate change. Evaluating the cumulative effects of these stressors provides a holistic view of ecosystem vulnerability, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our current knowledge of the cumulative effects of these stressors is growing, but limited. The goal of this paper is to synthesize the state of scientific knowledge on how ecosystems are affected by the interactions of meteorlogic/climatic factors (e.g., temperature and precipitation) and nitrogen addition. Understanding the interactions of meteorlogic/climatic factors and nitrogen will help to inform how current and projected variability may affect ecosystem response.

  10. Species interactions alter evolutionary responses to a novel environment.

    PubMed

    Lawrence, Diane; Fiegna, Francesca; Behrends, Volker; Bundy, Jacob G; Phillimore, Albert B; Bell, Thomas; Barraclough, Timothy G

    2012-01-01

    Studies of evolutionary responses to novel environments typically consider single species or perhaps pairs of interacting species. However, all organisms co-occur with many other species, resulting in evolutionary dynamics that might not match those predicted using single species approaches. Recent theories predict that species interactions in diverse systems can influence how component species evolve in response to environmental change. In turn, evolution might have consequences for ecosystem functioning. We used experimental communities of five bacterial species to show that species interactions have a major impact on adaptation to a novel environment in the laboratory. Species in communities diverged in their use of resources compared with the same species in monocultures and evolved to use waste products generated by other species. This generally led to a trade-off between adaptation to the abiotic and biotic components of the environment, such that species evolving in communities had lower growth rates when assayed in the absence of other species. Based on growth assays and on nuclear magnetic resonance (NMR) spectroscopy of resource use, all species evolved more in communities than they did in monocultures. The evolutionary changes had significant repercussions for the functioning of these experimental ecosystems: communities reassembled from isolates that had evolved in polyculture were more productive than those reassembled from isolates that had evolved in monoculture. Our results show that the way in which species adapt to new environments depends critically on the biotic environment of co-occurring species. Moreover, predicting how functioning of complex ecosystems will respond to an environmental change requires knowing how species interactions will evolve.

  11. Cardiovascular adaptation to spaceflight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Watenpaugh, D. E.

    1996-01-01

    This article reviews recent flight and ground-based studies of cardiovascular adaptation to spaceflight. Prominent features of microgravity exposure include loss of gravitational pressures, relatively low venous pressures, headward fluid shifts, plasma volume loss, and postflight orthostatic intolerance and reduced exercise capacity. Many of these short-term responses to microgravity extend themselves during long-duration microgravity exposure and may be explained by altered pressures (blood and tissue) and fluid balance in local tissues nourished by the cardiovascular system. In this regard, it is particularly noteworthy that tissues of the lower body (e.g., foot) are well adapted to local hypertension on Earth, whereas tissues of the upper body (e.g., head) are not as well adapted to increase in local blood pressure. For these and other reasons, countermeasures for long-duration flight should include reestablishment of higher, Earth-like blood pressures in the lower body.

  12. Thermoregulatory, cardiovascular, and perceptual responses to intermittent cooling during exercise in a hot, humid outdoor environment.

    PubMed

    Cleary, Michelle A; Toy, Michelle G; Lopez, Rebecca M

    2014-03-01

    Decreasing core body temperature during exercise may improve exercise tolerance, facilitate acclimatization, and prevent heat illness during summer training. We sought to evaluate the effectiveness of intermittent superficial cooling on thermoregulatory, cardiovascular, and perceptual responses during exercise in a hot humid environment. We used a randomized, counterbalanced, repeated measures investigation with 2 conditions (control and cooling) during exercise and recovery outdoors on artificial turf in a hot, humid tropical climate in the sun (wet bulb globe temperature outdoors [WBGTo], 27.0 ± 0.8° C; range, 25.8-28.1° C) and in the shade (WBGTo, 25.4 ± 0.9° C; range, 24.3-26.8° C). Participants were 10 healthy males (age, 22.6 ± 1.6 years; height, 176.0 ± 6.9 cm; mass, 76.5 ± 7.8 kg; body fat, 15.6 ± 5.4%) who wore shorts and T-shirt (control) or "phase change cooling" vest (cooling) during 5-minute rest breaks during 60 minutes of intense American football training and conditioning exercises in the heat and 30 minutes of recovery in the shade. Throughout, we measured core (Tgi) and skin (Tchest) temperature, heart rate (HR), thermal and thirst sensations, and rating of perceived exertion. We found significant (p ≤ 0.001) hypohydration (-2.1%); for Tgi, we found no significant differences between conditions (p = 0.674) during exercise and progressive decreases during recovery (p < 0.001). For [INCREMENT]Tg,i we found no significant (p = 0.090) differences. For Tchest, we found significantly (p < 0.001) decreased skin temperature in the cooling condition (Tchest, 31.85 ± 0.43° C) compared with the control condition (Tchest, 34.38 ± 0.43° C) during exercise and significantly (p < 0.001) lower skin temperature in the cooling condition (Tchest, 31.24 ± 0.47° C) compared with the control condition (Tchest, 33.48 ± 0.47° C) during recovery. For HR, we found no significant difference (p = 0.586) between the conditions during exercise; however, we

  13. Do metaboreceptors alter heat loss responses following dynamic exercise?

    PubMed

    McGinn, Ryan; Swift, Brendan; Binder, Konrad; Gagnon, Daniel; Kenny, Glen P

    2014-01-01

    Metaboreceptor activation during passive heating is known to influence cutaneous vascular conductance (CVC) and sweat rate (SR). However, whether metaboreceptors modulate the suppression of heat loss following dynamic exercise remains unclear. On separate days, before and after 15 min of high-intensity treadmill running in the heat (35°C), eight males underwent either 1) no isometric handgrip exercise (IHG) or ischemia (CON), 2) 1 min IHG (60% of maximum, IHG), 3) 1 min IHG followed by 2 min of ischemia (IHG+OCC), 4) 2 min of ischemia (OCC), or 5) 1 min IHG followed by 2 min of ischemia with application of lower body negative pressure (IHG+LBNP). SR (ventilated capsule), cutaneous blood flow (Laser-Doppler), and mean arterial pressure (Finometer) were measured continuously before and after dynamic exercise. Following dynamic exercise, CVC was reduced with IHG exercise (P < 0.05) and remained attenuated with post-IHG ischemia during IHG+OCC relative to CON (39 ± 2 vs. 47 ± 6%, P < 0.05). Furthermore, the reduction in CVC was exacerbated by application of LBNP during post-IHG ischemia (35 ± 3%, P < 0.05) relative to IHG+OCC. SR increased during IHG exercise (P < 0.05) and remained elevated during post-IHG ischemia relative to CON following dynamic exercise (0.94 ± 0.15 vs. 0.53 ± 0.09 mg·min(-1)·cm(-2), P < 0.05). In contrast, application of LBNP during post-IHG ischemia had no effect on SR (0.93 ± 0.09 mg·min(-1)·cm(-2), P > 0.05) relative to post-IHG ischemia during IHG+OCC. We show that CVC is reduced and that SR is increased by metaboreceptor activation following dynamic exercise. In addition, we show that the metaboreflex-induced loading of the baroreceptors can influence the CVC response, but not the sweating response.

  14. Evidence for sex differences in cardiovascular aging and adaptive responses to physical activity.

    PubMed

    Parker, Beth A; Kalasky, Martha J; Proctor, David N

    2010-09-01

    There are considerable data addressing sex-related differences in cardiovascular system aging and disease risk/progression. Sex differences in cardiovascular aging are evident during resting conditions, exercise, and other acute physiological challenges (e.g., orthostasis). In conjunction with these sex-related differences-or perhaps even as an underlying cause-the impact of cardiorespiratory fitness and/or physical activity on the aging cardiovascular system also appears to be sex-specific. Potential mechanisms contributing to sex-related differences in cardiovascular aging and adaptability include changes in sex hormones with age as well as sex differences in baseline fitness and the dose of activity needed to elicit cardiovascular adaptations. The purpose of the present paper is thus to review the primary research regarding sex-specific plasticity of the cardiovascular system to fitness and physical activity in older adults. Specifically, the paper will (1) briefly review known sex differences in cardiovascular aging, (2) detail emerging evidence regarding observed cardiovascular outcomes in investigations of exercise and physical activity in older men versus women, (3) explore mechanisms underlying the differing adaptations to exercise and habitual activity in men versus women, and (4) discuss implications of these findings with respect to chronic disease risk and exercise prescription.

  15. Renal and cardiovascular responses to water immersion in trained runners and swimmers

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Tatro, D. L.; Rogan, R. B.

    1993-01-01

    The purpose of this study was to determine if fluid-electrolyte, renal, hormonal, and cardiovascular responses during and after multi-hour water immersion were associated with aerobic training. Additionally, we compared these responses in those who trained in a hypogravic versus a 1-g environment. Seventeen men comprised three similarly aged groups: six long-distance runners, five competitive swimmers, and six untrained control subjects. Each subject underwent 5 h of immersion in water [mean (SE)] 36.0 (0.5) degrees C to the neck. Immediately before and at each hour of immersion, blood and urine samples were collected and analyzed for sodium (Na), potassium, osmolality, and creatinine (Cr). Plasma antidiuretic hormone and aldosterone were also measured. Hematocrits were used to calculate relative changes in plasma volume (% delta Vpl). Heart rate response to submaximal cycle ergometer exercise (35% peak oxygen uptake) was measured before and after water immersion. Water immersion induced significant increases in urine flow, Na clearance (CNa), and a 3-5% decrease in Vpl. Urine flow during immersion was greater (P < 0.05) in runners [2.4 (0.4) ml.min-1] compared to controls [1.3 (0.1) ml.min-1]. However, % delta Vpl, CCr, CNa and CH2O during immersion were not different (P > 0.05) between runners, swimmers, and controls. After 5 h of immersion, there was an increase (P < 0.05) in submaximal exercise heart rate of 9 (3) and 10 (3) beats.min-1 in both runners and controls, respectively, but no change (P > 0.05) was observed in swimmers.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Response rate in the Study of Cardiovascular Risks in Adolescents – ERICA

    PubMed Central

    da Silva, Thiago Luiz Nogueira; Klein, Carlos Henrique; Souza, Amanda de Moura; Barufaldi, Laura Augusta; Abreu, Gabriela de Azevedo; Kuschnir, Maria Cristina Caetano; de Vasconcellos, Mauricio Teixeira Leite; Bloch, Katia Vergetti

    2016-01-01

    ABSTRACT OBJECTIVE To describe the response rate and characteristics of people who either took part or not in from the Study of Cardiovascular Risks in Adolescents (ERICA) , according to information subsets. METHODS ERICA is a school-based, nation-wide investigation with a representative sample of 12 to 17-year-old adolescents attending public or private schools in municipalities with over 100,000 inhabitants in Brazil. Response rate of eligible subjects were calculated according to macro-regions, sex, age, and type of school (public or private). We also calculated the percentages of replacement schools in comparison with the ones originally selected as per the sample design, according to the types of schools in the macro-regions. The subjects and non-subjects were compared according to sex, age, and average body mass indices (kg/m2). RESULTS We had 102,327 eligible adolescents enrolled in the groups drawn. The highest percentage of complete information was obtained for the subset of the questionnaire (72.9%). Complete information regarding anthropometric measurements and the ones from the questionnaire were obtained for 72.0% of the adolescents, and the combination of these data with the 24-hour dietary recall were obtained for 70.3% of the adolescents. Complete information from the questionnaire plus biochemical blood evaluation data were obtained for 52.5% of the morning session adolescents (selected for blood tests). The response percentage in private schools was higher than the one in public schools for most of the combination of information. The ratio of older and male adolescents non-participants was higher than the ratio among participants. CONCLUSIONS The response rate for non-invasive procedures was high. The response rate for blood collection – an invasive procedure that requires a 12-hour fasting period and the informed consent form from legal guardians – was lower. The response rate observed in public schools was lower than in the private ones, and

  17. Attenuation of Cardiovascular Response to Direct Laryngoscopy and Intubation, Comparative Study of Lignocaine, Nifedipine, and Placebo During General Anesthesia

    PubMed Central

    Manne, Venkata Sesha Sai Krishna; Paluvadi, Venkata Raghavendra

    2017-01-01

    Background/Objective: The purpose of the study was to compare the attenuation of cardiovascular response to direct laryngoscopy and intubation using lignocaine, nifedipine, and placebo during general anesthesia. Materials and Methods: This prospective study was done in sixty patients undergoing noncardiac surgeries of American Society of Anesthesiologists health status Class I and II between the age groups of 18–60 years. They were randomly divided into three groups of 20 each (lignocaine group, nifedipine group, and placebo group) and cardiovascular response (heart rate [HR] and blood pressure [BP]) to direct laryngoscopy and intubation were compared. Results: The rise in HR and BP was most significant in the placebo group and insignificant in lignocaine and nifedipine groups. Conclusion: Nifedipine is effective than lignocaine in attenuating hypertensive response, and lignocaine is effective in attenuating rate pressure product than nifedipine. PMID:28298755

  18. β-adrenergic impact underlies the effect of mood and hedonic instrumentality on effort-related cardiovascular response.

    PubMed

    Silvestrini, Nicolas; Gendolla, Guido H E

    2011-05-01

    After habituation, participants were first induced into negative vs. positive moods and performed then an attention task with either low vs. high hedonic instrumentality of success. In the high-instrumentality condition participants expected to see a funny movie after success and an unpleasant movie after failure; in the low-instrumentality condition participants expected an unpleasant movie after success and a pleasant movie after failure. Effort-related cardiovascular response (ICG, blood pressure) was assessed during mood inductions and task performance. As predicted by the mood-behavior-model (Gendolla, 2000), responses of cardiac pre-ejection period (PEP) and systolic blood pressure were stronger in the high-instrumentality/negative-mood condition than in the other three cells. Here the high hedonic instrumentality of success justified the high effort that was perceived as necessary in a negative mood. Moreover, the PEP effects indicate that cardiovascular response was driven by beta-adrenergic impact on the heart rather than by vascular adjustments.

  19. Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Sams, Clarence F.

    2013-01-01

    The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. It is known that human immune function is altered in- and post-flight, but it is unclear at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has been documented in crewmembers, although this reactivation has not been directly correlated with immune changes or with observed diseases. As described in this report, further research is required to better characterize the relationships between altered immune response and susceptibility to disease during and after spaceflight. This is particularly important for future deep-space exploration missions.

  20. Cardiovascular responses of men and women to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Kirk, P. J.; Payne, P. A.; Gerber, R. L.; Newton, S. D.; Williams, B. A.

    1977-01-01

    Changes in blood flow and blood redistribution were measured by impedance plethysmography in the pelvic and leg regions of six male and four female subjects during three 5-min exposures to -20, -40, and -60 mm Hg lower body negative pressure (LBNP). Female subjects demonstrated significantly higher mean heart rate and lower leg blood flow indices than the male subjects during the recumbent control periods. Men had slightly higher mean resting systolic and diastolic blood pressures and higher mean control pelvic blood indices. Women demonstrated significantly less blood pooling in the legs and slightly less in the pelvic region than the men. All of the 18 tests with male subjects at -60 mm Hg were completed without initial signs of syncope, while only two of the tests with women were completed successfully without the subject exhibiting presyncopal conditions. Results indicate that impedance plethysmography can be used to measure segmental cardiovascular responses during LBNP and that females may be less tolerant to -60 mm Hg LBNP than males.

  1. Antigravity suit inflation: kidney function and cardiovascular and hormonal responses in men.

    PubMed

    Geelen, G; Kravik, S E; Hadj-Aissa, A; Leftheriotis, G; Vincent, M; Bizollon, C A; Sem-Jacobsen, C W; Greenleaf, J E; Gharib, C

    1989-02-01

    To investigate the effects of lower body positive pressure (LBPP) on kidney function while controlling certain cardiovascular and endocrine responses, seven men [35 +/- 2 (SE) yr] underwent 30 min of sitting and then 4.5 h of 70 degrees head-up tilt. An antigravity suit was applied (60 Torr legs, 30 Torr abdomen) during the last 3 h of tilt. A similar noninflation experiment was conducted where the suited subjects were tilted for 3.5 h. To provide adequate urine flow, the subjects were hydrated during the course of both experiments. Immediately after inflation, mean arterial pressure increased by 8 +/- 3 Torr and pulse rate decreased by 16 +/- 3 beats/min. Plasma renin activity and aldosterone were maximally suppressed (P less than 0.05) after 2.5 h of inflation. Plasma vasopressin decreased by 40-50% (P less than 0.05) and plasma sodium and potassium remained unchanged during both experiments. Glomerular filtration rate was not increased significantly by inflation, whereas inflation induced marked increases (P less than 0.05) in effective renal plasma flow (ERPF), urine flow, osmolar and free water clearances, and total and fractional sodium excretion. No such changes occurred during control. Thus, LBPP induces 1) a significant increase in ERPF and 2) significant changes in kidney excretory patterns similar to those observed during water immersion or the early phase of bed rest, situations that also result in central vascular volume expansion.

  2. Parity and Cardiovascular Disease Mortality: a Dose-Response Meta-Analysis of Cohort Studies.

    PubMed

    Lv, Haichen; Wu, Hongyi; Yin, Jiasheng; Qian, Juying; Ge, Junbo

    2015-08-24

    Parity has been shown to inversely associate with cardiovascular disease (CVD) mortality, but the evidence of epidemiological studies is still controversial. Therefore, we quantitatively assessed the relationship between parity and CVD mortality by summarizing the evidence from prospective studies. We searched MEDLINE (PubMed), EMBASE and ISI Web of Science databases for relevant prospective studies of parity and CVD mortality through the end of March 2015. Fixed- or random-effects models were used to estimate summary relative risks (RRs) and 95% confidence intervals (CIs). Heterogeneity among studies was assessed using the I(2) statistics. All statistical tests were two-sided. Ten prospective studies were included with a total of 994,810 participants and 16,601 CVD events. A borderline significant inverse association was observed while comparing parity with nulliparous, with summarized RR = 0.79 (95% CI: 0.60-1.06; I(2) = 90.9%, P < 0.001). In dose-response analysis, we observed a significant nonlinear association between parity number and CVD mortality. The greatest risk reduction appeared when the parity number reached four. The findings of this meta-analysis suggests that ever parity is inversely related to CVD mortality. Furthermore, there is a statistically significant nonlinear inverse association between parity number and CVD mortality.

  3. Cardiovascular System Response to Carbon Dioxide and Exercise in Oxygen-Enriched Environment at 3800 m

    PubMed Central

    Liu, Guohui; Liu, Xiaopeng; Qin, Zhifeng; Gu, Zhao; Wang, Guiyou; Shi, Weiru; Wen, Dongqing; Yu, Lihua; Luo, Yongchang; Xiao, Huajun

    2015-01-01

    Background: This study explores the responses of the cardiovascular system as humans exercise in an oxygen-enriched room at high altitude under various concentrations of CO2. Methods: The study utilized a hypobaric chamber set to the following specifications: 3800 m altitude with 25% O2 and different CO2 concentrations of 0.5% (C1), 3.0% (C2) and 5.0% (C3). Subjects exercised for 3 min three times, separated by 30 min resting periods in the above-mentioned conditions, at sea level (SL) and at 3800 m altitude (HA). The changes of heart rate variability, heart rate and blood pressure were analyzed. Results: Total power (TP) and high frequency power (HF) decreased notably during post-exercise at HA. HF increased prominently earlier the post-exercise period at 3800 m altitude with 25% O2 and 5.0% CO2 (C3), while low frequency power (LF) changed barely in all tests. The ratios of LF/HF were significantly higher during post-exercise in HA, and lower after high intensity exercise in C3. Heart rate and systolic blood pressure increased significantly in HA and C3. Conclusions: Parasympathetic activity dominated in cardiac autonomic modulation, and heart rate and blood pressure increased significantly after high intensity exercise in C3. PMID:26393634

  4. Involvement of catecholaminergic medullary pathways in cardiovascular responses to acute changes in circulating volume.

    PubMed

    Cravo, S L; Lopes, O U; Pedrino, G R

    2011-09-01

    Water deprivation and hypernatremia are major challenges for water and sodium homeostasis. Cellular integrity requires maintenance of water and sodium concentration within narrow limits. This regulation is obtained through engagement of multiple mechanisms and neural pathways that regulate the volume and composition of the extracellular fluid. The purpose of this short review is to summarize the literature on central neural mechanisms underlying cardiovascular, hormonal and autonomic responses to circulating volume changes, and some of the findings obtained in the last 12 years by our laboratory. We review data on neural pathways that start with afferents in the carotid body that project to medullary relays in the nucleus tractus solitarii and caudal ventrolateral medulla, which in turn project to the median preoptic nucleus in the forebrain. We also review data suggesting that noradrenergic A1 cells in the caudal ventrolateral medulla represent an essential link in neural pathways controlling extracellular fluid volume and renal sodium excretion. Finally, recent data from our laboratory suggest that these structures may also be involved in the beneficial effects of intravenous infusion of hypertonic saline on recovery from hemorrhagic shock.

  5. Cardiovascular responses evoked by mild cool stimuli in primary Raynaud's disease: the role of endothelin.

    PubMed

    Edwards, C M; Marshall, J M; Pugh, M

    1999-06-01

    subjects also showed a decrease in DCVC in both hands, and in eight out of nine subjects there was an increase in FVC in response to the first cool stimulus in Session 1. However, on repetition of the stimulus in Session 1, the increase in FVC habituated, while there was no prolongation of the decrease in DCVC; in addition, the ET-1 concentration did not change in Session 2 in response to the stimulus (2.07+/-0.28 compared with 2.29+/-0.30 fM). Further, the increase in FVC habituated over the three sessions, such that there was a mean decrease in FVC in Session 3. These results indicate that, in subjects with primary Raynaud's disease, there is impairment of the ability of the central nervous system to allow habituation of the cardiovascular components of the alerting response evoked by mild cooling, as with the response to sound. We propose that persistence of the cutaneous vasoconstriction of the alerting response, coupled with increased release of ET-1 secondary to vasoconstriction, prolongs such vasoconstriction and eventually leads to vasospasm.

