Science.gov

Sample records for alters intratumoral drug

  1. Intratumoral Drug Delivery with Nanoparticulate Carriers

    PubMed Central

    Holback, Hillary

    2011-01-01

    Stiff extracellular matrix, elevated interstitial fluid pressure, and the affinity for the tumor cells in the peripheral region of a solid tumor mass have long been recognized as significant barriers to diffusion of small-molecular-weight drugs and antibodies. However, their impacts on nanoparticle-based drug delivery have begun to receive due attention only recently. This article reviews biological features of many solid tumors that influence transport of drugs and nanoparticles and properties of nanoparticles relevant to their intratumoral transport, studied in various tumor models. We also discuss several experimental approaches employed to date for enhancement of intratumoral nanoparticle penetration. The impact of nanoparticle distribution on the effectiveness of chemotherapy remains to be investigated and should be considered in the design of new nanoparticulate drug carriers. PMID:21213021

  2. Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration.

    PubMed

    Rehemtulla, Alnawaz

    2012-12-01

    Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy. PMID:23308059

  3. Overcoming Intratumor Heterogeneity of Polygenic Cancer Drug Resistance with Improved Biomarker Integration1

    PubMed Central

    Rehemtulla, Alnawaz

    2012-01-01

    Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy. PMID:23308059

  4. Chemical Structure and Concentration of Intratumor Catabolites Determine Efficacy of Antibody Drug Conjugates

    PubMed Central

    Yu, Shang-Fan; Ma, Yong; Xu, Keyang; Dragovich, Peter S.; Pillow, Thomas H.; Liu, Luna; Del Rosario, Geoffrey; He, Jintang; Pei, Zhonghua; Sadowsky, Jack D.; Erickson, Hans K.; Hop, Cornelis E. C. A.; Khojasteh, S. Cyrus

    2016-01-01

    Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy. PMID:27417182

  5. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis.

    PubMed

    Hagberg Thulin, Malin; Nilsson, Maria E; Thulin, Pontus; Céraline, Jocelyn; Ohlsson, Claes; Damber, Jan-Erik; Welén, Karin

    2016-02-15

    The skeleton is the preferred site for prostate cancer (PC) metastasis leading to incurable castration-resistant disease. The increased expression of genes encoding steroidogenic enzymes found in bone metastatic tissue from patients suggests that up-regulated steroidogenesis might contribute to tumor growth at the metastatic site. Because of the overall sclerotic phenotype, we hypothesize that osteoblasts regulate the intratumoral steroidogenesis of castration resistant prostate cancer (CRPC) in bone. We here show that osteoblasts alter the steroidogenic transcription program in CRPC cells, closely mimicking the gene expression pattern described in CRPC. Osteoblast-stimulated LNCaP-19 cells displayed an increased expression of genes encoding for steroidogenic enzymes (CYP11A1, HSD3B1, and AKR1C3), estrogen signaling-related genes (CYP19A1, and ESR2), and genes for DHT-inactivating enzymes (UGT2B7, UGT2B15, and UGT2B17). The observed osteoblast-induced effect was exclusive to osteogenic CRPC cells (LNCaP-19) in contrast to osteolytic PC-3 and androgen-dependent LNCaP cells. The altered steroid enzymatic pattern was specific for the intratibial tumors and verified by immunohistochemistry in tissue specimens from LNCaP-19 xenograft tumors. Additionally, the overall steroidogenic effect was reflected by corresponding levels of progesterone and testosterone in serum from castrated mice with intratibial xenografts. A bi-directional interplay was demonstrated since both proliferation and Esr2 expression of osteoblasts were induced by CRPC cells in steroid-depleted conditions. Together, our results demonstrate that osteoblasts are important mediators of the intratumoral steroidogenesis of CRPC and for castration-resistant growth in bone. Targeting osteoblasts may therefore be important in the development of new therapeutic approaches.

  6. Intratumor chemotherapy in combination with a systemic antimetastatic drug in the treatment of Lewis-lung carcinoma.

    PubMed

    De-Oliveira, M M; Nakamura, I T; Joussef, A C; Giannotti Filho, O

    1985-01-01

    The effect of an antimetastatic agent plus intratumor chemotherapy was evaluated in mice bearing Lewis-lung carcinoma by measuring survival time and by histological examination. Polymeric flavan-3,4-diol (APF) from avocado seeds, Persea gratissima, administered alone directly into the tumor did not change survival time, although it partially destroyed the primary tumor. However, the drug administered in combination with an antimetastatic, 1,2-bis(3,5-dioxopiperazin-1-yl)ethane (ICRF-154), resulted in an increase in survival time. When 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was used in place of polymeric flavanadiol as an intralesional drug, a significant increase in survival was also achieved. The effect of each drug alone and of their combination was evaluated by "responder analyses". Animals "cured" by the combination and rechallenged with 2 X 10(6) tumor cells showed that immunization could occur.

  7. Vitamin D Enhances the Efficacy of Irinotecan through miR-627-Mediated Inhibition of Intratumoral Drug Metabolism.

    PubMed

    Sun, Meiyan; Zhang, Qunshu; Yang, Xiaoyu; Qian, Steven Y; Guo, Bin

    2016-09-01

    Cytochrome P450 enzyme CYP3A4 is an important drug-metabolizing enzyme, and high levels of tumoral expression of CYP3A4 are linked to drug resistance. We investigated the function of vitamin D-regulated miR-627 in intratumoral CYP3A4 suppression and its role in enhancing the efficacy of chemotherapy. We found that miR-627 targets CYP3A4 and suppresses CYP3A4 expression in colon cancer cell lines. Furthermore, calcitriol (the active form of vitamin D) suppressed CYP3A4 expression by activating miR-627. As a result, calcitriol inhibited CYP3A4-mediated metabolism of irinotecan (a topoisomerase I inhibitor) in cancer cells. We show that calcitriol enhanced the efficacy of irinotecan in growth inhibition and apoptosis induction. When miR-627 is inhibited, calcitriol fails to enhance the activity of irinotecan. In addition, overexpression of miR-627 or siRNA knockdown of CYP3A4 enhanced the efficacy of irinotecan in growth inhibition and apoptosis induction. In contrast, overexpression of CYP3A4 abolished the effects of calcitriol on the activity of irinotecan. Using a nude mouse xenograft model, we demonstrated that calcitriol inhibited CYP3A4 and enhanced the in vivo antitumor activity of irinotecan without causing side effects. Our study identified a novel target for improving cancer therapy, i.e., modulating the intratumoral CYP3A4-mediated drug metabolism with vitamin D. This strategy could enhance the therapeutic efficacy without eliciting the side effects. Mol Cancer Ther; 15(9); 2086-95. ©2016 AACR. PMID:27458137

  8. Doxorubicin-Loaded QuadraSphere Microspheres: Plasma Pharmacokinetics and Intratumoral Drug Concentration in an Animal Model of Liver Cancer

    SciTech Connect

    Lee, Kwang-Hun; Liapi, Eleni A.; Cornell, Curt; Reb, Philippe; Buijs, Manon; Vossen, Josephina A.; Ventura, Veronica Prieto; Geschwind, Jean-Francois H.

    2010-06-15

    The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.

  9. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot.

    PubMed

    Kim, Da Yeon; Kwon, Doo Yeon; Kwon, Jin Seon; Park, Ji Hoon; Park, Seung Hun; Oh, Hyun Ju; Kim, Jae Ho; Min, Byoung Hyun; Park, Kinam; Kim, Moon Suk

    2016-04-01

    Here, we describe combinational chemotherapy via intratumoral injection of doxorubicin (Dox) and 5-fluorouracil (Fu) to enhance the efficacy and reduce the toxicity of systemically administered Fu and Dox in cancer patients. As the key concept in this work, mixture formulations of Dox-loaded microcapsules (Dox-M) and Fu-loaded Pluronic(®) hydrogels (Fu-HP) or Fu-loaded diblock copolymer hydrogels (Fu-HC) have been employed as drug depots. The in vitro and in vivo drug depot was designed as a formulation of Dox-M dispersed inside an outer shell of Fu-HP or Fu-HC after injection. The Dox-M/Fu-HP and Dox-M/Fu-HC formulations are free flowing at room temperature, indicating injectability, and formed a structural gelatinous depot in vitro and in vivo at body temperature. The Fu-HP, Fu-HC, Dox-M/Fu-HP, Dox-M/Fu-HC, and Dox-M formulations were easily injected into tumor centers in mice using a needle. Dox-M/Fu-HC produced more significant inhibitory effects against tumor growth than that by Dox-M/Fu-HP, while Fu-HP, Fu-HC and Dox-M had the weakest inhibitory effects of the tested treatments. The in vivo study of Dox and Fu biodistribution showed that high Dox and Fu concentrations were maintained in the target tumor only, while distribution to normal tissues was not observed, indicating that Dox and Fu concentrations below their toxic plasma concentrations should not cause significant systemic toxicity. The Dox-M/Fu-HP and Dox-M/Fu-HC drug depots described in this work showed excellent performance as chemotherapeutic delivery systems. The results reported here indicate that intratumoral injection using combination chemotherapy with Dox-M/Fu-HP or Dox-M/Fu-HC could be of translational research by enhancing the synergistic inhibitory effects of Dox and Fu on tumor growth, while reducing their systemic toxicity in cancer patients. PMID:26874285

  10. Design and Development of a Robotized System Coupled to µCT Imaging for Intratumoral Drug Evaluation in a HCC Mouse Model

    PubMed Central

    Bour, Gaétan; Martel, Fernand; Goffin, Laurent; Bayle, Bernard; Gangloff, Jacques; Aprahamian, Marc; Marescaux, Jacques; Egly, Jean-Marc

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancer related deaths worldwide. One of the main challenges in cancer treatment is drug delivery to target cancer cells specifically. Preclinical evaluation of intratumoral drugs in orthotopic liver cancer mouse models is difficult, as percutaneous injection hardly can be precisely performed manually. In the present study we have characterized a hepatoma model developing a single tumor nodule by implantation of Hep55.1C cells in the liver of syngeneic C57BL/6J mice. Tumor evolution was followed up by µCT imaging, and at the histological and molecular levels. This orthotopic, poorly differentiated mouse HCC model expressing fibrosis, inflammation and cancer markers was used to assess the efficacy of drugs. We took advantage of the high precision of a previously developed robotized system for automated, image-guided intratumoral needle insertion, to administer every week in the tumor of the Hep55.1C mouse model. A significant tumor growth inhibition was observed using our robotized system, whereas manual intraperitoneal administration had no effect, by comparison to untreated control mice. PMID:25203629

  11. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.

    PubMed

    Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-12-28

    Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems.

  12. Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution.

    PubMed

    Le Calvé, Benjamin; Griveau, Audrey; Vindrieux, David; Maréchal, Raphaël; Wiel, Clotilde; Svrcek, Magali; Gout, Johann; Azzi, Lamia; Payen, Léa; Cros, Jérôme; de la Fouchardière, Christelle; Dubus, Pierre; Guitton, Jérôme; Bartholin, Laurent; Bachet, Jean-Baptiste; Bernard, David

    2016-05-31

    Solid tumors often display chemotherapy resistance. Pancreatic ductal adenocarcinoma (PDAC) is the archetype of resistant tumors as current chemotherapies are inefficient. The tumor stroma and extracellular matrix (ECM) are key contributors to PDAC aggressiveness and to limiting the efficacy of chemotherapy. Lysyl oxidase (LOX) family members mediate collagen cross-linking and thus promote ECM stiffening. Our data demonstrate increased LOX, LOXL1, and LOXL2 expression in PDAC, and that the level of fibrillar collagen, which is directly dependent of LOX family activity, is an independent predictive biomarker of adjuvant "Gemcitabine-based chemotherapy" benefit. Experimentally in mice, increased LOX family activity through LOXL2 promotes chemoresistance. This effect of LOX family activity seems to be due to decreased gemcitabine intra-tumoral diffusion. This observation might be explained by increased fibrillar collagen and decreased vessel size observed in tumors with increased LOX family activity. In conclusion, our data support that LOX family activity is both a novel target to improve chemotherapy as well as a novel biomarker to predict gemcitabine benefit in PDAC. Beyond the PDAC, it is possible that targeting LOX family activity might improve efficacy of chemotherapies against different kinds of solid tumors.

  13. Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution

    PubMed Central

    Le Calvé, Benjamin; Maréchal, Raphaël; Wiel, Clotilde; Svrcek, Magali; Gout, Johann; Azzi, Lamia; Payen, Léa; Cros, Jérôme; de la Fouchardière, Christelle; Dubus, Pierre; Guitton, Jérôme; Bartholin, Laurent; Bachet, Jean-Baptiste; Bernard, David

    2016-01-01

    Solid tumors often display chemotherapy resistance. Pancreatic ductal adenocarcinoma (PDAC) is the archetype of resistant tumors as current chemotherapies are inefficient. The tumor stroma and extracellular matrix (ECM) are key contributors to PDAC aggressiveness and to limiting the efficacy of chemotherapy. Lysyl oxidase (LOX) family members mediate collagen cross-linking and thus promote ECM stiffening. Our data demonstrate increased LOX, LOXL1, and LOXL2 expression in PDAC, and that the level of fibrillar collagen, which is directly dependent of LOX family activity, is an independent predictive biomarker of adjuvant “Gemcitabine-based chemotherapy” benefit. Experimentally in mice, increased LOX family activity through LOXL2 promotes chemoresistance. This effect of LOX family activity seems to be due to decreased gemcitabine intra-tumoral diffusion. This observation might be explained by increased fibrillar collagen and decreased vessel size observed in tumors with increased LOX family activity. In conclusion, our data support that LOX family activity is both a novel target to improve chemotherapy as well as a novel biomarker to predict gemcitabine benefit in PDAC. Beyond the PDAC, it is possible that targeting LOX family activity might improve efficacy of chemotherapies against different kinds of solid tumors. PMID:27050073

  14. Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes.

    PubMed

    Graham, Susan M; Carlisle, Robert; Choi, James J; Stevenson, Mark; Shah, Apurva R; Myers, Rachel S; Fisher, Kerry; Peregrino, Miriam-Bazan; Seymour, Len; Coussios, Constantin C

    2014-03-28

    The encapsulation of cytotoxic drugs within liposomes enhances pharmacokinetics and allows passive accumulation within tumors. However, liposomes designed to achieve good stability during the delivery phase often have compromised activity at the target site. This problem of inefficient and unpredictable drug release is compounded by the present lack of low-cost, non-invasive methods to measure such release. Here we show that focused ultrasound, used at pressures similar to those applied during diagnostic ultrasound scanning, can be utilised to both trigger and monitor release of payload from liposomes. Notably, drug release was influenced by liposome composition and the presence of SonoVue® microbubbles, which provided the nuclei for the initiation of an event known as inertial cavitation. In vitro studies demonstrated that liposomes formulated with a high proportion of 1,2 distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) released up to 30% of payload following ultrasound exposure in the presence of SonoVue®, provided that the exposure created sufficient inertial cavitation events, as characterised by violent bubble collapse and the generation of broadband acoustic emissions. In contrast a 'Doxil'-like liposome formulation gave no such triggered release. In pre-clinical studies, ultrasound was used as a non-invasive, targeted stimulus to trigger a 16-fold increase in the level of payload release within tumors following intravenous delivery. The inertial cavitation events driving this release could be measured remotely in real-time and were a reliable predictor of drug release.

  15. Intratumor Heterogeneity in Breast Cancer.

    PubMed

    Beca, Francisco; Polyak, Kornelia

    2016-01-01

    Intratumor heterogeneity is the main obstacle to effective cancer treatment and personalized medicine. Both genetic and epigenetic sources of intratumor heterogeneity are well recognized and several technologies have been developed for their characterization. With the technological advances in recent years, investigators are now elucidating intratumor heterogeneity at the single cell level and in situ. However, translating the accumulated knowledge about intratumor heterogeneity to clinical practice has been slow. We are certain that better understanding of the composition and evolution of tumors during disease progression and treatment will improve cancer diagnosis and the design of therapies. Here we review some of the most important considerations related to intratumor heterogeneity. We discuss both genetic and epigenetic sources of intratumor heterogeneity and review experimental approaches that are commonly used to quantify it. We also discuss the impact of intratumor heterogeneity on cancer diagnosis and treatment and share our perspectives on the future of this field. PMID:26987535

  16. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice

    NASA Astrophysics Data System (ADS)

    Kettering, Melanie; Richter, Heike; Wiekhorst, Frank; Bremer-Streck, Sibylle; Trahms, Lutz; Alois Kaiser, Werner; Hilger, Ingrid

    2011-12-01

    Localized magnetic heating treatments (hyperthermia, thermal ablation) using superparamagnetic iron oxide nanoparticles (MNPs) continue to be an active area of cancer research. For generating the appropriate heat to sufficiently target cell destruction, adequate MNP concentrations need to be accumulated into tumors. Furthermore, the knowledge of MNP bio-distribution after application and additionally after heating is significant, firstly because of the possibility of repeated heating treatments if MNPs remain at the target region and secondly to study potential adverse effects dealing with MNP dilution from the target region over time. In this context, little is known about the behavior of MNPs after intra-tumoral application and magnetic heating. Therefore, the present in vivo study on the bio-distribution of intra-tumorally injected MNPs in mice focused on MNP long term monitoring of pre and post therapy over seven days using multi-channel magnetorelaxometry (MRX). Subsequently, single-channel MRX was adopted to study the bio-distribution of MNPs in internal organs and tumors of sacrificed animals. We found no distinct change of total MNP amounts in vivo during long term monitoring. Most of the MNP amounts remained in the tumors; only a few MNPs were detected in liver and spleen and less than 1% of totally injected MNPs were excreted. Apparently, the application of magnetic heating and the induction of apoptosis did not affect MNP accumulation. Our results indicate that MNP mainly remained within the injection side after magnetic heating over a seven-days-observation and therefore not affecting healthy tissue. As a consequence, localized magnetic heating therapy of tumors might be applied periodically for a better therapeutic outcome.

  17. Intratumoral Pharmacokinetics: Challenges to Nanobiomaterials.

    PubMed

    Al-Abd, Ahmed M; Al-Abbasi, Fahad A; Torchilin, Vladimir P

    2015-01-01

    Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. Solid tumor tissue is characterized by high density of vascular bed however; the vast majority of these blood vessels are not functioning. The vast majority of solid tumors can be described as poorly perfused with blood; and anticancer agents need to penetrate/distribute avascularly within solid tumor micro-milieu. Classic pharmacokinetic parameters correlate drug status within central compartment (blood) to all perfused body tissues according to their degree of perfusion. Yet, these classic pharmacokinetic parameters cannot fully elucidate the intratumoral drug penetration/distribution status of anticancer drugs due to the great discrepancies in perfusion between normal and solid tumor tissues. Herein, we will discuss the recently proposed pharmacokinetic parameters that might accurately portray the distribution of anticancer agents within solid tumor micro-milieu. In addition, we will present the new challenges attributed to these new pharmacokinetic parameters towards designing nanobiomaterial drug delivery system. PMID:26027565

  18. Mind Altering Drugs and the Future

    ERIC Educational Resources Information Center

    Evans, Wayne O.

    1971-01-01

    A researcher in psychopharmacology foresees a flood of new drugs that will make man feel happy, cause him to forget his past, and arouse his sexual desires. Man may actually have the possibility of attaining sustained happiness, or something like it, through drugs, and so must ask the question, Is happiness what I most want?" (Author)

  19. Altered drug metabolism during pregnancy: Hormonal regulation of drug-metabolizing enzymes

    PubMed Central

    Jeong, Hyunyoung

    2013-01-01

    Importance of the field Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Areas covered in this review Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are likely responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes, thus potentially responsible for altered drug metabolism during pregnancy. What the reader will gain The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of drug-metabolizing enzymes. Take home message In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy. PMID:20367533

  20. Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas.

    PubMed

    Coman, Daniel; Huang, Yuegao; Rao, Jyotsna U; De Feyter, Henk M; Rothman, Douglas L; Juchem, Christoph; Hyder, Fahmeed

    2016-03-01

    Solid tumors have an acidic extracellular pH (pHe ) but near neutral intracellular pH (pHi ). Because acidic pHe milieu is conducive to tumor growth and builds resistance to therapy, simultaneous mapping of pHe inside and outside the tumor (i.e., intratumoral-peritumoral pHe gradient) fulfills an important need in cancer imaging. We used Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which utilizes shifts of non-exchangeable protons from macrocyclic chelates (e.g., 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) or DOTP(8-) ) complexed with paramagnetic thulium (Tm(3) (+) ) ion, to generate in vivo pHe maps in rat brains bearing 9L and RG2 tumors. Upon TmDOTP(5-) infusion, MRI identified the tumor boundary by enhanced water transverse relaxation and BIRDS allowed imaging of intratumoral-peritumoral pHe gradients. The pHe measured by BIRDS was compared with pHi measured with (31) P-MRS. In normal tissue, pHe was similar to pHi , but inside the tumor pHe was lower than pHi . While the intratumoral pHe was acidic for both tumor types, peritumoral pHe varied with tumor type. The intratumoral-peritumoral pHe gradient was much larger for 9L than RG2 tumors because in RG2 tumors acidic pHe was found in distal peritumoral regions. The increased presence of Ki-67 positive cells beyond the RG2 tumor border suggested that RG2 was more invasive than the 9L tumor. These results indicate that extensive acidic pHe beyond the tumor boundary correlates with tumor cell invasion. In summary, BIRDS has sensitivity to map the in vivo intratumoral-peritumoral pHe gradient, thereby creating preclinical applications in monitoring cancer therapeutic responses (e.g., with pHe -altering drugs). Copyright © 2016 John Wiley & Sons, Ltd. PMID:26752688

  1. Targeting intratumoral androgens: statins and beyond.

    PubMed

    Schweizer, Michael T; Yu, Evan Y

    2016-09-01

    While initially effective, androgen deprivation therapy (ADT) is not curative, and nearly all men with advanced prostate cancer will eventually progress to the more resistant, and ultimately lethal form of the disease, so called castration-resistant prostate cancer (CRPC). The maintenance of androgens within the prostate cancer microenvironment likely represents one of the key mechanisms by which this transition from hormone-sensitive to CRPC occurs. This can be accomplished either through intratumoral androgen biosynthesis or the active transport of androgens and androgenic precursors into the tumor microenvironment. More recently, preclinical and clinical data supported therapeutic strategies that seek to target these two mechanisms, either through the use of drugs that impair androgen biosynthesis (e.g. inhibiting the steroidogenic enzymes CYP17 and AKR1C3 with abiraterone and indomethacin, respectively) or drugs that inhibit the SLCO transporters responsible for importing androgens (e.g. statins). PMID:27583031

  2. Targeting intratumoral androgens: statins and beyond

    PubMed Central

    Schweizer, Michael T.; Yu, Evan Y.

    2016-01-01

    While initially effective, androgen deprivation therapy (ADT) is not curative, and nearly all men with advanced prostate cancer will eventually progress to the more resistant, and ultimately lethal form of the disease, so called castration-resistant prostate cancer (CRPC). The maintenance of androgens within the prostate cancer microenvironment likely represents one of the key mechanisms by which this transition from hormone-sensitive to CRPC occurs. This can be accomplished either through intratumoral androgen biosynthesis or the active transport of androgens and androgenic precursors into the tumor microenvironment. More recently, preclinical and clinical data supported therapeutic strategies that seek to target these two mechanisms, either through the use of drugs that impair androgen biosynthesis (e.g. inhibiting the steroidogenic enzymes CYP17 and AKR1C3 with abiraterone and indomethacin, respectively) or drugs that inhibit the SLCO transporters responsible for importing androgens (e.g. statins). PMID:27583031

  3. Asplatin enhances drug efficacy by altering the cellular response.

    PubMed

    Cheng, Qinqin; Shi, Hongdong; Wang, Hongxia; Wang, Jun; Liu, Yangzhong

    2016-07-13

    Aspirin, a widely used anti-inflammatory drug, has been shown to be effective for the prevention and remission of cancers (Science, 2012, 337(21) 1471-1473). Asplatin, a Pt(iv) prodrug of cisplatin with the ligation of aspirin (c,c,t-[PtCl2(NH3)2(OH)(aspirin)]), demonstrates significantly higher cytotoxicity than cisplatin towards tumor cells and almost fully overcomes the drug resistance of cisplatin resistant cells. In this work, we have studied the molecular mechanism of asplatin by investigating the cellular response to this compound in order to understand the prominent inhibitory effect on the proliferation of cancer cells. The apoptosis analyses and the related gene expression measurements show that aspirin released from asplatin significantly modulates the cellular response to the platinum agent. Asplatin promotes the apoptosis via the BCL-2 associated mitochondrial pathway. The down-regulation of BCL-2 along with the up-regulation of BAX and BAK enhances the mitochondrial outer membrane permeability, resulting in the cytochrome c release from mitochondria into the cytosol. This event promotes the apoptosis by activation of caspase processing. Consequently, the ligation of aspirin significantly enhances the drug efficacy of the platinum complex in the low micromolar range. The alteration of the cellular response is probably responsible for the circumvention of the cisplatin resistance by asplatin. These results provide an insight into the mechanism of asplatin and provide information for designing new classic platinum drugs. PMID:27125788

  4. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  5. Intestinal oxidative state can alter nutrient and drug bioavailability

    PubMed Central

    Monteiro, Rosário; pestana, Diogo; de Freitas, Victor; Mateus, Nuno; azevedo, Isabel; Calhau, Conceição

    2009-01-01

    Organic cations (OCs) are substances of endogenous (e.g., dopamine, choline) or exogenous (e.g., drugs like cimetidine) origin that are positively charged at physiological ph. since many of these compounds can not pass the cell membrane freely, their transport in or out of cells must be mediated by specific transport systems. Transport by organic cation transporters (OCTs) can be regulated rapidly by altering their trafficking and/or affinities in response to stimuli. However, for example, a specific disease could lead to modifications in the expression of OCTs. Chronic exposure to oxidative stress has been suggested to alter regulation and functional activity of proteins through several pathways. According to results from a previous work, oxidation-reduction pathways were thought to be involved in intestinal organic cation uptake modulation. The present work was performed in order to evaluate the influence of oxidative stressors, especially glutathione, on the intestinal organic cation absorption. For this purpose, the effect of compounds with different redox potential (glutathione, an endogenous antioxidant, and procyanidins, diet antioxidants) was assessed on MPP+ (1-methyl-4-phenylpyridinium iodide) uptake in an enterocyte cell line (Caco-2). Caco-2 cells were subcultured with two different media conditions (physiological: 5 mM glucose, referred as control cells; and high-glucose: 25 mM glucose, referred as HG cells). In HG cells, the uptake was significantly lower than in control cells. Redox changing interventions affected Mpp+ uptake, both in control and in high-glucose Caco-2 cells. Cellular glutathione levels could have an important impact on membrane transporter activity. The results indicate that modifications in the cellular oxidative state modulate MPP+ uptake by Caco-2 cells. Such modifications may reflect in changes of nutrient and drug bioavailability. PMID:20716920

  6. Direct intratumoral embolization of intranasal vascular tumors.

    PubMed

    Jang, Hyun-Uk; Kim, Tae-Hoon; Park, Chang-Mook; Kim, Jung-Soo

    2013-02-01

    Embolization is a well established technique that facilitates the subsequent surgical removal of vascularized tumors such as juvenile angiofibroma. Preoperative transarterial embolization has proven beneficial for decreasing intraoperative blood loss. However, the procedure is often incomplete owing to extensive vascular structure. Direct intratumoral embolization may help overcome this limitation. We report our experience with embolization of nasal vascular tumors by means of direct intratumoral injection of n-butyl cyanoacrylate (NBCA).

  7. Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation

    PubMed Central

    Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi

    2015-01-01

    As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532

  8. Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation.

    PubMed

    Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi

    2015-01-01

    As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532

  9. Analgesic Drugs Alter Connective Tissue Remodeling and Mechanical Properties.

    PubMed

    Carroll, Chad C

    2016-01-01

    Exercising individuals commonly consume analgesics, but these medications alter tendon and skeletal muscle connective tissue properties, possibly limiting a person from realizing the full benefits of exercise training. I detail the novel hypothesis that analgesic medications alter connective tissue structure and mechanical properties by modifying fibroblast production of growth factors and matrix enzymes, which are responsible for extracellular matrix remodeling.

  10. Mood-Altering Drugs: A Middle School Series. Revised Edition. Teacher's Guide [and Six Pamphlets:] An Introduction to Mood-Altering Drugs; Depressants or "Downers"; Alcohol - The No. 1 Drug; Stimulants or "Uppers"; Hallucinogens; [and] Marijuana or "Grass."

    ERIC Educational Resources Information Center

    DiUlio, Jean; And Others

    This guide is designed as a resource for parents and teachers to develop middle school students' critical thinking about mood-altering drugs. It consists of a series of six pamphlets which focus on each of the major types of mood-altering drugs; each pamphlet may be used alone or as part of a series. The teacher's guide contains a short summary of…

  11. Paroxysmal Perceptual Alteration: Drug-Induced Phenomenon or Schizophrenic Psychopathology?

    PubMed

    Praharaj, Samir Kumar; Kongasseri, Sreejayan; Acharya, Mahima

    2016-01-01

    Brief and repetitive episodes of perceptual changes, termed paroxysmal perceptual alteration (PPA), have been described in association with antipsychotic treatment. We report a case of paranoid schizophrenia who had such perceptual changes akin to PPA for 15 years, which was not related to antipsychotic treatment. There was a rapid resolution of PPA after treatment with low-dose clonazepam. PMID:26954463

  12. Paroxysmal Perceptual Alteration: Drug-Induced Phenomenon or Schizophrenic Psychopathology?

    PubMed Central

    Praharaj, Samir Kumar; K., Sreejayan; Acharya, Mahima

    2012-01-01

    Brief and repetitive episodes of perceptual changes, termed paroxysmal perceptual alteration (PPA), have been described in association with antipsychotic treatment. We report a case of paranoid schizophrenia who had such perceptual changes akin to PPA for 15 years, that was not related to antipsychotic treatment. There was a rapid resolution of PPA following treatment with low dose clonazepam.

  13. Mitoxantrone-loaded albumin microspheres for localized intratumoral chemotherapy of breast cancer

    NASA Astrophysics Data System (ADS)

    Almond, Brett Anthony

    The safety and efficacy of conventional chemotherapy is limited by its toxicity. The direct intratumoral injection of free or microsphere-loaded antineoplastic drugs is a promising modality for the treatment of solid tumors. Intratumoral chemotherapy delivers high localized doses of cytotoxic drugs to the tumor tissues than does systemic (intravenous) chemotherapy and it decreases systemic drug concentrations and toxicities. The use of drug-loaded microspheres also provides a prolonged release of drug into the surrounding tumor tissues, increasing exposure of the neoplasm to therapeutic levels of the cytotoxic drug. Mitoxantrone and 5-fluorouracil-loaded albumin microspheres were synthesized. The microspheres were synthesized using a suspension crosslinking technique and a glutardehyde crosslinking agent. The particle-size distribution of the microspheres was controlled by adjusting the emulsion energy and the concentration of cellulose acetate butyrate, the emulsion stabilization agent. Both microsphere size and crosslink density (glutaraldehyde concentration) were found to affect the in vitro release of loaded drugs in in vitro infinite sink conditions. The in vivo efficacy and toxicity of intratumoral chemotherapy with free and microsphere-loaded mitoxantrone were evaluated in a 16/C murine mammary adenocarcinoma model. Intratumoral chemotherapy with free mitoxantrone significantly improved survival and decreased toxicity compared to intravenously delivered drug. The efficacy of two size distributions of mitoxantrone-loaded albumin microspheres, corresponding to mean diameters of 5 to 10 mum and 20 to 40 mum, were evaluated delivered both alone and in combination with free mitoxantrone. Intratumoral injection of mitoxantrone-loaded microspheres was found to allow the safe delivery of increased doses compared to free drug. The maximum tolerated doses were approximately 40 mg/kg compared to 12 mg/kg, respectively. Intratumoral chemotherapy using free and

  14. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  15. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  16. Drug-drug interactions related to altered absorption and plasma protein binding: theoretical and regulatory considerations, and an industry perspective.

    PubMed

    Hochman, Jerome; Tang, Cuyue; Prueksaritanont, Thomayant

    2015-03-01

    Drug-drug interactions (DDIs) related to altered drug absorption and plasma protein binding have received much less attention from regulatory agencies relative to DDIs mediated via drug metabolizing enzymes and transporters. In this review, a number of theoretical bases and regulatory framework are presented for these DDI aspects. Also presented is an industry perspective on how to approach these issues in support of drug development. Overall, with the exception of highly permeable and highly soluble (BCS 1) drugs, DDIs related to drug-induced changes in gastrointestinal (GI) physiology can be substantial, thus warranting more attentions. For a better understanding of absorption-associated DDI potential in a clinical setting, mechanistic studies should be conducted based on holistic integration of the pharmaceutical profiles (e.g., pH-dependent solubility) and pharmacological properties (e.g., GI physiology and therapeutic margin) of drug candidates. Although majority of DDI events related to altered plasma protein binding are not expected to be of clinical significance, exceptions exist for a subset of compounds with certain pharmacokinetic and pharmacological properties. Knowledge of the identity of binding proteins and the binding extent in various clinical setting (including disease states) can be valuable in aiding clinical DDI data interpretations, and ensuring safe and effective use of new drugs.

  17. Intradural chordoma presenting with intratumoral bleeding.

    PubMed

    Vellutini, Eduardo de Arnaldo Silva; de Oliveira, Matheus Fernandes

    2016-03-01

    Intradural clival chordomas are very rare, and only 29 cases have been reported to our knowledge. They arise purely intradurally without bone or dural involvement and may differ from classic clival chordomas in physiopathology and management. We present a 28-year-old woman who presented with intradural clival chordoma and tumoral bleeding. After initial gross macroscopic surgical resection, she presented with tumor recurrence after 2 years, again with intratumoral bleeding. Although usually considered to have a more favorable prognosis in comparison to typical chordomas, intradural chordomas appear to behave as typical chordomas. Intratumoral bleeding may be a sign of an aggressive lesion and risk of recurrence. We highlight the differential diagnosis of intrinsic posterior fossa bleeding, especially in young patients. Intradural chordomas may be underdiagnosed and incorrectly treated as other types of parenchymal hemorrhage.

  18. Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data.

    PubMed

    Mitsos, Alexander; Melas, Ioannis N; Siminelakis, Paraskeuas; Chairakaki, Aikaterini D; Saez-Rodriguez, Julio; Alexopoulos, Leonidas G

    2009-12-01

    Understanding the mechanisms of cell function and drug action is a major endeavor in the pharmaceutical industry. Drug effects are governed by the intrinsic properties of the drug (i.e., selectivity and potency) and the specific signaling transduction network of the host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomic-based approach to identify drug effects by monitoring drug-induced topology alterations. With our proposed method, drug effects are investigated under diverse stimulations of the signaling network. Starting with a generic pathway made of logical gates, we build a cell-type specific map by constraining it to fit 13 key phopshoprotein signals under 55 experimental conditions. Fitting is performed via an Integer Linear Program (ILP) formulation and solution by standard ILP solvers; a procedure that drastically outperforms previous fitting schemes. Then, knowing the cell's topology, we monitor the same key phosphoprotein signals under the presence of drug and we re-optimize the specific map to reveal drug-induced topology alterations. To prove our case, we make a topology for the hepatocytic cell-line HepG2 and we evaluate the effects of 4 drugs: 3 selective inhibitors for the Epidermal Growth Factor Receptor (EGFR) and a non-selective drug. We confirm effects easily predictable from the drugs' main target (i.e., EGFR inhibitors blocks the EGFR pathway) but we also uncover unanticipated effects due to either drug promiscuity or the cell's specific topology. An interesting finding is that the selective EGFR inhibitor Gefitinib inhibits signaling downstream the Interleukin-1alpha (IL1alpha) pathway; an effect that cannot be extracted from binding affinity-based approaches. Our method represents an unbiased approach to identify drug effects on small to medium size pathways which is scalable to larger topologies with any type of signaling interventions (small molecules, RNAi, etc). The method can reveal drug effects on

  19. Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy.

    PubMed

    Mooney, Rachael; Weng, Yiming; Garcia, Elizabeth; Bhojane, Sukhada; Smith-Powell, Leslie; Kim, Seung U; Annala, Alexander J; Aboody, Karen S; Berlin, Jacob M

    2014-10-10

    Intratumoral drug delivery is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. This mode of administration is currently used in a number of clinical treatments such as neoadjuvant, adjuvant, and even standalone therapies when radiation and surgery are not possible. However, even when injected locally, it is difficult to achieve efficient distribution of chemotherapeutics throughout the tumor. This is primarily attributed to the high interstitial pressure which results in gradients that drive fluid away from the tumor center. The stiff extracellular matrix also limits drug penetration throughout the tumor. We have previously shown that neural stem cells can penetrate tumor interstitium, actively migrating even to hypoxic tumor cores. When used to deliver therapeutics, these migratory neural stem cells result in dramatically enhanced tumor coverage relative to conventional delivery approaches. We recently showed that neural stem cells maintain their tumor tropic properties when surface-conjugated to nanoparticles. Here we demonstrate that this hybrid delivery system can be used to improve the efficacy of docetaxel-loaded nanoparticles when administered intratumorally. This was achieved by conjugating drug-loaded nanoparticles to the surface of neural stem cells using a bond that allows the stem cells to efficiently distribute nanoparticles throughout the tumor before releasing the drug for uptake by tumor cells. The modular nature of this system suggests that it could be used to improve the efficacy of many chemotherapy drugs after intratumoral administration.

  20. Drug-induced alterations in Mg2+ homoeostasis.

    PubMed

    Lameris, Anke L; Monnens, Leo A; Bindels, René J; Hoenderop, Joost G J

    2012-07-01

    Magnesium (Mg2+) balance is tightly regulated by the concerted actions of the intestine, bone and kidneys. This balance can be disturbed by a broad variety of drugs. Diuretics, modulators of the EGFR (epidermal growth factor receptor), proton pump inhibitors, antimicrobials, calcineurin inhibitors and cytostatics may all cause hypomagnesaemia, potentially leading to tetany, seizures and cardiac arrhythmias. Conversely, high doses of Mg2+ salts, frequently administered as an antacid or a laxative, may lead to hypermagnesaemia causing various cardiovascular and neuromuscular abnormalities. A better understanding of the molecular mechanisms underlying the adverse effects of these medications on Mg2+ balance will indicate ways of prevention and treatment of these adverse effects and could potentially provide more insight into Mg2+ homoeostasis.

  1. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids.

    PubMed

    Klaassen, Curtis D; Cui, Julia Yue

    2015-10-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target.

  2. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids

    PubMed Central

    Cui, Julia Yue

    2015-01-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target. PMID:26261286

  3. Genomic imbalances in urothelial cancer: intratumor heterogeneity versus multifocality.

    PubMed

    Prat, Esther; Del Rey, Javier; Camps, Jordi; Ponsa, Immaculada; Lloreta, Josep; Egozcue, Josep; Gelabert, Antoni; Campillo, Mercedes; Miro, Rosa

    2008-09-01

    Comparative genomic hybridization and fluorescence in situ hybridization were used to define genetic changes associated with multifocal bladder cancer and to investigate whether the genetic relationship between synchronous urothelial tumors is similar to that observed within different parts of the same tumor. We investigated 8 synchronous urothelial tumors from 3 patients and macroscopically different parts of the same tumor from 2 other patients. The most frequent imbalances were gains of 1q, 2p, and 17q, and losses in 4q. The high number of chromosome imbalances detected in the present report confirms that a high level of chromosome instability could be characteristic of multicentric bladder tumors. Comparative genomic hybridization profiles obtained from independent tumors belonging to the same patient allowed us to elaborate cytogenetic pedigrees portraying the accumulation of chromosome alterations as a form of clonal evolution from a single precursor cell. The analysis of different macroscopic parts of the same tumor allowed us to detect chromosomal heterogeneity and to delineate intratumor clonal evolution. Some chromosome regions that appeared as a gain in one subpopulation were amplified in others indicating a genetic evolution process. Identical processes were observed in different tumors of the same patient. Expansion of chromosome gains and losses between different parts of the same tumor as well as in different tumors of the same patient was also observed. Our results not only provide further evidence of a clonal relationship between different synchronous bladder tumors but also show that the intratumor heterogeneity present in different subpopulations of the same tumor reproduces the behavior of independent synchronous tumors in a same patient. PMID:18382360

  4. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection.

    PubMed

    Jiang, Yingchun; Meng, Xuanyu; Wu, Zhenghong; Qi, Xiaole

    2016-06-25

    Thermosensitive in situ hydrogels are potential candidates to achieve intratumoral administration, nevertheless their weak mechanical strength always lead to serious drug leakage and burst. Herein, we developed a chitosan based thermosensitive hydrogel of high mechanical strength, which was modified by glutaraldehyde (GA) and polyvinyl alcohol (PVA), for intratumoral delivery of paclitaxel (PTX). The modified hydrogel system could achieve sol-gel transition at 35.79±0.4°C and exhibit a 7.03-fold greater mechanical strength compared with simple chitosan hydrogel. Moreover, the drug release of PTX loaded modified hydrogel in PBS (pH 7.4) was found to be extended to 13 days. After intratumoral administration in mice bearing H22 tumors, PTX-loaded modified hydrogels exhibited a 3.72-fold greater antitumor activity compared with Taxol(®). Overall, these modified hydrogel systems demonstrated to be a promising way to achieve efficient sustained release and enhanced anti-tumor therapy efficiency of anticancer drugs through in situ tumor injectable administration. PMID:27083815

  5. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug

    PubMed Central

    Miller, Miles A.; Zheng, Yao-Rong; Gadde, Suresh; Pfirschke, Christina; Zope, Harshal; Engblom, Camilla; Kohler, Rainer H.; Iwamoto, Yoshiko; Yang, Katherine S.; Askevold, Bjorn; Kolishetti, Nagesh; Pittet, Mikael; Lippard, Stephen J.; Farokhzad, Omid C.; Weissleder, Ralph

    2015-01-01

    Therapeutic nanoparticles (TNPs) aim to deliver drugs more safely and effectively to cancers, yet clinical results have been unpredictable owing to limited in vivo understanding. Here we use single-cell imaging of intratumoral TNP pharmacokinetics and pharmacodynamics to better comprehend their heterogeneous behaviour. Model TNPs comprising a fluorescent platinum(IV) pro-drug and a clinically tested polymer platform (PLGA-b-PEG) promote long drug circulation and alter accumulation by directing cellular uptake toward tumour-associated macrophages (TAMs). Simultaneous imaging of TNP vehicle, its drug payload and single-cell DNA damage response reveals that TAMs serve as a local drug depot that accumulates significant vehicle from which DNA-damaging Pt payload gradually releases to neighbouring tumour cells. Correspondingly, TAM depletion reduces intratumoral TNP accumulation and efficacy. Thus, nanotherapeutics co-opt TAMs for drug delivery, which has implications for TNP design and for selecting patients into trials. PMID:26503691

  6. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  7. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes.

    PubMed

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene-currently annotated as intronic-fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  8. A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds.

    PubMed

    Bruna, Alejandra; Rueda, Oscar M; Greenwood, Wendy; Batra, Ankita Sati; Callari, Maurizio; Batra, Rajbir Nath; Pogrebniak, Katherine; Sandoval, Jose; Cassidy, John W; Tufegdzic-Vidakovic, Ana; Sammut, Stephen-John; Jones, Linda; Provenzano, Elena; Baird, Richard; Eirew, Peter; Hadfield, James; Eldridge, Matthew; McLaren-Douglas, Anne; Barthorpe, Andrew; Lightfoot, Howard; O'Connor, Mark J; Gray, Joe; Cortes, Javier; Baselga, Jose; Marangoni, Elisabetta; Welm, Alana L; Aparicio, Samuel; Serra, Violeta; Garnett, Mathew J; Caldas, Carlos

    2016-09-22

    The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.

  9. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  10. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity

    PubMed Central

    Blair, Jessica M. A.; Bavro, Vassiliy N.; Ricci, Vito; Modi, Niraj; Cacciotto, Pierpaolo; Kleinekathӧfer, Ulrich; Ruggerone, Paolo; Vargiu, Attilio V.; Baylay, Alison J.; Smith, Helen E.; Brandon, Yvonne; Galloway, David; Piddock, Laura J. V.

    2015-01-01

    The incidence of multidrug-resistant bacterial infections is increasing globally and the need to understand the underlying mechanisms is paramount to discover new therapeutics. The efflux pumps of Gram-negative bacteria have a broad substrate range and transport antibiotics out of the bacterium, conferring intrinsic multidrug resistance (MDR). The genomes of pre- and posttherapy MDR clinical isolates of Salmonella Typhimurium from a patient that failed antibacterial therapy and died were sequenced. In the posttherapy isolate we identified a novel G288D substitution in AcrB, the resistance-nodulation division transporter in the AcrAB-TolC tripartite MDR efflux pump system. Computational structural analysis suggested that G288D in AcrB heavily affects the structure, dynamics, and hydration properties of the distal binding pocket altering specificity for antibacterial drugs. Consistent with this hypothesis, recreation of the mutation in standard Escherichia coli and Salmonella strains showed that G288D AcrB altered substrate specificity, conferring decreased susceptibility to the fluoroquinolone antibiotic ciprofloxacin by increased efflux. At the same time, the substitution increased susceptibility to other drugs by decreased efflux. Information about drug transport is vital for the discovery of new antibacterials; the finding that one amino acid change can cause resistance to some drugs, while conferring increased susceptibility to others, could provide a basis for new drug development and treatment strategies. PMID:25737552

  11. Factors Controlling the Pharmacokinetics, Biodistribution and Intratumoral Penetration of Nanoparticles

    PubMed Central

    Ernsting, Mark J.; Murakami, Mami; Roy, Aniruddha; Li, Shyh-Dar

    2014-01-01

    Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors, penetrate through dense stroma in the tumor microenvironment to reach the tumor cells, remain in the tumor tissue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The physicochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors, with discussion on how the tumor microenvironment can be adjusted and how patients can be stratified by imaging methods to receive the maximal benefit of nanomedicine. Perspectives and future directions are also provided. PMID:24075927

  12. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines

    PubMed Central

    Durymanov, Mikhail O; Rosenkranz, Andrey A; Sobolev, Alexander S

    2015-01-01

    The ability of nanoparticles and macromolecules to passively accumulate in solid tumors and enhance therapeutic effects in comparison with conventional anticancer agents has resulted in the development of various multifunctional nanomedicines including liposomes, polymeric micelles, and magnetic nanoparticles. Further modifications of these nanoparticles have improved their characteristics in terms of tumor selectivity, circulation time in blood, enhanced uptake by cancer cells, and sensitivity to tumor microenvironment. These “smart” systems have enabled highly effective delivery of drugs, genes, shRNA, radioisotopes, and other therapeutic molecules. However, the resulting therapeutically relevant local concentrations of anticancer agents are often insufficient to cause tumor regression and complete elimination. Poor perfusion of inner regions of solid tumors as well as vascular barrier, high interstitial fluid pressure, and dense intercellular matrix are the main intratumoral barriers that impair drug delivery and impede uniform distribution of nanomedicines throughout a tumor. Here we review existing methods and approaches for improving tumoral uptake and distribution of nano-scaled therapeutic particles and macromolecules (i.e. nanomedicines). Briefly, these strategies include tuning physicochemical characteristics of nanomedicines, modulating physiological state of tumors with physical impacts or physiologically active agents, and active delivery of nanomedicines using cellular hitchhiking. PMID:26155316

  13. Trochlear Nerve Schwannoma With Repeated Intratumoral Hemorrhage.

    PubMed

    Liu, Pengfei; Bao, Yuhai; Zhang, Wenchuan

    2016-09-01

    Trochlear nerve schwannoma is extremely rare, with only 35 pathologically confirmed patients being reported in the literature. Here, the authors report a patient of trochlear nerve schwannoma in the prepontine cistern manifesting as facial pain and double vision and presenting the image characteristics of repeated intratumoral hemorrhage, which has never been reported in the literature. Total tumor along with a portion of the trochlear nerve was removed by using a retrosigmoid approach. Facial pain disappeared after operation, and the diplopia remained. Follow-up studies have shown no tumor recurrence for 2 years and the simultaneous alleviation of diplopia. Information regarding the clinical presentation, radiological features and surgical outcomes of trochlear nerve schwannoma are discussed and reviewed in the paper. PMID:27607129

  14. Altering Antimalarial Drug Regimens May Dramatically Enhance and Restore Drug Effectiveness.

    PubMed

    Kay, Katherine; Hodel, Eva Maria; Hastings, Ian M

    2015-10-01

    There is considerable concern that malaria parasites are starting to evolve resistance to the current generation of antimalarial drugs, the artemisinin-based combination therapies (ACTs). We use pharmacological modeling to investigate changes in ACT effectiveness likely to occur if current regimens are extended from 3 to 5 days or, alternatively, given twice daily over 3 days. We show that the pharmacology of artemisinins allows both regimen changes to substantially increase the artemisinin killing rate. Malaria patients rarely contain more than 10(12) parasites, while the standard dosing regimens allow approximately 1 in 10(10) parasites to survive artemisinin treatment. Parasite survival falls dramatically, to around 1 in 10(17) parasites if the dose is extended or split; theoretically, this increase in drug killing appears to be more than sufficient to restore failing ACT efficacy. One of the most widely used dosing regimens, artemether-lumefantrine, already successfully employs a twice-daily dosing regimen, and we argue that twice-daily dosing should be incorporated into all ACT regimen design considerations as a simple and effective way of ensuring the continued long-term effectiveness of ACTs. PMID:26239993

  15. Altering Antimalarial Drug Regimens May Dramatically Enhance and Restore Drug Effectiveness

    PubMed Central

    Hastings, Ian M.

    2015-01-01

    There is considerable concern that malaria parasites are starting to evolve resistance to the current generation of antimalarial drugs, the artemisinin-based combination therapies (ACTs). We use pharmacological modeling to investigate changes in ACT effectiveness likely to occur if current regimens are extended from 3 to 5 days or, alternatively, given twice daily over 3 days. We show that the pharmacology of artemisinins allows both regimen changes to substantially increase the artemisinin killing rate. Malaria patients rarely contain more than 1012 parasites, while the standard dosing regimens allow approximately 1 in 1010 parasites to survive artemisinin treatment. Parasite survival falls dramatically, to around 1 in 1017 parasites if the dose is extended or split; theoretically, this increase in drug killing appears to be more than sufficient to restore failing ACT efficacy. One of the most widely used dosing regimens, artemether-lumefantrine, already successfully employs a twice-daily dosing regimen, and we argue that twice-daily dosing should be incorporated into all ACT regimen design considerations as a simple and effective way of ensuring the continued long-term effectiveness of ACTs. PMID:26239993

  16. Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects

    PubMed Central

    Khokhar, Jibran Y; Tyndale, Rachel F

    2011-01-01

    Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (r=0.76, P=0.0009), but not plasma (r=0.24, P=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain. PMID:21107310

  17. ‘From the core to beyond the margin’: a genomic picture of glioblastoma intratumor heterogeneity

    PubMed Central

    Etcheverry, Amandine; Clavreul, Anne; Saikali, Stéphan; Menei, Philippe; Mosser, Jean

    2015-01-01

    Glioblastoma (GB) is a highly invasive primary brain tumor that almost systematically recurs despite aggressive therapies. One of the most challenging problems in therapy of GB is its extremely complex and heterogeneous molecular biology. To explore this heterogeneity, we performed a genome-wide integrative screening of three molecular levels: genome, transcriptome, and methylome. We analyzed tumor biopsies obtained by neuro-navigation in four distinct areas for 10 GB patients (necrotic zone, tumor zone, interface, and peripheral brain zone). We classified samples and deciphered a key genes signature of intratumor heterogeneity by Principal Component Analysis and Weighted Gene Co-expression Network Analysis. At the genome level, we identified common GB copy number alterations and but a strong interindividual molecular heterogeneity. Transcriptome analysis highlighted a pronounced intratumor architecture reflecting the surgical sampling plan of the study and identified gene modules associated with hallmarks of cancer. We provide a signature of key cancer-heterogeneity genes highly associated with the intratumor spatial gradient and show that it is enriched in genes with correlation between methylation and expression levels. Our study confirms that GBs are molecularly highly diverse and that a single tumor can harbor different transcriptional GB subtypes depending on its spatial architecture. PMID:25940437

  18. Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies

    PubMed Central

    Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Darwiche, Kaid; Vogl, Thomas; Goldberg, Eugene P; Huang, Haidong; Simoff, Michael; Li, Qiang; Browning, Robert; Turner, Francis J; Le Pivert, Patrick; Spyratos, Dionysios; Zarogoulidis, Konstantinos; Celikoglu, Seyhan I; Celikoglu, Firuz; Brachmann, Johannes

    2013-01-01

    Strategies to enhance the already established doublet chemotherapy regimen for lung cancer have been investigated for more than 20 years. Initially, the concept was to administer chemotherapy drugs locally to the tumor site for efficient diffusion through passive transport within the tumor. Recent advances have enhanced the diffusion of pharmaceuticals through active transport by using pharmaceuticals designed to target the genome of tumors. In the present study, five patients with non-small cell lung cancer epidermal growth factor receptor (EGFR) negative stage IIIa–IV International Union Against Cancer 7 (UICC-7), and with Eastern Cooperative Oncology Group (ECOG) 2 scores were administered platinum-based doublet chemotherapy using combined intratumoral-regional and intravenous route of administration. Cisplatin analogues were injected at 0.5%–1% concentration within the tumor lesion and proven malignant lymph nodes according to pretreatment histological/cytological results and the concentration of systemic infusion was decreased to 70% of a standard protocol. This combined intravenous plus intratumoral-regional chemotherapy is used as a first line therapy on this short series of patients. To the best of our knowledge this is the first report of direct treatment of involved lymph nodes with cisplatin by endobronchial ultrasound drug delivery with a needle without any adverse effects. The initial overall survival and local response are suggestive of a better efficacy compared to established doublet cisplatin–based systemic chemotherapy in (higher) standard concentrations alone according to the UICC 7 database expected survival. An extensive search of the literature was performed to gather information of previously published literature of intratumoral chemo-drug administration and formulation for this treatment modality. Our study shows a favorable local response, more than a 50% reduction, for a massive tumor mass after administration of five sessions of

  19. Drug Resistance Mutations Alter Dynamics of Inhibitor-Bound HIV-1 Protease.

    PubMed

    Cai, Yufeng; Myint, Wazo; Paulsen, Janet L; Schiffer, Celia A; Ishima, Rieko; Kurt Yilmaz, Nese

    2014-08-12

    Under the selective pressure of therapy, HIV-1 protease mutants resistant to inhibitors evolve to confer drug resistance. Such mutations can impact both the dynamics and structures of the bound and unbound forms of the enzyme. Flap+ is a multidrug-resistant variant of HIV-1 protease with a combination of primary and secondary resistance mutations (L10I, G48V, I54V, V82A) and a strikingly altered thermodynamic profile for darunavir (DRV) binding relative to the wild-type protease. We elucidated the impact of these mutations on protein dynamics in the DRV-bound state using molecular dynamics simulations and NMR relaxation experiments. Both methods concur in that the conformational ensemble and dynamics of protease are impacted by the drug resistance mutations in Flap+ variant. Surprisingly this change in ensemble dynamics is different from that observed in the unliganded form of the same variant (Cai, Y. et al. J. Chem. Theory Comput. 2012, 8, 3452-3462). Our comparative analysis of both inhibitor-free and bound states presents a comprehensive picture of the altered dynamics in drug-resistant mutant HIV-1 protease and underlies the importance of incorporating dynamic analysis of the whole system, including the unliganded state, into revealing drug resistance mechanisms. PMID:25136270

  20. Drugs of abuse: the highs and lows of altered mental states in the emergency department.

    PubMed

    Meehan, Timothy J; Bryant, Sean M; Aks, Steven E

    2010-08-01

    The diagnosis and management of poisoned patients presenting with alterations in mental status can be challenging, as patients are often unable (or unwilling) to provide an adequate history. Several toxidromes exist. Recognition hinges upon vital signs and the physical examination. Understanding these "toxic syndromes" may guide early therapy and management, providing insight into the patient's underlying medical problem. Despite toxidrome recognition guiding antidotal therapy, the fundamental aspect of managing these patients involves meticulous supportive care. The authors begin with a discussion of various toxidromes and then delve into the drugs responsible for each syndrome. They conclude with a discussion on drug-facilitated sexual assault ("date rape"), which is both an underrecognized problem in the emergency department (ED) and representative of the drug-related problems faced in a modern ED. PMID:20709248

  1. Drugs of abuse: the highs and lows of altered mental states in the emergency department.

    PubMed

    Meehan, Timothy J; Bryant, Sean M; Aks, Steven E

    2010-08-01

    The diagnosis and management of poisoned patients presenting with alterations in mental status can be challenging, as patients are often unable (or unwilling) to provide an adequate history. Several toxidromes exist. Recognition hinges upon vital signs and the physical examination. Understanding these "toxic syndromes" may guide early therapy and management, providing insight into the patient's underlying medical problem. Despite toxidrome recognition guiding antidotal therapy, the fundamental aspect of managing these patients involves meticulous supportive care. The authors begin with a discussion of various toxidromes and then delve into the drugs responsible for each syndrome. They conclude with a discussion on drug-facilitated sexual assault ("date rape"), which is both an underrecognized problem in the emergency department (ED) and representative of the drug-related problems faced in a modern ED.

  2. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans.

  3. Antitumor activity of TNF-α after intratumoral injection using an in situ thermosensitive hydrogel.

    PubMed

    Xu, Yourui; Shen, Yan; Ouahab, Ammar; Li, Chang; Xiong, Yerong; Tu, Jiasheng

    2015-03-01

    Local drug delivery strategies based on nanoparticles, gels, polymeric films, rods and wafers are increasingly used in cancer chemotherapy in order to enhance therapeutic effect and reduce systemic toxicity. Herein, a biodegradable and biocompatible in situ thermosensitive hydrogel was designed and employed to deliver tumor necrosis factor-α (TNF-α) locally by intratumoral injection. The triblock copolymer was synthesized by ring-opening polymerization (ROP) of β-butyrolactone (β-BL) and lactide (LA) in bulk using polyethylene glycol (PEG) as an initiator and Sn(Oct)2 as the catalyst, the polymer was characterized by NMR, gel permeation chromatography and differential scanning calorimetry. Blood and tumor pharmacokinetics and in vivo antitumor activity of TNF-α after intratumoral administration in hydrogel or solution with the same dose were evaluated on S180 tumor-bearing mice. Compared with TNF-α solution, TNF-α hydrogel exhibited a longer T1/2 (4-fold) and higher AUCtumor (19-fold), but Cmax was lower (0.5-fold), which means that the hydrogel formulation improved the efficacy with a lower systhemic exposure than the solution formation. In addition, TNF-α hydrogel improved the antitumor activity and survival due to lower systemic exposure than the solution. These results demonstrate that the in situ thermosensitive hydrogel-based local delivery system by intratumoral injection is well suited for the administration of TNF-α.

  4. A Massive Intratumoral Aneurysmal Vessel in a Retroperitoneal Lipoblastoma.

    PubMed

    Moon, Suk-Bae

    2015-12-01

    Lipoblastoma is a benign tumor and usually does not require radical operation for complete excision. We describe here a case of a retroperitoneal lipoblastoma with a massive intratumoral aneurysmal vessel.

  5. Antitumor efficacy and intratumoral distribution of SN-38 from polymeric depots in brain tumor model

    PubMed Central

    Vejjasilpa, Ketpat; Manaspon, Chawan; Larbcharoensub, Noppadol; Boongird, Atthaporn; Hongeng, Suradej; Israsena, Nipan

    2015-01-01

    We investigate antitumor efficacy and 2D and 3D intratumoral distribution of 7-ethyl-10-hydroxycamptothecin (SN-38) from polymeric depots inside U-87MG xenograft tumor model in nude mice. Results showed that polymeric depots could be used to administer and controlled release of a large amount of SN-38 directly to the brain tumor model. SN-38 released from depots suppressed tumor growth, where the extent of suppression greatly depended on doses and the number of depot injections. Tumor suppression of SN-38 from depots was three-fold higher in animals which received double injections of depots at high dose (9.7 mg of SN-38) compared to single injection (2.2 mg). H&E staining of tumor sections showed that the area of tumor cell death/survival of the former group was two-fold higher than those of the latter group. Fluorescence imaging based on self-fluorescent property of SN-38 was used to evaluate the intratumoral distribution of this drug compared to histological results. The linear correlation between fluorescence intensity and the amount of SN-38 allowed quantitative determination of SN-38 in tumor tissues. Results clearly showed direct correlation between the amount of SN-38 in tumor sections and cancer cell death. Moreover, 3D reconstruction representing the distribution of SN-38 in tumors was obtained. Results from this study suggest the rationale for intratumoral drug administration and release of drugs inside tumor, which is necessary to design drug delivery systems with efficient antitumor activity. PMID:26080460

  6. Intratumoral delivery of paclitaxel using a thermosensitive hydrogel in human tumor xenografts.

    PubMed

    Kim, Jung Ho; Lee, Joo-Ho; Kim, Kwang-Suck; Na, Kun; Song, Soo-Chang; Lee, Jaehwi; Kuh, Hyo-Jeong

    2013-01-01

    Poly(organophosphazene), a novel thermosensitive hydrogel, is an injectable drug delivery system (DDS) that transforms from sol to gel at body temperature. Paclitaxel (PTX) is a mitotic inhibitor used in the treatment of various solid tumors. Due to its poor solubility in water and efflux systems in the gastrointestinal tract, PTX is a good candidate for local DDS. Here, we evaluated the penetration kinetics of PTX released from the PTX-poly(organophosphazene) hydrogel mixture in multicellular layers (MCLs) of human cancer cells. We also investigated the tumor pharmacokinetics of PTX (60 mg/kg) when administered as an intratumoral injection using poly(organophosphazene) in mice with human tumor xenografts. When PTX was formulated at 0.6 % w/w into a 10 % w/w hydrogel, the in vitro and in vivo release were found to be 40 and 90 % of the dose, respectively, in a sustained manner over 4 weeks. Exposure of MCLs to PTX-hydrogel showed time-dependent drug penetration and accumulation. In mice, the hydrogel mass was well retained over 6 weeks, and the PTX concentration in the tumor tissue was maximal at 14 days, which rapidly decreased and coincided with rebound tumor growth after 14 days of suppression. These data indicate that PTX-hydrogel should be intratumorally injected every 14 days, or drug release duration should be prolonged in order to achieve a long-term antitumor effect. Overall, poly(organophosphazene) represents a novel thermosensitive DDS for intratumoral delivery of PTX, which can accommodate a large dose of the drug in addition to reducing its systemic exposure by restricting biodistribution to tumor tissue alone. PMID:23371803

  7. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations

    PubMed Central

    2016-01-01

    According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available. PMID:27042396

  8. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations.

    PubMed

    Newe, Axel

    2016-01-01

    According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available. PMID:27042396

  9. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations.

    PubMed

    Newe, Axel

    2016-01-01

    According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available.

  10. Collections of simultaneously altered genes as biomarkers of cancer cell drug response.

    PubMed

    Masica, David L; Karchin, Rachel

    2013-03-15

    Computational analysis of cancer pharmacogenomics data has resulted in biomarkers predictive of drug response, but the majority of response is not captured by current methods. Methods typically select single biomarkers or groups of related biomarkers but do not account for response that is strictly dependent on many simultaneous genetic alterations. This shortcoming reflects the combinatorics and multiple-testing problem associated with many-body biologic interactions. We developed a novel approach, Multivariate Organization of Combinatorial Alterations (MOCA), to partially address these challenges. Extending on previous work that accounts for pairwise interactions, the approach rapidly combines many genomic alterations into biomarkers of drug response, using Boolean set operations coupled with optimization; in this framework, the union, intersection, and difference Boolean set operations are proxies of molecular redundancy, synergy, and resistance, respectively. The algorithm is fast, broadly applicable to cancer genomics data, is of immediate use for prioritizing cancer pharmacogenomics experiments, and recovers known clinical findings without bias. Furthermore, the results presented here connect many important, previously isolated observations.