  6. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  7. Cardiovascular and Perceptual Responses to an Ultraendurance Channel Swim: A Case Study.

    PubMed

    Judelson, Daniel A; Bagley, James R; Schumacher, Jennifer M; Wiersma, Lenny D

    2015-09-01

    Ultraendurance open water swimming presents unique physiological challenges. This case study aimed to describe cardiovascular and perceptual responses during a successful solo channel swim. Investigators followed a female swimmer's Catalina Channel (32.2 km) crossing, monitoring water temperature (T(water)) and air temperature (T(air)), distance remaining (DR), average velocity, and heart rate (HR(swim)) at regular intervals. Every 24 minutes, the swimmer reported perceived pain (on a scale of 0-10), rating of perceived exertion (RPE [scale of 6-20]), perceived thermal sensation (scale 0-8), and thirst (scale 1-9). Data are presented as mean ± SD where applicable. The participant finished in 9 hours, 2 minutes, and 48 seconds; T(water) averaged 19.1 ± 0.4ºC, and T(air) averaged 18.6 ± 0.9ºC. Her HR(swim) ranged from 148 to 155 beats/min, and thermal sensation ranged from 3 to 4. Pain inconsistently varied from 0 to 5 during the swim. The RPE remained between 12 and 14 for the first 8 hours, but increased dramatically near the end (reaching 18). Thirst sensation steadily increased throughout the swim, again reaching maximal values on completion. Physiologically and statistically significant correlations existed between thirst and DR (r = -0.905), RPE and HR(swim) (r = 0.741), RPE and DR (r = -0.694), and pain and DR (r = -0.671). The primary findings were that, despite fluctuations in perceptual stressors, the swimmer maintained a consistent exercise intensity as indicated by HR(swim); and during ultraendurance swimming, pain, RPE, and thirst positively correlated with distance swum. We hope these findings aid in the preparation and performance of future athletes by providing information on what swimmers may expect during an ultraendurance attempt and by increasing the understanding of physiological and perceptual responses during open water swimming.

  8. Pulmonary transcriptional response to ozone in healthy and cardiovascular compromised rat models.

    PubMed

    Ward, William O; Kodavanti, Urmila P

    2015-01-01

    The genetic cardiovascular disease (CVD) and associated metabolic impairments can influence the lung injury from inhaled pollutants. We hypothesized that comparative assessment of global pulmonary expression profile of healthy and CVD-prone rat models will provide mechanistic insights into susceptibility differences to ozone. The lung expression profiles of healthy Wistar Kyoto (WKY) and CVD-compromised spontaneously hypertensive (SH), stroke-prone SH (SHSP), obese SH heart failure (SHHF) and obese, atherosclerosis-prone JCR rats were analyzed using Affymetrix platform immediately after 4-h air or 1 ppm ozone exposure. At baseline, the JCR exhibited the largest difference in the number of genes among all strains when compared with WKY. Interestingly, the number of genes affected by ozone was inversely correlated with genes different at baseline relative to WKY. A cluster of NFkB target genes involved in cell-adhesion, antioxidant response, inflammation and apoptosis was induced in all strains, albeit at different levels (JCR < WKY < SHHF < SH < SHSP). The lung metabolic syndrome gene cluster indicated expressions in opposite directions for SHHF and JCR suggesting different mechanisms for common disease phenotype and perhaps obesity-independent contribution to exacerbated lung disease. The differences in expression of adrenergic receptors and ion-channel genes suggested distinct mechanisms by which ozone might induce protein leakage in CVD models, especially SHHF and JCR. Thus, the pulmonary response to ozone in CVD strains was likely linked to the defining gene expression profiles. Differential transcriptional patterns between healthy and CVD rat strains at baseline, and after ozone suggests that lung inflammation and injury might be influenced by multiple biological pathways affecting inflammation gene signatures.

  9. Cardiovascular responses to water ingestion at rest and during isometric handgrip exercise.

    PubMed

    Mendonca, Goncalo V; Teixeira, Micael S; Pereira, Fernando D

    2012-07-01

    Water drinking activates sympathetic vasoconstriction in healthy young adults; however, this is not accompanied by a concomitant increase in resting blood pressure. It is not known whether the water pressor effect is unmasked by a physiological condition such as exercise. Therefore, we examined the effect of water ingestion (50 vs. 500 mL) on the cardiovascular and autonomic responses to isometric handgrip in 17 healthy participants (9 men, 8 women, aged 28.4 ± 9.7 years). Beat-to-beat blood pressure and R-R intervals were recorded in both conditions at rest (pre- and post-ingestion) and during handgrip at 30% of maximal voluntary contraction. R-R series were spectrally decomposed using an autoregressive approach. Water ingestion did not interact with the increase in mean arterial pressure (MAP) from rest to exercise, which was similar between conditions. In contrast, there was an overall bradycardic effect of water and this was accompanied by increased high frequency power (condition main effect, p < 0.05). When the differences in high frequency power between conditions were controlled for, MAP was significantly higher after drinking 500 mL of water (condition main effect, p < 0.05). In addition, water ingestion attenuated the increase in the low to high frequency power ratio from rest to handgrip (interaction effect, p < 0.05). In conclusion, the rise in blood pressure post-water ingestion is prevented both at rest and during isometric handgrip. Interestingly, this is not sustained after controlling for the enhanced vagal drive caused by water ingestion. Therefore, the mechanisms underlying this response most likely depend on reflex bradycardia of vagal origin.

  10. Individual Differences in the Temporal Profile of Cardiovascular Responses to Head Down Tilt and Orthostatic Stress with and Without Fluid Loading

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia; Toscano, William; Kanis, Dionisios; Gebreyesus, Fiyore

    2013-01-01

    Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. Hypo-volemia is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore loss fluid volume by giving crew salt tablets and water prior to re-entry. Eight men and eight women will be tested during two, 6-hour exposures to 6o HDT: 1) fluid loading, 2) no fluid loading. Before and immediately after each HDT, subjects will perform a stand test to assess their orthostatic tolerance. Physiological measures (e.g., ECG, blood pressure, peripheral blood volume) will be continuously monitored while echocardiography measures are recorded at 30-minute intervals during HDT and stand tests. Preliminary results (N=4) clearly show individual differences in responses to this countermeasure and the time course of physiological changes induced by HDT.

  11. Ecophysiological responses of two dominant grasses to altered temperature and precipitation regimes

    NASA Astrophysics Data System (ADS)

    Nippert, Jesse B.; Fay, Philip A.; Carlisle, Jonathan D.; Knapp, Alan K.; Smith, Melinda D.

    2009-05-01

    Ecosystem responses to climate change will largely be driven by responses of the dominant species. However, if co-dominant species have traits that lead them to differential responses, then predicting how ecosystem structure and function will be altered is more challenging. We assessed differences in response to climate change factors for the two dominant C 4 grass species in tallgrass prairie, Andropogon gerardii and Sorghastrum nutans, by measuring changes in a suite of plant ecophysiological traits in response to experimentally elevated air temperatures and increased precipitation variability over two growing seasons. Maximum photosynthetic rates, stomatal conductance, water-use efficiency, chlorophyll fluorescence, and leaf water potential varied with leaf and canopy temperature as well as with volumetric soil water content (0-15 cm). Both species had similar responses to imposed changes in temperature and water availability, but when differences occurred, responses by A. gerardii were more closely linked with changes in air temperature whereas S. nutans was more sensitive to changes in water availability. Moreover, S. nutans was more responsive overall than A. gerardii to climate alterations. These results indicate both grass species are responsive to forecast changes in temperature and precipitation, but their differential sensitivity to temperature and water availability suggest that future population and community structure may vary based on the magnitude and scope of an altered climate.

  12. Cardiovascular pharmacogenetics.

    PubMed

    Myburgh, Renier; Hochfeld, Warren E; Dodgen, Tyren M; Ker, James; Pepper, Michael S

    2012-03-01

    Human genetic variation in the form of single nucleotide polymorphisms as well as more complex structural variations such as insertions, deletions and copy number variants, is partially responsible for the clinical variation seen in response to pharmacotherapeutic drugs. This affects the likelihood of experiencing adverse drug reactions and also of achieving therapeutic success. In this paper, we review key studies in cardiovascular pharmacogenetics that reveal genetic variations underlying the outcomes of drug treatment in cardiovascular disease. Examples of genetic associations with drug efficacy and toxicity are described, including the roles of genetic variability in pharmacokinetics (e.g. drug metabolizing enzymes) and pharmacodynamics (e.g. drug targets). These findings have functional implications that could lead to the development of genetic tests aimed at minimizing drug toxicity and optimizing drug efficacy in cardiovascular medicine.

  13. Effects of NASA-Fluid Loading Protocol on Cardiovascular Responses to Orthostatic Stress

    NASA Astrophysics Data System (ADS)

    Grinberg, Anna; Edgell, Heather; Gagne, Nathalie; Beavers, Keith; Hughson, Richard L.

    Fluid volume depletion is suspected to be a major contributor to orthostatic hypotension during prolonged bed-rest and spaceflight. Significant reductions in blood and plasma volumes are known to occur with spaceflight and bed-rest. The reductions are attributed to the hormonal responses reacting to a whole-body fluid shift resulting from the removal of the gravity vector seen in upright posture. NASA's proposed fluid loading protocol seeks to replace lost plasma volume by ingestion of salt tablets and water. The dosage is 15 ml/kg water with one 1-g salt tablet for each 125 ml of water over 2 hours. To examine the physiological effects of this fluid loading protocol on blood pressure regulation, seven subjects completed a 4-hour seated period with fluid loading occurring between 1.5 and 3.5 hours. Their responses to orthostatic stress were examined before and after fluid loading by simulating orthostasis in a lower-body negative-pressure (LBNP) box during a progressive test (0, -10, -20, -30, and -40 mmHg). Physiological variables such as heart rate, mean arterial pressure, systolic and diastolic blood pressure, pulse pressure, cardiac output, stroke volume, compliance, peripheral resistance, central venous pressure, and plasma volume were monitored. Data were analyzed using a twoway ANOVA, examining the effects of fluid loading and different levels of LBNP. Fluid loading did not influence cardiovascular variables as there were no significant differences in measured values between preand post-fluid loading conditions at each level of LBNP. This indicates that fluid loading does not increase plasma volume during four hour seated tests. The ingested water does not occupy the vascular bed, instead it may be mobilized to the extracellular space or the bladder. Fluid loading did not significantly affect responses to orthostatic stress, as there were no improvements in central venous pressure, stroke volume, and cardiac output during progressive levels of LBNP, and

  14. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    PubMed

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  15. Pulmonary Transcriptional Response to Ozone in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The genetic cardiovascular disease (CVD) and associated metabolic impairments can influence the lung injury from inhaled pollutants. We hypothesized that comparative assessment of global pulmonary expression profile of healthy and CVD-prone rat models will provide mechanistic ins...

  16. Neuroticism and cardiovascular response in women: evidence of effects on blood pressure recovery.

    PubMed

    Hutchinson, James G; Ruiz, John M

    2011-04-01

    Neuroticism is a unifying personality trait that underlies a number of psychosocial risk factors for cardiovascular disease. One means by which Neuroticism may influence health risk is through effects on cardiovascular reactivity and recovery. Eighty-six women scoring high or low in Neuroticism took part in a paired interpersonal stressor task with a laboratory confederate. Conditions differed on the basis of the confederate's interpersonal behavior: hostile, neutral, or friendly. Neuroticism interacted with condition to affect blood pressure recovery such that women high in Neuroticism showed less recovery following hostile interactions and greater recovery following friendly interactions. Main effects of Neuroticism on anger and anxiety reactivity were found. Results indicate that Neuroticism is relevant to cardiovascular health in the context of valenced social interactions. Implications for future study of Neuroticism and interpersonal stressors as risk factors for cardiovascular disease are discussed.

  17. Whole Body Plethysmography Reveals Differential Ventilatory Responses to Ozone in Rat Models of Cardiovascular Disease

    EPA Science Inventory

    Increasingly, urban air pollution is recognized as an important determinant of cardiovascular disease. Host susceptibility to air pollution can vary due to genetic predisposition and underlying disease. To elucidate key factors of host ...

  18. Effects of basin baths, tub baths, and showers on cardiovascular responses in 51 health men and women.

    PubMed

    Winslow, E H; Smith, J

    1991-01-01

    Heart rate and blood pressure during rest and bathing are generally lower in healthy individuals than in hospitalized patients. However, medications can exaggerate or attenuate patients' responses. Heart rate and blood pressure are highest during showering and lowest during basin baths in both patients and healthy subjects, but the differences among the three types of bathing are not clinically dramatic. In addition, the vigor of the activity can be easily controlled; hospitalized patients naturally conserve effort and move more slowly and deliberately than healthy individuals. A tachycardic response to bathing seems to be common in both healthy subjects and hospitalized patients. Careful control of water temperature and heart rate monitoring during bathing appear to be indicated when hospitalized cardiac patients bathe. Comparison of responses to sitting and standing showering would be worthwhile. The findings of this study help delineate the typical cardiovascular responses of healthy adults to three methods of bathing. The findings also emphasize gender differences and the importance of studying both men and women. Only by determining normal responses in men and women can abnormal responses be recognized. More study on cardiovascular responses to bathing and other common activities in both healthy and sick persons is clearly needed to better describe, explain, predict, and control responses to activity and to build a scientific foundation for activity prescription and restriction.

  19. DNA damage response induces structural alterations in histone H3–H4

    PubMed Central

    Izumi, Yudai; Fujii, Kentaro; Yamamoto, Satoshi; Matsuo, Koichi; Namatame, Hirofumi; Taniguchi, Masaki; Yokoya, Akinari

    2017-01-01

    Synchrotron-radiation circular-dichroism spectroscopy was used to reveal that the DNA damage response induces a decrement of α-helix and an increment of β-strand contents of histone H3–H4 extracted from X-ray–irradiated human HeLa cells. The trend of the structural alteration was qualitatively opposite to that of our previously reported results for histone H2A–H2B. These results strongly suggest that histones share roles in DNA damage responses, particularly in DNA repair processes and chromatin remodeling, via a specific structural alteration of each histone. PMID:27672100

  20. Effects of heart rate variability biofeedback on cardiovascular responses and autonomic sympathovagal modulation following stressor tasks in prehypertensives.

    PubMed

    Chen, S; Sun, P; Wang, S; Lin, G; Wang, T

    2016-02-01

    Autonomic dysfunction is implicated in prehypertension, and previous studies have suggested that therapies that improve modulation of sympathovagal balance, such as biofeedback and slow abdominal breathing, are effective in patients with prehypertension at rest. However, considering that psychophysiological stressors may be associated with greater cardiovascular risk in prehypertensives, it is important to investigate whether heart rate variability biofeedback (HRV-BF) results in equivalent effects on autonomic cardiovascular responses control during stressful conditions in prehypertensives. A total of 32 college students with prehypertension were enrolled and randomly assigned to HRV-BF (n=12), slow abdominal breathing (SAB, n=10) or no treatment (control, n=10) groups. Then, a training experiment consisting of 15 sessions was employed to compare the effect of each intervention on the following cardiovascular response indicators before and after intervention: heart rate (HR); heart rate variability (HRV) components; blood volume pulse amplitude (BVPamp); galvanic skin response; respiration rate (RSP); and blood pressure. In addition, the cold pressor test and the mental arithmetic challenge test were also performed over two successive days before and after the invention as well as after 3 months of follow-up. A significant decrease in HR and RSP and a significant increase in BVPamp were observed after the HRV-BF intervention (P<0.001). For the HRV analysis, HRV-BF significantly reduced the ratio of low-frequency power to high-frequency power (the LF/HF ratio, P<0.001) and increased the normalized high-frequency power (HFnm) (P<0.001) during the stress tests, and an added benefit over SAB by improving HRV was also observed. In the 3-month follow-up study, similar effects on RSP, BVPamp, LF/HF and HFnm were observed in the HRV-BF group compared with the SAB group. HRV-BF training contributes to the beneficial effect of reducing the stress-related cardiovascular

  1. The Implicit Positive and Negative Affect Test: Validity and Relationship with Cardiovascular Stress-Responses.

    PubMed

    van der Ploeg, Melanie M; Brosschot, Jos F; Thayer, Julian F; Verkuil, Bart

    2016-01-01

    Self-report, i.e., explicit, measures of affect cannot fully explain the cardiovascular (CV) responses to stressors. Measuring affect beyond self-report, i.e., using implicit measures, could add to our understanding of stress-related CV activity. The Implicit Positive and Negative Affect Test (IPANAT) was administered in two studies to test its ecological validity and relation with CV responses and self-report measures of affect. In Study 1 students (N = 34) viewed four film clips inducing anger, happiness, fear, or no emotion, and completed the IPANAT and the Positive And Negative Affect Scale at baseline and after each clip. Implicit negative affect (INA) was higher and implicit positive affect (IPA) was lower after the anger inducing clip and vice versa after the happiness inducing clip. In Study 2 students performed a stressful math task with (n = 14) or without anger harassment (n = 15) and completed the IPANAT and a Visual Analog Scale as an explicit measure afterwards. Systolic (SBP), diastolic (DBP) blood pressure, heart rate (HR), heart rate variability (HRV), and total peripheral resistance (TPR) were recorded throughout. SBP and DBP were higher and TPR was lower in the harassment condition during the task with a prolonged effect on SBP and DBP during recovery. As expected, explicit negative affect (ENA) was higher and explicit positive affect (EPA) lower after harassment, but ENA and EPA were not related to CV activity. Although neither INA nor IPA differed between the tasks, during both tasks higher INA was related to higher SBP, lower HRV and lower TPR and to slower recovery of DBP after both tasks. Low IPA was related to slower recovery of SBP and DBP after the tasks. Implicit affect was not related to recovery of HR, HRV, and TPR. In conclusion, the IPANAT seems to respond to film clip-induced negative and positive affect and was related to CV activity during and after stressful tasks. These findings support the theory that implicitly measured affect

  2. The Implicit Positive and Negative Affect Test: Validity and Relationship with Cardiovascular Stress-Responses

    PubMed Central

    van der Ploeg, Melanie M.; Brosschot, Jos F.; Thayer, Julian F.; Verkuil, Bart

    2016-01-01

    Self-report, i.e., explicit, measures of affect cannot fully explain the cardiovascular (CV) responses to stressors. Measuring affect beyond self-report, i.e., using implicit measures, could add to our understanding of stress-related CV activity. The Implicit Positive and Negative Affect Test (IPANAT) was administered in two studies to test its ecological validity and relation with CV responses and self-report measures of affect. In Study 1 students (N = 34) viewed four film clips inducing anger, happiness, fear, or no emotion, and completed the IPANAT and the Positive And Negative Affect Scale at baseline and after each clip. Implicit negative affect (INA) was higher and implicit positive affect (IPA) was lower after the anger inducing clip and vice versa after the happiness inducing clip. In Study 2 students performed a stressful math task with (n = 14) or without anger harassment (n = 15) and completed the IPANAT and a Visual Analog Scale as an explicit measure afterwards. Systolic (SBP), diastolic (DBP) blood pressure, heart rate (HR), heart rate variability (HRV), and total peripheral resistance (TPR) were recorded throughout. SBP and DBP were higher and TPR was lower in the harassment condition during the task with a prolonged effect on SBP and DBP during recovery. As expected, explicit negative affect (ENA) was higher and explicit positive affect (EPA) lower after harassment, but ENA and EPA were not related to CV activity. Although neither INA nor IPA differed between the tasks, during both tasks higher INA was related to higher SBP, lower HRV and lower TPR and to slower recovery of DBP after both tasks. Low IPA was related to slower recovery of SBP and DBP after the tasks. Implicit affect was not related to recovery of HR, HRV, and TPR. In conclusion, the IPANAT seems to respond to film clip-induced negative and positive affect and was related to CV activity during and after stressful tasks. These findings support the theory that implicitly measured affect

  3. [Cardiovascular responses to resistance exercise are affected by workload and intervals between sets.

    PubMed

    Castinheiras-Neto, Antonio Gil; Costa-Filho, Irineu Rodrigues da; Farinatti, Paulo Tarso Veras

    2010-09-03

    BACKGROUND: The control of cardiovascular responses during resistance exercise (RE) is important for patient safety. OBJECTIVE: To investigate the influence of repetition maximum (RM) and rest interval between sets (RI) on heart rate (HR), systolic blood pressure (SBP) and rate-pressure product (RPP) during RE. METHODS: Twenty healthy subjects (26 +/- 5 years of age) underwent RE protocols involving three sets of leg press (6 and 12 RM) and RI proportional to the contraction time (1:3 and 1:5). The HR was checked on a continuous basis by using a cardiotachometer and the SBP was checked at the end of the sets, via a protocol validated by the auscultatory method. RESULTS: The HR was influenced by the workload (p = 0.008) and sets (p < 0.001), but not by the RI (p = 0.087). The SBP suffered from the isolated effect of the number of sets (p < 0.001) and RI (p = 0.017), but not from the workload (p = 0.95). The RPP rose in direct proportion to the workload (p = 0.036) and sets (p < 0.001), but in inverse proportion to the RI (p = 0.006). In 6 RM protocols, the variation in the HR was higher for RI = 1:3 (Delta = 11.2 +/- 1.1 bpm) than for RI = 1:5 (Delta = 4.5 +/- 0.2 bpm; p = 0.002), but there was no difference for 12 RM (Delta 1:3 = 21.1 +/- 2.2 bpm; Delta 1:5 = 18.9 +/- 2.0 bpm, p = 0.83). The RI influenced the variation in SBP in all loads (6 RM - Delta 1:3 = 10.6 +/- 0.9 mmHg, Delta 1:5 = 6.6 +/- 0.7 mmHg; p = 0.02 and 12 RM - Delta 1:3 = 15.2 +/- 1.1 mmHg, Delta 1:5 = 8.4 +/- 0.7 mmHg; p = 0.04). The RPP rose in proportion to the workload (p = 0.036) and to the sets (p < 0.001), but in inverse proportion to the RI (p = 0.006). With RI = 1:3, there was difference in RPP for 6 RM (Delta = 2,892 +/- 189 mmHg.bpm) and 12 RM (Delta = 4,587 +/- 300 mmHg.bpm; p = 0.018), but not with RI = 1:5 (6 RM: Delta = 1,224 +/- 141 mmHg.bpm, 12 RM: Delta = 2,332 +/- 194 mmHg.bpm; p = 0.58). CONCLUSION: Regardless of the workload, an increased RI was associated with lower

  4. Cardiovascular Responses to an Isometric Handgrip Exercise in Females with Prehypertension

    PubMed Central

    Bond, Vernon; Curry, Bryan H.; Adams, Richard G.; Obisesan, Thomas; Pemminati, Sudhakar; Gorantla, Vasavi R.; Kadur, Kishan; Millis, Richard M.

    2016-01-01

    Background: Hypertensive individuals are known to exhibit greater increases in blood pressure during an isometric handgrip exercise (IHE) than their normotensive counterparts. Aim: This study tests the hypothesis that, compared to normotensive individuals, prehypertensive individuals exhibit an exaggerated response to IHE. Materials and Methods: In this study, the effects of IHE were compared in matched prehypertensive vs. normotensive healthy African-American females. Six healthy young adult African–American female university students were screened in a physician's office for blood pressure in the range of prehypertension, systolic blood pressure (SBP) 120–139 mmHg and diastolic blood pressure (DBP) 80–89 mmHg. Six young adult African–American women were also recruited to serve as a healthy normotensive control group with SBP ≤119 mmHg and DBP ≤79 mmHg. Cardiovascular fitness was determined by peak oxygen uptake (VO2 peak) measured during a progressive exercise test. Results: During the handgrip exercise, the prehypertensive group exhibited greater increases in SBP (from 139 ± 6 to 205 ± 11 mmHg, +48%) than the controls (from 132 ± 3 to 145 ± 3 mmHg, +10%); intergroup difference P < 0.001. The prehypertensive group also exhibited greater increases in DBP (from 77 ± 2 to 112 ± 5 mmHg, +46%) compared to the controls (from 72 ± 3 to 78 ± 4 mmHg, +8%); intergroup difference P < 0.001. The increase in systemic vascular resistance was also greater in the prehypertensive group (from 1713 ± 91 to 2807 ± 370 dyne.s.cm-5, +64%) than in the controls (from 1668 ± 80 to 1812 ± 169 dyne.s.cm-5, +9%); intergroup difference P < 0.05. Conclusion: These results suggest that blood pressure measurements performed during IHE may be a useful screening tool in evaluating prehypertensive individuals for antihypertensive treatments. PMID:27500128

  5. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep.

    PubMed

    Boddy, K; Dawes, G S; Fisher, R; Pinter, S; Robinson, J S

    1974-12-01

    1. Foetal breathing movements, electrocortical activity, arterial pressure and heart rate were recorded continuously in chronically catheterized sheep, 97-145 days pregnant.2. With increasing gestational age there was a fall in heart rate of 0.67 beats/day and a rise in arterial pressure of 0.46 mmHg/day.3. Hypoxaemia in the foetus was induced by allowing the ewe to breathe low oxygen mixtures, 9% O(2) with 3% CO(2) in N(2). In the younger foetuses there was an initial rise in heart rate whereas in the older foetuses there was a fall. After the end of hypoxia there was a persistent tachycardia in both groups. In the older foetuses there was a rise of arterial pressure.4. Two vagotomized older foetuses showed cardiovascular responses similar to those of the younger foetuses.5. Foetal breathing movements were abolished by hypoxaemia in twenty-two of twenty-five experiments. In the three exceptional experiments there was a small rise in P(a, CO2).6. The proportion of time occupied by low voltage electrocortical activity in the foetus was reduced by hypoxaemia.7. Hypercapnia was induced by giving the ewe 4-6% CO(2) with 18% O(2) in N(2) to breathe. After an initial slight fall the foetal heart rate increased and there was a small rise in foetal arterial pressure.8. The proportion of time occupied by low voltage electrocortical activity and breathing movements was increased by hypercapnia.9. Maternal hyperoxia, induced by giving 50% O(2) in N(2), did not significantly increase foetal breathing movements unless the ewe was in labour. In labour the foetuses had lower P(a, O2) values initially and a reduced incidence of foetal breathing, both of which were increased by maternal hyperoxia.

  6. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential

    PubMed Central

    Cator, Lauren J.; Pietri, Jose E.; Murdock, Courtney C.; Ohm, Johanna R.; Lewis, Edwin E.; Read, Andrew F.; Luckhart, Shirley; Thomas, Matthew B.

    2015-01-01

    Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission. PMID:26153094

  7. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential.

    PubMed

    Cator, Lauren J; Pietri, Jose E; Murdock, Courtney C; Ohm, Johanna R; Lewis, Edwin E; Read, Andrew F; Luckhart, Shirley; Thomas, Matthew B

    2015-07-08

    Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission.

  8. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    PubMed Central

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2015-01-01

    Purpose Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a “priming” dose of protons on the cardiac cellular and molecular response to a “challenge” dose of 56Fe in a mouse model. Methods Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. PMID:26948008

  9. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2016-02-01

    Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a ;priming; dose of protons on the cardiac cellular and molecular response to a ;challenge; dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.

  10. Long Term High Fat Diet Treatment: An Appropriate Approach to Study the Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in Mice

    PubMed Central

    Bruder-Nascimento, Thiago; Ekeledo, Obioma J.; Anderson, Ruchi; Le, Huy B.; Belin de Chantemèle, Eric J.

    2017-01-01

    Obesity-related cardiovascular disease (CVD) involves increased sympathetic activity in men and male animals. Although women exhibit increased visceral fat, metabolic disorders, inflammation and CVD with obesity, whether body weight gain affects autonomic control of cardiovascular function in females remain unknown. Due to the lack of adequate model to mimic the human pathology, this study aimed to develop a murine model, which would allow studying the sex-specificity of the response of the autonomic nervous system to obesity and identifying the origin of potential sex-differences. We tested the hypothesis that sexual dimorphisms in the autonomic response to obesity disappear in mice matched for changes in body weight, metabolic and inflammatory disorders. Male and female C57Bl/6 mice were submitted to control (CD) or high fat diet (HFD) for 24 weeks. Female mice gained more adipose mass and lost more lean mass than males but reached similar visceral adipose mass and body weight, as males, at the end of the diet. 24 weeks of HFD matched male and female mice for visceral adiposity, glycaemia, plasma insulin, lipids, and inflammatory cytokines levels, demonstrating the suitability of the model to study human pathology. HFD did not elevate BP, but similarly increased heart rate (HR) in males (CD: 571 ± 9 vs. HFD: 631 ± 14 bpm, P < 0.05) and females (CD: 589 ± 19 vs. HFD: 642 ± 6 bpm, P < 0.05). Indices of autonomic control of BP and HR were obtained by measuring BP and HR response to ganglionic blockade, β-adrenergic, and muscarinic receptors antagonists. HFD increased vascular but reduced cardiac sympathetic drive in males (CD: –43 ± 4 and HFD: –60 ± 7% drop in BP, P < 0.05). HFD did not alter females' vascular or cardiac sympathetic drive. HFD specifically reduced aortic α-adrenergic constriction in males and lowered HR response to muscarinic receptor antagonism in females. These data suggest that obesity-associated increases in HR could be caused by a

  11. Long Term High Fat Diet Treatment: An Appropriate Approach to Study the Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in Mice.

    PubMed

    Bruder-Nascimento, Thiago; Ekeledo, Obioma J; Anderson, Ruchi; Le, Huy B; Belin de Chantemèle, Eric J

    2017-01-01

    Obesity-related cardiovascular disease (CVD) involves increased sympathetic activity in men and male animals. Although women exhibit increased visceral fat, metabolic disorders, inflammation and CVD with obesity, whether body weight gain affects autonomic control of cardiovascular function in females remain unknown. Due to the lack of adequate model to mimic the human pathology, this study aimed to develop a murine model, which would allow studying the sex-specificity of the response of the autonomic nervous system to obesity and identifying the origin of potential sex-differences. We tested the hypothesis that sexual dimorphisms in the autonomic response to obesity disappear in mice matched for changes in body weight, metabolic and inflammatory disorders. Male and female C57Bl/6 mice were submitted to control (CD) or high fat diet (HFD) for 24 weeks. Female mice gained more adipose mass and lost more lean mass than males but reached similar visceral adipose mass and body weight, as males, at the end of the diet. 24 weeks of HFD matched male and female mice for visceral adiposity, glycaemia, plasma insulin, lipids, and inflammatory cytokines levels, demonstrating the suitability of the model to study human pathology. HFD did not elevate BP, but similarly increased heart rate (HR) in males (CD: 571 ± 9 vs. HFD: 631 ± 14 bpm, P < 0.05) and females (CD: 589 ± 19 vs. HFD: 642 ± 6 bpm, P < 0.05). Indices of autonomic control of BP and HR were obtained by measuring BP and HR response to ganglionic blockade, β-adrenergic, and muscarinic receptors antagonists. HFD increased vascular but reduced cardiac sympathetic drive in males (CD: -43 ± 4 and HFD: -60 ± 7% drop in BP, P < 0.05). HFD did not alter females' vascular or cardiac sympathetic drive. HFD specifically reduced aortic α-adrenergic constriction in males and lowered HR response to muscarinic receptor antagonism in females. These data suggest that obesity-associated increases in HR could be caused by a

  12. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  13. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms.

    PubMed

    Baldwin, Kenneth M; Haddad, Fadia

    2002-11-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  14. Postprandial cell inflammatory response to a standardised fatty meal in subjects at different degree of cardiovascular risk.

    PubMed

    Tamburrelli, Chiara; Gianfagna, Francesco; D'Imperio, Marco; De Curtis, Amalia; Rotilio, Domenico; Iacoviello, Licia; de Gaetano, Giovanni; Donati, Maria Benedetta; Cerletti, Chiara

    2012-03-01

    A fatty meal may represent a challenge of in vivo acute inflammatory reaction. We evaluated the acute effects of a standardised fatty meal administration on leukocytes and platelets and on their interactions on 61 subjects at different degree of cardiovascular risk, without any clinical event. Before and 2 hours after a fatty meal, blood cells were counted and markers of leukocyte (intracellular myeloperoxidase [MPO] and Mac-1) and platelet (P-selectin and microparticles) activation and mixed platelet-leukocyte conjugates measured by flow-cytometry. After the fatty meal, both white blood cell and platelet count significantly increased, more markedly in subjects with lower cardiovascular risk score. Mac-1 expression too increased (from 32.2 ± 27.2% to 45.6 ± 29.0%, p=0.0016), while MPO decreased (from 83.1 ± 16.3% to 64.5 ± 23.1%, p<0.0001). A trend for increased platelet activation and interaction with leukocytes was also observed. Women were more markedly susceptible to fatty meal challenge, as compared to men, while age did not seem to affect any cell response to fatty meal. Waist-to-hip ratio and body mass index influenced polymorphonuclear cells (PMN) degranulation and platelet count increase, respectively. Cellular responses to the fatty meal, in particular PMN degranulation, were attenuated in subjects at higher degree of cardiovascular risk, who showed a basal mild inflammatory activation status. In conclusion, a fatty meal consumption may represent a model of acute inflammatory response and appears to be modulated by different demographic and cardiovascular risk degree. This model could be applied to study the effect of food-derived antioxidants or nutritional supplements, but its relevance remains to be demonstrated.

  15. ALTERED TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BISINDOLYLMALEIMIDE (BIS L)

    EPA Science Inventory

    Altered transcriptional responses in mouse embryos exposed to bisindolylmaleimide I (Bis I) in whole embryo culture

    Edward D. Karoly?*, Judith E. Schmid*, Maria R. Blanton*and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, ...

  16. Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses.

    PubMed

    Helmstetter, F J; Tershner, S A

    1994-11-01

    The presentation of an auditory stimulus that signals a noxious event such as foot shock results in the simultaneous expression of multiple aversive conditional responses (CRs), which include a transient elevation of arterial blood pressure (ABP) and an opioid-mediated form of hypoalgesia. Recent evidence suggests that the neural circuits responsible for the expression of these two aversive responses may overlap. In the present study, rats were trained using a Pavlovian fear conditioning paradigm in which white noise was repeatedly paired with shock. After training, groups of animals received electrolytic lesions centered in the dorsal or ventral periaqueductal gray (PAG) or in the medial or lateral rostral medulla. In sham-lesioned animals that were given paired presentations of noise and shock, subsequent presentation of the auditory stimulus caused a significant transient elevation of ABP and time-dependent inhibition of the tail flick reflex evoked by radiant heat. Lesions of either the dorsal or the ventral PAG blocked the antinociceptive CR but did not significantly affect ABP responses. Lesions of the ventromedial, but not the lateral, rostral medulla blocked hypoalgesia. Rostral medullary lesions did not reliably affect stimulus-evoked cardiovascular responses or baseline ABP. These results indicate that antinociceptive and cardiovascular conditional responses are anatomically dissociable and support our proposal that conditional hypoalgesia is mediated by a serial neural circuit that includes the amygdala, PAG, and rostral ventromedial medulla.

  17. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    PubMed

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions.

  18. Speech training alters consonant and vowel responses in multiple auditory cortex fields.

    PubMed

    Engineer, Crystal T; Rahebi, Kimiya C; Buell, Elizabeth P; Fink, Melyssa K; Kilgard, Michael P

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination.

  19. Beat to beat variability in cardiovascular variables: noise or music?

    NASA Technical Reports Server (NTRS)

    Appel, M. L.; Berger, R. D.; Saul, J. P.; Smith, J. M.; Cohen, R. J.

    1989-01-01

    Cardiovascular variables such as heart rate, arterial blood pressure, stroke volume and the shape of electrocardiographic complexes all fluctuate on a beat to beat basis. These fluctuations have traditionally been ignored or, at best, treated as noise to be averaged out. The variability in cardiovascular signals reflects the homeodynamic interplay between perturbations to cardiovascular function and the dynamic response of the cardiovascular regulatory systems. Modern signal processing techniques provide a means of analyzing beat to beat fluctuations in cardiovascular signals, so as to permit a quantitative, noninvasive or minimally invasive method of assessing closed loop hemodynamic regulation and cardiac electrical stability. This method promises to provide a new approach to the clinical diagnosis and management of alterations in cardiovascular regulation and stability.

  20. Systems Pharmacogenomics Finds RUNX1 Is an Aspirin-Responsive Transcription Factor Linked to Cardiovascular Disease and Colon Cancer.

    PubMed

    Voora, Deepak; Rao, A Koneti; Jalagadugula, Gauthami S; Myers, Rachel; Harris, Emily; Ortel, Thomas L; Ginsburg, Geoffrey S

    2016-09-01

    Aspirin prevents cardiovascular disease and colon cancer; however aspirin's inhibition of platelet COX-1 only partially explains its diverse effects. We previously identified an aspirin response signature (ARS) in blood consisting of 62 co-expressed transcripts that correlated with aspirin's effects on platelets and myocardial infarction (MI). Here we report that 60% of ARS transcripts are regulated by RUNX1 - a hematopoietic transcription factor - and 48% of ARS gene promoters contain a RUNX1 binding site. Megakaryocytic cells exposed to aspirin and its metabolite (salicylic acid, a weak COX-1 inhibitor) showed up regulation in the RUNX1 P1 isoform and MYL9, which is transcriptionally regulated by RUNX1. In human subjects, RUNX1 P1 expression in blood and RUNX1-regulated platelet proteins, including MYL9, were aspirin-responsive and associated with platelet function. In cardiovascular disease patients RUNX1 P1 expression was associated with death or MI. RUNX1 acts as a tumor suppressor gene in gastrointestinal malignancies. We show that RUNX1 P1 expression is associated with colon cancer free survival suggesting a role for RUNX1 in aspirin's protective effect in colon cancer. Our studies reveal an effect of aspirin on RUNX1 and gene expression that may additionally explain aspirin's effects in cardiovascular disease and cancer.

  1. The effects of high-intensity intermittent exercise training on cardiovascular response to mental and physical challenge.

    PubMed

    Heydari, Mehrdad; Boutcher, Yati N; Boutcher, Stephen H

    2013-02-01

    The purpose was to examine the effect of a 12-week exercise intervention on the cardiovascular and autonomic response of males to mental and physical challenge. Thirty four young overweight males were randomly assigned to either an exercise or control group. The exercise group completed a high-intensity intermittent exercise (HIIE) program three times per week for 12weeks. Cardiovascular response to the Stroop task was determined before and after the intervention by assessing heart rate (HR), stroke volume (SV), arterial stiffness, baroreflex sensitivity (BRS), and skeletal muscle blood flow. The exercise group improved their aerobic fitness levels by 17% and reduced their body weight by 1.6kg. Exercisers compared to controls experienced a significant reduction in HR (p<0.001) and a significant increase in SV (p<0.001) at rest and during Stroop and exercise. For exercisers, arterial stiffness significantly decreased at rest and during Stroop (p<0.01), whereas BRS was increased at rest and during Stroop (p<0.01). Forearm blood flow was significantly increased during the first two minutes of Stroop (p<0.05). HIIE induced significant cardiovascular and autonomic changes at rest and during mental and physical challenge after 12weeks of training.

  2. Expression variations of chromogranin A and α1,2,4 GABA(A)Rs in discrete limbic and brainstem areas rescue cardiovascular alterations.

    PubMed

    Avolio, Ennio; Facciolo, Rosa Maria; Alò, Raffaella; Mele, Maria; Carelli, Antonio; Canonaco, Alessia; Mosciaro, Lucia; Talani, Giuseppe; Biggio, Giovanni; Sanna, Enrico; Mahata, Sushil K; Canonaco, Marcello

    2013-01-01

    Recent interferences of hemodynamic functions via modified brain neuronal mechanisms have proven to be major causes of dementia and sleeping disorders. In this work, cerebral expression differences of the neuroactive vesicular chromogranin A (CgA) and distinct α GABA(A)R subunits were detected in the facultative hibernating hamster. In particular, damaged neuronal fields of hypotensive torpor (TORP) state were correlated to elevated CgA and GABA(A)R α1, α4 mRNA levels in the paraventricular hypothalamic nucleus (PVN), central amygdalar nucleus (CeA) plus solitary tractus nucleus (NTS). Conversely, few neurodegeneration signals of hypertensive arousal (AROU) state, accounted for mostly lower CgA levels in the same areas. This state also provided increased α2-containing sites in amygdala, hippocampal and NTS neurons together with elevated α4-containing receptors in the periventricular hypothalamic nucleus (Pe). Interestingly in our hibernating model, CgA appeared to preferentially feature inhibitory neurosignals as indicated by preliminary perfusion of amygdalar sites with its highly specific antihypertensive derived peptide (catestatin) promoting GABA-dependent sIPSCs. Overall, evident neuronal damages plus altered expression capacities of CgA and α1-, α2-, α4-GABA(A)Rs in CeA, Pe, PVN as well as NTS during both hibernating states corroborate for the first time key molecular switching events guaranteeing useful cardiovascular rescuing abilities of neurodegenerative disorders.

  3. Impact of Altered Cholinergic Tones on the Neurovascular Coupling Response to Whisker Stimulation.

    PubMed

    Lecrux, Clotilde; Sandoe, Claire H; Neupane, Sujaya; Kropf, Pascal; Toussay, Xavier; Tong, Xin-Kang; Lacalle-Aurioles, María; Shmuel, Amir; Hamel, Edith

    2017-02-08

    Brain imaging techniques that use vascular signals to map changes in neuronal activity rely on the coupling between electrophysiology and hemodynamics, a phenomenon referred to as "neurovascular coupling" (NVC). It is unknown whether this relationship remains reliable under altered brain states associated with acetylcholine (ACh) levels, such as attention and arousal and in pathological conditions such as Alzheimer's disease. We therefore assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex, measured by cerebral blood flow (CBF) and neurophysiological recordings (local field potentials, LFPs). We found that acutely enhanced ACh tone significantly potentiated whisker-evoked CBF responses through muscarinic ACh receptors and concurrently facilitated neuronal responses, as illustrated by increases in the amplitude and power in high frequencies of the evoked LFPs. However, the cellular identity of the activated neuronal network within the responsive barrel was unchanged, as characterized by c-Fos upregulation in pyramidal cells and GABA interneurons coexpressing vasoactive intestinal polypeptide. In contrast, chronic ACh deprivation hindered whisker-evoked CBF responses and the amplitude and power in most frequency bands of the evoked LFPs and reduced the rostrocaudal extent and area of the activated barrel without altering its identity. Correlations between LFP power and CBF, used to estimate NVC, were enhanced under high ACh tone and disturbed significantly by ACh depletion. We conclude that ACh is not only a facilitator but also a prerequisite for the full expression of sensory-evoked NVC responses, indicating that ACh may alter the fidelity of hemodynamic signals in assessing changes in evoked neuronal activity.SIGNIFICANCE STATEMENT Neurovascular coupling, defined as the tight relationship between activated neurons and hemodynamic responses, is a fundamental brain function that underlies hemodynamic-based functional brain

  4. An opioid receptor antagonist, naltrexone, does not alter taste and smell responses in humans.

    PubMed

    Scińska, A; Koroś, E; Polanowska, E; Kukwa, A; Bogucka-Bonikowska, A; Kostowski, W; Habrat, B; Bieńkowski, P

    2000-01-01

    Several studies have shown that an opioid receptor antagonist, naltrexone, decreases palatable food consumption. Naltrexone has also been reported to reduce ethanol intake in alcohol-preferring rodents and human alcoholics. The aim of the present study was to assess the effects of naltrexone on taste and smell responses in healthy male volunteers. Naltrexone did not alter intensity and pleasantness of sucrose, quinine, citric acid, sodium chloride, and ethanol taste. Similarly, ratings of olfactory stimuli (orange extract and ethanol) and Coca-Cola flavor were not influenced by the opioid antagonist. Our findings may indicate that: (i) naltrexone exerts marginal, if any, effects on gustatory and olfactory responses in humans; (ii) the drug does not alter orosensory responses to ethanol.