  11. Metabolic alterations in HIV-infected pregnant women: moving to metabolic tailoring of antiretroviral drugs.

    PubMed

    Guaraldi, Giovanni; Stentarelli, Chiara; Da Silva, Anarita Domingues; Luzi, Kety; Neri, Isabella; Cellini, Monica; Petrella, Elisabetta; Garlassi, Elisa; Menozzi, Marianna; Facchinetti, Fabio; Mussini, Cristina

    2014-01-01

    The most striking effect of increased survival and improved quality of life in HIV-infected women undergoing antiretroviral therapy is the feasibility of motherhood-desire satisfaction. However, such advantages are often associated with drug-related metabolic toxicities, particularly relevant in the pregnancy context. Recent guidelines provide recommendations and trends for the use of antiretroviral therapy in pregnant women, but current literature falls short of providing specific insights on the need for metabolic monitoring and treatment in HIV-infected pregnant women. In this review we provide specific insight into the state-of-the-art of: detection, evaluation, and management of metabolic alterations in this special population. Pregnancy is in fact a metabolic transition process, potentially associated with specific diseases in the mother, in the newborn, and in the adulthood of the child. We will not simply discuss antiretroviral therapy metabolic toxicities, but rather their interaction with the physiological metabolic changes occurring during pregnancy. Close monitoring is needed to diagnose metabolic alterations that can lead to adverse outcomes in the mother, in the newborn, and potentially in adulthood. Lifestyle interventions and an appropriate metabolic tailoring of antiretroviral therapy drugs need to be considered in the prevention and treatment of metabolic alteration during pregnancy.

  12. Collections of simultaneously altered genes as biomarkers of cancer cell drug response.

    PubMed

    Masica, David L; Karchin, Rachel

    2013-03-15

    Computational analysis of cancer pharmacogenomics data has resulted in biomarkers predictive of drug response, but the majority of response is not captured by current methods. Methods typically select single biomarkers or groups of related biomarkers but do not account for response that is strictly dependent on many simultaneous genetic alterations. This shortcoming reflects the combinatorics and multiple-testing problem associated with many-body biologic interactions. We developed a novel approach, Multivariate Organization of Combinatorial Alterations (MOCA), to partially address these challenges. Extending on previous work that accounts for pairwise interactions, the approach rapidly combines many genomic alterations into biomarkers of drug response, using Boolean set operations coupled with optimization; in this framework, the union, intersection, and difference Boolean set operations are proxies of molecular redundancy, synergy, and resistance, respectively. The algorithm is fast, broadly applicable to cancer genomics data, is of immediate use for prioritizing cancer pharmacogenomics experiments, and recovers known clinical findings without bias. Furthermore, the results presented here connect many important, previously isolated observations. PMID:23338612

  13. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  14. Subtoxic Alterations in Hepatocyte-Derived Exosomes: An Early Step in Drug-Induced Liver Injury?

    PubMed

    Holman, Natalie S; Mosedale, Merrie; Wolf, Kristina K; LeCluyse, Edward L; Watkins, Paul B

    2016-06-01

    Drug-induced liver injury (DILI) is a significant clinical and economic problem in the United States, yet the mechanisms that underlie DILI remain poorly understood. Recent evidence suggests that signaling molecules released by stressed hepatocytes can trigger immune responses that may be common across DILI mechanisms. Extracellular vesicles released by hepatocytes, principally hepatocyte-derived exosomes (HDEs), may constitute one such signal. To examine HDE alterations as a function of drug-induced stress, this work utilized prototypical hepatotoxicant acetaminophen (APAP) in male Sprague-Dawley (SD) rats, SD rat hepatocytes, and primary human hepatocytes. HDE were isolated using ExoQuick precipitation reagent and analyzed by quantification of the liver-specific RNAs albumin and microRNA-122 (miR-122). In vivo, significant elevations in circulating exosomal albumin mRNA were observed at subtoxic APAP exposures. Significant increases in exosomal albumin mRNA were also observed in primary rat hepatocytes at subtoxic APAP concentrations. In primary human hepatocytes, APAP elicited increases in both exosomal albumin mRNA and exosomal miR-122 without overt cytotoxicity. However, the number of HDE produced in vitro in response to APAP did not increase with exosomal RNA quantity. We conclude that significant drug-induced alterations in the liver-specific RNA content of HDE occur at subtoxic APAP exposures in vivo and in vitro, and that these changes appear to reflect selective packaging rather than changes in exosome number. The current findings demonstrate that translationally relevant HDE alterations occur in the absence of overt hepatocellular toxicity, and support the hypothesis that HDE released by stressed hepatocytes may mediate early immune responses in DILI. PMID:26962055

  15. Towards inverse modeling of intratumor heterogeneity

    NASA Astrophysics Data System (ADS)

    Brutovsky, Branislav; Horvath, Denis

    2015-08-01

    Development of resistance limits efficiency of present anticancer therapies and preventing it remains a big challenge in cancer research. It is accepted, at the intuitive level, that resistance emerges as a consequence of the heterogeneity of cancer cells at the molecular, genetic and cellular levels. Produced by many sources, tumor heterogeneity is extremely complex time dependent statistical characteristics which may be quantified by measures defined in many different ways, most of them coming from statistical mechanics. In this paper, we apply the Markovian framework to relate population heterogeneity to the statistics of the environment. As, from an evolutionary viewpoint, therapy corresponds to a purposeful modi- fication of the cells' fitness landscape, we assume that understanding general relationship between the spatiotemporal statistics of a tumor microenvironment and intratumor heterogeneity will allow to conceive the therapy as an inverse problem and to solve it by optimization techniques. To account for the inherent stochasticity of biological processes at cellular scale, the generalized distancebased concept was applied to express distances between probabilistically described cell states and environmental conditions, respectively.

  16. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi

    PubMed Central

    Oliver, Brian G.; Silver, Peter M.; Marie, Chelsea; Hoot, Samantha J.; Leyde, Sarah E.; White, Theodore C.

    2008-01-01

    Summary The tetracycline (TET) promoter has been used in several systems as an inducible regulator of gene expression. In control analyses, the standard Candida albicans laboratory strain SC5314 was found to have altered susceptibility to a variety of antifungal drugs in the presence of relatively high concentrations (50 to 200 μg/ml) of TET. Altered susceptibility was most notable with exposure to amphotericin B (AMB) with a 32 fold increase in susceptibility, and terbinafine (TRB) with a 32 fold decrease in susceptibility. The TET/AMB synergy was observed in several clinical isolates of C. albicans and in distantly related species Aspergillus fumigatus, and Cryptococcus neoformans. The TET/AMB synergy is not related to efflux pump activity, as determined by FACS analyses and by analysis of a strain containing efflux pump deletions. Gene expression analyses by luciferase and by quantitative real time reverse transcriptase PCR failed to identify significant alterations in expression of any genes associated with resistance. C. albicans grown in TET for 48 h does show a reduction in total cellular ergosterol. Analysis of growth curves suggests that the TET effect is associated with lack of a diauxic shift, which is related to a loss of mitochondrial function. MitoTracker fluorescent dye was used to demonstrate that TET has a direct effect on mitochondrial function. These results demonstrate the need for careful analysis of TET effects when using a TET-inducible promoter, especially in studies that involve antifungal drugs. This study defines some limits to the use of the TET inducible promoter, and identifies effects on cells that are the result of TET exposure alone, not the result of expression of a targeted gene. PMID:18310042

  17. Alterations of prefrontal cortical microRNAs in methamphetamine self-administering rats: From controlled drug intake to escalated drug intake.

    PubMed

    Du, Hao-Yue; Cao, Dan-Ni; Chen, Ying; Wang, Lv; Wu, Ning; Li, Jin

    2016-01-12

    Drug addiction is a process that transits from recreative and regular drug use into compulsive drug use. The two patterns of drug use, controlled drug intake and escalated drug intake, represent different stages in the development of drug addiction; and escalation of drug use is a hallmark of addiction. Accumulating studies indicate that microRNAs (miRNAs) play key regulatory roles in drug addiction. However, the molecular adaptations in escalation of drug use, as well as the difference in the adaptations between escalated and controlled drug use, remain unclear. In the present study, 28 altered miRNAs in the prefrontal cortex (PFC) were found in the groups of controlled methamphetamine self-administration (1h/session) and escalated self-administration (6h/session), and some of them were validated. Compared with saline control group, miR-186 was verified to be up-regulated while miR-195 and miR-329 were down-regulated in the rats with controlled methamphetamine use. In the rats with escalated drug use, miR-127, miR-186, miR-222 and miR-24 were verified to be up-regulated while miR-329 was down-regulated compared with controls. Furthermore, bioinformatic analysis indicated that the predicted targets of these verified miRNAs involved in the processes of neuronal apoptosis and synaptic plasticity. However, the putative regulated molecules may be different between controlled and escalated drug use groups. Taken together, we detected the altered miRNAs in rat PFC under the conditions of controlled methamphetamine use and escalated use respectively, which may extend our understanding of the molecular adaptations underlying the transition from controlled drug use to addiction.

  18. Prenatal drug exposure to illicit drugs alters working memory-related brain activity and underlying network properties in adolescence.

    PubMed

    Schweitzer, Julie B; Riggins, Tracy; Liang, Xia; Gallen, Courtney; Kurup, Pradeep K; Ross, Thomas J; Black, Maureen M; Nair, Prasanna; Salmeron, Betty Jo

    2015-01-01

    The persistence of effects of prenatal drug exposure (PDE) on brain functioning during adolescence is poorly understood. We explored neural activation to a visuospatial working memory (VSWM) versus a control task using functional magnetic resonance imaging (fMRI) in adolescents with PDE and a community comparison group (CC) of non-exposed adolescents. We applied graph theory metrics to resting state data using a network of nodes derived from the VSWM task activation map to further explore connectivity underlying WM functioning. Participants (ages 12-15 years) included 47 adolescents (27 PDE and 20 CC). All analyses controlled for potentially confounding differences in birth characteristics and postnatal environment. Significant group by task differences in brain activation emerged in the left middle frontal gyrus (BA 6) with the CC group, but not the PDE group, activating this region during VSWM. The PDE group deactivated the culmen, whereas the CC group activated it during the VSWM task. The CC group demonstrated a significant relation between reaction time and culmen activation, not present in the PDE group. The network analysis underlying VSWM performance showed that PDE group had lower global efficiency than the CC group and a trend level reduction in local efficiency. The network node corresponding to the BA 6 group by task interaction showed reduced nodal efficiency and fewer direct connections to other nodes in the network. These results suggest that adolescence reveals altered neural functioning related to response planning that may reflect less efficient network functioning in youth with PDE.

  19. Intratumor photosensitizer injection for photodynamic therapy: Pre-clinical experience with methylene blue, Pc 4, and Photofrin

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.; Foster, Thomas H.

    2016-03-01

    Intravenous administration of some photosensitizers, including the FDA-approved Photofrin, results in significant systemic photosensitivity and a 2-3-day drug-light interval. Direct intratumor injection of photosensitizer could potentially eliminate these negative aspects of photodynamic therapy (PDT), while requiring a lower photosensitizer dose to achieve comparable drug concentration in the target tissue. We performed PDT using intratumor injection of 3 photosensitizers, methylene blue (MB), Pc 4, and Photofrin, in mouse tumor models. After a 0-15 minute drug-light interval, illumination was delivered by appropriate diode lasers. For animals receiving MB or Pc 4, surface illumination was delivered using a microlens-terminated fiber. For animals receiving Photofrin, interstitial illumination was delivered by a 1 cm diffuser. In animals receiving MB or Pc 4, tumor dimensions were measured daily post-PDT, with a cure being defined as no palpable tumor 90 days post-treatment. For Photofrin, animals were sacrificed 24 hours post-PDT and tumors were excised, with samples HE stained to assess PDT-induced necrosis. 55% of tumors were cured with MB-PDT, and significant tumor growth delay (p=0.002) was observed for Pc 4. For Photofrin PDT, the mean necrosis radius was 3.4+/-0.8 mm, compared to 2.9+/-1.3 mm for systemic administration, which was not a significant difference (p=0.58). Intratumoral injection of the photosensitizers methylene blue, Pc 4, and Photofrin is feasible, and results in appreciable tumor response. Further investigation is necessary to optimize treatment protocols and assess the systemic photosensitivity induced by intratumor injection.

  20. Drug-induced and Genetic Alterations in Stress-Responsive Systems: Implications for Specific Addictive Diseases

    PubMed Central

    Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

    2009-01-01

    From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. PMID:19914222

  1. Norepinephrine transporter knock-out alters expression of the genes connected with antidepressant drugs action.

    PubMed

    Solich, Joanna; Kolasa, Magdalena; Kusmider, Maciej; Faron-Gorecka, Agata; Pabian, Paulina; Zurawek, Dariusz; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2015-01-12

    Norepinephrine transporter knock-out mice (NET-KO) exhibit depression-resistant phenotypes. They manifest significantly shorter immobility times in both the forced swim test and the tail suspension test. Moreover, biochemical studies have revealed the up-regulation of other monoamine transporters (dopamine and serotonin) in the brains of NET-KO mice, similar to the phenomenon observed after the chronic pharmacological blockade of norepinephrine transporter by desipramine in wild-type (WT) animals. NET-KO mice are also resistant to stress, as we demonstrated previously by measuring plasma corticosterone concentration. In the present study, we used a microdissection technique to separate target brain regions and the TaqMan Low Density Array approach to test the expression of a group of genes in the NET-KO mice compared with WT animals. A group of genes with altered expression were identified in four brain structures (frontal and cingulate cortices, dentate gyrus of hippocampus and basal-lateral amygdala) of NET-KO mice compared with WT mice. These genes are known to be altered by antidepressant drugs administration. The most interesting gene is Crh-bp, which modulates the activity of corticotrophin--releasing hormone (CRH) and several CRH-family members. Generally, genetic disturbances within noradrenergic neurons result in biological changes, such as in signal transduction and intercellular communication, and may be linked to changes in noradrenaline levels in the brains of NET-KO mice.

  2. Alteration of the diffusional barrier property of the nail leads to greater terbinafine drug loading and permeation.

    PubMed

    Nair, Anroop B; Sammeta, Srinivasa M; Kim, Hyun D; Chakraborty, Bireswar; Friden, Phillip M; Murthy, S Narasimha

    2009-06-22

    The diffusional barrier property of biological systems varies with ultrastructural organization of the tissues and/or cells, and often plays an important role in drug delivery. The nail plate is a thick, hard and impermeable membrane which makes topical nail drug delivery challenging. The current study investigated the effect of physical and chemical alteration of the nail on the trans-ungual drug delivery of terbinafine hydrochloride (TH) under both passive and iontophoretic conditions. Physical alterations were carried out by dorsal or ventral nail layer abrasion, while chemical alterations were performed by defatting or keratolysis or ionto-keratolysis of the nails. Terbinafine permeation into and across the nail plate following various nail treatments showed similar trends in both passive and iontophoretic delivery, although the extent of drug delivery varied with treatment. Application of iontophoresis to the abraded nails significantly improved (P<0.05) TH permeation and loading compared to abraded nails without iontophoresis or normal nails with iontophoresis. Drug permeation was not enhanced when the nail plate was defatted. Keratolysis moderately enhanced the permeation but not the drug load. Ionto-keratolysis enhanced TH permeation and drug load significantly (P<0.05) during passive and iontophoretic delivery as compared to untreated nails. Ionto-keratolysis may be more efficient in permeabilization of nail plates than long term exposure to keratolysing agents. PMID:19481686

  3. Alteration of the diffusional barrier property of the nail leads to greater terbinafine drug loading and permeation.

    PubMed

    Nair, Anroop B; Sammeta, Srinivasa M; Kim, Hyun D; Chakraborty, Bireswar; Friden, Phillip M; Murthy, S Narasimha

    2009-06-22

    The diffusional barrier property of biological systems varies with ultrastructural organization of the tissues and/or cells, and often plays an important role in drug delivery. The nail plate is a thick, hard and impermeable membrane which makes topical nail drug delivery challenging. The current study investigated the effect of physical and chemical alteration of the nail on the trans-ungual drug delivery of terbinafine hydrochloride (TH) under both passive and iontophoretic conditions. Physical alterations were carried out by dorsal or ventral nail layer abrasion, while chemical alterations were performed by defatting or keratolysis or ionto-keratolysis of the nails. Terbinafine permeation into and across the nail plate following various nail treatments showed similar trends in both passive and iontophoretic delivery, although the extent of drug delivery varied with treatment. Application of iontophoresis to the abraded nails significantly improved (P<0.05) TH permeation and loading compared to abraded nails without iontophoresis or normal nails with iontophoresis. Drug permeation was not enhanced when the nail plate was defatted. Keratolysis moderately enhanced the permeation but not the drug load. Ionto-keratolysis enhanced TH permeation and drug load significantly (P<0.05) during passive and iontophoretic delivery as compared to untreated nails. Ionto-keratolysis may be more efficient in permeabilization of nail plates than long term exposure to keratolysing agents.

  4. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish.

    PubMed

    Liao, Pei-Han; Hwang, Chiu-Chu; Chen, Te-Hao; Chen, Pei-Jen

    2015-08-01

    Environmental pollution by neuroactive pharmaceuticals from wastewater discharge is a major threat to aquatic ecosystems. However, the ecotoxicologic effect of waterborne abused drugs remains unclear. Embryos of medaka fish (Oryzias latipes) were exposed to aqueous solutions of 2 hallucinogenic drugs, ketamine (KET) and methamphetamine (MET) (0.004-40μM) to assess developmental toxicity, oxidative stress and behavioral alteration in early life stages. The environmentally relevant concentration (0.004μM) of both KET and MET significantly delayed blood circulation and hatching time in embryos and altered larval swimming behavior (e.g., maximum velocity and relative turn angle). KET and MET induced similar oxidative stress responses in embryos, which were unrecoverable in hatchlings in drug-free solutions. Early life exposure to the 2 drugs conferred distinct patterns in larval locomotion: KET induced hyperactivity and a less tortuous swimming path, but MET-treated larvae showed hypoactivity and a clockwise swimming direction at high doses. The alteration in locomotor responses were generally similar in mammals and zebrafish. We report sensitive biomarkers (e.g., heartbeat, hatching and swimming behavior) by developmental stage of medaka that reflect environmentally relevant exposures of abused drugs. They could be useful for ecological risk assessment of waterborne neuroactive drugs. The toxicity results implicate a potential ecotoxicological impact of controlled or abused drugs on fish development and populations in aquatic environments.

  5. Analysis of intratumor heterogeneity unravels lung cancer evolution.

    PubMed

    de Bruin, Elza C; McGranahan, Nicholas; Swanton, Charles

    2015-01-01

    Lung cancer is a disease with dismal outcome. We recently reported a detailed intratumor heterogeneity analysis in 7 non-small cell lung cancer samples, revealing spatially separated driver events as well as the temporal dynamics of mutational processes and demonstrating an important role for APOBEC-mediated heterogeneity later in disease evolution. PMID:27308463

  6. Intratumor heterogeneity, variability and plasticity: questioning the current concepts in classification and treatment of hepatocellular carcinoma.

    PubMed

    Weiskirchen, Ralf

    2016-04-01

    In the classical view, the formation of a primary tumor is the consequence of a mutational event that first affects a single cell that subsequently passes through a multitude of consecutive hyperplastic and dysplastic stages. At the end of this pathogenetic sequence a cell arises that is potentially able to expanse infinitely having capacity to form a homogenous tumor mass. In contrary to this clonal expansion concept, the majority of primary human tumors display already a startling heterogeneity that can be reflected in different morphological features, physiological activities, and genetic diversity. In the past it was speculated that this cancer cell plasticity within a tumor is the result of an adaptive process that is induced by specific inhibiting therapies. In regard to the formation of hepatocellular carcinoma (HCC) this dogma was once challenged in a recent study that analysed tumor areas that were taken from HCC patients without medical pretreatment. Most of the analyzed samples showed highly significant intratumor heterogeneity. This affected morphological attributes, immunohistochemical stainability of five tumor-associated markers [α-fetoprotein (AFP), EpCAM, CK7, CD44 and glutamine synthetase], and integrity of genes (β-catenin and p53) that are critically involved in the pathogenesis of HCC. Altogether, this study showed that intratumor heterogeneity is a frequent finding in HCC that may contribute to treatment failure and drug resistance in HCC patients. PMID:27115013

  7. A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds.

    PubMed

    Bruna, Alejandra; Rueda, Oscar M; Greenwood, Wendy; Batra, Ankita Sati; Callari, Maurizio; Batra, Rajbir Nath; Pogrebniak, Katherine; Sandoval, Jose; Cassidy, John W; Tufegdzic-Vidakovic, Ana; Sammut, Stephen-John; Jones, Linda; Provenzano, Elena; Baird, Richard; Eirew, Peter; Hadfield, James; Eldridge, Matthew; McLaren-Douglas, Anne; Barthorpe, Andrew; Lightfoot, Howard; O'Connor, Mark J; Gray, Joe; Cortes, Javier; Baselga, Jose; Marangoni, Elisabetta; Welm, Alana L; Aparicio, Samuel; Serra, Violeta; Garnett, Mathew J; Caldas, Carlos

    2016-09-22

    The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance. PMID:27641504

  8. Dual Receptor Recognizing Cell Penetrating Peptide for Selective Targeting, Efficient Intratumoral Diffusion and Synthesized Anti-Glioma Therapy

    PubMed Central

    Liu, Yayuan; Mei, Ling; Xu, Chaoqun; Yu, Qianwen; Shi, Kairong; Zhang, Li; Wang, Yang; Zhang, Qianyu; Gao, Huile; Zhang, Zhirong; He, Qin

    2016-01-01

    Cell penetrating peptides (CPPs) were widely used for drug delivery to tumor. However, the nonselective in vivo penetration greatly limited the application of CPPs-mediated drug delivery systems. And the treatment of malignant tumors is usually followed by poor prognosis and relapse due to the existence of extravascular core regions of tumor. Thus it is important to endue selective targeting and stronger intratumoral diffusion abilities to CPPs. In this study, an RGD reverse sequence dGR was conjugated to a CPP octa-arginine to form a CendR (R/KXXR/K) motif contained tandem peptide R8-dGR (RRRRRRRRdGR) which could bind to both integrin αvβ3 and neuropilin-1 receptors. The dual receptor recognizing peptide R8-dGR displayed increased cellular uptake and efficient penetration ability into glioma spheroids in vitro. The following in vivo studies indicated the active targeting and intratumoral diffusion capabilities of R8-dGR modified liposomes. When paclitaxel was loaded in the liposomes, PTX-R8-dGR-Lip induced the strongest anti-proliferation effect on both tumor cells and cancer stem cells, and inhibited the formation of vasculogenic mimicry channels in vitro. Finally, the R8-dGR liposomal drug delivery system prolonged the medium survival time of intracranial C6 bearing mice by 2.1-fold compared to the untreated group, and achieved an exhaustive anti-glioma therapy including anti-tumor cells, anti-vasculogenic mimicry and anti-brain cancer stem cells. To sum up, all the results demonstrated that R8-dGR was an ideal dual receptor recognizing CPP with selective glioma targeting and efficient intratumoral diffusion, which could be further used to equip drug delivery system for effective glioma therapy. PMID:26877777

  9. Hilar cholangiocarcinoma with intratumoral calcification: A case report

    PubMed Central

    Inoko, Kazuho; Tsuchikawa, Takahiro; Noji, Takehiro; Kurashima, Yo; Ebihara, Yuma; Tamoto, Eiji; Nakamura, Toru; Murakami, Soichi; Okamura, Keisuke; Shichinohe, Toshiaki; Hirano, Satoshi

    2015-01-01

    This report describes a rare case of hilar cholangiocarcinoma with intratumoral calcification that mimicked hepatolithiasis. A 73-year-old man presented to a local hospital with a calcified lesion in the hepatic hilum. At first, hepatolithiasis was diagnosed, and he underwent endoscopic stone extraction via the trans-papillary route. This treatment strategy failed due to biliary stricture. He was referred to our hospital, and further examination suggested the existence of cholangiocarcinoma. He underwent left hepatectomy with caudate lobectomy and extrahepatic bile duct resection. Pathological examination revealed hilar cholangiocarcinoma with intratumoral calcification, while no stones were found. To the best of our knowledge, only one case of calcified hilar cholangiocarcinoma has been previously reported in the literature. Here, we report a rare case of calcified hilar cholangiocarcinoma and reveal its clinicopathologic features. PMID:26478684

  10. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats

    PubMed Central

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-01-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture. We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury. PMID:22351637

  11. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats.

    PubMed

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-04-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.

  12. Thiazolidinedione Drugs Promote Onset, Alter Characteristics, and Increase Mortality of Ischemic Ventricular Fibrillation in Pigs

    PubMed Central

    Sarraf, Mohammad; Lu, Li; Ye, Shuyu; Reiter, Michael J.; Greyson, Clifford R.

    2016-01-01

    Purpose Despite favorable metabolic and vascular effects, thiazolidinedione (TZD) drugs have not convincingly reduced cardiovascular mortality in clinical trials, raising the possibility of countervailing, off-target effects. We previously showed that TZDs block cardiac ATP-sensitive potassium (KATP) channels in pigs. In this study, we investigated whether TZDs affect onset, spectral characteristics, and mortality of ischemic ventricular fibrillation (VF) and whether such effects are recapitulated by a non-selective KATP blocker (glyburide) or a mitochondrial KATP blocker (5-hydroxydecanoate). Methods A total of 121 anesthetized pigs were pre-treated with TZD (pioglitazone or rosiglitazone, 1 mg/kg IV, resulting in clinically relevant plasma concentrations), glyburide (1 mg/kg IV), 5-hydroxydecanoate (5 mg/kg IV) or inert vehicle. Ischemia was produced by occlusion of the left anterior descending coronary artery. In a subset of pigs treated with rosiglitazone or vehicle, ischemic preconditioning was performed. Results VF developed in all but 6 pigs. In non-preconditioned pigs, onset of VF occurred sooner with pioglitazone (11± 3 min, p<0.05) or rosiglitazone (14±3 min, p=0.06) than with vehicle (20±2 min). Defibrillation of VF was successful in 44% of pigs treated with vehicle, compared with 0% with pioglitazone (p=0.057) and 33% with rosiglitazone (NS). After ischemic preconditioning, defibrillation was successful in 62% of pigs treated with vehicle, compared with 26% treated with rosiglitazone (p=0.03). TZDs attenuated slowing of conduction due to ischemia and shifted ECG power spectra during VF toward higher frequencies. All effects of TZDs were recapitulated by glyburide, but not by 5-hydroxydecanoate, supporting an interaction of TZDs with the sarcolemmal KATP channel. Conclusion In a porcine model, TZDs promote onset and increase mortality of ischemic VF, associated with alterations of conduction and VF spectral characteristics. Similar effects in a

  13. Intra-tumor Genetic Heterogeneity in Rectal Cancer

    PubMed Central

    Hardiman, Karin M.; Ulintz, Peter J.; Kuick, Rork; Hovelson, Daniel H.; Gates, Christopher M.; Bhasi, Ashwini; Grant, Ana Rodrigues; Liu, Jianhua; Cani, Andi K.; Greenson, Joel; Tomlins, Scott; Fearon, Eric R.

    2015-01-01

    Colorectal cancer arises in part from the cumulative effects of multiple gene lesions. Recent studies in selected cancer types have revealed significant intra-tumor genetic heterogeneity and highlighted its potential role in disease progression and resistance to therapy. We hypothesized the existence of significant intra-tumor genetic heterogeneity in rectal cancers involving variations in localized somatic mutations and copy number abnormalities. Two or three spatially disparate regions from each of six rectal tumors were dissected and subjected to next-generation whole exome DNA sequencing, Oncoscan SNP arrays, and targeted confirmatory sequencing and analysis. The resulting data were integrated to define subclones using SciClone. Mutant-allele tumor heterogeneity (MATH) scores, mutant allele frequency correlation, and mutation percent concordance were calculated, and copy number analysis including measurement of correlation between samples was performed. Somatic mutations profiles in individual cancers were similar to prior studies, with some variants found in previously reported significantly mutated genes and many patient-specific mutations in each tumor. Significant intra-tumor heterogeneity was identified in the spatially disparate regions of individual cancers. All tumors had some heterogeneity but the degree of heterogeneity was quite variable in the samples studied. We found that 67–97% of exonic somatic mutations were shared among all regions of an individual’s tumor. The SciClone computational method identified 2 to 8 shared and unshared subclones in the spatially disparate areas in each tumor. MATH scores ranged from 7 to 41. Allele frequency correlation scores ranged from R2 = 0.69 to 0.96. Measurements of correlation between samples for copy number changes varied from R2 = 0.74 to 0.93. All tumors had some heterogeneity, but the degree was highly variable in the samples studied. The occurrence of significant intra-tumor heterogeneity may allow

  14. Possible drug–drug interaction in dogs and cats resulted from alteration in drug metabolism: A mini review

    PubMed Central

    Sasaki, Kazuaki; Shimoda, Minoru

    2015-01-01

    Pharmacokinetic drug–drug interactions (in particular at metabolism) may result in fatal adverse effects in some cases. This basic information, therefore, is needed for drug therapy even in veterinary medicine, as multidrug therapy is not rare in canines and felines. The aim of this review was focused on possible drug–drug interactions in dogs and cats. The interaction includes enzyme induction by phenobarbital, enzyme inhibition by ketoconazole and fluoroquinolones, and down-regulation of enzymes by dexamethasone. A final conclusion based upon the available literatures and author’s experience is given at the end of the review. PMID:26257936

  15. Primary central nervous system lymphoma: is absence of intratumoral hemorrhage a characteristic finding on MRI?

    PubMed Central

    Sakata, Akihiko; Okada, Tomohisa; Yamamoto, Akira; Kanagaki, Mitsunori; Fushimi, Yasutaka; Dodo, Toshiki; Arakawa, Yoshiki; Takahashi, Jun C; Miyamoto, Susumu; Togashi, Kaori

    2015-01-01

    Background. Previous studies have shown that intratumoral hemorrhage is a common finding in glioblastoma multi-forme, but is rarely observed in primary central nervous system lymphoma. Our aim was to reevaluate whether intratumoral hemorrhage observed on T2-weighted imaging (T2WI) as gross intratumoral hemorrhage and on susceptibility-weighted imaging as intratumoral susceptibility signal can differentiate primary central nervous system lymphoma from glioblastoma multiforme. Patients and methods. A retrospective cohort of brain tumors from August 2008 to March 2013 was searched, and 58 patients (19 with primary central nervous system lymphoma, 39 with glioblastoma multiforme) satisfied the inclusion criteria. Absence of gross intratumoral hemorrhage was examined on T2WI, and an intratumoral susceptibility signal was graded using a 3-point scale on susceptibility-weighted imaging. Results were compared between primary central nervous system lymphoma and glioblastoma multiforme, and values of P < 0.05 were considered significant. Results. Gross intratumoral hemorrhage on T2WI was absent in 15 patients (79%) with primary central nervous system lymphoma and 23 patients (59%) with glioblastoma multiforme. Absence of gross intratumoral hemorrhage could not differentiate between the two disorders (P = 0.20). However, intratumoral susceptibility signal grade 1 or 2 was diagnostic of primary central nervous system lymphoma with 78.9% sensitivity and 66.7% specificity (P < 0.001), irrespective of gross intratumoral hemorrhage. Conclusions. Low intratumoral susceptibility signal grades can differentiate primary central nervous system lymphoma from glioblastoma multiforme. However, specificity in this study was relatively low, and primary central nervous system lymphoma cannot be excluded based solely on the presence of an intratumoral susceptibility signal. PMID:26029023

  16. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity

    PubMed Central

    Sousa, Fabricio G.; Matuo, Renata; Tang, Sai-Wen; Rajapakse, Vinodh N.; Luna, Augustin; Sander, Chris; Varma, Sudhir; Simon, Paul H.G.; Doroshow, James H.; Reinhold, William C.; Pommier, Yves

    2015-01-01

    Loss of function of DNA repair (DNAR) genes is associated with genomic instability and cancer predisposition; it also makes cancer cells reliant on a reduced set of DNAR pathways to resist DNA-targeted therapy, which remains the core of the anticancer armamentarium. Because the landscape of DNAR defects across numerous types of cancers and its relation with drug activity have not been systematically examined, we took advantage of the unique drug and genomic databases of the US National Cancer Institute cancer cell lines (the NCI-60) to characterize 260 DNAR genes with respect to deleterious mutations and expression down-regulation; 169 genes exhibited a total of 549 function-affecting alterations, with 39 of them scoring as putative knockouts across 31 cell lines. Those mutations were compared to tumor samples from 12 studies of The Cancer Genome Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE). Based on this compendium of alterations, we determined which DNAR genomic alterations predicted drug response for 20,195 compounds present in the NCI-60 drug database. Among 242 DNA damaging agents, 202 showed associations with at least one DNAR genomic signature. In addition to SLFN11, the Fanconi anemia-scaffolding gene SLX4 (FANCP/BTBD12) stood out among the genes most significantly related with DNA synthesis and topoisomerase inhibitors. Depletion and complementation experiments validated the causal relationship between SLX4 defects and sensitivity to raltitrexed and cytarabine in addition to camptothecin. Therefore, we propose new rational uses for existing anticancer drugs based on a comprehensive analysis of DNAR genomic parameters. PMID:25758781

  17. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity.

    PubMed

    Sousa, Fabricio G; Matuo, Renata; Tang, Sai-Wen; Rajapakse, Vinodh N; Luna, Augustin; Sander, Chris; Varma, Sudhir; Simon, Paul H G; Doroshow, James H; Reinhold, William C; Pommier, Yves

    2015-04-01

    Loss of function of DNA repair (DNAR) genes is associated with genomic instability and cancer predisposition; it also makes cancer cells reliant on a reduced set of DNAR pathways to resist DNA-targeted therapy, which remains the core of the anticancer armamentarium. Because the landscape of DNAR defects across numerous types of cancers and its relation with drug activity have not been systematically examined, we took advantage of the unique drug and genomic databases of the US National Cancer Institute cancer cell lines (the NCI-60) to characterize 260 DNAR genes with respect to deleterious mutations and expression down-regulation; 169 genes exhibited a total of 549 function-affecting alterations, with 39 of them scoring as putative knockouts across 31 cell lines. Those mutations were compared to tumor samples from 12 studies of The Cancer Genome Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE). Based on this compendium of alterations, we determined which DNAR genomic alterations predicted drug response for 20,195 compounds present in the NCI-60 drug database. Among 242 DNA damaging agents, 202 showed associations with at least one DNAR genomic signature. In addition to SLFN11, the Fanconi anemia-scaffolding gene SLX4 (FANCP/BTBD12) stood out among the genes most significantly related with DNA synthesis and topoisomerase inhibitors. Depletion and complementation experiments validated the causal relationship between SLX4 defects and sensitivity to raltitrexed and cytarabine in addition to camptothecin. Therefore, we propose new rational uses for existing anticancer drugs based on a comprehensive analysis of DNAR genomic parameters.

  18. The Utility of Impulsive Bias and Altered Decision Making as Predictors of Drug Efficacy and Target Selection: Rethinking Behavioral Screening for Antidepressant Drugs.

    PubMed

    Marek, Gerard J; Day, Mark; Hudzik, Thomas J

    2016-03-01

    Cognitive dysfunction may be a core feature of major depressive disorder, including affective processing bias, abnormal response to negative feedback, changes in decision making, and increased impulsivity. Accordingly, a translational medicine paradigm predicts clinical action of novel antidepressants by examining drug-induced changes in affective processing bias. With some exceptions, these concepts have not been systematically applied to preclinical models to test new chemical entities. The purpose of this review is to examine whether an empirically derived behavioral screen for antidepressant drugs may screen for compounds, at least in part, by modulating an impulsive biasing of responding and altered decision making. The differential-reinforcement-of-low-rate (DRL) 72-second schedule is an operant schedule with a documented fidelity for discriminating antidepressant drugs from nonantidepressant drugs. However, a theoretical basis for this empirical relationship has been lacking. Therefore, this review will discuss whether response bias toward impulsive behavior may be a critical screening characteristic of DRL behavior requiring long inter-response times to obtain rewards. This review will compare and contrast DRL behavior with the five-choice serial reaction time task, a test specifically designed for assessing motoric impulsivity, with respect to psychopharmacological testing and the neural basis of distributed macrocircuits underlying these tasks. This comparison suggests that the existing empirical basis for the DRL 72-second schedule as a pharmacological screen for antidepressant drugs is complemented by a novel hypothesis that altering impulsive response bias for rodents trained on this operant schedule is a previously unrecognized theoretical cornerstone for this screening paradigm. PMID:26699144

  19. Intratumoral heterogeneity of microRNA expression in breast cancer.

    PubMed

    Raychaudhuri, Mithu; Schuster, Tibor; Buchner, Theresa; Malinowsky, Katharina; Bronger, Holger; Schwarz-Boeger, Ulrike; Höfler, Heinz; Avril, Stefanie

    2012-07-01

    Profiling studies have identified specific microRNA (miRNA) signatures in malignant tumors including breast cancer. Our aim was to assess intratumoral heterogeneity in miRNA expression levels within primary breast cancers and between axillary lymph node metastases from the same patient. Specimens of 16 primary breast cancers were sampled in 8-10 distinct locations including the peripheral, intermediate, and central tumor zones, as well as two to five axillary lymph node metastases (n = 9). Total RNA was extracted from 132 paraffin-embedded samples, and the expression of miR-10b, miR-210, miR-31, and miR-335 was assessed as well as the reproducibility of RNA extraction and miRNA analysis by quantitative RT-PCR. Considerable intratumoral heterogeneity existed for all four miRNAs within primary breast cancers (CV 40%). No significant differences within (CV 34%) or between different tumor zones (CV 33%) were found. A similar variation in miRNA expression was observed between corresponding lymph node metastases (mean CV 40%). In comparison, the variation among different patients showed a CV of 80% for primary tumors and 103% for lymph node metastases. Both miRNA extraction procedures and quantitative RT-PCR showed high reproducibility (CV ≤ 2%). Thus, the intratumoral heterogeneity of miRNA expression in breast cancers can lead to significant sampling bias. Assessment of breast cancer miRNA profiles may require sampling at several different tumor locations and of several tumor-involved lymph nodes when deriving miRNA expression profiles of metastases.

  20. Spinal epidural angiolipoma complicated by an intratumoral abscess. Case report.

    PubMed

    Petrella, Gianpaolo; Tamburrini, Gianpiero; Lauriola, Libero; Di Rocco, Concezio

    2005-08-01

    Spinal angiolipomas are rare, benign lesions representing 0.14 to 1.2% of all spinal axis tumors. They most commonly involve the midthoracic spine and are located in the posterior epidural space. Up to now, six pediatric cases have been reported in the literature; two of them involved an acute clinical onset that was related to a venous infarction of a tumor. The authors report the case of a 16-year-old boy with a midthoracic epidural angiolipoma who was admitted with a clinical history of an acute paraparesis. In contrast to previous descriptions, the acute onset in this case was related to a spontaneous intratumoral abscess within the tumor.

  1. Effect of some psychoactive drugs on stress induced alteration in plasma corticosterone level.

    PubMed

    Ahmed, S P; Ahmad, M; Ahmed, S I; Najam, R; Khurshid, S J

    1995-06-01

    Psychoactive drugs such as chlorpromazine, fluphenazine, haloperidol, propranolol and diazepam were evaluated for their ability to block stress induced changes in Wistar albino rats. The stress induced changes were monitored as the difference in plasma corticosterone (PCS) levels, before and after the administration of minimum effective doses of psychoactive drugs. Significant results were obtained with diazepam at the dose of 5-10 mg/kg and to a lesser extent with propranolol 20 mg/kg. Other drugs, at their minimum effective doses showed no significant change in plasma corticosterone levels.

  2. P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy

    PubMed Central

    Ma, Aimei; Wang, Cuicui; Chen, Yinghui; Yuan, Weien

    2013-01-01

    P-glycoprotein is one of the earliest known multidrug transporters and plays an important role in resistance to chemotherapeutic drugs. In this study, we detected levels of P-glycoprotein and its mRNA expression in a rat brain model of medically intractable epilepsy established by amygdala kindling and drug selection. We investigated whether inhibition of P-glycoprotein affects the concentration of antiepileptic drugs in cortical extracellular fluid. We found that levels of P-glycoprotein and its mRNA expression were upregulated in epileptic cerebral tissue compared with cerebral tissue from normal rats. The concentrations of two antiepileptic drugs, carbamazepine and phenytoin, were very low in the cortical extracellular fluid of rats with medically intractable epilepsy, and were restored after blockade of P-glycoprotein by verapamil. These results show that increased P-glycoprotein levels alter the ability of carbamazepine and phenytoin to penetrate the blood–brain barrier and reduce the concentrations of these agents in extracellular cortical fluid. High P-glycoprotein levels may be involved in resistance to antiepileptic drugs in medically intractable epilepsy. PMID:24348021

  3. Evidence for centrophenoxine as a protective drug in aluminium induced behavioral and biochemical alteration in rat brain.

    PubMed

    Nehru, Bimla; Bhalla, Punita; Garg, Aarti

    2006-10-01

    Potential use of various nootropic drugs have been a burning area of research on account of various physical and chemical insult in brain under different toxicological conditions. One of the nootropic drug centrophenoxine, also known as an anti-aging drug has been exploited in the present experiment under aluminium toxic conditions. Aluminium was administered by oral gavage at a dose level of 100 mg/Kg x b x wt/day for a period of six weeks. To elucidate the region specific response, study was carried out in two different regions of brain namely cerebrum and cerebellum. Following aluminium exposure, a significant decrease in the activities of enzymes namely Hexokinase, Lactate dehydrogenase, Succinate dehydrogenase, Mg(2+) dependent ATPase was observed in both the regions. Moreover, the activity of acetylcholinesterase was also reported to be significantly decreased. Post-treatment with centrophenoxine was able to restore the altered enzyme activities and the effect was observed in both the regions of brain although the activity of lactate dehydrogenase and acetylcholinesterase did not register significant increase in the cerebellum region. Further, centrophenoxine was able to improve the altered short-term memory and cognitive performance resulted from aluminium exposure. From the present study, it can be concluded that centrophenoxine has a potential and can be exploited in other toxicological conditions also.

  4. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Cancer.gov

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  5. Modulation of PF10_0355 (MSPDBL2) Alters Plasmodium falciparum Response to Antimalarial Drugs

    PubMed Central

    Van Tyne, Daria; Uboldi, Alessandro D.; Healer, Julie; Cowman, Alan F.

    2013-01-01

    Malaria's ability to rapidly adapt to new drugs has allowed it to remain one of the most devastating infectious diseases of humans. Understanding and tracking the genetic basis of these adaptations are critical to the success of treatment and intervention strategies. The novel antimalarial resistance locus PF10_0355 (Pfmspdbl2) was previously associated with the parasite response to halofantrine, and functional validation confirmed that overexpression of this gene lowered parasite sensitivity to both halofantrine and the structurally related antimalarials mefloquine and lumefantrine, predominantly through copy number variation. Here we further characterize the role of Pfmspdbl2 in mediating the antimalarial drug response of Plasmodium falciparum. Knockout of Pfmspdbl2 increased parasite sensitivity to halofantrine, mefloquine, and lumefantrine but not to unrelated antimalarials, further suggesting that this gene mediates the parasite response to a specific class of antimalarial drugs. A single nucleotide polymorphism encoding a C591S mutation within Pfmspdbl2 had the strongest association with halofantrine sensitivity and showed a high derived allele frequency among Senegalese parasites. Transgenic parasites expressing the ancestral Pfmspdbl2 allele were more sensitive to halofantrine and structurally related antimalarials than were parasites expressing the derived allele, revealing an allele-specific effect on drug sensitivity in the absence of copy number effects. Finally, growth competition experiments showed that under drug pressure, parasites expressing the derived allele of Pfmspdbl2 outcompeted parasites expressing the ancestral allele within a few generations. Together, these experiments demonstrate that modulation of Pfmspdbl2 affects malaria parasite responses to antimalarial drugs. PMID:23587962

  6. Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer

    PubMed Central

    Park, Hansoo; Cho, Sung-Yup; Kim, Hyerim; Na, Deukchae; Han, Jee Yun; Chae, Jeesoo; Park, Changho; Park, Ok-Kyoung; Min, Seoyeon; Kang, Jinjoo; Choi, Boram; Min, Jimin; Kwon, Jee Young; Suh, Yun-Suhk; Kong, Seong-Ho; Lee, Hyuk-Joon; Liu, Edison T.; Kim, Jong-Il; Kim, Sunghoon; Yang, Han-Kwang; Lee, Charles

    2015-01-01

    Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Recent high-throughput analyses of genomic alterations revealed several driver genes and altered pathways in GC. However, therapeutic applications from genomic data are limited, largely as a result of the lack of druggable molecular targets and preclinical models for drug selection. To identify new therapeutic targets for GC, we performed array comparative genomic hybridization (aCGH) of DNA from 103 patients with GC for copy number alteration (CNA) analysis, and whole-exome sequencing from 55 GCs from the same patients for mutation profiling. Pathway analysis showed recurrent alterations in the Wnt signaling [APC, CTNNB1, and DLC1 (deleted in liver cancer 1)], ErbB signaling (ERBB2, PIK3CA, and KRAS), and p53 signaling/apoptosis [TP53 and BCL2L1 (BCL2-like 1)] pathways. In 18.4% of GC cases (19/103), amplification of the antiapoptotic gene BCL2L1 was observed, and subsequently a BCL2L1 inhibitor was shown to markedly decrease cell viability in BCL2L1-amplified cell lines and in similarly altered patient-derived GC xenografts, especially when combined with other chemotherapeutic agents. In 10.9% of cases (6/55), mutations in DLC1 were found and were also shown to confer a growth advantage for these cells via activation of Rho-ROCK signaling, rendering these cells more susceptible to a ROCK inhibitor. Taken together, our study implicates BCL2L1 and DLC1 as potential druggable targets for specific subsets of GC cases. PMID:26401016

  7. Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer.

    PubMed

    Park, Hansoo; Cho, Sung-Yup; Kim, Hyerim; Na, Deukchae; Han, Jee Yun; Chae, Jeesoo; Park, Changho; Park, Ok-Kyoung; Min, Seoyeon; Kang, Jinjoo; Choi, Boram; Min, Jimin; Kwon, Jee Young; Suh, Yun-Suhk; Kong, Seong-Ho; Lee, Hyuk-Joon; Liu, Edison T; Kim, Jong-Il; Kim, Sunghoon; Yang, Han-Kwang; Lee, Charles

    2015-10-01

    Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Recent high-throughput analyses of genomic alterations revealed several driver genes and altered pathways in GC. However, therapeutic applications from genomic data are limited, largely as a result of the lack of druggable molecular targets and preclinical models for drug selection. To identify new therapeutic targets for GC, we performed array comparative genomic hybridization (aCGH) of DNA from 103 patients with GC for copy number alteration (CNA) analysis, and whole-exome sequencing from 55 GCs from the same patients for mutation profiling. Pathway analysis showed recurrent alterations in the Wnt signaling [APC, CTNNB1, and DLC1 (deleted in liver cancer 1)], ErbB signaling (ERBB2, PIK3CA, and KRAS), and p53 signaling/apoptosis [TP53 and BCL2L1 (BCL2-like 1)] pathways. In 18.4% of GC cases (19/103), amplification of the antiapoptotic gene BCL2L1 was observed, and subsequently a BCL2L1 inhibitor was shown to markedly decrease cell viability in BCL2L1-amplified cell lines and in similarly altered patient-derived GC xenografts, especially when combined with other chemotherapeutic agents. In 10.9% of cases (6/55), mutations in DLC1 were found and were also shown to confer a growth advantage for these cells via activation of Rho-ROCK signaling, rendering these cells more susceptible to a ROCK inhibitor. Taken together, our study implicates BCL2L1 and DLC1 as potential druggable targets for specific subsets of GC cases. PMID:26401016

  8. Altered subjective reward valuation among drug-deprived heavy marijuana users: Aversion to uncertainty

    PubMed Central

    Hefner, Kathryn R.; Starr, Mark. J.; Curtin, John. J.

    2015-01-01

    Marijuana is the most commonly used illicit drug in the United States and its use is rising. Nonetheless, scientific efforts to clarify the risk for addiction and other harm associated with marijuana use have been lacking. Maladaptive decision-making is a cardinal feature of addiction that is likely to emerge in heavy users. In particular, distorted subjective reward valuation related to homeostatic or allostatic processes has been implicated for many drugs of abuse. Selective changes in responses to uncertainty have been observed in response to intoxication and deprivation from various drugs of abuse. To assess for these potential neuroadaptive changes in reward valuation associated with marijuana deprivation, we examined the subjective value of uncertain and certain rewards among deprived and non-deprived heavy marijuana users in a behavioral economics decision-making task. Deprived users displayed reduced valuation of uncertain rewards, particularly when these rewards were more objectively valuable. This uncertainty aversion increased with increasing quantity of marijuana use. These results suggest comparable decision-making vulnerability from marijuana use as other drugs of abuse, and highlights targets for intervention. PMID:26595464

  9. Drugs Targeting the Dopaminergic Nervous System Alter Locomotion in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs that ...

  10. Altered subjective reward valuation among drug-deprived heavy marijuana users: Aversion to uncertainty.

    PubMed

    Hefner, Kathryn R; Starr, Mark J; Curtin, John J

    2016-01-01

    Marijuana is the most commonly used illicit drug in the United States and its use is rising. Nonetheless, scientific efforts to clarify the risk for addiction and other harm associated with marijuana use have been lacking. Maladaptive decision-making is a cardinal feature of addiction that is likely to emerge in heavy users. In particular, distorted subjective reward valuation related to homeostatic or allostatic processes has been implicated for many drugs of abuse. Selective changes in responses to uncertainty have been observed in response to intoxication and deprivation from various drugs of abuse. To assess for these potential neuroadaptive changes in reward valuation associated with marijuana deprivation, we examined the subjective value of uncertain and certain rewards among deprived and nondeprived heavy marijuana users in a behavioral economics decision-making task. Deprived users displayed reduced valuation of uncertain rewards, particularly when these rewards were more objectively valuable. This uncertainty aversion increased with increasing quantity of marijuana use. These results suggest comparable decision-making vulnerability from marijuana use as other drugs of abuse, and highlights targets for intervention. PMID:26595464

  11. Altered Cell Cycle Arrest by Multifunctional Drug-Loaded Enzymatically-Triggered Nanoparticles.

    PubMed

    Huang, Can; Sun, Ying; Shen, Ming; Zhang, Xiangyu; Gao, Pei; Duan, Yourong

    2016-01-20

    cRGD-targeting matrix metalloproteinase (MMP)-sensitive nanoparticles [PLGA-PEG1K-cRGD/PLGA-peptide-PEG5K (NPs-cRGD)] were successfully developed. Au-Pt(IV) nanoparticles, PTX, and ADR were encapsulated into NPs-RGD separately. The effects of the drug-loaded nanoparticles on the cell cycle were investigated. Here, we showed that higher cytotoxicity of drug-loaded nanoparticles was related to the cell cycle arrest, compared to that of free drugs. The NPs-cRGD studied here did not disrupt cell cycle progression. The cell cycle of Au-Pt(IV)@NPs-cRGD showed a main S phase arrest in all phases of the cell cycle phase, especially in G0/G1 phase. PTX@NPs-cRGD and ADR@NPs-cRGD showed a higher ratio of G2/M and S phase arrest than the free drugs, respectively. Cells in G0/G1 and S phases of the cell cycle had a higher uptake ratio of NPs-cRGD. A nutrient deprivation or an increase in the requirement of nutrients in tumor cells could promote the uptake of nanoparticles from the microenvironments. In vivo, NPs-cRGD could efficiently accumulate at tumor sites. The inhibition of tumor growth coupled with cell cycle arrest is in line with that in vitro. On the basis of our results, we propose that future studies on nanoparticle action mechanism should consider the cell cycle, which could be different from free drugs. Understanding the actions of cell cycle arrest could affect the application of nanomedicine in the clinic.

  12. Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice.

    PubMed

    Stöhr, Andrea; Friedrich, Felix W; Flenner, Frederik; Geertz, Birgit; Eder, Alexandra; Schaaf, Sebastian; Hirt, Marc N; Uebeler, June; Schlossarek, Saskia; Carrier, Lucie; Hansen, Arne; Eschenhagen, Thomas

    2013-10-01

    Myosin-binding protein C (Mybpc3)-targeted knock-in mice (KI) recapitulate typical aspects of human hypertrophic cardiomyopathy. We evaluated whether these functional alterations can be reproduced in engineered heart tissue (EHT) and yield novel mechanistic information on the function of cMyBP-C. EHTs were generated from cardiac cells of neonatal KI, heterozygous (HET) or wild-type controls (WT) and developed without apparent morphological differences. KI had 70% and HET 20% lower total cMyBP-C levels than WT, accompanied by elevated fetal gene expression. Under standard culture conditions and spontaneous beating, KI EHTs showed more frequent burst beating than WT and occasional tetanic contractions (14/96). Under electrical stimulation (6Hz, 37°C) KI EHTs exhibited shorter contraction and relaxation times and a twofold higher sensitivity to external [Ca(2+)]. Accordingly, the sensitivity to verapamil was 4-fold lower and the response to isoprenaline or the Ca(2+) sensitizer EMD 57033 2- to 4-fold smaller. The loss of EMD effect was verified in 6-week-old KI mice in vivo. HET EHTs were apparently normal under basal conditions, but showed similarly altered contractile responses to [Ca(2+)], verapamil, isoprenaline and EMD. In contrast, drug-induced changes in intracellular Ca(2+) transients (Fura-2) were essentially normal. In conclusion, the present findings in auxotonically contracting EHTs support the idea that cMyBP-C's normal role is to suppress force generation at low intracellular Ca(2+) and stabilize the power-stroke step of the cross bridge cycle. Pharmacological testing in EHT unmasked a disease phenotype in HET. The altered drug response may be clinically relevant.

  13. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance.

    PubMed

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T

    2015-12-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  14. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance

    PubMed Central

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T.

    2015-01-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  15. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles

    NASA Astrophysics Data System (ADS)

    Colby, Aaron H.; Liu, Rong; Schulz, Morgan D.; Padera, Robert F.; Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues.

  16. Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model

    PubMed Central

    Obaldía III, Nicanor; Dow, Geoffrey S.; Gerena, Lucia; Kyle, Dennis; Otero, William; Mantel, Pierre-Yves; Baro, Nicholas; Daniels, Rachel; Mukherjee, Angana; Childs, Lauren M.; Buckee, Caroline; Duraisingh, Manoj T.; Volkman, Sarah K.; Wirth, Dyann F.; Marti, Matthias

    2016-01-01

    Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model. PMID:26880111

  17. Intratumoral diversity of telomere length in individual neuroblastoma tumors

    PubMed Central

    Pezzolo, Annalisa; Pistorio, Angela; Gambini, Claudio; Haupt, Riccardo; Ferraro, Manuela; Erminio, Giovanni; De Bernardi, Bruno; Garaventa, Alberto; Pistoia, Vito

    2015-01-01

    The purpose of the work was to investigate telomere length (TL) and mechanisms involved in TL maintenance in individual neuroblastoma (NB) tumors. Primary NB tumors from 102 patients, ninety Italian and twelve Spanish, diagnosed from 2000 to 2008 were studied. TL was investigated by quantitative fluorescence in situ hybridization (IQ-FISH) that allows to analyze individual cells in paraffin-embedded tissues. Fluorescence intensity of chromosome 2 centromere was used as internal control to normalize TL values to ploidy. Human telomerase reverse transcriptase (hTERT) expression was detected by immunofluorescence in 99/102 NB specimens. The main findings are the following: 1) two intratumoral subpopulations of cancer cells displaying telomeres of different length were identified in 32/102 tumors belonging to all stages. 2) hTERT expression was detected in 99/102 tumors, of which 31 displayed high expression and 68 low expression. Alternative lengthening of telomeres (ALT)-mechanism was present in 60/102 tumors, 20 of which showed high hTERT expression. Neither ALT-mechanism nor hTERT expression correlated with heterogeneous TL. 3) High hTERT expression and ALT positivity were associated with significantly reduced Overall Survival. 4) High hTERT expression predicted relapse irrespective of patient age. Intratumoral diversity in TL represents a novel feature in NB. In conclusion, diversity of TL in individual NB tumors was strongly associated with disease progression and death, suggesting that these findings are of translational relevance. The combination of high hTERT expression and ALT positivity may represent a novel biomarker of poor prognosis that deserves further investigation. PMID:25595889

  18. Photodynamic Therapy Induced Enhancement of Tumor Vasculature Permeability Using an Upconversion Nanoconstruct for Improved Intratumoral Nanoparticle Delivery in Deep Tissues

    PubMed Central

    Gao, Weidong; Wang, Zhaohui; Lv, Liwei; Yin, Deyan; Chen, Dan; Han, Zhihao; Ma, Yi; Zhang, Min; Yang, Man; Gu, Yueqing

    2016-01-01

    Photodynamic therapy (PDT) has recently emerged as an approach to enhance intratumoral accumulation of nanoparticles. However, conventional PDT is greatly limited by the inability of the excitation light to sufficiently penetrate tissue, rendering PDT ineffective in the relatively deep tumors. To address this limitation, we developed a novel PDT platform and reported for the first time the effect of deep-tissue PDT on nanoparticle uptake in tumors. This platform employed c(RGDyK)-conjugated upconversion nanoparticles (UCNPs), which facilitate active targeting of the nanoconstruct to tumor vasculature and achieve the deep-tissue photosensitizer activation by NIR light irradiation. Results indicated that our PDT system efficiently enhanced intratumoral uptake of different nanoparticles in a deep-seated tumor model. The optimal light dose for deep-tissue PDT (34 mW/cm2) was determined and the most robust permeability enhancement was achieved by administering the nanoparticles within 15 minutes following PDT treatment. Further, a two-step treatment strategy was developed and validated featuring the capability of improving the therapeutic efficacy of Doxil while simultaneously reducing its cardiotoxicity. This two-step treatment resulted in a tumor inhibition rate of 79% compared with 56% after Doxil treatment alone. These findings provide evidence in support of the clinical application of deep-tissue PDT for enhanced nano-drug delivery. PMID:27279907

  19. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system

    PubMed Central

    Zhou, Sujin; Zhao, Zhenggang; Lin, Yan; Gong, Sijia; Li, Fanghong; Pan, Jinshun; Li, Xiaoxi; Gao, Zhuo; Zhao, Allan Z.

    2016-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) has the poorest prognosis among all malignancies and is resistant to almost all current therapies. Attenuated Salmonella typhimurium strain VNP20009 has been deployed as powerful anticancer agent in a variety of animal cancer models, and previous phase 1 clinical trials have proven its safety profiles. However, thus far, little is known about its effect on PDAC. Here, we established CFPAC-1 cell lines expressing an mKate2 protein and thus emitting far-red fluorescence in the subsequent xenograft implant. VNP20009 strain was further engineered to carry a luciferase cDNA, which catalyzes the light-emitting reaction to allow the observation of salmonella distribution and accumulation within tumor with live imaging. Using such VNP20009 strain and intratumoral delivery, we could reduce the growth of pancreatic cancer by inducing apoptosis and severe necrosis in a dosage dependent manner. Consistent with this finding, intratumoral delivery of VNP20009 also increase caspase-3 activity and the expression of Bax protein. In summary, we revealed that VNP20009 is a promising bacterial agent for the treatment of PDAC, and that we have established a dual fluorescent imaging system as a valuable tool for noninvasive live imaging of solid tumor and engineered bacterial drug. PMID:27089121

  20. Understanding Intratumoral Heterogeneity: Lessons from the Analysis of At-Risk Tissue and Premalignant Lesions in the Colon.

    PubMed

    Sievers, Chelsie K; Leystra, Alyssa A; Clipson, Linda; Dove, William F; Halberg, Richard B

    2016-08-01

    Advances in DNA sequencing have created new opportunities to better understand the biology of cancers. Attention is currently focused on precision medicine: does a cancer carry a mutation that is targetable with already available drugs? But, the timing at which multiple, targetable mutations arise during the adenoma to carcinoma sequence remains unresolved. Borras and colleagues identified mutations and allelic imbalance in at-risk mucosa and early polyps in the human colon. Their analyses indicate that mutations in key genes can arise quite early during tumorigenesis and that polyps are often multiclonal with at least two clones. These results are consistent with the "Big Bang" model of tumorigenesis, which postulates that intratumoral heterogeneity is a consequence of a mutational burst in the first few cell divisions following initiation that drives divergence from a single founder with unique but related clones coevolving. Emerging questions center around the ancestry of the tumor and impact of early intratumoral heterogeneity on tumor establishment, growth, progression, and most importantly, response to therapeutic intervention. Additional sequencing studies in which samples, especially at-risk tissue and premalignant neoplasms, are analyzed from animal models and humans will further our understanding of tumorigenesis and lead to more effective strategies for prevention and treatment. Cancer Prev Res; 9(8); 638-41. ©2016 AACRSee related article by Borras, et al., Cancer Prev Res 2016;9(6):417-427. PMID:27199343

  1. Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model

    PubMed Central

    Liu, Wenge; MacKay, J. Andrew; Dreher, Matthew R.; Chen, Mingnan; McDaniel, Jonathan R.; Simnick, Andrew J.; Callahan, Daniel J.; Zalutsky, Michael R.; Chilkoti, Ashutosh

    2010-01-01

    This study evaluated a biodegradable drug delivery system for local cancer radiotherapy consisting of a thermally sensitive elastin-like polypeptide (ELP) conjugated to a therapeutic radionuclide. Two ELPs (49 kD) were synthesized using genetic engineering to test the hypothesis that injectable biopolymeric depots can retain radionuclides locally and reduce the growth of tumors. A thermally sensitive polypeptide, ELP1, was designed to spontaneously undergo a soluble-insoluble phase transition (forming viscous microparticles) between room temperature and body temperature upon intratumoral injection, while ELP2 was designed to remain soluble upon injection and to serve as a negative control for the effect of aggregate assembly. After intratumoral administration of radionuclide conjugates of ELPs into implanted tumor xenografts in nude mice, their retention within the tumor, spatio-temporal distribution, and therapeutic effect were quantified. The residence time of the radionuclide-ELP1 in the tumor was significantly longer than the thermally insensitive ELP2 conjugate. In addition, the thermal transition of ELP1 significantly protected the conjugated radionuclide from dehalogenation, whereas the conjugated radionuclide on ELP2 was quickly eliminated from the tumor and cleaved from the biopolymer. These attributes of the thermally sensitive ELP1 depot improved the antitumor efficacy of iodine-131 compared to the soluble ELP2 control. This novel injectable and biodegradable depot has the potential to control advanced-stage cancers by reducing the bulk of inoperable tumors, enabling surgical removal of de-bulked tumors, and preserving healthy tissues. PMID:20117157

  2. Artificial rearing alters the response of rats to natural and drug-mediated rewards.

    PubMed

    Lomanowska, Anna M; Rana, Shadna A; McCutcheon, Dawn; Parker, Linda A; Wainwright, Patricia E

    2006-05-01

    Artificial rearing (AR) of infant rats permits precise control over key features of the early environment without maternal influence. The present study examined the behavioral response of AR rats towards natural and drug-mediated rewards, as well as their exploratory and affective behaviors. Adolescent AR rats showed increased preference for sucrose consumption relative to chow and demonstrated greater activity in the open field and in the elevated plus-maze compared to maternally reared (MR) rats. With respect to measures of emotionality, AR rats showed enhanced avoidance of the open arms of the plus-maze, indicating increased anxiety, but they did not differ from MR rats in exploring the center of the open field. Adult AR rats displayed a stronger conditioned response to morphine in a place preference test. These findings support the potential of the AR model to contribute to understanding the role of early experience in the development of behavioral motivation.

  3. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters

    SciTech Connect

    Shen, Chen-Hsiang; Wang, Yuan-Fang; Kovalevsky, Andrey Y.; Harrison, Robert W.; Weber, Irene T.

    2010-10-22

    The structural and kinetic effects of amprenavir (APV), a clinical HIV protease (PR) inhibitor, were analyzed with wild-type enzyme and mutants with single substitutions of V32I, I50V, I54V, I54M, I84V and L90M that are common in drug resistance. Crystal structures of the APV complexes at resolutions of 1.02-1.85 {angstrom} reveal the structural changes due to the mutations. Substitution of the larger side chains in PR{sub V32I}, PR{sub I54M} and PR{sub L90M} resulted in the formation of new hydrophobic contacts with flap residues, residues 79 and 80, and Asp25, respectively. Mutation to smaller side chains eliminated hydrophobic interactions in the PR{sub I50V} and PR{sub I54V} structures. The PR{sub I84V}-APV complex had lost hydrophobic contacts with APV, the PR{sub V32I}-APV complex showed increased hydrophobic contacts within the hydrophobic cluster and the PR{sub I50V} complex had weaker polar and hydrophobic interactions with APV. The observed structural changes in PR{sub I84V}-APV, PR{sub V32I}-APV and PR{sub I50V}-APV were related to their reduced inhibition by APV of six-, 10- and 30-fold, respectively, relative to wild-type PR. The APV complexes were compared with the corresponding saquinavir complexes. The PR dimers had distinct rearrangements of the flaps and 80's loops that adapt to the different P1{prime} groups of the inhibitors, while maintaining contacts within the hydrophobic cluster. These small changes in the loops and weak internal interactions produce the different patterns of resistant mutations for the two drugs.

  4. Does the appearance of drug resistance during therapy alter bacterial susceptibility to opsonophagocytosis?

    PubMed

    Gemmell, C G

    1996-01-01

    Coagulase-negative staphylococci (CNS) are common causes of infection in patients undergoing chronic ambulatory peritoneal dialysis (CAPD). Their ability to survive intracellularly within peritoneal macrophages and to persist within the peritoneum during antibiotic therapy has led to the development of drug resistance during treatment. Strains of Staphylococcus epidermidis (SE) and Staphytococcus haemolyticus (SH) have been isolated from patients with CAPD during treatment with ciprofloxacin. The respective MIC values pre-and post-therapy were SE-0.25 and 128 mg/L and SH-0.50 and 64 mg/L. The susceptibility of each isolate to opsonophagocytosis was measured in vitro using isolated polymorphonuclear leucocytes (PMN) derived from fresh human blood donations. The bacteria were radiolabelled during growth, opsonised in either 1 or 10% serum and their uptake measured No differences were seen between the pre- and post therapy isolates when using 10% serum as opsonic source (18 vs. 21%); with 1% serum the corresponding values were lower (5 and 8% respectively). Similarly their ability to generate a respiratory burst as measured by chemiluminescence (CL) in the phagocytic cells was not diminished in the strains which had developed resistance to ciprofloxacin. The mean CL response to the strains isolated at outset of therapy ranged from 0.35-0.45 cpsc, and to the resistant strains following therapy from 0.36-0.50 cpsc. It is clear from the present investigation that although the bacterial strain became at least 10 times more resistant to ciprofloxacin during therapy, no change in their susceptibility to phagocytosis occurred refuting the idea that the emergence of drug resistant strains during therapy results in "super-bugs" of greater virulence.

  5. Pan-cancer analysis of the extent and consequences of intra-tumor heterogeneity

    PubMed Central

    Andor, Noemi; Graham, Trevor A.; Jansen, Marnix; Xia, Li C.; Aktipis, C. Athena; Petritsch, Claudia; Ji, Hanlee P.; Maley, Carlo C.

    2016-01-01

    Intra-tumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used EXPANDS and PyClone to detect clones >10% frequency within 1,165 exome sequences from TCGA tumors. 86% of tumors across 12 cancer types had at least two clones. ITH in nuclei morphology was associated with genetic ITH (Spearman ρ: 0.24–0.41, P<0.001). Mutation of a driver gene that typically appears in smaller clones was a survival risk factor (HR=2.15, 95% CI: 1.71–2.69). The risk of mortality also increased when >2 clones coexisted (HR=1.49, 95% CI: 1.20–1.87). In two independent datasets, copy number alterations affecting either <25% or >75% of a tumor’s genome predicted reduced risk (HR=0.15, 95% CI: 0.08–0.29). Mortality risk also declined when more than four clones coexisted in the sample, suggesting a tradeoff between costs and benefits of genomic instability. ITH and genomic instability have the potential to be useful measures universally applicable across cancers. PMID:26618723

  6. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival

    PubMed Central

    Desrichard, Alexis; Şenbabaoğlu, Yasin; Hakimi, A. Ari; Makarov, Vladimir; Reis-Filho, Jorge S.; Chan, Timothy A.

    2016-01-01

    As tumors accumulate genetic alterations, an evolutionary process occurs in which genetically distinct subclonal populations of cells co-exist, resulting in intratumor genetic heterogeneity (ITH). The clinical implications of ITH remain poorly defined. Data are limited with respect to whether ITH is an independent determinant of patient survival outcomes, across different cancer types. Here, we report the results of a pan-cancer analysis of over 3300 tumors, showing a varied landscape of ITH across 9 cancer types. While some gene mutations are subclonal, the majority of driver gene mutations are clonal events, present in nearly all cancer cells. Strikingly, high levels of ITH are associated with poorer survival across diverse types of cancer. The adverse impact of high ITH is independent of other clinical, pathologic and molecular factors. High ITH tends to be associated with lower levels of tumor-infiltrating immune cells, but this association is not able to explain the observed survival differences. Together, these data show that ITH is a prognostic marker in multiple cancers. These results illuminate the natural history of cancer evolution, indicating that tumor heterogeneity represents a significant obstacle to cancer control. PMID:26840267

  7. Cholesterol lowering drug may influence cellular immune response by altering MHC II function[S

    PubMed Central

    Roy, Koushik; Ghosh, Moumita; Pal, Tuhin Kumar; Chakrabarti, Saikat; Roy, Syamal

    2013-01-01

    Major histocompatibility complex class II (MHC II) expressed on the surface of antigen-presenting cells (APCs) displays peptides to CD4+ T cells. Depletion of membrane cholesterol from APCs by methyl β-cyclodextrin treatment compromises peptide-MHC II complex formation coupled with impaired binding of conformational antibody, which binds close to the peptide binding groove of MHC II. Interestingly, the total cell surface of MHC II remains unaltered. These defects can be corrected by restoring membrane cholesterol. In silico docking studies with a three-dimensional model showed the presence of a cholesterol binding site in the transmembrane domain of MHC II (TM-MHC-II). From the binding studies it was clear that cholesterol, indeed, interacts with the TM-MHC-II and alters its conformation. Mutation of cholesterol binding residues (F240, L243, and F246) in the TM-MHC-II decreased the affinity for cholesterol. Furthermore, transfection of CHO cells with full-length mutant MHC II, but not wild-type MHC II, failed to activate antigen-specific T cells coupled with decreased binding of conformation-specific antibodies. Thus, cholesterol-induced conformational change of TM-MHC-II may allosterically modulate the peptide binding groove of MHC II leading to T cell activation. PMID:24038316

  8. Altering Antibody-Drug Conjugate Binding to the Neonatal Fc Receptor Impacts Efficacy and Tolerability.

    PubMed

    Hamblett, Kevin J; Le, Tiep; Rock, Brooke M; Rock, Dan A; Siu, Sophia; Huard, Justin N; Conner, Kip P; Milburn, Robert R; O'Neill, Jason W; Tometsko, Mark E; Fanslow, William C

    2016-07-01

    Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may). The in vitro cell-killing potency of each pair of ADCs was similar, demonstrating that H435A showed no measurable impact on ADC bioactivity. The H435A mutant antibodies showed no detectable binding to human or mouse FcRn in vitro, whereas their counterpart wild-type IgG ADCs were found to bind to FcRn at pH = 6.0. In xenograft bearing SCID mice expressing mouse FcRn, the AUC of 7v-Cys-may was 1.6-fold higher than that of 7v-H435A-may, yet the observed efficacy was similar. More severe thrombocytopenia was observed with 7v-H435A-Cys-may as compared to 7v-Cys-may at multiple dose levels. The AUC of c-DM1 was approximately 3-fold higher than that of c-H435A-DM1 in 786-0 xenograft bearing SCID mice, which led to a 3-fold difference in efficacy by dose. Murine FcRn knockout, human FcRn transgenic line 32 SCID animals bearing 786-0 xenografts showed an amplified exposure difference between c-DM1 and c-H435A-DM1 as compared to murine FcRn expressing SCID mice, leading to a 10-fold higher dose required for efficacy despite a 6-fold higher AUC of the c-H435A-DM1. The accelerated clearance observed for the noncleavable maytansine ADCs with the H435A FcRn mutation led to reduced efficacy at equivalent doses and exacerbation of clinical pathology parameters (decreased tolerability) at equivalent doses. The results show that reduced ADC clearance mediated by FcRn modulation can improve therapeutic index. PMID:27248573

  9. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  10. Are we getting closer to understanding intratumor heterogeneity in hepatocellular carcinoma?

    PubMed

    Hammoud, Ghassan M; Ibdah, Jamal A

    2016-04-01

    Hepatocellular carcinoma (HCC) is a highly heterogenous disease and intratumor heterogeneity is a well-known fact within each individual tumor, and may involve morphological, immunohistochemical, and molecular heterogeneities. Understanding of intratumor heterogeneity of HCC should provide critical knowledge about prognosis of the disease and response to therapy. In a recent article by Friemel and colleagues, the investigators utilized a comprehensive approach in linking immunohistochemical markers and molecular changes to morphological intratumor heterogeneity in HCC. The study found that intratumor heterogeneity was detectable in 87% of HCC cases. Combined heterogeneities with respect to morphologic, immunohistochemical, and mutational status of the two most important driver mutations CTNNB1 and TP53 were seen in 22% of HCC cases. The study demonstrates the challenges facing therapeutic strategies targeting single molecules and may explain the limited success so far in developing molecular targeted therapy for HCC. PMID:27115014

  11. Are we getting closer to understanding intratumor heterogeneity in hepatocellular carcinoma?

    PubMed Central

    Hammoud, Ghassan M.

    2016-01-01

    Hepatocellular carcinoma (HCC) is a highly heterogenous disease and intratumor heterogeneity is a well-known fact within each individual tumor, and may involve morphological, immunohistochemical, and molecular heterogeneities. Understanding of intratumor heterogeneity of HCC should provide critical knowledge about prognosis of the disease and response to therapy. In a recent article by Friemel and colleagues, the investigators utilized a comprehensive approach in linking immunohistochemical markers and molecular changes to morphological intratumor heterogeneity in HCC. The study found that intratumor heterogeneity was detectable in 87% of HCC cases. Combined heterogeneities with respect to morphologic, immunohistochemical, and mutational status of the two most important driver mutations CTNNB1 and TP53 were seen in 22% of HCC cases. The study demonstrates the challenges facing therapeutic strategies targeting single molecules and may explain the limited success so far in developing molecular targeted therapy for HCC. PMID:27115014

  12. Unsupervised Deconvolution of Dynamic Imaging Reveals Intratumor Vascular Heterogeneity and Repopulation Dynamics

    PubMed Central

    Chen, Li; Choyke, Peter L.; Wang, Niya; Clarke, Robert; Bhujwalla, Zaver M.; Hillman, Elizabeth M. C.; Wang, Ge; Wang, Yue

    2014-01-01

    With the existence of biologically distinctive malignant cells originated within the same tumor, intratumor functional heterogeneity is present in many cancers and is often manifested by the intermingled vascular compartments with distinct pharmacokinetics. However, intratumor vascular heterogeneity cannot be resolved directly by most in vivo dynamic imaging. We developed multi-tissue compartment modeling (MTCM), a completely unsupervised method of deconvoluting dynamic imaging series from heterogeneous tumors that can improve vascular characterization in many biological contexts. Applying MTCM to dynamic contrast-enhanced magnetic resonance imaging of breast cancers revealed characteristic intratumor vascular heterogeneity and therapeutic responses that were otherwise undetectable. MTCM is readily applicable to other dynamic imaging modalities for studying intratumor functional and phenotypic heterogeneity, together with a variety of foreseeable applications in the clinic. PMID:25379705

  13. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    SciTech Connect

    Gorski, R.A.

    1986-12-01

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period.

  14. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations.

    PubMed

    Hörmann, Katrin; Stukalov, Alexey; Müller, André C; Heinz, Leonhard X; Superti-Furga, Giulio; Colinge, Jacques; Bennett, Keiryn L

    2016-02-01

    Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications.

  15. DREAMing: a simple and ultrasensitive method for assessing intratumor epigenetic heterogeneity directly from liquid biopsies.

    PubMed

    Pisanic, Thomas R; Athamanolap, Pornpat; Poh, Weijie; Chen, Chen; Hulbert, Alicia; Brock, Malcolm V; Herman, James G; Wang, Tza-Huei

    2015-12-15

    Many cancers comprise heterogeneous populations of cells at primary and metastatic sites throughout the body. The presence or emergence of distinct subclones with drug-resistant genetic and epigenetic phenotypes within these populations can greatly complicate therapeutic intervention. Liquid biopsies of peripheral blood from cancer patients have been suggested as an ideal means of sampling intratumor genetic and epigenetic heterogeneity for diagnostics, monitoring and therapeutic guidance. However, current molecular diagnostic and sequencing methods are not well suited to the routine assessment of epigenetic heterogeneity in difficult samples such as liquid biopsies that contain intrinsically low fractional concentrations of circulating tumor DNA (ctDNA) and rare epigenetic subclonal populations. Here we report an alternative approach, deemed DREAMing (Discrimination of Rare EpiAlleles by Melt), which uses semi-limiting dilution and precise melt curve analysis to distinguish and enumerate individual copies of epiallelic species at single-CpG-site resolution in fractions as low as 0.005%, providing facile and inexpensive ultrasensitive assessment of locus-specific epigenetic heterogeneity directly from liquid biopsies. The technique is demonstrated here for the evaluation of epigenetic heterogeneity at p14(ARF) and BRCA1 gene-promoter loci in liquid biopsies obtained from patients in association with non-small cell lung cancer (NSCLC) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), respectively.

  16. Myxopapillary ependymoma of the conus medullaris presenting with intratumoral hemorrhage during weight lifting in a teenager.

    PubMed

    Khalatbari, Mahmoud Reza; Moharamzad, Yashar

    2014-01-01

    Intratumoral hemorrhage within a myxopapillary ependymoma of the conus medullaris and cauda equina is rare. Most patients with myxopapillary ependymoma present insidiously, but they may present with hemorrhage or cauda equina syndrome. Limited number of case reports available has described this condition only in adult patients. We report our experience with intratumoral hemorrhage of myxopapillary ependymoma of the conus medullaris during weight lifting in a 15-year-old boy.

  17. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes.

    PubMed

    Kennedy-Lydon, Teresa; Crawford, Carol; Wildman, Scott S; Peppiatt-Wildman, Claire M

    2015-10-01

    We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage. PMID:26202223

  18. Antiepileptic carbamazepine drug treatment induces alteration of membrane in red blood cells: possible positive effects on metabolism and oxidative stress.

    PubMed

    Ficarra, Silvana; Misiti, Francesco; Russo, Annamaria; Carelli-Alinovi, Cristiana; Bellocco, Ersilia; Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Toscano, Giovanni; Giardina, Bruno; Galtieri, Antonio; Tellone, Ester

    2013-04-01

    Carbamazepine (CBZ) is an iminostilbene derivative commonly used for treatment of neuralgic pain and bipolar affective disorders. CBZ blood levels of treated patients are within the range of micromolar concentrations and therefore, significant interactions of this drug with erythrocytes are very likely. Moreover, the lipid domains of the cell membrane are believed to be one of the sites where iminostilbene derivatives exert their effects. The present study aimed to deeply characterize CBZ effects on erythrocytes, in order to identify extra and/or cytosolic cell targets. Our results indicate that erythrocyte morphological changes promoted by the drug, may be triggered by an alteration in band 3 functionality i.e. at the level of anionic flux. In addition, from a metabolic point of view this perturbation could be considered, at least in part, as a beneficial event because it could favour the CO2 elimination. Since lipid peroxidation, superoxide and free radical scavenging activities, caspase 3 activity and hemoglobin (Hb) functionality were not modified within the CBZ treated red blood cell (RBC), band 3 protein (B3) may well be a specific membrane target for CBZ and responsible for CBZ-induced toxic effects in erythrocytes. However some beneficial effects of this drug have been evidenced; among them an increased release of ATP and nitric oxide (NO) derived metabolites from erythrocytes to lumen, leading to an increased NO pool in the vasculature. In conclusion, these results indicate that CBZ, though considered responsible for toxic effects on erythrocytes, can also exhibit effects that at least in some conditions may be seen as beneficial.

  19. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  20. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy.

    PubMed

    Rehman, Hasan; Silk, Ann W; Kane, Michael P; Kaufman, Howard L

    2016-01-01

    With the recent regulatory approval of Talimogene laherparepvec (T-VEC) for the treatment of advanced of melanoma in the United States, Europe and Australia, oncolytic virus immunotherapy has earned its place in the clinic. However, the adoption of T-VEC by the U.S. oncology community has been slow, and so far has been largely limited to specialized cancer centers. Limiting factors include the intratumoral route of administration, which is unfamiliar to medical oncologists, biosafety concerns related to the use of a live virus in the clinic, and the explosion of other therapeutic strategies now available for the treatment of advanced melanoma. Herein, we review the development of T-VEC, and suggest how it fits into the in the current clinical treatment paradigm, and provide pearls for drug preparation, administration, and monitoring of response to therapy. PMID:27660707

  1. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy.

    PubMed

    Rehman, Hasan; Silk, Ann W; Kane, Michael P; Kaufman, Howard L

    2016-01-01

    With the recent regulatory approval of Talimogene laherparepvec (T-VEC) for the treatment of advanced of melanoma in the United States, Europe and Australia, oncolytic virus immunotherapy has earned its place in the clinic. However, the adoption of T-VEC by the U.S. oncology community has been slow, and so far has been largely limited to specialized cancer centers. Limiting factors include the intratumoral route of administration, which is unfamiliar to medical oncologists, biosafety concerns related to the use of a live virus in the clinic, and the explosion of other therapeutic strategies now available for the treatment of advanced melanoma. Herein, we review the development of T-VEC, and suggest how it fits into the in the current clinical treatment paradigm, and provide pearls for drug preparation, administration, and monitoring of response to therapy.

  2. Macrophage-targeted photosensitizer conjugate delivered by intratumoral injection

    PubMed Central

    Anatelli, Florencia; Mroz, Pawel; Liu, Qingde; Yang, Changming; Castano, Ana P; Swietlik, Emilia; Hamblin, Michael R.

    2008-01-01

    A conjugate between malelyated albumin and a photosensitizer (PS) shows cell-type specific targeting to macrophages via the scavenger receptor. Administration of this conjugate to a tumor-bearing mouse followed by illumination may allow selective destruction of macrophages within tumors. There is accumulating evidence that tumor-associated macrophages contribute to tumor growth, invasiveness, metastasis and immune suppression. We tested the intravenous injection of a conjugate between maleylated albumin and chlorin(e6) to Balb/c mice bearing three tumor-types with differing proportions of tumor-associated macrophages. The accumulation of PS within the tumors after intravenous (IV) injection and twenty-four hours incubation time was disappointing and we therefore investigated intratumoral (IT) injection. This gave 20−50 times greater concentrations of PS within the tumor compared to IV injection as determined by tissue extraction. Furthermore the amounts of PS in each tumor type correlated well with the numbers of macrophages both as determined by extraction from bulk tumor and fluorescence quantification, and by tissue dissociation to a single cell suspension and two-color flow cytometry with macrophage-specific antibodies. IT injection of non-conjugated PS gave lower tumor accumulation that did not correlate with macrophage content. IT injection of targeted macromolecular delivery systems is an underexplored area and worthy of further study. PMID:17140253

  3. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    PubMed

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-01

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. PMID:26363150

  4. Intratumoral immunocytokine treatment results in enhanced antitumor effects.

    PubMed

    Johnson, Erik E; Lum, Hillary D; Rakhmilevich, Alexander L; Schmidt, Brian E; Furlong, Meghan; Buhtoiarov, Ilia N; Hank, Jacquelyn A; Raubitschek, Andrew; Colcher, David; Reisfeld, Ralph A; Gillies, Stephen D; Sondel, Paul M

    2008-12-01

    Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled (111)In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy.

  5. Application of a proapoptotic peptide to intratumorally spreading cancer therapy

    PubMed Central

    Chen, Renwei; Braun, Gary B; Luo, Xiuquan; Sugahara, Kazuki N.; Teesalu, Tambet; Ruoslahti, Erkki

    2013-01-01

    Bit1 is a pro-apoptotic mitochondrial protein associated with anoikis. Upon cell detachment, Bit1 is released into the cytoplasm and triggers caspase-independent cell death. Bit1 consists of 179 amino acids; the C-terminal two thirds of the molecule functions as a peptidyl-tRNA hydrolase, while the N-terminus contains a mitochondrial localization signal. Here, we localize the cell death domain (CDD) to the N-terminal 62 amino acids of Bit1 by transfecting cells with truncated Bit1 cDNA constructs. CDD was more potent in killing cells than the full-length Bit1 protein when equivalent amounts of cDNA were transfected. To develop Bit1 CDD into a cancer therapeutic we engineered a recombinant protein consisting of the CDD fused to iRGD, which is a tumor-specific peptide with unique tumor-penetrating and cell-internalizing properties. iRGD-CDD internalized into cultured tumor cells through a neuropilin-1-activated pathway and triggered cell death. Importantly, iRGD-CDD spread extensively within the tumor when injected intratumorally into orthotopically implanted breast tumors in mice. Repeated treatment with iRGD-CDD strongly inhibited tumor growth, resulting in an average reduction of 77% in tumor volume and eradication of some tumors. The caspase independence of Bit1-induced cell death makes CDD a potentially attractive anti-cancer agent because tumor resistance to the main mechanisms of apoptosis is circumvented. Using iRGD to facilitate the spreading of a therapeutic agent throughout the tumor mass may be a useful adjunct to local therapy of tumors that are surgically inoperable or difficult to treat systemically. PMID:23248118

  6. Intratumoral Immunocytokine Treatment Results in Enhanced Antitumor Effects

    PubMed Central

    Johnson, Erik E.; Lum, Hillary D.; Rakhmilevich, Alexander L.; Schmidt, Brian E.; Furlong, Meghan; Buhtoiarov, Ilia N.; Hank, Jacquelyn A.; Raubitschek, Andrew; Colcher, David; Reisfeld, Ralph A.; Gillies, Stephen D.; Sondel, Paul M.

    2008-01-01

    Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors, and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled 111In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy. PMID:18438664

  7. Impact of peritumoral and intratumoral budding in esophageal adenocarcinomas.

    PubMed

    Thies, Svenja; Guldener, Lars; Slotta-Huspenina, Julia; Zlobec, Inti; Koelzer, Viktor H; Lugli, Alessandro; Kröll, Dino; Seiler, Christian A; Feith, Marcus; Langer, Rupert

    2016-06-01

    Tumor budding has prognostic significance in many carcinomas and is defined as the presence of detached isolated single cells or small cell clusters up to 5 cells at the invasion front (peritumoral budding [PTB]) or within the tumor (intratumoral budding [ITB]). For esophageal adenocarcinomas (EACs), there are currently only few data about the impact of this morphological feature. We investigated tumor budding in a large collective of 200 primarily resected EACs. Pancytokeratin staining was demonstrated to be superior to hematoxylin and eosin staining for the detection of buds with substantial to excellent interobserver agreement and used for subsequent analysis. PTB and ITB were scored across 10 high-power fields (HPFs). The median count of tumor buds was 130/10 HPFs for PTB (range, 2-593) and 80/10 HPFs for ITB (range, 1-656). PTB and ITB correlated significantly with each other (r = 0.9; P < .001). High PTB and ITB rates were seen in more advanced tumor categories (P < .001 each); tumors with lymph node metastases (P < .001/P = .002); and lymphatic, vascular, and perineural invasion and higher tumor grading (P < .001 each). Survival analysis showed an association with worse survival for high-grade ITB (P = .029) but not PTB (P = .385). However, in multivariate analysis, lymph node and resection status, but not ITB, were independent prognostic parameters. In conclusion, PTB and ITB can be observed in EAC to various degrees. High-grade budding is associated with aggressive tumor phenotype. Assessment of tumor budding, especially ITB, may provide additional prognostic information about tumor behavior and may be useful in specific cases for risk stratification of EAC patients. PMID:26980046

  8. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBase™.

    PubMed

    Suzuki, Ayako; Yuen, Nancy A; Ilic, Katarina; Miller, Richard T; Reese, Melinda J; Brown, H Roger; Ambroso, Jeffrey I; Falls, J Gregory; Hunt, Christine M

    2015-08-01

    Polypharmacy is common, and may modify mechanisms of drug-induced liver injury. We examined the effect of these drug-drug interactions on liver safety reports of four drugs highly associated with hepatotoxicity. In the WHO VigiBase™, liver event reports were examined for acetaminophen, isoniazid, valproic acid, and amoxicillin/clavulanic acid. Then, we evaluated the liver event reporting frequency of these 4 drugs in the presence of co-reported medications. Each of the 4 primary drugs was reported as having more than 2000 liver events, and co-reported with more than 600 different medications. Overall, the effect of 2275 co-reported drugs (316 drug classes) on the reporting frequency was analyzed. Decreased liver event reporting frequency was associated with 245 drugs/122 drug classes, including anti-TNFα, opioids, and folic acid. Increased liver event reporting frequency was associated with 170 drugs/82 drug classes; in particular, halogenated hydrocarbons, carboxamides, and bile acid sequestrants. After adjusting for age, gender, and other co-reported drug classes, multiple co-reported drug classes were significantly associated with decreased/increased liver event reporting frequency in a drug-specific/unspecific manner. In conclusion, co-reported medications were associated with changes in the liver event reporting frequency of drugs commonly associated with hepatotoxicity, suggesting that comedications may modify drug hepatic safety.

  9. Holmium-loaded PLLA nanoparticles for intratumoral radiotherapy via the TMT technique: preparation, characterization, and stability evaluation after neutron irradiation.

    PubMed

    Hamoudeh, Misara; Fessi, Hatem; Salim, Hani; Barbos, Dumitru

    2008-08-01

    This article describes the preparation of biocompatible radioactive holmium-loaded particles with appropriate nanoscale size for radionuclide intratumoral administration by the targeted multitherapy (TMT) technique. For this objective, holmium acetylacetonate has been encapsulated in poly-L-lactide (PLLA)-based nanoparticles (NP) by oil-in-water emulsion-solvent evaporation method. NP sizes ranged between 100 and 1,100 m being suitable for the TMT administration method. Elemental holmium loading was found to be around 18% wt/wt and the holmium acetylacetonate trihydrate (HoAcAc) encapsulation efficacy was about 90%. Different experiments demonstrated an amorphous state of HoAcAc after incorporation in NPs. The NPs were irradiated in a nuclear reactor with a neutron flux of 1.1 x 10(13) n/cm(2)/s for 1 h, which yielded a specific activity of about 27.4 GBq/g of NPs being sufficient for our desired application. Microscopic analysis of irradiated NPs showed some alteration after neutron irradiation as some NPs looked partially coagglomerated and a few pores appeared at their surface because of the locally released heat in the irradiation vials. Furthermore, differential scanning calorimetry (DSC) results indicated a clear decrease in PLLA melting point and melting enthalpy reflecting a decrease in polymer crystallinity. This was accompanied by a clear decrease in polymer molecular weights, which can be ascribed to a radiation-induced chain scission mechanism. However, interestingly, other experiments confirmed the chemical identity retention of both HoAcAc and PLLA in irradiated NPs despite this detected decrease in the polymer crystallinity and molecular weight. Although neutron irradiation has induced some NPs damage, these NPs kept out their overall chemical composition, and their size distribution remained suitable for the TMT administration technique. Coupled with the TMT technique, these NPs may represent a novel potential radiopharmaceutical agent for

  10. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBase™

    PubMed Central

    Suzuki, Ayako; Yuen, Nancy A.; Ilic, Katarina; Miller, Richard T.; Reese, Melinda J.; Brown, H. Roger; Ambroso, Jeffrey I.; Falls, J. Gregory; Hunt, Christine M.

    2015-01-01

    Polypharmacy is common, and may modify mechanisms of drug-induced liver injury. We examined the effect of these drug–drug interactions on liver safety reports of four drugs highly associated with hepatotoxicity. In the WHO VigiBase™, liver event reports were examined for acetaminophen, isoniazid, valproic acid, and amoxicillin/clavulanic acid. Then, we evaluated the liver event reporting frequency of these 4 drugs in the presence of co-reported medications. Each of the 4 primary drugs was reported as having more than 2000 liver events, and co-reported with more than 600 different medications. Overall, the effect of 2275 co-reported drugs (316 drug classes) on the reporting frequency was analyzed. Decreased liver event reporting frequency was associated with 245 drugs/122 drug classes, including anti-TNFα, opioids, and folic acid. Increased liver event reporting frequency was associated with 170 drugs/82 drug classes; in particular, halogenated hydrocarbons, carboxamides, and bile acid sequestrants. After adjusting for age, gender, and other co-reported drug classes, multiple co-reported drug classes were significantly associated with decreased/increased liver event reporting frequency in a drug-specific/unspecific manner. In conclusion, co-reported medications were associated with changes in the liver event reporting frequency of drugs commonly associated with hepatotoxicity, suggesting that comedications may modify drug hepatic safety. PMID:25988394

  11. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma

    PubMed Central

    Parker, Nicole R.; Hudson, Amanda L.; Khong, Peter; Parkinson, Jonathon F.; Dwight, Trisha; Ikin, Rowan J.; Zhu, Ying; Cheng, Zhangkai Jason; Vafaee, Fatemeh; Chen, Jason; Wheeler, Helen R.; Howell, Viive M.

    2016-01-01

    Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies. PMID:26940435

  12. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    PubMed

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients.

  13. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    PubMed

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients. PMID:25563193

  14. Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer

    PubMed Central

    Vermeulen, P B; Eynden, G G Van den; Huget, P; Goovaerts, G; Weyler, J; Lardon, F; Marck, E Van; Hubens, G; Dirix, L Y

    1999-01-01

    Adjuvant treatment of patients with colorectal cancer is hampered by a lack of reliable prognostic factors in addition to the clinicopathological staging system. A poorly defined but considerable fraction of Astler–Coller stage B patients will experience tumour recurrence, and some of the stage C patients will probably survive for a prolonged time after surgery without adjuvant treatment. Assessing parameters related to tumour angiogenesis has provided valuable prognostic information in different tumour types. The formation of new microvessels is part of the malignant phenotype in the majority of tumours. Alterations in tumour-suppressor genes, such as the p53 gene, or oncogenes, such as the ras gene, have been found to be responsible for changing the local balance of pro- and antiangiogenic factors in favour of the former. In this prospective study, intratumoral microvessel density (IMD) was assessed by immunostaining tissue sections for CD31 and counting individual microvessels in selected and highly vascular regions in specimens of 145 colorectal cancer patients. p53 protein overexpression was semiquantitatively determined after immunohistochemistry. In both uni- and multivariate analysis, high IMD was significantly associated with shorter survival in the patients undergoing surgery with curative intent (Astler–Coller stages A–C). p53 added prognostic power to IMD, both in Astler–Coller stage B and stage C patients. An association between IMD and mode of metastasis was also noted. High IMD was strongly associated with the incidence of haematogenous metastasis during follow-up, but not with the presence of lymphogenic metastasis observed at surgery. This study confirms the results of previous retrospective analyses of IMD and survival in colorectal cancer and warrants a clinical validation by randomizing stage B tumour patients with high IMD and p53 overexpression between adjuvant treatment or not. © 1999 Cancer Research Campaign PMID:9888475

  15. The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo.

    PubMed

    Wang, Yubang; Qin, Heng; Zhang, Chengxiang; Huan, Fei; Yan, Ting; Zhang, Lulu

    2015-12-29

    This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123), and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.

  16. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs

    PubMed Central

    Dong, E; Tueting, P; Matrisciano, F; Grayson, D R; Guidotti, A

    2016-01-01

    We have recently reported that mice born from dams stressed during pregnancy (PRS mice), in adulthood, have behavioral deficits reminiscent of behaviors observed in schizophrenia (SZ) and bipolar (BP) disorder patients. Furthermore, we have shown that the frontal cortex (FC) and hippocampus of adult PRS mice, like that of postmortem chronic SZ patients, are characterized by increases in DNA-methyltransferase 1 (DNMT1), ten-eleven methylcytosine dioxygenase 1 (TET1) and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Here, we show that the behavioral deficits and the increased 5MC and 5HMC at glutamic acid decarboxylase 67 (Gad1), reelin (Reln) and brain-derived neurotrophic factor (Bdnf) promoters and the reduced expression of the messenger RNAs (mRNAs) and proteins corresponding to these genes in FC of adult PRS mice is reversed by treatment with clozapine (5 mg kg−1 twice a day for 5 days) but not by haloperidol (1 mg kg−1 twice a day for 5 days). Interestingly, clozapine had no effect on either the behavior, promoter methylation or the expression of these mRNAs and proteins when administered to offspring of nonstressed pregnant mice. Clozapine, but not haloperidol, reduced the elevated levels of DNMT1 and TET1, as well as the elevated levels of DNMT1 binding to Gad1, Reln and Bdnf promoters in PRS mice suggesting that clozapine, unlike haloperidol, may limit DNA methylation by interfering with DNA methylation dynamics. We conclude that the PRS mouse model may be useful preclinically in screening for the potential efficacy of antipsychotic drugs acting on altered epigenetic mechanisms. Furthermore, PRS mice may be invaluable for understanding the etiopathogenesis of SZ and BP disorder and for predicting treatment responses at early stages of the illness allowing for early detection and remedial intervention. PMID:26756904

  17. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle

  18. In vivo assessment of intratumoral aspirin injection to treat hepatic tumors

    PubMed Central

    Saad-Hossne, Rogério; Teixeira, Fábio Vieira; Denadai, Rafael

    2013-01-01

    AIM: To study the antineoplastic efficacy of 10% aspirin intralesional injection on VX2 hepatic tumors in a rabbit model. METHODS: Thirty-two male rabbits (age: 6-9 wk; body weight: 1700-2500 g) were inoculated with VX2 hepatic tumor cells (104 cells/rabbit) via supra-umbilical median laparotomy. On day 4 post-implantation, when the tumors were about 1 cm in diameter, the rabbits were randomly divided into the following groups (n = 8 each group) to assess early (24 h) and late (7 d) antineoplastic effects of intratumoral injection of 10% bicarbonate aspirin solution (experimental groups) in comparison to intratumoral injection of physiological saline solution (control groups): group 1, 24 h control; group 2, 24 h experimental; group 3, 7 d control; group 4, 7 d experimental. The serum biochemistry profile (measurements of glycemia, alkaline phosphatase, gamma-glutamyl transferase, aspartate aminotransferase, and alanine aminotransferase) and body weight measurements were obtained for all animals at the following time points: D0, before tumor implant; D4, day of treatment; D5, day of sacrifice for groups 1 and 2; D11, day of sacrifice for groups 3 and 4. Gross assessments of the abdominal and thoracic cavities were carried out upon sacrifice. The resected liver tissues, including hepatic tumors, were qualitatively (general morphology, signs of necrosis) and quantitatively (tumor area) assessed by histopathological analysis. RESULTS: Gross examination showed no alterations, besides the left hepatic lobe tumors, had occurred in the thoracic and abdominal cavities of any animal at any time point evaluated. However, the features of the tumor foci were distinctive between the groups. Compared to the control groups, which showed normal unabated tumor progression, the aspirin-treated groups showed imprecise but limited tumor boundaries and a general red-white coloration (indicating hemorrhaging) at 24 h post-treatment, and development of yellow-white areas of a cicatricial

  19. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth.

    PubMed

    Guedan, Sonia; Rojas, Juan José; Gros, Alena; Mercade, Elena; Cascallo, Manel; Alemany, Ramon

    2010-07-01

    Successful virotherapy requires efficient virus spread within tumors. We tested whether the expression of hyaluronidase, an enzyme which dissociates the extracellular matrix (ECM), could enhance the intratumoral distribution of an oncolytic adenovirus and improve its therapeutic activity. As a proof of concept, we demonstrated that intratumoral coadministration of hyaluronidase in mice-bearing tumor xenografts improves the antitumor activity of an oncolytic adenovirus. Next, we constructed a replication-competent adenovirus expressing a soluble form of the human sperm hyaluronidase (PH20) under the control of the major late promoter (MLP) (AdwtRGD-PH20). Intratumoral treatment of human melanoma xenografts with AdwtRGD-PH20 resulted in degradation of hyaluronan (HA), enhanced viral distribution, and induced tumor regression in all treated tumors. Finally, the PH20 cDNA was inserted in an oncolytic adenovirus that selectively kills pRb pathway-defective tumor cells. The antitumoral activity of the novel oncolytic adenovirus expressing PH20 (ICOVIR17) was compared to that of the parental virus ICOVIR15. ICOVIR17 showed more antitumor efficacy following intratumoral and systemic administration in mice with prestablished tumors, along with an improved spread of the virus within the tumor. Importantly, a single intravenous dose of ICOVIR17 induced tumor regression in 60% of treated tumors. These results indicate that ICOVIR17 is a promising candidate for clinical testing.

  20. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery.

    PubMed

    Campa, Michael J; Moody, M Anthony; Zhang, Ruijun; Liao, Hua-Xin; Gottlin, Elizabeth B; Patz, Edward F

    2016-02-01

    Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation.

  1. Intravenous pretreatment with empty pH gradient liposomes alters the pharmacokinetics and toxicity of doxorubicin through in vivo active drug encapsulation.

    PubMed

    Mayer, L D; Reamer, J; Bally, M B

    1999-01-01

    Liposomes have been used widely to improve the therapeutic activity of pharmaceutical agents. The traditional approach for such applications has been to formulate the pharmaceutical agent in liposomes prior to administration in vivo. In this report we demonstrate that liposomes exhibiting a transmembrane pH gradient injected intravenously (iv) can actively encapsulate doxorubicin in the circulation after iv administration of free drug. Small (110 nm) liposomes composed of phosphatidylcholine (PC)/cholesterol (Chol, 55:45 mol:mol) exhibiting a pH gradient (inside acidic) were administered iv 1 h prior to free doxorubicin, and plasma drug levels as well as toxicity and efficacy were evaluated. Predosing with egg PC/Chol pH gradient liposomes increased the plasma concentration of doxorubicin as much as 200-fold compared to free drug alone as well as to predosing with dipalmitoyl PC/Chol pH gradient liposomes or EPC/Chol liposomes without a pH gradient. The ability of the liposomes to alter the pharmacokinetics of doxorubicin was dependent on the presence of a transmembrane pH gradient and correlated with the extent of doxorubicin uptake into the liposomes at 37 degreesC in pH 7.5 buffer, indicating that doxorubicin was being actively accumulated in the circulating liposomes. This in vivo drug loading was achieved over a range of doxorubicin doses (5 mg/kg-40 mg/kg) and was dependent on the dose of EPC/Chol liposomes administered prior to free doxorubicin injection. The altered pharmacokinetic properties of doxorubicin associated with in vivo doxorubicin encapsulation were accompanied by a decrease in drug toxicity and maintained antitumor potency. These results suggest that pretreatment with empty liposomes exhibiting a pH gradient may provide a versatile and straightforward method for enhancing the pharmacological properties of many drugs that can accumulate into such vesicle systems at physiological temperatures.

  2. Drugs.

    ERIC Educational Resources Information Center

    Hurst, Hunter, Ed.; And Others

    1984-01-01

    This document contains the third volume of "Today's Delinquent," an annual publication of the National Center for Juvenile Justice. This volume deals with the issue of drugs and includes articles by leading authorities in delinquency and substance abuse who share their views on causes and cures for the drug problem among youth in this country.…

  3. Fluence Rate-Dependent Photobleaching of Intratumorally-Administered Pc 4 Does Not Predict Tumor Growth Delay

    PubMed Central

    Baran, Timothy M.; Foster, Thomas H.

    2012-01-01

    We examined effects of fluence rate on the photobleaching of the photosensitizer Pc 4 during photodynamic therapy (PDT) and the relationship between photobleaching and tumor response to PDT. BALB/c mice with intradermal EMT6 tumors were given 0.03 mg/kg Pc 4 by intratumor injection and irradiated at 667 nm with an irradiance of 50 or 150 mW/cm2 to a fluence of 100 J/cm2. While no cures were attained, significant tumor growth delay was demonstrated at both irradiances compared to drug-only controls. There was no significant difference in tumor responses to these two irradiances (p = 0.857). Fluorescence spectroscopy was used to monitor the bleaching of Pc 4 during irradiation, with more rapid bleaching with respect to fluence shown at the higher irradiance. No significant correlation was found between fluorescence photobleaching and tumor regrowth for the data interpreted as a whole. Within each treatment group, weak associations between photobleaching and outcome were observed. In the 50 mW/cm2 group, enhanced photobleaching was associated with prolonged growth delay (p = 0.188), while at 150 mW/cm2 this trend was reversed (p = 0.308). Thus, it appears that Pc 4 photobleaching is not a strong predictor of individual tumor response to Pc4-PDT under these treatment conditions. PMID:22582826

  4. Randomised, controlled study of intratumoral recombinant gamma-interferon treatment in newly diagnosed glioblastoma.

    PubMed Central

    Färkkilä, M.; Jääskeläinen, J.; Kallio, M.; Blomstedt, G.; Raininko, R.; Virkkunen, P.; Paetau, A.; Sarelin, H.; Mäntylä, M.

    1994-01-01

    The effect of intratumoral recombinant interferon gamma (rIFN-gamma) as adjuvant to open cytoreduction and external irradiation of 60 Gy on survival in adults with a newly diagnosed high-grade cerebral glioma was studied. The patients were randomised during surgery into the rIFN-gamma group (n = 14) or the control group (n = 17), and the latter received a subcutaneous reservoir of rIFN-gamma injections. Intratumoral rIFN-gamma was given three times a week for 4 weeks until radiotherapy, escalating the dose from 5 micrograms to 50 micrograms. Both groups received external whole-brain irradiation of 40 Gy and a local boost of 20 Gy. After radiotherapy, rIFN-gamma was continued with 50 micrograms twice a week up to 9 weeks. The patients received no chemotherapy. Intratumoral rIFN-gamma was tolerated well with transient fever only. There were 12 glioblastomas (GBs) in the control group and nine in the rIFN-gamma group with completed irradiation. The patients were followed clinically and by computerised tomography (CT) every third month until death. Tumour responses were seen in three interferon-treated (one still alive 45 months after operation) and in two conventionally treated patients. The progression of the tumour volumes on CT did not differ between the IFN-treated and control groups. There were no differences in the survival times. Median survival of the rIFN-gamma-treated patients was 54 weeks (95% CI 35-68) and of the control patients 55 weeks (95% CI 41-77). Intratumoral rIFN-gamma given in the study doses does not seem to inhibit tumour growth or improve the prognosis of patients with high-grade glioma. PMID:8018525

  5. Intratumoral heterogeneity: Role of differentiation in a potentially lethal phenotype of testicular cancer

    PubMed Central

    Bilen, Mehmet Asim; Hess, Kenneth R.; Broaddus, Russell R.; Kopetz, Scott; Wei, Chongjuan; Pagliaro, Lance C.; Karam, Jose A.; Ward, John F.; Wood, Christopher G.; Rao, Priya; Tu, Zachary H.; General, Rosale; Chen, Adrienne H.; Nieto, Yago L.; Yeung, Sai‐ching J.; Lin, Sue‐Hwa; Logothetis, Christopher J.; Pisters, Louis L.

    2016-01-01

    BACKGROUND Intratumoral heterogeneity presents a major obstacle to the widespread implementation of precision medicine. The authors assessed the origin of intratumoral heterogeneity in nonseminomatous germ cell tumor of the testis (NSGCT) and identified distinct tumor subtypes and a potentially lethal phenotype. METHODS In this retrospective study, all consecutive patients who had been diagnosed with an NSGCT between January 2000 and December 2010 were evaluated. The histologic makeup of primary tumors and the clinical course of disease were determined for each patient. A Fine and Gray proportional hazards regression analysis was used to determine the prognostic risk factors, and the Gray test was used to detect differences in the cumulative incidence of cancer death. In a separate prospective study, next‐generation sequencing was performed on tumor samples from 9 patients to identify any actionable mutations. RESULTS Six hundred fifteen patients were included in this study. Multivariate analysis revealed that the presence of yolk sac tumor in the primary tumor (P = .0003) was associated with an unfavorable prognosis. NSGCT could be divided into 5 subgroups. Patients in the yolk sac‐seminoma subgroup had the poorest clinical outcome (P = .0015). These tumors tended to undergo somatic transformation (P < .0001). Among the 9 NSGCTs that had a yolk sac tumor phenotype, no consistent gene mutation was detected. CONCLUSIONS The current data suggest that intratumoral heterogeneity is caused in part by differentiation of pluripotent progenitor cells. Integrated or multimodal therapy may be effective at addressing intratumoral heterogeneity and treating distinct subtypes as well as a potentially lethal phenotype of NSGCT. Cancer 2016;122:1836–43. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License

  6. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses

    PubMed Central

    Rusk, Anthony W.; Tung, David; Miller, Maria; Roix, Jeffrey; Khanna, Kristen V.; Murthy, Ravi; Benjamin, Robert S.; Helgason, Thorunn; Szvalb, Ariel D.; Bird, Justin E.; Roy-Chowdhuri, Sinchita; Zhang, Halle H.; Qiao, Yuan; Karim, Baktiar; McDaniel, Jennifer; Elpiner, Amanda; Sahora, Alexandra; Lachowicz, Joshua; Phillips, Brenda; Turner, Avenelle; Klein, Mary K.; Post, Gerald; Diaz, Luis A.; Riggins, Gregory J.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Bettegowda, Chetan; Huso, David L.; Varterasian, Mary

    2015-01-01

    Species of Clostridium bacteria are notable for their ability to lyse tumor cells growing in hypoxic environments. We show that an attenuated strain of Clostridium novyi (C. novyi-NT) induces a microscopically precise, tumor-localized response in a rat orthotopic brain tumor model after intratumoral injection. It is well known, however, that experimental models often do not reliably predict the responses of human patients to therapeutic agents. We therefore used naturally occurring canine tumors as a translational bridge to human trials. Canine tumors are more like those of humans because they occur in animals with heterogeneous genetic backgrounds, are of host origin, and are due to spontaneous rather than engineered mutations. We found that intratumoral injection of C. novyi-NT spores was well tolerated in companion dogs bearing spontaneous solid tumors, with the most common toxicities being the expected symptoms associated with bacterial infections. Objective responses were observed in 6 of 16 dogs (37.5%), with three complete and three partial responses. On the basis of these encouraging results, we treated a human patient who had an advanced leiomyosarcoma with an intratumoral injection of C. novyi-NT spores. This treatment reduced the tumor within and surrounding the bone. Together, these results show that C. novyi-NT can precisely eradicate neoplastic tissues and suggest that further clinical trials of this agent in selected patients are warranted. PMID:25122639

  7. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    SciTech Connect

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-04-15

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-beta and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  8. The role of intratumoral lymphovascular density in distinguishing primary from secondary mucinous ovarian tumors

    PubMed Central

    de Lacerda Almeida, Bernardo Gomes; Bacchi, Carlos E; Carvalho, Jesus P; Ferreira, Cristiane R; Carvalho, Filomena M

    2014-01-01

    OBJECTIVE: Ovarian mucinous metastases commonly present as the first sign of the disease and are capable of simulating primary tumors. Our aim was to investigate the role of intratumoral lymphatic vascular density together with other surgical-pathological features in distinguishing primary from secondary mucinous ovarian tumors. METHODS: A total of 124 cases of mucinous tumors in the ovary (63 primary and 61 metastatic) were compared according to their clinicopathological features and immunohistochemical profiles. The intratumoral lymphatic vascular density was quantified by counting the number of vessels stained by the D2-40 antibody. RESULTS: Metastases occurred in older patients and were associated with a higher proportion of tumors smaller than 10.0 cm; bilaterality; extensive necrosis; extraovarian extension; increased expression of cytokeratin 20, CDX2, CA19.9 and MUC2; and decreased expression of cytokeratin 7, CA125 and MUC5AC. The lymphatic vascular density was increased among primary tumors. However, after multivariate analysis, the best predictors of a secondary tumor were a size of 10.0 cm or less, bilaterality and cytokeratin 7 negativity. Lack of MUC2 expression was an important factor excluding metastasis. CONCLUSIONS: The higher intratumoral lymphatic vascular density in primary tumors when compared with secondary lesions suggests differences in the microenvironment. However, considering the differential diagnosis, the best discriminator of a secondary tumor is the combination of tumor size, laterality and the pattern of expression of cytokeratin 7 and MUC2. PMID:25518016

  9. Hydration and N-acetyl-l-cysteine alter the microstructure of human nail and bovine hoof: implications for drug delivery.

    PubMed

    Nogueiras-Nieto, L; Gómez-Amoza, J L; Delgado-Charro, M B; Otero-Espinar, F J

    2011-12-20

    This work aimed to (a) characterize the microstructure and porosity of human nail and bovine hoof by mercury intrusion porosimetry and SEM image analysis, (b) study the effects of hydration and of N-acetyl-l-cysteine treatment on the microstructure of both membranes, and (c) determine whether the microstructural modifications were associated with changes in drug penetration measured by standard diffusion studies. Bovine hoof surface is more porous than nail surface although there were no differences between the mean surface pore sizes. Hydration and N-acetyl-l-cysteine increased the roughness and apparent surface porosity, and the porosity determined by mercury intrusion porosimetry of both membranes. Pore-Cor™ was used to generate tridimensional structures having percolation characteristics comparable to nail and hooves. The modeled structures were horizontally banded having an inner less-porous area which disappeared upon treatment. Treatment increased the predicted permeability of the simulated structures. Triamcinolone permeation increased significantly for hooves treated N-acetyl-l-cysteine, i.e., the membranes for which microstructural and permeability changes were the largest. Thus, microstructural changes determined via mercury intrusion porosimetry and subsequently modeled by Pore-Cor™ were related to drug diffusion. Further refinement of the technique will allow fast screening of penetration enhancers to be used in ungual drug delivery. PMID:21906642

  10. Plasticizing effect of ibuprofen induced an alteration of drug released from Kollidon SR matrices produced by direct compression.

    PubMed

    Wiranidchapong, Chutima; Ruangpayungsak, Nuchnan; Suwattanasuk, Pattaraporn; Shuwisitkul, Duangratana; Tanvichien, Sujimon

    2015-06-01

    The objectives of this study were to investigate the effect of storage temperature on drug release from matrices containing 10, 40 and 70% w/w ibuprofen in Kollidon® SR (KSR). The matrix tablets were produced by direct compression and then kept at 30 and 45 °C for 3 months. Drug release from the matrix tablets was examined after storage for 0, 1, 4 and 12 weeks. Scanning electron microscope was used to reveal physical appearance of the tablet surface at the respective time intervals. In addition, differential scanning calorimeter was used to investigate glass transition temperature (Tg) of ibuprofen in KSR at 0-100% w/w based on the principle of Gordon-Taylor equation. At 45 °C, the dissolution of ibuprofen in KSR as well as the coalescence of polymer particles were observed to be higher than those of storage at 30 °C. The physical state of ibuprofen dispersed in the polymeric matrix and degree of polymer coalescence led to the variation of drug release. The coalescence of polymer particles was a result of the polymer transition from glassy to rubbery state according to water absorption of KSR and plasticizing effect of ibuprofen. The reduction of the Tg of ibuprofen blended with KSR could be better described by the Kwei equation, a modified version of Gordon-Taylor equation.

  11. Hydration and N-acetyl-l-cysteine alter the microstructure of human nail and bovine hoof: implications for drug delivery.

    PubMed

    Nogueiras-Nieto, L; Gómez-Amoza, J L; Delgado-Charro, M B; Otero-Espinar, F J

    2011-12-20

    This work aimed to (a) characterize the microstructure and porosity of human nail and bovine hoof by mercury intrusion porosimetry and SEM image analysis, (b) study the effects of hydration and of N-acetyl-l-cysteine treatment on the microstructure of both membranes, and (c) determine whether the microstructural modifications were associated with changes in drug penetration measured by standard diffusion studies. Bovine hoof surface is more porous than nail surface although there were no differences between the mean surface pore sizes. Hydration and N-acetyl-l-cysteine increased the roughness and apparent surface porosity, and the porosity determined by mercury intrusion porosimetry of both membranes. Pore-Cor™ was used to generate tridimensional structures having percolation characteristics comparable to nail and hooves. The modeled structures were horizontally banded having an inner less-porous area which disappeared upon treatment. Treatment increased the predicted permeability of the simulated structures. Triamcinolone permeation increased significantly for hooves treated N-acetyl-l-cysteine, i.e., the membranes for which microstructural and permeability changes were the largest. Thus, microstructural changes determined via mercury intrusion porosimetry and subsequently modeled by Pore-Cor™ were related to drug diffusion. Further refinement of the technique will allow fast screening of penetration enhancers to be used in ungual drug delivery.

  12. Patient-Specific Detection of Cerebral Blood Flow Alterations as Assessed by Arterial Spin Labeling in Drug-Resistant Epileptic Patients

    PubMed Central

    Boscolo Galazzo, Ilaria; Storti, Silvia Francesca; Del Felice, Alessandra; Pizzini, Francesca Benedetta; Arcaro, Chiara; Formaggio, Emanuela; Mai, Roberto; Chappell, Michael; Beltramello, Alberto; Manganotti, Paolo

    2015-01-01

    Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients. PMID:25946055

  13. Effect of Drug Alprazolam on Restrained Stress Induced Alteration of Serum Cortisol and Antioxidant Vitamins (Vitamin C and E) in Male Albino Rats

    PubMed Central

    Kori, Rohini Sharanappa; Aladakatti, Ravindranath H.; Desai, S.D.

    2016-01-01

    Introduction Stress can cause harmful effects in the body that induce a wide range of biochemical and behavioural changes. As anti-stress drugs are routinely used to combat stress hence study is needed to assess the contraindication of these drugs in the physiological systems. Aim To investigate the effect of alprazolam on restrained stress induced alteration of serum cortisol, and antioxidant vitamin levels in male albino rats. Materials and Methods Adult male albino rats (body weight 175-225g) were divided into four groups of six animals in each. Group I (control), kept undisturbed in the metabolic cage throughout the 42 days experimental period. Group II (stress) rats were kept in a wire mesh restrainer for 6 hr/day for 42 days. Group III (stress+ withdrawal) rats were stressed for 21 days and withdrawal of stress for remaining 21 days (total 42 days). Group IV (stress + alprazolam) rats were only stressed for 21 days and treated with drug alprazolam (5mg/kg body weight, intraperitoneal) in continuation with stress for remaining 21 days (total period is 42 days). At the end of 42 days all the rats were sacrificed and serum cortisol, vitamin C and E levels were estimated. Results Group II (stressed) showed a significant increase in serum cortisol level with concomitant decrease of serum vitamin C and E levels. Group III (withdrawal) and Group IV (+alprazolam) rats showed significant reduction of serum cortisol along with subsequent increase of serum vitamin C and E concentrations. Conclusion Results indicate a possible antioxidant effect of alprazolam on restrained stress induced alteration of serum cortisol and antioxidant vitamin levels. PMID:27656428

  14. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation

    PubMed Central

    Hernandez, J.P.; Mota, L.C.; Baldwin, W.S.

    2010-01-01

    The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I–III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors. PMID:20871735

  15. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    PubMed

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-09-30

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs.

  16. Deciphering intra-tumor heterogeneity of lung adenocarcinoma confirms that dominant, branching, and private gene mutations occur within individual tumor nodules.

    PubMed

    Pelosi, Giuseppe; Pellegrinelli, Alessio; Fabbri, Alessandra; Tamborini, Elena; Perrone, Federica; Settanni, Giulio; Busico, Adele; Picciani, Benedetta; Testi, Maria Adele; Militti, Lucia; Maisonneuve, Patrick; Valeri, Barbara; Sonzogni, Angelica; Proto, Claudia; Garassino, Marina; De Braud, Filippo; Pastorino, Ugo

    2016-06-01

    While pulmonary adenocarcinoma (ADC) is morphologically heterogeneous, little is known about intra-tumor gene mutation heterogeneity (ITH). We therefore subjected 20 ADC nodules, 5 mutated for EGFR and 5 for KRAS, 5 with an ALK translocation, and 5 wild type (WT) for these alterations, to unsupervised next-generation sequencing of tumor regions from diverse architectural patterns. When 2 or more different gene mutations were found in a single tumor, this fulfilled the criteria for ITH. In the 84 studied tumor regions with diverse architecture, 71 gene mutations and 34 WT profiles were found. ITH was observed in 9/15 (60 %) ADC, 3 with an EGFR, 3 with a KRAS, and 3 with an ALK aberration, as reflected in 5, 6, and 9 additional mutations, respectively, detected in these tumors. EGFR mutations were observed in 21/22 and KRAS mutations in 18/22 tumor regions, suggesting that they appear early and have a driver role (dominant or trunk mutations). Branching mutations (in EZH2, PIK3CA, TP53, and EGFR exon 18) occurred in two or more regions, while private mutations (in ABL1, ALK, BRAF, HER2, KDR, LKB1, PTEN, MET, SMAD4, SMARCB1, and SRC) were confined to unique tumor samples of individual lesions, suggesting that they occurred later on during tumor progression. Patients with a tumor showing branching mutations ran a worse clinical course, independent of confounding factors. We conclude that in ADC, ITH exists in a pattern suggesting spatial and temporal hierarchy with dominant, branching, and private mutations. This is consistent with diverse intra-tumor clonal evolution, which has potential implications for patient prognosis or development of secondary therapy resistance.

  17. Deciphering intra-tumor heterogeneity of lung adenocarcinoma confirms that dominant, branching, and private gene mutations occur within individual tumor nodules.

    PubMed

    Pelosi, Giuseppe; Pellegrinelli, Alessio; Fabbri, Alessandra; Tamborini, Elena; Perrone, Federica; Settanni, Giulio; Busico, Adele; Picciani, Benedetta; Testi, Maria Adele; Militti, Lucia; Maisonneuve, Patrick; Valeri, Barbara; Sonzogni, Angelica; Proto, Claudia; Garassino, Marina; De Braud, Filippo; Pastorino, Ugo

    2016-06-01

    While pulmonary adenocarcinoma (ADC) is morphologically heterogeneous, little is known about intra-tumor gene mutation heterogeneity (ITH). We therefore subjected 20 ADC nodules, 5 mutated for EGFR and 5 for KRAS, 5 with an ALK translocation, and 5 wild type (WT) for these alterations, to unsupervised next-generation sequencing of tumor regions from diverse architectural patterns. When 2 or more different gene mutations were found in a single tumor, this fulfilled the criteria for ITH. In the 84 studied tumor regions with diverse architecture, 71 gene mutations and 34 WT profiles were found. ITH was observed in 9/15 (60 %) ADC, 3 with an EGFR, 3 with a KRAS, and 3 with an ALK aberration, as reflected in 5, 6, and 9 additional mutations, respectively, detected in these tumors. EGFR mutations were observed in 21/22 and KRAS mutations in 18/22 tumor regions, suggesting that they appear early and have a driver role (dominant or trunk mutations). Branching mutations (in EZH2, PIK3CA, TP53, and EGFR exon 18) occurred in two or more regions, while private mutations (in ABL1, ALK, BRAF, HER2, KDR, LKB1, PTEN, MET, SMAD4, SMARCB1, and SRC) were confined to unique tumor samples of individual lesions, suggesting that they occurred later on during tumor progression. Patients with a tumor showing branching mutations ran a worse clinical course, independent of confounding factors. We conclude that in ADC, ITH exists in a pattern suggesting spatial and temporal hierarchy with dominant, branching, and private mutations. This is consistent with diverse intra-tumor clonal evolution, which has potential implications for patient prognosis or development of secondary therapy resistance. PMID:27056568

  18. βI-tubulin mutations in the laulimalide/peloruside binding site mediate drug sensitivity by altering drug-tubulin interactions and microtubule stability.

    PubMed

    Kanakkanthara, Arun; Rowe, Matthew R; Field, Jessica J; Northcote, Peter T; Teesdale-Spittle, Paul H; Miller, John H

    2015-09-01

    Peloruside A (PLA) and laulimalide (LAU) are potent microtubule-stabilizing natural products that are effective against a broad spectrum of cancer cells. The interactions of PLA and LAU with tubulin have attracted a great deal of attention, mainly because they bind to β-tubulin at a site that is different from the classical taxoid site. Multiple βI-tubulin amino acid residues have been predicted by computer modelling studies and more recently by protein crystallography to participate in the binding of PLA and LAU to tubulin. The relevance of these residues in determining cellular sensitivity to the compounds, however, remains largely uncertain. To determine the role of four binding site residues, Q291, D295, V333, and N337 on PLA and LAU activity, we introduced single mutations to these sites by site-directed mutagenesis and transfected each mutant tubulin separately into HEK and/or HeLa cells. We found that a Q291M βI-tubulin mutation increased sensitivity of the cells to PLA, but not to LAU, paclitaxel (PTX), or vinblastine (VBL). In contrast, V333W and N337L mutations led to less stable microtubules, with the V333W causing resistance to PLA and PTX, but not LAU, and the N337L causing resistance to PLA, LAU, and PTX. Moreover, cells expressing either W333 or L337 were hypersensitive to the microtubule-destabilizing agent, VBL. The D295I mutation conferred resistance to both PLA and LAU without affecting microtubule stability or sensitivity to PTX or ixabepilone (IXB). This study identifies the first mammalian βI-tubulin mutation that specifically increases sensitivity to PLA, and reports mutations at PLA and LAU binding site residues that can either reduce microtubule stability or impair drug-tubulin binding, conferring resistance to these microtubule-stabilizing agents. This information provides insights on β-tubulin residues important for maintaining microtubule structural integrity and for sensitivity to microtubule-targeting agents, and suggests novel

  19. Gray matter volume alterations in first-episode drug-naïve patients with deficit and nondeficit schizophrenia.

    PubMed

    Lei, Wei; Deng, Wei; Li, Mingli; He, Zongling; Han, Yuanyuan; Huang, Chaohua; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Gong, Qiyong; Hu, Xun; Zhang, Nanyin; Li, Tao

    2015-11-30

    Different patterns of gray matter volume (GMV) abnormalities have been reported between chronic patients with deficit schizophrenia (DS), relative to nondeficit schizophrenia (NDS) patients. However, it is not clear whether these differences are characteristic to the pathophysiology of DS or due to the effects of medications or illness durations. To address this issue, GMV in 88 first-episode, drug-naive patients with schizophrenia (44 DS and 44 NDS), 67 of their first-degree relatives and 84 healthy controls were assessed using voxel- based morphometry (VBM) and compared between groups. Correlations between GMV and clinical symptoms in patients were also assessed. Compared to controls, DS patients displayed more severe GMV reduction in the cerebellar culmen than NDS patients. GMV reduction in culmen was also observed in the first-degree relatives of DS (but not NDS) patients, suggesting possible different genetic risk in DS and NDS. The left insula was significantly smaller in DS patients than both NDS patients and controls, and smaller GMV of this region was associated with more severe negative symptoms in patients. Our results collectively indicate that DS might represent a distinct subtype of schizophrenia from NDS and the GMV change in left insula may be a morphological signature of DS. PMID:26409573

  20. Gray matter volume alterations in first-episode drug-naïve patients with deficit and nondeficit schizophrenia.

    PubMed

    Lei, Wei; Deng, Wei; Li, Mingli; He, Zongling; Han, Yuanyuan; Huang, Chaohua; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Gong, Qiyong; Hu, Xun; Zhang, Nanyin; Li, Tao

    2015-11-30

    Different patterns of gray matter volume (GMV) abnormalities have been reported between chronic patients with deficit schizophrenia (DS), relative to nondeficit schizophrenia (NDS) patients. However, it is not clear whether these differences are characteristic to the pathophysiology of DS or due to the effects of medications or illness durations. To address this issue, GMV in 88 first-episode, drug-naive patients with schizophrenia (44 DS and 44 NDS), 67 of their first-degree relatives and 84 healthy controls were assessed using voxel- based morphometry (VBM) and compared between groups. Correlations between GMV and clinical symptoms in patients were also assessed. Compared to controls, DS patients displayed more severe GMV reduction in the cerebellar culmen than NDS patients. GMV reduction in culmen was also observed in the first-degree relatives of DS (but not NDS) patients, suggesting possible different genetic risk in DS and NDS. The left insula was significantly smaller in DS patients than both NDS patients and controls, and smaller GMV of this region was associated with more severe negative symptoms in patients. Our results collectively indicate that DS might represent a distinct subtype of schizophrenia from NDS and the GMV change in left insula may be a morphological signature of DS.