  5. Central Cardiovascular Responses of Quadriplegic Subjects to Arm Exercise at Varying Levels of Oxygen Uptake.

    ERIC Educational Resources Information Center

    Figoni, Stephen F.

    The purpose of this study was to assess selected central cardiovascular functions of spinal cord injured, quadriplegic subjects at varying levels of oxygen uptake (VO sub 2). Subjects included 11 untrained, male college students with C5, C6, or C7 complete quadriplegia and 11 able-bodied reference subjects. Exercise was performed on a Monark cycle…

  6. Community-Responsive Interventions to Reduce Cardiovascular Risk in American Indians

    ERIC Educational Resources Information Center

    Jobe, Jared B.; Adams, Alexandra K.; Henderson, Jeffrey A.; Karanja, Njeri; Lee, Elisa T.; Walters, Karina L.

    2012-01-01

    American Indian and Alaska Native (AI/AN) populations bear a heavy burden of cardiovascular disease (CVD), and they have the highest rates of risk factors for CVD, such as cigarette smoking, obesity, and diabetes, of any U.S. population group. Yet, few randomized controlled trials have been launched to test potential preventive interventions in…

  7. CARDIOVASCULAR AND THERMOREGULATORY RESPONSES OF UNRESTRAINED RATS EXPOSED TO FILTERED OR UNFILTERED DIESEL EXHAUST

    EPA Science Inventory

    Diesel exhaust (DE) has been associated with adverse cardiovascular and pulmonary health effects. The relative contributions of the gas-phase and particulate (PM) components of DE are less well understood. We exposed WKY rats with or without implanted radiotransmitters to air or ...

  8. A cardiovascular system model for lower-body negative pressure response

    NASA Technical Reports Server (NTRS)

    Mitchell, B. A., Jr.; Giese, R. P.

    1971-01-01

    Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.

  9. Altering Response Chains in Pathological Gamblers Using a Response-Cost Procedure

    ERIC Educational Resources Information Center

    Johnson, Taylor E.; Dixon, Mark R.

    2009-01-01

    Two pathological gamblers could choose between emitting or having the dealer emit the response options when playing each of three casino games. A response-cost procedure was introduced in a multiple baseline design across games in which the participant had to pay to perform the responses himself, which was somewhat effective at reducing many of…

  10. Do behavioral responses mediate or moderate the relation between cardiovascular reactivity to stress and parental history of hypertension?

    PubMed

    Frazer, Nicole L; Larkin, Kevin T; Goodie, Jeffrey L

    2002-05-01

    To examine whether differences in behavioral responses to stress mediated or moderated the relation between cardiovascular response to stress and parental history of hypertension, 64 healthy undergraduates-16 men with hypertensive parents (PH+), 16 men without hypertensive parents (PH-), 16 PH+ women, and 16 PH- women-participated in a mental arithmetic task, mirror tracing task, and 2 interpersonal role plays. PH+ participants exhibited higher resting heart rates than PH- participants and higher resting systolic blood pressures (SBPs) than PH- women. PH+ participants exhibited greater SBP responses to tasks and engaged in more negative verbal and nonverbal behavior across tasks than PH- counterparts. Differences in behavioral responding neither mediated nor moderated the observed relation between parental history status and SBP response to stress.

  11. Evaluation of the ethanol antagonist' Ro15-4513 on cardiovascular and metabolic responses induced by ethanol

    SciTech Connect

    Lerner, M.R.; Gauvin, D.V.; Holloway, F.A.; Wilson, M.F.; Brackett, D.J. Veterans Affairs Medical Center, Oklahoma City, OK )

    1992-02-26

    The putative ethanol antagonist Ro15-4513 has been reported to attenuate many behavioral responses induced by ethanol, including motor coordination, narcosis, ethanol self administration and intake, and anticonvulsant actions. This study was designed to study the effect of Ro15-4513 on cardiovascular and metabolic responses elicited by intragastric ethanol in conscious rats. Four groups of rats were catheterized under enflurane anesthesia and allowed to regain consciousness. Each group was given either 3.2, 10.0, or 32.0 mg/kg Ro15-4513 or equivalent Tween (i.p.) following ethanol. Ro15-4513 had no effect at any concentration on the decreases in mean arterial pressure, cardiac output, central venous pressure, respiration rate, and cardiac stroke volume and the increases in systemic vascular resistance, heart rate, and glucose evoked by the ethanol challenge. Blood alcohol concentrations measured throughout the study were not affected by any concentration of Ro15-4513. These data suggest that even though Ro15-4513 has significant effects on behavioral responses induced by ethanol it has no effect on the cardiovascular and metabolic responses elicited during ethanol intoxication.

  12. CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration - Detailed Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.

  13. CADDIS Volume 2. Sources, Stressors and Responses: Flow Alteration - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the flow alteration module, when to list flow alteration as a candidate cause, ways to measure flow alteration, simple and detailed conceptual model diagrams for flow alteration, flow alteration module references and literature reviews.

  14. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound.

  15. Effect of short-term weight loss on mental stress-induced cardiovascular and pro-inflammatory responses in women.

    PubMed

    Endrighi, Romano; Hamer, Mark; Hackett, Ruth A; Carvalho, Livia A; Jackson, Sarah E; Wardle, Jane; Steptoe, Andrew

    2015-01-01

    Epidemiologic evidence links psychosocial stress with obesity but experimental studies examining the mechanisms that mediates the effect of stress on adiposity are scarce. The aim of this study was to investigate whether changes in adiposity following minimal weight loss affect heightened stress responses in women, and examine the role of the adipokine leptin in driving inflammatory responses. Twenty-three overweight or obese, but otherwise healthy, women (M age = 30.41 ± 8.0 years; BMI = 31.9 ± 4.1 kg/m(2)) completed standardized acute mental stress before and after a 9-week calorie restriction program designed to modify adiposity levels. Cardiovascular (blood pressure and heart rate) and inflammatory cytokines (leptin and interleukin-6; IL-6) responses to mental stress were assessed several times between baseline and a 45-min post-stress recovery period. There were modest changes in adiposity measures while the adipokine leptin was markedly reduced (-27%) after the intervention. Blood pressure reactivity was attenuated (-3.38 ± 1.39 mmHg) and heart rate recovery was improved (2.07 ± 0.96 Bpm) after weight loss. Blood pressure responses were inversely associated with changes in waist to hip ratio post intervention. Decreased levels of circulating leptin following weight loss were inversely associated with the IL-6 inflammatory response to stress (r = -0.47). We offered preliminary evidence suggesting that modest changes in adiposity following a brief caloric restriction program may yield beneficial effect on cardiovascular stress responses. In addition, reductions in basal leptin activity might be important in blunting pro-inflammatory responses. Large randomized trials of the effect of adiposity on autonomic responses are thus warranted.

  16. Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats

    PubMed Central

    Liu, Longzhu; Lu, Yi; Bi, Xueyuan; Xu, Man; Yu, Xiaojiang; Xue, Runqing; He, Xi; Zang, Weijin

    2017-01-01

    Autonomic dysfunction and abnormal immunity lead to systemic inflammatory responses, which result in cardiovascular damage in hypertension. The aim of this report was to investigate the effects of choline on cardiovascular damage in hypertension. Eight-week-old male spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were intraperitoneally injected with choline or vehicle (8 mg/kg/day). After 8 weeks, choline restored the cardiac function of the SHRs, as evidenced by decreased heart rate, systolic blood pressure, left ventricle systolic pressure, and ±dp/dtmax and increased ejection fraction and fractional shortening. Choline also ameliorated the cardiac hypertrophy of the SHRs, as indicated by reduced left ventricle internal dimensions and decreased cardiomyocyte cross-sectional area. Moreover, choline improved mesenteric arterial function and preserved endothelial ultrastructure in the SHRs. Notably, the protective effect of choline may be due to its anti-inflammatory effect. Choline downregulated expression of interleukin (IL)-6 and tumour necrosis factor-α and upregulated IL-10 in the mesenteric arteries of SHRs, possibly because of the inhibition of Toll-like receptor 4. Furthermore, choline restored baroreflex sensitivity and serum acetylcholine level in SHRs, thus indicating that choline improved vagal activity. This study suggests that choline elicits cardiovascular protective effects and may be useful as a potential adjunct therapeutic approach for hypertension. PMID:28225018

  17. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression

    PubMed Central

    Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; Harding, Scott A.

    2016-01-01

    Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability. PMID:27641356

  18. Health monitoring of Japanese payload specialist: Autonomic nervous and cardiovascular responses under reduced gravity condition (L-0)

    NASA Technical Reports Server (NTRS)

    Sekiguchi, Chiharu

    1993-01-01

    In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.

  19. The selected response procedure: a variation on Appelbaum's altered atmosphere procedure for the Rorschach.

    PubMed

    Jaffe, L

    1988-01-01

    This article introduces the Selected Response Procedure, which is a supplementary technique for expanding the scope of the Rorschach test. The procedure is conducted as follows: After the standard administration of the Rorschach test, patients are asked to look through all of the cards a second time and select one more response from any card of their choice. A rationale for this procedure is developed through a comparison to another supplementary Rorschach technique, the Altered Atmosphere Procedure. The importance of understanding the selected response within a theoretical framework, as well as the clinical context of each selected response, is highlighted by a clinical example using object relations theory. Finally, a number of didactic questions are offered as potential ways to query the possible meaning of selected responses.

  20. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents.

    PubMed

    Nobrega, Antonio C L; O'Leary, Donal; Silva, Bruno Moreira; Marongiu, Elisabetta; Piepoli, Massimo F; Crisafulli, Antonio

    2014-01-01

    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.

  1. Dietary potassium: a key mediator of the cardiovascular response to dietary sodium chloride.

    PubMed

    Kanbay, Mehmet; Bayram, Yeter; Solak, Yalcin; Sanders, Paul W

    2013-01-01

    Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have shown that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke, and stroke-related death are accelerated by salt intake but might be curbed by increasing dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence suggests that a diet rich in potassium content serves a vasculoprotective function, particularly in the setting of salt-sensitive hypertension and prehypertension.

  2. Mathematical Model of Cardiovascular and Metabolic Responses to Umbilical Cord Occlusions in Fetal Sheep.

    PubMed

    Wang, Qiming; Gold, Nathan; Frasch, Martin G; Huang, Huaxiong; Thiriet, Marc; Wang, Xiaogang

    2015-12-01

    Fetal acidemia during labor is associated with an increased risk of brain injury and lasting neurological deficits. This is in part due to the repetitive occlusions of the umbilical cord (UCO) induced by uterine contractions. Whereas fetal heart rate (FHR) monitoring is widely used clinically, it fails to detect fetal acidemia. Hence, new approaches are needed for early detection of fetal acidemia during labor. We built a mathematical model of the UCO effects on FHR, mean arterial blood pressure (MABP), oxygenation and metabolism. Mimicking fetal experiments, our in silico model reproduces salient features of experimentally observed fetal cardiovascular and metabolic behavior including FHR overshoot, gradual MABP decrease and mixed metabolic and respiratory acidemia during UCO. Combined with statistical analysis, our model provides valuable insight into the labor-like fetal distress and guidance for refining FHR monitoring algorithms to improve detection of fetal acidemia and cardiovascular decompensation.

  3. Mathematical Model of Cardiovascular and Metabolic Responses to Umbilical Cord Occlusions in Fetal Sheep

    PubMed Central

    Wang, Qiming; Gold, Nathan; Frasch, Martin G.; Thiriet, Marc; Wang, Xiaogang

    2017-01-01

    Fetal acidemia during labor is associated with an increased risk of brain injury and lasting neurological deficits. This is in part due to the repetitive occlusions of the umbilical cord (UCO) induced by uterine contractions. Whereas fetal heart rate (FHR) monitoring is widely used clinically, it fails to detect fetal acidemia. Hence, new approaches are needed for early detection of fetal acidemia during labor. We built a mathematical model of the UCO effects on FHR, mean arterial blood pressure (MABP), oxygenation and metabolism. Mimicking fetal experiments, our in silico model reproduces salient features of experimentally observed fetal cardiovascular and metabolic behavior including FHR overshoot, gradual MABP decrease and mixed metabolic and respiratory acidemia during UCO. Combined with statistical analysis, our model provides valuable insight into the labor-like fetal distress and guidance for refining FHR monitoring algorithms to improve detection of fetal acidemia and cardiovascular decompensation. PMID:26582358

  4. Pain perception and cardiovascular system response among athletes playing contact sports.

    PubMed

    Leźnicka, Katarzyna; Pawlak, Matthias; Białecka, Monika; Safranow, Krzysztof; Cięszczyk, Paweł

    2017-04-10

    The aim of this study was to determine whether the contact sports change the perception of pain as assessed by the cold pressor test (CPT), and if the test induces the same reaction of the cardiovascular system in contact athletes and non-athletes. The study involved 321 healthy men; 140 contact athletes and 181 students of the University of Szczecin (control). Pain threshold and pain tolerance were evaluated using CPT. Cardiovascular measurements were made during CPT. The contact athletes showed a much higher tolerance to pain than the control group (median time 120 vs. 94 s, respectively, p = 0.0002). The thresholds of pain in both groups did not differ significantly between the groups. Systolic blood pressure measured before and during the test in all three measurements was statistically significantly higher in athletes compared with the control group. Heart rate and diastolic blood pressure did not differ significantly between the studied groups.

  5. Characterization of fluid physics effects on cardiovascular response to microgravity (G-572)

    NASA Technical Reports Server (NTRS)

    Pantalos, George M.; Bennett, Thomas E.; Sharp, M. Keith; Woodruff, Stewart; Oleary, Sean; Gillars, Kevin; Lemon, Mark; Sojka, Jan

    1995-01-01

    The investigation of cardiovascular adaptation to space flight has seen substantial advancement in the last several years. In-flight echocardiographic measurements of astronaut cardiac function on the Space Shuttle have documented an initial increase, followed by a progressive reduction in both left ventricular volume index and stroke volume with a compensatory increase in heart rate to maintain cardiac output. To date, the reduced cardiac size and stroke volume have been presumed to be the consequence of the reduction in circulating fluid volume within a few days after orbital insertion. However, no specific mechanism for the reduced stroke volume has been identified. The following investigation proposes the use of a hydraulic model of the cardiovascular system to examine the possibility that the observed reduction in stroke volume may, in part, be related to fluid physics effects on heart function. The automated model is being prepared to fly as a Get Away Special (GAS) payload within the next year.

  6. The Effect of Ambient Temperature on the Cardiovascular Responses to Microgravity as Simulated by six Degrees Head Down Tilt (HDT)

    NASA Astrophysics Data System (ADS)

    Nangalia, Vishal; Ernsting, John

    Background: To determine the effect of ambient temperature on the thermoregulatory and cardiovascular responses to microgravity as simulated by six degrees head down tilt (HDT). Hypothesis: The thermoregulatory and cardiovascular responses to 6°HDT are unaffected by ambient temperatures between 12° and 32°C. Method: Each of five volunteer subjects (18-24 y.) underwent three separate 6 h exposures in a climatic chamber whilst lying supine with 6°HDT. The ambient temperatures for the first 5 h of the exposure were 12°, 22° and 32°C. At the beginning of the sixth hour, the ambient temperature was either increased or decreased by 10°C depending on the initial temperature. Heart rate, blood pressure, forearm bloodflow, core and skin temperatures, urine output and body weight were measured before, during and after each exposure. Results: Mean arterial pressure was increased in all exposures, though the increase varied with the ambient temperature. Pulse pressure after 5 h HDT increased in the 32°C exposure, remained unchanged at 22°C and decreased at 12°C. The threshold for thermoregulatory increases in forearm vascular conductance was lowered. Core temperature of the body increased in the exposures to 32°C and 22°C. The reduction in body weight (mean 1 kg.) was identical in all exposures whilst the urine output varied with ambient temperature. No significant changes occurred in any variable when the ambient temperature was changed by 10°C at the end of the fifth hour. Conclusions: The cardiovascular responses to 6 h exposure to 6° HDT, are affected by the ambient temperature.

  7. Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity

    NASA Technical Reports Server (NTRS)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.

  8. Altered response-preparation in patients with adult ADHD: A high-density ERP study.

    PubMed

    Kakuszi, Brigitta; Tombor, László; Papp, Szilvia; Bitter, István; Czobor, Pál

    2016-03-30

    Aberrations in early-developing bottom-up processes, such as stimulus-driven response preparation, are thought to play a critical role in the onset of ADHD, and in its persistence over time. Electrophysiology offers a unique tool to gain insight into response preparation, since response preparation has been associated with distinctive ERP changes, including negative potential-shifts which occur predominantly over frontal brain areas. We examined response-preceding negative potential shifts (RPNS) as a probe of response-preparation in adult ADHD patients by obtaining high-density event-related potentials from 33 ADHD and 29 matched healthy subjects during a Go/Nogo task using a 128-channel BioSemi recording-system. Compared to controls, ADHD patients showed enhancement of the RPNS in fronto-central brain regions in the Go condition during correct responses. This change was associated with poor performance in the Stroop incongruency-task: the greater the enhancement, the higher the proportion of errors. Moreover, the ERP-enhancement showed association with the severity of ADHD-symptoms; and with heightened response-variability. Thus, ADHD patients demonstrate neurophysiological alterations in response-preparation and response-preceding brain activity, suggestive of excessive activation of prefrontal neural circuits. Given the correlation with neuropsychological and psychopathological measures, these changes may constitute a pathway for core symptoms of ADHD, including premature and impaired response-preparation and motor-hyperactivity.

  9. Role of Endogenous Factors in Response of Erythrocyte Membrane in Patients with Cardiovascular Diseases under Conditions of Ischemic Exposure.

    PubMed

    Pivovarov, Yu I; Kuznetsova, E E; Koryakina, L B; Gorokhova, V G; Kuril'skaya, T E

    2015-05-01

    We studied specific features of erythrocyte membrane response to short-term occlusion of the brachial artery in patients with cardiovascular pathology. Under ischemic conditions, processes of sorption were primarily intensified in patients with effort angina and processes of hemoglobin binding with erythrocyte membrane predominated in patients with essential hypertension. These changes in the cell membrane were related to modulation of aggregation properties of erythrocytes (in patients with angina) and plasminogen activity (in patients with essential hypertension). They can also be associated with changes in glucose levels (effort angina) and uric acid (essential hypertension) whose effects can be significantly modified by other endogenous factors.

  10. Instrumentation for Non-Invasive Assessment of Cardiovascular Regulation

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J.

    1999-01-01

    It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.

  11. Dose-Response Relation between Work Hours and Cardiovascular Disease Risk: Findings from the Panel Study of Income Dynamics

    PubMed Central

    Conway, Sadie H.; Pompeii, Lisa A.; Roberts, Robert E.; Follis, Jack L.; Gimeno, David

    2015-01-01

    Objectives To examine the presence of a dose-response relationship between work hours and incident cardiovascular disease (CVD) in a representative sample of U.S. workers. Methods Retrospective cohort study of 1,926 individuals from the Panel Study of Income Dynamics (1986–2011) employed for at least 10 years. Restricted cubic spline regression was used to estimate the dose-response relationship of work hours with CVD. Results A dose-response relationship was observed in which an average workweek of 46 hours or more for at least 10 years was associated with increased risk of CVD. Compared to working 45 hours per week, working an additional 10 hours per week or more for at least 10 years increased CVD risk by at least 16%. Conclusions Working more than 45 work hours per week for at least 10 years may be an independent risk factor for CVD. PMID:26949870

  12. Altered prefronto-striato-parietal network response to mental rotation in HIV.

    PubMed

    Schweinsburg, Brian C; Scott, J Cobb; Schweinsburg, Alecia Dager; Jacobus, Joanna; Theilmann, Rebecca J; Frank, Larry R; Weber, Erica; Grant, Igor; Woods, Steven Paul

    2012-02-01

    The present study used functional magnetic resonance imaging to examine the neural substrates of mental rotation in 11 individuals with HIV infection and 13 demographically similar HIV seronegative volunteers. Individuals with HIV showed increased brain response to mental rotation in prefrontal and posterior parietal cortices, striatum, and thalamus, with significant HIV by angle interactions emerging in the prefrontal cortex and caudate. Results indicate that HIV infection is associated with altered brain response to mental rotation in fronto-striato-parietal pathways, which may reflect compensatory strategies, recruitment of additional brain regions, and/or increased neuroenergetic demands during mental rotation needed to offset underlying HIV-associated neural injury.

  13. Cardiovascular exercise intervention improves the primary antibody response to keyhole limpet hemocyanin (KLH) in previously sedentary older adults.