  1. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse.

    PubMed

    Mata, Mariana M; Napier, T Celeste; Graves, Steven M; Mahmood, Fareeha; Raeisi, Shohreh; Baum, Linda L

    2015-04-01

    The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection.

  2. Color Doppler Ultrasound and Gamma Imaging of Intratumorally Injected 500 nm Iron-Silica Nanoshells

    PubMed Central

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V.; Viveros, Robert; Blair, Sarah L.; Ellies, Lesley G.; Vera, David R.; Mattrey, Robert F.; Kummel, Andrew C.; Trogler, William C.

    2013-01-01

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm non-biodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with 111In3+ for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-111In labeling for studying silica nanoparticle biodistributions. PMID:23802554

  3. Color Doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells.

    PubMed

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V; Viveros, Robert; Blair, Sarah L; Ellies, Lesley G; Vera, David R; Mattrey, Robert F; Kummel, Andrew C; Trogler, William C

    2013-07-23

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long-term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm nonbiodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with (111)In(3+) for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-(111)In labeling for studying silica nanoparticle biodistributions.

  4. Histologic Assessment of Intratumoral Lymphoplasmacytic Infiltration Is Useful in Predicting Prognosis of Patients with Hepatocellular Carcinoma

    PubMed Central

    Hayashi, Akimasa; Shibahara, Junji; Misumi, Kento; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi

    2016-01-01

    In the present study, we investigated the clinicopathologic significance of intratumoral lymphoplasmacytic infiltration in a large cohort of patients with solitary hepatocellular carcinoma (HCC). Based on examination of hematoxylin and eosin-stained sections, significant infiltration was defined as dense lymphoplasmacytic infiltration, either multifocal or diffuse, in 2 or more fields under low-power magnification. Of 544 cases, 216 (39.7%) were positive for significant infiltration (HCC-LI group), while 328 (60.3%) were negative (HCC-NLI group). There were no significant between-group differences in patient age, sex, or background etiology. The lower incidence of Child-Pugh stage B (P = 0.001) and lower level of indocyanine green retention rate at 15 minutes (P < 0.001) in the HCC-LI group indicated better liver function in this group. Histologically, tumors were significantly smaller in size in the HCC-LI group than in the HCC-NLI group (P < 0.001). In addition, prominent neutrophilic infiltration, interstitial fibrosis and tumor steatosis were significantly more frequent (P < 0.001) in the HCC-LI group, while tumor necrosis was significantly less frequent (P = 0.008). Kaplan-Meier analyses revealed that overall and recurrence-free survival were significantly better in the HCC-LI group (P < 0.001). Multivariate Cox regression analysis showed that intratumoral lymphoplasmacytic infiltration was independently prognostic of both overall and recurrence-free survival (P < 0.001), with absence of infiltration showing high Cox-hazard ratios for poor prognosis. In conclusion, intratumoral lymphoplasmacytic infiltration, as determined by assessment of hematoxylin and eosin-stained slides, was significantly associated with the clinical and pathologic features of HCC and has profound prognostic importance. PMID:27195977

  5. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity | Office of Cancer Genomics

    Cancer.gov

    Intratumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used the bioinformatics tools 'expanding ploidy and allele frequency on nested subpopulations' (EXPANDS) and PyClone to detect clones that are present at a ≥10% frequency in 1,165 exome sequences from tumors in The Cancer Genome Atlas. 86% of tumors across 12 cancer types had at least two clones. ITH in the morphology of nuclei was associated with genetic ITH (Spearman's correlation coefficient, ρ = 0.24-0.41; P < 0.001).

  6. Alterations in Body Temperature, Corticosterone, and Behavior Following the Administration of 5-Methoxy-Diisopropyltryptamine (‘Foxy’) to Adult Rats: a New Drug of Abuse

    PubMed Central

    Wiliiams, Michael T; Herring, Nicole R; Schaefer, Tori L; Skelton, Matthew R; Campbell, Nicholas G; Lipton, Jack W; McCrea, Anne E; Vorhees, Charles V

    2010-01-01

    Many drugs are used or abused in social contexts without understanding the ramifications of their use. In this study, we examined the effects of a newly popular drug, 5-methoxy-diisopropyltryptamine (5-MEO-DIPT; ‘foxy’ or ‘foxy-methoxy’). Two experiments were performed. In the first, 5-MEO-DIPT (0, 10, or 20 mg/kg) was administered to rats four times on a single day and animals were examined 3 days later. The animals that received 5-MEO-DIPT demonstrated hypothermia during the period of drug administration and delayed mild hyperthermic rebound for at least 48 h. Corticosterone levels in plasma were elevated in a dose-dependent manner compared to saline-treated animals with minor changes in 5-HT turnover and no changes in monoamine levels. In experiment 2, rats were examined in behavioral tasks following either 0 or 20 mg/kg of 5-MEO-DIPT. The animals treated with 5-MEO-DIPT showed hypoactivity and an attenuated response to (+)-methamphetamine-induced stimulation (1 mg/kg). In a test of path integration (Cincinnati water maze), 5-MEO-DIPT-treated animals displayed deficits in performance compared to the saline-treated animals. No differences were noted in the ability of the animals to perform in the Morris water maze or on tests of novel object or place recognition. The data demonstrate that 5-MEO-DIPT alters the ability of an animal to perform certain cognitive tasks, while leaving others intact and disrupts the endocrine system. 5-MEO-DIPT may have the potential to induce untoward effects in humans. PMID:17047665

  7. Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine ('foxy') to adult rats: a new drug of abuse.

    PubMed

    Williams, Michael T; Herring, Nicole R; Schaefer, Tori L; Skelton, Matthew R; Campbell, Nicholas G; Lipton, Jack W; McCrea, Anne E; Vorhees, Charles V

    2007-06-01

    Many drugs are used or abused in social contexts without understanding the ramifications of their use. In this study, we examined the effects of a newly popular drug, 5-methoxy-diisopropyltryptamine (5-MEO-DIPT; 'foxy' or 'foxy-methoxy'). Two experiments were performed. In the first, 5-MEO-DIPT (0, 10, or 20 mg/kg) was administered to rats four times on a single day and animals were examined 3 days later. The animals that received 5-MEO-DIPT demonstrated hypothermia during the period of drug administration and delayed mild hyperthermic rebound for at least 48 h. Corticosterone levels in plasma were elevated in a dose-dependent manner compared to saline-treated animals with minor changes in 5-HT turnover and no changes in monoamine levels. In experiment 2, rats were examined in behavioral tasks following either 0 or 20 mg/kg of 5-MEO-DIPT. The animals treated with 5-MEO-DIPT showed hypoactivity and an attenuated response to (+)-methamphetamine-induced stimulation (1 mg/kg). In a test of path integration (Cincinnati water maze), 5-MEO-DIPT-treated animals displayed deficits in performance compared to the saline-treated animals. No differences were noted in the ability of the animals to perform in the Morris water maze or on tests of novel object or place recognition. The data demonstrate that 5-MEO-DIPT alters the ability of an animal to perform certain cognitive tasks, while leaving others intact and disrupts the endocrine system. 5-MEO-DIPT may have the potential to induce untoward effects in humans.

  8. Imaging Intratumoral Nanoparticle Uptake After Combining Nanoembolization with Various Ablative Therapies in Hepatic VX2 Rabbit Tumors.

    PubMed

    Tam, Alda L; Melancon, Marites P; Abdelsalam, Mohamed; Figueira, Tomas Appleton; Dixon, Katherine; McWatters, Amanda; Zhou, Min; Huang, Qian; Mawlawi, Osama; Dunner, Kenneth; Li, Chun; Gupta, Sanjay

    2016-02-01

    Combining image-guided therapy techniques for the treatment of liver cancers is a strategy that is being used to improve local tumor control rates. Here, we evaluate the intratumoral uptake of nanoparticles used in combination with radiofrequency ablation (RFA), irreversible electroporation (IRE), or laser induced thermal therapy (LITT). Eight rabbits with VX2 tumor in the liver underwent one of four treatments: (i) nanoembolization (NE) with radiolabeled, hollow gold nanoparticles loaded with doxorubicin (⁶⁴Cu-PEG-HAuNS-DOX); (ii) NE + RFA; (iii) NE + IRE; (iv) NE +LITT. Positron emission tomography/computed tomography (PET/CT) imaging was obtained 1-hr or 18-hrs after intervention. Tissue samples were collected for autoradiography and transmission electron microscopy (TEM) analysis. PET/CT imaging at 1-hr showed focal deposition of oil and nanoparticles in the tumor only after NE+ RFA but at 18-hrs, all animals had focal accumulation of oil and nanoparticles in the tumor region. Autoradiograph analysis demonstrated nanoparticle deposition in the tumor and in the ablated tissues adjacent to the tumor when NE was combined with ablation. TEM results showed the intracellular uptake of nanoparticles in tumor only after NE + IRE. Nanoparticles demonstrated a structural change, suggesting direct interaction, potentially leading to drug release, only after NE + LITT. The findings demonstrate that a combined NE and ablation treatment technique for liver tumors is feasible, resulting in deposition of nanoparticles in and around the tumor. Depending on the ablative energy applied, different effects are seen on nanoparticle localization and structure. These effects should be considered when designing nanoparticles for use in combination with ablation technologies. PMID:27305763

  9. Imaging Intratumoral Nanoparticle Uptake after Combining Nanoembolization with Various Ablative Therapies in Hepatic VX2 Rabbit Tumors

    PubMed Central

    Tam, Alda L; Melancon, Marites P.; Abdelsalam, Mohamed; Figueira, Tomas Appleton; Dixon, Katherine; McWatters, Amanda; Zhou, Min; Huang, Qian; Mawlawi, Osama; Dunner, Kenneth; Li, Chun; Gupta, Sanjay

    2016-01-01

    Combining image-guided therapy techniques for the treatment of liver cancers is a strategy that is being used to improve local tumor control rates. Here, we evaluate the intratumoral uptake of nanoparticles used in combination with radiofrequency ablation (RFA), irreversible electroporation (IRE), or laser induced thermal therapy (LITT). Eight rabbits with VX2 tumor in the liver underwent one of four treatments: (i) nanoembolization (NE) with radiolabeled, hollow gold nanoparticles loaded with doxorubicin (64Cu-PEG-HAuNS-DOX); (ii) NE+RFA; (iii) NE+IRE; (iv) NE+LITT. Positron emission tomography/computed tomography (PET/CT) imaging was obtained 1-hr or 18-hrs after intervention. Tissue samples were collected for autoradiography and transmission electron microscopy (TEM) analysis. PET/CT imaging at 1-hr showed focal deposition of oil and nanoparticles in the tumor only after NE+RFA but at 18-hrs, all animals had focal accumulation of oil and nanoparticles in the tumor region. Autoradiograph analysis demonstrated nanoparticle deposition in the tumor and in the ablated tissues adjacent to the tumor when NE was combined with ablation. TEM results showed the intracellular uptake of nanoparticles in tumor only after NE+IRE. Nanoparticles demonstrated a structural change, suggesting direct interaction, potentially leading to drug release, only after NE+LITT. The findings demonstrate that a combined NE and ablation treatment technique for liver tumors is feasible, resulting in deposition of nanoparticles in and around the tumor. Depending on the ablative energy applied, different effects are seen on nanoparticle localization and structure. These effects should be considered when designing nanoparticles for use in combination with ablation technologies. PMID:27305763

  10. Hyperechoic renal tumors: anechoic rim and intratumoral cysts in US differentiation of renal cell carcinoma from angiomyolipoma.

    PubMed

    Yamashita, Y; Ueno, S; Makita, O; Ogata, I; Hatanaka, Y; Watanabe, O; Takahashi, M

    1993-07-01

    To determine whether angiomyolipomas (AMLs) and renal cell carcinomas (RCCs) can be differentiated at ultrasonography (US), the authors retrospectively evaluated the sonographic appearances of 31 AMLs and 38 RCCs. Sonograms were evaluated by three radiologists without knowledge of histologic findings, with respect to the echogenicity of the tumor, predominant echotexture, and whether an anechoic rim was present. All patients had also undergone computed tomography (CT) to check for tumoral fat. Intratumoral fat was evident at CT in 28 of the 31 AMLs. RCCs had no fat at CT or histologic evaluation. An anechoic rim was evident in 32 of 38 (84%) RCCs, and 10 RCCs had small anechoic areas with back echo enhancement, which corresponded to intratumoral cysts or cystic necrosis at histologic evaluation. The anechoic rim and areas indicative of cysts were not found in AMLs. Demonstration of an anechoic rim and/or intratumoral cysts in a hyperechoic mass at US suggests that the tumor is an RCC.

  11. Profile of differentially expressed intratumoral cytokines to predict the immune-polarizing side effects of tamoxifen in breast cancer treatment

    PubMed Central

    Li, Bailiang; Li, Yang; Wang, Xiao-Yu; Yan, Zi-Qiao; Liu, Huidi; Liu, Gui-Rong; Liu, Shu-Lin

    2015-01-01

    Factors within the tissue of breast cancer (BC) may shift the polarization of CD4+ T cells towards Th2 direction. This tendency can promote tumor development and be enhanced by the use of tamoxifen during the treatment. Thus, the patients with low levels of tumor-induced Th2 polarization prior to tamoxifen treatment may better endure the immune-polarizing side effects (IPSE) of tamoxifen and have better prognoses. Estimation of Th2 polarization status should help predict the IPSE among tamoxifen-treated patients and guide the use of tamoxifen among all BC patients before the tamoxifen therapy. Here, we report profiling of differentially expressed (DE) intratumoral cytokines as a signature to evaluate the IPSE of tamoxifen. The DE genes of intratumoral CD4+ T cells (CD4 DEGs) were identified by gene expression profiles of purified CD4+ T cells from BC patients and validated by profiling of cultured intratumoral CD4+ T cells. Functional enrichment analyses showed a directed Th2 polarization of intratumoral CD4+ T cells. To find the factors inducing the Th2 polarization of CD4+ T cells, we identified 995 common DE genes of bulk BC tissues (BC DEGs) by integrating five independent datasets. Five DE cytokines observed in bulk BC tissues with dysregulated receptors in the intratumoral CD4+ T cells were selected as the predictor of the IPSE of tamoxifen. The patients predicted to suffer low IPSE (low Th2 polarization) had a significantly lower distant relapse risk than the patients predicted to suffer high IPSE in independent datasets (n = 608; HR = 4.326, P = 0.000897; HR = 2.014, P = 0.0173; HR = 2.72, P = 0.04077). Patients predicted to suffer low IPSE would benefit from tamoxifen treatment (HR = 2.908, P = 0.03905). The DE intratumoral cytokines identified in this study may help predict the IPSE of tamoxifen and justify the use of tamoxifen in BC treatment. PMID:25973310

  12. Technique, pharmacokinetics, toxicity, and efficacy of intratumoral etanidazole and radiotherapy for treatment of spontaneous feline oral squamous cell carcinoma

    SciTech Connect

    Evans, S.M.; LaCreta, F.; Helfand, S.; VanWinkle, T.; Curran, W.J. Jr.; Brown, D.Q.; Hanks, G. )

    1991-04-01

    The histologic appearance, locoregional recurrence, and rate/site of metastases of spontaneous feline oral squamous cell carcinoma are similar to head and neck cancer in humans. A feasibility study of intratumoral Etanidazole, a hypoxic cell sensitizer, and radiation therapy were instituted in this model. Eleven cats with feline squamous cell carcinoma were treated with intratumoral Etanidazole and radiation therapy. Total Etanidazole doses were 1.5-24.0 gms/m2 (0.5-6.9 gms). The tumor partial response rate was 100% (11/11); the median volume regression was 70%. All cats have died as a result of tumor recurrence or tumor-related complications. Median survival was 116 days. Ten cats have been autopsied. Non-necrotic and necrotic tumor cells were identified at the treatment site in all cats. Pharmacokinetic studies were performed in six cats. Following intravenous infusion, the plasma elimination of the Etanidazole was biexponential. The systemic availability following intratumoral administration was 61.2 +/- 21.1%. Peak plasma Etanidazole levels were observed 14 minutes following intratumoral injection, after which elimination was biexponential. Thirty minutes following intratumoral Etanidazole administration, tumor Etanidazole levels were 62.8% of plasma levels. Feline squamous cell carcinoma appears to be a useful model of human head and neck cancer. Cats tolerate substantial doses of intratumoral and intravenous Etanidazole. Etanidazole and radiation therapy cause rapid regression, but not cure, of feline squamous cell carcinoma. There is a similarity between the intravenous kinetics of Etanidazole in humans and cats. Further studies in this model are planned.

  13. In vivo observing x-ray attenuation of intratumor injection of indocyanine green

    NASA Astrophysics Data System (ADS)

    Ye, Chang; Luo, Qingming; Liang, Wenxi; Lu, Jinling

    2003-12-01

    We report our experimental results of in vivo observing x-ray attenuation of intra-tumor injection of indocyanine green (ICG). An eight- to nine-week-old male BALB/c mouse weighting between 15 and 20 g is used in the experiments, which has been implanted with myeloma cell line (SP2/0) two week before. The system used to monitor the intratumor diffusion of ICG is a digital x-ray imaging system. It works at 33kVp, 0.3mAs, 4 seconds and 1.5×magnification. The objective of this research is to study the x-ray attenuation at different area, which represented by gray-scale value. Compare to the ROI in the tissue without ICG and ROI of black background in the image, there is an obvious change before and after injecting ICG in the tumor, which is the area ICG can diffuse to. It shows the feasibility of using digital x-ray imaging system to dynamically, effectively and noninterventionly monitor the diffusion of the ICG.

  14. Lack of functioning intratumoral lymphatics in colon and pancreas cancer tissue.

    PubMed

    Olszewski, Waldemar L; Stanczyk, Marek; Gewartowska, Magdalena; Domaszewska-Szostek, Anna; Durlik, Marek

    2012-09-01

    There are controversial views as to whether intratumoral or peritumoral lymphatics play a dominant role in the metastatic process. Most clinical observations originate from studies of colon cancer. Colon contains mucosa and submucosa rich in lymphatics and with high lymph formation rate. This seems to be a prerequisite for easy metastasis of cancer cells to regional lymph nodes. However, there are other tissues as pancreas with a rudimentary lymphatic network where cancer metastasis formation is as intensive as in colon cancer. This contradicts the common notion that intratumor lymphatics play major role in metastases. We visualized interstitial space and lymphatics in the central and peripheral regions of colon and pancreas tumors using the color stereoscopic lymphography and simultaneously immunohistochemical performed stainings specific for lymphatic and blood endothelial cells. The density of open and compressed lymphatic and blood vessels was measured in the tumor core and edge. There were very few lymphatics in the colon and pancreas tumor core but numerous minor fluid "lakes" with no visible connection to the peritumoral lymphatics. Lining of "lakes" did not express molecular markers specific for lymphatic endothelial cells. Dense connective tissue surrounding tumor foci did not contain lymphatics. Peritumoral lymphatics were irregularly distributed in both types of tumor and only sporadically contained cells that might be tumor cells. Similar lymphoscintigraphic and histological pictures were seen in colon and pancreas cancer despite of different structure of both tissues. This suggests a uniform reaction of tissues to the growing cancer irrespective of the affected organ.

  15. [Non invasive intracranial hyperthermia with Electric Capacitive Transference -ECT- Intratumoral and cerebral thermometry results].

    PubMed

    Ley-Valle, A

    2003-02-01

    The aim of this work is to present the results of thermic increase obtained at the brain and intratumoral levels through a non invasive technique -Electric Capacitive Transference- (ECT), developed in 1985 by Indiba. A review of the literature does not provide any reference of cerebral and intratumoral thermometry in real time with a non invasive technique of intracranial hyperthermia. In the 8 studied patients, the increases of temperature in the brain, ranged between 0.7 and 1.5 degrees C in relation to the depth of the thermometric probe and the incidence angle of the external electrode. Between tumoral and perilesional brain tissues, thermic increase was 0.3 to 0.7 degrees C greater at tumoral level. The observation that in no case the surrounding brain tissue registered a temperature over 39.2 degrees C supports the harmlessness of the technique regarding the potential damage to healthy brain tissue and seems to confirm previous data obtained in anatomopathological studies in animal experimentation performed in 1990, which showed an absence of lesions in tissues and organs. The greater and somewhat more prolonged thermic increase observed at tumoral level has been called the "greenhouse effect".

  16. Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats.

    PubMed

    Pal, Subhashis; Khan, Kainat; China, Shyamsundar Pal; Mittal, Monika; Porwal, Konica; Shrivastava, Richa; Taneja, Isha; Hossain, Zakir; Mandalapu, Dhanaraju; Gayen, Jiaur R; Wahajuddin, Muhammad; Sharma, Vishnu Lal; Trivedi, Arun K; Sanyal, Sabyasachi; Bhadauria, Smrati; Godbole, Madan M; Gupta, Sushil K; Chattopadhyay, Naibedya

    2016-03-15

    The drug, theophylline is frequently used as an additive to medications for people suffering from chronic obstructive pulmonary diseases (COPD). We studied the effect of theophylline in bone cells, skeleton and parameters related to systemic calcium homeostasis. Theophylline induced osteoblast apoptosis by increasing reactive oxygen species production that was caused by increased cAMP production. Bone marrow levels of theophylline were higher than its serum levels, indicating skeletal accumulation of this drug. When adult Sprague-Dawley rats were treated with theophylline, bone regeneration at fracture site was diminished compared with control. Theophylline treatment resulted in a time-dependent (at 4- and 8 weeks) bone loss. At 8 weeks, a significant loss of bone mass and deterioration of microarchitecture occurred and the severity was comparable to methylprednisone. Theophylline caused formation of hypomineralized osteoid and increased osteoclast number and surface. Serum bone resorption and formation marker were respectively higher and lower in the theophylline group compared with control. Bone strength was reduced by theophylline treatment. After 8 weeks, serum 25-D3 and liver 25-hydroxylases were decreased in theophylline group than control. Further, theophylline treatment reduced serum 1, 25-(OH)2 vitamin D3 (1,25-D3), and increased parathyroid hormone and fibroblast growth factor-23. Theophylline treated rats had normal serum calcium and phosphate but displayed calciuria and phosphaturia. Co-administration of 25-D3 with theophylline completely abrogated theophylline-induced osteopenia and alterations in calcium homeostasis. In addition, 1,25-D3 protected osteoblasts from theophylline-induced apoptosis and the attendant oxidative stress. We conclude that theophylline has detrimental effects in bone and prophylactic vitamin D supplementation to subjects taking theophylline could be osteoprotective. PMID:26851681

  17. Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats.

    PubMed

    Pal, Subhashis; Khan, Kainat; China, Shyamsundar Pal; Mittal, Monika; Porwal, Konica; Shrivastava, Richa; Taneja, Isha; Hossain, Zakir; Mandalapu, Dhanaraju; Gayen, Jiaur R; Wahajuddin, Muhammad; Sharma, Vishnu Lal; Trivedi, Arun K; Sanyal, Sabyasachi; Bhadauria, Smrati; Godbole, Madan M; Gupta, Sushil K; Chattopadhyay, Naibedya

    2016-03-15

    The drug, theophylline is frequently used as an additive to medications for people suffering from chronic obstructive pulmonary diseases (COPD). We studied the effect of theophylline in bone cells, skeleton and parameters related to systemic calcium homeostasis. Theophylline induced osteoblast apoptosis by increasing reactive oxygen species production that was caused by increased cAMP production. Bone marrow levels of theophylline were higher than its serum levels, indicating skeletal accumulation of this drug. When adult Sprague-Dawley rats were treated with theophylline, bone regeneration at fracture site was diminished compared with control. Theophylline treatment resulted in a time-dependent (at 4- and 8 weeks) bone loss. At 8 weeks, a significant loss of bone mass and deterioration of microarchitecture occurred and the severity was comparable to methylprednisone. Theophylline caused formation of hypomineralized osteoid and increased osteoclast number and surface. Serum bone resorption and formation marker were respectively higher and lower in the theophylline group compared with control. Bone strength was reduced by theophylline treatment. After 8 weeks, serum 25-D3 and liver 25-hydroxylases were decreased in theophylline group than control. Further, theophylline treatment reduced serum 1, 25-(OH)2 vitamin D3 (1,25-D3), and increased parathyroid hormone and fibroblast growth factor-23. Theophylline treated rats had normal serum calcium and phosphate but displayed calciuria and phosphaturia. Co-administration of 25-D3 with theophylline completely abrogated theophylline-induced osteopenia and alterations in calcium homeostasis. In addition, 1,25-D3 protected osteoblasts from theophylline-induced apoptosis and the attendant oxidative stress. We conclude that theophylline has detrimental effects in bone and prophylactic vitamin D supplementation to subjects taking theophylline could be osteoprotective.

  18. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations

    PubMed Central

    Semenza, Gregg L.

    2013-01-01

    Hypoxia occurs frequently in human cancers and induces adaptive changes in cell metabolism that include a switch from oxidative phosphorylation to glycolysis, increased glycogen synthesis, and a switch from glucose to glutamine as the major substrate for fatty acid synthesis. This broad metabolic reprogramming is coordinated at the transcriptional level by HIF-1, which functions as a master regulator to balance oxygen supply and demand. HIF-1 is also activated in cancer cells by tumor suppressor (e.g., VHL) loss of function and oncogene gain of function (leading to PI3K/AKT/mTOR activity) and mediates metabolic alterations that drive cancer progression and resistance to therapy. Inhibitors of HIF-1 or metabolic enzymes may impair the metabolic flexibility of cancer cells and make them more sensitive to anticancer drugs. PMID:23999440

  19. Management of Giant Facial Neurofibroma With Intratumoral Hematoma in Neurofibromatosis Type 1 Patient.

    PubMed

    Tak, Min Sung; Cho, Seong Eun; Kang, Sang Gue; Kim, Chul Han; Lee, Yong Seok

    2016-09-01

    Type-1 neurofibromatosis, a common autosomal dominant disease, is also known as von Recklinghausen disease. Surgical procedures to treat this condition are challenging because of the brittleness of the surrounding blood vessels and soft tissues that bring the risk of causing fatal bleeding. With improvements in neurovascular embolization procedures, some literatures have been published about the application of preoperative embolization for neurofibromatosis. This case report describes a 60-year-old female with Type-1 neurofibromatosis, who presented giant facial neurofibromas with intratumoral hemorrhage on both cheeks. This patient demonstrates that these huge and challenging lesions can be successfully treated with preoperative embolization and surgical treatment. We also discuss the timing of surgical treatment with such lesions. PMID:27603687

  20. Effects of intratumoral injection of I-125 iododeoxyuridine on Ehrlich ascites carcinoma

    SciTech Connect

    Hong, S.S.; Ford, E.H.; Alfieri, A.A.; Bravo, S. )

    1989-11-01

    Intratumoral injection of I-125 iododeoxyuridine (IUdR), saline solution, and oil suspension was investigated using Ehrlich ascites tumors in the thighs of mice. The oil suspension was more effective in tumor growth delay than was the saline solution. Single injection of the oil suspension at the dose of 12.5 microCi resulted in 21.5 days growth delay, whereas 50 microCi of the saline solution resulted in 11.5 days growth delay relative to control growth delay. At 40 days after treatment, higher radioactivities were observed in the tumor and the skin of the mice treated with the oil suspension, which represented the prolongation of I-125 IUdR oil suspension within the tumor. No normal tissue toxicities were observed.

  1. Intra-tumor Heterogeneity in Localized Lung Adenocarcinomas Delineated by Multi-region Sequencing

    PubMed Central

    Zhang, Jianjun; Fujimoto, Junya; Zhang, Jianhua; Wedge, David C.; Song, Xingzhi; Zhang, Jiexin; Seth, Sahil; Chow, Chi-Wan; Cao, Yu; Gumbs, Curtis; Gold, Kathryn A.; Kalhor, Neda; Little, Latasha; Mahadeshwar, Harshad; Moran, Cesar; Protopopov, Alexei; Sun, Huandong; Tang, Jiabin; Wu, Xifeng; Ye, Yuanqing; William, William N.; Lee, Jack J.; Heymach, John V.; Hong, Waun Ki; Swisher, Stephen; Wistuba, Ignacio I.; Futreal, P. Andrew

    2015-01-01

    Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intra-tumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multi-region whole exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20/21 known cancer gene mutations were identified in all regions of individual tumors suggesting single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months post-surgery, 3 patients have relapsed and all 3 patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. PMID:25301631

  2. How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity

    PubMed Central

    Rida, Padmashree C. G.; Cantuaria, Guilherme; Reid, Michelle D.; Kucuk, Omer

    2016-01-01

    Cancer is truly an iconic disease—a tour de force whose multiple formidable strengths can be attributed to the bewildering heterogeneity that a tumor can manifest both spatially and temporally. A Darwinian evolutionary process is believed to undergird, at least in part, the generation of this heterogeneity that contributes to poor clinical outcomes. Risk assessment in clinical oncology is currently based on a small number of clinicopathologic factors (like stage, histological grade, receptor status, and serum tumor markers) and offers limited accuracy in predicting disease course as evidenced by the prognostic heterogeneity that persists in risk segments produced by present-day models. We posit that this insufficiency stems from the exclusion of key risk contributors from such models, especially the omission of certain factors implicated in generating intratumoral heterogeneity. The extent of centrosome amplification and the mitotic propensity inherent in a tumor are two such vital factors whose contributions to poor prognosis are presently overlooked in risk prognostication. Supernumerary centrosomes occur widely in tumors and are potent drivers of chromosomal instability that fosters intratumoral heterogeneity. The mitotic propensity of a proliferating population of tumor cells reflects the cell cycling kinetics of that population. Since frequent passage through improperly regulated mitotic divisions accelerates production of diverse genotypes, the mitotic propensity inherent in a tumor serves as a powerful beacon of risk. In this review, we highlight how centrosome amplification and error-prone mitoses contribute to poor clinical outcomes and urge the need to develop these cancer-specific traits as much-needed clinically-facile prognostic biomarkers with immense potential value for individualized cancer treatment in the clinic. PMID:26358854

  3. Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy

    PubMed Central

    2015-01-01

    Plasmonic photothermal therapy utilizes biologically inert gold nanorods (AuNRs) as tumor-localized antennas that convert light into heat capable of eliminating cancerous tissue. This approach has lower morbidity than surgical resection and can potentially synergize with other treatment modalities including chemotherapy and immunotherapy. Despite these advantages, it is still challenging to obtain heating of the entire tumor mass while avoiding unnecessary collateral damage to surrounding healthy tissue. It is therefore critical to identify innovative methods to distribute an effective concentration of AuNRs throughout tumors without depositing them in surrounding healthy tissue. Here we demonstrate that AuNR-loaded, tumor-tropic neural stem cells (NSCs) can be used to improve the intratumoral distribution of AuNRs. A simple UV–vis technique for measuring AuNR loading within NSCs was established. It was then confirmed that NSC viability is unimpaired following AuNR loading and that NSCs retain AuNRs long enough to migrate throughout tumors. We then demonstrate that intratumoral injections of AuNR-loaded NSCs are more efficacious than free AuNR injections, as evidenced by reduced recurrence rates of triple-negative breast cancer (MDA-MB-231) xenografts following NIR exposure. Finally, we demonstrate that the distribution of AuNRs throughout the tumors is improved when transported by NSCs, likely resulting in the improved efficacy of AuNR-loaded NSCs as compared to free AuNRs. These findings highlight the advantage of combining cellular therapies and nanotechnology to generate more effective cancer treatments. PMID:25375246

  4. How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity.

    PubMed

    Rida, Padmashree C G; Cantuaria, Guilherme; Reid, Michelle D; Kucuk, Omer; Aneja, Ritu

    2015-12-01

    Cancer is truly an iconic disease--a tour de force whose multiple formidable strengths can be attributed to the bewildering heterogeneity that a tumor can manifest both spatially and temporally. A Darwinian evolutionary process is believed to undergird, at least in part, the generation of this heterogeneity that contributes to poor clinical outcomes. Risk assessment in clinical oncology is currently based on a small number of clinicopathologic factors (like stage, histological grade, receptor status, and serum tumor markers) and offers limited accuracy in predicting disease course as evidenced by the prognostic heterogeneity that persists in risk segments produced by present-day models. We posit that this insufficiency stems from the exclusion of key risk contributors from such models, especially the omission of certain factors implicated in generating intratumoral heterogeneity. The extent of centrosome amplification and the mitotic propensity inherent in a tumor are two such vital factors whose contributions to poor prognosis are presently overlooked in risk prognostication. Supernumerary centrosomes occur widely in tumors and are potent drivers of chromosomal instability that fosters intratumoral heterogeneity. The mitotic propensity of a proliferating population of tumor cells reflects the cell cycling kinetics of that population. Since frequent passage through improperly regulated mitotic divisions accelerates production of diverse genotypes, the mitotic propensity inherent in a tumor serves as a powerful beacon of risk. In this review, we highlight how centrosome amplification and error-prone mitoses contribute to poor clinical outcomes and urge the need to develop these cancer-specific traits as much-needed clinically-facile prognostic biomarkers with immense potential value for individualized cancer treatment in the clinic.

  5. Multistep, effective drug distribution within solid tumors

    PubMed Central

    Shemi, Amotz; Khvalevsky, Elina Zorde; Gabai, Rachel Malka; Domb, Abraham; Barenholz, Yechezkel

    2015-01-01

    The distribution of drugs within solid tumors presents a long-standing barrier for efficient cancer therapies. Tumors are highly resistant to diffusion, and the lack of blood and lymphatic flows suppresses convection. Prolonged, continuous intratumoral drug delivery from a miniature drug source offers an alternative to both systemic delivery and intratumoral injection. Presented here is a model of drug distribution from such a source, in a multistep process. At delivery onset the drug mainly affects the closest surroundings. Such ‘priming’ enables drug penetration to successive cell layers. Tumor ‘void volume’ (volume not occupied by cells) increases, facilitating lymphatic perfusion. The drug is then transported by hydraulic convection downstream along interstitial fluid pressure (IFP) gradients, away from the tumor core. After a week tumor cell death occurs throughout the entire tumor and IFP gradients are flattened. Then, the drug is transported mainly by ‘mixing’, powered by physiological bulk body movements. Steady state is achieved and the drug covers the entire tumor over several months. Supporting measurements are provided from the LODER™ system, releasing siRNA against mutated KRAS over months in pancreatic cancer in-vivo models. LODER™ was also successfully employed in a recent Phase 1/2 clinical trial with pancreatic cancer patients. PMID:26416413

  6. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.

    PubMed

    Miller, D B; O'Callaghan, J P

    1994-08-01

    In the companion paper we demonstrated that d-methamphetamine (d-METH), d-methylenedioxyamphetamine (d-MDA) and d-methylenedioxymethamephetamine (d-MDMA), but not d-fenfluramine (d-FEN), appear to damage dopaminergic projections to the striatum of the mouse. An elevation in core temperature also was associated with exposure to d-METH, d-MDA and d-MDMA, whereas exposure to d-FEN lowered core temperature. Given these findings, we examined the effects of temperature on substituted amphetamine (AMP)-induced neurotoxicity in the C57BL/6J mouse. Levels of striatal dopamine (DA) and glial fibrillary acidic protein (GFAP) were taken as indicators of neurotoxicity. Alterations in ambient temperature, pretreatment with drugs reported to cause hypothermia in the mouse and hypothermia induced by restraint stress were used to affect AMP-induced neurotoxicity. Mice received d-METH (10 mg/kg), d-MDA (20 mg/kg) or d-MDMA (20 mg/kg) every 2 hr for a total of four s.c. injections. All three AMPs increased core temperature and caused large (> 75%) decreases in striatal dopamine and large (> 300%) increases in striatal glial fibrillary acidic protein 72 hr after the last injection. Lowering ambient temperature from 22 degrees C to 15 degrees C blocked (d-MDA and d-MDMA) or severely attenuated (d-METH) these effects. Pretreatment with MK-801 lowered core temperature and blocked AMP-induced neurotoxicity; elevation of ambient temperature during this regimen elevated core temperature and markedly attenuated the neuroprotective effects of MK-801. Pretreatment with MK-801 also lowered core temperature in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice but did not block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine in Guinea-Bissau between 2003 and 2012.

    PubMed

    Jovel, Irina Tatiana; Kofoed, Poul-Erik; Rombo, Lars; Rodrigues, Amabelia; Ursing, Johan

    2015-02-01

    In 2008, artemether-lumefantrine was introduced in Guinea-Bissau, West Africa, but quinine has also been commonly prescribed for the treatment of uncomplicated Plasmodium falciparum malaria. An efficacious high-dose chloroquine treatment regimen was used previously. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine have been described. P. falciparum chloroquine resistance transporter (pfcrt) K76T, pfmdr1 gene copy numbers, pfmdr1 polymorphisms N86Y and Y184F, and pfmdr1 sequences 1034 to 1246 were determined using PCR-based methods. Blood samples came from virtually all (n=1,806) children<15 years of age who had uncomplicated P. falciparum monoinfection and presented at a health center in suburban Bissau (from 2003 to 2012). The pfcrt K76T and pfmdr1 N86Y frequencies were stable, and seasonal changes were not seen from 2003 to 2007. Since 2007, the mean annual frequencies increased (P<0.001) for pfcrt 76T (24% to 57%), pfmdr1 N86 (72% to 83%), and pfcrt 76+pfmdr1 86 TN (10% to 27%), and pfcrt 76T accumulated during the high transmission season (P=0.001). The pfmdr1 86+184 NF frequency increased from 39% to 66% (from 2003 to 2011; P=0.004). One sample had two pfmdr1 gene copies. pfcrt 76T was associated with a lower parasite density (P<0.001). Following the discontinuation of an effective chloroquine regimen, probably highly artemether-lumefantrine-susceptible P. falciparum (with pfcrt 76T) accumulated, possibly due to suboptimal use of quinine and despite a fitness cost linked to pfcrt 76T. (The studies reported here were registered at ClinicalTrials.gov under registration no. NCT00137514 [PSB-2001-chl-amo], NCT00137566 [PSB-2004-paracetamol], NCT00426439 [PSB-2006-coartem], NCT01157689 [AL-eff 2010], and NCT01704508 [Eurartesim 2012].).

  8. Temporal and Seasonal Changes of Genetic Polymorphisms Associated with Altered Drug Susceptibility to Chloroquine, Lumefantrine, and Quinine in Guinea-Bissau between 2003 and 2012

    PubMed Central

    Kofoed, Poul-Erik; Rombo, Lars; Rodrigues, Amabelia; Ursing, Johan

    2014-01-01

    In 2008, artemether-lumefantrine was introduced in Guinea-Bissau, West Africa, but quinine has also been commonly prescribed for the treatment of uncomplicated Plasmodium falciparum malaria. An efficacious high-dose chloroquine treatment regimen was used previously. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine have been described. P. falciparum chloroquine resistance transporter (pfcrt) K76T, pfmdr1 gene copy numbers, pfmdr1 polymorphisms N86Y and Y184F, and pfmdr1 sequences 1034 to 1246 were determined using PCR-based methods. Blood samples came from virtually all (n = 1,806) children <15 years of age who had uncomplicated P. falciparum monoinfection and presented at a health center in suburban Bissau (from 2003 to 2012). The pfcrt K76T and pfmdr1 N86Y frequencies were stable, and seasonal changes were not seen from 2003 to 2007. Since 2007, the mean annual frequencies increased (P < 0.001) for pfcrt 76T (24% to 57%), pfmdr1 N86 (72% to 83%), and pfcrt 76 + pfmdr1 86 TN (10% to 27%), and pfcrt 76T accumulated during the high transmission season (P = 0.001). The pfmdr1 86 + 184 NF frequency increased from 39% to 66% (from 2003 to 2011; P = 0.004). One sample had two pfmdr1 gene copies. pfcrt 76T was associated with a lower parasite density (P < 0.001). Following the discontinuation of an effective chloroquine regimen, probably highly artemether-lumefantrine-susceptible P. falciparum (with pfcrt 76T) accumulated, possibly due to suboptimal use of quinine and despite a fitness cost linked to pfcrt 76T. (The studies reported here were registered at ClinicalTrials.gov under registration no. NCT00137514 [PSB-2001-chl-amo], NCT00137566 [PSB-2004-paracetamol], NCT00426439 [PSB-2006-coartem], NCT01157689 [AL-eff 2010], and NCT01704508 [Eurartesim 2012].) PMID:25421474

  9. Repeated exposure to amphetamine during adolescence alters inhibitory tone in the medial prefrontal cortex following drug re-exposure in adulthood.

    PubMed

    Paul, Kush; Kang, Shuo; Cox, Charles L; Gulley, Joshua M

    2016-08-01

    Behavioral sensitization following repeated amphetamine (AMPH) exposure is associated with changes in GABA function in the medial prefrontal cortex (mPFC). In rats exposed to AMPH during adolescence compared to adulthood, there are unique patterns of sensitization that may reflect age-dependent differences in drug effects on prefrontal GABAergic function. In the current study, we used a sensitizing regimen of repeated AMPH exposure in adolescent and adult rats to determine if a post-withdrawal AMPH challenge would alter inhibitory transmission in the mPFC in a manner that depends on age of exposure. Male Sprague-Dawley rats were treated with saline or 3mg/kg AMPH (i.p.) during adolescence [postnatal day (P) 27-P45] or adulthood (P85- P103) and were sacrificed either at similar ages in adulthood (∼P133; experiment 1) or after similar withdrawal times (3-4 weeks; experiment 2). Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in vitro from deep layer pyramidal cells in the mPFC using the whole-cell configuration. We found no effect of AMPH pre-exposure on baseline sIPSC frequency. Subsequent application of AMPH (25μM) produced a stable increase in sIPSC frequency in controls, suggesting that AMPH increases inhibitory tone in the mPFC. However, AMPH failed to increase sIPSCs in adolescent- or adult-exposed rats. In experiment 2, where withdrawal period was kept similar for both exposure groups, AMPH induced a suppression of sIPSC activity in adolescent-exposed rats. These results suggest that sensitizing treatment with AMPH during adolescence or adulthood dampens inhibitory influences on mPFC pyramidal cells, but potentially through different mechanisms.

  10. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine in Guinea-Bissau between 2003 and 2012.

    PubMed

    Jovel, Irina Tatiana; Kofoed, Poul-Erik; Rombo, Lars; Rodrigues, Amabelia; Ursing, Johan

    2015-02-01

    In 2008, artemether-lumefantrine was introduced in Guinea-Bissau, West Africa, but quinine has also been commonly prescribed for the treatment of uncomplicated Plasmodium falciparum malaria. An efficacious high-dose chloroquine treatment regimen was used previously. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine have been described. P. falciparum chloroquine resistance transporter (pfcrt) K76T, pfmdr1 gene copy numbers, pfmdr1 polymorphisms N86Y and Y184F, and pfmdr1 sequences 1034 to 1246 were determined using PCR-based methods. Blood samples came from virtually all (n=1,806) children<15 years of age who had uncomplicated P. falciparum monoinfection and presented at a health center in suburban Bissau (from 2003 to 2012). The pfcrt K76T and pfmdr1 N86Y frequencies were stable, and seasonal changes were not seen from 2003 to 2007. Since 2007, the mean annual frequencies increased (P<0.001) for pfcrt 76T (24% to 57%), pfmdr1 N86 (72% to 83%), and pfcrt 76+pfmdr1 86 TN (10% to 27%), and pfcrt 76T accumulated during the high transmission season (P=0.001). The pfmdr1 86+184 NF frequency increased from 39% to 66% (from 2003 to 2011; P=0.004). One sample had two pfmdr1 gene copies. pfcrt 76T was associated with a lower parasite density (P<0.001). Following the discontinuation of an effective chloroquine regimen, probably highly artemether-lumefantrine-susceptible P. falciparum (with pfcrt 76T) accumulated, possibly due to suboptimal use of quinine and despite a fitness cost linked to pfcrt 76T. (The studies reported here were registered at ClinicalTrials.gov under registration no. NCT00137514 [PSB-2001-chl-amo], NCT00137566 [PSB-2004-paracetamol], NCT00426439 [PSB-2006-coartem], NCT01157689 [AL-eff 2010], and NCT01704508 [Eurartesim 2012].). PMID:25421474

  11. Intra-tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas

    PubMed Central

    Mroz, Edmund A.; Tward, Aaron M.; Hammon, Rebecca J.; Ren, Yin; Rocco, James W.

    2015-01-01

    Background Although the involvement of intra-tumor genetic heterogeneity in tumor progression, treatment resistance, and metastasis is established, genetic heterogeneity is seldom examined in clinical trials or practice. Many studies of heterogeneity have had prespecified markers for tumor subpopulations, limiting their generalizability, or have involved massive efforts such as separate analysis of hundreds of individual cells, limiting their clinical use. We recently developed a general measure of intra-tumor genetic heterogeneity based on whole-exome sequencing (WES) of bulk tumor DNA, called mutant-allele tumor heterogeneity (MATH). Here, we examine data collected as part of a large, multi-institutional study to validate this measure and determine whether intra-tumor heterogeneity is itself related to mortality. Methods and Findings Clinical and WES data were obtained from The Cancer Genome Atlas in October 2013 for 305 patients with head and neck squamous cell carcinoma (HNSCC), from 14 institutions. Initial pathologic diagnoses were between 1992 and 2011 (median, 2008). Median time to death for 131 deceased patients was 14 mo; median follow-up of living patients was 22 mo. Tumor MATH values were calculated from WES results. Despite the multiple head and neck tumor subsites and the variety of treatments, we found in this retrospective analysis a substantial relation of high MATH values to decreased overall survival (Cox proportional hazards analysis: hazard ratio for high/low heterogeneity, 2.2; 95% CI 1.4 to 3.3). This relation of intra-tumor heterogeneity to survival was not due to intra-tumor heterogeneity’s associations with other clinical or molecular characteristics, including age, human papillomavirus status, tumor grade and TP53 mutation, and N classification. MATH improved prognostication over that provided by traditional clinical and molecular characteristics, maintained a significant relation to survival in multivariate analyses, and distinguished

  12. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression.

    PubMed

    Anz, David; Rapp, Moritz; Eiber, Stephan; Koelzer, Viktor H; Thaler, Raffael; Haubner, Sascha; Knott, Max; Nagel, Sarah; Golic, Michaela; Wiedemann, Gabriela M; Bauernfeind, Franz; Wurzenberger, Cornelia; Hornung, Veit; Scholz, Christoph; Mayr, Doris; Rothenfusser, Simon; Endres, Stefan; Bourquin, Carole

    2015-11-01

    The chemokine CCL22 is abundantly expressed in many types of cancer and is instrumental for intratumoral recruitment of regulatory T cells (Treg), an important subset of immunosuppressive and tumor-promoting lymphocytes. In this study, we offer evidence for a generalized strategy to blunt Treg activity that can limit immune escape and promote tumor rejection. Activation of innate immunity with Toll-like receptor (TLR) or RIG-I-like receptor (RLR) ligands prevented accumulation of Treg in tumors by blocking their immigration. Mechanistic investigations indicated that Treg blockade was a consequence of reduced intratumoral CCL22 levels caused by type I IFN. Notably, stable expression of CCL22 abrogated the antitumor effects of treatment with RLR or TLR ligands. Taken together, our findings argue that type I IFN blocks the Treg-attracting chemokine CCL22 and thus helps limit the recruitment of Treg to tumors, a finding with implications for cancer immunotherapy. PMID:26432403

  13. Drug Interactions

    PubMed Central

    Tong Logan, Angela; Silverman, Andrew

    2012-01-01

    One of the most clinically significant complications related to the use of pharmacotherapy is the potential for drug-drug or drug-disease interactions. The gastrointestinal system plays a large role in the pharmacokinetic profile of most medications, and many medications utilized in gastroenterology have clinically significant drug interactions. This review will discuss the impact of alterations of intestinal pH, interactions mediated by phase I hepatic metabolism enzymes and P-glycoprotein, the impact of liver disease on drug metabolism, and interactions seen with commonly utilized gastrointestinal medications. PMID:22933873

  14. Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Miller, Kathy; Kruger, Robert

    2006-02-01

    Purpose. To evaluate photoacoustic spectroscopy as a potential imaging modality capable of measuring intra-tumor heterogeneity and spectral features associated with hemoglobin and the molecular probe indocyanine green (ICG). Material and Methods. Immune deficient mice were injected with wildtype and VEGF enhanced MCF-7 breast cancer cells or SKOV3x ovarian cancer cells, which were allowed to grow to a size of 6-12 mm in diameter. Two mice were imaged alive and after euthanasia for (oxy/deoxy)-hemoglobin content. A 0.4 mL volume of 1 μg/mL concentration of ICG was injected into the tail veins of two mice prior to imaging using the photoacoustic computed tomography (PCT) spectrometer (Optosonics, Inc., Indianapolis, IN 46202) scanner. Mouse images were acquired for wavelengths spanning 700-920 nm, after which the major organs were excised, and similarly imaged. A histological study was performed by sectioning the organ and optically imaging the fluorescence distribution. Results. Calibration of PCT-spectroscopy with different samples of oxygenated blood reproduced a hemoglobin dissociation curve consistent with empirical formula with an average error of 5.6%. In vivo PCT determination of SaO II levels within the tumor vascular was measurably tracked, and spatially correlated to the periphery of the tumor. Statistical and systematic errors associated with hypoxia were estimated to be 10 and 13%, respectively. Measured ICG concentrations determined by contrast-differential PCT images in excised organs (tumor, liver) were approximately 0.8 μg/mL, consistent with fluorescent histological results. Also, the difference in the ratio of ICG concentration in the gall bladder-to-vasculature between the mice was consistent with excretion times between the two mice. Conclusion. PCT spectroscopic imaging has shown to be a noninvasive modality capable of imaging intra-tumor heterogeneity of (oxy/deoxy)-hemoglobin and ICG in vivo, with an estimated error in SaO II at 17% and in

  15. The prognostic advantage of preoperative intratumoral injection of OK-432 for gastric cancer patients

    PubMed Central

    Gochi, A; Orita, K; Fuchimoto, S; Tanaka, N; Ogawa, N

    2001-01-01

    To investigate, by a multi-institutional randomized trial, the prognostic significance of the augmentation of tumour-infiltrating lymphocytes (TILs) by preoperative intratumoral injection of OK-432 (OK-432 it), a bacterial biological response modifier, in patients with gastric cancer. The 10-year survival and disease-free survival were examined and analysis of the factors showing survival benefit was performed. 370 patients who had undergone curative resection of gastric cancer were enrolled in this study and followed up for 10 years postoperatively. Patients were randomized into either an OK-432 it group or a control group. Ten Klinishe Einheit (KE) of OK-432 was endoscopically injected at 1 to 2 weeks before the operation in the OK-432 it group. Both groups received the same adjuvant chemoimmunotherapy consisting of a bolus injection of mitomycin C (0.4 mg kg−1i.v.) and administration of tegafur and OK-432 from postoperative day 14 up to 1 year later. Tegafur (600 mg day−1) was given orally and OK-432 (5 KE/2 weeks) was injected intradermally for a maintenance therapy. The TILs grades in resected tumour specimens and presence of metastasis and metastatic pattern in dissected lymph nodes were examined. Multivariate analysis was performed to determine the efficacy of OK-432 it on prognostic factors. All patients were followed up for 10 years. The overall 5- and 10-year survival rates and disease-free survival rates of the OK-432 it group were not significantly higher than those of the control group. However, OK-432 it significantly increased the 5- and 10-year survival rates of patients with stage IIIA + IIIB, moderate lymph node metastasis (pN2), and positive TILs. OK-432 it was most effective at prolonging the survival of patients who had both positive TILs and lymph node metastasis. The OK-432 it group with positive TILs showed a significant decrease in metastatic lymph node frequency and in the number of lymph node micro- metastatic foci when compared to

  16. Common Protein Biomarkers Assessed by Reverse Phase Protein Arrays Show Considerable Intratumoral Heterogeneity in Breast Cancer Tissues

    PubMed Central

    Buchner, Theresa; Thulke, Sabrina; Wolff, Claudia; Höfler, Heinz; Becker, Karl-Friedrich; Avril, Stefanie

    2012-01-01

    Proteins are used as prognostic and predictive biomarkers in breast cancer. However, the variability of protein expression within the same tumor is not well studied. The aim of this study was to assess intratumoral heterogeneity in protein expression levels by reverse-phase-protein-arrays (RPPA) (i) within primary breast cancers and (ii) between axillary lymph node metastases from the same patient. Protein was extracted from 106 paraffin-embedded samples from 15 large (≥3 cm) primary invasive breast cancers, including different zones within the primary tumor (peripheral, intermediate, central) as well as 2–5 axillary lymph node metastases in 8 cases. Expression of 35 proteins including 15 phosphorylated proteins representing the HER2, EGFR, and uPA/PAI-1 signaling pathways was assessed using reverse-phase-protein-arrays. All 35 proteins showed considerable intratumoral heterogeneity within primary breast cancers with a mean coefficient of variation (CV) of 31% (range 22–43%). There were no significant differences between phosphorylated (CV 32%) and non-phosphorylated proteins (CV 31%) and in the extent of intratumoral heterogeneity within a defined tumor zone (CV 28%, range18–38%) or between different tumor zones (CV 24%, range 17–38%). Lymph node metastases from the same patient showed a similar heterogeneity in protein expression (CV 27%, range 18–34%). In comparison, the variation amongst different patients was higher in primary tumors (CV 51%, range 29–98%) and lymph node metastases (CV 65%, range 40–146%). Several proteins showed significant differential expression between different tumor stages, grades, histological subtypes and hormone receptor status. Commonly used protein biomarkers of breast cancer, including proteins from HER2, uPA/PAI-1 and EGFR signaling pathways showed higher than previously reported intratumoral heterogeneity of expression levels both within primary breast cancers and between lymph node metastases from the same

  17. Common protein biomarkers assessed by reverse phase protein arrays show considerable intratumoral heterogeneity in breast cancer tissues.

    PubMed

    Malinowsky, Katharina; Raychaudhuri, Mithu; Buchner, Theresa; Thulke, Sabrina; Wolff, Claudia; Höfler, Heinz; Becker, Karl-Friedrich; Avril, Stefanie

    2012-01-01

    Proteins are used as prognostic and predictive biomarkers in breast cancer. However, the variability of protein expression within the same tumor is not well studied. The aim of this study was to assess intratumoral heterogeneity in protein expression levels by reverse-phase-protein-arrays (RPPA) (i) within primary breast cancers and (ii) between axillary lymph node metastases from the same patient. Protein was extracted from 106 paraffin-embedded samples from 15 large (≥3 cm) primary invasive breast cancers, including different zones within the primary tumor (peripheral, intermediate, central) as well as 2-5 axillary lymph node metastases in 8 cases. Expression of 35 proteins including 15 phosphorylated proteins representing the HER2, EGFR, and uPA/PAI-1 signaling pathways was assessed using reverse-phase-protein-arrays. All 35 proteins showed considerable intratumoral heterogeneity within primary breast cancers with a mean coefficient of variation (CV) of 31% (range 22-43%). There were no significant differences between phosphorylated (CV 32%) and non-phosphorylated proteins (CV 31%) and in the extent of intratumoral heterogeneity within a defined tumor zone (CV 28%, range 18-38%) or between different tumor zones (CV 24%, range 17-38%). Lymph node metastases from the same patient showed a similar heterogeneity in protein expression (CV 27%, range 18-34%). In comparison, the variation amongst different patients was higher in primary tumors (CV 51%, range 29-98%) and lymph node metastases (CV 65%, range 40-146%). Several proteins showed significant differential expression between different tumor stages, grades, histological subtypes and hormone receptor status. Commonly used protein biomarkers of breast cancer, including proteins from HER2, uPA/PAI-1 and EGFR signaling pathways showed higher than previously reported intratumoral heterogeneity of expression levels both within primary breast cancers and between lymph node metastases from the same patient. Assessment

  18. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients.

    PubMed

    Cripe, Timothy P; Ngo, Minhtran C; Geller, James I; Louis, Chrystal U; Currier, Mark A; Racadio, John M; Towbin, Alexander J; Rooney, Cliona M; Pelusio, Adina; Moon, Anne; Hwang, Tae-Ho; Burke, James M; Bell, John C; Kirn, David H; Breitbach, Caroline J

    2015-03-01

    Pexa-Vec (pexastimogene devacirepvec, JX-594) is an oncolytic and immunotherapeutic vaccinia virus designed to destroy cancer cells through viral lysis and induction of granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven tumor-specific immunity. Pexa-Vec has undergone phase 1 and 2 testing alone and in combination with other therapies in adult patients, via both intratumoral and intravenous administration routes. We sought to determine the safety of intratumoral administration in pediatric patients. In a dose-escalation study using either 10(6) or 10(7) plaque-forming units per kilogram, we performed one-time injections in up to three tumor sites in five pediatric patients and two injections in one patient. Ages at study entry ranged from 4 to 21 years, and their cancer diagnoses included neuroblastoma, hepatocellular carcinoma, and Ewing sarcoma. All toxicities were ≤ grade 3. The most common side effects were sinus fever and sinus tachycardia. All three patients at the higher dose developed asymptomatic grade 1 treatment-related skin pustules that resolved within 3-4 weeks. One patient showed imaging evidence suggestive of antitumor biological activity. The two patients tested for cellular immunoreactivity to vaccinia antigens showed strong responses. Overall, our study suggests Pexa-Vec is safe to administer to pediatric patients by intratumoral administration and could be studied further in this patient population.

  19. Exploitation of the Low Fidelity of Human Immunodeficiency Virus Type 1 (HIV-1) Reverse Transcriptase and the Nucleotide Composition Bias in the HIV-1 Genome To Alter the Drug Resistance Development of HIV

    PubMed Central

    Balzarini, Jan; Camarasa, Maria-José; Pérez-Pérez, Maria-Jesus; San-Félix, Ana; Velázquez, Sonsoles; Perno, Carlo-Federico; De Clercq, Erik; Anderson, John N.; Karlsson, Anna

    2001-01-01

    The RNA genome of the lentivirus human immunodeficiency virus type 1 (HIV-1) is significantly richer in adenine nucleotides than the statistically equal distribution of the four different nucleotides that is expected. This compositional bias may be due to the guanine-to-adenine (G→A) nucleotide hypermutation of the HIV genome, which has been explained by dCTP pool imbalances during reverse transcription. The adenine nucleotide bias together with the poor fidelity of HIV-1 reverse transcriptase markedly enhances the genetic variation of HIV and may be responsible for the rapid emergence of drug-resistant HIV-1 strains. We have now attempted to counteract the normal mutational pattern of HIV-1 in response to anti-HIV-1 drugs by altering the endogenous deoxynucleoside triphosphate pool ratios with antimetabolites in virus-infected cell cultures. We showed that administration of these antimetabolic compounds resulted in an altered drug resistance pattern due to the reversal of the predominant mutational flow of HIV (G→A) to an adenine-to-guanine (A→G) nucleotide pattern in the intact HIV-1-infected lymphocyte cultures. Forcing the virus to change its inherent nucleotide bias may lead to better control of viral drug resistance development. PMID:11390579

  20. IL-12 Delivered Intratumorally by Multilamellar Liposomes Reactivates Memory T Cells in Human Tumor Microenvironments

    PubMed Central

    Simpson-Abelson, Michelle R.; Purohit, Vivek S.; Pang, Wing Man; Iyer, Vandana; Odunsi, Kunle; Demmy, Todd L; Yokota, Sandra J.; Loyall, Jenni L.; Kelleher, Raymond J.; Balu-Iyer, Sathy; Bankert, Richard B.

    2009-01-01

    Using a novel loading technique, IL-12 is reported here to be efficiently encapsulated within large multilamellar liposomes. The preclinical efficacy of the cytokine loaded liposomes to deliver IL-12 into human tumors and to reactive tumor-associated T cells in situ is tested using a human tumor xenograft model. IL-12 is released in vivo from these liposomes in a biologically active form when injected into tumor xenografts that are established by the subcutaneous implantation of non-disrupted pieces of human lung, breast or ovarian tumors into immunodeficient mice. The histological architecture of the original tumor tissue, including tumor-associated leukocytes, tumor cells and stromal cells is preserved anatomically and the cells remain functionally responsive to cytokines in these xenografts. The local and sustained release of IL-12 into the tumor microenvironment reactivates tumor-associated quiescent effector memory T cells to proliferate, produce and release IFN-γ resulting in the killing of tumor cells in situ. Very little IL-12 is detected in the serum of mice for up to 5 days after an intratumoral injection of the IL-12 liposomes. We conclude that IL-12 loaded large multilamellar liposomes provide a safe method for the local and sustained delivery of IL-12 to tumors and a therapeutically effective way of reactivating existing tumor-associated T cells in human solid tumor microenvironments. The potential of this local in situ T cell re-stimulation to induce a systemic anti-tumor immunity is discussed. PMID:19395317

  1. Heterogeneity in intratumor distribution of p53 mutations in human prostate cancer.

    PubMed Central

    Mirchandani, D.; Zheng, J.; Miller, G. J.; Ghosh, A. K.; Shibata, D. K.; Cote, R. J.; Roy-Burman, P.

    1995-01-01

    Prostatic carcinoma from 65 patients have been examined for the occurrence of point mutations in the p53 tumor suppressor gene locus within the region of exons 5 to 8. Overall, only a small fraction of tumors (12.3%) was found to contain p53 mutations. No significant correlation was detected between the presence of the mutant gene and either tumor volume or histopathological grade. However, metastatic prostatic tumors are found to display a higher percentage (21.4%) of p53 mutations compared with primary adenocarcinomas (9.8%). Analysis of the topographical distribution of the p53 mutant genotype revealed two remarkable findings. First, multifocal tumors within a prostate appear to differ in harboring the mutant gene, and second, evidence is obtained for intratumor heterogeneity in the distribution of the mutant p53 allele. Together these findings appear to explain, at least in part, why there has been a wide discrepancy in the reported detection frequency of p53 mutations in prostate cancer specimens. It appears that the outcome of mutation analysis would depend not only on which tumors but also which regions of the tumors are included in the study. Furthermore, the observed heterogeneous topographical distribution of the mutation, if confirmed to be unique to prostate cancer, may have important implications in the understanding of the biology of prostate carcinogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7604888

  2. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma.

    PubMed

    Grove, Olya; Berglund, Anders E; Schabath, Matthew B; Aerts, Hugo J W L; Dekker, Andre; Wang, Hua; Velazquez, Emmanuel Rios; Lambin, Philippe; Gu, Yuhua; Balagurunathan, Yoganand; Eikman, Edward; Gatenby, Robert A; Eschrich, Steven; Gillies, Robert J

    2015-01-01

    Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma. PMID:25739030

  3. Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma

    PubMed Central

    Grove, Olya; Berglund, Anders E.; Schabath, Matthew B.; Aerts, Hugo J. W. L.; Dekker, Andre; Wang, Hua; Velazquez, Emmanuel Rios; Lambin, Philippe; Gu, Yuhua; Balagurunathan, Yoganand; Eikman, Edward; Gatenby, Robert A.; Eschrich, Steven; Gillies, Robert J.

    2015-01-01

    Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma. PMID:25739030

  4. Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice

    PubMed Central

    Amos, Sally M.; Pegram, Hollie J.; Westwood, Jennifer A.; John, Liza B.; Devaud, Christel; Clarke, Chris J.; Restifo, Nicholas P.; Smyth, Mark J.; Darcy, Phillip K.; Kershaw, Michael H.