    PubMed

    Grant, R W; Mariani, R A; Vieira, V J; Fleshner, M; Smith, T P; Keylock, K T; Lowder, T W; McAuley, E; Hu, L; Chapman-Novakofski, K; Woods, J A

    2008-08-01

    Based upon a prior cross-sectional study, we hypothesized that an aerobic exercise intervention in sedentary older adults would improve a primary T cell-dependent immune response. Participants were a subset of older subjects from a large, ongoing exercise intervention study who were randomly assigned to either an aerobic exercise (Cardio, n=30, 68.9+0.8 years) or flexibility/balance (Flex, n=20, 69.9+1.2 years) intervention. The intervention consisted of either three aerobic sessions for 30-60 min at 55-70% VO(2 max) or two 60 min flexibility/balance sessions weekly for 10 months. Eight months into the intervention, samples were collected before intramuscular administration of KLH (125 microg), followed by sampling at 2, 3, and 6 weeks post-KLH. Serum anti-KLH IgM, IgG1, and IgG2 was measured by ELISA. Physiological and psychosocial measures were also assessed pre- and post-intervention. While there was no difference in the anti-KLH IgG2 response between groups, Cardio displayed significantly (p<0.05) higher anti-KLH IgG1 (at weeks 2, 3, and 6 post) and IgM responses when compared to Flex. Despite cardiovascular intervention-induced improvement in physical fitness (approximately 11% vs. 1% change in VO(2 peak) in Cardio vs. Flex, respectively), we found no relationship between improved fitness and enhanced anti-KLH antibody responses. Optimism, perceived stress, and affect were all associated with enhanced immune response. We have shown for the first time that cardiovascular training in previously sedentary elderly results in significantly higher primary IgG1 and IgM antibody responses, while having no effect on IgG2 production.

  14. Geomorphological Responses to Anthropogenic Alterations within the Nakdong and Yeongsan Estuaries, South Korea

    NASA Astrophysics Data System (ADS)

    Williams, Joshua; Dellapenna, Timothy; Lee, guan-hong

    2016-04-01

    On the Korean Peninsula, significant anthropogenic alterations have occurred to drainage basins and estuaries due to river diversion for agricultural practices, coastal construction of estuarine barrages, and extensive seawalls in land reclamation projects. Over the past century these practices have considerably modified the shoreline and altered both net transport of sediment and freshwater from these systems and modulated the timing and intensity of the discharge. As a result, the sediment dynamics and ecosystems within the estuaries have been significantly altered. Considering drainage basins >500 km2, 56% of rivers reaching the coast in South Korea have been occluded by an estuarine dam, restricting delivery of sediments and altering/preventing natural tidal exchange of fresh and saltwater. The Nakdong and Yeongsan Estuaries are prime examples and are respectively representative of micro and macro-tidal estuaries found in the region. The impacts of the modifications include a substantial decrease in the tidal prism, reduction of accommodation space in intertidal zones, and changes in the dispersal mechanisms and accumulation of sediments. In order to assess these alterations, a series of gravity and vibracores were analyzed using 210Pb and 137Cs radioisotope geochronology, laser diffraction particle analyses, and X-radiography. Additionally, side scan sonar and CHIRP seismic data were collected. Our observations have found a shift in depositional environments as a natural response to an extensive array of anthropogenic alterations. The changes in sediment trapping efficiency that have ensued resulting from extensive coastal construction provides the basis for reevaluating traditional facies models for estuaries in the Anthropocene

  15. The role of altered cutaneous immune responses in the induction and persistence of rosacea.

    PubMed

    Margalit, Anatte; Kowalczyk, Michał J; Żaba, Ryszard; Kavanagh, Kevin

    2016-04-01

    Rosacea is a chronic inflammatory skin condition that predominantly affects the skin of the face and the eyes. Several factors are associated with the onset and persistence of the condition, including an altered immune response in the skin and elevated levels of Demodex mites. Alterations in the immune response include elevated levels of LL-37 in rosacea skin, increased expression of TLR-2 and increased amounts of vitamin D3 in epidermal tissue. The combined effect of these changes may make the skin more sensitive to external and internal stimuli. External stimuli that may trigger or sustain rosacea inflammation include exposure to ultraviolet light, while internal factors may include the presence of elevated numbers of Demodex mites. These mites may directly stimulate an immune response or release bacteria within the pilosebaceous unit that act as a trigger for inflammation. This review will highlight the changes that occur in the immune response of the skin and describe how Demodex mites and associated bacteria may activate this response and lead to the characteristics of rosacea.

  16. Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Lü, X. T.; Jiang, L. L.; Wu, H. F.; Miao, Y.; Kardol, P.

    2013-12-01

    Water availability has profound effects on plant growth and productivity in temperate and semiarid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semiarid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.

  17. Neural, Endocrine and Local Mechanisms in the Effects of Environmental Stressors on the Cardiovascular Response to Blood Loss

    DTIC Science & Technology

    2006-08-01

    of Ang II AT1 receptors with Losartan altered the response to blood loss with or without simultaneous air jet stress. Either drug decreased the rabbits...decreased ability to defend arterial pressure, Losartan or captopril also: decreased the skeletal muscle vasoconstriction characteristic of phase 1...blockade of AT1 receptors with Losartan on the response to hypotensive hemorrhage. Consistent with our earlier results, iv Losartan (5 mg/kg) was equally

  18. Role of Autonomic Reflex Arcs in Cardiovascular Responses to Air Pollution Exposure

    EPA Science Inventory

    The body responds to environmental stressors by triggering autonomic reflexes in the pulmonary receptors, baroreceptors, and chemoreceptors to maintain homeostasis. Numerous studies have shown that exposure to various gases and airborne particles can alter the functional outcome ...

  19. Centrally administered CDP-choline induced cardiovascular responses are mediated by activation of the central phospholipase-prostaglandin signaling cascade.

    PubMed

    Topuz, Bora B; Altinbas, Burcin; Ilhan, Tuncay; Yilmaz, Mustafa S; Erdost, Hatice; Saha, Sikha; Savci, Vahide; Yalcin, Murat

    2014-05-14

    The present study was designed to determine the involvement of central prostaglandin synthesis on the pressor and bradycardic effect of cytidine 5'-diphosphocholine (CDP-choline). Intracerebroventricular (i.c.v.) administration of CDP-choline was made and blood pressure and heart rate were recorded in male Sprague Dawley rats throughout this study. Microdialysis and immunohistochemical studies were performed to measure extracellular total prostaglandin concentration and to show cyclooxygenase-1 and -2 (COX-1 and -2) immunoreactivities, respectively, in the posterior hypothalamic area. Moreover, rats were pretreated (i.c.v) with mepacrine [a phospholipase A2 (PLA2) inhibitor], ibuprofen [a nonselective COX inhibitor], neomycine [a phospholipase C (PLC) inhibitor] or furegrelate [a thromboxane A2 (TXA2) synthesis inhibitor] 5 min prior to the injection of CDP-choline to determine the effects of these inhibitors on cardiovascular responses to CDP-choline. Control rats were pretreated (i.c.v) with saline. CDP-choline caused a dose- and time-dependent increase in blood pressure and decrease in heart rate. Immunohistochemical studies showed that CDP-choline increased COX-1 and -2 immunoreactivities in the posterior hypothalamic area. CDP-choline also elevated hypothalamic extracellular total prostaglandin concentration by 62%, as shown in microdialysis studies. Mepacrine or ibuprofen pretreatments almost completely blocked the pressor and bradycardic responses to CDP-choline while neomycine or furegrelate partially attenuated the drug-induced cardiovascular effects. The results suggest that CDP-choline may stimulate prostaglandin synthesis through the activation of PLA2, cyclooxygenases (COX-1 and -2) and prostaglandins and at least TXA2, may mediate the drug׳s cardiovascular effects.

  20. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet

    PubMed Central

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas

    2016-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. PMID:27885053

  1. Gender differences in cardiovascular and electrodermal responses to public speaking task: the role of anxiety and mood states.

    PubMed

    Carrillo, E; Moya-Albiol, L; González-Bono, E; Salvador, A; Ricarte, J; Gómez-Amor, J

    2001-11-01

    Gender moderates psychophysiological responses to stress. In addition to the hormonal background, different psychological states related to social stressors, such as anxiety and mood, could affect this response. The purpose of this study was to examine the existence of gender differences in the cardiovascular and electrodermal responses to a speech task and their relationship with anxiety and the mood variations experienced. For this, non-specific skin conductance responses (NSRs), heart rate (HR), and finger pulse volume (FPV) were measured at rest, and during preparation, task and recovery periods of an academic career speech in undergraduate men (n=15) and women (n=23), with assessment of changes in the state version of the State-Trait Anxiety Inventory (STAI-S) and in the Profile of Mood States (POMS) questionnaires. Men and women did not differ in trait anxiety, hostility/aggressiveness, or in the appraisal of the task, which were evaluated with the trait version of the State-Trait Anxiety Inventory (STAI-T), the Buss and Durkee Hostility Inventory (BDHI), and a self-report elaborated by ourselves, respectively. Women had higher FPV in all periods except during the task, and were more reactive to the stressor in state anxiety, and in the amplitude of NSRs. No gender differences for HR and for the frequency of NSRs were found. Anxiety and mood states were differently related to cardiovascular and electrodermal measurements in men and women. Further studies should consider the hormonal variations in addition to the psychological dimensions, in order to offer a more integrative perspective of the complex responses to stress.

  2. Length of surgery and pressure ulcers risk in cardiovascular surgical patients: a dose-response meta-analysis.

    PubMed

    Chen, Hong-Lin; Shen, Wang-Qin; Liu, Peng; Liu, Kun

    2017-03-02

    The aim of this study was to assess the relationship between length of surgery (LOS) and pressure ulcer (PU) risk in cardiovascular surgery patients. PubMed and Web of Science were systematically searched. We compared LOS difference between PU (+) group and PU (-) group. We also examined the dose-response effect of this relationship. The mean LOS in the PU(+) groups ranged from 252·5 to 335·7 minutes, compared with 233·0 to 298·3 minutes in PU(-) groups. The LOS was higher in PU(+) groups compared with PU(-) groups [weighted mean difference (WMD) = 36·081 minutes; 95% CI: 21·640-50·522 minutes; Z = 4·90, P = 0·000]. The funnel plot showed no publication bias. A significant dose-response association was also found between the LOS and the risk of surgery-related pressure ulcers (SRPU, model χ(2)  = 9·29, P = 0·000). In the linear model, the PU OR was 1·296 (95% CI 1·097-1·531) for a 60-minute increase in the LOS intervals and 13·344 (95% CI 2·521-70·636) for a 600-minute increase. In a spline model, the OR of PU increased almost linearly along with the LOS. Our meta-analysis indicated that LOS was an important risk factor for pressure ulcers in cardiovascular surgical patients.

  3. Experimental and theoretical studies of spectral alteration in ultrasonic waves resulting from nonlinear elastic response in rock

    SciTech Connect

    Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.

    1993-11-01

    Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.

  4. Early advancing age alters plasma glucose and glucoregulatory hormones in response to supramaximal exercise.

    PubMed

    Zouhal, Hassane; Vincent, Sophie; Moussa, Elie; Botcazou, Maïtel; Delamarche, Paul; Gratas-Delamarche, Arlette

    2009-11-01

    After the age of 60, the decrease in physical activity and the increase in fat mass (FM) are two essential factors contributing to the alteration of glucose, insulin, and catecholamines responses induced by exercise. To discard these two factors, we compared the glucoregulatory responses in three different groups of men between the ages 21 and 34, and matched pairs: trained groups (T34 and T21) were matched for training level; T21 and U21 (U for untrained) were matched for age; T34 and U21 were matched for FM. The glucoregulatory responses were determined by venous plasma concentrations of glucose ([GLU]), insulin ([INS]), and catecholamines (adrenaline: [A], noradrenaline: [NA]) before and after a Wingate test. [GLU], [INS], and [A] did not differ between T21 and U21, indicating that high-level training had no effects on these parameters. On the other hand, T34 compared to T21 and U21, had higher GLU associated with lower INS post-exercise concentrations. Moreover, [A(max)] was significantly lower in this group. Consequently, T34 only exhibited a significant alteration in glucose and glucoregulatory responses after a Wingate test, which could not be explained by the usual decrease in physical activity and/or the increase in FM. Therefore, aging alone seems to be one main factor of this deterioration.

  5. Short-term precipitation exclusion alters microbial responses to soil moisture in a wet tropical forest.

    PubMed

    Waring, Bonnie G; Hawkes, Christine V

    2015-05-01

    Many wet tropical forests, which contain a quarter of global terrestrial biomass carbon stocks, will experience changes in precipitation regime over the next century. Soil microbial responses to altered rainfall are likely to be an important feedback on ecosystem carbon cycling, but the ecological mechanisms underpinning these responses are poorly understood. We examined how reduced rainfall affected soil microbial abundance, activity, and community composition using a 6-month precipitation exclusion experiment at La Selva Biological Station, Costa Rica. Thereafter, we addressed the persistent effects of field moisture treatments by exposing soils to a controlled soil moisture gradient in the lab for 4 weeks. In the field, compositional and functional responses to reduced rainfall were dependent on initial conditions, consistent with a large degree of spatial heterogeneity in tropical forests. However, the precipitation manipulation significantly altered microbial functional responses to soil moisture. Communities with prior drought exposure exhibited higher respiration rates per unit microbial biomass under all conditions and respired significantly more CO2 than control soils at low soil moisture. These functional patterns suggest that changes in microbial physiology may drive positive feedbacks to rising atmospheric CO2 concentrations if wet tropical forests experience longer or more intense dry seasons in the future.

  6. Forebrain and brain stem neural circuits contribute to altered sympathetic responses to heating in senescent rats.

    PubMed

    Kenney, Michael J; Fels, Richard J

    2003-11-01

    Acute heating in young rats increases visceral sympathetic nerve discharge (SND); however, renal and splanchnic SND responses to hyperthermia are attenuated in senescent compared with young Fischer 344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). Central mechanisms by which aging alters visceral SND responses to heating are unknown. We tested the hypothesis that forebrain neural circuits are involved in suppressing sympathoexcitatory responses to heating in chloralose-anesthetized, senescent F344 rats. Renal and splanchnic SND responses to increased (38 degrees C-41 degrees C) internal temperature were determined in midbrain-transected (MT) and sham-MT young (3-mo-old), mature (12-mo-old), and senescent (24-mo-old) F344 rats and in cervical-transected (CT) and sham-CT senescent rats. Renal SND remained unchanged during heating in MT and sham-MT senescent rats but was increased in CT senescent rats. Splanchnic SND responses to heating were higher in MT vs. sham-MT senescent rats and in CT vs. MT senescent rats. SND responses to heating were similar in MT and sham-MT young and mature rats. Mean arterial pressure (MAP) was increased during heating in MT but not in sham-MT senescent rats, whereas heating-induced increases in MAP were higher in sham-MT vs. MT young rats. These data suggest that in senescent rats suppression of splanchnic SND to heating involves forebrain and brain stem neural circuits, whereas renal suppression is mediated solely by brain stem neural circuits. These results support the concept that aging alters the functional organization of pathways regulating SND and arterial blood pressure responses to acute heating.

  7. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin

    PubMed Central

    Saucedo, Manuel; Ponce, Georgina; Campos, María Eugenia; Eapen, Delfeena; García, Edith; Luján, Rosario; Sánchez, Yoloxóchitl; Cassab, Gladys I.

    2012-01-01

    Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response. PMID:22442413

  8. Gonadal transcriptome alterations in response to dietary energy intake: sensing the reproductive environment.

    PubMed

    Martin, Bronwen; Pearson, Michele; Brenneman, Randall; Golden, Erin; Wood, William; Prabhu, Vinayakumar; Becker, Kevin G; Mattson, Mark P; Maudsley, Stuart

    2009-01-01

    Reproductive capacity and nutritional input are tightly linked and animals' specific responses to alterations in their physical environment and food availability are crucial to ensuring sustainability of that species. We have assessed how alterations in dietary energy intake (both reductions and excess), as well as in food availability, via intermittent fasting (IF), affect the gonadal transcriptome of both male and female rats. Starting at four months of age, male and female rats were subjected to a 20% or 40% caloric restriction (CR) dietary regime, every other day feeding (IF) or a high fat-high glucose (HFG) diet for six months. The transcriptional activity of the gonadal response to these variations in dietary energy intake was assessed at the individual gene level as well as at the parametric functional level. At the individual gene level, the females showed a higher degree of coherency in gonadal gene alterations to CR than the males. The gonadal transcriptional and hormonal response to IF was also significantly different between the male and female rats. The number of genes significantly regulated by IF in male animals was almost 5 times greater than in the females. These IF males also showed the highest testosterone to estrogen ratio in their plasma. Our data show that at the level of gonadal gene responses, the male rats on the IF regime adapt to their environment in a manner that is expected to increase the probability of eventual fertilization of females that the males predict are likely to be sub-fertile due to their perception of a food deficient environment.

  9. Deer herbivory alters forest response to canopy decline caused by an exotic insect pest.

    PubMed

    Eschtruth, Anne K; Battles, John J

    2008-03-01

    Hemlock woolly adelgid (HWA; Adelges tsugae) infestations have resulted in the continuing decline of eastern hemlock (Tsuga canadensis) throughout much of the eastern United States. While the initial impacts of HWA infestations have been documented, our understanding of forest response to this disturbance remains incomplete. HWA infestation is not occurring in isolation but within a complex ecological context. The role of potentially important interacting factors, such as elevated levels of white-tailed deer herbivory, is poorly understood. Despite the potential for herbivory to alter forest successional trajectories following a canopy disturbance, little is known about herbivory-disturbance interactions, and herbivory is rarely considered in assessing forest response to a co-occurring disturbance. We used repeated censuses of deer exclosures and paired controls (400 paired plots) to quantify the impact of deer herbivory on tree seedling species abundance in 10 eastern hemlock ravines that span a gradient in HWA-induced canopy decline severity. Use of a maximum likelihood estimation framework and information theoretics allowed us to quantify the strength of evidence for alternative models developed to estimate the impacts of herbivory on tree seedling abundance as a function of varying herbivore density and canopy decline severity. The exclusion of deer herbivory had marked impacts on the abundance of the studied seedling species: Acer rubrum, Acer saccharum, Betula lenta, Nyssa sylvatica, Quercus montana, and Tsuga canadensis. For all six species, the relationship between seedling abundance and deer density was either exponential or saturating. Although the functional form of the response varied among seedling species, the inclusion of both deer density and canopy decline severity measures consistently resulted in models with substantially greater support. Canopy decline resulted in higher proportional herbivory impacts and altered the ranking of herbivory impacts

  10. Phentermine cardiovascular safety II: response to Yosefy Int J Cardiol. 2009 Epub Mar 19.

    PubMed

    Rothman, Richard B; Hendricks, Ed J

    2010-11-19

    This is the fourth in a series of letters-to-the-editor discussing phentermine and cardiovascular safety. Yosefy et al., in reporting a case of aortic cusp tear in a 28 year-old woman with a bicuspid aortic valve, attributed the tear to previous phentermine therapy. Evidence of mitral and tricuspid valve thickening was noted at echocardiography. In replying we pointed out that phentermine-induced valvular heart disease has not been reported and suggested that, since the reference cited for support referred to fenfluramine-induced valvulopathy, the attribution of the cusp tear to phentermine was incorrect. Yosefy replied, asserting that since the patient had no other cardiac risk factor, the tear had to be due to phentermine. In support of his presumption that phentermine therapy can induce cardiac risk he cited only the PDR warnings for phentermine. In this reply we point out that a congenital bicuspid valve should not be ignored as a cardiac risk factor, that aortic valve cusp tears have been associated with bicuspid valves but never with phentermine or with valve thickening no matter the etiology, and that there is no published data implicating phentermine as a cause of valve thickening (or any other valve pathology). Evidence of phentermine safety in the peer-reviewed medical literature is discussed in the context of the cardiovascular warnings for phentermine in the PDR.

  11. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered

    PubMed Central

    Pialasse, Jean-Philippe; Descarreaux, Martin; Mercier, Pierre; Blouin, Jean; Simoneau, Martin

    2015-01-01

    Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20) or severe (n = 16) spine deformation were compared to those of healthy control adolescents (n = 16). Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes. PMID:26580068

  12. Altered Purkinje cell responses and calmodulin expression in the spontaneously ataxic mouse, Pogo.

    PubMed

    Lee, Kwan Young; Kim, Jin Seong; Kim, Se Hoon; Park, Hyung Seo; Jeong, Young-Gil; Lee, Nam-Seob; Kim, Dong Kwan

    2011-04-01

    Ataxia is often associated with altered cerebellar motor control, a process in which Purkinje cells (PCs) play a principal role. Pogo mice display severe motor deficits characterized by an ataxic gait accompanying hindlimb hyperextension. Here, using whole-cell patch-clamp recordings, we show that parallel fiber (PF)-excitatory post-synaptic currents (PF-EPSCs) are reduced, paired-pulse facilitation (PPF) is increased and PF-PC long-term depression (LTD) is impaired in Pogo mice; in contrast, climbing-fiber EPSCs are preserved. In control mice, treatment with the calmodulin antagonist calmidazolium (5 μm) impaired PPF and LTD. Notably, cerebellar calmodulin expression was significantly reduced in Pogo mice compared with control mice. Control PCs predominantly exhibited a tonic firing pattern, whereas the firing pattern in Pogo PCs was mainly a complex burst type. These results implicate alterations in PC responses and calmodulin content in the abnormal cerebellar function of Pogo mice.

  13. Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases.