    2012-01-01

    Toll-like receptor (TLR) agonists can trigger broad inflammatory responses that elicit rapid innate immunity and promote the activities of lymphocytes, which can potentially enhance adoptive immunotherapy in the tumor-bearing setting. In the present study, we found that Polyinosinic:Polycytidylic Acid [Poly(I:C)] and CpG oligodeoxynucleotide 1826 [CpG], agonists for TLR 3 and 9, respectively, potently activated adoptively transferred T cells against a murine model of established melanoma. Intratumoral injection of Poly(I:C) and CpG, combined with systemic transfer of activated pmel-1 T cells, specific for gp10025–33, led to enhanced survival and eradication of 9-day established subcutaneous B16F10 melanomas in a proportion of mice. A series of survival studies in knockout mice supported a key mechanistic pathway, whereby TLR agonists acted via host cells to enhance IFN-γ production by adoptively transferred T cells. IFN-γ, in turn, enhanced the immunogenicity of the B16F10 melanoma line, leading to increased killing by adoptively transferred T cells. Thus, this combination approach counteracted tumor escape from immunotherapy via downregulation of immunogenicity. In conclusion, TLR agonists may represent advanced adjuvants within the setting of adoptive T-cell immunotherapy of cancer and hold promise as a safe means of enhancing this approach within the clinic. PMID:21327636

  5. Intra-Tumor Genetic Heterogeneity in Wilms Tumor: Clonal Evolution and Clinical Implications.

    PubMed

    Cresswell, George D; Apps, John R; Chagtai, Tasnim; Mifsud, Borbala; Bentley, Christopher C; Maschietto, Mariana; Popov, Sergey D; Weeks, Mark E; Olsen, Øystein E; Sebire, Neil J; Pritchard-Jones, Kathy; Luscombe, Nicholas M; Williams, Richard D; Mifsud, William

    2016-07-01

    The evolution of pediatric solid tumors is poorly understood. There is conflicting evidence of intra-tumor genetic homogeneity vs. heterogeneity (ITGH) in a small number of studies in pediatric solid tumors. A number of copy number aberrations (CNA) are proposed as prognostic biomarkers to stratify patients, for example 1q+ in Wilms tumor (WT); current clinical trials use only one sample per tumor to profile this genetic biomarker. We multisampled 20 WT cases and assessed genome-wide allele-specific CNA and loss of heterozygosity, and inferred tumor evolution, using Illumina CytoSNP12v2.1 arrays, a custom analysis pipeline, and the MEDICC algorithm. We found remarkable diversity of ITGH and evolutionary trajectories in WT. 1q+ is heterogeneous in the majority of tumors with this change, with variable evolutionary timing. We estimate that at least three samples per tumor are needed to detect >95% of cases with 1q+. In contrast, somatic 11p15 LOH is uniformly an early event in WT development. We find evidence of two separate tumor origins in unilateral disease with divergent histology, and in bilateral WT. We also show subclonal changes related to differential response to chemotherapy. Rational trial design to include biomarkers in risk stratification requires tumor multisampling and reliable delineation of ITGH and tumor evolution.

  6. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: A typical case of alteration of degradation pathway of one drug by another.

    PubMed

    Handa, Tarun; Singh, Saranjit; Singh, Inder Pal

    2014-02-01

    An increasing interest is being shown throughout the world on the use of fixed-dose combinations of drugs in the therapy of select diseases, like cardiovascular diseases, due to their multiple advantages. Though the main criterion for combining drugs in a single dosage form is the rationale, but consideration like stability of formulation is equally important, due to an added aspect of drug-drug interaction. The objective of this study was to evaluate interaction among the drugs in an antihypertensive combination of nifedipine and atenolol. Nifedipine is a known light sensitive drug, which degrades via intra-molecular mechanisms to nitro- and nitroso-pyridine analogs, along with a few minor secondary products that are formed through inter-molecular interactions amongst primary degradation products and their intermediates. Atenolol is reasonably stable weakly basic drug that is mainly hydrolyzed at acetamide terminal amide moiety to its corresponding carboxylic acid. To the best of our knowledge, there is no known information on chemical compatibility among the two drugs. The present study involved subjecting of nifedipine, atenolol and their combination to a variety of accelerated and stress conditions. HPLC studies revealed formation of a new product in the mixture of two drugs (∼2%), which was also generated from nifedipine alone, but at trace levels (<0.1%). The product was isolated by preparative chromatography and subjected to indepth studies for its characterization. Ultra-violet, FT-IR, mass spectrometric and nuclear magnetic resonance spectroscopic studies highlighted that the principal photo-degradation pathway of nifedipine was modified and diverted in the presence of atenolol. To verify the same, a study was conducted employing two other β-blockers with similar structures to atenolol, and the same product was formed in relatively higher quantity therein also. The new product is postulated to be produced as a result of rearrangement of hydroxylamine

  7. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer

    PubMed Central

    Park, Noh-Hyun; Song, Yong Sang

    2016-01-01

    Objective We investigated the prognostic value of intratumoral [18F]fluorodeoxyglucose (FDG) uptake heterogeneity (IFH) derived from positron emission tomography/computed tomography (PET/CT) in patients with cervical cancer. Methods Patients with uterine cervical cancer of the International Federation of Obstetrics and Gynecology (FIGO) stage IB to IIA were imaged with [18F]FDG PET/CT before radical surgery. PET/CT parameters such as maximum and average standardized uptake values (SUVmax and SUVavg), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and IFH were assessed. Regression analyses were used to identify clinicopathological and imaging variables associated with progression-free survival (PFS). Results We retrospectively reviewed clinical data of 85 eligible patients. Median PFS was 32 months (range, 6 to 83 months), with recurrence observed in 14 patients (16.5%). IFH at an SUV of 2.0 was correlated with primary tumor size (p<0.001), SUVtumor (p<0.001), MTVtumor (p<0.001), TLGtumor (p<0.001), depth of cervical invasion (p<0.001), and negatively correlated with age (p=0.036). Tumor recurrence was significantly associated with TLGtumor (p<0.001), MTVtumor (p=0.001), SUVLN (p=0.004), IFH (p=0.005), SUVtumor (p=0.015), and FIGO stage (p=0.015). Multivariate analysis identified that IFH (p=0.028; hazard ratio, 756.997; 95% CI, 2.047 to 279,923.191) was the only independent risk factor for recurrence. The Kaplan-Meier survival graphs showed that PFS significantly differed in groups categorized based on IFH (p=0.013, log-rank test). Conclusion Preoperative IFH was significantly associated with cervical cancer recurrence. [18F]FDG based heterogeneity may be a useful and potential predicator of patient recurrence before treatment. PMID:26768781

  8. Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity

    PubMed Central

    McBride, Michelle; Rida, Padmashree C.G.; Aneja, Ritu

    2016-01-01

    Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor’s perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor’s inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor’s proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies. PMID:26024970

  9. Intratumoral injection of taxol in vivo suppresses A549 tumor showing cytoplasmic vacuolization.

    PubMed

    Wang, Chaoyang; Chen, Tongsheng

    2012-04-01

    Based on our recent in vitro studies, this report was designed to explore the mechanism by which high concentration of taxol (70 µM) induced paraptosis-like cell death in human lung carcinoma (A549) cells, and to evaluate the therapeutic efficacy of taxol using A549 tumor-bearing mice in vivo. Exposure of cells to taxol induced time-dependent cytotoxicity and cytoplasmic vacuolization without the involvement of Bax, Bak, Mcl-1, Bcl-XL, and caspase-3. Although taxol treatment induced activating transcription factor 6 (ATF6) cleavage indicative of endoplasmic reticulum (ER) stress, silencing ATF6 by shATF6 did not prevent taxol-induced both cytotoxcity and cytoplasmic vacuolization, suggesting that taxol-induced cytoplasmic vacuolization and cell death were not due to ER stress. Moreover, taxol-treated cells did not show DNA fragmentation and loss of mitochondrial membrane potential, the typical characteristics of apoptosis. In addition, taxol-induced cytoplasmic vacuolization did not show the cellular lysis, the characteristics of oncosis, and positive of β-galactosidase, the characteristic of senescence, indicating that taxol induced paraptosis-like cell death is neither oncosis nor senescence. Moreover, our in vivo data showed that intratumoral injection of taxol (50 mg/kg) in A549 tumor xenograft mice on day 1 and day 19 potently suppressed tumor growth showing significant ER vacuolization without toxicity. In conclusion, high concentration of taxol exhibits a significant anticancer activity by inducing paraptosis-like cell death in vitro and in vivo, without significant toxicity, suggesting a promising therapeutic strategy for apoptosis-resistance cancer by inducing ER vacuolization.

  10. Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity.

    PubMed

    McBride, Michelle; Rida, Padmashree C G; Aneja, Ritu

    2015-11-01

    Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor's perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor's inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor's proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies.

  11. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme

    PubMed Central

    de Aquino, Priscila F.; Carvalho, Paulo Costa; Nogueira, Fábio C. S.; da Fonseca, Clovis Orlando; de Souza Silva, Júlio Cesar Thomé; Carvalho, Maria da Gloria da Costa; Domont, Gilberto B.; Zanchin, Nilson I. T.; Fischer, Juliana de Saldanha da Gama

    2016-01-01

    Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique. PMID:27597932

  12. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme

    PubMed Central

    de Aquino, Priscila F.; Carvalho, Paulo Costa; Nogueira, Fábio C. S.; da Fonseca, Clovis Orlando; de Souza Silva, Júlio Cesar Thomé; Carvalho, Maria da Gloria da Costa; Domont, Gilberto B.; Zanchin, Nilson I. T.; Fischer, Juliana de Saldanha da Gama

    2016-01-01

    Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique.

  13. Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles

    PubMed Central

    Shi, Minghan; Paquette, Benoit; Thippayamontri, Thititip; Gendron, Louis; Guérin, Brigitte; Sanche, Léon

    2016-01-01

    The potential of gold nanoparticles (GNPs) as radiosensitizers for the treatment of malignant tumors has been limited by the large quantities of GNPs that must be administered and the requirement for low-energy X-ray irradiation to optimize radiosensitization. In this study, we enhance the radiosensitivity of HCT116 human colorectal cells with tiopronin-coated GNPs (Tio-GNPs) combined with a low-energy X-ray (26 keV effective energy) source, similar to the Papillon 50 clinical irradiator used for topical irradiation of rectal tumors. Sensitizer enhancement ratios of 1.48 and 1.69 were measured in vitro, when the HCT116 cells were incubated with 0.1 mg/mL and 0.25 mg/mL of Tio-GNPs, respectively. In nude mice bearing the HCT116 tumor, intra-tumoral (IT) injection of Tio-GNPs allowed a 94 times higher quantity of Tio-GNPs to accumulate than was possible by intravenous injection and facilitated a significant tumor response. The time following irradiation, for tumors growing to four times their initial tumor volume (4Td) was 54 days for the IT injection of 366.3 μg of Tio-GNPs plus 10 Gy, compared to 37 days with radiation alone (P=0.0018). Conversely, no significant improvement was obtained when GNPs were injected intravenously before tumor irradiation (P=0.6547). In conclusion, IT injection of Tio-GNPs combined with low-energy X-rays can significantly reduce the growth of colorectal tumors. PMID:27789945

  14. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme.

    PubMed

    de Aquino, Priscila F; Carvalho, Paulo Costa; Nogueira, Fábio C S; da Fonseca, Clovis Orlando; de Souza Silva, Júlio Cesar Thomé; Carvalho, Maria da Gloria da Costa; Domont, Gilberto B; Zanchin, Nilson I T; Fischer, Juliana de Saldanha da Gama

    2016-01-01

    Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient's GBM but obtained from two surgeries a year's time apart. Our analysis also included GBM's fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor's anatomical region. Nevertheless, we report differentially abundant proteins from GBM's fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique. PMID:27597932

  15. Toremifene – Atamestane; Alone or In Combination: Predictions from the Preclinical Intratumoral Aromatase Model

    PubMed Central

    Sabnis, Gauri J; Macedo, Luciana; Goloubeva, Olga; Schayowitz, Adam; Zhu, Yue; Brodie, Angela

    2011-01-01

    Since most breast cancers occur in post-menopausal women and are hormone dependent, we developed a model system that mimics this situation. In this model, tumors of human estrogen receptor ER positive breast cancer cells stably transfected with aromatase (Ac-1) are grown in immune compromised mice. Using this model we have explored a number of therapeutic strategies to maximize the antitumor efficacy of antiestrogens (AEs) and aromatase inhibitors (AIs). This intratumoral aromatase xenograft model has proved accurate in predicting the outcome of several clinical trials. In this current study we compared the effect of an AE toremifene and steroidal AI atamestane, alone or in combination, on growth of hormone dependent human breast cancer. We have also compared toremifene plus atamestane combination with tamoxifen in this study. The growth of Ac-1 cells was inhibited by tamoxifen, toremifene and atamestane in vitro with IC50 values of 1.8±1.3μM, 1±0.3μM and 60.4±17.2μM, respectively. The combination of toremifene plus atamestane was found to be better than toremifene or atamestane alone in vitro. The effect of this combination was then studied in vivo using Ac-1 xenografts grown in ovariectomized female SCID mice. The mice were injected with toremifene (1000μg/day), atamestane (1000μg/day), tamoxifen (100μg/day), or the combination of toremifene plus atamestane. In this study, our results indicate that the combination of toremifene plus atamestane was as effective as toremifene or tamoxifen alone but may not provide any additional benefit over toremifene alone or tamoxifen alone. PMID:17942301

  16. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site

    PubMed Central

    Eterovic, Agda Karina; Wick, Jo; Chen, Ken; Zhao, Hao; Tazi, Loubna; Manna, Pradip; Kerley, Spencer; Joshi, Radhika; Wang, Lin; Chiosea, Simion I.; Garnett, James David; Tsue, Terance Ted; Chien, Jeremy; Mills, Gordon B.; Grandis, Jennifer Rubin; Thomas, Sufi Mary

    2016-01-01

    In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies. PMID:27034009

  17. Intratumoral hemorrhage-related differences in the expression of vascular endothelial growth factor, basic fibroblast growth factor and thioredoxin reductase 1 in human glioblastoma

    PubMed Central

    Kaya, Bulent; Çiçek, Onur; Erdi, Fatih; Findik, Siddika; Karatas, Yasar; Esen, Hasan; Keskin, Fatih; Kalkan, Erdal

    2016-01-01

    The present study was designed to evaluate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and thioredoxin reductase 1 (TrxR1) in glioblastoma multiforme (GBM) with and without intratumoral hemorrhage. Surgically resected human GBM samples from 20 patients who underwent surgery at our institute were extracted from the histopathological specimens and divided into two groups. A total of 10 samples from each type of GBM (World Health Organization grade IV, intratumoral hemorrhage-positive or -negative) were included in each group. VEGF, bFGF and TrxR1 expression was analyzed using immunohistochemistry and the results were compared between groups. VEGF and bFGF immunoreactivity was significantly higher in GBMs containing intratumoral hemorrhage. Furthermore, VEGF, bFGF and TrxR1 immunointensity was significantly higher in GBMs containing intratumoral hemorrhage. Thus, the present study demonstrated a higher VEGF, bFGF and TrxR1 expression in GBMs contain intratumoral hemorrhage, indicatiogn a role of VEGF, bFGF and TrxR1 expression in the promotion of tumoral angiogenesis and tumoral growth by complex mechanisms that require further elucidation.

  18. Phenotypic Drift as a Cause for Intratumoral Morphological Heterogeneity of Invasive Ductal Breast Carcinoma Not Otherwise Specified

    PubMed Central

    Zavyalova, Marina V.; Tashireva, Lubov A.; Gerashchenko, Tatiana S.; Litviakov, Nikolay V.; Skryabin, Nikolay A.; Vtorushin, Sergey V.; Telegina, Nadezhda S.; Slonimskaya, Elena M.; Cherdyntseva, Nadezhda V.; Perelmuter, Vladimir M.

    2013-01-01

    Abstract Invasive ductal carcinoma (IDC) not otherwise specified (NOS), the most common type of breast cancer, demonstrates great intratumoral morphological heterogeneity, which encompasses the presence of different types of morphological structures—tubular, trabecular, solid, and alveolar structures and discrete groups of tumor cells, the origins of which remain unclear at present. In this study of 162 IDC NOS patients, we investigated whether the distribution of different types of morphological structures is related to the basic clinicopathological parameters of IDC NOS. Our results showed that in patients with only one type of tumor structure, the presence of any one of the five types was equally probable; however, cases with two types of structures were more likely to contain trabecular structures than the other four types. The development of intratumoral morphological heterogeneity was not associated with menopausal status, tumor size, histological grade, hematogenic metastasis, or recurrence. However, the number of different types of morphological structures was significantly higher in luminal tumors than in triple-negative tumors. An increase in the frequency of lymph node metastasis correlated with the increased number of different types of structures in breast tumors; however, in contrast to premenopausal patients, this association was explained by the presence of alveolar structures in postmenopausal women. In addition, we showed a significant decrease in the numbers of positive lymph nodes in tumors with high numbers of morphological variants. The frequency of lymph node metastases and the number of positive nodes were generally independent features and formed by different mechanisms. Based on the evidence, the term “phenotypic drift” has been designated as the basis for the development of intratumoral morphological heterogeneity of IDC NOS. PMID:23593567

  19. Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors.

    PubMed

    Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Gregório, Hugo; Lobo, Luis; Queiroga, Felisbina L

    2016-10-01

    The activity of regulatory T cells (Tregs) is closely associated with the expression of FoxP3 transcription factor. FoxP3 regulatory T cells (FoxP3Treg) have immunosuppressive properties and can work for prevention of harmful autoimmune responses, however can also interfere with beneficial anti-tumor immunity. In human breast cancer these cells play a crucial role in tumor progression. In canine mammary tumors (CMT) this topic is not well-documented. This study included 80 malignant CMT and studied, by immunohistochemistry, the intratumoral FoxP3 expression together with microvessel density (MVD), vascular endothelial growth factor (VEGF) and several clinicopathological characteristics. Abundant FoxP3Treg cells were associated with tumor necrosis (p=0.001), high mitotic grade (p<0.001), more marked nuclear polymorphism (p=0.001), poor differentiation of tumors (p<0.001), high histological grade of malignancy (HGM) (p<0.001), presence of neoplastic intravascular emboli (p<0.001) and presence of lymph node metastasis (p<0.001). Intratumoral FoxP3 was correlated with MVD (r=0.827; p<0.001) and associated with VEGF (p=0.001). Additionally tumors with abundant FoxP3Treg cells were associated with shorter overall survival (OS) time in univariate and multivariate analysis (p<0.001 Kaplan-Meier curves and 7.97 hazard ratio, p<0.001 Cox proportional hazard model). Results suggest that Treg cells play a role in CMT progression and may contribute to increased angiogenesis and aggression in these tumors. The association of intratumoral FoxP3 expression with shorter OS in multivariate analysis suggests the usefulness of Treg cells as an independent prognostic marker. PMID:27496736

  20. Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors.

    PubMed

    Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Gregório, Hugo; Lobo, Luis; Queiroga, Felisbina L

    2016-10-01

    The activity of regulatory T cells (Tregs) is closely associated with the expression of FoxP3 transcription factor. FoxP3 regulatory T cells (FoxP3Treg) have immunosuppressive properties and can work for prevention of harmful autoimmune responses, however can also interfere with beneficial anti-tumor immunity. In human breast cancer these cells play a crucial role in tumor progression. In canine mammary tumors (CMT) this topic is not well-documented. This study included 80 malignant CMT and studied, by immunohistochemistry, the intratumoral FoxP3 expression together with microvessel density (MVD), vascular endothelial growth factor (VEGF) and several clinicopathological characteristics. Abundant FoxP3Treg cells were associated with tumor necrosis (p=0.001), high mitotic grade (p<0.001), more marked nuclear polymorphism (p=0.001), poor differentiation of tumors (p<0.001), high histological grade of malignancy (HGM) (p<0.001), presence of neoplastic intravascular emboli (p<0.001) and presence of lymph node metastasis (p<0.001). Intratumoral FoxP3 was correlated with MVD (r=0.827; p<0.001) and associated with VEGF (p=0.001). Additionally tumors with abundant FoxP3Treg cells were associated with shorter overall survival (OS) time in univariate and multivariate analysis (p<0.001 Kaplan-Meier curves and 7.97 hazard ratio, p<0.001 Cox proportional hazard model). Results suggest that Treg cells play a role in CMT progression and may contribute to increased angiogenesis and aggression in these tumors. The association of intratumoral FoxP3 expression with shorter OS in multivariate analysis suggests the usefulness of Treg cells as an independent prognostic marker.

  1. Metaplastic thymoma with myasthenia gravis presumably caused by an accumulation of intratumoral immature T cells: a case report.

    PubMed

    Tajima, Shogo; Yanagiya, Masahiro; Sato, Masaaki; Nakajima, Jun; Fukayama, Masashi

    2015-01-01

    Among human neoplasms, thymomas are well known for their association with paraneoplastic autoimmune diseases such as myasthenia gravis. However, regarding rare metaplastic thymoma, only one case of an association with myasthenia gravis has been reported. Here, we present the second case of a 44-year-old woman with metaplastic thymoma associated with myasthenia gravis. In metaplastic thymoma, intratumoral terminal deoxynucleotidyl transferase-positive T-cells (immature T-cells) are generally scarce, while they were abundant in the present case. We believe that these immature T-cells could be related to the occurrence of myasthenia gravis.

  2. In vitro resistance selections for Plasmodium falciparum dihydroorotate dehydrogenase inhibitors give mutants with multiple point mutations in the drug-binding site and altered growth.

    PubMed

    Ross, Leila S; Gamo, Francisco Javier; Lafuente-Monasterio, Maria José; Singh, Onkar M P; Rowland, Paul; Wiegand, Roger C; Wirth, Dyann F

    2014-06-27

    Malaria is a preventable and treatable disease; yet half of the world's population lives at risk of infection, and an estimated 660,000 people die of malaria-related causes every year. Rising drug resistance threatens to make malaria untreatable, necessitating both the discovery of new antimalarial agents and the development of strategies to identify and suppress the emergence and spread of drug resistance. We focused on in-development dihydroorotate dehydrogenase (DHODH) inhibitors. Characterizing resistance pathways for antimalarial agents not yet in clinical use will increase our understanding of the potential for resistance. We identified resistance mechanisms of Plasmodium falciparum (Pf) DHODH inhibitors via in vitro resistance selections. We found 11 point mutations in the PfDHODH target. Target gene amplification and unknown mechanisms also contributed to resistance, albeit to a lesser extent. These mutant parasites were often hypersensitive to other PfDHODH inhibitors, which immediately suggested a novel combination therapy approach to preventing resistance. Indeed, a combination of wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. The effects of point mutations in PfDHODH were corroborated with purified recombinant wild-type and mutant-type PfDHODH proteins, which showed the same trends in drug response as the cognate cell lines. Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate. Co-crystallography of PfDHODH with three inhibitors suggested that hydrophobic interactions are important for drug binding and selectivity.

  3. [Ilicit drugs frequently used by drug addicts].

    PubMed

    Cirriez, J P

    2015-03-01

    Drugs stimulate the brain causing mental and physical effects. The effects of drugs can be stimulating, narcotic or mind-altering. This article briefly discusses some commonly used illicit drugs, namely heroin, cocaine, cannabis, ecstasy, amphetamines, LSD, psilocybin mushrooms and poppers. PMID:26571792

  4. Anti-epileptic drugs and bone loss: Phenytoin reduces pro-collagen I and alters the electrophoretic mobility of osteonectin in cultured bone cells.

    PubMed

    Wilson, Emma L; Garton, Mark; Fuller, Heidi R

    2016-05-01

    Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin.

  5. Exploiting Nanotechnology to Overcome Tumor Drug Resistance: Challenges and Opportunities

    PubMed Central

    Kirtane, Ameya; Kalscheuer, Stephen; Panyam, Jayanth

    2013-01-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. PMID:24036273

  6. Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice.

    PubMed

    Bankstahl, Marion; Klein, Sabine; Römermann, Kerstin; Löscher, Wolfgang

    2016-10-01

    Pharmacoresistance to antiepileptic drugs (AEDs) is a major challenge in epilepsy therapy, affecting at least 30% of patients. Thus, there is considerable interest in the mechanisms responsible for such pharmacoresistance, with particular attention on the specific cellular and molecular factors that lead to reduced drug sensitivity. Current hypotheses of refractory epilepsy include the multidrug transporter hypothesis, which posits that increased expression or function of drug efflux transporters, such as P-glycoprotein (Pgp), in brain capillaries reduces the local concentration of AEDs in epileptic brain regions to subtherapeutic levels. In the present study, this hypothesis was addressed by evaluating the efficacy of six AEDs in wildtype and Pgp deficient Mdr1a/b(-/-) mice in the intrahippocampal kainate model of mesial temporal lobe epilepsy. In this model, frequent focal electrographic seizures develop after an initial kainate-induced status epilepticus. These seizures are resistant to major AEDs, but the mechanisms of this resistance are unknown. In the present experiments, the focal nonconvulsive seizures were resistant to carbamazepine and phenytoin, whereas high doses of valproate and levetiracetam exerted moderate and phenobarbital and diazepam marked anti-seizure effects. All AEDs suppressed generalized convulsive seizures. No significant differences between wildtype and Pgp-deficient mice were observed in anti-seizure drug efficacies. Also, the individual responder and nonresponder rates in each experiment did not differ between mouse genotypes. This does not argue against the multidrug transporter hypothesis in general, but indicates that Pgp is not involved in the mechanisms explaining that focal electrographic seizures are resistant to some AEDs in the intrahippocampal mouse model of partial epilepsy. This was substantiated by the finding that epileptic wildtype mice do not exhibit increased Pgp expression in this model.

  7. Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice.

    PubMed

    Bankstahl, Marion; Klein, Sabine; Römermann, Kerstin; Löscher, Wolfgang

    2016-10-01

    Pharmacoresistance to antiepileptic drugs (AEDs) is a major challenge in epilepsy therapy, affecting at least 30% of patients. Thus, there is considerable interest in the mechanisms responsible for such pharmacoresistance, with particular attention on the specific cellular and molecular factors that lead to reduced drug sensitivity. Current hypotheses of refractory epilepsy include the multidrug transporter hypothesis, which posits that increased expression or function of drug efflux transporters, such as P-glycoprotein (Pgp), in brain capillaries reduces the local concentration of AEDs in epileptic brain regions to subtherapeutic levels. In the present study, this hypothesis was addressed by evaluating the efficacy of six AEDs in wildtype and Pgp deficient Mdr1a/b(-/-) mice in the intrahippocampal kainate model of mesial temporal lobe epilepsy. In this model, frequent focal electrographic seizures develop after an initial kainate-induced status epilepticus. These seizures are resistant to major AEDs, but the mechanisms of this resistance are unknown. In the present experiments, the focal nonconvulsive seizures were resistant to carbamazepine and phenytoin, whereas high doses of valproate and levetiracetam exerted moderate and phenobarbital and diazepam marked anti-seizure effects. All AEDs suppressed generalized convulsive seizures. No significant differences between wildtype and Pgp-deficient mice were observed in anti-seizure drug efficacies. Also, the individual responder and nonresponder rates in each experiment did not differ between mouse genotypes. This does not argue against the multidrug transporter hypothesis in general, but indicates that Pgp is not involved in the mechanisms explaining that focal electrographic seizures are resistant to some AEDs in the intrahippocampal mouse model of partial epilepsy. This was substantiated by the finding that epileptic wildtype mice do not exhibit increased Pgp expression in this model. PMID:27288003

  8. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery.

    PubMed

    Liao, Rui; Jiang, Ning; Tang, Zhuo-Wei; Li, De Wei; Huang, Ping; Luo, Shi-Qiao; Gong, Jian-Ping; Du, Cheng-You

    2016-05-24

    The peripheral neutrophil-monocyte/lymphocyte ratio (NMLR) and intratumoral CD16/CD8 ratio (iMLR) may have prognostic value in hepatocellular carcinoma (HCC) patients after curative resection. In this study, the circulating NMLR was examined 387 HCC patients who underwent curative resection between 2006 and 2009. Intratumoral levels of CD4, CD8, CD16 and CD68 and the CD16/CD8 ratio were determined immunohistologically. The prognostic values of clinicopathological parameters, including NMLR and iMLR, were evaluated. NMLR was predictive of overall survival (OS) and recurrence-free survival (RFS) when patients in the training cohort (n = 256) were separated into high (> 1.2) and low (≤ 1.2) NMLR subgroups. NMLR was also an independent predictor of low alpha-fetoprotein (AFP) expression and early recurrence. High NMLR was associated with increases in clinicopathological variables, including alanine aminotransferase (ALT), tumor number, tumor size and BCLC stage. In addition, iMLR strongly predicted risk of recurrence and patient survival, and was positively correlated with NMLR. These findings were confirmed in an independent validation patient cohort (n = 131). Peripheral NMLR and iMLR may thus be useful prognostic markers, and anti-inflammatory treatment may be beneficial in HCC patients after curative hepatectomy.

  9. Altered regional brain volumes in elderly carriers of a risk variant for drug abuse in the dopamine D2 receptor gene (DRD2).

    PubMed

    Roussotte, Florence F; Jahanshad, Neda; Hibar, Derrek P; Thompson, Paul M

    2015-06-01

    Dopamine D2 receptors mediate the rewarding effects of many drugs of abuse. In humans, several polymorphisms in DRD2, the gene encoding these receptors, increase our genetic risk for developing addictive disorders. Here, we examined one of the most frequently studied candidate variant for addiction in DRD2 for association with brain structure. We tested whether this variant showed associations with regional brain volumes across two independent elderly cohorts, totaling 1,032 subjects. We first examined a large sample of 738 elderly participants with neuroimaging and genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI1). We hypothesized that this addiction-related polymorphism would be associated with structural brain differences in regions previously implicated in familial vulnerability for drug dependence. Then, we assessed the generalizability of our findings by testing this polymorphism in a non-overlapping replication sample of 294 elderly subjects from a continuation of the first ADNI project (ADNI2) to minimize the risk of reporting false positive results. In both cohorts, the minor allele-previously linked with increased risk for addiction-was associated with larger volumes in various brain regions implicated in reward processing. These findings suggest that neuroanatomical phenotypes associated with familial vulnerability for drug dependence may be partially mediated by DRD2 genotype.

  10. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities

    PubMed Central

    Pulcini, Serena; Staines, Henry M.; Lee, Andrew H.; Shafik, Sarah H.; Bouyer, Guillaume; Moore, Catherine M.; Daley, Daniel A.; Hoke, Matthew J.; Altenhofen, Lindsey M.; Painter, Heather J.; Mu, Jianbing; Ferguson, David J. P.; Llinás, Manuel; Martin, Rowena E.; Fidock, David A.; Cooper, Roland A.; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs. PMID:26420308

  11. Patients treated for male pattern hair with finasteride show, after discontinuation of the drug, altered levels of neuroactive steroids in cerebrospinal fluid and plasma.

    PubMed

    Caruso, Donatella; Abbiati, Federico; Giatti, Silvia; Romano, Simone; Fusco, Letizia; Cavaletti, Guido; Melcangi, Roberto Cosimo

    2015-02-01

    Observations performed in a subset of patients treated for male pattern hair loss indicate that persistent sexual side effects as well as anxious/depressive symptomatology have been reported even after discontinuation of finasteride treatment. Due to the capability of finasteride to block the metabolism of progesterone (PROG) and/or testosterone (T) we have evaluated, by liquid chromatography-tandem mass spectrometry, the levels of several neuroactive steroids in paired plasma and cerebrospinal fluid (CSF) samples obtained from post-finasteride patients and in healthy controls. At the examination, post-finasteride patients reported muscular stiffness, cramps, tremors and chronic fatigue in the absence of clinical evidence of any muscular disorder or strength reduction. Although severity of the anxious/depressive symptoms was quite variable in their frequency, overall all the subjects had a fairly complex and constant neuropsychiatric pattern. Assessment of neuroactive steroid levels in CSF showed a decrease of PROG and its metabolites, dihydroprogesterone (DHP) and tetrahydroprogesterone (THP), associated with an increase of its precursor pregnenolone (PREG). Altered levels were also observed for T and its metabolites. Thus, a significant decrease of dihydrotestosterone (DHT) associated with an increase of T as well as of 3α-diol was detected. Changes in neuroactive steroid levels also occurred in plasma. An increase of PREG, T, 3α-diol, 3β-diol and 17β-estradiol was associated with decreased levels of DHP and THP. The present observations show that altered levels of neuroactive steroids, associated with depression symptoms, are present in androgenic alopecia patients even after discontinuation of the finasteride treatment. This article is part of a Special Issue entitled 'Sex steroids and brain disorders'.

  12. Transdermal drug targeting and functional imaging of tumor blood vessels in the mouse auricle.

    PubMed

    Schröder, Hannes; Komljenovic, Dorde; Hecker, Markus; Korff, Thomas

    2016-02-01

    Subcutaneously growing tumors are widely utilized to study tumor angiogenesis and the efficacy of antiangiogenic therapies in mice. To additionally assess functional and morphologic alterations of the vasculature in the periphery of a growing tumor, we exploited the easily accessible and hierarchically organized vasculature of the mouse auricle. By site-specific subcutaneous implantation of a defined preformed mouse B16/F0 melanoma aggregate, a solid tumor nodule developed within 14 d. Growth of the tumor nodule was accompanied by a 4-fold increase in its perfusion as well as a 2- to 4-fold elevated diameter and perfusion of peripheral blood vessels that had connected to the tumor capillary microvasculature. By transdermal application of the anticancer drug bortezomib, tumor growth was significantly diminished by about 50% without provoking side effects. Moreover, perfusion and tumor microvessel diameter as well as growth and perfusion of arterial or venous blood vessels supplying or draining the tumor microvasculature were decreased under these conditions by up to 80%. Collectively, we observed that the progressive tumor growth is accompanied by the enlargement of supplying and draining extratumoral blood vessels. This process was effectively suppressed by bortezomib, thereby restricting the perfusion capacity of both extra and intratumoral blood vessels. PMID:26546130

  13. Altered States of Consciousness and Alcohol.

    ERIC Educational Resources Information Center

    Jones, Ben Morgan; And Others

    This document contains the reports of research at a symposium on "Altered States of Consciousness and Alcohol." The participants primarily agreed that alcohol induces an altered state of consciousness similar to other drugs, but that this phenomenon has not been explicitly stated due to the current interest in newer and more novel drugs. The…

  14. Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors in vivo by label-free third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Weng, Wei-Hung; Liao, Yi-Hua; Tsai, Ming-Rung; Wei, Ming-Liang; Huang, Hsin-Yi; Sun, Chi-Kuang

    2016-07-01

    Morphology and distribution of melanocytes are critical imaging information for the diagnosis of melanocytic lesions. However, how to image intratumoral melanocytes noninvasively in pigmented skin tumors is seldom investigated. Third-harmonic generation (THG) is shown to be enhanced by melanin, whereas high accuracy has been demonstrated using THG microscopy for in vivo differential diagnosis of nonmelanocytic pigmented skin tumors. It is thus desirable to investigate if label-free THG microscopy was capable to in vivo identify intratumoral melanocytes. In this study, histopathological correlations of label-free THG images with the immunohistochemical images stained with human melanoma black (HMB)-45 and cluster of differentiation 1a (CD1a) were made. The correlation results indicated that the intratumoral THG-bright dendritic-cell-like signals were endogenously derived from melanocytes rather than Langerhans cells (LCs). The consistency between THG-bright dendritic-cell-like signals and HMB-45 melanocyte staining showed a kappa coefficient of 0.807, 84.6% sensitivity, and 95% specificity. In contrast, a kappa coefficient of -0.37, 21.7% sensitivity, and 30% specificity were noted between the THG-bright dendritic-cell-like signals and CD1a staining for LCs. Our study indicates the capability of noninvasive label-free THG microscopy to differentiate intratumoral melanocytes from LCs, which is not feasible in previous in vivo label-free clinical-imaging modalities.

  15. Limited Role for Biliary Stent as Surrogate Fiducial Marker in Pancreatic Cancer: Stent and Intratumoral Fiducials Compared

    SciTech Connect

    Horst, Astrid van der; Lens, Eelco; Wognum, Silvia; Jong, Rianne de; Hooft, Jeanin E. van; Tienhoven, Geertjan van; Bel, Arjan

    2014-07-01

    Purpose: Because of low soft-tissue contrast of cone beam computed tomography (CBCT), fiducial markers are often used for radiation therapy patient setup verification. For pancreatic cancer patients, biliary stents have been suggested as surrogate fiducials. Using intratumoral fiducials as standard for tumor position, this study aims to quantify the suitability of biliary stents for measuring interfractional and respiratory-induced position variations of pancreatic tumors. Methods and Materials: Eleven pancreatic cancer patients with intratumoral fiducials and a biliary stent were included in this study. Daily CBCT scans (243 in total) were registered with a reference CT scan, based on bony anatomy, on fiducial markers, and on the biliary stent, respectively. We analyzed the differences in tumor position (ie, markers center-of-mass position) among these 3 registrations. In addition, we measured for 9 patients the magnitude of respiratory-induced motion (MM) of the markers and of the stent on 4-dimensional CT (4DCT) and determined the difference between these 2 magnitudes (ΔMM). Results: The stent indicated tumor position better than bony anatomy in 67% of fractions; the absolute difference between the markers and stent registration was >5 mm in 46% of fractions and >10 mm in 20% of fractions. Large PTV margins (superior-inferior direction, >19 mm) would be needed to account for this interfractional position variability. On 4DCT, we found in superior-inferior direction a mean ΔMM of 0.5 mm (range, –2.6 to 4.2 mm). Conclusions: For respiratory-induced motion, the mean ΔMM is small, but for individual patients the absolute difference can be >4 mm. For interfractional position variations, a stent is, on average, a better surrogate fiducial than bony anatomy, but large PTV margins would still be required. Therefore, intratumoral fiducials are recommended for online setup verification for all pancreatic patients scheduled for radiation therapy, including

  16. Effects of antioxidants on drugs used against testicular cancer-induced alterations in metastasis-associated protein 1 signaling in the rat testis.

    PubMed

    Kilarkaje, Narayana; Al-Bader, Maie

    2016-01-01

    Metastasis-associated protein 1 (MTA1) is involved in tumor growth and metastasis of cancers. Being a component of nucleosome remodeling and histone deacetylase complex, the protein is also associated with DNA damage response pathway. Since the protein is involved in cancer pathology, we first investigated the effects of bleomycin, etoposide, and cisplatin (BEP) on MTA1 signaling in the testis. Second, since the antioxidants (AOs) have protective effects, we further investigated whether or not an AO cocktail modulates the effects of the drugs. Adult male Sprague Dawley rats (N = 4) were treated either with saline, or AO (α-tocopherol, l-ascorbic acid, zinc, and selenium), or therapeutic dose levels of etoposide (15 mg/kg) and cisplatin (3 mg/kg) from day 1-4 of the week and B (1.5 mg/kg) on the second day of the week, or BEP + AO. The real-time polymerase chain reaction showed that MTA1 and MTA1s (short form) gene expression was downregulated in AO (100% and 100%), BEP (86% and 71%), and BEP + AO (97% and 93%) groups. Western blotting and immunohistochemistry results showed that unnormalized MTA1 protein expression was upregulated in AO (38%) and BEP + AO (34%) groups; however, the MTA1/β-actin ratio was upregulated in all treated groups (21, 19, and 15%, respectively). In conclusion, the results indicate that both BEP and AO suppress MTA1 and MTA1s transcription, which may render the germ cells to be more prone to apoptosis. However, upregulation of MTA1 protein expression may be related to induced DNA damage. Modulation of MTA1 signaling is a novel mechanism of action of BEP and AO, which may be useful in developing newer anticancer drugs.

  17. Pharmacological modulation of lateral habenular dopamine D2 receptors alters the anxiogenic response to cocaine in a runway model of drug self-administration.

    PubMed

    Shelton, Kerisa; Bogyo, Kelsie; Schick, Tinisha; Ettenberg, Aaron

    2016-09-01

    Cocaine has long been known to produce an initial "high" followed by an aversive/anxiogenic "crash". While much is known about the neurobiology of cocaine's positive/rewarding effects, the mechanisms that give rise to the drug's negative/anxiogenic actions remain unclear. Recent research has implicated the lateral habenula (LHb) in the encoding of aversive events including the anxiogenic response to cocaine. Of particular interest in this regard are the reciprocal connections between the LHb and the ventral tegmental area (VTA). VTA-DA neurons innervate different subsets of LHb cells that in turn feedback upon and modulate VTA neuronal activity. Here we examined the impact of D2 receptor activation and inhibition on the anxiogenic response to cocaine using a runway model of self-administration that is sensitive to the dual and opposing effects of the drug. Male rats ran a straight alley for IV cocaine (1.0mg/kg) following bilateral intra-LHb infusions of the D2 receptor antagonist, cis-flupenthixol (0, 7.5 or 15μg/side) or the D2 agonist, sumanirole (0, 5 or 10μg/side). Vehicle-pretreated controls developed approach-avoidance conflict behaviors about goal-box entry reflective of the dual positive and negative effects of cocaine. These behaviors were significantly diminished during LHb-D2 receptor antagonism and increased by the LHb D2 receptor agonist. These results demonstrate that activity at the D2 receptor in the lateral habenula serves to modulate the anxiogenic response to cocaine. PMID:27155504

  18. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing

    PubMed Central

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J.; Zhang, Nancy R.

    2016-01-01

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/. PMID:27573852

  19. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing.

    PubMed

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J; Zhang, Nancy R

    2016-09-13

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/. PMID:27573852

  20. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing.

    PubMed

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J; Zhang, Nancy R

    2016-09-13

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/.

  1. Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism.

    PubMed

    Torres, María P; Rachagani, Satyanarayana; Purohit, Vinee; Pandey, Poomy; Joshi, Suhasini; Moore, Erik D; Johansson, Sonny L; Singh, Pankaj K; Ganti, Apar K; Batra, Surinder K

    2012-10-01

    Pancreatic tumors are resistant to conventional chemotherapies. The present study was aimed at evaluating the potential of a novel plant-derived product as a therapeutic agent for pancreatic cancer (PC). The effects of an extract from the tropical tree Annona Muricata, commonly known as Graviola, was evaluated for cytotoxicity, cell metabolism, cancer-associated protein/gene expression, tumorigenicity, and metastatic properties of PC cells. Our experiments revealed that Graviola induced necrosis of PC cells by inhibiting cellular metabolism. The expression of molecules related to hypoxia and glycolysis in PC cells (i.e. HIF-1α, NF-κB, GLUT1, GLUT4, HKII, and LDHA) were downregulated in the presence of the extract. In vitro functional assays further confirmed the inhibition of tumorigenic properties of PC cells. Overall, the compounds that are naturally present in a Graviola extract inhibited multiple signaling pathways that regulate metabolism, cell cycle, survival, and metastatic properties in PC cells. Collectively, alterations in these parameters led to a decrease in tumorigenicity and metastasis of orthotopically implanted pancreatic tumors, indicating promising characteristics of the natural product against this lethal disease. PMID:22475682

  2. Hope and fear for new classes of type 2 diabetes drugs: is there preclinical evidence that incretin-based therapies alter pancreatic morphology?

    PubMed

    Lamont, Benjamin J; Andrikopoulos, Sofianos

    2014-04-01

    Incretin-based therapies appear to offer many advantages over other approaches for treating type 2 diabetes. Some preclinical studies have suggested that chronic activation of glucagon-like peptide 1 receptor (GLP1R) signalling in the pancreas may result in the proliferation of islet β-cells and an increase in β-cell mass. This provided hope that enhancing GLP1 action could potentially alter the natural progression of type 2 diabetes. However, to date, there has been no evidence from clinical trials suggesting that GLP1R agonists or dipeptidyl peptidase-4 (DPP4) inhibitors can increase β-cell mass. Nevertheless, while the proliferative capacity of these agents remains controversial, some studies have raised concerns that they could potentially contribute to the development of pancreatitis and hence increase the risk of pancreatic cancer. Currently, there are very limited clinical data to directly assess these potential benefits and risks of incretin-based therapies. However, a review of the preclinical studies indicates that incretin-based therapies probably have only a limited capacity to regenerate pancreatic β-cells, but may be useful for preserving any remaining β-cells in type 2 diabetes. In addition, the majority of preclinical evidence does not support the notion that GLP1R agonists or DPP4 inhibitors cause pancreatitis.

  3. Graviola: A Novel Promising Natural-Derived Drug That Inhibits Tumorigenicity and Metastasis of Pancreatic Cancer Cells In Vitro and In Vivo Through Altering Cell Metabolism

    PubMed Central

    Torres, María P.; Rachagani, Satyanarayana; Purohit, Vinee; Pandey, Poomy; Joshi, Suhasini; Moore, Erik D.; Johansson, Sonny L.; Singh, Pankaj K.; Ganti, Apar K.; Batra, Surinder K.

    2012-01-01

    Pancreatic tumors are resistant to conventional chemotherapies. The present study was aimed at evaluating the potential of a novel plant-derived product as a therapeutic agent for pancreatic cancer (PC). The effects of an extract from the tropical tree Annona Muricata, commonly known as Graviola, was evaluated for cytotoxicity, cell metabolism, cancer-associated protein/gene expression, tumorigenicity, and metastatic properties of PC cells. Our experiments revealed that Graviola induced necrosis of PC cells by inhibiting cellular metabolism. The expression of molecules related to hypoxia and glycolysis in PC cells (i.e. HIF-1α, NF-κB, GLUT1, GLUT4, HKII, and LDHA) were downregulated in the presence of the extract. In vitro functional assays further confirmed the inhibition of tumorigenic properties of PC cells. Overall, the compounds that are naturally present in a Graviola extract inhibited multiple signaling pathways that regulate metabolism, cell cycle, survival, and metastatic properties in PC cells. Collectively, alterations in these parameters led to a decrease in tumorigenicity and metastasis of orthotopically implanted pancreatic tumors, indicating promising characteristics of the natural product against this lethal disease. PMID:22475682

  4. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors.

    PubMed

    Cai, Changmeng; Chen, Sen; Ng, Patrick; Bubley, Glenn J; Nelson, Peter S; Mostaghel, Elahe A; Marck, Brett; Matsumoto, Alvin M; Simon, Nicholas I; Wang, Hongyun; Chen, Shaoyong; Balk, Steven P

    2011-10-15

    Relapse of castration-resistant prostate cancer (CRPC) that occurs after androgen deprivation therapy of primary prostate cancer can be mediated by reactivation of the androgen receptor (AR). One important mechanism mediating this AR reactivation is intratumoral conversion of the weak adrenal androgens DHEA and androstenedione into the AR ligands testosterone and dihydrotestosterone. DHEA and androstenedione are synthesized by the adrenals through the sequential actions of the cytochrome P450 enzymes CYP11A1 and CYP17A1, so that CYP17A1 inhibitors such as abiraterone are effective therapies for CRPC. However, the significance of intratumoral CYP17A1 and de novo androgen synthesis from cholesterol in CRPC, and the mechanisms contributing to CYP17A1 inhibitor resistance/relapse, remain to be determined. We report that AR activity in castration-resistant VCaP tumor xenografts can be restored through CYP17A1-dependent de novo androgen synthesis, and that abiraterone treatment of these xenografts imposes selective pressure for increased intratumoral expression of CYP17A1, thereby generating a mechanism for development of resistance to CYP17A1 inhibitors. Supporting the clinical relevance of this mechanism, we found that intratumoral expression of CYP17A1 was markedly increased in tumor biopsies from CRPC patients after CYP17A1 inhibitor therapy. We further show that CRPC cells expressing a progesterone responsive T877A mutant AR are not CYP17A1 dependent, but that AR activity in these cells is still steroid dependent and mediated by upstream CYP11A1-dependent intraturmoral pregnenolone/progesterone synthesis. Together, our results indicate that CRPCs resistant to CYP17A1 inhibition may remain steroid dependent and therefore responsive to therapies that can further suppress de novo intratumoral steroid synthesis.

  5. Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL-1β secretion in association with alterations on cellular redox and energy status

    PubMed Central

    Jabaut, Joshua; Ather, Jennifer L.; Taracanova, Alexandra; Poynter, Matthew E.; Ckless, Karina

    2013-01-01

    The Nlrp3 inflammasome is activated in response to an array of environmental and endogenous molecules leading to caspase-1-dependent IL-1β processing and secretion by myeloid cells. Several identified Nlrp3 inflammasome activators also trigger reactive oxygen species (ROS) production. However, the initial concept that NADPH oxidases are the primary source of ROS production during inflammasome activation is becoming less accepted. Therefore, the importance of mitochondrial-derived ROS has been recently explored. In this study, we explore the impact of mitochondria dysfunction and ROS production on Nlrp3 inflammasome stimulation and IL-1β secretion induced by serum amyloid A (SAA) in primary mouse peritoneal macrophages. To induce mitochondrial dysfunction, we utilized antimycin A, which blocks electron flow at complex III, and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation uncoupler. We also utilized a superoxide dismutase (SOD) mimetic, MnTBAP, which targets the mitochondria, as well as the broad spectrum antioxidants DPI (diphenyleneiodonium chloride) and ebselen. Our findings demonstrate that SAA alone induces mitochondrial ROS in a time-dependent manner. We observed that MnTBAP and ebselen blocked IL-1β secretion caused by SAA only when added prior to stimulation, and DPI augmented IL-1β secretion. Surprisingly, these effects were not directly related to intracellular or mitochondrial ROS levels. We also found that mitochondrial-targeted drugs increased IL-1β secretion regardless of their impact on mitochondrial function and ROS levels, suggesting that mitochondrial ROS-dependent and -independent mechanisms play a role in the Nlrp3 inflammasome - IL-1β secretion axis in SAA-stimulated cells. Finally, we found that FCCP significantly sustained the association of the Nlrp3 inflammasome complex, which could explain the most robust effect among the drugs tested in enhancing IL-1β secretion in SAA

  6. Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model.

    PubMed Central

    Addison, C L; Braciak, T; Ralston, R; Muller, W J; Gauldie, J; Graham, F L

    1995-01-01

    Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers. PMID:7667323

  7. Tumor evolution and intratumor heterogeneity in colorectal carcinoma: insights from comparative genomic profiling of primary tumors and matched metastases

    PubMed Central

    Sylvester, Brooke E.

    2015-01-01

    Metastatic colorectal cancer (CRC) is one of the leading causes of cancer-related mortality among men and women worldwide. Over the past few decades, advances in our understanding of the genetic and epigenetic underpinnings of CRC have led to important insights into the pathogenesis of invasive tumors and have identified different molecular subgroups. Nonetheless, the events that might facilitate dissemination of tumor cells to distant sites giving rise to metastatic disease are not well characterized. Furthermore, in contrast to intertumor heterogeneity the extent of intratumor heterogeneity in different types of CRC has not been fully defined. In this paper, we review studies that have compared the genetic profile of primary invasive carcinomas to that of matched metastases and discuss the implications of their findings for our understanding of tumor evolution and for the clinical management of patients with advanced CRC. PMID:26697200

  8. Cervicomedullary intramedullary peripheral primitive neuroectodermal tumor with intratumoral bleed: Report of one case and review of literature

    PubMed Central

    Sharma, Pradeep; Das, Kuntal K; Mehrotra, Anant; Srivastava, Arun K; Sahu, Rabi N; Jaiswal, Awadhesh; Pandey, Rakesh; Behari, Sanjay; Bhaisora, Kamlesh S; Sardhara, Jayesh

    2016-01-01

    Primitive neuroectodermal tumors (PNET) are highly malignant, yet relatively uncommon neoplasms of the central nervous system. Although a host of different parts of the nervous system can be affected, intramedullary location of PNET is extremely rare. Most reports on intramedullary PNET have reported central PNET (cPNET); peripheral PNET (pPNET) affecting intramedullary spinal location is extremely rare. Till now, seven such cases of intramedullary pPNET have been described in medical literature in English. Here, we report an 11-year-old boy with cervicomedullary junction intramedullary pPNET who presented with intratumoral bleed, wherein the clinical presentation and radiological features gave us no clue preoperatively about the underlying diagnosis. In this report, we additionally review certain salient aspects of this dreaded disease in light of the existing evidence. PMID:27217659

  9. Regenerated Cellulose Capsules for Controlled Drug Delivery, Part 2: Modulating Membrane Permeability by Incorporation of Depolymerized Cellulose and Altering Membrane Thickness.

    PubMed

    Bhatt, Bhavik; Kumar, Vijay

    2015-12-01

    For application of regenerated cellulose (RC) membranes in capsule dosage forms, the methods to modify drug release from these membranes are described. Membranes were fabricated by blending native and depolymerized celluloses dissolved in dimethyl sulfoxide and paraformaldehyde solvent system, prior to casting on molds, precipitation in water, and thermal annealing. The effect of laminating layers of RC to fabricate membranes with increasing thickness was also investigated. Solute diffusion studies using ionic and hydrophobic solutes, as well as large protein molecules, were conducted in side-by-side diffusion cells. Microscopic as well as physiological evaluation of these membranes indicated that pore size, porosity, and water uptake decreased as the fraction of depolymerized cellulose increased in the membranes. Permeability analysis of small ionic and hydrophobic solutes indicated that the solute transport across the hydrated membrane occurs through diffusion in the water-filled pores that are formed in situ. The apparent path for solute diffusion increases as the fraction of depolymerized cellulose increases. Permeability analysis of large protein molecules indicated that the pore sizes and distribution in these membranes is heterogeneous. Increasing the membrane thickness by lamination of RC does not influence porosity but causes formation of dead-end pores because of blocking by subsequent laminate layers.

  10. Effect of vitamin D3, other drugs altering serum calcium or phosphorus concentrations, and desoxycorticosterone on the distribution of Tc-99m pyrophosphate between target and nontarget tissues

    SciTech Connect

    Carr, E.A. Jr.; Carroll, M.; Montes, M.

    1981-06-01

    Radioactive imaging agents are chemically designed for selective distribution. Another approach to selectivity is to find stable compounds that favorably influence this distribution. Using a rat model of myocardial necrosis, we studied effects of various stable compounds (as a single, large dose or fractionated into short series) on the ratio, uptake of Tc-99m pyrophosphate (PPi) by the target lesion/uptake by the principal nontarget, bone (L/B). Vitamin D3s ability to increase L/B was mediated by the hypercalcemia and hyperphosphatemia that it caused. The hypercalcemia was accompanied by increased (Ca) in the lesion. In contrast, pulse doses of desoxycorticosterone acetate (DOCA) at 7 and 6 hr before killing increased uptake by lesion, increasing L/B from 0.19 +/- 0.03 to 0.45 +/- 0.08 (p less than 0.01), with no change in serum (Ca) and minimal changes in serum (P), (Na), and (K). DOCA also increased the lesion-to-blood ratio from 6.5 +/- 0.07 to 15.4 +/- 3.9 (p less than 0.05). These results encourage further study of DOCA's effect and investigation of other stable drugs that may influence distribution of other imaging agents.

  11. PEG-rIL-10 treatment decreases FoxP3(+) Tregs despite upregulation of intratumoral IDO.

    PubMed

    Chan, Ivan H; Wu, Victoria; Bilardello, Melissa; Jorgenson, Brett; Bal, Harminder; McCauley, Scott; Van Vlasselaer, Peter; Mumm, John B

    2016-07-01

    IL-10 has been classically defined as a broad-spectrum immunosuppressant and is thought to facilitate the development of regulatory CD4(+) T cells. IL-10 is believed to represent one of the major suppressive factors secreted by IDO(+)FoxP3(+)CD4(+) Tregs. Contrary to this view, we have previously reported that PEGylated recombinant IL-10 (PEG-rIL-10) treatment of mice induces potent IFNγ and CD8(+) T-cell-dependent antitumor immunity. This hypothesis is currently being tested in clinical trials and we have reported that treatment of cancer patients with PEG-rHuIL-10 results in inhibition and regression of tumor growth as well as increased serum IFNγ. We have continued to assess PEG-rIL-10's pleiotropic effects and report that treatment of tumor-bearing mice and humans with PEG-rIL-10 increases intratumoral indoleamine 2, 3-dioxygenase (IDO) in an IFNγ-dependent manner. This should result in an increase in Tregs, but paradoxically our data illustrate that PEG-rIL-10 treatment of mice reduces intratumoral FoxP3(+)CD4(+) T cells in an IDO-independent manner. Additional investigation indicates that PEG-rIL-10 inhibits TGFβ/IL-2-dependent in vitro polarization of FoxP3(+)CD4(+) Tregs and potentiates IFNγ(+)T-bet(+)CD4(+) T cells. These data suggest that rather than acting as an immunosuppressant, PEG-rIL-10 may counteract the FoxP3(+)CD4(+) Treg suppressive milieu in tumor-bearing mice and humans, thereby further facilitating PEG-rIL-10's potent antitumor immunity.

  12. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression

    PubMed Central

    Green, Hadiyah N; Crockett, Stephanie D; Martyshkin, Dmitry V; Singh, Karan P; Grizzle, William E; Rosenthal, Eben L; Mirov, Sergey B

    2014-01-01

    Purpose Nanoparticle (NP)-enabled near infrared (NIR) photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies. Methods Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG)-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm2. Tumor response was measured for 10–15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed. Results The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a comparison to the average of all three control groups over time (P<0.01). Conclusion Photothermal nanotherapy, or intratumoral nanorod injections followed by NIR laser irradiation of tumors and tumor margins, demonstrate the potential of NIR photothermal therapy as a viable localized treatment approach for primary and early stage tumors, and prevents NP uptake by the reticuloendothelial system. PMID:25395847

  13. PEG-rIL-10 treatment decreases FoxP3(+) Tregs despite upregulation of intratumoral IDO.

    PubMed

    Chan, Ivan H; Wu, Victoria; Bilardello, Melissa; Jorgenson, Brett; Bal, Harminder; McCauley, Scott; Van Vlasselaer, Peter; Mumm, John B

    2016-07-01

    IL-10 has been classically defined as a broad-spectrum immunosuppressant and is thought to facilitate the development of regulatory CD4(+) T cells. IL-10 is believed to represent one of the major suppressive factors secreted by IDO(+)FoxP3(+)CD4(+) Tregs. Contrary to this view, we have previously reported that PEGylated recombinant IL-10 (PEG-rIL-10) treatment of mice induces potent IFNγ and CD8(+) T-cell-dependent antitumor immunity. This hypothesis is currently being tested in clinical trials and we have reported that treatment of cancer patients with PEG-rHuIL-10 results in inhibition and regression of tumor growth as well as increased serum IFNγ. We have continued to assess PEG-rIL-10's pleiotropic effects and report that treatment of tumor-bearing mice and humans with PEG-rIL-10 increases intratumoral indoleamine 2, 3-dioxygenase (IDO) in an IFNγ-dependent manner. This should result in an increase in Tregs, but paradoxically our data illustrate that PEG-rIL-10 treatment of mice reduces intratumoral FoxP3(+)CD4(+) T cells in an IDO-independent manner. Additional investigation indicates that PEG-rIL-10 inhibits TGFβ/IL-2-dependent in vitro polarization of FoxP3(+)CD4(+) Tregs and potentiates IFNγ(+)T-bet(+)CD4(+) T cells. These data suggest that rather than acting as an immunosuppressant, PEG-rIL-10 may counteract the FoxP3(+)CD4(+) Treg suppressive milieu in tumor-bearing mice and humans, thereby further facilitating PEG-rIL-10's potent antitumor immunity. PMID:27622052

  14. Bimodality of intratumor Ki67 expression is an independent prognostic factor of overall survival in patients with invasive breast carcinoma.

    PubMed

    Laurinavicius, Arvydas; Plancoulaine, Benoit; Rasmusson, Allan; Besusparis, Justinas; Augulis, Renaldas; Meskauskas, Raimundas; Herlin, Paulette; Laurinaviciene, Aida; Abdelhadi Muftah, Abir A; Miligy, Islam; Aleskandarany, Mohammed; Rakha, Emad A; Green, Andrew R; Ellis, Ian O

    2016-04-01

    Proliferative activity, assessed by Ki67 immunohistochemistry (IHC), is an established prognostic and predictive biomarker of breast cancer (BC). However, it remains under-utilized due to lack of standardized robust measurement methodologies and significant intratumor heterogeneity of expression. A recently proposed methodology for IHC biomarker assessment in whole slide images (WSI), based on systematic subsampling of tissue information extracted by digital image analysis (DIA) into hexagonal tiling arrays, enables computation of a comprehensive set of Ki67 indicators, including intratumor variability. In this study, the tiling methodology was applied to assess Ki67 expression in WSI of 152 surgically removed Ki67-stained (on full-face sections) BC specimens and to test which, if any, Ki67 indicators can predict overall survival (OS). Visual Ki67 IHC estimates and conventional clinico-pathologic parameters were also included in the study. Analysis revealed linearly independent intrinsic factors of the Ki67 IHC variance: proliferation (level of expression), disordered texture (entropy), tumor size and Nottingham Prognostic Index, bimodality, and correlation. All visual and DIA-generated indicators of the level of Ki67 expression provided significant cutoff values as single predictors of OS. However, only bimodality indicators (Ashman's D, in particular) were independent predictors of OS in the context of hormone receptor and HER2 status. From this, we conclude that spatial heterogeneity of proliferative tumor activity, measured by DIA of Ki67 IHC expression and analyzed by the hexagonal tiling approach, can serve as an independent prognostic indicator of OS in BC patients that outperforms the prognostic power of the level of proliferative activity. PMID:26818835

  15. Antiretroviral drugs.

    PubMed

    De Clercq, Erik

    2010-10-01

    In October 2010, it will be exactly 25 years ago that the first antiretroviral drug, AZT (zidovudine, 3'-azido-2',3'-dideoxythymidine), was described. It was the first of 25 antiretroviral drugs that in the past 25 years have been formally licensed for clinical use. These antiretroviral drugs fall into seven categories [nucleoside reverse transcriptase inhibitors (NRTIs), nucleotide reverse transcriptase inhibitors (NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), fusion inhibitors (FIs), co-receptor inhibitors (CRIs) and integrase inhibitors (INIs). The INIs (i.e. raltegravir) represent the most recent advance in the search for effective and selective anti-HIV agents. Combination of several anti-HIV drugs [often referred to as highly active antiretroviral therapy (HAART)] has drastically altered AIDS from an almost uniformly fatal disease to a chronic manageable one.

  16. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli.

    PubMed

    Lou, Hubing; Chen, Min; Black, Susan S; Bushell, Simon R; Ceccarelli, Matteo; Mach, Tivadar; Beis, Konstantinos; Low, Alison S; Bamford, Victoria A; Booth, Ian R; Bayley, Hagan; Naismith, James H

    2011-01-01

    Antibiotic-resistant bacteria, particularly gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.

  17. Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma.

    PubMed

    Aldea, Mihaela; Florian, Ioan Alexandru; Kacso, Gabriel; Craciun, Lucian; Boca, Sanda; Soritau, Olga; Florian, Ioan Stefan

    2016-09-01

    Extensive hypoxic regions are the daunting hallmark of glioblastoma, as they host aggressive stem-like cells, hinder drug delivery and shield cancer cells from the effects of radiotherapy. Nanotechnology could address most of these issues, as it employs nanoparticles (NPs) carrying drugs that selectively accumulate and achieve controlled drug release in tumor tissues. Methods overcoming the stiff interstitium and scarce vascularity within hypoxic zones include the incorporation of collagenases to degrade the collagen-rich tumor extracellular matrix, the use of multistage systems that progressively reduce NP size or of NP-loaded cells that display inherent hypoxia-targeting abilities. The unfavorable hypoxia-induced low pH could be converted into a therapeutical advantage by pH-responsive NPs or multilayer NPs, while overexpressed markers of hypoxic cells could be specifically targeted for an enhanced preferential drug delivery. Finally, promising new gene therapeutics could also be incorporated into nanovehicles, which could lead to silencing of hypoxia-specific genes that are overexpressed in cancer cells. In this review, we highlight NPs which have shown promising results in targeting cancer hypoxia and we discuss their applicability in glioblastoma, as well as possible limitations. Novel research directions in this field are also considered.

  18. Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma.

    PubMed

    Aldea, Mihaela; Florian, Ioan Alexandru; Kacso, Gabriel; Craciun, Lucian; Boca, Sanda; Soritau, Olga; Florian, Ioan Stefan

    2016-09-01

    Extensive hypoxic regions are the daunting hallmark of glioblastoma, as they host aggressive stem-like cells, hinder drug delivery and shield cancer cells from the effects of radiotherapy. Nanotechnology could address most of these issues, as it employs nanoparticles (NPs) carrying drugs that selectively accumulate and achieve controlled drug release in tumor tissues. Methods overcoming the stiff interstitium and scarce vascularity within hypoxic zones include the incorporation of collagenases to degrade the collagen-rich tumor extracellular matrix, the use of multistage systems that progressively reduce NP size or of NP-loaded cells that display inherent hypoxia-targeting abilities. The unfavorable hypoxia-induced low pH could be converted into a therapeutical advantage by pH-responsive NPs or multilayer NPs, while overexpressed markers of hypoxic cells could be specifically targeted for an enhanced preferential drug delivery. Finally, promising new gene therapeutics could also be incorporated into nanovehicles, which could lead to silencing of hypoxia-specific genes that are overexpressed in cancer cells. In this review, we highlight NPs which have shown promising results in targeting cancer hypoxia and we discuss their applicability in glioblastoma, as well as possible limitations. Novel research directions in this field are also considered. PMID:27230936

  19. Intratumoral delivery of encapsulated IL-12, IL-18 and TNF-alpha in a model of metastatic breast cancer.

    PubMed

    Sabel, Michael S; Su, Gang; Griffith, Kent A; Chang, Alfred E

    2010-07-01

    Intratumoral (i.t.) cytokine release through the use of poly-lactic acid microspheres (PLAM) holds tremendous potential for the immunotherapy of breast cancer as it harnesses the immunologic potential of autologous tumor in a clinically feasible and minimally toxic manner. We examined the potential of combinations of i.t. IL-12, IL-18 and TNF-alpha PLAM to generate a tumor-specific immune response and improve outcome in a model of metastatic breast cancer. Balb/c mice with established 4T1 mammary carcinomas were treated with a single injection of BSA, IL-12, IL-18 or TNF-alpha-loaded PLAM alone or in combination after spontaneous metastases occurred. Combined treatment with IL-12 and TNF-alpha PLAM was superior to all other treatments, including the triple combination of IL-12, IL-18 and TNF-alpha in ablation of the primary tumor, eradicating distant disease and enhancing survival. Simultaneous delivery of IL-12 and TNF-alpha was superior to sequential delivery of IL-12 followed by TNF-alpha, but not TNF-alpha followed by IL-12. In vivo lymphocyte depletion studies established that the effects of IL-12 alone are mediated primarily by NK cells, while the combination of IL-12 and TNF-alpha is dependent upon CD8+ T-cells. Only the combination of IL-12 and TNF-alpha results in an increase in both CD4+ and CD8+ T-cells and a reduction in CD4+CD25+ cells. While there was no change in the dendritic cell population, IL-12 and TNF-alpha resulted in a dramatic increase in DC maturation and antigen presentation. Neoadjuvant immunotherapy with simultaneous intratumoral delivery of IL-12 and TNF-alpha PLAM augments DC antigen presentation and increases cytotoxic T-cells without increasing regulatory T-cells, resulting in a T-cell based anti-tumor immune response capable of eradicating disseminated disease. The addition of IL-18 did not improve the efficacy. PMID:19802695

  20. Intratumoral Macroscopic Fat and Hemorrhage Combination Useful in the Differentiation of Benign and Malignant Solid Renal Masses

    PubMed Central

    Sun, Jun; Xing, Zhaoyu; Xing, Wei; Zheng, Linfeng; Chen, Jie; Fan, Min; Chen, Tongbing; Zhang, Zhuoli

    2016-01-01

    Abstract To evaluate the value of combining the detection of intratumoral macroscopic fat and hemorrhage in the differentiation of the benign from malignant solid renal masses. Conventional magnetic resonance imaging (MRI), chemical shift (CS)–MRI, and susceptibility-weighted imaging were performed in 152 patients with 152 solid renal masses, including 48 benign and 104 malignant masses all pathologically confirmed. The presence of macroscopic fat detected by CS-MRI and hemorrhage detected by susceptibility-weighted imaging were evaluated in all masses. The rates of macroscopic fat and hemorrhage observed between benign and malignant masses were compared by a χ2 test. All masses found to contain macroscopic fat with or without hemorrhage were considered to be benign. The remaining masses (without macroscopic fat) found not to contain hemorrhage were considered to be benign. Only those found to contain hemorrhage alone were considered to be malignant. The evaluation indexes for differentiating and forecasting the benign and malignant masses were calculated. Significant differences in the rate of macroscopic fat (observed in 85.42% of benign masses vs. 0% of malignant masses) and hemorrhage (observed in 4.17% of benign masses vs. 95.19% of malignant masses) were measured in the benign and malignant groups (P < 0.005, for both). The 41 masses containing macroscopic fat with or without hemorrhage and 11 masses containing neither macroscopic fat nor hemorrhage were considered to be benign. The 100 masses containing no macroscopic fat and only hemorrhage were considered to be malignant. By combining the results for the macroscopic fat and hemorrhage, the accuracy, sensitivity, and specificity in the differential diagnosis of the benign and malignant masses were 96.05%, 95.19%, and 97.92%, respectively, and the accuracy and error rate of forecasting the benign and malignant masses were 95.39% and 4.61%, respectively. Combining the detection intratumoral macroscopic

  1. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  2. Intratumoral expression of CCR3 in breast cancer is associated with improved relapse-free survival in luminal-like disease

    PubMed Central

    Chen, Hai-Yan; Ding, Ke-Feng; Yu, Ke-Da

    2016-01-01

    Purpose The association chemokine receptor CCR3 with breast cancer subtypes and relapse-free survival is unknown. Results The overall expression (either intratumoral or peritumoral) of CCR3 was not associated with tumor size, lymph node status, age, and subtype. When we confined the analysis in samples without peritumoral stromal CCR3 expression, intratumoral expression of CCR3 was associated with breast cancer subtype (P=0.04). Tumors with high expression of CCR3 were more likely to be luminal-like rather than TNBC or HER2-enriched cancers. Moreover, high mRNA expression of CCR3 was related with improved relapse-free survival in luminal-A/B (P<0.001). The subsequent sensitivity analysis using the systemically untreated patients confirmed that higher mRNA expression of CCR3 was a robust prognostic factor for luminal-A (P=0.0025) and luminal-B (P=0.088), but not for HER2-enriched (P=0.21) and TNBC (P=0.86). In the independent cohort, the positive association between increased expression of CCR3 and improved distant relapse-free survival was also observed. Methods We determined the expression level of CCR3 in 150 cases with breast cancer by using immunohistochemistry (IHC) assay, for both intratumoral and peritumoral stroma, and investigated the effect of CCR3 expression on relapse-free survival according to subtype using cases from publicly available datasets, in the whole group (N=3557) and in the patients without adjuvant systemic treatment (N=1005), respectively. Moreover, the survival outcomes were validated in another independent cohort including 508 breast cancer patients treated with neoadjuvant chemotherapy. Conclusions Our data indicate that intratumoral expression of CCR3 in breast cancer is associated with improved relapse-free survival in patients with luminal-like disease. PMID:27086913

  3. 21 CFR 882.5320 - Preformed alterable cranioplasty plate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Preformed alterable cranioplasty plate. 882.5320 Section 882.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., that can be altered or reshaped at the time of surgery without changing the chemical behavior of...

  4. 21 CFR 882.5320 - Preformed alterable cranioplasty plate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Preformed alterable cranioplasty plate. 882.5320 Section 882.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., that can be altered or reshaped at the time of surgery without changing the chemical behavior of...

  5. Intratumoral treatment of smaller mouse neuroblastoma tumors with a recombinant protein consisting of IL-2 linked to the hu14.18 antibody increases intratumoral CD8+ T and NK cells and improves survival.

    PubMed

    Yang, Richard K; Kalogriopoulos, Nicholas A; Rakhmilevich, Alexander L; Ranheim, Erik A; Seo, Songwon; Kim, Kyungmann; Alderson, Kory L; Gan, Jacek; Reisfeld, Ralph A; Gillies, Stephen D; Hank, Jacquelyn A; Sondel, Paul M

    2013-08-01

    Hu14.18-IL2 is an immunocytokine (IC) consisting of human IL-2 linked to hu14.18 mAb, which recognizes GD2 disialoganglioside. Phase II clinical trials of intravenous-hu14.18-IL2 (IV-IC) in neuroblastoma and melanoma are underway, and have already demonstrated activity in neuroblastoma. In our Phase II trial, lower neuroblastoma burden at the time of treatment was associated with a greater likelihood of clinical response to IV-IC. We have previously shown that intratumoral-hu14.18-IL2 (IT-IC) compared to IV-IC results in enhanced local and systemic antitumor activity in tumor-bearing mice. We utilized a mouse model to investigate the impact of tumor burden on hu14.18-IL2 treatment efficacy in IV- versus IT-treated animals. Studies presented here describe the analyses of tumor burden at the initiation of treatment and its effects on treatment efficacy, survival, and tumor-infiltrating leukocytes in A/J mice bearing subcutaneous NXS2 neuroblastoma. We show that smaller tumor burden at treatment initiation is associated with increased infiltration of NK and CD8+ T cells and increased overall survival. NXS2 tumor shrinkage shortly after completion of the 3 days of hu14.18-IL2 treatment is necessary for long-term survival. This model demonstrates that tumor size is a strong predictor of hu14.18-IL2-induced lymphocyte infiltration and treatment outcome.

  6. Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53.

    PubMed

    Baliaka, A; Zarogoulidis, P; Domvri, K; Hohenforst-Schmidt, W; Sakkas, A; Huang, H; Le Pivert, P; Koliakos, G; Koliakou, E; Kouzi-Koliakos, K; Tsakiridis, K; Chioti, A; Siotou, E; Cheva, A; Zarogoulidis, K; Sakkas, L

    2014-02-01

    Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer.

  7. Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53.

    PubMed

    Baliaka, A; Zarogoulidis, P; Domvri, K; Hohenforst-Schmidt, W; Sakkas, A; Huang, H; Le Pivert, P; Koliakos, G; Koliakou, E; Kouzi-Koliakos, K; Tsakiridis, K; Chioti, A; Siotou, E; Cheva, A; Zarogoulidis, K; Sakkas, L

    2014-02-01

    Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer. PMID:24285215

  8. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors

    PubMed Central

    Sarkar, S.; Cohen, N.; Sabhachandani, P.; Konry, T.

    2015-01-01

    Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions. PMID:26456240

  9. In Situ Conversion of Melanoma Lesions into Autologous Vaccine by Intratumoral Injections of α-gal Glycolipids

    PubMed Central

    Galili, Uri; Albertini, Mark R.; Sondel, Paul M.; Wigglesworth, Kim; Sullivan, Mary; Whalen, Giles F.

    2010-01-01

    Autologous melanoma associated antigens (MAA) on murine melanoma cells can elicit a protective anti-tumor immune response following a variety of vaccine strategies. Most require effective uptake by antigen presenting cells (APC). APC transport and process internalized MAA for activation of anti-tumor T cells. One potential problem with clinical melanoma vaccines against autologous tumors may be that often tumor cells do not express surface markers that label them for uptake by APC. Effective uptake of melanoma cells by APC might be achieved by exploiting the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. This approach has been developed in a syngeneic mouse model using mice capable of producing anti-Gal. Anti-Gal binds specifically to α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R). Injection of glycolipids carrying α-gal epitopes (α-gal glycolipids) into melanoma lesions results in glycolipid insertion into melanoma cell membranes, expression of α-gal epitopes on the tumor cells and binding of anti-Gal to these epitopes. Interaction between the Fc portions of bound anti-Gal and Fcγ receptors on APC induces effective uptake of tumor cells by APC. The resulting anti-MAA immune response can be potent enough to destroy distant micrometastases. A clinical trial is now open testing effects of intratumoral α-gal glycolipid injections in melanoma patients. PMID:23087817

  10. A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis

    PubMed Central

    Chao, Ming; Wu, Hao; Jin, Kai; Li, Bin; Wu, Jianjun; Zhang, Guangqiang; Yang, Gong; Hu, Xun

    2016-01-01

    Study design: Previous works suggested that neutralizing intratumoral lactic acidosis combined with glucose deprivation may deliver an effective approach to control tumor. We did a pilot clinical investigation, including a nonrandomized (57 patients with large HCC) and a randomized controlled (20 patients with large HCC) studies. Methods: The patients were treated with transarterial chemoembolization (TACE) with or without bicarbonate local infusion into tumor. Results: In the nonrandomized controlled study, geometric mean of viable tumor residues (VTR) in TACE with bicarbonate was 6.4-fold lower than that in TACE without bicarbonate (7.1% [95% CI: 4.6%–10.9%] vs 45.6% [28.9%–72.0%]; p<0.0001). This difference was recapitulated by a subsequent randomized controlled study. TACE combined with bicarbonate yielded a 100% objective response rate (ORR), whereas the ORR treated with TACE alone was 44.4% (nonrandomized) and 63.6% (randomized). The survival data suggested that bicarbonate may bring survival benefit. Conclusion: Bicarbonate markedly enhances the anticancer activity of TACE. Clinical trail registration: ChiCTR-IOR-14005319. DOI: http://dx.doi.org/10.7554/eLife.15691.001 PMID:27481188

  11. Intratumoral expression of cyclooxygenase-2 (COX-2) is a negative prognostic marker for patients with cutaneous melanoma.

    PubMed

    Kuźbicki, Łukasz; Lange, Dariusz; Stanek-Widera, Agata; Chwirot, Barbara W

    2016-10-01

    Because of the well-known heterogeneity of melanomas, prognosis of the disease is often difficult to assess even for lesions classified in similar stages. The aim of this study was to assess the usefulness of COX-2 as a melanoma prognostic marker and to establish an optimum algorithm for analysis of COX-2 expression levels in lesions of interest. Expression of COX-2 was detected immunohistochemically in standard sections of formalin-fixed paraffin-embedded tissue samples of 85 primary melanomas, 36 lymph node metastases, and five skin metastases including 39 cases of paired primary and metastatic lesions obtained from the same patient. Enhanced expression of COX-2 in primary melanomas is an indicator of poorer prognosis. A significant correlation was found between high expression of COX-2 in primary lesions and shorter survival. The enhancement of COX-2 expression is also positively correlated with other prognostic factors such as tumor thickness and infiltration level, ulceration, high mitotic index, more invasive histologic type, vertical growth phase, and lymph node metastasis. On the whole, the results suggest that intratumoral expression of COX-2 is a strong negative prognostic marker for patients with melanoma. Moreover, our work shows that a simple and objective immunohistochemical scoring algorithm involving the determination of only a percentage fraction of positively stained cells is sufficient to obtain the prognostic information.

  12. Intratumoral Injection of Ad-ISF35 (Chimeric CD154) Breaks Tolerance and Induces Lymphoma Tumor Regression

    PubMed Central

    Urquiza, Mauricio; Melo-Cardenas, Johanna; Aguillon, Robier

    2015-01-01

    Abstract Ad-ISF35, an adenovirus vector encoding a membrane-bound engineered CD154 chimeric protein (ISF35), induces complete A20 lymphoma tumor regression in mice after intratumoral direct injection (IDI). Ad-ISF35 induced durable local and systemic antitumor responses associated with a rapid tumor infiltration of macrophages and neutrophils as well as increased levels of proinflammatory cytokines in the tumor microenvironment. Ad-ISF35 IDI transduced preferentially fibroblasts and macrophages present in the tumor microenvironment, and ISF35 protein expression was observed in only 0.25% of cells present in the tumor. Moreover, Ad-ISF35 IDI induced upregulation of CD40 in tumor and immune regulatory cells, including those that did not express ISF35, suggesting the presence of a strong bystander effect. These responses resulted in the generation of IFN-γ-secreting cytotoxic lymphocytes and the production of specific cytotoxic antibodies against lymphoma cells. Overall, cellular immune therapy based on ISF35 induced phenotypic changes in the tumor cells and tumor microenvironment that were associated with a break in tumor immune tolerance and a curative antitumor effect in this lymphoma mouse model. Our data highlight the potential activity that modulation of costimulatory signaling has in cancer therapy. PMID:25382101

  13. Antiangiogenic therapy using endostatin increases the number of ALDH+ lung cancer stem cells by generating intratumor hypoxia

    PubMed Central

    Yu, Yang; Wang, Yu-yi; Wang, Yi-qin; Wang, Xia; Liu, Yan-Yang; Wang, Jian-Tao; Du, Chi; Wang, Li; Li, Mei; Luo, Feng; Jiang, Ming

    2016-01-01

    Antiangiogenic therapy is becoming a promising option for cancer treatment. However, many investigations have recently indicated that these therapies may have limited efficacy, and the cancers in most patients eventually develop resistance to these therapies. There is considerable recently acquired evidence for an association of such resistance with cancer stem-like cells (CSLCs). Here, we used xenograft tumor murine models to further suggest that antiangiogenic agents actually increase the invasive and metastatic properties of lung cancer cells. In our experiments with murine lung cancer xenografts, we found that the antiangiogenic agent endostatin increased the population of ALDH+ cells, and did so by generating intratumoral hypoxia in the xenografts. We further showed endostatin to cause an increase in the CSLC population by accelerating the generation of tumor hypoxia and by recruiting TAMs, MDSCs and Treg cells, which are inflammatory and immunosuppressive cells and which can secrete cytokines and growth factors such as IL-6, EGF, and TGF-β into the tumor microenvironment. All these factors are related with increased CSLC population in tumors. These results imply that improving the clinical efficacy of antiangiogenic treatments will require the concurrent use of CSLC-targeting agents. PMID:27703219

  14. [A Case of Intrahepatic Cholangiocarcinoma with Invasion to the Transverse Colon and Gallbladder, Forming an Intra-Tumor Abscess].

    PubMed

    Okada, Nami; Kametaka, Hisashi; Koyama, Takashi; Seike, Kazuhiro; Makino, Hironobu; Fukada, Tadaomi; Sato, Yutaka; Miyazaki, Masaru

    2015-11-01

    An 81-year-old man was referred to our institution for evaluation of high fever and a liver tumor that had been detected by ultrasonography. Computed tomography revealed a low-density mass with peripheral ring-like enhancement in S5 of the liver. The liver mass was in contact with the gallbladder, and the boundary between the mass and the gallbladder was unclear. On the suspicion of liver abscess, percutaneous transhepatic drainage was performed. The cavity of the abscess communicated with the gallbladder. Because the cavity had no tendency to reduce in size, we performed surgical resection under a preoperative diagnosis of liver abscess or primary liver carcinoma invading to the gallbladder. Intraoperative findings revealed a liver tumor invading the transverse colon and gallbladder. Subsegmentectomy of S4a and S5 of the liver combined with gallbladder and transverse colon resection was performed. Histopathological findings indicated the growth of a mass forming type intrahepatic cholangiocarcinoma with invasion to the transverse colon and gallbladder, and the pathological stage of the tumor was pT3N0M0, fStage Ⅲ. Thus far, the patient is alive without recurrence 9 months after surgery. Here, we report an extremely rare case of intrahepatic cholangiocarcinoma that invaded other organs and was associated with an intra-tumor abscess.

  15. MRI-Monitored Intra-Tumoral Injection of Iron-Oxide Labeled Clostridium novyi-NT Anaerobes in Pancreatic Carcinoma Mouse Model

    PubMed Central

    Zheng, Linfeng; Zhang, Zhuoli; Khazaie, Khashayarsha; Saha, Saurabh; Lewandowski, Robert J.; Zhang, Guixiang; Larson, Andrew C.

    2014-01-01

    Objectives To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT) anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI) and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures. Materials and Methods All studies were approved by IACUC. C.novyi-NT were labeled with hybrid iron-oxide Texas red nanoparticles. Growth of labeled and control samples were evaluated with optical density. Labeling was confirmed with confocal fluorescence and transmission electron microscopy (TEM). MRI were performed using a 7 Tesla scanner with T2*-weighted (T2*W) sequence. Contrast-to-noise ratio (CNR) measurements were performed for phantoms and signal-to-noise ratio (SNR) measurements performed in C57BL/6 mice (n = 12) with Panc02 xenografts before and after percutaneous injection of iron-oxide labeled C.novyi-NT. MRI was repeated 3 and 7 days post-injection. Hematoxylin-eosin (HE), Prussian blue and Gram staining of tumor specimens were performed for confirmation of intra-tumoral delivery. Results Iron-oxide labeling had no influence upon C.novyi-NT growth. The signal intensity (SI) within T2*W images was significantly decreased for iron-oxide labeled C.novyi-NT phantoms compared to unlabeled controls. Under confocal fluorescence microscopy, the iron-oxide labeled C.novyi-NT exhibited a uniform red fluorescence consistent with observed regions of DAPI staining and overall labeling efficiency was 100% (all DAPI stained C.novyi-NT exhibited red fluorescence). Within TEM images, a large number iron granules were observed within the iron-oxide labeled C.novyi-NT; these were not observed within unlabeled controls. Intra-procedural MRI measurements permitted in vivo visualization of the intra-tumoral distribution of iron-oxide labeled C.novyi-NT following percutaneous injection (depicted as punctate regions of SI reductions within T2*-weighted

  16. Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis.

    PubMed

    Deraos, George; Rodi, Maria; Kalbacher, Hubert; Chatzantoni, Kokona; Karagiannis, Fotios; Synodinos, Loukas; Plotas, Panayiotis; Papalois, Apostolos; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Gatos, Dimitrios; Tselios, Theodore; Apostolopoulos, Vasso; Mouzaki, Athanasia; Matsoukas, John

    2015-08-28

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation

  17. Clonotypic Diversification of Intratumoral T Cells Following Sipuleucel-T Treatment in Prostate Cancer Subjects.

    PubMed

    Sheikh, Nadeem; Cham, Jason; Zhang, Li; DeVries, Todd; Letarte, Simon; Pufnock, Jeff; Hamm, David; Trager, James; Fong, Lawrence

    2016-07-01

    Sipuleucel-T is an autologous cellular therapy for asymptomatic, or minimally symptomatic, metastatic castrate-resistant prostate cancer, designed to stimulate an immune response against prostate cancer. In a recent clinical trial (NCT00715104), we found that neoadjuvant sipuleucel-T increased the number of activated T cells within the tumor microenvironment. The current analysis examined whether sipuleucel-T altered adaptive T-cell responses by expanding pre-existing T cells or by recruiting new T cells to prostate tissue. Next-generation sequencing of the T-cell receptor (TCR) genes from blood or prostate tissue was used to quantitate and track T-cell clonotypes in these treated subjects with prostate cancer. At baseline, there was a significantly greater diversity of circulating TCR sequences in subjects with prostate cancer compared with healthy donors. Among healthy donors, circulating TCR sequence diversity remained unchanged over the same time interval. In contrast, sipuleucel-T treatment reduced circulating TCR sequence diversity versus baseline as measured by the Shannon index. Interestingly, sipuleucel-T treatment resulted in greater TCR sequence diversity in resected prostate tissue in sipuleucel-T-treated subjects versus tissue of nonsipuleucel-T-treated subjects with prostate cancer. Furthermore, sipuleucel-T increased TCR sequence commonality between blood and resected prostate tissue in treated versus untreated subjects with prostate cancer. The broadening of the TCR repertoire within the prostate tissue supports the hypothesis that sipuleucel-T treatment facilitates the recruitment of T cells into the prostate. Our results highlight the importance of assessing T-cell response to immunotherapy both in the periphery and in tumor tissue. Cancer Res; 76(13); 3711-8. ©2016 AACR.

  18. Clonotypic Diversification of Intratumoral T Cells Following Sipuleucel-T Treatment in Prostate Cancer Subjects.

    PubMed

    Sheikh, Nadeem; Cham, Jason; Zhang, Li; DeVries, Todd; Letarte, Simon; Pufnock, Jeff; Hamm, David; Trager, James; Fong, Lawrence

    2016-07-01

    Sipuleucel-T is an autologous cellular therapy for asymptomatic, or minimally symptomatic, metastatic castrate-resistant prostate cancer, designed to stimulate an immune response against prostate cancer. In a recent clinical trial (NCT00715104), we found that neoadjuvant sipuleucel-T increased the number of activated T cells within the tumor microenvironment. The current analysis examined whether sipuleucel-T altered adaptive T-cell responses by expanding pre-existing T cells or by recruiting new T cells to prostate tissue. Next-generation sequencing of the T-cell receptor (TCR) genes from blood or prostate tissue was used to quantitate and track T-cell clonotypes in these treated subjects with prostate cancer. At baseline, there was a significantly greater diversity of circulating TCR sequences in subjects with prostate cancer compared with healthy donors. Among healthy donors, circulating TCR sequence diversity remained unchanged over the same time interval. In contrast, sipuleucel-T treatment reduced circulating TCR sequence diversity versus baseline as measured by the Shannon index. Interestingly, sipuleucel-T treatment resulted in greater TCR sequence diversity in resected prostate tissue in sipuleucel-T-treated subjects versus tissue of nonsipuleucel-T-treated subjects with prostate cancer. Furthermore, sipuleucel-T increased TCR sequence commonality between blood and resected prostate tissue in treated versus untreated subjects with prostate cancer. The broadening of the TCR repertoire within the prostate tissue supports the hypothesis that sipuleucel-T treatment facilitates the recruitment of T cells into the prostate. Our results highlight the importance of assessing T-cell response to immunotherapy both in the periphery and in tumor tissue. Cancer Res; 76(13); 3711-8. ©2016 AACR. PMID:27216195

  19. Multiwalled nanotubes formed by catanionic mixtures of drug amphiphiles.

    PubMed

    Lin, Yi-An; Cheetham, Andrew G; Zhang, Pengcheng; Ou, Yu-Chuan; Li, Yuguo; Liu, Guanshu; Hermida-Merino, Daniel; Hamley, Ian W; Cui, Honggang

    2014-12-23

    Mixing of oppositely charged amphiphilic molecules (catanionic mixing) offers an attractive strategy to produce morphologies different from those formed by individual molecules. We report here on the use of catanionic mixing of anticancer drug amphiphiles to construct multiwalled nanotubes containing a fixed and high drug loading. We found that the molecular mixing ratio, the solvent composition, the overall drug concentrations, as well as the molecular design of the studied amphiphiles are all important experimental parameters contributing to the tubular morphology. We believe these results demonstrate the remarkable potential that anticancer drugs could offer to self-assemble into discrete nanostructures and also provide important insight into the formation mechanism of nanotubes by catanionic mixtures. Our preliminary animal studies reveal that the CPT nanotubes show significantly prolonged retention time in the tumor site after intratumoral injection.

  20. Multiwalled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles

    PubMed Central

    2015-01-01

    Mixing of oppositely charged amphiphilic molecules (catanionic mixing) offers an attractive strategy to produce morphologies different from those formed by individual molecules. We report here on the use of catanionic mixing of anticancer drug amphiphiles to construct multiwalled nanotubes containing a fixed and high drug loading. We found that the molecular mixing ratio, the solvent composition, the overall drug concentrations, as well as the molecular design of the studied amphiphiles are all important experimental parameters contributing to the tubular morphology. We believe these results demonstrate the remarkable potential that anticancer drugs could offer to self-assemble into discrete nanostructures and also provide important insight into the formation mechanism of nanotubes by catanionic mixtures. Our preliminary animal studies reveal that the CPT nanotubes show significantly prolonged retention time in the tumor site after intratumoral injection. PMID:25415538

  1. Preclinical examination of clofarabine in pediatric ependymoma: intratumoral concentrations insufficient to warrant further study.

    PubMed

    Patel, Yogesh T; Jacus, Megan O; Boulos, Nidal; Dapper, Jason D; Davis, Abigail D; Vuppala, Pradeep K; Freeman, Burgess B; Mohankumar, Kumarasamypet M; Throm, Stacy L; Gilbertson, Richard J; Stewart, Clinton F

    2015-05-01

    Clofarabine, a deoxyadenosine analog, was an active anticancer drug in our in vitro high-throughput screening against mouse ependymoma neurospheres. To characterize the clofarabine disposition in mice for further preclinical efficacy studies, we evaluated the plasma and central nervous system disposition in a mouse model of ependymoma. A plasma pharmacokinetic study of clofarabine (45 mg/kg, IP) was performed in CD1 nude mice bearing ependymoma to obtain initial plasma pharmacokinetic parameters. These estimates were used to derive D-optimal plasma sampling time points for cerebral microdialysis studies. A simulation of clofarabine pharmacokinetics in mice and pediatric patients suggested that a dosage of 30 mg/kg IP in mice would give exposures comparable to that in children at a dosage of 148 mg/m(2). Cerebral microdialysis was performed to study the tumor extracellular fluid (ECF) disposition of clofarabine (30 mg/kg, IP) in the ependymoma cortical allografts. Plasma and tumor ECF concentration-time data were analyzed using a nonlinear mixed effects modeling approach. The median unbound fraction of clofarabine in mouse plasma was 0.79. The unbound tumor to plasma partition coefficient (K pt,uu: ratio of tumor to plasma AUCu,0-inf) of clofarabine was 0.12 ± 0.05. The model-predicted mean tumor ECF clofarabine concentrations were below the in vitro 1-h IC50 (407 ng/mL) for ependymoma neurospheres. Thus, our results show the clofarabine exposure reached in the tumor ECF was below that associated with an antitumor effect in our in vitro washout study. Therefore, clofarabine was de-prioritized as an agent to treat ependymoma, and further preclinical studies were not pursued.

  2. Preclinical examination of clofarabine in pediatric ependymoma: intratumoral concentrations insufficient to warrant further study.

    PubMed

    Patel, Yogesh T; Jacus, Megan O; Boulos, Nidal; Dapper, Jason D; Davis, Abigail D; Vuppala, Pradeep K; Freeman, Burgess B; Mohankumar, Kumarasamypet M; Throm, Stacy L; Gilbertson, Richard J; Stewart, Clinton F

    2015-05-01

    Clofarabine, a deoxyadenosine analog, was an active anticancer drug in our in vitro high-throughput screening against mouse ependymoma neurospheres. To characterize the clofarabine disposition in mice for further preclinical efficacy studies, we evaluated the plasma and central nervous system disposition in a mouse model of ependymoma. A plasma pharmacokinetic study of clofarabine (45 mg/kg, IP) was performed in CD1 nude mice bearing ependymoma to obtain initial plasma pharmacokinetic parameters. These estimates were used to derive D-optimal plasma sampling time points for cerebral microdialysis studies. A simulation of clofarabine pharmacokinetics in mice and pediatric patients suggested that a dosage of 30 mg/kg IP in mice would give exposures comparable to that in children at a dosage of 148 mg/m(2). Cerebral microdialysis was performed to study the tumor extracellular fluid (ECF) disposition of clofarabine (30 mg/kg, IP) in the ependymoma cortical allografts. Plasma and tumor ECF concentration-time data were analyzed using a nonlinear mixed effects modeling approach. The median unbound fraction of clofarabine in mouse plasma was 0.79. The unbound tumor to plasma partition coefficient (K pt,uu: ratio of tumor to plasma AUCu,0-inf) of clofarabine was 0.12 ± 0.05. The model-predicted mean tumor ECF clofarabine concentrations were below the in vitro 1-h IC50 (407 ng/mL) for ependymoma neurospheres. Thus, our results show the clofarabine exposure reached in the tumor ECF was below that associated with an antitumor effect in our in vitro washout study. Therefore, clofarabine was de-prioritized as an agent to treat ependymoma, and further preclinical studies were not pursued. PMID:25724157

  3. Darwinian Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also Variable Environmental Selection Forces.

    PubMed

    Lloyd, Mark C; Cunningham, Jessica J; Bui, Marilyn M; Gillies, Robert J; Brown, Joel S; Gatenby, Robert A

    2016-06-01

    Spatial heterogeneity in tumors is generally thought to result from branching clonal evolution driven by random mutations that accumulate during tumor development. However, this concept rests on the implicit assumption that cancer cells never evolve to a fitness maximum because they can always acquire mutations that increase proliferative capacity. In this study, we investigated the validity of this assumption. Using evolutionary game theory, we demonstrate that local cancer cell populations will rapidly converge to the fittest phenotype given a stable environment. In such settings, cellular spatial heterogeneity in a tumor will be largely governed by regional variations in environmental conditions, for example, alterations in blood flow. Model simulations specifically predict a common spatial pattern in which cancer cells at the tumor-host interface exhibit invasion-promoting, rapidly proliferating phenotypic properties, whereas cells in the tumor core maximize their population density by promoting supportive tissue infrastructures, for example, to promote angiogenesis. We tested model predictions through detailed quantitative image analysis of phenotypic spatial distribution in histologic sections of 10 patients with stage 2 invasive breast cancers. CAIX, GLUT1, and Ki67 were upregulated in the tumor edge, consistent with an acid-producing invasive, proliferative phenotype. Cells in the tumor core were 20% denser than the edge, exhibiting upregulation of CAXII, HIF-1α, and cleaved caspase-3, consistent with a more static and less proliferative phenotype. Similarly, vascularity was consistently lower in the tumor center compared with the tumor edges. Lymphocytic immune responses to tumor antigens also trended to higher level in the tumor edge, although this effect did not reach statistical significance. Like invasive species in nature, cancer cells at the leading edge of the tumor possess a different phenotype from cells in the tumor core. Our results suggest

  4. SWIFT-MRI imaging and quantitative assessment of IONPs in murine tumors following intra-tumor and systemic delivery

    NASA Astrophysics Data System (ADS)

    Reeves, Russell; Petryk, Alicia A.; Kastner, Elliot J.; Zhang, Jinjin; Ring, Hattie; Garwood, Michael; Hoopes, P. Jack

    2015-03-01

    Although preliminary clinical trials are ongoing, successful the use of iron-oxide magnetic nanoparticles (IONP) for heatbased cancer treatments will depend on advancements in: 1) nanoparticle platforms, 2) delivery of a safe and effective alternating magnetic field (AMF) to the tumor, and 3) development of non-invasive, spatially accurate IONP imaging and quantification technique. This imaging technique must be able to assess tumor and normal tissue anatomy as well as IONP levels and biodistribution. Conventional CT imaging is capable of detecting and quantifying IONPs at tissue levels above 10 mg/gram; unfortunately this level is not clinically achievable in most situations. Conventional MRI is capable of imaging IONPs at tissue levels of 0.05 mg/gm or less, however this level is considered to be below the therapeutic threshold. We present here preliminary in vivo data demonstrating the ability of a novel MRI technique, Sweep Imaging with Fourier Transformation (SWIFT), to accurately image and quantify IONPs in tumor tissue in the therapeutic concentration range (0.1-1.0 mg/gm tissue). This ultra-short, T2 MRI method provides a positive Fe contrast enhancement with a reduced signal to noise ratio. Additional IONP signal enhancement techniques such as inversion recovery spectroscopy and variable flip angle (VFA) are also being studied for potential optimization of SWIFT IONP imaging. Our study demonstrates the use of SWIFT to assess IONP levels and biodistribution, in murine flank tumors, following intra-tumoral and systemic IONP administration. ICP-MS and quantitative histological techniques are used to validate the accuracy and sensitivity of SWIFT-based IONP imaging and quantification.

  5. Combined Intralesional Neodymium-Doped Yttrium Aluminium Garnet Laser and Intratumoral Ligation as Curative Treatment for Craniofacial Arteriovenous Malformations.

    PubMed

    Rojvachiranonda, Nond; Lerdlum, Sukalaya; Mahatumarat, Charan

    2016-03-01

    Craniofacial arteriovenous malformation (AVM), although very rare, has been a very difficult problem to treat especially when it is large and involves important structures. Surgical resection often results in unacceptable complications but still not curative. At our institution, treatment by combined intralesional neodymium-doped yttrium aluminium garnet laser and intratumoral ligation has been successful in venous malformation. This minimally invasive technique was then applied to more challenging AVM on the head and neck. Disease control was studied using clinical parameters and magnetic resonance imaging.Four patients with moderate-to-severe (Schobinger 2-4) craniofacial AVM were treated by this technique from 2001 to 2011. Patient age ranged from 2 to 51 years (mean: 25 years). After 2 to 4 treatments and follow-up period of 1456 days, 3 (75%) were cured. One of them was infant with huge mass and secondary pulmonary hypertension. Clinical cure was achieved after 3 treatments without residual cardiovascular compromise. The other patient (25%) had cheek mass with intraorbital involvement. The authors did not treat periorbital lesion so as to avoid triggering intraorbital spreading. The rest of the cheek lesion was clinically and radiologically cured.Laser energy setting, ablative technique, and skin cooling are the main factors determining the success. Individualized laser settings and properly set endpoints can increase treatment effectiveness in shorter period. In conclusion, this minimally invasive technique was successful in curing AVM without complication. With more clinical study and development of soft tissue monitoring tools, it is possible that intralesional laser could become the treatment of choice for all cutaneous AVM.

  6. Detecting Circulating Tumor DNA in Hepatocellular Carcinoma Patients Using Droplet Digital PCR Is Feasible and Reflects Intratumoral Heterogeneity

    PubMed Central

    Huang, Ao; Zhang, Xin; Zhou, Shao-Lai; Cao, Ya; Huang, Xiao-Wu; Fan, Jia; Yang, Xin-Rong; Zhou, Jian

    2016-01-01

    Purpose: Circulating tumor DNA (ctDNA) is increasingly recognized as liquid biopsy to profile tumor genome. Droplet digital PCR (ddPCR) is a highly sensitive and easily operable platform for mutant detection. Here, we tried to detect ctDNA in hepatocellular carcinoma (HCC) patients using ddPCR. Methods: Studies sequencing the genome of HCCs and COSMIC (Catalogue of Somatic Mutations in Cancer) database were reviewed to identify hotspot mutations. Circulating cell-free DNAs (cfDNAs) extracted from 1 ml preoperative plasma sample were analyzed to detect circulating mutants using ddPCR. The DNAs from matched tumor and adjacent liver tissues or peripheral blood mononuclear cells (PBMCs) were sequenced to identify the origin of circulating mutants. Results: Forty-eight HCC patients were enrolled and four gene loci, TP53 (c.747G>T), CTNNB1 (c.121A>G, c.133T>C), and TERT (c.1-124C>T) were chosen as targets for ddPCR assay. Serial dilution demonstrated the detection limit of ddPCR to be 0.01%. Twenty-seven patients (56.3%, 27/48) were found to have at least one kind of circulating mutants, with the mutant allele frequency ranging from 0.33% to 23.7%. Six patients (22.2%, 6/27) also had matched mutants in tumor tissues while none of the mutants were detected in adjacent liver tissues or PBMCs in all patients, which excluded the nonneoplastic origin of these circulating mutants and qualified them as ctDNA. Conclusions: ctDNA could be readily detected in HCC patients by targeting hotspot mutations using ddPCR and might reflect intratumoral heterogeneity. ctDNA detecting may serve as a promising liquid biopsy in HCC management.

  7. Detecting Circulating Tumor DNA in Hepatocellular Carcinoma Patients Using Droplet Digital PCR Is Feasible and Reflects Intratumoral Heterogeneity

    PubMed Central

    Huang, Ao; Zhang, Xin; Zhou, Shao-Lai; Cao, Ya; Huang, Xiao-Wu; Fan, Jia; Yang, Xin-Rong; Zhou, Jian

    2016-01-01

    Purpose: Circulating tumor DNA (ctDNA) is increasingly recognized as liquid biopsy to profile tumor genome. Droplet digital PCR (ddPCR) is a highly sensitive and easily operable platform for mutant detection. Here, we tried to detect ctDNA in hepatocellular carcinoma (HCC) patients using ddPCR. Methods: Studies sequencing the genome of HCCs and COSMIC (Catalogue of Somatic Mutations in Cancer) database were reviewed to identify hotspot mutations. Circulating cell-free DNAs (cfDNAs) extracted from 1 ml preoperative plasma sample were analyzed to detect circulating mutants using ddPCR. The DNAs from matched tumor and adjacent liver tissues or peripheral blood mononuclear cells (PBMCs) were sequenced to identify the origin of circulating mutants. Results: Forty-eight HCC patients were enrolled and four gene loci, TP53 (c.747G>T), CTNNB1 (c.121A>G, c.133T>C), and TERT (c.1-124C>T) were chosen as targets for ddPCR assay. Serial dilution demonstrated the detection limit of ddPCR to be 0.01%. Twenty-seven patients (56.3%, 27/48) were found to have at least one kind of circulating mutants, with the mutant allele frequency ranging from 0.33% to 23.7%. Six patients (22.2%, 6/27) also had matched mutants in tumor tissues while none of the mutants were detected in adjacent liver tissues or PBMCs in all patients, which excluded the nonneoplastic origin of these circulating mutants and qualified them as ctDNA. Conclusions: ctDNA could be readily detected in HCC patients by targeting hotspot mutations using ddPCR and might reflect intratumoral heterogeneity. ctDNA detecting may serve as a promising liquid biopsy in HCC management. PMID:27698932

  8. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    SciTech Connect

    Cooks, Tomer; Schmidt, Michael; Bittan, Hadas; Lazarov, Elinor; Arazi, Lior; Kelson, Itzhak; Keisari, Yona

    2009-07-01

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with {sup 224}Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of {sup 224}Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  9. Mechanism of antitumor effect on mouse hepatocellular carcinoma by intratumoral injection of OK-432, a streptococcal preparation.

    PubMed

    Homma, Sadamu; Sagawa, Yukiko; Komita, Hideo; Koido, Shigeo; Nagasaki, Eijiro; Ryoma, Yoshiki; Okamoto, Masato

    2007-08-01

    Intratumoral (i.t.) injection of OK-432, a streptococcal preparation, into implanted tumors of mouse hepatocellular carcinoma (MIH-2) showed antitumor effect including tumor eradication. Intraperitoneal administration of same dose OK-432 did not exhibit tumor suppressive effect. In vitro cytotoxic test suggested that direct cytotoxic effect of OK-432 was not associated with antitumor activity by i.t.-OK-432 treatment. It was also found that Toll-like receptor 4 signaling was not involved in i.t.-OK-432 treatment. Three mice out of five, which had shown tumor eradication by i.t.-OK-432 treatment did not reject re-challenge of MIH-2 cells. Splenocytes from i.t.-OK-432 treated mice did not produce IFN-gamma by stimulation with MIH-2 cells in vitro, but produced abundant IFN-gamma by stimulation with OK-432. Immunofluorescence microscopy demonstrated that CD4+T cells, but not CD8+T cells, infiltrated to i.t.-OK-432 treated tumor tissue produced IFN-gamma. Tumor-infiltrating CD4+T cells from i.t.-OK-432 treated tumor tissue produced IFN-gamma by in vitro stimulation with OK-432 higher than those from untreated tumor tissue. IFN-gamma directly induced apoptosis of MIH-2 cells in vitro. Collectively, i.t.-OK-432 treatment induced priming of CD4+T cells to antigenecity of OK-432, and repetitive i.t.-OK-432 treatment induced IFN-gamma production from OK-432-sensitized CD4+T cells in tumor site, leading to apoptosis of MIH-2 cells susceptible to IFN-gamma.

  10. Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by 19F-Magnetic Resonance Imaging (MRI)

    PubMed Central

    Hess, Michael; Hofmann, Elisabeth; Seubert, Carolin; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Sturm, Volker Jörg Friedrich; Ye, Yuxiang; Kampf, Thomas; Jakob, Peter Michael; Szalay, Aladar A.

    2013-01-01

    Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate 19F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by 1H/19F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the 19F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the 19F signal hot spots and CD68+-macrophages. Thereby, the CD68+-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the 19F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest 19F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, 19F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response. PMID:23441176

  11. Two-Stage Phase I Dose-Escalation Study of Intratumoral Reovirus Type 3 Dearing and Palliative Radiotherapy in Patients with Advanced Cancers

    PubMed Central

    Harrington, Kevin J.; Karapanagiotou, Eleni M.; Roulstone, Victoria; Twigger, Katie R.; White, Christine L.; Vidal, Laura; Beirne, Debbie; Prestwich, Robin; Newbold, Kate; Ahmed, Merina; Thway, Khin; Nutting, Christopher M.; Coffey, Matt; Harris, Dean; Vile, Richard G.; Pandha, Hardev S.; DeBono, Johann S.; Melcher, Alan A.

    2013-01-01

    Purpose To determine the safety and feasibility of combining intratumoral reovirus and radiotherapy in patients with advanced cancer and to assess viral biodistribution, reoviral replication in tumors, and antiviral immune responses. Experimental Design Patients with measurable disease amenable to palliative radiotherapy were enrolled. In the first stage, patients received radiotherapy (20 Gy in five fractions) plus two intratumoral injections of RT3D at doses between 1 × 108 and 1 × 1010 TCID50. In the second stage, the radiotherapy dose was increased (36 Gy in 12 fractions) and patients received two, four, or six doses of RT3D at 1 × 1010 TCID50. End points were safety, viral replication, immunogenicity, and antitumoral activity. Results Twenty-three patients with various solid tumors were treated. Dose-limiting toxicity was not seen. The most common toxicities were grade 2 (or lower) pyrexia, influenza-like symptoms, vomiting, asymptomatic lymphopenia, and neutropenia. There was no exacerbation of the acute radiation reaction. Reverse transcription-PCR (RT-PCR) studies of blood, urine, stool, and sputum were negative for viral shedding. In the low-dose (20 Gy in five fractions) radiation group, two of seven evaluable patients had a partial response and five had stable disease. In the high-dose (36 Gy in 12 fractions) radiation group, five of seven evaluable patients had partial response and two stable disease. Conclusions The combination of intratumoral RT3D and radiotherapy was well tolerated. The favorable toxicity profile and lack of vector shedding means that this combination should be evaluated in newly diagnosed patients receiving radiotherapy with curative intent. PMID:20484020

  12. Immunotherapeutic Synergy Between Anti-CD137 mAb and Intratumoral Administration of a Cytopathic Semliki Forest Virus Encoding IL-12

    PubMed Central

    Quetglas, José I; Dubrot, Juan; Bezunartea, Jaione; Sanmamed, Miguel F; Hervas-Stubbs, Sandra; Smerdou, Cristian; Melero, Ignacio

    2012-01-01

    Intratumoral injection of Semliki Forest virus encoding interleukin-12 (SFV-IL-12) combines acute expression of IL-12 and stressful apoptosis of infected malignant cells. Agonist antibodies directed to costimulatory receptor CD137 (4-1BB) strongly amplify pre-existing cellular immune responses toward weak tumor antigens. In this study, we provide evidence for powerful synergistic effects of a combined strategy consisting of intratumoral injection of SFV-IL-12 and systemic delivery of agonist anti-CD137 monoclonal antibodies (mAbs), which was substantiated against poorly immunogenic B16 melanomas (B16-OVA and B16.F10) and TC-1 lung carcinomas. Effector CD8β+ T cells were sufficient to mediate complete tumor eradications. Accordingly, there was an intensely synergistic in vivo enhancement of cytotoxic T lymphocytes (CTL)-mediated immunity against the tumor antigens OVA and tyrosine-related protein-2 (TRP-2). This train of phenomena led to long-lasting tumor-specific immunity against rechallenge, attained transient control of the progression of concomitant tumor lesions that were not directly treated with SFV-IL-12 and caused autoimmune vitiligo. Importantly, we found that SFV-IL-12 intratumoral injection induces bright expression of CD137 on most tumor-infiltrating CD8+ T lymphocytes, thereby providing more abundant targets for the action of the agonist antibody. This efficacious combinatorial immunotherapy strategy offers feasibility for clinical translation since anti-CD137 mAbs are already undergoing clinical trials and development of clinical-grade SFV-IL-12 vectors is in progress. PMID:22735380

  13. Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

    SciTech Connect

    Finkelstein, Steven E.; Iclozan, Cristina; Bui, Marilyn M.; Cotter, Matthew J.; Ramakrishnan, Rupal; Ahmed, Jamil; Noyes, David R.; Cheong, David; Gonzalez, Ricardo J.; Heysek, Randy V.; Berman, Claudia; Lenox, Brianna C.; Janssen, William; Zager, Jonathan S.; Sondak, Vernon K.; Letson, G. Douglas; Antonia, Scott J.; Gabrilovich, Dmitry I.

    2012-02-01

    Purpose: The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). Methods and Material: Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 10{sup 7} DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. Results: The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4{sup +} T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with {sup 111}In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. Conclusions: Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.

  14. Predictive value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodules according to Bethesda categories of fine needle aspiration biopsy results.

    PubMed

    Kim, Seong-Jang; Chang, Samuel

    2015-12-01

    The current study was aimed to investigate the clinical value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodule (TN) with inconclusive fine-needle aspiration biopsy (FNAB) results. The current study enrolled 200 patients who showed F-18 FDG incidentaloma and were performed FNAB. The intratumoral heterogeneity of F-18 FDG uptake was represented as the heterogeneity factor (HF), defined as the derivative (dV/dT) of a volume-threshold function for a primary tumor. The diagnostic and predictive values of HF and F-18 FDG PET/CT parameters were evaluated for characterization of inconclusive FNAB results. Among F-18 FDG PET/CT parameters, SUVmax, MTV, and TLG of malignant group were statistically higher than those of Bethesda category of suspicious malignant group. However, HF values were not statistically different between the groups of Bethesda categories (Kruskal-Wallis statistics, 9.924; p = 0.0774). In ROC analysis, when HF > 2.751 was used as cut-off value, the sensitivity and specificity for prediction of malignant TN were 100 % (95 % CI 69.2-100 %) and 60 % (95 % CI 42.1-76.1 %), respectively. The AUC was 0.826 (95 % CI 0.684-0.922) and standard error was 0.0648 (p < 0.0001). In conclusion, the intratumoral heterogeneity of F-18 FDG uptake represented by HF could be a predictor for characterization of TN with inconclusive FNAB results. Additional large population-based prospective studies are needed to validate the diagnostic utility of HF of F-18 FDG PET/CT.

  15. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points.

    PubMed

    Sauthoff, Harald; Hu, Jing; Maca, Cielo; Goldman, Michael; Heitner, Sheila; Yee, Herman; Pipiya, Teona; Rom, William N; Hay, John G

    2003-03-20

    Oncolytic replicating adenoviruses are a promising new modality for the treatment of cancer. Despite the assumed biologic advantage of continued viral replication and spread from infected to uninfected cancer cells, early clinical trials demonstrate that the efficacy of current vectors is limited. In xenograft tumor models using immune-incompetent mice, wild-type adenovirus is also rarely able to eradicate established tumors. This suggests that innate immune mechanisms may clear the virus or that barriers within the tumor prevent viral spread. The aim of this study was to evaluate the kinetics of viral distribution and spread after intratumoral injection of virus in a human tumor xenograft model. After intratumoral injection of wild-type virus, high levels of titratable virus persisted within the xenograft tumors for at least 8 weeks. Virus distribution within the tumors as determined by immunohistochemistry was patchy, and virus-infected cells appeared to be flanked by tumor necrosis and connective tissue. The close proximity of virus-infected cells to the tumor-supporting structure, which is of murine origin, was clearly demonstrated using a DNA probe that specifically hybridizes to the B1 murine DNA repeat. Importantly, although virus was cleared from the circulation 6 hr after intratumoral injection, after 4 weeks systemic spread of virus was detected. In addition, vessels of infected tumors were surrounded by necrosis and an advancing rim of virus-infected tumor cells, suggesting reinfection of the xenograft tumor through the vasculature. These data suggest that human adenoviral spread within tumor xenografts is impaired by murine tumor-supporting structures. In addition, there is evidence for continued viral replication within the tumor, with subsequent systemic dissemination and reinfection of tumors via the tumor vasculature. Despite the limitations of immune-incompetent models, an understanding of the interactions between the virus and the tumor

  16. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Jen; Sung, Calvin T.; Aljuffali, Ibrahim A.; Huang, Yu-Jie; Fang, Jia-You

    2013-08-01

    Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92-134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g-1 it could be increased to 50 nmol g-1 after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches.

  17. The Biochemistry of Psychoactive Drugs.

    ERIC Educational Resources Information Center

    Abood, Leo G.

    The effect of psychochemicals on the higher central nervous system, and recent theories regarding drug addiction are discussed. The effect of drugs upon each individual is different. Many drugs have no effect on the brain because of a blood-brain barrier. However, alterations in the rate and character of one's metabolic pattern can lead to…

  18. A limited overlap between intratumoral distribution of 1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole and copper-diacetyl-bis[N(4)-methylthiosemicarbazone].

    PubMed

    Furukawa, Takako; Yuan, Qinghua; Jin, Zhao-Hui; Aung, Winn; Yoshii, Yukie; Hasegawa, Sumitaka; Endo, Hiroko; Inoue, Masahiro; Zhang, Ming-Rong; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2015-09-01

    Positron emission tomography (PET) imaging of tumor hypoxia provides valuable information for cancer treatment planning. Two types of PET tracers, nitroimidazole compounds and [62,64Cu] copper-diacetyl-bis[N(4)-methylthio- semicarbazone] (Cu-ATSM), have been used for imaging hypoxic tumors. High accumulation of these tracers in tumors was shown to predict poor prognosis. Both similar and different intratumoral distributions of these PET tracers have been reported with some studies questioning the dependence of the Cu-ATSM accumulation on hypoxia. In the present study, we compared the intratumoral distribution and cellular uptake of 1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole (FAZA) and Cu-ATSM. Intratumoral distributions of FAZA and Cu-ATSM compared by double tracer autoradiography in xenografts of 8 cancer cell lines and 3 cancer tissue originated spheroids (CTOSs) showed that only a limited overlap was observed between the regions with high levels of FAZA and Cu-ATSM accumulation in all the xenografts. Immunohistochemistry in the regions enriched with FAZA and Cu-ATSM in xenografts demonstrated that pimonidazole adducts were in regions that accumulated high levels of FAZA, while HIF-1α was in areas enriched with either tracer. In addition, we examined the cellular uptake of FAZA and Cu-ATSM at different levels of oxygen concentration in 4 cell lines and revealed that cellular uptake of FAZA was increased with the decrease of oxygen concentration from 20 to 2 and from 2 to 1%, while the Cu-ATSM uptake increased with the decrease of oxygen concentration from 20 to 2%, but did not increase with the decrease from 2 to 1%. Our findings indicate that intratumoral distributions of FAZA and Cu-ATSM were essentially non-overlapping and although hypoxia affects the buildup of both tracers, the accumulation of Cu-ATSM occurred at milder hypoxia compared to the conditions required for the accumulation of FAZA. Therefore, accumulation levels of FAZA and

  19. Food-Drug Interactions

    PubMed Central

    Bushra, Rabia; Aslam, Nousheen; Khan, Arshad Yar

    2011-01-01

    The effect of drug on a person may be different than expected because that drug interacts with another drug the person is taking (drug-drug interaction), food, beverages, dietary supplements the person is consuming (drug-nutrient/food interaction) or another disease the person has (drug-disease interaction). A drug interaction is a situation in which a substance affects the activity of a drug, i.e. the effects are increased or decreased, or they produce a new effect that neither produces on its own. These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances. Regarding food-drug interactions physicians and pharmacists recognize that some foods and drugs, when taken simultaneously, can alter the body's ability to utilize a particular food or drug, or cause serious side effects. Clinically significant drug interactions, which pose potential harm to the patient, may result from changes in pharmaceutical, pharmacokinetic, or pharmacodynamic properties. Some may be taken advantage of, to the benefit of patients, but more commonly drug interactions result in adverse drug events. Therefore it is advisable for patients to follow the physician and doctors instructions to obtain maximum benefits with least food-drug interactions. The literature survey was conducted by extracting data from different review and original articles on general or specific drug interactions with food. This review gives information about various interactions between different foods and drugs and will help physicians and pharmacists prescribe drugs cautiously with only suitable food supplement to get maximum benefit for the patient. PMID:22043389

  20. Altered states: psychedelics and anesthetics.

    PubMed

    Icaza, Eduardo E; Mashour, George A

    2013-12-01

    The psychedelic experience has been reported since antiquity, but there is relatively little known about the underlying neural mechanisms. A recent neuroimaging study on psilocybin revealed a pattern of decreased cerebral blood flow and functional disconnections that is surprisingly similar to that caused by various anesthetics. In this article, the authors review historical examples of psychedelic experiences induced by general anesthetics and then contrast the mechanisms by which these two drug classes generate altered states of consciousness. PMID:24061599

  1. Altered states: psychedelics and anesthetics.

    PubMed

    Icaza, Eduardo E; Mashour, George A

    2013-12-01

    The psychedelic experience has been reported since antiquity, but there is relatively little known about the underlying neural mechanisms. A recent neuroimaging study on psilocybin revealed a pattern of decreased cerebral blood flow and functional disconnections that is surprisingly similar to that caused by various anesthetics. In this article, the authors review historical examples of psychedelic experiences induced by general anesthetics and then contrast the mechanisms by which these two drug classes generate altered states of consciousness.

  2. Immunohistochemistry Successfully Uncovers Intratumoral Heterogeneity and Widespread Co-Losses of Chromatin Regulators in Clear Cell Renal Cell Carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; Liao, Lili; Cho, Eun-Ah; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2016-01-01

    Recent studies have shown that intratumoral heterogeneity (ITH) is prevalent in clear cell renal cell carcinoma (ccRCC), based on DNA sequencing and chromosome aberration analysis of multiple regions from the same tumor. VHL mutations were found to be universal throughout individual tumors when it occurred (ubiquitous), while the mutations in other tumor suppressor genes tended to be detected only in parts of the tumors (subclonal). ITH has been studied mostly by DNA sequencing in limited numbers of samples, either by whole genome sequencing or by targeted sequencing. It is not known whether immunohistochemistry (IHC) can be used as a tool to study ITH. To address this question, we examined the protein expression of PBRM1, and PBRM1-related proteins such as ARID1A, SETD2, BRG1, and BRM. Altogether, 160 ccRCC (40 per stage) were used to generate a tissue microarray (TMA), with four foci from each tumor included. Loss of expression was defined as 0–5% of tumor cells with positive nuclear staining in an individual focus. We found that 49/160 (31%), 81/160 (51%), 23/160 (14%), 24/160 (15%), and 61/160 (38%) of ccRCC showed loss of expression of PBRM1, ARID1A, SETD2, BRG1, and BRM, respectively, and that IHC could successfully detect a high prevalence of ITH. Phylogenetic trees were constructed that reflected the ITH. Striking co-losses among proteins were also observed. For instance, ARID1A loss almost always accompanied PBRM1 loss, whereas BRM loss accompanied loss of BRG1, PBRM1 or ARID1A. SETD2 loss frequently occurred with loss of one or more of the other four proteins. Finally, in order to learn the impact of combined losses, we compared the tumor growth after cells acquired losses of ARID1A, PBRM1, or both in a xenograft model. The results suggest that ARID1A loss has a greater tumor-promoting effect than PBRM1 loss, indicating that xenograft analysis is a useful tool to investigate how these losses impact on tumor behavior, either alone or in combination. PMID

  3. Cycles of transient high-dose cyclophosphamide administration and intratumoral oncolytic adenovirus vector injection for long-term tumor suppression in Syrian hamsters.

    PubMed

    Dhar, D; Toth, K; Wold, W S M

    2014-04-01

    Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. With Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide (CP) to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long-term CP treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here, we employed three cycles of transient high-dose CP administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal of CP. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long-term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment.

  4. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution.

    PubMed

    Black, Kvar C L; Wang, Yucai; Luehmann, Hannah P; Cai, Xin; Xing, Wenxin; Pang, Bo; Zhao, Yongfeng; Cutler, Cathy S; Wang, Lihong V; Liu, Yongjian; Xia, Younan

    2014-05-27

    With Au nanocages as an example, we recently demonstrated that radioactive (198)Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from (198)Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radioactive (198)Au nanostructures with a similar size but different shapes and then compare their biodistribution, tumor uptake, and intratumoral distribution using a murine EMT6 breast cancer model. Specifically, we investigated Au nanospheres, nanodisks, nanorods, and cubic nanocages. After PEGylation, an aqueous suspension of the radioactive Au nanostructures was injected into a tumor-bearing mouse intravenously, and their biodistribution was measured from the γ radiation while their tumor uptake was directly imaged using the Cerenkov radiation. Significantly higher tumor uptake was observed for the Au nanospheres and nanodisks relative to the Au nanorods and nanocages at 24 h postinjection. Furthermore, autoradiographic imaging was performed on thin slices of the tumor after excision to resolve the intratumoral distributions of the nanostructures. While both the Au nanospheres and nanodisks were only observed on the surfaces of the tumors, the Au nanorods and nanocages were distributed throughout the tumors.

  5. Comparison of intratumoral heterogeneity of HER2 expression between primary tumor and multiple organ metastases in gastric cancer: Clinicopathological study of three autopsy cases and one resected case.

    PubMed

    Saito, Takuya; Kondo, Chihiro; Shitara, Kohei; Ito, Yuichi; Saito, Noriko; Ikehara, Yuzuru; Yatabe, Yasushi; Yamamichi, Keigo; Tanaka, Hideo; Nakanishi, Hayao

    2015-06-01

    Intratumoral heterogeneity of HER2 expression in the metastatic foci of HER2-positive advanced gastric cancer remains unclear. In this study, we compared HER2 expression between primary and metastatic tumors in HER2-positive three autopsied cases and one resected case with multiple organ metastases by immunohistochemistry (IHC) and dual color in situ hybridization (DISH). All four cases judged positive (IHC3+) at the primary tumor tissues showed varying HER2 gene amplification (GA) status. One homogeneously HER2-positive autopsied case (Case 1) and one intratumorally heterogeneous positive resected case (Case 2) with high GA showed a homogeneous positive staining pattern in all the metastatic foci. One heterogeneously HER2-positive autopsied case (Case 3) with low GA showed a partially heterogeneous HER2 staining pattern in all the metastatic foci. In contrast, one heterogeneously HER2-positive autopsied case (Case 4) with equivocal GA showed a completely heterogeneous HER2 staining pattern in the metastatic foci. These results indicate that HER2-positive gastric cancers with low to high GA at the primary tumor show substantially homogeneous HER2 overexpression in the metastatic foci, whereas HER2-positive gastric cancers with equivocal GA expressed HER2 heterogeneously within the metastatic tumor, suggesting that metastatic foci of the latter HER2-positive cases would be potentially resistant to trastuzumab. PMID:25828363

  6. Synthesis, characterization, and magnetically guided antiproliferative activity studies of drug-loaded superparamagnetic nanovectors

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Vázquez Ortega, Salvador; Barriga-Castro, Enrique Díaz; Mendoza-Reséndez, Raquel; Gómez-Treviño, Alberto

    2015-05-01

    Commonly, the key players in anticancer therapies and, more specifically, antineoplastic drugs display poor water solubility and slow dissolution rates. As a consequence, they present low bioavailability, poor tissue distribution, and unfavorable pharmacokinetic profiles, limiting their use. To overcome these barriers and improve efficacy, various drug formulations and delivery strategies have been developed. For example, nanoparticles can be used as drug delivery vehicles and current research is encouraging. However, the intra-tumoral diffusion of functionalized nanovehicles remains to be achieved. In the present study, the anticancer drug paclitaxel was loaded into superparamagnetic nanoparticles and characterized. Novel in vitro experiments based on one or two layers of cells revealed important information about the conditions required to achieve efficient drug intra-tumoral diffusion, using these superparamagnetic nanovectors, once they have been localized by external magnetic fields. These studies indicated that ultralow concentrations of paclitaxel (i.e., tenths of ng/μl) significantly reduce the viability of neoplastic cells when they are delivered with control using these nanovectors. Moreover, we showed that a discontinuous application of a magnetic field promotes the localization of the nanoparticles in a targeted region and favors the subsequent dissemination of the nanoparticles between cellular layers.

  7. Club Drugs

    MedlinePlus

    ... Rohypnol, ketamine, as well as MDMA (ecstasy) and methamphetamine ( Drug Facts: Club Drugs , National Institute on Drug ... Club Drugs , National Institute on Drug Abuse, 2010). Methamphetamine is a powerfully addictive stimulant associated with serious ...

  8. Role of Hepatic Drug Transporters in Drug Development.

    PubMed

    Liu, Houfu; Sahi, Jasminder

    2016-07-01

    Hepatic drug transporters can play an important role in pharmacokinetics and the disposition of therapeutic drugs and endogenous substances. Altered function of hepatic drug transporters due to drug-drug interactions (DDIs), genetic polymorphisms, and disease states can often result in a change in systemic and/or tissue exposure and subsequent pharmacological/toxicological effects of their substrates. Regulatory agencies including the US Food and Drug Administration, European Medicines Agency, and Japan Pharmaceuticals and Medical Devices Agency have issued guidance for industry on drug interaction studies, which contain comprehensive recommendations on in vitro and in vivo study tools and cutoff values to evaluate the DDI potential of new molecular entities mediated by hepatic drug transporters. In this report we summarize the latest regulatory and scientific progress of hepatic drug transporters in clinical DDIs, pharmacogenetics, drug-induced liver injury (DILI), as well as methods for predicting transporter-mediated pharmacokinetics and DDIs. PMID:27385168

  9. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery.