    PubMed

    Khang, Dongwoo; Liu-Snyder, Peishan; Pareta, Rajesh; Lu, Jing; Webster, Thomas J

    2009-06-01

    Extensive prolonged interactions of inflammatory cells (such as macrophages) at the host-implant interface may lead to implant failure. While previous studies have shown increased in vitro and in vivo bone cell adhesion, proliferation and mineralization on nanophase compared to currently implanted ceramics, few studies have been conducted to elucidate inflammatory cell responses on such nanophase ceramics. Controlling surface feature size and corresponding surface roughness on implants may clearly alter immune cell responses, which would be an extremely important consideration for the use of nanostructured materials as improved biomaterials. In this study, reduced macrophage density was observed on alumina (Al(2)O(3)) compacts with greater nanometer surface roughness accompanied by changes in crystallinity for up to 24 h in culture. Since alumina is a commonly used ceramic in orthopedic applications, this in vitro study continues to support the use of nanophase ceramics as improved orthopedic implants by demonstrating reduced macrophage responses.

  14. Impact of CYP2D6 Genetic Variation on the Response of the Cardiovascular Patient to Carvedilol and Metoprolol.

    PubMed

    Lymperopoulos, Anastasios; McCrink, Katie A; Brill, Ava

    2015-01-01

    Carvedilol and metoprolol are two of the most commonly prescribed β-blockers in cardiovascular medicine and primarily used in the treatment of hypertension and heart failure. Cytochrome P450 2D6 (CYP2D6) is the predominant metabolizing enzyme of these two drugs. Since the first description of a CYP2D6 sparteinedebrisoquine polymorphism in the mid-seventies, substantial genetic heterogeneity has been reported in the human CYP2D6 gene, with ~100 different polymorphisms identified to date. Some of these polymorphisms render the enzyme completely inactive while others do not modify its activity. Based on all the identified variants, four metabolizer phenotypes are nowadays used to characterize drug metabolism via CYP2D6 in humans: ultra-rapid metabolizer (UM); extensive metabolizer (EM); intermediate metabolizer (IM); and poor metabolizer (PM) phenotypes. As a consequence of these CYP2D6 metabolizer phenotypes, pharmacokinetics and bioavailability of carvedilol and metoprolol can range from therapeutically ineffective levels (in the UM patients) to excessive (overdose) and potentially toxic concentrations (in PM patients). This, in turn, can result in elevated risks for either treatment failure (in terms of blood pressure reduction of hypertensive patients and of improving survival and cardiovascular function of heart failure patients) or for adverse effects (e.g. hypotension and bradycardia). The present review will discuss the impact of these CYP2D6 genetic polymorphisms on the therapeutic responses of cardiovascular patients treated with either of these two β-blockers. In addition, the potential advantages and disadvantages of implementing CYP2D6 genetic testing in the clinic to guide/personalize therapy with these two drugs will be discussed.

  15. Use of systolic pressure variation to predict the cardiovascular response to mini-fluid challenge in anaesthetised dogs.

    PubMed

    Rabozzi, R; Franci, P

    2014-11-01

    Systolic pressure variation (SPV), the maximum variation in systolic pressure values following a single positive pressure breath delivered by controlled mechanical ventilation (CMV), is highly correlated with volaemia in dogs. The aim of this study was to determine an SPV value that would indicate when fluid administration would be beneficial in clinical practice. Twenty-six client-owned dogs were anaesthetised, following which CMV with a peak inspiratory pressure (PIP) of 8 cmH2O was applied. After SPV measurement and recording of heart rate (HR) and blood pressure (BP), 3 mL/kg fluid were administered, then HR and BP were recorded again. Dogs exhibiting a 10% decrease in HR and/or an increase in BP were defined as responders, and their SPV pre-bolus was analysed retrospectively. SPV values > 4 mmHg or >4.5% predicted haemodynamic improvement in dogs with normal cardiovascular function, with a sensitivity of 90% and a specificity of 87%. The area under the curve receiver operating characteristic value for SPV was 0.931 mmHg (95% confidence interval, CI, 0.76-0.99 mmHg) and 0.944% (95% CI 0.78-0.99%). It is proposed that SPV values > 4.5% in dogs with a normal cardiovascular function, anaesthetised with isoflurane in oxygen and air, and on CMV (PIP 8 cmH2O), can be used to predict a cardiovascular response (>10% increase in mean arterial BP and/or >10% decrease in heart rate).

  16. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Boyd, Nolan L.; Park, Heonyong; Yi, Hong; Boo, Yong Chool; Sorescu, George P.; Sykes, Michelle; Jo, Hanjoong

    2003-01-01

    Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.

  17. Hepatocyte pathway alterations in response to in vitro Crimean Congo hemorrhagic fever virus infection.

    PubMed

    Fraisier, Christophe; Rodrigues, Raquel; Vu Hai, Vinh; Belghazi, Maya; Bourdon, Stéphanie; Paranhos-Baccala, Glaucia; Camoin, Luc; Almeras, Lionel; Peyrefitte, Christophe Nicolas

    2014-01-22

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus responsible for hemorrhagic manifestations and multiple organ failure, with a high mortality rate. In infected humans, damage to endothelial cells and vascular leakage may be a direct result of virus infection or an immune response-mediated indirect effect. The main target cells are mononuclear phagocytes, endothelial cells and hepatocytes; the liver being a key target for the virus, which was described as susceptible to interferon host response and to induce apoptosis. To better understand the early liver cell alterations due to virus infection, the protein profile of in vitro CCHFV-infected HepG2 cells was analyzed using two quantitative proteomic approaches, 2D-DIGE and iTRAQ. A set of 243 differentially expressed proteins was identified. Bioinformatics analysis (Ingenuity Pathways Analysis) revealed multiple host cell pathways and functions altered after CCHFV infection, with notably 106 proteins related to cell death, including 79 associated with apoptosis. Different protein networks emerged with associated pathways involved in inflammation, oxidative stress and apoptosis, ubiquitination/sumoylation, regulation of the nucleo-cytoplasmic transport, and virus entry. Collectively, this study revealed host liver protein abundances that were modified at the early stages of CCHFV infection, offering an unparalleled opportunity of the description of the potential pathogenesis processes and of possible targets for antiviral research.

  18. Acute high-intensity sound exposure alters responses of place cells in hippocampus.

    PubMed

    Goble, T J; Møller, A R; Thompson, L T

    2009-07-01

    Overstimulation is known to activate neural plasticity in the auditory nervous system causing changes in function and re-organization. It has been shown earlier that overstimulation using high-intensity noise or tones can induce signs of tinnitus. Here we show in studies in rats that overstimulation causes changes in the way place cells of the hippocampus respond as rats search for rewards in a spatial maze. In familiar environments, a subset of hippocampal pyramidal neurons, known as place cells, respond when the animal moves through specific locations but are relatively silent in others. This place-field activity (i.e. location-specific firing) is stable in a fixed environment. The present study shows that activation of neural plasticity through overstimulation by sound can alter the response of these place cells. Rats implanted with chronic drivable dorsal hippocampal tetrodes (four microelectrodes) were assessed for stable single-unit place-field responses that were extracted from multiunit responses using NeuroExplorer computer spike-sorting software. Rats then underwent either 30 min exposure to a 4 kHz tone at 104 dB SPL or a control period in the same sound chamber. The place-field activity was significantly altered after sound exposure showing that plastic changes induced by overstimulation are not limited to the auditory nervous system but extend to other parts of the CNS, in this case to the hippocampus, a brain region often studied in the context of plasticity.

  19. Giant wood spider Nephila pilipes alters silk protein in response to prey variation.

    PubMed

    Tso, I-Min; Wu, Hsuan-Chen; Hwang, In-Ru

    2005-03-01

    Recent studies have demonstrated that orb-weaving spiders may alter web structures, foraging localities or silk output in response to prey variations. In this study we conducted field surveys and food manipulations to examine whether orb-weaving spiders may also adjust the protein of silk to prey variations. A comparison of dragline silks collected from nine giant wood spider Nephila pilipes populations in Taiwan showed a spatial variation. The percentage of all amino acids (except alanine and glycine) exhibited significant differences among populations. A survey of prey composition also revealed a significant spatial variation among N. pilipes populations. To determine whether prey variation was responsible for silk protein variation, we fed N. pilipes with different types of prey (dipteran vs orthopteran) then compared the percentage of five major dragline amino acids and secondary structures. The results showed that dragline of N. pilipes fed with orthopteran prey contained significantly higher proline and glutamine but lower alanine. Congruent with this result were those from FTIR spectroscopy, which showed that dragline of N. pilipes fed with crickets exhibited significantly higher percentage of proline- and glutamine-containing beta turns, and lower percentage of alanine-containing beta sheet structures. Since the results of feeding manipulations showed that diet significantly affected the compositions of dragline silks, the observed spatial variation seemed to reflect the different types of prey these spiders had consumed. Results of this study thus indicated that orb-weaving spiders can alter dragline protein in response to prey variations.

  20. Sex Differences in Platelet Reactivity and Cardiovascular and Psychological Response to Mental Stress in Patients With Stable Ischemic Heart Disease

    PubMed Central

    Samad, Zainab; Boyle, Stephen; Ersboll, Mads; Vora, Amit N.; Zhang, Ye; Becker, Richard C.; Williams, Redford; Kuhn, Cynthia; Ortel, Thomas L.; Rogers, Joseph G.; O’Connor, Christopher; Velazquez, Eric J.; Jiang, Wei

    2016-01-01

    BACKGROUND Although emotional stress is associated with ischemic heart disease (IHD) and related clinical events, sex-specific differences in the psychobiological response to mental stress have not been clearly identified. OBJECTIVES We aimed to study the differential psychological and cardiovascular responses to mental stress between male and female patients with stable IHD. METHODS Patients with stable IHD enrolled in the REMIT (Responses of Mental Stress–Induced Myocardial Ischemia to Escitalopram) study underwent psychometric assessments, transthoracic echocardiography, and platelet aggregation studies at baseline and after 3 mental stress tasks. Mental stress–induced myocardial ischemia (MSIMI) was defined as the development or worsening of regional wall motion abnormality, reduction of left ventricular ejection fraction (LVEF) ≥8% by transthoracic echocardiography, and/or ischemic ST-segment change on electrocardiogram during 1 or more of the 3 mental stress tasks. RESULTS In the 310 participants with known IHD (18% women, 82% men), most baseline characteristics were similar between women and men (including heart rate, blood pressure, and LVEF), although women were more likely to be nonwhite, living alone (p < 0.001), and unmarried (p < 0.001); they also had higher baseline depression and anxiety (p < 0.05). At rest, women had heightened platelet aggregation responses to serotonin (p = 0.007) and epinephrine (p = 0.004) compared with men. Following mental stress, women had more MSIMI (57% vs. 41%, p < 0.04), expressed more negative (p = 0.02) and less positive emotion (p < 0.001), and demonstrated higher collagen-stimulated platelet aggregation responses (p = 0.04) than men. Men were more likely than women to show changes in traditional physiological measures, such as blood pressure (p < 0.05) and double product. CONCLUSIONS In this exploratory analysis, we identified clear, measurable, and differential responses to mental stress in women and men

  1. Lack of habituation of the pattern of cardiovascular response evoked by sound in subjects with primary Raynaud's disease.

    PubMed

    Edwards, C M; Marshall, J M; Pugh, M

    1998-09-01

    1. The vasospasm of primary Raynaud's disease can be triggered by acute emotional stress. We have studied the pattern of cardiovascular response evoked by acute emotional stress, a sound stimulus of 90 dB, 2 kHz for 30 s, in eight subjects with primary Raynaud's disease and in eight age- and sex-matched controls, the sound being repeated five times on each of days 1, 3 and 5. 2. In controls, the first sound evoked the pattern of the alerting response that is characteristic of acute emotional stress: a rise in arterial pressure and heart rate, a decrease in vascular conductance in the cutaneous circulation of the digit, assessed by laser Doppler recording of erythrocyte (red cell) flux in the digit divided by arterial pressure, and an increase in forearm muscle vascular conductance, assessed from forearm blood flow recorded by venous occlusion plethysmography divided by arterial pressure. 3. In the subjects with primary Raynaud's disease, baselines of arterial pressure, digital cutaneous vascular conductance and forearm vascular conductance were not significantly different from those of the controls and they too showed the alerting response to the first sound, the magnitudes of the changes being comparable to those of the controls. 4. In both the controls and subjects with primary Raynaud's disease, the evoked responses were consistent on repetition of the sound on day 1. In contrast, judging from the means of the changes evoked on each day, the controls showed habituation of the individual components of the alerting response over days 1, 3 and 5, whereas the subjects with primary Raynaud's disease showed no habituation of either the forearm muscle vasodilatation or the digital vasoconstriction. Conversely, the decrease in digital cutaneous vascular conductance evoked by a single deep breath was fully reproducible in both controls and subjects with primary Raynaud's disease when tested at the beginning and end of each experimental day. 5. These results allow the

  2. Cutaneous neurturin overexpression alters mechanical, thermal, and cold responsiveness in physiologically identified primary afferents.

    PubMed

    Jankowski, Michael P; Baumbauer, Kyle M; Wang, Ting; Albers, Kathryn M; Davis, Brian M; Koerber, H Richard

    2017-03-01

    Neurotrophic factors play an important role in the regulation of functional properties of sensory neurons under normal and pathological conditions. The GDNF family member neurturin is one such factor that has been linked to modulating responsiveness to peripheral stimuli. Neurturin binds to the GFRα2 receptor, a receptor found primarily in isolectin B4-expressing polymodal cutaneous nociceptors. Previous work has shown that knockout of GFRα2 alters heat, but not mechanical, responses in dissociated sensory neurons and reduces pain-related behaviors during the second phase of the formalin test. Research has also shown that overexpression of neurturin in basal keratinocytes increases behavioral responsiveness to mechanical stimulation and innocuous cooling of the skin without affecting noxious heat responses. Here we directly examined the impact of neurturin overexpression on cutaneous afferent function. We compared physiological responses of individual sensory neurons to mechanical and thermal stimulation of the skin, using an ex vivo skin-nerve-dorsal root ganglion-spinal cord preparation produced from neurturin-overexpressing (NRTN/OE) mice and wild-type littermate controls. We found that neurturin overexpression increases responsiveness to innocuous mechanical stimuli in A-fiber nociceptors, alters thermal responses in the polymodal subpopulation of C-fiber sensory neurons, and changes the relative numbers of mechanically sensitive but thermally insensitive C-fiber afferents. These results demonstrate the potential roles of different functional groups of sensory neurons in the behavioral changes observed in mice overexpressing cutaneous neurturin and highlight the importance of neurturin in regulating cutaneous afferent response properties.NEW & NOTEWORTHY GDNF family neurotrophic factors regulate the development and function of primary sensory neurons. Of these, neurturin has been shown to modulate mechanical and cooling sensitivity behaviorally. Here we show

  3. Involvement of three mechanisms in the alteration of cytokine responses by sodium methyldithiocarbamate

    SciTech Connect

    Pruett, Stephen B. . E-mail: spruet@LSUHSC.edu; Fan, Ruping; Zheng, Qiang

    2006-06-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the U.S. We recently reported that it alters the induction of cytokine production mediated though Toll-like receptor (TLR) 4 at relevant dosages in mice. Its chemical properties and evidence from the literature suggest thee potential mechanisms of action for this compound. It could either act as a free radical scavenger (by means of its free S{sup -}group) or promote oxidation by breaking down to form methylisothiocyanate, which can deplete glutathione. It is a potent copper chelator and may affect the availability of copper to a number of copper-dependent enzymes (including some signaling molecules). SMD induces a classical neuroendocrine stress response characterized by elevated serum corticosterone concentrations, which could affect cytokine production. Although each of these mechanisms could potentially contribute to altered cytokine responses, direct evidence is lacking. The present study was conducted to obtain such evidence. The role of redox balance was investigated by pretreating mice with N-acetyl cysteine (NAC), which increases cellular glutathione concentrations, before administration of SMD. NAC exacerbated the SMD-induced suppression of IL-12 and the SMD-induced enhancement of IL-10 in the serum. The role of copper chelation was investigated by comparing the effects of SMD with an equimolar dose to SMD that was administered in the form of a copper chelation complex. Addition of copper significantly decreased the action of SMD on IL-12 production but not on IL-10 production. The role of the stress response was investigated by pretreating mice with antagonists of corticosterone and catecholamines. This treatment partially prevented the action of SMD on IL-10 and IL-12 in the peritoneal fluid. The results suggest that all of the proposed mechanisms have some role in the alteration of cytokine production by SMD.

  4. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco–Pseudomonas syringae Interactions

    PubMed Central

    Bozsó, Zoltán; Ott, Péter G.; Kámán-Tóth, Evelin; Bognár, Gábor F.; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco–Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca2+ influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were

  5. Cardiovascular response to renin substrate microinjection into the central nucleus of the amygdala of rats.

    PubMed

    Heshmatian, Behnam; Parviz, Mohsen; Karimian, Sayed Morteza; Keshavarz, Mansoor; Sohanaki, Hamid

    2007-05-07

    Central nucleus of the amygdala is involved in cardiovascular regulation. Although most components of the renin-angiotensin system have been found to be distributed in amygdala, renin expression in brain has remained controversial. This work was undertaken to elucidate the extent of renin presence in this nucleus. A cannula was implanted bilaterally into the central nucleus of the amygdala. Mean arterial pressure and heart rate were directly measured via indwelling femoral artery cannula post bilateral intra central nucleus of the amygdala microinjection of renin substrate. Renin substrate microinjection dose-dependently increased mean arterial pressure and heart rate, whereas captopril, saralasin and losartan pretreatment inhibited these effects. The results suggest the presence of local renin or similar proteases in this nucleus.

  6. Altering the sex determination pathway in Drosophila fat body modifies sex-specific stress responses

    PubMed Central

    Neckameyer, Wendi S.

    2014-01-01

    The stress response in Drosophila melanogaster reveals sex differences in behavior, similar to what has been observed in mammals. However, unlike mammals, the sex determination pathway in Drosophila is well established, making this an ideal system to identify factors involved in the modulation of sex-specific responses to stress. In this study, we show that the Drosophila fat body, which has been shown to be important for energy homeostasis and sex determination, is a dynamic tissue that is altered in response to stress in a sex and time-dependent manner. We manipulated the sex determination pathway in the fat body via targeted expression of transformer and transformer-2 and analyzed these animals for changes in their response to stress. In the majority of cases, manipulation of transformer or transformer-2 was able to change the physiological output in response to starvation and oxidative stress to that of the opposite sex. Our data also uncover the possibility of additional downstream targets for transformer and transformer-2 that are separate from the sex determination pathway and can influence behavioral and physiological responses. PMID:24789992

  7. Primary motor cortex of the parkinsonian monkey: altered neuronal responses to muscle stretch

    PubMed Central

    Pasquereau, Benjamin; Turner, Robert S.

    2013-01-01

    Exaggeration of the long-latency stretch reflex (LLSR) is a characteristic neurophysiologic feature of Parkinson's disease (PD) that contributes to parkinsonian rigidity. To explore one frequently-hypothesized mechanism, we studied the effects of fast muscle stretches on neuronal activity in the macaque primary motor cortex (M1) before and after the induction of parkinsonism by unilateral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We compared results from the general population of M1 neurons and two antidromically-identified subpopulations: distant-projecting pyramidal-tract type neurons (PTNs) and intra-telecenphalic-type corticostriatal neurons (CSNs). Rapid rotations of elbow or wrist joints evoked short-latency responses in 62% of arm-related M1 neurons. As in PD, the late electromyographic responses that constitute the LLSR were enhanced following MPTP. This was accompanied by a shortening of M1 neuronal response latencies and a degradation of directional selectivity, but surprisingly, no increase in single unit response magnitudes. The results suggest that parkinsonism alters the timing and specificity of M1 responses to muscle stretch. Observation of an exaggerated LLSR with no change in the magnitude of proprioceptive responses in M1 is consistent with the idea that the increase in LLSR gain that contributes to parkinsonian rigidity is localized to the spinal cord. PMID:24324412

  8. The altered gravitropic response of the lazy-2 mutant of tomato is phytochrome regulated.

    PubMed

    Gaiser, J C; Lomax, T L

    1993-06-01

    Shoots of the lazy-2 (lz-2) gravitropic mutant of tomato (Lycopersicon esculentum Mill.) have a normal gravitropic response when grown in the dark, but grow downward in response to gravity when grown in the light. Experiments were undertaken to investigate the nature of the light induction of the downward growth of lz-2 shoots. Red light was effective at causing downward growth of hypocotyls of lz-2 seedlings, whereas treatment with blue light did not alter the dark-grown (wild-type) gravity response. Downward growth of lz-2 seedlings is greatest 16 h after a 1-h red light irradiation, after which the seedlings begin to revert to the dark-grown phenotype. lz-2 seedlings irradiated with a far-red light pulse immediately after a red light pulse exhibited no downward growth. However, continuous red or far-red light both resulted in downward growth of lz-2 seedlings. Thus, the light induction of downward growth of lz-2 appears to involve the photoreceptor phytochrome. Fluence-response experiments indicate that the induction of downward growth of lz-2 by red light is a low-fluence phytochrome response, with a possible high-irradiance response component.

  9. Effects of sex, gender role identification, and gender relevance of two types of stressors on cardiovascular and subjective responses: sex and gender match and mismatch effects.