    PubMed

    Chen, Ko-Jie; Liang, Hsiang-Fa; Chen, Hsin-Lung; Wang, Yucai; Cheng, Po-Yuan; Liu, Hao-Li; Xia, Younan; Sung, Hsing-Wen

    2013-01-22

    The therapeutic effectiveness of chemotherapy is optimal only when tumor cells are subjected to a maximum drug exposure. To increase the intratumoral drug concentration and thus the efficacy of chemotherapy, a thermoresponsive bubble-generating liposomal system is proposed for triggering localized extracellular drug delivery. The key component of this liposomal formulation is the encapsulated ammonium bicarbonate (ABC), which is used to create the transmembrane gradient needed for a highly efficient encapsulation of doxorubicin (DOX). At an elevated temperature (42 °C), decomposition of ABC generates CO(2) bubbles, creating permeable defects in the lipid bilayer that rapidly release DOX and instantly increase the drug concentration locally. Because the generated CO(2) bubbles are hyperechogenic, they also enhance ultrasound imaging. Consequently, this new liposomal system encapsulated with ABC may also provide an ability to monitor a temperature-controlled drug delivery process.

  10. [Customizing dosage drugs what contribution in therapeutic drug monitoring?].

    PubMed

    Abdessadek, Mohammed; Magoul, Rabia; Amarti, Afaf; El Ouezzani, Seloua; Khabbal, Youssef

    2014-01-01

    Drug response is often variable from an individual to another: the same dose of drug administered to different patients could cause variable pharmacological effects in nature and intensity. Those effects are often the result of variability in drugs pharmacokinetics (absorption, distribution, metabolism and elimination) which alter their bioavailability. In fact, two factors should be taken into account: the disease(s) from which the patient suffers, and the associated drugs, because many drug interactions may alter their pharmacokinetics causing consequently quite enough of different therapeutic effects. The choice of the assay of the drug subject in monitoring is crucial, it allows quantifying the in vivo dose of the drug and the quality of compliance thereof, the pharmacokinetic characteristics allows the clinician to adjust the dosage by different approaches so that plasma concentrations are included in the therapeutic range. Therapeutic monitoring aims to increase clinical efficacy and to minimize toxicity.

  11. Drug allergies

    MedlinePlus

    Allergic reaction - drug (medication); Drug hypersensitivity; Medication hypersensitivity ... A drug allergy involves an immune response in the body that produces an allergic reaction to a medicine. The ...

  12. Clinical nutrition and drug interactions.

    PubMed

    Ekincioğlu, Aygin Bayraktar; Demirkan, Kutay

    2013-01-01

    A drug's plasma level, pharmacological effects or side effects, elimination, physicochemical properties or stability could be changed by interactions of drug-drug or drug-nutrition products in patients who receive enteral or parenteral nutritional support. As a result, patients might experience ineffective outcomes or unexpected effects of therapy (such as drug toxicity, embolism). Stability or incompatibility problems between parenteral nutrition admixtures and drugs might lead to alterations in expected therapeutic responses from drug and/or parenteral nutrition, occlusion in venous catheter or symptoms or mortality due to infusion of composed particles. Compatibilities between parenteral nutrition and drugs are not always guaranteed in clinical practice. Although the list of compatibility or incompatibilities of drugs are published for the use of clinicians in their practices, factors such as composition of parenteral nutrition admixture, drug concentration, contact time in catheter, temperature of the environment and exposure to light could change the status of compatibilities between drugs and nutrition admixtures. There could be substantial clinical changes occurring in the patient's nutritional status and pharmacological effects of drugs due to interactions between enteral nutrition and drugs. Drug toxicity and ineffective nutritional support might occur as a result of those predictable interactions. Although administration of drugs via feeding tube is a complex and problematic route for drug usage, it is possible to minimise the risk of tube occlusion, decreased effects of drug and drug toxicity by using an appropriate technique. Therefore, it is important to consider pharmacological dosage forms of drugs while administering drugs via a feeding tube. In conclusion, since the pharmacists are well-experienced and more knowledgeable professionals in drugs and drug usage compared to other healthcare providers, it is suggested that provision of information and

  13. Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer-Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?

    PubMed

    Hayashi, Naoya; Ogawa, Yasuhiro; Kubota, Kei; Okino, Kazuhiro; Akima, Ryo; Morita-Tokuhiro, Shiho; Tsuzuki, Akira; Yaogawa, Shin; Nishioka, Akihito; Miyamura, Mitsuhiko

    2016-01-01

    We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of -457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method.

  14. Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer-Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?

    PubMed

    Hayashi, Naoya; Ogawa, Yasuhiro; Kubota, Kei; Okino, Kazuhiro; Akima, Ryo; Morita-Tokuhiro, Shiho; Tsuzuki, Akira; Yaogawa, Shin; Nishioka, Akihito; Miyamura, Mitsuhiko

    2016-01-01

    We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of -457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method. PMID

  15. [Mechanisms of drug metabolism--implications for drug interaction].

    PubMed

    Sitkiewicz, D

    2000-09-01

    Most drugs undergo biotransformation before excretion by renal, biliary or other routes. The main purpose of metabolism is to make the drug, which is usually lipophilic, more water soluble. Metabolic reactions, depending upon the end product formed, can be classified as functionalisation (phase I) or conjugation (Phase II) reactions. Phase I metabolic reactions include oxidation, reduction and hydrolysis; while phase II processes are glucuronidation, sulfation, methylation, acetylation and mercapture formation. Cytochrome P-450 isozymes play a central role in metabolism of great majority of xenobiotics, as well as some endogenous substances. Many drugs can inhibit, induce and alter relative amounts of different P-450 enzymes; therefore, possibilities of drug-drug interactions exist in that one drug can influence biodisposition of another with potential clinical implications. One drug can inhibit metabolism of another, leading to excessive accumulation and toxicity. Alternatively, one drug can stimulate or induce metabolism of another drug resulting in subtherapeutic plasma levels of the later.

  16. [Importance of drug interactions with smoking in modern drug research].

    PubMed

    Laki, Szilvia; Kalapos-Kovács, Bernadett; Antal, István; Klebovich, Imre

    2013-01-01

    Drug interaction is a process during which a drug's fate in the body or its pharmacological properties are altered by an influencing factor. The extent of the drug interaction's effect can vary. The interaction could result from the modulation by another drug, food, alcohol, caffeine, narcotics, a drug influencing absorption or smoking. Moreover, transporter interactions with smoking could also have a major impact on many drug's efficacy. Clinically relevant drug interactions with smoking were classified in terms of their effect: pharmacokinetic, pharmacodynamic and transporter interactions. Policyclic aromatic carbohydrates, found in cigarette smoke, have enzyme inducing properties. The interaction affects mainly the hepatic isoenzyme CYP1A2. Interactions caused by smoking have an effect on all drugs being substrates of and therefore metabolised by CYP1A2. Pharmacokinetic alteration can also occur during the absorption, distribution and elimination process. The pharmacodynamic interactions are mainly caused by the effects of nicotine, a cigarette smoke component. Through interactions, smoking could also modify the activity of transporter proteins, altering this way the ADME properties of many drugs. Since smoking is one of the deadliest artefact in the history of human civilisation, identifying drug interactions with smoking is the physician's and pharmacist's major responsibility and task. Moreover, it is necessary to identify the patient's smoking habits during a medical treatment. This review aims to investigate the main types of drug interactions (PK/PD), identify factors influencing the activity of CYP enzymes and transporters, and also summarize the mechanisms of the most important drug interactions with smoking and their clinically relevant consequences (Table II-VI.). Drugs, with effects somehow altered by smoking-interactions, have been studied. PMID:24575657

  17. Drug Safety

    MedlinePlus

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  18. Drug-induced hyperkalemia.

    PubMed

    Ben Salem, Chaker; Badreddine, Atef; Fathallah, Neila; Slim, Raoudha; Hmouda, Houssem

    2014-09-01

    Hyperkalemia is a common clinical condition that can be defined as a serum potassium concentration exceeding 5.0 mmol/L. Drug-induced hyperkalemia is the most important cause of increased potassium levels in everyday clinical practice. Drug-induced hyperkalemia may be asymptomatic. However, it may be dramatic and life threatening, posing diagnostic and management problems. A wide range of drugs can cause hyperkalemia by a variety of mechanisms. Drugs can interfere with potassium homoeostasis either by promoting transcellular potassium shift or by impairing renal potassium excretion. Drugs may also increase potassium supply. The reduction in renal potassium excretion due to inhibition of the renin-angiotensin-aldosterone system represents the most important mechanism by which drugs are known to cause hyperkalemia. Medications that alter transmembrane potassium movement include amino acids, beta-blockers, calcium channel blockers, suxamethonium, and mannitol. Drugs that impair renal potassium excretion are mainly represented by angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, direct renin inhibitors, nonsteroidal anti-inflammatory drugs, calcineurin inhibitors, heparin and derivatives, aldosterone antagonists, potassium-sparing diuretics, trimethoprim, and pentamidine. Potassium-containing agents represent another group of medications causing hyperkalemia. Increased awareness of drugs that can induce hyperkalemia, and monitoring and prevention are key elements for reducing the number of hospital admissions, morbidity, and mortality related to drug-induced hyperkalemia.

  19. Photodynamic Therapy (PDT) using intratumoral injection of the 5- aminolevulinic acid (5-ALA) for the treatment of eye cancer in cattle

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Mancilha, Geraldo; Zângaro, Renato A.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    A six-year old Holstein cow with an eye cancer (ocular squamous cell carcinoma) involving the third eyelid and conjunctiva was submitted to photodynamic therapy using intratumoral 20% aminolevulinic acid (5-ALA - Aldrich Chemical Company, Milwaukee, USA) and a light emitting diode (LED - VET LED - MMOptics (R)) with wavelength between 600 and 700 nm, 2 cm diameter circular light beam, power of 150 mW, light dose of 50 J/cm2 as a source of irradiation. Fifteen days after the experimental procedure we observed about 50% tumor reduction and complete remission after 3 months. Relapse was not observed up to 12 months after the treatment. Although the study only includes one animal not allowing definite conclusions, it indicates that PDT represents a safe and technically feasible approach in the treatment of eye cancer in cattle.

  20. Improvement of the tumor-suppressive effect of boron neutron capture therapy for amelanotic melanoma by intratumoral injection of the tyrosinase gene.

    PubMed

    Morita, Norimasa; Hiratsuka, Junichi; Kondoh, Hirohumi; Uno, Masako; Asano, Tomoyuki; Niki, Yoko; Sakurai, Yoshinori; Ono, Koji; Harada, Tamotsu; Imajo, Yoshinari

    2006-04-01

    Boron neutron capture therapy (BNCT) is successful when there is a sufficient (10)B concentration in tumor cells. In melanoma, (10)B-para-boronophenylalanine (BPA) accumulation is proportional to melanin-producing activity. This study was done to confirm enhancement of the tumor-suppressive effect of BNCT on amelanotic melanoma by intratumoral injection of the tyrosinase gene. D178 or FF amelanotic melanomas were implanted s.c. in Syrian hamsters. One group of D178- or FF-bearing hamsters (TD178 or TFF group) received intratumoral injections of pcDNA-Tyrs constructed as a tyrosinase expression plasmid. The other hamsters (pD178 and pFF groups) were injected with pUC119, and control hamsters (D178 and FF groups) only with transfection reagents. All the groups underwent immunofluorescence analysis of tyrosinase expression and BPA biodistribution studies. BNCT experiments were done at the Kyoto University Research Reactor. Tyrosinase expression increased in the tumors of the TD178 and TFF groups but remained the same in the pD178 and pFF groups. Tumor boron concentrations in the TD178 and TFF groups increased significantly (TD178: 49.7 +/- 12.6 versus D178: 27.2 +/- 4.9 microg/g, P < 0.0001; TFF: 30.7 +/- 6.6 versus FF: 13.0 +/- 4.7 microg/g, P < 0.0001). The BNCT tumor-suppressive effect was marked in the TD178 and TFF groups. In vivo transfection with the tyrosinase gene increased BPA accumulation in the tumors, the BNCT tumor-suppressive effect on amelanotic melanoma being significantly enhanced. These findings suggest a potential new clinical strategy for the treatment of amelanotic melanoma with BNCT.

  1. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma

    PubMed Central

    Partlová, Simona; Bouček, Jan; Kloudová, Kamila; Lukešová, Eva; Zábrodský, Michal; Grega, Marek; Fučíková, Jitka; Truxová, Iva; Tachezy, Ruth; Špíšek, Radek; Fialová, Anna

    2015-01-01

    Human papillomavirus (HPV) infection is one of the most important etiologic causes of oropharyngeal head and neck squamous cell carcinoma (HNSCC). Patients with HPV-positive HNSCC were reported to have a better clinical outcome than patients with HPV-negative cancers. However, little is known about the possible causes of different clinical outcomes. In this study, we analyzed a detailed immune profile of tumor samples from HNSCC patients with respect to their HPV status. We analyzed the characteristics of immune cell infiltrates, including the frequency and distribution of antigen-presenting cells and naïve, regulatory and effector T cells and the cytokine and chemokine levels in tumor tissue. There was a profound difference in the extent and characteristics of intratumoral immune cell infiltrates in HNSCC patients based on their HPV status. In contrast to HPV-negative tumor tissues, HPV-positive tumor samples showed significantly higher numbers of infiltrating IFNγ+ CD8+ T lymphocytes, IL-17+ CD8+ T lymphocytes, myeloid dendritic cells and proinflammatory chemokines. Furthermore, HPV-positive tumors had significantly lower expression of Cox-2 mRNA and higher expression of PD1 mRNA compared to HPV-negative tumors. The presence of a high level of intratumoral immune cell infiltrates might play a crucial role in the significantly better response of HPV-positive patients to standard therapy and their favorable clinical outcome. Furthermore, characterization of the HNSCC immune profile might be a valuable prognostic tool in addition to HPV status and might help identify novel targets for therapeutic strategies, including cancer immunotherapy. PMID:25949860

  2. Intratumoral expression profiling of genes involved in angiogenesis in colorectal cancer patients treated with chemotherapy plus the VEGFR inhibitor PTK787/ZK 222584 (vatalanib).

    PubMed

    Wilson, P M; Yang, D; Azuma, M; Shi, M M; Danenberg, K D; Lebwohl, D; Sherrod, A; Ladner, R D; Zhang, W; Danenberg, P V; Trarbach, T; Folprecht, G; Meinhardt, G; Lenz, H-J

    2013-10-01

    The phase III CONFIRM clinical trials demonstrated that metastatic colorectal cancer patients with elevated serum lactate dehydrogenase (LDH) had improved outcome when the vascular endothelial growth factor receptor (VEGFR) inhibitor PTK/ZK (Vatalanib) was added to FOLFOX4 chemotherapy. We investigated the hypothesis that high intratumoral expression of genes regulated by hypoxia-inducible factor-1 alpha (HIF1α), namely LDHA, glucose transporter-1 (GLUT-1), VEGFA, VEGFR1, and VEGFR2, were predictive of outcome in CONFIRM-1. Tumor tissue was isolated by laser-capture microdissection from 85 CONFIRM-1 tumor specimens; FOLFOX4/placebo n=42, FOLFOX4/PTK/ZK n=43. Gene expression was analyzed using quantitative RT-PCR. In univariate analyses, elevated mRNA expression of LDHA, GLUT-1, and VEGFR1 were associated with response to FOLFOX4/PTK/ZK. In univariate and multivariate analyses, elevated LDHA and VEGFR1 mRNA levels were associated with improved progression-free survival in FOLFOX4/PTK/ZK patients. Furthermore, increased HIF1α and VEGFR2 mRNA levels were associated with decreased survival in FOLFOX/placebo patients but not in patients who received FOLFOX4/PTK/ZK. These are the first data suggesting intratumoral mRNA expression of genes involved in angiogenesis/HIF pathway may predict outcome to VEGFR-inhibitors. Biomarkers that assist in directing VEGFR-inhibitors toward patients with an increased likelihood of benefit will improve the cost-effectiveness of these promising agents. PMID:22664478

  3. Social Problems of Drug Use and Drug Policies.

    ERIC Educational Resources Information Center

    Fort, Joel

    The social and legal policies that control or prevent the use of mind-altering drugs are the main cause of the social problems arising from their use. The existing policies are ineffective; the wrong drugs receive the most attention and laws are directed at the wrong phase of the cycle of promotion, distribution and use. The following reforms are…

  4. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed.

  5. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed. PMID:15810684

  6. 42 CFR 456.705 - Prospective drug review.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic... potential for, or the occurrence of— (i) An undesirable alteration of the therapeutic effect of a given drug... adverse effect of the drug on the patient's disease condition. (3) Adverse drug-drug interaction, that...

  7. 42 CFR 456.705 - Prospective drug review.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic... potential for, or the occurrence of— (i) An undesirable alteration of the therapeutic effect of a given drug... adverse effect of the drug on the patient's disease condition. (3) Adverse drug-drug interaction, that...

  8. 42 CFR 456.705 - Prospective drug review.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic... potential for, or the occurrence of— (i) An undesirable alteration of the therapeutic effect of a given drug... adverse effect of the drug on the patient's disease condition. (3) Adverse drug-drug interaction, that...

  9. 42 CFR 456.705 - Prospective drug review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic... potential for, or the occurrence of— (i) An undesirable alteration of the therapeutic effect of a given drug... adverse effect of the drug on the patient's disease condition. (3) Adverse drug-drug interaction, that...

  10. Drug Interactions and Antiretroviral Drug Monitoring

    PubMed Central

    Foy, Matthew; Sperati, C. John; Lucas, Gregory M.

    2014-01-01

    Due to the improved longevity afforded by combination antiretroviral therapy (cART), HIV-infected individuals are developing several non-AIDS related comorbid conditions. Consequently, medical management of the HIV-infected population is increasingly complex, with a growing list of potential drug-drug interactions (DDIs). This article reviews some of the most relevant and emerging potential interactions between antiretroviral medications and other agents. The most common DDIs are those involving protease inhibitors or non-nucleoside reverse transcriptase inhibitors which alter the cytochrome P450 enzyme system and/or drug transporters such as p-glycoprotein. Of note are the new agents for the treatment of chronic hepatitis C virus infection. These new classes of drugs and others drugs which are increasingly used in this patient population represent a significant challenge with regard to achieving the goals of effective HIV suppression and minimization of drug-related toxicities. Awareness of DDIs and a multidisciplinary approach are imperative in reaching these goals. PMID:24950731

  11. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    PubMed Central

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  12. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles.

    PubMed

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-11-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance.

  13. A phase II trial evaluating the effects and intra-tumoral penetration of bortezomib in patients with recurrent malignant gliomas.

    PubMed

    Raizer, Jeffrey J; Chandler, James P; Ferrarese, Roberto; Grimm, Sean A; Levy, Robert M; Muro, Kenji; Rosenow, Joshua; Helenowski, Irene; Rademaker, Alfred; Paton, Martin; Bredel, Markus

    2016-08-01

    One resistance mechanism in malignant gliomas (MG) involves nuclear factor-κB (NF-κB) activation. Bortezomib prevents proteasomal degradation of NF-κB inhibitor α (NFKBIA), an endogenous regulator of NF-κB signaling, thereby limiting the effects of NF-κB on tumor survival and resistance. A presurgical phase II trial of bortezomib in recurrent MG was performed to determine drug concentration in tumor tissue and effects on NFKBIA. Patients were enrolled after signing an IRB approved informed consent. Treatment was bortezomib 1.7 mg/m(2) IV on days 1, 4 and 8 and then surgery on day 8 or 9. Post-operatively, treatment was Temozolomide (TMZ) 75 mg/m(2) PO on days 1-7 and 14-21 and bortezomib 1.7 mg/m(2) on days 7 and 21 [1 cycle was (1) month]. Ten patients were enrolled (8 M and 2 F) with 9 having surgery. Median age and KPS were 50 (42-64) and 90 % (70-100). The median cycles post-operatively was 2 (0-4). The trial was stopped as no patient had a PFS-6. All patients are deceased. Paired plasma and tumor bortezomib concentration measurements revealed higher drug concentrations in tumor than in plasma; NFKBIA protein levels were similar in drug-treated vs. drug-naïve tumor specimens. Nuclear 20S proteasome was less in postoperative samples. Postoperative treatment with TMZ and bortezomib did not show clinical activity. Bortezomib appears to sequester in tumor but pharmacological effects on NFKBIA were not seen, possibly obscured due to downregulation of NFKBIA during tumor progression. Changes in nuclear 20S could be marker of bortezomib effect on tumor. PMID:27300524

  14. KINOMIC ALTERATIONS IN ATYPICAL MENINGIOMA

    PubMed Central

    Anderson, Joshua C.; Taylor, Robert B.; Fiveash, John B.; de Wijn, Rik; Gillespie, G. Yancey; Willey, Christopher D.

    2015-01-01

    Background We sought to profile Atypical Meningioma in a high-throughput manner to better understand the altered signaling within these tumors and specifically the kinases altered in recurrent atypical meningioma. Kinomic Profiles could be used to identify prognostic biomarkers for responders/non-responders to classify future patients that are unlikely to benefit from current therapies. Directly these results could be used to identify drug-actionable kinase targets as well. Methods Peptide-substrate microarray kinase activity analysis was conducted with a PamStation®12 analyzing the tyrosine kinome in each tumor kinetically against ~144 target peptides. These data were then analyzed relative to clinical outcome (e.g., tumor recurrence). Results 3 major clusters of atypical meningiomas were identified with highly variant peptides primarily being targets of EGFR family, ABL, BRK and BMX kinases. Kinomic analysis of recurrent atypical meningiomas indicated patterns of increased phosphorylation of BMX, TYRO3 and FAK substrates as compared to non-recurrent tumors. Conclusion The atypical meningiomas profiled here exhibited molecular sub-clustering that may have phenotypic corollaries predictive of outcome. Recurrent tumors had increases in kinase activity that may predict resistance to current therapies, and may guide selection of directed therapies. Taken together these data further the understanding of kinomic alteration in atypical meningioma, and the processes that may not only mediate recurrence, but additionally may identify kinase targets for intervention. PMID:27158663

  15. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  16. Drug disposition in pathophysiological conditions.

    PubMed

    Gandhi, Adarsh; Moorthy, Bhagavatula; Ghose, Romi

    2012-11-01

    Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions. PMID:22746301

  17. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.

    PubMed

    Liu, Su-Yang; Joseph, Nancy M; Ravindranathan, Ajay; Stohr, Bradley A; Greenland, Nancy Y; Vohra, Poonam; Hosfield, Elizabeth; Yeh, Iwei; Talevich, Eric; Onodera, Courtney; Van Ziffle, Jessica A; Grenert, James P; Bastian, Boris C; Chen, Yunn-Yi; Krings, Gregor

    2016-09-01

    Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with

  18. The value of intratumoral heterogeneity of 18F-FDG uptake to differentiate between primary benign and malignant musculoskeletal tumours on PET/CT

    PubMed Central

    Nakajo, Masayuki; Jinguji, Megumi; Fukukura, Yoshihiko; Nakabeppu, Yoshiaki; Tani, Atsushi; Yoshiura, Takashi

    2015-01-01

    Objective: The cumulative standardized uptake value (SUV)–volume histogram (CSH) was reported to be a novel way to characterize heterogeneity in intratumoral tracer uptake. This study investigated the value of fluorine-18 fludeoxyglucose (18F-FDG) intratumoral heterogeneity in comparison with SUV to discriminate between primary benign and malignant musculoskeletal (MS) tumours. Methods: The subjects comprised 85 pathologically proven MS tumours. The area under the curve of CSH (AUC-CSH) was used as a heterogeneity index, with lower values corresponding with increased heterogeneity. As 22 tumours were indiscernible on 18F-FDG positron emission tomography, maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and AUC-CSH were obtained in 63 positive tumours. The Mann–Whitney U test and receiver operating characteristic (ROC) analysis were used for analyses. Results: The difference between benign (n = 35) and malignant tumours (n = 28) was significant in AUC-CSH (p = 0.004), but not in SUVmax (p = 0.168) and SUVmean (p = 0.879). The sensitivity, specificity and accuracy for diagnosing malignancy were 61%, 66% and 64% for SUVmax (optical threshold value, >6.9), 54%, 60% and 57% for SUVmean (optical threshold value, >3) and 61%, 86% and 75% for AUC-CSH (optical threshold value, ≤0.42), respectively. The area under the ROC curve was significantly higher in AUC-CSH (0.71) than SUVmax (0.60) (p = 0.018) and SUVmean (0.51) (p = 0.005). Conclusion: The heterogeneity index, AUC-CSH, has a higher diagnostic accuracy than SUV analysis in differentiating between primary benign and malignant MS tumours, although it is not sufficiently high enough to obviate histological analysis. Advances in knowledge: AUC-CSH can assess the heterogeneity of 18F-FDG uptake in primary benign and malignant MS tumours, with significantly greater heterogeneity associated with malignant MS tumours. AUC-CSH is more diagnostically accurate

  19. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.

    PubMed

    Liu, Su-Yang; Joseph, Nancy M; Ravindranathan, Ajay; Stohr, Bradley A; Greenland, Nancy Y; Vohra, Poonam; Hosfield, Elizabeth; Yeh, Iwei; Talevich, Eric; Onodera, Courtney; Van Ziffle, Jessica A; Grenert, James P; Bastian, Boris C; Chen, Yunn-Yi; Krings, Gregor

    2016-09-01

    Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with

  20. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    NASA Astrophysics Data System (ADS)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to

  1. Polytherapy and drug interactions in elderly

    PubMed Central

    Gujjarlamudi, Hima Bindu

    2016-01-01

    There is an increase in population of elderly above the age of 65. As age advances, more diseases develop resulting in use of more medications. Physiological changes, alterations in homeostatic regulation and diseases modify pharmacokinetics and drug response in older patients. The risk for drug interactions and drug-related problems increases along with multiple medications. Periodic evaluation of the patients’ drug regimen is essential to minimize polytherapy. Clinicians must be alert to the use of herbal and dietary supplements as they are prone to drug-drug interactions. This article focuses on the possible pharmacokinetic, pharmacodynamic, and herbal drug interactions occurring in the elderly. PMID:27721636

  2. Amazing Altered Books

    ERIC Educational Resources Information Center

    Kieling, Linda W.

    2006-01-01

    Linda Kieling, an art teacher at Rosemont Ridge Middle school in West Linn, Oregon, describes an altered book art project she introduced to her students. Alteration of books is a form of recycling that started in the eleventh century when Italian monks recycled old manuscripts written on vellum by scraping off the ink and adding new text and…

  3. Drug Abuse

    MedlinePlus

    ... as drugged driving, violence, stress, and child abuse. Drug abuse can lead to homelessness, crime, and missed work or problems with keeping a job. It harms unborn babies and destroys families. There are different types of treatment for drug abuse. But the best is to prevent drug ...

  4. Controlled drugs.

    PubMed

    2016-05-18

    Essential facts Controlled drugs are defined and governed by the Misuse of Drugs Act 1971 and associated regulations. Examples of controlled drugs include morphine, pethidine and methadone. Since 2012, appropriately qualified nurses and midwives can prescribe controlled drugs for medical conditions within their competence. There are some exceptions when treating addiction. PMID:27191427

  5. Expression of Intratumoral IGF-II Is Regulated by the Gene Imprinting Status in Triple Negative Breast Cancer from Vietnamese Patients

    PubMed Central

    Radhakrishnan, Vinodh Kumar; Hernandez, Lorraine Christine; Anderson, Kendra; Tan, Qianwei; De León, Marino; De León, Daisy D.

    2015-01-01

    African American women suffer higher incidence and mortality of triple negative breast cancer (TNBC) than Caucasian women. TNBC is very aggressive, causing the worst clinical outcome. We previously demonstrated that tumors from these patients express high IGF-II and exhibit high activation of the IGF signaling pathways. IGF-II gene expression is imprinted (monoallelic), promotes tumor progression, and metastasis and regulates Survivin, a TNBC prognostic marker. Since BC mortality has increased among young Vietnamese women, we analyzed 48 (paired) TNBC samples from Vietnamese patients to assess IGF-II expression. We analyzed all samples by qrtPCR for identification of IGF-II heterozygosity and to determine allelic expression of the IGF-II gene. We also analyzed the tissues for proIGF-II and Survivin by RT-PCR and Western blotting. A total of 28 samples displayed IGF-II heterozygosity of which 78% were biallelic. Tumors with biallelic IGF-II gene expression exhibited the highest levels of proIGF-II and Survivin. Although 100% of these tissues corresponding normal samples were biallelic, they expressed significantly lower levels of or no proIGF-II and Survivin. Thus, IGF-II biallelic gene expression is differentially regulated in normal versus tumor tissues. We propose that intratumoral proIGF-II is dependent on the IGF-II gene imprinting status and it will promote a more aggressive TNBC. PMID:26448747

  6. Intratumoral INF-γ triggers an antiviral state in GL261 tumor cells: a major hurdle to overcome for oncolytic vaccinia virus therapy of cancer

    PubMed Central

    Kober, Christina; Weibel, Stephanie; Rohn, Susanne; Kirscher, Lorenz; Szalay, Aladar A

    2015-01-01

    Oncolytic vaccinia virus (VACV) therapy is an alternative treatment option for glioblastoma multiforme. Here, we used a comparison of different tumor locations and different immunologic and genetic backgrounds to determine the replication efficacy and oncolytic potential of the VACV LIVP 1.1.1, an attenuated wild-type isolate of the Lister strain, in murine GL261 glioma models. With this approach, we expected to identify microenvironmental factors, which may be decisive for failure or success of oncolytic VACV therapy. We found that GL261 glioma cells implanted subcutaneously or orthotopically into Balb/c athymic, C57BL/6 athymic, or C57BL/6 wild-type mice formed individual tumors that respond to oncolytic VACV therapy with different outcomes. Surprisingly, only Balb/c athymic mice with subcutaneous tumors supported viral replication. We identified intratumoral IFN-γ expression levels that upregulate MHCII expression on GL261 cells in C57BL/6 wild-type mice associated with a non-permissive status of the tumor cells. Moreover, this IFN-γ-induced tumor cell phenotype was reversible. PMID:27119106

  7. Downstream mediators of the intratumoral interferon response suppress antitumor immunity, induce gemcitabine resistance and associate with poor survival in human pancreatic cancer.

    PubMed

    Delitto, Daniel; Perez, Chelsey; Han, Song; Gonzalo, David H; Pham, Kien; Knowlton, Andrea E; Graves, Christina L; Behrns, Kevin E; Moldawer, Lyle L; Thomas, Ryan M; Liu, Chen; George, Thomas J; Trevino, Jose G; Wallet, Shannon M; Hughes, Steven J

    2015-12-01

    The cancer microenvironment allows tumor cells to evade immune surveillance through a variety of mechanisms. While interferon-γ (IFNγ) is central to effective antitumor immunity, its effects on the microenvironment are not as clear and have in some cancers been shown to induce immune checkpoint ligands. The heterogeneity of these responses to IFNγ remains poorly characterized in desmoplastic malignancies with minimal inflammatory cell infiltration, such as pancreatic cancer (PC). Thus, the IFNγ response within and on key cells of the PC microenvironment was evaluated. IFNγ induced expression of human leukocyte antigen (HLA) class I and II on PC cell lines, primary pancreatic cancer epithelial cells (PPCE) and patient-derived tumor-associated stroma, concomitant with an upregulation of PDL1 in the absence of CD80 and CD86 expression. As expected, IFNγ also induced high levels of CXCL10 from all cell types. In addition, significantly higher levels of CXCL10 were observed in PC specimens compared to those from chronic pancreatitis, whereby intratumoral CXCL10 concentration was an independent predictor of poor survival. Immunohistochemical analysis revealed a subset of CXCR3-positive cancer cells in over 90 % of PC specimens, as well as on a subset of cultured PC cell lines and PPCE, whereby exposure to CXCL10 induced resistance to the chemotherapeutic gemcitabine. These findings suggest that IFNγ has multiple effects on many cell types within the PC microenvironment that may lead to immune evasion, chemoresistance and shortened survival.

  8. T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma

    PubMed Central

    Caron, Jonathan; Douguet, Laetitia; Garcette, Marylène; Kato, Masashi; Avril, Marie-Françoise; Abastado, Jean-Pierre; Bercovici, Nadège; Lucas, Bruno; Prévost-Blondel, Armelle

    2011-01-01

    Tumors affect myelopoeisis and induce the expansion of myeloid cells with immunosuppressive activity. In the MT/ret model of spontaneous metastatic melanoma, myeloid cells are the most abundant tumor infiltrating hematopoietic population and their proportion is highest in the most aggressive cutaneous metastasis. Our data suggest that the tumor microenvironment favors polarization of myeloid cells into type 2 cells characterized by F4/80 expression, a weak capacity to secrete IL-12 and a high production of arginase. Myeloid cells from tumor and spleen of MT/ret mice inhibit T cell proliferation and IFNγ secretion. Interestingly, T cells play a role in type 2 polarization of myeloid cells. Indeed, intra-tumoral myeloid cells from MT/ret mice lacking T cells are not only less suppressive towards T cells than corresponding cells from wild-type MT/ret mice, but they also inhibit more efficiently melanoma cell proliferation. Thus, our data support the existence of a vicious circle, in which T cells may favor cancer development by establishing an environment that is likely to skew myeloid cell immunity toward a tumor promoting response that, in turn, suppresses immune effector cell functions. PMID:21633700

  9. Intra-tumor AvidinOX allows efficacy of low dose systemic biotinylated Cetuximab in a model of head and neck cancer

    PubMed Central

    Anastasi, Anna Maria; Petronzelli, Fiorella; Chiapparino, Caterina; Carollo, Valeria; Roscilli, Giuseppe; Marra, Emanuele; Luberto, Laura; Aurisicchio, Luigi; Pacello, Maria Lucrezia; Spagnoli, Luigi Giusto; De Santis, Rita

    2016-01-01

    For locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC), the current clinical use of Cetuximab in chemo/radiotherapy protocols is often associated to severe systemic toxicity. Here we report in vitro data in human FaDu pharynx SCC cells, showing that inactive concentrations of biotinylated Cetuximab (bCet) become active upon anchorage to AvidinOX on the surface of tumor cells. AvidinOX-anchored bCet induces apoptosis and DNA damage as well as specific inhibition of signaling, degradation and abrogation of nuclear translocation of EGFR. In the mouse model of FaDu cancer, we show that intra-tumor injection of AvidinOX allows anti-tumor activity of an otherwise inactive, intraperitoneally delivered, low dose bCet. Consistently with in vitro data, in vivo tumor inhibition is associated to induction of apoptosis, DNA damage and reduced angiogenesis. AvidinOX is under clinical investigation for delivering radioactive biotin to inoperable tumors (ClinicalTrials.gov NCT02053324) and present data support its use for the local treatment of HNSCC in combination with systemic administration of low dose bCet. PMID:26575422

  10. Hypothesis: The Intratumoral Immune Response against a Cancer Progenitor Cell Impacts the Development of Well-Differentiated versus Dedifferentiated Disease in Liposarcoma

    PubMed Central

    Tseng, William W.; Chopra, Shefali; Engleman, Edgar G.; Pollock, Raphael E.

    2016-01-01

    Well-differentiated/dedifferentiated (WD/DD) liposarcoma is a rare malignancy of adipocyte origin (“fat cancer”). Tumors may be entirely WD, WD with a DD component, or rarely DD without a clear WD component. WD tumors are low grade and generally indolent, while tumors with a DD component are high grade and behave much more aggressively, with a modest potential for distant metastasis. The presence of cancer progenitor cells in WD/DD liposarcoma is suggested by clinical evidence and reported research findings. In addition, there are emerging data to support the existence of a naturally occurring, antigen-driven, and adaptive immune response within the tumor microenvironment. We hypothesize that the intratumoral immune response is directed against a cancer progenitor cell and that the outcome of this response impacts the development of WD versus DD disease. Further study will likely provide interesting insights into the disease biology of WD/DD liposarcoma that may be readily translated to other more common cancers. PMID:27376027

  11. Periostin expression in intra-tumoral stromal cells is prognostic and predictive for colorectal carcinoma via creating a cancer-supportive niche

    PubMed Central

    Tan, Xiaojie; Ding, Yibo; Luo, Yanxin; Cai, Hui; Liu, Yan; Gao, Xianhua; Liu, Qizhi; Yu, Yongwei; Du, Yan; Wang, Hao; Ma, Liye; Wang, Jianping; Chen, Kun; Ding, Yanqing; Fu, Chuangang; Cao, Guangwen

    2016-01-01

    Periostin (POSTN) expression in cancer cells and circulation has been related to poor prognosis of colorectal carcinoma (CRC). However, the role of POSTN expressed in intra-tumoral stroma on CRC progression remains largely unknown. This study enrolled 1098 CRC patients who received surgical treatment in Shanghai and Guangzhou, Mainland China. In Shanghai cohort, immunohistochemistry score of stromal POSTN expression increased consecutively from adjacent mucosa, primary CRC tissues, to metastatic CRC tissues (P < 0.001), while medium- and high-stromal POSTN expression, rather than epithelial POSTN expression, independently predicted unfavorable prognoses of CRC, adjusted for covariates including TNM stage and postoperative chemotherapy in multivariate Cox models. The results in Shanghai cohort were faithfully replicated in Guangzhou cohort. Stromal POSTN expression dose-dependently predicted an unfavorable prognosis of stage III CRC patients with postoperative chemotherapy in both cohorts. POSTN derived from colonic fibroblasts or recombinant POSTN significantly promoted proliferation, anchorage independent growth, invasion, and chemo-resistance of CRC cells; whereas these effects were counteracted via targeting to PI3K/Akt or Wnt/β-catenin signaling pathway. CRC cell RKO-derived factor(s) significantly induced POSTN production in colonic fibroblasts and autocrine POSTN promoted proliferation, migration, and anchorage independent growth of fibroblasts. Conclusively, stromal POSTN is prognostic and predictive for CRC via creating a niche to facilitate cancer progression. Targeting POSTN-induced signaling pathways may be therapeutic options for metastatic or chemoresistant CRC. PMID:26556874

  12. Targeting of CYP17A1 Lyase by VT-464 Inhibits Adrenal and Intratumoral Androgen Biosynthesis and Tumor Growth of Castration Resistant Prostate Cancer

    PubMed Central

    Maity, Sankar N.; Titus, Mark A.; Gyftaki, Revekka; Wu, Guanglin; Lu, Jing-Fang; Ramachandran, S.; Li-Ning-Tapia, Elsa M.; Logothetis, Christopher J.; Araujo, John C.; Efstathiou, Eleni

    2016-01-01

    Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a validated treatment target for the treatment of metastatic castration-resistant prostate cancer (CRPC). Abiraterone acetate (AA) inhibits both 17α-hydroxylase (hydroxylase) and 17,20-lyase (lyase) reactions catalyzed by CYP17A1 and thus depletes androgen biosynthesis. However, coadministration of prednisone is required to suppress the mineralocorticoid excess and cortisol depletion that result from hydroxylase inhibition. VT-464, a nonsteroidal small molecule, selectively inhibits CYP17A1 lyase and therefore does not require prednisone supplementation. Administration of VT-464 in a metastatic CRPC patient presenting with high tumoral expression of both androgen receptor (AR) and CYP17A1, showed significant reduction in the level of both dehydroepiandrosterone (DHEA) and serum PSA. Treatment of a CRPC patient-derived xenograft, MDA-PCa-133 expressing H874Y AR mutant with VT-464, reduced the increase in tumor volume in castrate male mice more than twice as much as the vehicle (P < 0.05). Mass spectrometry analysis of post-treatment xenograft tumor tissues showed that VT-464 significantly decreased intratumoral androgens but not cortisol. VT-464 also reduced AR signaling more effectively than abiraterone in cultured PCa cells expressing T877A AR mutant. Collectively, this study suggests that VT-464 therapy can effectively treat CRPC and be used in precision medicine based on androgen receptor mutation status. PMID:27748439

  13. Epigenetic alterations in depression and antidepressant treatment.

    PubMed

    Menke, Andreas; Binder, Elisabeth B

    2014-09-01

    Epigenetic modifications control chromatin structure and function, and thus mediate changes in gene expression, ultimately influencing protein levels. Recent research indicates that environmental events can induce epigenetic changes and, by this, contribute to long-term changes in neural circuits and endocrine systems associated with altered risk for stress-related psychiatric disorders such as major depression. In this review, we describe recent approaches investigating epigenetic modifications associated with altered risk for major depression or response to antidepressant drugs, both on the candidate gene levels as well as the genome-wide level. In this review we focus on DNA methylation, as this is the most investigated epigenetic change in depression research.

  14. Intratumoral estrogen sulfotransferase induction contributes to the anti-breast cancer effects of the dithiocarbamate derivative TM208

    PubMed Central

    Ji, Xi-wei; Chen, Guang-ping; Song, Yan; Hua, Ming; Wang, Li-jie; Li, Liang; Yuan, Yin; Wang, Si-yuan; Zhou, Tian-yan; Lu, Wei

    2015-01-01

    Aim: Sulfotransferase-catalyzed sulfation is the most important pathway for inactivating estrogens. Thus, activation of estrogen sulfotransferase (EST) may be an alternative approach for the treatment of estrogen-dependent breast cancer. In this study we investigated the involvement of EST in anti-breast cancer effects of the dithiocarbamate derivative TM208 in vitro and in vivo. Methods: The viability of human breast cancer MCF-7 cells was determined using a SBB assay. Nude mice bearing MCF-7 cells were orally administered TM208 (50 and 150 mg·kg−1·d−1) for 18 days. The xenograft tumors and uteri were collected. The mRNA expression of EST was examined with real-time PCR. EST protein was detected with Western blot, ELISA or immunohistochemical staining assays. A radioactive assay was used to measure the EST activity. Uterotropic bioassay was used to examine the uterine estrogen responses. Results: Treatment with TM208 (10, 15 and 20 μmol/L) concentration-dependently increased EST expression in MCF-7 cells in vitro. Co-treatment with triclosan, an inhibitor of sulfonation, abolished TM208-induced cytotoxicity in MCF-7 cells. TM208 exhibited an apparent anti-estrogenic property: it exerted more potent cytotoxicity in E2-treated MCF-7 cells. In the nude mice bearing MCF-7 cells, TM208 administration time-dependently increased the expression and activity of EST, and blocked the gradual increase of E2 concentration in the xenograft tumors. Furthermore, TM208 administration blocked the estrogens-stimulated uterine enlargement. Tamoxifen, a positive control drug, produced similar effects on the expression and activity of EST in vitro and in vivo. Conclusion: The induction of EST and reduction of estrogen concentration contribute to the anti-breast cancer action of TM208 and tamoxifen. TM208 may be developed as anticancer drug for the treatment of estrogen receptor-positive breast cancer. PMID:25937633

  15. Cocaine triggers epigenetic alterations in the corticostriatal circuit.

    PubMed

    Sadri-Vakili, Ghazaleh

    2015-12-01

    Acute and repeated exposure to cocaine induces long-lasting alterations in neural networks that underlie compulsive drug seeking and taking. Cocaine exposure triggers complex adaptations in the brain that are mediated by dynamic patterns of gene expression that are translated into enduring changes. Recently, epigenetic modifications have been unveiled as critical mechanisms underlying addiction that contribute to drug-induced plasticity by regulating gene expression. These alterations are also now linked to the heritability of cocaine-induced phenotypes. This review focuses on how changes in the epigenome, such as altered DNA methylation, histone modifications, and microRNAs, regulate transcription of specific genes that contribute to cocaine addiction.

  16. TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells.

    PubMed

    Lozupone, F; Borghi, M; Marzoli, F; Azzarito, T; Matarrese, P; Iessi, E; Venturi, G; Meschini, S; Canitano, A; Bona, R; Cara, A; Fais, S

    2015-10-01

    An inverted pH gradient across the cell membranes is a typical feature of malignant cancer cells that are characterized by extracellular acidosis and cytosol alkalization. These dysregulations are able to create a unique milieu that favors tumor progression, metastasis and chemo/immune-resistance traits of solid tumors. A key event mediating tumor cell pH alterations is an aberrant activation of ion channels and proton pumps such as (H+)-vacuolar-ATPase (V-ATPase). TM9SF4 is a poorly characterized transmembrane protein that we have recently shown to be related to cannibal behavior of metastatic melanoma cells. Here, we demonstrate that TM9SF4 represents a novel V-ATPase-associated protein involved in V-ATPase activation. We have observed in HCT116 and SW480 colon cancer cell lines that TM9SF4 interacts with the ATP6V1H subunit of the V-ATPase V1 sector. Suppression of TM9SF4 with small interfering RNAs strongly reduces assembly of V-ATPase V0/V1 sectors, thus reversing tumor pH gradient with a decrease of cytosolic pH, alkalization of intracellular vesicles and a reduction of extracellular acidity. Such effects are associated with a significant inhibition of the invasive behavior of colon cancer cells and with an increased sensitivity to the cytotoxic effects of 5-fluorouracil. Our study shows for the first time the important role of TM9SF4 in the aberrant constitutive activation of the V-ATPase, and the development of a malignant phenotype, supporting the potential use of TM9SF4 as a target for future anticancer therapies.

  17. A tumor deconstruction platform identifies definitive end points in the evaluation of drug responses.

    PubMed

    Naik, R R; Singh, A K; Mali, A M; Khirade, M F; Bapat, S A

    2016-02-11

    Tumor heterogeneity and the presence of drug-sensitive and refractory populations within the same tumor are almost never assessed in the drug discovery pipeline. Such incomplete assessment of drugs arising from spatial and temporal tumor cell heterogeneity reflects on their failure in the clinic and considerable wasted costs in the drug discovery pipeline. Here we report the derivation of a flow cytometry-based tumor deconstruction platform for resolution of at least 18 discrete tumor cell fractions. This is achieved through concurrent identification, quantification and analysis of components of cancer stem cell hierarchies, genetically instable clones and differentially cycling populations within a tumor. We also demonstrate such resolution of the tumor cytotype to be a potential value addition in drug screening through definitive cell target identification. Additionally, this real-time definition of intra-tumor heterogeneity provides a convenient, incisive and analytical tool for predicting drug efficacies through profiling perturbations within discrete tumor cell subsets in response to different drugs and candidates. Consequently, possible applications in informed therapeutic monitoring and drug repositioning in personalized cancer therapy would complement rational design of new candidates besides achieving a re-evaluation of existing drugs to derive non-obvious combinations that hold better chances of achieving remission. PMID:25915841

  18. Neurobiological alterations in alcohol addiction: a review.

    PubMed

    Erdozain, Amaia M; Callado, Luis F

    2014-01-01

    The exact mechanism by which ethanol exerts its effects on the brain is still unknown. However, nowadays it is well known that ethanol interacts with specific neuronal membrane proteins involved in signal transmission, resulting in changes in neural activity. In this review different neurochemical alterations produced by ethanol are described. Primarily, ethanol interacts with two membrane receptors: GABAA and NMDA ion channel receptors. Ethanol enhances the GABA action and antagonizes glutamate action, therefore acting as a CNS depressant. In addition, ethanol affects most other neurochemical and endocrine systems. In regard to the brain reward system, both dopaminergic and opioid system are affected by this drug. Furthermore, the serotonergic, noradrenergic, corticotropin-releasing factor and cannabinoid systems seem to play an important role in the neurobiology of alcoholism. At last but not least, ethanol can also modulate cytoplasmic components, including the second messengers. We also review briefly the different actual and putative pharmacological treatments for alcoholism, based on the alterations produced by this drug.

  19. Nanosize drug delivery system.

    PubMed

    Mukherjee, Biswajit

    2013-01-01

    Nanosize materials provide hopes, speculations and chances for an unprecedented change in drug delivery in near future. Nanotechnology is an emerging field to produce nanomaterials for drug delivery that can offer a new tool, opportunities and scope to provide more focused and fine-tuned treatment of diseases at a molecular level, enhancing the therapeutic potential of drugs so that they become less toxic and more effective. Nanodimensional drug delivery systems are of great scientific interest as they project their tremendous utility because of their capability of altering biodistribution of therapeutic agents so that they can concentrate more in the target tissues. Nanosize drug delivery systems generally focus on formulating bioactive molecules in biocompatible nanosystems such as nanocrystals, solid lipid nanoparticles, nanostructure lipid carriers, lipid drug conjugates, nanoliposomes, dendrimers, nanoshells, emulsions, nanotubes, quantum dots etc. Extensively versatile molecules like synthetic chemicals to naturally occurring complex macromolecules such as nucleic acids and proteins could be dispensed in such formulations maintaining their stability and efficacy. Empty viral capsids are being tried to deliver drug as these uniformly sized bionanomaterials can be utilized to load drug to improve solubility, reduce toxicity and provide site specific targeting. Nanomedicines offer a wide scope for delivery of smart materials from tissue engineering to more recently artificial RBCs. Nanocomposites are the future hope for tailored and personalized medicines as well as for bone repairing and rectification of cartilage impairment. Nanosize drug delivery systems are addressing the challenges to overcome the delivery problems of wide ranges of drugs through their narrow submicron particle size range, easily manipulatable surface characteristics in achievement of versatile tissue targeting (includes active and passive drug targeting), controlled and sustained drug

  20. Drug Debacle.

    PubMed

    Sorrel, Amy Lynn

    2016-01-01

    Medicaid's Vendor Drug Program is under examination by the Texas Legislature. TMA's Physicians Medicaid Congress is seizing the opportunity to call for an administrative overhaul of a drug benefit physicians describe as unnecessarily complicated and confusing. PMID:27441421

  1. Drug Debacle.

    PubMed

    Sorrel, Amy Lynn

    2016-07-01

    Medicaid's Vendor Drug Program is under examination by the Texas Legislature. TMA's Physicians Medicaid Congress is seizing the opportunity to call for an administrative overhaul of a drug benefit physicians describe as unnecessarily complicated and confusing.

  2. Drugged Driving

    MedlinePlus

    ... Infographics » Drugged Driving Drugged Driving Email Facebook Twitter Text Description of Infographic Top Right Figure : In 2009, ... crash than those who don't smoke. Bottom Text: Develop Social Strategies Offer to be a designated ...

  3. Drug Control

    ERIC Educational Resources Information Center

    Leviton, Harvey S.

    1975-01-01

    This article attempts to assemble pertinent information about the drug problem, particularily marihuana. It also focuses on the need for an educational program for drug control with the public schools as the main arena. (Author/HMV)

  4. Generic Drugs

    MedlinePlus

    ... drugs. There are a few other differences— like color, shape, size, or taste—but they do not ... different . Brand-name drugs are often advertised by color and shape. Remember the ads for the “purple ...

  5. Supramolecular approaches for drug development.

    PubMed

    Kawakami, K; Ebara, M; Izawa, H; Sanchez-Ballester, N M; Hill, J P; Ariga, K

    2012-01-01

    Various supramolecular systems can be used as drug carriers to alter physicochemical and pharmacokinetic characteristics of drugs. Representative supramolecular systems that can be used for this purpose include surfactant/polymer micelles, (micro)emulsions, liposomes, layer-by-layer assemblies, and various molecular conjugates. Notably, liposomes are established supramolecular drug carriers, which have already been marketed in formulations including AmBisome(®) (for treatment of fungal infection), Doxil(®) (for Kaposi's sarcoma), and Visudyne(®) (for age-related macular degeneration and choroidal neovascularization). Microemulsions have been used oral drug delivery of poorly soluble drugs due to improvements in bioavailability and predictable of absorption behavior. Neoral(®), an immunosuppressant used after transplant operations, is one of the most famous microemulsion-based drugs. Polymer micelles are being increasingly investigated as novel drug carriers and some formulations have already been tested in clinical trials. Supramolecular systems can be functionalized by designing the constituent molecules to achieve efficient delivery of drugs to desired sites in the body. In this review, representative supramolecular drug delivery systems, that may improve usability of candidate drugs or add value to existing drugs, are introduced. PMID:22455591

  6. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    PubMed

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are

  7. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    PubMed

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are

  8. A divide-and-conquer strategy in tumor sampling enhances detection of intratumor heterogeneity in routine pathology: A modeling approach in clear cell renal cell carcinoma.

    PubMed

    Lopez, José I; Cortes, Jesús M

    2016-01-01

    Intratumor heterogeneity (ITH) is an inherent process in cancer development which follows for most of the cases a branched pattern of evolution, with different cell clones evolving independently in space and time across different areas of the same tumor. The determination of ITH (in both spatial and temporal domains) is nowadays critical to enhance patient treatment and prognosis. Clear cell renal cell carcinoma (CCRCC) provides a good example of ITH. Sometimes the tumor is too big to be totally analyzed for ITH detection and pathologists decide which parts must be sampled for the analysis. For such a purpose, pathologists follow internationally accepted protocols. In light of the latest findings, however, current sampling protocols seem to be insufficient for detecting ITH with significant reliability. The arrival of new targeted therapies, some of them providing promising alternatives to improve patient survival, pushes the pathologist to obtain a truly representative sampling of tumor diversity in routine practice. How large this sampling must be and how this must be performed are unanswered questions so far.  Here we present a very simple method for tumor sampling that enhances ITH detection without increasing costs. This method follows a divide-and-conquer (DAC) strategy, that is, rather than sampling a small number of large-size tumor-pieces as the routine protocol (RP) advises, we suggest sampling many small-size pieces along the tumor. We performed a computational modeling approach to show that the usefulness of the DAC strategy is twofold: first, we show that DAC outperforms RP with similar laboratory costs, and second, DAC is capable of performing similar to total tumor sampling (TTS) but, very remarkably, at a much lower cost. We thus provide new light to push forward a shift in the paradigm about how pathologists should sample tumors for achieving efficient ITH detection. PMID:27127618

  9. Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model.

    PubMed

    Knuuttila, Matias; Yatkin, Emrah; Kallio, Jenny; Savolainen, Saija; Laajala, Teemu D; Aittokallio, Tero; Oksala, Riikka; Häkkinen, Merja; Keski-Rahkonen, Pekka; Auriola, Seppo; Poutanen, Matti; Mäkelä, Sari

    2014-08-01

    Androgens are key factors involved in the development and progression of prostate cancer (PCa), and PCa growth can be suppressed by androgen deprivation therapy. In a considerable proportion of men receiving androgen deprivation therapy, however, PCa progresses to castration-resistant PCa (CRPC), making the development of efficient therapies challenging. We used an orthotopic VCaP human PCa xenograft model to study cellular and molecular changes in tumors after androgen deprivation therapy (castration). Tumor growth was monitored through weekly serum prostate-specific antigen measurements, and mice with recurrent tumors after castration were randomized to treatment groups. Serum prostate-specific antigen concentrations showed significant correlation with tumor volume. Castration-resistant tumors retained concentrations of intratumoral androgen (androstenedione, testosterone, and 5α-dihydrotestosterone) at levels similar to tumors growing in intact hosts. Accordingly, castration induced up-regulation of enzymes involved in androgen synthesis (CYP17A1, AKR1C3, and HSD17B6), as well as expression of full-length androgen receptor (AR) and AR splice variants (AR-V1 and AR-V7). Furthermore, AR target gene expression was maintained in castration-resistant xenografts. The AR antagonists enzalutamide (MDV3100) and ARN-509 suppressed PSA production of castration-resistant tumors, confirming the androgen dependency of these tumors. Taken together, the findings demonstrate that our VCaP xenograft model exhibits the key characteristics of clinical CRPC and thus provides a valuable tool for identifying druggable targets and for testing therapeutic strategies targeting AR signaling in CRPC.

  10. A divide-and-conquer strategy in tumor sampling enhances detection of intratumor heterogeneity in routine pathology: A modeling approach in clear cell renal cell carcinoma.

    PubMed

    Lopez, José I; Cortes, Jesús M

    2016-01-01

    Intratumor heterogeneity (ITH) is an inherent process in cancer development which follows for most of the cases a branched pattern of evolution, with different cell clones evolving independently in space and time across different areas of the same tumor. The determination of ITH (in both spatial and temporal domains) is nowadays critical to enhance patient treatment and prognosis. Clear cell renal cell carcinoma (CCRCC) provides a good example of ITH. Sometimes the tumor is too big to be totally analyzed for ITH detection and pathologists decide which parts must be sampled for the analysis. For such a purpose, pathologists follow internationally accepted protocols. In light of the latest findings, however, current sampling protocols seem to be insufficient for detecting ITH with significant reliability. The arrival of new targeted therapies, some of them providing promising alternatives to improve patient survival, pushes the pathologist to obtain a truly representative sampling of tumor diversity in routine practice. How large this sampling must be and how this must be performed are unanswered questions so far.  Here we present a very simple method for tumor sampling that enhances ITH detection without increasing costs. This method follows a divide-and-conquer (DAC) strategy, that is, rather than sampling a small number of large-size tumor-pieces as the routine protocol (RP) advises, we suggest sampling many small-size pieces along the tumor. We performed a computational modeling approach to show that the usefulness of the DAC strategy is twofold: first, we show that DAC outperforms RP with similar laboratory costs, and second, DAC is capable of performing similar to total tumor sampling (TTS) but, very remarkably, at a much lower cost. We thus provide new light to push forward a shift in the paradigm about how pathologists should sample tumors for achieving efficient ITH detection.

  11. Inhibition of mouse breast adenocarcinoma growth by ablation with intratumoral alpha-irradiation combined with inhibitors of immunosuppression and CpG.

    PubMed

    Confino, Hila; Schmidt, Michael; Efrati, Margalit; Hochman, Ilan; Umansky, Viktor; Kelson, Itzhak; Keisari, Yona

    2016-10-01

    It has been demonstrated that aggressive in situ tumor destruction (ablation) could lead to the release of tumor antigens, which can stimulate anti-tumor immune responses. We developed an innovative method of tumor ablation based on intratumoral alpha-irradiation, diffusing alpha-emitters radiation therapy (DaRT), which efficiently ablates local tumors and enhances anti-tumor immunity. In this study, we investigated the anti-tumor potency of a treatment strategy, which combines DaRT tumor ablation with two approaches for the enhancement of anti-tumor reactivity: (1) neutralization of immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and (2) boost the immune response by the immunoadjuvant CpG. Mice bearing DA3 mammary adenocarcinoma with metastases were treated with DaRT wires in combination with a MDSC inhibitor (sildenafil), Treg inhibitor (cyclophosphamide at low dose), and the immunostimulant, CpG. Combination of all four therapies led to a complete rejection of primary tumors (in 3 out of 20 tumor-bearing mice) and to the elimination of lung metastases. The treatment with DaRT and Treg or MDSC inhibitors (without CpG) also resulted in a significant reduction in tumor size, reduced the lung metastatic burden, and extended survival compared to the corresponding controls. We suggest that the therapy with DaRT combined with the inhibition of immunosuppressive cells and CpG reinforced both local and systemic anti-tumor immune responses and displayed a significant anti-tumor effect in tumor-bearing mice. PMID:27495172

  12. Phloretin increases the anti-tumor efficacy of intratumorally delivered heat-shock protein 70 kDa (HSP70) in a murine model of melanoma.

    PubMed

    Abkin, Sergey V; Ostroumova, Olga S; Komarova, Elena Y; Meshalkina, Darya A; Shevtsov, Maxim A; Margulis, Boris A; Guzhova, Irina V

    2016-01-01

    Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma. PMID:26646850

  13. Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (CRPC).

    PubMed

    Penning, Trevor M

    2015-09-01

    Castrate resistant prostate cancer (CRPC) is the fatal-form of prostate cancer and remains androgen dependent. The reactivation of the androgen axis occurs due to adaptive intratumoral androgen biosynthesis which can be driven by adrenal androgens and/or by changes in the androgen receptor (AR) including AR gene amplification. These mechanisms are targeted with P450c17 inhibitors e.g., abiraterone acetate and AR super-antagonists e.g., enzalutamide, respectively. Clinical experience indicates that with either agent an initial response is followed by drug resistance and the patient clinically progresses on these agents. This article reviews the mechanisms of intrinsic and acquired drug resistance that target the androgen axis and how this might be surmounted.

  14. Attention Alters Perceived Attractiveness.

    PubMed

    Störmer, Viola S; Alvarez, George A

    2016-04-01

    Can attention alter the impression of a face? Previous studies showed that attention modulates the appearance of lower-level visual features. For instance, attention can make a simple stimulus appear to have higher contrast than it actually does. We tested whether attention can also alter the perception of a higher-order property-namely, facial attractiveness. We asked participants to judge the relative attractiveness of two faces after summoning their attention to one of the faces using a briefly presented visual cue. Across trials, participants judged the attended face to be more attractive than the same face when it was unattended. This effect was not due to decision or response biases, but rather was due to changes in perceptual processing of the faces. These results show that attention alters perceived facial attractiveness, and broadly demonstrate that attention can influence higher-level perception and may affect people's initial impressions of one another. PMID:26966228

  15. pH-dependent drug-drug interactions for weak base drugs: potential implications for new drug development.

    PubMed

    Zhang, L; Wu, F; Lee, S C; Zhao, H; Zhang, L

    2014-08-01

    Absorption of an orally administered drug with pH-dependent solubility may be altered when it is coadministered with a gastric acid-reducing agent (ARA). Assessing a drug's potential for pH-dependent drug-drug interactions (DDIs), considering study design elements for such DDI studies, and interpreting and communicating study results in the drug labeling to guide drug dosing are important for drug development. We collected pertinent information related to new molecular entities approved from January 2003 to May 2013 by the US Food and Drug Administration for which clinical DDI studies with ARAs were performed. On the basis of assessments of data on pH solubility and in vivo DDIs with ARAs, we proposed a conceptual framework for assessing the need for clinical pH-dependent DDI studies for weak base drugs (WBDs). Important study design considerations include selection of ARAs and timing of dosing of an ARA relative to the WBD in a DDI study. Labeling implications for drugs having DDIs with ARAs are also illustrated.

  16. [Liver damage caused by drugs].

    PubMed

    Strohmeyer, G; Weik, C

    1999-05-01

    The liver has a central role in the metabolism of many drugs, since this organ is the main site of biotransformation of endo- and xenobiotics. Water-soluble drugs have a small volume of distribution and can be eliminated unchanged in the urine. By contrast, lipid-soluble drugs have a larger volume of distribution and require conversion to water-soluble metabolites for their elimination in urine or bile. The liver with its specific receptors, transporters and enzymes is responsible for the uptake, transformation and excretion of the lipophilic drugs. While most of the drugs are transformed into stable metabolites, other drugs form reactive, potentially toxic, metabolites producing liver cell damage. Liver injury caused by drugs may mimic almost any kind of liver disease. Clinical findings are gastrointestinal symptoms with nausea, vomiting and abdominal pain, cholestatic liver injury with jaundice and pruritus of severe inflammatory and cirrhotic liver damage with signs of liver failure, encephalopathy and cerebral edema. The morphological changes vary from hepatitis, cholestasis, fatty liver, granulomatous hepatitis, peri-/portal inflammation, to fibrosis with cirrhotic alterations and vascular lesions and tumors. The most commonly used drugs causing severe liver injury are discussed in detail. These are anabolics, oral contraceptives, antituberculous and antifungal agents, nonsteroidal anti-inflammatory drugs, ring substituted amphetamins ("designer drugs"), antiarrhythmics and antibiotics.

  17. Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone.

    PubMed

    Mohler, James L; Titus, Mark A; Wilson, Elizabeth M

    2011-09-15

    High-affinity binding of dihydrotestosterone (DHT) to the androgen receptor (AR) initiates androgen-dependent gene activation, required for normal male sex development in utero, and contributes to prostate cancer development and progression in men. Under normal physiologic conditions, DHT is synthesized predominantly by 5α-reduction of testosterone, the major circulating androgen produced by the testis. During androgen deprivation therapy, intratumoral androgen production is sufficient for AR activation and prostate cancer growth, even though circulating testicular androgen levels are low. Recent studies indicate that the metabolism of 5α-androstane-3α, 17β-diol by 17β-hydroxysteroid dehydrogenase 6 in benign prostate and prostate cancer cells is a major biosynthetic pathway for intratumoral synthesis of DHT, which binds AR and initiates transactivation to promote prostate cancer growth during androgen deprivation therapy. Drugs that target the so-called backdoor pathway of DHT synthesis provide an opportunity to enhance clinical response to luteinizing-hormone-releasing hormone (LHRH) agonists or antagonists, AR antagonists, and inhibitors of 5α-reductase enzymes (finasteride or dutasteride), and other steroid metabolism enzyme inhibitors (ketoconazole or the recently available abiraterone acetate). PMID:21705451

  18. Drug Resistance in Cancer: An Overview

    PubMed Central

    Housman, Genevieve; Byler, Shannon; Heerboth, Sarah; Lapinska, Karolina; Longacre, Mckenna; Snyder, Nicole; Sarkar, Sibaji

    2014-01-01

    Cancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial-mesenchymal transition, as well as how inherent tumor cell heterogeneity plays a role in drug resistance. It also describes the epigenetic modifications that can induce drug resistance and considers how such epigenetic factors may contribute to the development of cancer progenitor cells, which are not killed by conventional cancer therapies. Lastly, this review concludes with a discussion on the best treatment options for existing drug resistant cancers, ways to prevent the formation of drug resistant cancers and cancer progenitor cells, and future directions of study. PMID:25198391

  19. COPD - control drugs

    MedlinePlus

    Chronic obstructive pulmonary disease - control drugs; Bronchodilators - COPD - control drugs; Beta agonist inhaler - COPD - control drugs; Anticholinergic inhaler - COPD - control drugs; Long-acting inhaler - COPD - control drugs; ...