    PubMed

    van Well, Sonja; Kolk, Annemarie M; Klugkist, Irene G

    2008-07-01

    The authors tested the hypothesis that a match between the gender relevance of a stressor and one's sex or gender role identification would elicit higher cardiovascular responses. Healthy female and male undergraduates (n = 108) were exposed to two stressors: the Cold Pressor Test (CPT) and the n-back task. Stressor relevance was manipulated to be masculine or feminine relevant or gender neutral. Data were analyzed using a Bayesian model selection procedure. The results showed stronger cardiovascular responses for the CPT in the case of a gender match effect. In contrast, results for the n-back task revealed stronger cardiovascular responses for sex and gender mismatch effects. These discrepant match and mismatch effects are discussed in terms of differential task appraisal (i.e., threat vs. challenge). Additional results (a) support the success of measuring gender role identification indirectly by means of the Gender Implicit Association Test, (b) do not show that the effect of stressor relevance is more pronounced on those hemodynamic parameters typically increased by the stressor, and (c) reveal differential effects of stressor relevance for subjective and cardiovascular stress responses. Taken together, it can be concluded that the process of the cognitive appraisal of stressor relevance outlines individual variability in cardiovascular responding to acute stress.

  10. Subjective responses and cardiovascular effects of self-administered cocaine in cocaine-abusing men and women.

    PubMed

    Lynch, Wendy J; Kalayasiri, Rasmon; Sughondhabirom, Atapol; Pittman, Brian; Coric, Vladimir; Morgan, Peter T; Malison, Robert T

    2008-09-01

    This study aimed to examine sex differences in cocaine self-administration and cocaine-induced subjective and cardiovascular measures. The research was based on secondary analysis of data collected in our human laboratory in which subjects self-administered cocaine infusions (8, 16 and 32 mg/70 kg) over a 2-hour period under a fixed ratio 1, 5 minute time out schedule in three test sessions. Subjects were 10 women and 21 men with a history of either cocaine abuse or dependence who were not currently seeking treatment. Women and men self-administered similar amounts of cocaine. None of the subjective effects measures showed a significant main effect of sex during the cocaine self-administration session. Significant interactions were observed for subjective ratings of 'high' (sex x time) and 'stimulated' (sex x time x dose), with women reporting lower ratings over time/doses than men. Relative to men, cocaine produced dose- and time-dependent increases in feelings of hunger (i.e., reduced appetite suppression) in women. Systolic and diastolic blood pressures showed different patterns of change in men and women, with women showing less robust cocaine-induced increases than men. Taken together, these findings suggest that women and men may differ in their subjective and cardiovascular responses to self-administered cocaine. Further research that prospectively controls for hormonal influences upon these measures is needed.

  11. Association of heart rate variability and inflammatory response in patients with cardiovascular diseases: current strengths and limitations

    PubMed Central

    Papaioannou, Vasilios; Pneumatikos, Ioannis; Maglaveras, Nikos

    2013-01-01

    Many experimental and clinical studies have confirmed a continuous cross-talk between both sympathetic and parasympathetic branches of autonomic nervous system and inflammatory response, in different clinical scenarios. In cardiovascular diseases, inflammation has been proven to play a pivotal role in disease progression, pathogenesis and resolution. A few clinical studies have assessed the possible inter-relation between neuro-autonomic output, estimated with heart rate variability analysis, which is the variability of R-R in the electrocardiogram, and different inflammatory biomarkers, in patients suffering from stable or unstable coronary artery disease (CAD) and heart failure. Moreover, different indices derived from heart rate signals' processing, have been proven to correlate strongly with severity of heart disease and predict final outcome. In this review article we will summarize major findings from different investigators, evaluating neuro-immunological interactions through heart rate variability analysis, in different groups of cardiovascular patients. We suggest that markers originating from variability analysis of heart rate signals seem to be related to inflammatory biomarkers. However, a lot of open questions remain to be addressed, regarding the existence of a true association between heart rate variability and autonomic nervous system output or its adoption for risk stratification and therapeutic monitoring at the bedside. Finally, potential therapeutic implications will be discussed, leading to autonomic balance restoration in relation with inflammatory control. PMID:23847549

  12. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  13. Alterations of molecular and behavioral responses to cocaine by selective inhibition of Elk-1 phosphorylation.

    PubMed

    Besnard, Antoine; Bouveyron, Nicolas; Kappes, Vincent; Pascoli, Vincent; Pagès, Christiane; Heck, Nicolas; Vanhoutte, Peter; Caboche, Jocelyne

    2011-10-05

    Activation of the extracellular signal-regulated kinase (ERK) signaling pathway in the striatum is crucial for molecular adaptations and long-term behavioral alterations induced by cocaine. In response to cocaine, ERK controls the phosphorylation levels of both mitogen and stress-activated protein kinase 1 (MSK-1), a nuclear kinase involved in histone H3 (Ser10) and cAMP response element binding protein phosphorylation, and Elk-1, a transcription factor involved in serum response element (SRE)-driven gene regulations. We recently characterized the phenotype of msk-1 knock-out mice in response to cocaine. Herein, we wanted to address the role of Elk-1 phosphorylation in cocaine-induced molecular, morphological, and behavioral responses. We used a cell-penetrating peptide, named TAT-DEF-Elk-1 (TDE), which corresponds to the DEF docking domain of Elk-1 toward ERK and inhibits Elk-1 phosphorylation induced by ERKs without modifying ERK or MSK-1 in vitro. The peptide was injected in vivo before cocaine administration in mice. Immunocytochemical, molecular, morphological, and behavioral studies were performed. The TDE inhibited Elk-1 and H3 (Ser10) phosphorylation induced by cocaine, sparing ERK and MSK-1 activation. Consequently, TDE altered cocaine-induced regulation of genes bearing SRE site(s) in their promoters, including c-fos, zif268, ΔFosB, and arc/arg3.1 (activity-regulated cytoskeleton-associated protein). In a chronic cocaine administration paradigm, TDE reversed cocaine-induced increase in dendritic spine density. Finally, the TDE delayed the establishment of cocaine-induced psychomotor sensitization and conditioned-place preference. We conclude that Elk-1 phosphorylation downstream from ERK is a key molecular event involved in long-term neuronal and behavioral adaptations to cocaine.

  14. The aged cardiovascular risk patient.

    PubMed

    Priebe, H J

    2000-11-01

    It is mostly acknowledged that 'normal' or 'healthy' ageing of the cardiovascular system is distinct from the increasing incidence and severity of cardiovascular disease with advancing age (e.g. hypertension, ischaemic heart disease and congestive heart failure). It is also recognized that chronological and biological age may differ considerably. Nevertheless, even in the absence of overt coexisting disease, advanced age is always accompanied by a general decline in organ function, and specifically by alterations in structure and function of the heart and vasculature that will ultimately affect cardiovascular performance. Actual biological age is thus the net result of the interaction between age-related and concomitant disease-associated changes in organ function. As cardiovascular performance at a given moment is the net result of interactions between heart rate, intrinsic contractility, diastolic and systolic function, ventricular afterload and coronary perfusion, it is important to be aware of the age-related changes in each of these variables, independent of disease, as they determine cardiac performance at rest and its response to stress in the elderly. The most relevant age-related changes in cardiovascular performance for perioperative management are the stiffened myocardium and vasculature, blunted beta-adrenoceptor responsiveness and impaired autonomic reflex control of heart rate. These changes are of little clinical relevance at rest, but may have considerable consequences during superimposed cardiovascular stress. Such stress can take the form of increased flow demand (as in exercise or postoperatively), demand for acute autonomic reflex control (as in change of posture) or severe disease (as during myocardial ischaemia, tachyarrhythmias or uncontrolled hypertension). It may interfere with diastolic relaxation (i.e. ventricular filling), systolic contraction (i.e. ventricular emptying) and vasomotor control (i.e. arterial pressure homeostasis). Three

  15. Grapevine Plasticity in Response to an Altered Microclimate: Sauvignon Blanc Modulates Specific Metabolites in Response to Increased Berry Exposure1

    PubMed Central

    du Plessis, Kari; Jacobson, Dan A.

    2016-01-01

    In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) ‘Sauvignon Blanc’ berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries. PMID:26628747

  16. 36 CFR 1230.10 - Who is responsible for preventing the unlawful or accidental removal, defacing, alteration, or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... preventing the unlawful or accidental removal, defacing, alteration, or destruction of records? 1230.10... responsible for preventing the unlawful or accidental removal, defacing, alteration, or destruction of records? The heads of Federal agencies must: (a) Prevent the unlawful or accidental removal,...

  17. 36 CFR 1230.10 - Who is responsible for preventing the unlawful or accidental removal, defacing, alteration, or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... preventing the unlawful or accidental removal, defacing, alteration, or destruction of records? 1230.10... responsible for preventing the unlawful or accidental removal, defacing, alteration, or destruction of records? The heads of Federal agencies must: (a) Prevent the unlawful or accidental removal,...

  18. Physiological response of cardiac tissue to bisphenol a: alterations in ventricular pressure and contractility

    PubMed Central

    Brooks, Daina; Chandra, Akhil; Jaimes, Rafael; Sarvazyan, Narine; Kay, Matthew

    2015-01-01

    Biomonitoring studies have indicated that humans are routinely exposed to bisphenol A (BPA), a chemical that is commonly used in the production of polycarbonate plastics and epoxy resins. Epidemiological studies have shown that BPA exposure in humans is associated with cardiovascular disease; however, the direct effects of BPA on cardiac physiology are largely unknown. Previously, we have shown that BPA exposure slows atrioventricular electrical conduction, decreases epicardial conduction velocity, and prolongs action potential duration in excised rat hearts. In the present study, we tested if BPA exposure also adversely affects cardiac contractile performance. We examined the impact of BPA exposure level, sex, and pacing rate on cardiac contractile function in excised rat hearts. Hearts were retrogradely perfused at constant pressure and exposed to 10−9-10−4 M BPA. Left ventricular developed pressure and contractility were measured during sinus rhythm and during pacing (5, 6.5, and 9 Hz). Ca2+ transients were imaged from whole hearts and from neonatal rat cardiomyocyte layers. During sinus rhythm in female hearts, BPA exposure decreased left ventricular developed pressure and inotropy in a dose-dependent manner. The reduced contractile performance was exacerbated at higher pacing rates. BPA-induced effects on contractile performance were also observed in male hearts, albeit to a lesser extent. Exposure to BPA altered Ca2+ handling within whole hearts (reduced diastolic and systolic Ca2+ transient potentiation) and neonatal cardiomyocytes (reduced Ca2+ transient amplitude and prolonged Ca2+ transient release time). In conclusion, BPA exposure significantly impaired cardiac performance in a dose-dependent manner, having a major negative impact upon electrical conduction, intracellular Ca2+ handing, and ventricular contractility. PMID:25980024

  19. [Cardiovascular pharmacogenomics].

    PubMed

    Scibona, Paula; Angriman, Federico; Simonovich, Ventura; Heller, Martina M; Belloso, Waldo H

    2014-01-01

    Cardiovascular disease remains a major cause of morbidity and mortality worldwide. Current medical practice takes into account information based on population studies and benefits observed in large populations or cohorts. However, individual patients present great differences in both toxicity and clinical efficacy that can be explained by variations in adherence, unknown drug to drug interactions and genetic variability. The latter seems to explain from 20% up to 95% of patient to patient variability. Treating patients with cardiovascular disorders faces the clinician with the challenge to include genomic analysis into daily practice. There are several examples within cardiovascular disease of treatments that can vary in toxicity or clinical usefulness based on genetic changes. One of the main factors affecting the efficacy of Clopidogrel is the phenotype associated with polymorphisms in the gene CYP 2C9. Furthermore, regarding oral anticoagulants, changes in CYP2C9 and VKORC1 play an important role in changing the clinical response to anticoagulation. When analyzing statin treatment, one of their main toxicities (myopathy) can be predicted by the SLCO1B1 polymorphism. The potential for prediction of toxicity and clinical efficacy from the use of genetic analysis warrants further studies aiming towards its inclusion in daily clinical practice.

  20. Toll Mediated Infection Response Is Altered by Gravity and Spaceflight in Drosophila

    PubMed Central

    Taylor, Katherine; Kleinhesselink, Kurt; George, Michael D.; Morgan, Rachel; Smallwood, Tangi; Hammonds, Ann S.; Fuller, Patrick M.; Saelao, Perot; Alley, Jeff; Gibbs, Allen G.; Hoshizaki, Deborah K.; von Kalm, Laurence; Fuller, Charles A.; Beckingham, Kathleen M.; Kimbrell, Deborah A.

    2014-01-01

    Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response. PMID:24475130

  1. Toll mediated infection response is altered by gravity and spaceflight in Drosophila.

    PubMed

    Taylor, Katherine; Kleinhesselink, Kurt; George, Michael D; Morgan, Rachel; Smallwood, Tangi; Hammonds, Ann S; Fuller, Patrick M; Saelao, Perot; Alley, Jeff; Gibbs, Allen G; Hoshizaki, Deborah K; von Kalm, Laurence; Fuller, Charles A; Beckingham, Kathleen M; Kimbrell, Deborah A

    2014-01-01

    Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.

  2. Ecologically Relevant Cooling Early in Life Alters Prefledging Adrenocortical Response in Free-Living Songbirds.

    PubMed

    Lynn, Sharon E; Kern, Michael D

    In vertebrates, exposure to stressful stimuli early in development may alter the activity of the hypothalamo-pituitary-adrenal (HPA) axis, with the potential for fitness consequences later in life. For altricial species, whose young rely on their parents for food, warmth, and protection from predators, adult behavior can modify the impact of some stressors on their offspring after birth or hatching. We have shown that single bouts of cooling that normally occur when brooding females leave the nest elevate corticosterone secretion in very young free-living eastern bluebird (Sialia sialis) chicks. Thus, natural variation in maternal brooding patterns can result in differential exposure of offspring to cooling, and also to glucocorticoids, very early in development. We tested the hypothesis that exposure to repeated bouts of cooling (mimicking those that occur normally when females leave the nest) would alter the activity of the chicks' HPA axis later in life. We exposed free-living chicks to either four 18-min bouts of cooling or brooding temperatures (control) during the first week after hatching. Then, just before fledging (i.e., at least 7 d after the cooling treatments had ceased), we assessed their corticosterone responses to restraint. Repeatedly cooled chicks had a significantly lower corticosterone response to restraint than did control chicks but did not differ from controls in other measures of growth and development. Our data suggest that natural variation in maternal brooding patterns, and hence natural variation in the chicks' body temperature, can alter the activity of the HPA axis well beyond the brooding period.

  3. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion.

    PubMed

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor; Haferkamp, Axel; Blaheta, Roman A

    2016-04-12

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN.

  4. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    PubMed

    Cai, Huan; Cong, Wei-Na; Daimon, Caitlin M; Wang, Rui; Tschöp, Matthias H; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin(-/-)), and GOAT knockout (GOAT(-/-)) mice. Ghrelin(-/-) mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/-) mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/-) and GOAT(-/-) mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/-) mice, yet potentiated in GOAT(-/-) mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/-) mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/-) and GOAT(-/-) mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  5. Altered Lipid and Salt Taste Responsivity in Ghrelin and GOAT Null Mice

    PubMed Central

    Daimon, Caitlin M.; Wang, Rui; Tschöp, Matthias H.; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin−/−), and GOAT knockout (GOAT−/−) mice. Ghrelin−/− mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT−/− mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin−/− and GOAT−/− mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin−/− mice, yet potentiated in GOAT−/− mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT−/− mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin−/− and GOAT−/− mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities. PMID:24124572

  6. Iron Deficiency in Infancy Predicts Altered Serum Prolactin Response 10 Years Later

    PubMed Central

    FELT, BARBARA; JIMENEZ, ELIAS; SMITH, JULIA; CALATRONI, AGUSTIN; KACIROTI, NIKO; WHEATCROFT, GLORIA; LOZOFF, BETSY

    2007-01-01

    Serum prolactin may reflect CNS dopaminergic function. Because iron deficiency (ID) alters brain dopamine in rats, serum prolactin levels were previously investigated in infants with varied iron status. High serum prolactin levels correlated with behaviors typical of chronic ID. The objective of this study was to determine the effect of infant iron status on serum prolactin levels after a stressor in early adolescence. One hundred fifty-nine of 191 children enrolled in infancy (chronic ID, n = 46; good iron comparison group, n = 113) had serum prolactin measurements after catheter placement at 11–14 y of age. Serum prolactin levels were compared by sex, pubertal status and infant iron status and the pattern of change over time was compared by infant iron status controlling for pubertal stage and background factors. Males and less mature adolescents had lower serum prolactin concentrations than females and more mature adolescents. Controlling for these factors, the serum prolactin response pattern differed significantly by infant iron status. Serum prolactin declined earlier for the chronic ID group. In conclusion, an altered serum prolactin response pattern was observed 10 y after chronic ID in infancy and may suggest a long-lasting effect of ID on the regulation of prolactin. PMID:16966351

  7. Actin-myosin network influences morphological response of neuronal cells to altered osmolarity.

    PubMed

    Bober, Brian G; Love, James M; Horton, Steven M; Sitnova, Mariya; Shahamatdar, Sina; Kannan, Ajay; Shah, Sameer B

    2015-04-01

    Acute osmotic fluctuations in the brain occur during a number of clinical conditions and can result in a variety of adverse neurological symptoms. Osmotic perturbation can cause changes in the volumes of intra- and extracellular fluid and, due to the rigidity of the skull, can alter intracranial pressure thus making it difficult to analyze purely osmotic effects in vivo. The present study aims to determine the effects of changes in osmolarity on SH-SY5Y human neuroblastoma cells in vitro, and the role of the actin-myosin network in regulating this response. Cells were exposed to hyper- or hypoosmotic media and morphological and cytoskeletal responses were recorded. Hyperosmotic shock resulted in a drop in cell body volume and planar area, a persisting shape deformation, and increases in cellular translocation. Hypoosmotic shock did not significantly alter planar area, but caused a transient increase in cell body volume and an increase in cellular translocation via the development of small protrusions rich in actin. Disruption of the actin-myosin network with latrunculin and blebbistatin resulted in changes to volume and shape regulation, and a decrease in cellular translocation. In both osmotic perturbations, no apparent disruptions to cytoskeletal integrity were observed by light microscopy. Overall, because osmotically induced changes persisted even after volume regulation occurred, it is possible that osmotic stress may play a larger role in neurological dysfunction than currently believed.

  8. Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis

    PubMed Central

    2013-01-01

    Background Previous experiments have shown that the reduced gravity aboard the International Space Station (ISS) causes important alterations in Drosophila gene expression. These changes were shown to be intimately linked to environmental space-flight related constraints. Results Here, we use an array of different techniques for ground-based simulation of microgravity effects to assess the effect of suboptimal environmental conditions on the gene expression of Drosophila in reduced gravity. A global and integrative analysis, using “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices. Although the genes that are affected are different in each simulation technique, we find that the same gene ontology groups, including at least one large multigene family related with behavior, stress response or organogenesis, are over represented in each case. Conclusions These results suggest that the transcriptome as a whole can be finely tuned to gravity force. In optimum environmental conditions, the alteration of gravity has only mild effects on gene expression but when environmental conditions are far from optimal, the gene expression must be tuned greatly and effects become more robust, probably linked to the lack of experience of organisms exposed to evolutionary novel environments such as a gravitational free one. PMID:23806134

  9. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.

  10. Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation.

    PubMed

    Chen, Qi; Yang, Liming; Ahmad, Parvaiz; Wan, Xiaochun; Hu, Xiangyang

    2011-03-01

    Tea seed is believed to be recalcitrant based on its sensitivity to chilling or drying stress. Reactive oxygen species (ROS) and alterations in cytosolic redox status have been implicated in intolerance to desiccation by recalcitrant seed, but there is little information available regarding how ROS are regulated in seeds susceptible to drying stress. We investigated changes in protein expression and activity in tea embryo in response to desiccation using physiological and proteomic methods. Results showed that desiccation treatment dramatically induced the accumulation of H(2)O(2) in tea embryos, accompanied by increased activities of antioxidant enzymes like ascorbate peroxidase (APX) and superoxide dismutase (SOD). Proteomic analyses also demonstrated that 23 proteins associated with defense response, metabolism and redox status were up-regulated following desiccation. Increase in antioxidants, ascorbic acid (AsA) and catalase (CAT) (H(2)O(2) scavengers) partially assuaged desiccation damage to tea seed, resulting in improved germination rates. Higher accumulation of H(2)O(2) aggravated desiccation damage to seeds leading to lower germination activity. We propose that desiccation causes an over-accumulation of ROS that are not efficiently scavenged by increased levels of antioxidant enzymes. High levels of ROS alter the redox status and are detrimental to seed viability. Reducing ROS to appropriate concentrations is an efficient way to reduce desiccation damage and improve germination rates of recalcitrant seeds.

  11. Identification of Genes in Candida glabrata Conferring Altered Responses to Caspofungin, a Cell Wall Synthesis Inhibitor

    PubMed Central

    Rosenwald, Anne G.; Arora, Gaurav; Ferrandino, Rocco; Gerace, Erica L.; Mohammednetej, Maedeh; Nosair, Waseem; Rattila, Shemona; Subic, Amanda Zirzow; Rolfes, Ronda

    2016-01-01

    Candida glabrata is an important human fungal pathogen whose incidence continues to rise. Because many clinical isolates are resistant to azole drugs, the drugs of choice to treat such infections are members of the echinocandin family, although there are increasing reports of resistance to these drugs as well. In efforts to better understand the genetic changes that lead to altered responses to echinocandins, we screened a transposon-insertion library of mutants for strains to identify genes that are important for cellular responses to caspofungin, a member of this drug family. We identified 16 genes that, when disrupted, caused increased tolerance, and 48 genes that, when disrupted, caused increased sensitivity compared to the wild-type parental strain. Four of the genes identified as causing sensitivity are orthologs of Saccharomyces cerevisiae genes encoding proteins important for the cell wall integrity (CWI) pathway. In addition, several other genes are orthologs of the high affinity Ca2+ uptake system (HACS) complex genes. We analyzed disruption mutants representing all 64 genes under 33 different conditions, including the presence of cell wall disrupting agents and other drugs, a variety of salts, increased temperature, and altered pH. Further, we generated knockout mutants in different genes within the CWI pathway and the HACS complex, and found that they too exhibited phenotypes consistent with defects in cell wall construction. Our results indicate that small molecules that inhibit the CWI pathway, or that the HACS complex, may be an important means of increasing the efficacy of caspofungin. PMID:27449515

  12. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states.

    PubMed

    Lecrux, C; Hamel, E

    2016-10-05

    Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  13. Abstinent adolescent marijuana users show altered fMRI response during spatial working memory☆

    PubMed Central

    Schweinsburg, Alecia D.; Nagel, Bonnie J.; Schweinsburg, Brian C.; Park, Ann; Theilmann, Rebecca J.; Tapert, Susan F.

    2010-01-01

    Marijuana is the most widely used illicit substance among teenagers, yet little is known about the possible neural influence of heavy marijuana use during adolescence. We previously demonstrated an altered functional magnetic resonance imaging (fMRI) activity related to spatial working memory (SWM) among adolescents who were heavy users of after an average of 8 days of abstinence, but the persisting neural effects remain unclear. To characterize the potentially persisting neurocognitive effects of heavy marijuana use in adolescence, we examined fMRI response during SWM among abstinent marijuana-using teens. Participants were 15 MJ teens and 17 demographically similar non-using controls, ages 16–18. Teens underwent biweekly urine toxicology screens to ensure abstinence for 28 days before fMRI acquisition. Groups performed similarly on the SWM task, but MJ teens demonstrated lower activity in right dorsolateral prefrontal and occipital cortices, yet significantly more activation in right posterior parietal cortex. MJ teens showed abnormalities in brain response during a SWM task compared with controls, even after 1 month of abstinence. The activation pattern among MJ teens may reflect different patterns of utilization of spatial rehearsal and attention strategies, and could indicate altered neurodevelopment or persisting abnormalities associated with heavy marijuana use in adolescence. PMID:18356027

  14. Characterization of fluid physics effects on cardiovascular response to microgravity (G-572)

    NASA Technical Reports Server (NTRS)

    Pantalos, George M.; Sharp, M. Keith; Woodruff, Stewart J.; Lorange, Richard D.; Bennett, Thomas E.; Sojka, Jan J.; Lemon, Mark W.

    1993-01-01

    The recognition and understanding of cardiovascular adaptation to spaceflight has experienced substantial advancement in the last several years. In-flight echocardiographic measurements of astronaut cardiac function on the Space Shuttle have documented a 15 percent reduction in both left ventricular volume index and stroke volume with a compensatory increase in heart rate to maintain cardiac output. To date, the reduced cardiac size and stroke volume have been presumed to be the consequence of the reduction in circulating fluid volume following diuresis and other physiological processes to reduce blood volume within a few days after orbital insertion. However, no specific mechanism for the reduced stroke volume has been elucidated. The following investigation proposes the use of a hydraulic model of the cardiovascular system to examine the possibility that the observed reduction in stroke volume may, in part, be related to fluid physics effects on heart function. The automated model is being prepared to fly as a GAS payload. The experimental apparatus consists of a pneumatically actuated, elliptical artificial ventricle connected to a closed-loop, hydraulic circuit with compliance and resistance elements to create physiologic pressure and flow conditions. The ventricle is instrumented with high-fidelity, acceleration-insensitive, catheter-tip pressure transducers (Millar Instruments) in the apex and base to determine the instantaneous ventricular pressures and (delta)P(sub LV) across the left ventricle (LVP(sub apex)-LVP(sub base). The ventricle is also instrumented with a flow probe and pressure transducers immediately upstream of the inflow valve and downstream of the outflow valve. The experiment will be microprocessor controlled with analog signals stored on the FM data tape recorder. By varying the circulating fluid volume, ventricular function can be determined for varying preload pressures with fixed afterload pressure. Pilot experiments on board the NASA KC

  15. Cardiovascular Safety Assessment in Early‐Phase Clinical Studies: A Meta‐Analytical Comparison of Exposure‐Response Models

    PubMed Central

    Chen, D; Denney, WS

    2016-01-01

    Exposure‐response analysis of QT interval in clinical studies has been proposed as a thorough QT study alternative. Many exposure‐response model structures have been proposed for cardiovascular (CV) safety markers, but few studies have compared models across multiple drugs. To recommend preferred drug‐effect exposure‐response models on vital signs and electrocardiogram (ECG) intervals, an individual‐level model‐based meta‐analysis (39 studies and 1,291 subjects) compared 90 model structures. Models were selected to describe the data and cross‐validate studies on the same drug. The most commonly selected baseline model was an unstructured model (estimation of a value at each study nominal time) for all measures but blood pressure. The unstructured model estimated a better cross‐validated drug‐effect when considering all markers. A linear model was the most commonly selected to characterize drug‐effect on all markers. We propose these models as a starting point assisting with CV safety exposure‐response assessment in nondedicated small studies with healthy subjects. PMID:27318037

  16. Acute Cardiovascular Response during Resistance Exercise with Whole-body Vibration in Sedentary Subjects: A Randomized Cross-over Trial.

    PubMed

    Dias, Thaisa; Polito, Marcos

    2015-01-01

    This study aimed to compare the acute cardiovascular responses during and after resistance exercise with and without whole-body vibration. Nineteen sedentary adults randomly performed one session of isometric squats without vibration and the same exercise with vibration. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR) were measured. SBP, DBP and HR were also measured for 20 min after the sessions. The exercise with vibration demonstrated significant values ​​(P < 0.05) for SBP (second to sixth sets), DBP (third to sixth sets) and SVR (second to sixth sets) compared with the exercise without vibration. After the sessions, the values ​​of SBP for both exercises were significantly lower than the respective resting values; with no difference between the sessions. In conclusion, exercise with vibration caused increases in SBP, DBP and SVR compared with exercise with no vibration in sedentary adults.

  17. [Resting heart rate and cardiovascular disease].

    PubMed

    Brito Díaz, Buenaventura; Alemán Sánchez, José Juan; Cabrera de León, Antonio

    2014-07-07

    Heart rate reflects autonomic nervous system activity. Numerous studies have demonstrated that an increased heart rate at rest is associated with cardiovascular morbidity and mortality as an independent risk factor. It has been shown a link between cardiac autonomic balance and inflammation. Thus, an elevated heart rate produces a micro-inflammatory response and is involved in the pathogenesis of endothelial dysfunction. In turn, decrease in heart rate produces benefits in congestive heart failure, myocardial infarction, atrial fibrillation, obesity, hyperinsulinemia, insulin resistance, and atherosclerosis. Alteration of other heart rate-related parameters, such as their variability and recovery after exercise, is associated with risk of cardiovascular events. Drugs reducing the heart rate (beta-blockers, calcium antagonists and inhibitors of If channels) have the potential to reduce cardiovascular events. Although not recommended in healthy subjects, interventions for reducing heart rate constitute a reasonable therapeutic goal in certain pathologies.

  18. Central mechanism of the cardiovascular responses caused by L-proline microinjected into the paraventricular nucleus of the hypothalamus in unanesthetized rats.

    PubMed

    Lopes-Azevedo, Silvana; Busnardo, Cristiane; Corrêa, Fernando Morgan Aguiar

    2016-12-01

    Previously, we reported that microinjection of L-proline (L-Pro) into the paraventricular nucleus of the hypothalamus (PVN) caused vasopressin-mediated pressor responses in unanesthetized rats. In the present study, we report on the central mechanisms involved in the mediation of the cardiovascular effects caused by the microinjection of L-Pro into the PVN. Microinjection of increasing doses of L-Pro (3-100nmol/100nL) into the PVN caused dose-related pressor and bradycardic responses. No cardiovascular responses were observed after the microinjection of equimolar doses (33nmol/100nL) of its isomer D-Proline (D-Pro) or Mannitol. The PVN pretreatment with either a selective non-NMDA (NBQX) or selective NMDA (LY235959 or DL-AP7) glutamate receptor antagonists blocked the cardiovascular response to L-Pro (33nmol/100nL). The dose-effect curve for the pretreatment with increasing doses of LY235959 was located at the left in relation to the curves for NBQX and DL-AP7, showing that LY235959 is more potent than NBQX, which is more potent than DL-AP7 in inhibiting the cardiovascular response to L-Pro. The cardiovascular response to the microinjection of L-Pro into the PVN was not affected by local pretreatment with N(ω)-Propyl-l-arginine (N-Propyl), a selective inhibitor of the neuronal nitric oxide synthase (nNOS), suggesting that NO does not mediate the responses to L-Pro in the PVN. In conclusion, the results suggest that ionotropic receptors in the PVN, blocked by both NMDA and non-NMDA receptor antagonists, mediate the pressor response to L-Pro that results from activation of PVN vasopressinergic magnocellular neurons and vasopressin release into the systemic circulation.

  19. The Effect of Age in the Alteration in Fluid Balance of Rats in Response to Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    2000-01-01

    With an increase in gravity load induced by centrifugation or upon return to Earth following spaceflight, there is a period of adjustment in fluid balance in rats. With centrifugation there is a reduced fluid intake with maintenance of the rate of urine excretion. Following spaceflight there is an increase in urine output and maintenance of fluid intake. The initial period of acclimation to hypergravity is associated with a net loss of fluids. In the present study in response to centrifugation at 2.0 G this period of acclimation is present in mature rats for a longer period of time, about 24 hours. Following this initial response a period of over compensation has previously been reported. In the present study this was not observed. The net effect of these alterations in water intake and output in response to centrifugation for 14 days was slight increase in the percent total body water, with effective compensation seen in both young and mature rats. Older rats have been shown to have a reduced relative thirst and compensatory renal function in response to hypohydration, hyperosmolality and pharmacological stimuli. Responsiveness to these stimuli are delayed and/or attenuated in older animals. Similar findings were noted in the present study in the initial response to centrifugation. The older animal had a delayed return of fluid intake to control levels. The delay of one day did not appear to effect long-term fluid homeostasis, as there was difference in the response of percent total body water at the end of 14 days of centrifugation with both age groups having a slight but significant increase. This increase has been attributed to the increase in lean body mass induced by centrifugation.

  20. Rodent Studies of Cardiovascular Deconditioning

    NASA Technical Reports Server (NTRS)

    Shoukas, Artin A.

    1999-01-01

    Changes in blood pressure can occur for two reasons: 1) A decrease in cardiac output resulting from the altered contractility of the heart or through changes in venous filling pressure via the Frank Starling mechanism or; 2) A change in systemic vascular resistance. The observed changes in cardiac output and blood pressure after long term space flight cannot be entirely explained through changes in contractility or heart rate alone. Therefore, alterations in filling pressure mediated through changes in systemic venous capacitance and arterial resistance function may be important determinants of cardiac output and blood pressure after long term space flight. Our laboratory and previous studies have shown the importance of veno-constriction mediated by the carotid sinus baroreceptor reflex system on overall circulatory homeostasis and in the regulation of cardiac output. Our proposed experiments test the overall hypothesis that alterations in venous capacitance function and arterial resistance by the carotid sinus baroreceptor reflex system are an important determinant of the cardiac output and blood pressure response seen in astronauts after returning to earth from long term exposure to microgravity. This hypothesis is important to our overall understanding of circulatory adjustments made during long term space flight. It also provides a framework for investigating counter measures to reduce the incidence of orthostatic hypotension caused by an attenuation of cardiac output. We continue to use hind limb unweighted (HLU) rat model to simulate the patho physiological effects as they relate to cardiovascular deconditioning in microgravity. We have used this model to address the hypothesis that microgravity induced cardiovascular deconditioning results in impaired vascular responses and that these impaired vascular responses result from abnormal alpha-1 AR signaling. The impaired vascular reactivity results in attenuated blood pressure and cardiac output responses to an

  1. Biochemical alterations in native and exotic oyster species in Brazil in response to increasing temperature.

    PubMed

    Moreira, Anthony; Figueira, Etelvina; Pecora, Iracy L; Soares, Amadeu M V M; Freitas, Rosa

    2017-01-01

    The increase of temperature in marine coastal ecosystems due to atmospheric greenhouse gas emissions is becoming an increasing threat for biodiversity worldwide, and may affect organisms' biochemical performance, often resulting in biogeographical shifts of species distribution. At the same time, the introduction of non-native species into aquatic systems also threatens biodiversity and ecosystem functions. Oysters are among the most valuable socio economic group of bivalve species in global fishery landings, and also provide numerous ecosystem services. However, the introduction of non-native oyster species, namely Crassostrea gigas for aquaculture purposes may threaten native oyster species, mainly by out competing their native congeners. It is therefore of upmost importance to understand physiological and biochemical responses of native and introduced oyster species in a scenario of global temperature rise, in order to provide knowledge that may allow for better species management. Hence, we compared biochemical alterations of the introduced C. gigas and the native Crassostrea brasiliana, the most important oyster species in Brazil, in response to different thermal regimes for 28days (24, 28 and 32°C). For this, metabolism (ETS), energy content (GLY), antioxidant system (SOD, CAT and GSH/GSSG) and cellular damage (LPO) were assessed in adult and juvenile specimens of both species. Juvenile C. gigas were the most affected by increased temperatures, presenting higher mortality, more pronounced antioxidant response (SOD), whereas adults were more tolerant than juveniles, showing no mortality, no significant changes in antioxidant enzymes activity neither energy expenditure. Native C. brasiliana juveniles presented lower mortality and less pronounced biochemical alterations were noted at higher temperature comparing to non-native C. gigas juveniles. Adult C. brasiliana were the least responsive to tested temperatures. Results obtained in this study bring

  2. Effects of perinatal oxycodone exposure on the cardiovascular response to acute stress in male rats at weaning and in young adulthood

    PubMed Central

    Sithisarn, Thitinart; Bada, Henrietta S.; Charnigo, Richard J.; Legan, Sandra J.; Randall, David C.

    2013-01-01

    Oxycodone (OXY) is one of the most commonly abused opiates during pregnancy. Perinatal opiate exposure (POE) is associated with neurobehavioral and hormone changes. Little is known about the effects of perinatal OXY on the cardiovascular (CV) responses to stress. Objectives: to determine the effects of POE on: (1) CV responses to acute stress and ability to discriminate using a classical conditioning paradigm; (2) changes in CV response to the paradigm and retention of the ability to discriminate from postnatal day (PD) 40 to young adulthood. Methods: Pregnant rats were given i.v. OXY or vehicle (CON) daily. OXY and CON males were fitted with BP telemetry units. Offspring were classically conditioned by following a pulsed tone (CS+) with tail shock. A steady tone (CS−) was not followed by shock. BP and HR were recorded during resting periods and conditioning. Changes in BP, HR from composite analysis were compared. The paradigm was repeated on PD 75. Results: At PD 40, OXY rats had a lower baseline mean BP (OXY: 114.8 ± 1.0 vs. CON: 118.3 ± 1.0 mm Hg; mean ± SEM) but larger amplitude of the conditional BP increase during the stress response (OXY: +3.9 ± 0.4 vs. CON: +1.7 ± 0.4 mm Hg). Both OXY and CON rats were able to discriminate between CS+ and CS−. At PD 75, the effects of OXY on the increased amplitude of the conditional BP had dissipated (CON: +3.4 ± 2.3 vs. OXY: +4.5 ± 1.4 mm Hg). BP responses to the stress and non-stress stimuli did not differ in the OXY group, suggesting that OXY may have decreased the ability of the offspring to discriminate (OXY: CS+: 147.1 ± 1.6, CS−: 145.9 ± 1.6 mm Hg vs. CON: CS+: 155.4 ± 2.7, CS−: 147.8 ± 2.7 mm Hg). Conclusion: POE is associated with subtle alterations in stress CV responses in weanling rats which dissipate when the conditioning is repeated at an early adult age. Although POE effect on the ability to discriminate at weanling age could not be detected, POE may impair retention of this ability in

  3. Fetal Programming and Cardiovascular Pathology

    PubMed Central

    Alexander, Barbara T.; Dasinger, John Henry; Intapad, Suttira

    2016-01-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. PMID:25880521

  4. Insulin deficiency alters the metabolic and endocrine responses to undernutrition in fetal sheep near term.

    PubMed

    Fowden, Abigail L; Forhead, Alison J

    2012-08-01

    Insulin deficiency affects the adult metabolic response to undernutrition, but its effects on the fetal response to maternal undernutrition remain unknown. This study examined the effects of maternal fasting for 48 h in late gestation on the metabolism of fetal sheep made insulin deficient by pancreatectomy (PX). The endocrine and metabolic responses to maternal fasting differed between intact, sham-operated and PX fetuses, despite a similar degree of hypoglycemia. Compared with intact fetuses, there was no increase in the plasma concentrations of cortisol or norepinephrine in PX fetuses during maternal fasting. In contrast, there was a significant fasting-induced rise in plasma epinephrine concentrations in PX but not intact fetuses. Umbilical glucose uptake decreased to a similar extent in both groups of fasted animals but was associated with a significant fall in glucose carbon oxidation only in intact fetuses. Pancreatectomized but not intact fetuses lowered their oxygen consumption rate by 15-20% during maternal fasting in association with increased uteroplacental oxygen consumption. Distribution of uterine oxygen uptake between the uteroplacental and fetal tissues therefore differed with fasting only in PX fetuses. Both groups of fetuses produced glucose endogenously after maternal fasting for 48 h, which prevented any significant fall in the rate of fetal glucose utilization. In intact but not PX fetuses, fasting-induced glucogenesis was accompanied by a lower hepatic glycogen content. Chronic insulin deficiency in fetal sheep therefore leads to changes in the counterregulatory endocrine response to hypoglycemia and an altered metabolic strategy in dealing with nutrient restriction in utero.

  5. Altered immune responses to a heterologous protein in ponies with heavy gastrointestinal parasite burdens.

    PubMed

    Edmonds, J D; Horohov, D W; Chapmat, M R; Pourciau, S S; Antoku, K; Snedden, K; Klei, T R

    2001-11-01

    This study was performed to test the hypothesis that immunity to heterologous vaccination would improve when the parasites were removed. It was also expected that parasitised ponies would exhibit a biased Th2 cytokine response to KLH immunisation. Helminth parasites are common in horses even in the era of highly effective broad-spectrum antiparasiticides. These parasites have been shown to alter the outcome to heterologous immunisation in a number of host species. The effect of gastrointestinal parasites on heterologous vaccination has not been addressed in equids. In the current study, humoral, lymphoproliferative, and cytokine responses to a single i.m. injection of keyhole limpet haemocyanin (KLH) were compared between groups of ponies with high, medium or low gastrointestinal parasite burdens. Antibody levels determined by ELISA showed that animals with low levels of parasites had a trend toward increased KLH specific total immunoglobulin, IgG(T) and IgA compared to heavily parasitised ponies. Medium and heavily parasitised ponies demonstrated a trend toward reduced lymphoproliferative response to KLH that was not restored after the addition of interleukin-2 (Il-2). Cells from these ponies also produced significantly lower levels of IL-4 compared to lightly parasitised ponies. These data indicate that heavily parasitised ponies have uniformly decreased cellular and humoral immune responses to soluble protein immunisation. The mechanisms involved may have potential deleterious effects on standard vaccine protocols of parasitised equines.

  6. Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism.

    PubMed

    Hirose, Naoya; Makita, Nobue; Kojima, Mikiko; Kamada-Nobusada, Tomoe; Sakakibara, Hitoshi

    2007-03-01

    Genome-wide analyses of rice (Oryza sativa L.) cytokinin (CK)-responsive genes using the Affymetrix GeneChip(R) rice genome array were conducted to define the spectrum of genes subject to regulation by CK in monocotyledonous plants. Application of trans-zeatin modulated the expression of a wide variety of genes including those involved in hormone signaling and metabolism, transcriptional regulation, macronutrient transport and protein synthesis. To understand further the function of CK in rice plants, we examined the effects of in planta manipulation of a putative CK signaling factor on morphology, CK metabolism and expression of CK-responsive genes. Overexpression of the CK-inducible type-A response regulator OsRR6 abolished shoot regeneration, suggesting that OsRR6 acts as a negative regulator of CK signaling. Transgenic lines overexpressing OsRR6 (OsRR6-ox) had dwarf phenotypes with poorly developed root systems and panicles. Increased content of trans-zeatin-type CKs in OsRR6-ox lines indicates that homeostatic control of CK levels is regulated by OsRR6 signaling. Expression of genes encoding CK oxidase/dehydrogenase decreased in OsRR6-ox plants, possibly accounting for elevated CK levels in transgenic lines. Expression of a number of stress response genes was also altered in OsRR6-ox plants.

  7. Altered helper Tcell-mediated immune responses in male mice conceived through in vitro fertilization.

    PubMed

    Karimi, Hiwa; Mahdavi, Pooya; Fakhari, Shohreh; Faryabi, Mohammad Reza; Esmaeili, Parisa; Banafshi, Omid; Mohammadi, Ebrahim; Fathi, Fardin; Mokarizadeh, Aram

    2017-03-08

    A study using a mouse IVF model was conducted to examine the hypothesis that in vitro fertilization (IVF) treatment may lead to immune alteration in the offspring. Phagocytic activity and lymphocyte proliferative responses to mitogen, alloantigen, and purified protein derivative (PPD) of Mycobacterium bovis were investigated in the splenocytes of BCG-treated male mice conceived by IVF or natural conception. Intracellular expression of T-bet and GATA3 in helper T-cell population were examined in both groups. Moreover, the serum levels of IFN-γ and IL-4 along with BCG-specific levels of IgG1 and IgG2a were assessed by ELISA. In comparison with naturally-conceived mice, PPD-specific proliferative