  20. Smoking and Illicit Drug Use.

    ERIC Educational Resources Information Center

    Gold, Mark S., Ed.

    The biological mechanisms of nicotine dependence are described, the prevalence of tobacco dependency among those using other mood-altering drugs is examined, and the most efficacious way to address this dependency is discussed. New data on the relationship of smoking addiction to other addictions are examined. Topics include: (1) "Tobacco Smoking…

  1. Targeted Cancer Therapy: Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity (Adv. Healthcare Mater. 11/2016).

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    On page 1310 J. S. Merzaban, A. E. Porter, and co-workers present fluorescently labeled RGD-targeted ZnO nanoparticles (NPs; green) for the targeted delivery of cytotoxic ZnO to integrin αvβ3 receptors expressed on triple negative breast cancer cells. Correlative light-electron microscopy shows that NPs dissolve into ionic Zn(2+) (blue) upon uptake and cause apoptosis (red) with intra-tumor heterogeneity, thereby providing a possible strategy for targeted breast cancer therapy. Cover design by Ivan Gromicho. PMID:27275627

  2. Immunization alters body odor.

    PubMed

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. PMID:24524972

  3. How Misinformation Alters Memories.

    ERIC Educational Resources Information Center

    Wright, Daniel B.; Loftus, Elizabeth F.

    1998-01-01

    Notes that a multitude of studies have demonstrated that misleading postevent information affects people's memories. Contents that the fuzzy-trace theory is a positive step toward understanding the malleability of memory. Discusses fuzzy-trace theory in terms of three primary areas of study: altered response format, maximized misinformation…

  4. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine

    PubMed Central

    Ho, Dean; Wang, Chung-Huei Katherine; Chow, Edward Kai-Hua

    2015-01-01

    The implementation of nanomedicine in cellular, preclinical, and clinical studies has led to exciting advances ranging from fundamental to translational, particularly in the field of cancer. Many of the current barriers in cancer treatment are being successfully addressed using nanotechnology-modified compounds. These barriers include drug resistance leading to suboptimal intratumoral retention, poor circulation times resulting in decreased efficacy, and off-target toxicity, among others. The first clinical nanomedicine advances to overcome these issues were based on monotherapy, where small-molecule and nucleic acid delivery demonstrated substantial improvements over unmodified drug administration. Recent preclinical studies have shown that combination nanotherapies, composed of either multiple classes of nanomaterials or a single nanoplatform functionalized with several therapeutic agents, can image and treat tumors with improved efficacy over single-compound delivery. Among the many promising nanomaterials that are being developed, nanodiamonds have received increasing attention because of the unique chemical-mechanical properties on their faceted surfaces. More recently, nanodiamond-based drug delivery has been included in the rational and systematic design of optimal therapeutic combinations using an implicitly de-risked drug development platform technology, termed Phenotypic Personalized Medicine–Drug Development (PPM-DD). The application of PPM-DD to rapidly identify globally optimized drug combinations successfully addressed a pervasive challenge confronting all aspects of drug development, both nano and non-nano. This review will examine various nanomaterials and the use of PPM-DD to optimize the efficacy and safety of current and future cancer treatment. How this platform can accelerate combinatorial nanomedicine and the broader pharmaceutical industry toward unprecedented clinical impact will also be discussed. PMID:26601235

  5. Drug Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NBOD2, a program developed at Goddard Space Flight Center to solve equations of motion coupled N-body systems is used by E.I. DuPont de Nemours & Co. to model potential drugs as a series of elements. The program analyses the vibrational and static motions of independent components in drugs. Information generated from this process is used to design specific drugs to interact with enzymes in designated ways.

  6. Structural and energetic analyses of SNPs in drug targets and implications for drug therapy.

    PubMed

    Sun, Hui-Yong; Ji, Feng-Qin; Fu, Liang-Yu; Wang, Zhong-Yi; Zhang, Hong-Yu

    2013-12-23

    Mutations in drug targets can alter the therapeutic effects of drugs. Therefore, evaluating the effects of single-nucleotide polymorphisms (SNPs) on drug-target binding is of significant interest. This study focuses on the analysis of the structural and energy properties of SNPs in successful drug targets by using the data derived from HapMap and the Therapeutic Target Database. The results show the following: (i) Drug targets undergo strong purifying selection, and the majority (92.4%) of the SNPs are located far from the drug-binding sites (>12 Å). (ii) For SNPs near the drug-binding pocket (≤12 Å), nearly half of the drugs are weakly affected by the SNPs, and only a few drugs are significantly affected by the target mutations. These results have direct implications for population-based drug therapy and for chemical treatment of genetic diseases as well.

  7. SU-C-210-04: Considerable Pancreatic Tumor Motion During Breath-Hold Measured Using Intratumoral Fiducials On Fluoroscopic Movies

    SciTech Connect

    Lens, E; Horst, A van der; Versteijne, E; Tienhoven, G van; Bel, A

    2015-06-15

    Purpose: Using a breath hold (BH) technique during radiotherapy of pancreatic tumors is expected to reduce intra-fractional motion. The aim of this study was to evaluate the tumor motion during BH. Methods: In this pilot study, we included 8 consecutive pancreatic cancer patients. All had 2– 4 intratumoral gold fiducials. Patients were asked to perform 3 consecutive 30-second end-inhale BHs on day 5, 10 and 15 of their three-week treatment. During BH, airflow through a mouthpiece was measured using a spirometer. Any inadvertent flow of air during BH was monitored for all patients. We measured tumor motion on lateral fluoroscopic movies (57 in total) made during BH. In each movie the fiducials as a group were tracked over time in superior-inferior (SI) and anterior-posterior (AP) direction using 2-D image correlation between consecutive frames. We determined for each patient the range of intra-BH motion over all movies; we also determined the absolute means and standard deviations (SDs) for the entire patient group. Additionally, we investigated the relation between inadvertent airflow during BH and the intra-BH motion. Results: We found intra-BH tumor motion of up to 12.5 mm (range, 1.0–12.5 mm) in SI direction and up to 8.0 mm (range, 1.0–8.0 mm) in AP direction. The absolute mean motion over the patient population was 4.7 (SD: 3.0) mm and 2.8 (SD: 1.2) mm in the SI and AP direction, respectively. Patients were able to perform stable consecutive BHs; during only 20% of the movies we found very small airflows (≤ 65 ml). These were mostly stepwise in nature and could not explain the continuous tumor motions we observed. Conclusion: We found substantial (up to 12.5 mm) pancreatic tumor motion during BHs. We found minimal inadvertent airflow, seen only during a minority of BHs, and this did not explain the obtained results. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.

  8. Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Tate, J. A.; Ogden, J. A.; Strawbridge, R. R.; Fiering, S. N.; Petryk, A. A.; Cassim, S. M.; Giustini, A. J.; Demidenko, E.; Ivkov, R.; Barry, S.; Chinn, P.; Foreman, A.

    2009-02-01

    Hyperthermia, as an independent modality or in combination with standard cancer treatments such as chemotherapy and radiation, has been established in vitro and in vivo as an effective cancer treatment. However, despite efforts over the past 25 years, such therapies have never been optimized or widelyaccepted clinically. Although methods continue to improve, conventionally-delivered heat (RF, ultrasound, microwave etc) can not be delivered in a tumor selective manner. The development of antibody-targeted, or even nontargeted, biocompatible iron oxide nanoparticles (IONP) now allows delivery of cytotoxic heat to individual cancer cells. Using a murine mouse mammary adenocarcinoma (MTGB) and human colon carcinoma (HT29) cells, we studied the biology and treatment of IONP hyperthermia tumor treatment. Methods: Cancer cells (1 x 106) with or without iron oxide nanoparticles (IONP) were studied in culture or in vivo via implanted subcutaneously in female C3H mice, Tumors were grown to a treatment size of 150 mm3 and tumors volumes were measured using standard 3-D caliper measurement techniques. Mouse tumors were heated via delivery of an alternating magnetic field, which activated the nanoparticles, using a cooled 36 mm diameter square copper tube induction coil which provided optimal heating in 1.5 cm wide region of the coil. The IONPs were dextran coated and had a hydrodynamic radius of approximately 100 nm. For the in vivo studies, intra-tumor, peritumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Although some eddy current heating was generated in non-target tissues at the higher field strengths, our preliminary IONP hyperthermia studies show that whole mouse AMF exposure @160 KHz and 400 or 550 Oe, for a 20 minutes (heat-up and protocol heating), provides a safe and efficacious tumor treatment. Initial electron and light microscopic studies (in vitro and in vivo) showed the 100 nm used in our studies are

  9. [Drug dependence and psychotropic drugs].

    PubMed

    Giraud, M J; Lemonnier, E; Bigot, T

    1994-11-01

    Although the utility of psychotropic drugs has been well demonstrated, caution must still be exercised in their use. Among their potential risks, drug dependency must be kept in mind. This risk is well accepted with regard to benzodiazepines, and it appeared useful to study the potential risk for antidepressants, neuroleptics and thymoregulatory agents. Whatever the drug, the predominant factor appears to be psychological dependency. Prevention of drug dependency is most often achieved by informing the patient, limiting the length of use of the drug, making regular reevaluation of symptoms and of drug indication, and frequently be establishing a "treatment contract". The importance of the patient-physician relationship in the prescription of such treatment must be underlined. PMID:7984941

  10. Drug Education.

    ERIC Educational Resources Information Center

    Sardana, Raj K.

    This autoinstructional lesson deals with the study of such drugs as marijuana and LSD, with emphasis on drug abuse. It is suggested that it can be used in science classes at the middle level of school. No prerequisites are suggested. The teacher's guide lists the behavioral objectives, the equipment needed to complete the experience and suggests…

  11. Antineoplastic Drugs

    NASA Astrophysics Data System (ADS)

    Sadée, Wolfgang; El Sayed, Yousry Mahmoud

    The limited scope of therapeutic drug-level monitoring in cancer chemotherapy results from the often complex biochemical mechanisms that contribute to antineoplastic activity and obscure the relationships among drug serum levels and therapeutic benefits. Moreover, new agents for cancer chemotherapy are being introduced at a more rapid rate than for the treatment of other diseases, although the successful application of therapeutic drug-level monitoring may require several years of intensive study of the significance of serum drug levels. However, drug level monitoring can be of considerable value during phase I clinical trials of new antineoplastic agents in order to assess drug metabolism, bioavailability, and intersubject variability; these are important parameters in the interpretation of clinical studies, but have no immediate benefit to the patient. High performance liquid chromatography (HPLC) probably represents the most versatile and easily adaptable analytical technique for drug metabolite screening (1). HPLC may therefore now be the method of choice during phase I clinical trials of antineoplastic drugs. For example, within a single week we developed an HPLC assay—using a C18 reverse-phase column, UV detection, and direct serum injection after protein precipitation—for the new radiosensitizer, misonidazole (2).

  12. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  13. An Exploratory Study Into the Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging or Perfusion Computed Tomography for Detection of Intratumoral Hypoxia in Head-and-Neck Cancer

    SciTech Connect

    Newbold, Kate Castellano, Isabel; Charles-Edwards, Elizabeth; Mears, Dorothy; Sohaib, Aslam; Leach, Martin; Rhys-Evans, Peter; Clarke, Peter; Fisher, Cyril; Harrington, Kevin; Nutting, Christopher

    2009-05-01

    Purpose: Hypoxia in patients with head-and-neck cancer (HNC) is well established and known to cause radiation resistance and treatment failure in the management of HNC. This study examines the role of parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) as surrogate markers of intratumoral hypoxia, defined by using the exogenous marker of hypoxia pimonidazole and the endogenous marker carbonic anhydrase 9 (CA9). Methods and Materials: Patients with HNC underwent preoperative DCE-MRI, perfusion CT, and pimonidazole infusion. Imaging parameters were correlated with pimonidazole and CA9 staining. The strength of correlations was tested by using a two-tailed Spearman's rank correlation coefficient. Results: Twenty-three regions of interest were analyzed from the 7 patients who completed the DCE-MRI studies. A number of statistically significant correlations were seen between DCE-MRI parameters (volume transfer between blood plasma and extracellular extravascular space [EES], volume of EES, rate constant between EES and blood plasma, time at arrival of contrast inflow, time to peak, average gradient, and time to onset) and areas with a pimonidazole score of 4. In the case of CA9 staining, only a weak correlation was shown with wash-in rate. There were no significant correlations between perfusion CT parameters and pimonidazole staining or CA9 expression. Conclusion: Intratumoral hypoxia in patients with HNC may be predicted by using DCE-MRI; however, perfusion CT requires further investigation.

  14. Polydrug Use: An Annotated Bibliography. National Clearinghouse for Drug Abuse Information Special Bibliographies, No. 3, June 1973.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHEW/PHS), Rockville, MD. National Clearinghouse for Drug Abuse Information.

    Although most discussions of mood-altering drugs and patterns of use typically focus on a single drug or particular drug class, it is a widely acknowledged fact that the majority of drug users, from the junior high school experimenter to the hard-core narcotic addict, employ more than one legal or illegal substance to alter their subjective…

  15. Drug delivery to solid tumors by elastin-like polypeptides

    PubMed Central

    McDaniel, Jonathan R.; Callahan, Daniel J.; Chilkoti, Ashutosh

    2010-01-01

    Thermally responsive elastin-like polypeptides (ELPs) are a promising class of recombinant biopolymers for the delivery of drugs and imaging agents to solid tumors via systemic or local administration. This article reviews four applications of ELPs to drug delivery, with each delivery mechanism designed to best exploit the relationship between the characteristic transition temperature (Tt) of the ELP and body temperature (Tb). First, when Tt >> Tb, small hydrophobic drugs can be conjugated to the C-terminus of the ELP to impart the amphiphilicity needed to mediate the self-assembly of nanoparticles. These systemically delivered ELP-drug nanoparticles preferentially localize to the tumor site via the EPR effect, resulting in reduced toxicity and enhanced treatment efficacy. The remaining three approaches take direct advantage of the thermal responsiveness of ELPs. In the second strategy, where Tb < Tt < 42 °C, an ELP-drug conjugate can be injected in conjunction with external application of mild hyperthermia to the tumor to induce ELP coacervation and an increase in concentration within the tumor vasculature. The third approach utilizes hydrophilic-hydrophobic ELP block copolymers that have been designed to assemble into nanoparticles in response to hyperthermai due to the independent thermal transition of the hydrophobic block, thus resulting in multivalent ligand display of a ligand for spatially enhanced vascular targeting. In the final strategy, ELPs with Tt < Tb are conjugated with radiotherapeutics, injtect intioa tumor where they undergo coacervation to form an injectable drug depot for intratumoral delivery. These injectable coacervate ELP-radionuclide depots display a long residence in the tumor and result in inhibition of tumor growth. PMID:20546809

  16. Street Drugs and Pregnancy

    MedlinePlus

    ... drugs that are abused How can street drugs harm your pregnancy? Using street drugs can cause problems ... drugs that are abused How can street drugs harm your pregnancy? Using street drugs can cause problems ...

  17. Genetically Altered Plant Species

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

  18. Prescription Drugs

    MedlinePlus

    ... body, especially in brain areas involved in the perception of pain and pleasure. Prescription stimulants , such as ... of drug that causes changes in your mood, perceptions, and behavior can affect judgment and willingness to ...

  19. Drug Reactions

    MedlinePlus

    ... or diabetes. But medicines can also cause unwanted reactions. One problem is interactions, which may occur between ... more serious. Drug allergies are another type of reaction. They can be mild or life-threatening. Skin ...

  20. Club Drugs

    MedlinePlus

    Skip to main content En español Researchers Medical & Health Professionals Patients & ... Cold Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/Nicotine Other Drugs ...

  1. Drugged Driving

    MedlinePlus

    ... Charts Emerging Trends and Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine ... distance, and decrease coordination. Drivers who have used cocaine or methamphetamine can be aggressive and reckless when ...

  2. Drug Interactions

    MedlinePlus

    ... not be taken at the same time as antacids. WHAT CAUSES THE MOST INTERACTIONS WITH HIV MEDICATIONS? ... azole” Some antibiotics (names end in “mycin”) The antacid cimetidine (Tagamet) Some drugs that prevent convulsions, including ...

  3. Club Drugs

    MedlinePlus

    ... also known as Ecstasy XTC, X, E, Adam, Molly, Hug Beans, and Love Drug Gamma-hydroxybutyrate (GHB), also known as G, Liquid Ecstasy, and Soap Ketamine, also known as Special K, K, Vitamin K, and Jet Rohypnol, also known ...

  4. Causes and Consequences of Variability in Drug Transporter Activity in Pediatric Drug Therapy.

    PubMed

    Rodieux, Frédérique; Gotta, Verena; Pfister, Marc; van den Anker, Johannes N

    2016-07-01

    Drug transporters play a key role in mediating the uptake of endo- and exogenous substances into cells as well as their efflux. Therefore, variability in drug transporter activity can influence pharmaco- and toxicokinetics and be a determinant of drug safety and efficacy. In children, particularly in neonates and young infants, the contribution of tissue-specific drug transporters to drug absorption, distribution, and excretion may differ from that in adults. In this review 5 major factors and their interdependence that may influence drug transporter activity in children are discussed: developmental differences, genetic polymorphisms, pediatric comorbidities, interacting comedication, and environmental factors. Even if data are sparse, altered drug transporter activity due to those factors have been associated with clinically relevant differences in drug disposition, efficacy, and safety in pediatric patients. Single nucleotide polymorphisms in drug transporter-encoding genes were the most studied source of drug transporter variability in children. However, in the age group where drug transporter activity has been reported to differ from that in adults, namely neonates and young infants, hardly any studies have been performed. Longitudinal studies in this young population are required to investigate the age- and disease-dependent genotype-phenotype relationships and relevance of drug transporter drug-drug interactions. Physiologically based pharmacokinetic modeling approaches can integrate drug- and patient-specific parameters, including drug transporter ontogeny, and may further improve in silico predictions of pediatric-specific pharmacokinetics. PMID:27385174

  5. Drug allergy

    PubMed Central

    Warrington, Richard

    2012-01-01

    Allergic drug reactions occur when a drug, usually a low molecular weight molecule, has the ability to stimulate an immune response. This can be done in one of two ways. The first is by binding covalently to a self-protein, to produce a haptenated molecule that can be processed and presented to the adaptive immune system to induce an immune response. Sometimes the drug itself cannot do this but a reactive breakdown product of the drug is able to bind covalently to the requisite self-protein or peptide. The second way in which drugs can stimulate an immune response is by binding non-covalently to antigen presenting or antigen recognition molecules such as the major histocompatibility complex (MHC) or the T cell receptor. This is known as the p-I or pharmacological interaction hypothesis. The drug binding in this situation is reversible and stimulation of the response may occur on first exposure, not requiring previous sensitization. There is probably a dependence on the presence of certain MHC alleles and T cell receptor structures for this type of reaction to occur. PMID:22922763

  6. Drug-induced nail disorders.

    PubMed

    2014-07-01

    Nail disorders are defined according to their appearance and the part of the nail affected: the nail plate, the tissues that support or hold the nail plate in place, or the lunula. The consequences of most nail disorders are purely cosmetic. Other disorders, such as ingrown nails, inflammation, erythema, abscesses or tumours, cause functional impairment or pain. The appearance of the lesions is rarely indicative of their cause. Possible causes include physiological changes, local disorders or trauma, systemic conditions, toxic substances and drugs. Most drug-induced nail disorders resolve after discontinuation of the drug, although complete resolution sometimes takes several years. Drugs appear to induce nail disorders through a variety of mechanisms. Some drugs affect the nail matrix epithelium, the nail bed or the nail folds. Some alter nail colour. Other drugs induce photosensitivity. Yet others affect the blood supply to the nail unit. Nail abnormalities are common during treatment with certain cytotoxic drugs: taxanes, anthracyclines, fluorouracil, EGFR, tyrosine kinase inhibitors, etc. Some drugs are associated with a risk of serious and painful lesions, such as abscesses. When these disorders affect quality of life, the benefits of withdrawing the drug must be weighed against the severity of the condition being treated and the drug's efficacy, taking into account the harm-benefit balance of other options. Various anti-infective drugs, including tetracyclines, quinolones, clofazimine and zidovudine, cause the nail plate to detach from the nail bed after exposure to light, or cause nail discoloration. Psoralens and retinoids can also have the same effects. PMID:25162091

  7. Delayed onset of paresis in rats with experimental intramedullary spinal cord gliosarcoma following intratumoral administration of the paclitaxel delivery system OncoGel

    PubMed Central

    Tyler, Betty M.; Hdeib, Alia; Caplan, Justin; Legnani, Federico G.; Fowers, Kirk D.; Brem, Henry; Jallo, George; Pradilla, Gustavo

    2014-01-01

    Object Treatment options for anaplastic or malignant intramedullary spinal cord tumors (IMSCTs) remain limited. Paclitaxel has potent cytotoxicity against experimental intracranial gliomas and could be beneficial in the treatment of IMSCTs, but poor CNS penetration and significant toxicity limit its use. Such limitations could be overcome with local intratumoral delivery. Paclitaxel has been previously incorporated into a biodegradable gel depot delivery system (OncoGel) and in this study the authors evaluated the safety of intramedullary injections of OncoGel in rats and its efficacy against an intramedullary rat gliosarcoma. Methods Safety of intramedullary OncoGel was tested in 12 Fischer-344 rats using OncoGel concentrations of 1.5 and 6.0 mg/ml (5 μl); median survival and functional motor scores (Basso-Beattie-Bresnahan [BBB] scale) were compared with those obtained with placebo (ReGel) and medium-only injections. Efficacy of OncoGel was tested in 61 Fischer-344 rats implanted with an intramedullary injection of 9L gliosarcoma containing 100,000 cells in 5 μl of medium, and randomized to receive OncoGel administered on the same day (in 32 rats) or 5 days after tumor implantation (in 29 rats) using either 1.5 mg/ml or 3.0 mg/ml doses of paclitaxel. Median survival and BBB scores were compared with those of ReGel-treated and tumor-only rats. Animals were killed after the onset of deficits for histopathological analysis. Results OncoGel was safe for intramedullary injection in rats in doses up to 5 μl of 3.0 mg/ml of paclitaxel; a dose of 5 μl of 6.0 mg/ml caused rapid deterioration in BBB scores. OncoGel at concentrations of 1.5 mg/ml and 3.0 mg/ml paclitaxel given on both Day 0 and Day 5 prolonged median survival and preserved BBB scores compared with controls. OncoGel 1.5 mg/ml produced 62.5% long-term survivors when delivered on Day 0. A comparison between the 1.5 mg/ml and the 3.0 mg/ml doses showed higher median survival with the 1.5 mg/ml dose on Day 0

  8. Measuring Drug Metabolism Kinetics and Drug-Drug Interactions Using Self-Assembled Monolayers for Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry.

    PubMed

    Anderson, Lyndsey L; Berns, Eric J; Bugga, Pradeep; George, Alfred L; Mrksich, Milan

    2016-09-01

    The competition of two drugs for the same metabolizing enzyme is a common mechanism for drug-drug interactions that can lead to altered kinetics in drug metabolism and altered elimination rates in vivo. With the prevalence of multidrug therapy, there is great potential for serious drug-drug interactions and adverse drug reactions. In an effort to prevent adverse drug reactions, the FDA mandates the evaluation of the potential for metabolic inhibition by every new chemical entity. Conventional methods for assaying drug metabolism (e.g., those based on HPLC) have been established for measuring drug-drug interactions; however, they are low-throughput. Here we describe an approach to measure the catalytic activity of CYP2C9 using the high-throughput technique self-assembled monolayers for matrix-assisted laser desorption-ionization (SAMDI) mass spectrometry. We measured the kinetics of CYP450 metabolism of the substrate, screened a set of drugs for inhibition of CYP2C9 and determined the Ki values for inhibitors. The throughput of this platform may enable drug metabolism and drug-drug interactions to be interrogated at a scale that cannot be achieved with current methods. PMID:27467208

  9. Drug misuse.

    PubMed Central

    Waller, T.

    1992-01-01

    1. Assessment by history and examination should include: a history of all drugs taken during each day for the previous 7 days (including alcohol), length of drug use and route (including the sharing of needles or syringes), the possibility of pregnancy if female, previous psychiatric history and treatment of drug misuse, social factors (including employment, family, friends, involvement in prostitution, legal problems), medical problems, including evidence of hepatitis, injection abscesses and other infections, suicide attempts, and weight loss. 2. Notification to the Chief Medical Officer of the Drug Branch of the Home Office is a legal obligation. 3. Investigations include: liver function tests (LFTs), hepatitis B surface antigen (HBsAg), hepatitis B surface antibody (HBsAb), hepatitis C antibody, full blood count (FBC), and urine for drug screening. Consider HIV testing if at risk but it is usually better arranged at a later stage. 4. Prescribing may be considered for a variety of drugs but objectives will differ according to drug type and individual. 5. In the case of opioid users, prescribing may be useful to stabilize their lives and to promote attendance for professional help. It may reduce high risk behaviour for contracting and spreading HIV. 6. If medication is given to opioid users, methadone mixture 1 mg/ml given once a day is the prescription of choice. Dispensing should be on a daily basis and the blue prescription form FP10 (MDA) allows the chemist to dispense daily for up to 14 days. A maximum ceiling of 100 mg methadone/day should not be exceeded. The initial dose will depend on the amount of opioid consumed in the previous week.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1345155

  10. 77 FR 1073 - Privacy Act of 1974; Report of an Altered System of Records, Including Addition of Routine Uses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... HUMAN SERVICES Food and Drug Administration Privacy Act of 1974; Report of an Altered System of Records, Including Addition of Routine Uses to an Existing System of Records; Bioresearch Monitoring Information System AGENCY: Food and Drug Administration, HHS. ACTION: Notice of an altered system of records....

  11. Nanodrug-Enhanced Radiofrequency Tumor Ablation: Effect of Micellar or Liposomal Carrier on Drug Delivery and Treatment Efficacy

    PubMed Central

    Moussa, Marwan; Goldberg, S. Nahum; Kumar, Gaurav; Sawant, Rupa R.; Levchenko, Tatyana; Torchilin, Vladimir P.; Ahmed, Muneeb

    2014-01-01

    Purpose To determine the effect of different drug-loaded nanocarriers (micelles and liposomes) on delivery and treatment efficacy for radiofrequency ablation (RFA) combined with nanodrugs. Materials/Methods Fischer 344 rats were used (n = 196). First, single subcutaneous R3230 tumors or normal liver underwent RFA followed by immediate administration of IV fluorescent beads (20, 100, and 500 nm), with fluorescent intensity measured at 4–24 hr. Next, to study carrier type on drug efficiency, RFA was combined with micellar (20 nm) or liposomal (100 nm) preparations of doxorubicin (Dox; targeting HIF-1α) or quercetin (Qu; targeting HSP70). Animals received RFA alone, RFA with Lipo-Dox or Mic-Dox (1 mg IV, 15 min post-RFA), and RFA with Lipo-Qu or Mic-Qu given 24 hr pre- or 15 min post-RFA (0.3 mg IV). Tumor coagulation and HIF-1α orHSP70 expression were assessed 24 hr post-RFA. Third, the effect of RFA combined with IV Lipo-Dox, Mic-Dox, Lipo-Qu, or Mic-Qu (15 min post-RFA) compared to RFA alone on tumor growth and animal endpoint survival was evaluated. Finally, drug uptake was compared between RFA/Lipo-Dox and RFA/Mic-Dox at 4–72 hr. Results Smaller 20 nm beads had greater deposition and deeper tissue penetration in both tumor (100 nm/500 nm) and liver (100 nm) (p<0.05). Mic-Dox and Mic-Qu suppressed periablational HIF-1α or HSP70 rim thickness more than liposomal preparations (p<0.05). RFA/Mic-Dox had greater early (4 hr) intratumoral doxorubicin, but RFA/Lipo-Dox had progressively higher intratumoral doxorubicin at 24–72 hr post-RFA (p<0.04). No difference in tumor growth and survival was seen between RFA/Lipo-Qu and RFA/Mic-Qu. Yet, RFA/Lipo-Dox led to greater animal endpoint survival compared to RFA/Mic-Dox (p<0.03). Conclusion With RF ablation, smaller particle micelles have superior penetration and more effective local molecular modulation. However, larger long-circulating liposomal carriers can result in greater intratumoral drug accumulation over

  12. Electroencephalographic and behavioral alterations produced by delta-1-tetrahydrocannabinol.

    PubMed

    Hockman, C H; Perrin, R G; Kalant, H

    1971-05-28

    The administration of small doses of Delta(l)-tetrahydrocannabinol to cats with indwelling electrodes produced a disruption of both the electroencephalogram and behavior. Some of these alterations, including the appearance of a high-voltage slow wave electroencephalogram in the awake and moving animal, have been observed in cats that had been administered other drugs known to cause hallucinogenic states in man.

  13. Discordant assessment of tumor biomarkers by histopathological and molecular assays in the EORTC randomized controlled 10041/BIG 03-04 MINDACT trial breast cancer : Intratumoral heterogeneity and DCIS or normal tissue components are unlikely to be the cause of discordance.

    PubMed

    Viale, Giuseppe; Slaets, Leen; de Snoo, Femke A; Bogaerts, Jan; Russo, Leila; van't Veer, Laura; Rutgers, Emiel J T; Piccart-Gebhart, Martine J; Stork-Sloots, Lisette; Dell'Orto, Patrizia; Glas, Annuska M; Cardoso, Fatima

    2016-02-01

    Accurate identification of breast cancer patients most likely to benefit from adjuvant systemic therapies is crucial. Better understanding of differences between methods can lead to an improved ER, PgR, and HER-2 assessment. The purpose of this preplanned translational research is to investigate the correlation of central IHC/FISH assessments with microarray mRNA readouts of ER, PgR, and HER-2 status in the MINDACT trial and to determine if any discordance could be attributed to intratumoral heterogeneity or the DCIS and normal tissue components in the specimens. MINDACT is an international, prospective, randomized, phase III trial investigating the clinical utility of MammaPrint in selecting patients with early breast cancer for adjuvant chemotherapy (n = 6694 patients). Gene-expression data were obtained by TargetPrint; IHC and/or FISH were assessed centrally (n = 5788; 86 %). Macroscopic and microscopic evaluation of centrally submitted FFPE blocks identified 1427 cases for which the very same sample was submitted for gene-expression analysis. TargetPrint ER had a positive agreement of 98 %, and a negative agreement of 95 % with central pathology. Corresponding figures for PgR were 85 and 94 % and for HER-2 72 and 99 %. Agreement of mRNA versus central protein was not different when the same or a different portion of the tumor tissue was analyzed or when DCIS and/or normal tissue was included in the sample subjected to mRNA assays. This is the first large analysis to assess the discordance rate between protein and mRNA analysis of breast cancer markers, and to look into intratumoral heterogeneity, DCIS, or normal tissue components as a potential cause of discordance. The observed difference between mRNA and protein assessment for PgR and HER-2 needs further research; the present analysis does not support intratumoral heterogeneity or the DCIS and normal tissue components being likely causes of the discordance.

  14. Transungual drug delivery: current status.

    PubMed

    Elkeeb, Rania; AliKhan, Ali; Elkeeb, Laila; Hui, Xiaoying; Maibach, Howard I

    2010-01-15

    Topical therapy is highly desirable in treating nail disorders due to its localized effects, which results in minimal adverse systemic events and possibly improved adherence. However, the effectiveness of topical therapies is limited by minimal drug permeability through the nail plate. Current research on nail permeation that focuses on altering the nail plate barrier by means of chemical treatments, penetration enhancers as well as physical and mechanical methods is reviewed. A new method of nail sampling is examined. Finally limitations of current ungual drug permeability studies are briefly discussed. PMID:19819318

  15. Transungual drug delivery: current status.

    PubMed

    Elkeeb, Rania; AliKhan, Ali; Elkeeb, Laila; Hui, Xiaoying; Maibach, Howard I

    2010-01-15

    Topical therapy is highly desirable in treating nail disorders due to its localized effects, which results in minimal adverse systemic events and possibly improved adherence. However, the effectiveness of topical therapies is limited by minimal drug permeability through the nail plate. Current research on nail permeation that focuses on altering the nail plate barrier by means of chemical treatments, penetration enhancers as well as physical and mechanical methods is reviewed. A new method of nail sampling is examined. Finally limitations of current ungual drug permeability studies are briefly discussed.

  16. Neurobiological alterations in alcohol addiction: a review.

    PubMed

    Erdozain, Amaia M; Callado, Luis F

    2014-01-01

    The exact mechanism by which ethanol exerts its effects on the brain is still unknown. However, nowadays it is well known that ethanol interacts with specific neuronal membrane proteins involved in signal transmission, resulting in changes in neural activity. In this review different neurochemical alterations produced by ethanol are described. Primarily, ethanol interacts with two membrane receptors: GABAA and NMDA ion channel receptors. Ethanol enhances the GABA action and antagonizes glutamate action, therefore acting as a CNS depressant. In addition, ethanol affects most other neurochemical and endocrine systems. In regard to the brain reward system, both dopaminergic and opioid system are affected by this drug. Furthermore, the serotonergic, noradrenergic, corticotropin-releasing factor and cannabinoid systems seem to play an important role in the neurobiology of alcoholism. At last but not least, ethanol can also modulate cytoplasmic components, including the second messengers. We also review briefly the different actual and putative pharmacological treatments for alcoholism, based on the alterations produced by this drug. PMID:25578004

  17. Drug watch.

    PubMed

    Whitson, S

    1999-01-01

    Recent developments on new anti-HIV agents and drugs for opportunistic infections are highlighted. Information is provided on the infusion inhibitor T-20; DuPont's second generation non-nukes, DPC 961 and DPC 963; Papirine (PEN203) for the human papilloma virus; Sporanox for treating fungal infections; and the antiretroviral protein, lysozyme. In addition, information is given on a plant found in the Bolivian rainforest that may contain compounds to prevent HIV infection by blocking the enzyme, integrase. Other promising new drugs addressed at the 6th Conference on Retroviruses and Opportunistic Infections are listed in a table. Contact information for US clinical trials is provided.

  18. Drug Allergy.

    PubMed

    Waheed, Abdul; Hill, Tiffany; Dhawan, Nidhi

    2016-09-01

    An adverse drug reaction relates to an undesired response to administration of a drug. Type A reactions are common and are predictable to administration, dose response, or interaction with other medications. Type B reactions are uncommon with occurrences that are not predictable. Appropriate diagnosis, classification, and entry into the chart are important to avoid future problems. The diagnosis is made with careful history, physical examination, and possibly allergy testing. It is recommended that help from allergy immunology specialists should be sought where necessary and that routine prescription of Epi pen should be given to patients with multiple allergy syndromes. PMID:27545730

  19. [Ureter drugs].

    PubMed

    Raynal, G; Bellan, J; Saint, F; Tillou, X; Petit, J

    2008-03-01

    Many improvements have been made recently in the field of the ureteral smooth muscle pharmacology. After a brief summary on physiological basis, we review what is known about effects on ureter of different drugs class. In a second part, we review clinical applications for renal colic analgesia, calculi expulsive medical therapy, ESWL adjuvant treatment and preoperative treatment before retrograde access. There are now sufficient data on NSAID and alpha-blockers. beta-agonists, especially for beta3 selective ones, and topical drugs before retrograde access are interesting and should be further evaluated.

  20. Natural rewards, neuroplasticity, and non-drug addictions.

    PubMed

    Olsen, Christopher M

    2011-12-01

    There is a high degree of overlap between brain regions involved in processing natural rewards and drugs of abuse. "Non-drug" or "behavioral" addictions have become increasingly documented in the clinic, and pathologies include compulsive activities such as shopping, eating, exercising, sexual behavior, and gambling. Like drug addiction, non-drug addictions manifest in symptoms including craving, impaired control over the behavior, tolerance, withdrawal, and high rates of relapse. These alterations in behavior suggest that plasticity may be occurring in brain regions associated with drug addiction. In this review, I summarize data demonstrating that exposure to non-drug rewards can alter neural plasticity in regions of the brain that are affected by drugs of abuse. Research suggests that there are several similarities between neuroplasticity induced by natural and drug rewards and that, depending on the reward, repeated exposure to natural rewards might induce neuroplasticity that either promotes or counteracts addictive behavior.

  1. Drug effects on responses to emotional facial expressions: recent findings.

    PubMed

    Miller, Melissa A; Bershad, Anya K; de Wit, Harriet

    2015-09-01

    Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally.

  2. Drug effects on responses to emotional facial expressions: recent findings

    PubMed Central

    Miller, Melissa A.; Bershad, Anya K.; de Wit, Harriet

    2016-01-01

    Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally. PMID:26226144

  3. Drug effects on responses to emotional facial expressions: recent findings.

    PubMed

    Miller, Melissa A; Bershad, Anya K; de Wit, Harriet

    2015-09-01

    Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally. PMID:26226144

  4. Altered fingerprints: analysis and detection.

    PubMed

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem.

  5. Altered fingerprints: analysis and detection.

    PubMed

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem. PMID:21808092

  6. Drug- and heavy metal--induced hyperpigmentation.

    PubMed

    Granstein, R D; Sober, A J

    1981-07-01

    Several categories of chemical and pharmacologic agents can cause alterations in cutaneous pigmentation, although the mechanisms differ and in several instances may be unknown. Fixed drug eruptions appear to have alteration of the basement membrane zone with incontinence of epidermal pigment as the mechanism of hyperpigmentation. Heavy metals produce increased pigmentation in part from deposition of metal particles and in part from an increase in epidermal melanin production. The antimalarials may bind to melanin. The phenothiazines and minocycline produce pigmentation from deposition of the drug. The mechanism, site, and nature of the pigment occurring with antineoplastic agents is not well understood, but the location is most likely predominantly epidermal. Clofazimine (Lamprene) alteration in pigmentation appears to result from deposition of the drug in subcutaneous fat.

  7. Expression of cytokeratin confers multiple drug resistance.

    PubMed Central

    Bauman, P A; Dalton, W S; Anderson, J M; Cress, A E

    1994-01-01

    The cytokeratin network is an extensive filamentous structure in the cytoplasm whose biological function(s) is unknown. Based upon previous data showing the modification of cytokeratin by mitoxantrone, we investigated the ability of cytokeratin networks to influence the survival response of cells to chemotherapeutic agents. We have compared the survival of mouse L fibroblasts lacking cytokeratins with that of L cells transfected with cytokeratins 8 and 18 in the presence of chemotherapeutic drugs. The expression of cytokeratins 8 and 18 conferred a multiple drug resistance phenotype on cells exposed to mitoxantrone, doxorubicin, methotrexate, melphalan, Colcemid, and vincristine. The degree of drug resistance was 5-454 times that of parental cells, depending upon the agent used. Drug resistance could not be attributed to altered growth characteristics, altered drug accumulation, or an altered drug efflux in the transfected cells. Cytokeratin does not confer resistance to ionizing radiation, which damages DNA independently of intracellular transport mechanisms. These data suggest a role for cytokeratin networks in conferring a drug resistance phenotype. Images PMID:7515497

  8. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy.

    PubMed

    Ho, Kung-Chu; Fang, Yu-Hua Dean; Chung, Hsiao-Wen; Yen, Tzu-Chen; Ho, Tsung-Ying; Chou, Hung-Hsueh; Hong, Ji-Hong; Huang, Yi-Ting; Wang, Chun-Chieh; Lai, Chyong-Huey

    2016-01-01

    We examined the role of intratumoral metabolic heterogeneity on (18)F-FDG PET during concurrent chemoradiotherapy (CCRT) in predicting survival outcomes for patients with cervical cancer. This prospective study consisted of 44 patients with bulky (≥ 4 cm) cervical cancer treated with CCRT. All patients underwent serial (18)F-FDG PET studies. Primary cervical tumor standardized uptake values, metabolic tumor volume, and total lesion glycolysis (TLG) were measured in pretreatment and intra-treatment (2 weeks) PET scans. Regional textural features were analyzed using the grey level run length encoding method (GLRLM) and grey-level size zone matrix. Associations between PET parameters and overall survival (OS) were tested by Kaplan-Meier analysis and Cox regression model. In univariate analysis, pretreatment grey-level nonuniformity (GLNU) > 48 by GLRLM textural analysis and intra-treatment decline of run length nonuniformity < 55% and the decline of TLG (∆TLG) < 60% were associated with significantly worse OS. In multivariate analysis, only ∆TLG was significant (P = 0.009). Combining pretreatment with intra-treatment factors, we defined the patients with a initial GLNU > 48 and a ∆TLG ≤ 60% as the high-risk group and the other patients as the low-risk. The 5-year OS rate for the high-risk group was significantly worse than that for the low-risk group (42% vs. 81%, respectively, P = 0.001). The heterogeneity of intratumoral FDG distribution and the early temporal change in TLG may be an important predictor for OS in patients with bulky cervical cancer. This gives the opportunity to adjust individualized regimens early in the treatment course. PMID:27508103

  9. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in 18F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy

    PubMed Central

    Ho, Kung-Chu; Fang, Yu-Hua Dean; Chung, Hsiao-Wen; Yen, Tzu-Chen; Ho, Tsung-Ying; Chou, Hung-Hsueh; Hong, Ji-Hong; Huang, Yi-Ting; Wang, Chun-Chieh; Lai, Chyong-Huey

    2016-01-01

    We examined the role of intratumoral metabolic heterogeneity on 18F-FDG PET during concurrent chemoradiotherapy (CCRT) in predicting survival outcomes for patients with cervical cancer. This prospective study consisted of 44 patients with bulky (≥ 4 cm) cervical cancer treated with CCRT. All patients underwent serial 18F-FDG PET studies. Primary cervical tumor standardized uptake values, metabolic tumor volume, and total lesion glycolysis (TLG) were measured in pretreatment and intra-treatment (2 weeks) PET scans. Regional textural features were analyzed using the grey level run length encoding method (GLRLM) and grey-level size zone matrix. Associations between PET parameters and overall survival (OS) were tested by Kaplan-Meier analysis and Cox regression model. In univariate analysis, pretreatment grey-level nonuniformity (GLNU) > 48 by GLRLM textural analysis and intra-treatment decline of run length nonuniformity < 55% and the decline of TLG (∆TLG) < 60% were associated with significantly worse OS. In multivariate analysis, only ∆TLG was significant (P = 0.009). Combining pretreatment with intra-treatment factors, we defined the patients with a initial GLNU > 48 and a ∆TLG ≤ 60% as the high-risk group and the other patients as the low-risk. The 5-year OS rate for the high-risk group was significantly worse than that for the low-risk group (42% vs. 81%, respectively, P = 0.001). The heterogeneity of intratumoral FDG distribution and the early temporal change in TLG may be an important predictor for OS in patients with bulky cervical cancer. This gives the opportunity to adjust individualized regimens early in the treatment course. PMID:27508103

  10. Antineoplastic Drugs.

    ERIC Educational Resources Information Center

    Morris, Sara; Michael, Nancy, Ed.

    This module on antineoplastic drugs is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  11. Mechanism of Drug-Drug Interactions Between Warfarin and Statins.

    PubMed

    Shaik, Abdul Naveed; Bohnert, Tonika; Williams, David A; Gan, Lawrence L; LeDuc, Barbara W

    2016-06-01

    The anticoagulant drug warfarin and the lipid-lowering statin drugs are commonly co-administered to patients with cardiovascular diseases. Clinically significant drug-drug interactions (DDIs) between these drugs have been recognized through case studies for many years, but the biochemical mechanisms causing these interactions have not been explained fully. Previous theories include kinetic alterations in cytochrome P-450-mediated drug metabolism or disturbances of drug-protein binding, leading to anticoagulant activity of warfarin; however, neither the enantioselective effects on warfarin metabolism nor the potential disruption of drug transporter function have been well investigated. This study investigated the etiology of the DDIs between warfarin and statins. Liquid chromatography-mass spectrometry methods were developed and validated to quantify racemic warfarin, 6 of its hydroxylated metabolites, and pure enantiomers of warfarin; these methods were applied to study the role of different absorption, distribution, metabolism, and excretion properties, leading to DDIs. Plasma protein binding displacement of warfarin was performed in the presence of statins using equilibrium dialysis method. Substrate kinetics of warfarin and pure enantiomers were performed with human liver microsomes to determine the kinetic parameters (Km and Vmax) for the formation of all 6 hydroxywarfarin metabolites, inhibition of warfarin metabolism in the presence of statins, was determined. Uptake transport studies of warfarin were performed using overexpressing HEK cell lines and efflux transport using human adenocarcinoma colonic cell line cells. Fluvastatin significantly displaced plasma protein binding of warfarin and pure enantiomers; no other statin resulted in significant displacement of warfarin. All the statins that inhibited the formation of 10-hydroxywarfarin, atorvastatin, pitavastatin, and simvastatin were highly potent compared to other statins; in contrast, only fluvastatin

  12. Parasites alter community structure.

    PubMed

    Wood, Chelsea L; Byers, James E; Cottingham, Kathryn L; Altman, Irit; Donahue, Megan J; Blakeslee, April M H

    2007-05-29

    Parasites often play an important role in modifying the physiology and behavior of their hosts and may, consequently, mediate the influence hosts have on other components of an ecological community. Along the northern Atlantic coast of North America, the dominant herbivorous snail Littorina littorea structures rocky intertidal communities through strong grazing pressure and is frequently parasitized by the digenean trematode Cryptocotyle lingua. We hypothesized that the effects of parasitism on host physiology would induce behavioral changes in L. littorea, which in turn would modulate L. littorea's influence on intertidal community composition. Specifically, we hypothesized that C. lingua infection would alter the grazing rate of L. littorea and, consequently, macroalgal communities would develop differently in the presence of infected versus uninfected snails. Our results show that uninfected snails consumed 40% more ephemeral macroalgal biomass than infected snails in the laboratory, probably because the digestive system of infected snails is compromised by C. lingua infection. In the field, this weaker grazing by infected snails resulted in significantly greater expansion of ephemeral macroalgal cover relative to grazing by uninfected snails. By decreasing the per-capita grazing rate of the dominant herbivore, C. lingua indirectly affects the composition of the macroalgal community and may in turn affect other species that depend on macroalgae for resources or habitat structure. In light of the abundance of parasites across systems, we suggest that, through trait-mediated indirect effects, parasites may be a common determinant of structure in ecological communities. PMID:17517667

  13. Characterizing genomic alterations in cancer by complementary functional associations

    PubMed Central

    Kim, J. W.; Botvinnik, O. B.; Abudayyeh, O.; Birger, C.; Rosenbluh, J.; Shrestha, Y.; Abazeed, M. E.; Hammerman, P. S.; DiCara, D.; Konieczkowski, D. J.; Johannessen, C. M.; Liberzon, A.; Alizad-Rahvar, A. R.; Alexe, G.; Aguirre, A.; Ghandi, M.; Greulich, H.; Vazquez, F.; Weir, B. A.; Van Allen, E. M.; Tsherniak, A.; Shao, D. D.; Zack, T. I.; Noble, M.; Getz, G.; Beroukhim, R.; Garraway, L. A.; Ardakani, M.; Romualdi, C.; Sales, G.; Barbie, D. A.; Boehm, J. S.; Hahn, W. C.; Mesirov, J. P.; Tamayo, P.

    2016-01-01

    Systematic efforts to sequence the cancer genome have identified large numbers of relevant mutations and copy number alterations in human cancers; however, elucidating their functional consequences, and their interactions to drive or maintain oncogenic states, is still a significant challenge. Here we introduce REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene-dependency of oncogenic pathways or the sensitivity to a drug treatment. We use REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  14. Cutaneous adverse drug reactions caused by antituberculosis drugs.

    PubMed

    Rezakovic, Saida; Pastar, Zrinjka; Kostovic, Kresimir

    2014-01-01

    Multidrug antituberculosis regimen is associated with diverse clinical patterns of cutaneous adverse drug reactions (CADR), ranging from mild and moderate such as pruritus, maculopapular exanthems, lichenoid eruptions, fixed drug eruptions and urticaria to severe and even life threatening ones like acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). These adverse reactions to antituberculosis drugs are commonly observed adverse events. This is of particular importance for high HIV prevalence settings and developing countries where tuberculosis is common infection resulting in higher occurrence rate of these reactions. There is still significant heterogenity in definition and classification of CADR, as well as diversity in treatment modalities following adverse reactions and rechallenge management. The aim of this review is to discuss clinical presentation, occurrence of CADR caused by antituberculosis drugs, to identify risk factors for intolerance of the standard therapy as well as to draw attention to importance of multi-disciplinary approach, early detection, prompt diagnosis and in time management of antituberculosis drugs associated CADR. CADR can cause significant treatment interruption and alteration, resulting in increased risk of treatment failure, drug resistance, relapses and increased risk of complications including even lethal outcome. Finally, it can be concluded that it is of great importance to identify the best possible treatment and preventive regimens in order to enable continuity of the antituberculosis therapy to the full extent. PMID:25039910

  15. Therapeutic Efficacy of Combining PEGylated Liposomal Doxorubicin and Radiofrequency (RF) Ablation: Comparison between Slow-Drug-Releasing, Non-Thermosensitive and Fast-Drug-Releasing, Thermosensitive Nano-Liposomes

    PubMed Central

    Andriyanov, Alexander V.; Koren, Erez; Barenholz, Yechezkel

    2014-01-01

    Aims To determine how the accumulation of drug in mice bearing an extra-hepatic tumor and its therapeutic efficacy are affected by the type of PEGylated liposomal doxorubicin used, treatment modality, and rate of drug release from the liposomes, when combined with radiofrequency (RF) ablation. Materials and Methods Two nano-drugs, both long-circulating PEGylated doxorubicin liposomes, were formulated: (1) PEGylated doxorubicin in thermosensitive liposomes (PLDTS), having a burst-type fast drug release above the liposomes’ solid ordered to liquid disordered phase transition (at 42°C), and (2) non-thermosensitive PEGylated doxorubicin liposomes (PLDs), having a slow and continuous drug release. Both were administered intravenously at 8 mg/kg doxorubicin dose to tumor-bearing mice. Animals were divided into 6 groups: no treatment, PLD, RF, RF+PLD, PLDTS, and PLDTS+RF, for intra-tumor doxorubicin deposition at 1, 24, and 72 h post-injection (in total 41, mice), and 31 mice were used for randomized survival studies. Results Non-thermosensitive PLD combined with RF had the least tumor growth and the best end-point survival, better than PLDTS+RF (p<0.005) or all individual therapies (p<0.001). Although at 1 h post-treatment the greatest amount of intra-tumoral doxorubicin was seen following PLDTS+RF (p<0.05), by 24 and 72 h the greatest doxorubicin amount was seen for PLD+RF (p<0.05); in this group the tumor also has the longest exposure to doxorubicin. Conclusion Optimizing therapeutic efficacy of PLD requires a better understanding of the relationship between the effect of RF on tumor microenvironment and liposome drug release profile. If drug release is too fast, the benefit of changing the microenvironment by RF on tumor drug localization and therapeutic efficacy may be much smaller than for PLDs having slow and temperature-independent drug release. Thus the much longer circulation time of doxorubicin from PLD than from PLDTS may be beneficial in many therapeutic

  16. [Adverse drug reactions in the elderly: What dermatologists should know].

    PubMed

    Kratzsch, D; Simon, J-C; Treudler, R

    2016-02-01

    Pharmacotherapy in the elderly represents a challenge for dermatologists in regard to comorbidities, drug interactions, and compliance. Age-associated multimorbidity often results in polypharmacy and elevates the risk of adverse drug reactions. Crucial age-related alterations in pharmacokinetics must be considered when selecting drugs, particularly decreased total body water, altered proportion between muscle mass and adipose tissue, as well as decreased renal function. The purpose of this review is to help the reader identify relevant adverse drug reactions of often prescribed systemic dermatological pharmacons in geriatric patients and makes recommendations for their adequate application. PMID:26643292

  17. Therapeutic drug monitoring: antiarrhythmic drugs.

    PubMed

    Campbell, T J; Williams, K M

    2001-01-01

    Antiarrhythmic agents are traditionally classified according to Vaughan Williams into four classes of action. Class I antiarrhythmic agents include most of the drugs traditionally thought of as antiarrhythmics, and have as a common action, blockade of the fast-inward sodium channel on myocardium. These agents have a very significant toxicity, and while they are being used less, therapeutic drug monitoring (TDM) does significantly increase the safety with which they can be administered. Class II agents are antisympathetic drugs, particularly the b-adrenoceptor blockers. These are generally safe agents which do not normally require TDM. Class III antiarrhythmic agents include sotalol and amiodarone. TDM can be useful in the case of amiodarone to monitor compliance and toxicity but is generally of little value for sotalol. Class IV antiarrhythmic drugs are the calcium channel blockers verapamil and diltiazem. These are normally monitored by haemodynamic effects, rather than using TDM. Other agents which do not fall neatly into the Vaughan Williams classification include digoxin and perhexiline. TDM is very useful for monitoring the administration (and particularly the safety) of both of these agents.

  18. Therapeutic drug monitoring: antiarrhythmic drugs

    PubMed Central

    Campbell, T J; Williams, K M

    2001-01-01

    Antiarrhythmic agents are traditionally classified according to Vaughan Williams into four classes of action. Class I antiarrhythmic agents include most of the drugs traditionally thought of as antiarrhythmics, and have as a common action, blockade of the fast-inward sodium channel on myocardium. These agents have a very significant toxicity, and while they are being used less, therapeutic drug monitoring (TDM) does significantly increase the safety with which they can be administered. Class II agents are antisympathetic drugs, particularly the b-adrenoceptor blockers. These are generally safe agents which do not normally require TDM. Class III antiarrhythmic agents include sotalol and amiodarone. TDM can be useful in the case of amiodarone to monitor compliance and toxicity but is generally of little value for sotalol. Class IV antiarrhythmic drugs are the calcium channel blockers verapamil and diltiazem. These are normally monitored by haemodynamic effects, rather than using TDM. Other agents which do not fall neatly into the Vaughan Williams classification include digoxin and perhexiline. TDM is very useful for monitoring the administration (and particularly the safety) of both of these agents. PMID:11564050

  19. In Vitro Drug Metabolism Using Liver Microsomes.

    PubMed

    Knights, Kathleen M; Stresser, David M; Miners, John O; Crespi, Charles L

    2016-01-01

    Knowledge of the metabolic stability of newly discovered drug candidates eliminated by metabolism is essential for predicting the pharmacokinetic (PK) parameters that underpin dosing and dosage frequency. Further, characterization of the enzyme(s) responsible for metabolism (reaction phenotyping) allows prediction, at least at the qualitative level, of factors (including metabolic drug-drug interactions) likely to alter the clearance of both new chemical entities (NCEs) and established drugs. Microsomes are typically used as the enzyme source for the measurement of metabolic stability and for reaction phenotyping because they express the major drug-metabolizing enzymes cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), along with others that contribute to drug metabolism. Described in this unit are methods for microsome isolation, as well as for the determination of metabolic stability and metabolite formation (including kinetics). © 2016 by John Wiley & Sons, Inc. PMID:27636111

  20. Interplay of drug metabolizing enzymes with cellular transporters.

    PubMed

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  1. Mephedrone alters basal ganglia and limbic dynorphin systems.

    PubMed

    German, Christopher L; Alburges, Mario E; Hoonakker, Amanda J; Fleckenstein, Annette E; Hanson, Glen R

    2014-08-25

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pretreatment with D1 -like (SCH-23380) or D2 -like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  2. Mephedrone alters basal ganglia and limbic dynorphin systems

    PubMed Central

    German, Christopher L.; Alburges, Mario E.; Hoonakker, Amanda J.; Fleckenstein, Annette E.; Hanson, Glen R.

    2014-01-01

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pre-treatment with D1-like (SCH-23380) or D2-like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. PMID:25155699

  3. Alcoholism, Drug Addiction, and the Road to Recovery: Life on the Edge.

    ERIC Educational Resources Information Center

    Stimmel, Barry

    Originally published in 1992 as The Facts About Drug Use, this updated edition contains new information about the effects of alcohol and recreational, mood-altering drugs on the body. The multiple causes of drug use and the options available to those dependent on drugs as a way of life are thoroughly described. Knowledge of the adverse effects of…

  4. Drug watch.

    PubMed

    Whitson, S

    1999-01-01

    Current research findings and treatment issues related to a number of drugs are briefly outlined. Topics include T-20, a reformulation of ddI, PMPA, chicoric acid, Omniferon (alpha leukoferon), and Mepron. Also discussed is a non-nucleoside reverse transcriptase inhibitor called calanolide A, which is synthesized from a tree native to Malaysian rain forests. An update is provided on Panretin, a gel which is used to treat KS lesions. Contact information is provided.

  5. Fetal drug therapy.

    PubMed Central

    Evans, M I; Pryde, P G; Reichler, A; Bardicef, M; Johnson, M P

    1993-01-01

    Fetal drug therapy encompasses several areas, including the prevention of external genital masculinization in 21-hydroxylase deficiency syndrome (congenital adrenal hyperplasia), biochemical amelioration of methylmalonic acidemia, and biotin-responsive multiple carboxylase deficiency. The correction of cardiac arrhythmias has become relatively commonplace, and a reduction in the risks of neural tube defects is now possible with the use of preconceptual and early conceptual folic acid. Similarly, fetal function can be altered by the induction of fetal lung maturity using a number of agents; corticosteroids are the most common fetal pharmaceutic agent, and a number of other agents have also been tried. The most common route of administering pharmaceutic agents is through the mother and the placenta, although the direct administration of certain agents is becoming more common. Images PMID:8236974

  6. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor

    PubMed Central

    Chen, Jiezhong; Raymond, Kenneth

    2006-01-01

    Rifampicin, an important drug in the treatment of tuberculosis, is used extensively despite its broad effects on drug-drug interactions, creating serious problems. The clinical importance of such interactions includes autoinduction leading to suboptimal or failed treatment. The concomitantly administered effects of rifampicin on other drugs can result in their altered metabolism or transportation that are metabolised by cytochromes P450 or transported by p-glycoprotein in the gastrointestinal tract and liver. This review paper summarises recent findings with emphases on the molecular mechanisms used to explain these broad drug-drug interactions. In general, rifampicin can act on a pattern: rifampicin activates the nuclear pregnane X receptor that in turn affects cytochromes P450, glucuronosyltransferases and p-glycoprotein activities. This pattern of action may explain many of the rifampicin inducing drug-drug interactions. However, effects through other mechanisms have also been reported and these make any explanation of such drug-drug interactions more complex. PMID:16480505

  7. Natural Rewards, Neuroplasticity, and Non-Drug Addictions

    PubMed Central

    Olsen, Christopher M.

    2011-01-01

    There is a high degree of overlap between brain regions involved in processing natural rewards and drugs of abuse. “Non-drug” or “behavioral” addictions have become increasingly documented in the clinic, and pathologies include compulsive activities such as shopping, eating, exercising, sexual behavior, and gambling. Like drug addiction, non-drug addictions manifest in symptoms including craving, impaired control over the behavior, tolerance, withdrawal, and high rates of relapse. These alterations in behavior suggest that plasticity may be occurring in brain regions associated with drug addiction. In this review, I summarize data demonstrating that exposure to non-drug rewards can alter neural plasticity in regions of the brain that are affected by drugs of abuse. Research suggests that there are several similarities between neuroplasticity induced by natural and drug rewards and that, depending on the reward, repeated exposure to natural rewards might induce neuroplasticity that either promotes or counteracts addictive behavior. PMID:21459101

  8. Drug Rash (Unclassified Drug Eruption) in Children

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Drug Eruption, Unclassified (Pediatric) A parent's guide to condition ... lesions coming together into larger lesions typical of drug rashes (eruptions). Overview A drug eruption, also known ...

  9. Asthma - control drugs

    MedlinePlus

    Asthma - inhaled corticosteroids; Asthma - long-acting beta-agonists; Asthma - leukotriene modifiers; Asthma - cromolyn; Bronchial asthma-control drugs; Wheezing - control drugs; Reactive airway disease - control drugs

  10. Drug interactions evaluation: An integrated part of risk assessment of therapeutics

    SciTech Connect

    Zhang, Lei; Reynolds, Kellie S.; Zhao, Ping; Huang, Shiew-Mei

    2010-03-01

    Pharmacokinetic drug interactions can lead to serious adverse events or decreased drug efficacy. The evaluation of a new molecular entity's (NME's) drug-drug interaction potential is an integral part of risk assessment during drug development and regulatory review. Alteration of activities of enzymes or transporters involved in the absorption, distribution, metabolism, or excretion of a new molecular entity by concomitant drugs may alter drug exposure, which can impact response (safety or efficacy). The recent Food and Drug Administration (FDA) draft drug interaction guidance ( (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072101.pdf)) highlights the methodologies and criteria that may be used to guide drug interaction evaluation by industry and regulatory agencies and to construct informative labeling for health practitioner and patients. In addition, the Food and Drug Administration established a 'Drug Development and Drug Interactions' website to provide up-to-date information regarding evaluation of drug interactions ( (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm)). This review summarizes key elements in the FDA drug interaction guidance and new scientific developments that can guide the evaluation of drug-drug interactions during the drug development process.

  11. Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery.

    PubMed

    Rapoport, Natalya

    2016-01-01

    The interaction of nanoparticles with directed energy is a novel application in targeted drug delivery. This chapter focuses on perfluorocarbon nanoemulsions, whose action in drug delivery depends on the ultrasound-triggered phase shift from liquid to gaseous state. These nanoemulsions have great potential for unloading encapsulated drugs at a desired time and location in the body in response to directed ultrasound. In addition, they actively alter their nano-environment for enhancing drug transport through various biological barriers to sites of action, which significantly enhances therapeutic outcome.

  12. Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery.

    PubMed

    Rapoport, Natalya

    2016-01-01

    The interaction of nanoparticles with directed energy is a novel application in targeted drug delivery. This chapter focuses on perfluorocarbon nanoemulsions, whose action in drug delivery depends on the ultrasound-triggered phase shift from liquid to gaseous state. These nanoemulsions have great potential for unloading encapsulated drugs at a desired time and location in the body in response to directed ultrasound. In addition, they actively alter their nano-environment for enhancing drug transport through various biological barriers to sites of action, which significantly enhances therapeutic outcome. PMID:26486341

  13. Pulmonary and generalized lysosomal storage induced by amphiphilic drugs.

    PubMed Central

    Hruban, Z

    1984-01-01

    Administration of amphiphilic drugs to experimental animals causes formation of myelinoid bodies in many cell types, accumulation of foamy macrophages in pulmonary alveoli and pulmonary alveolar proteinosis. These changes are the result of an interaction between the drugs and phospholipids which leads to an alteration in physicochemical properties of the phospholipids. Impairment of the digestion of altered pulmonary secretions in phagosomes of macrophages results in accumulation of foam cells in pulmonary alveoli. Impairment of the metabolism of altered phospholipids removed by autophagy induces an accumulation of myelinoid bodies. The administration of amphiphilic compounds thus causes pulmonary intra-alveolar histiocytosis which is a part of a drug-induced lysosomal storage or generalized lipidosis. The accumulation of drug-lipid complexes in myelinoid bodies and in pulmonary foam cells may lead to alteration of cellular functioning and to clinical disease. Currently over 50 amphiphilic drugs are known. Unique pharmacological properties necessitate clinical use of some of these drugs. The occurrence and severity of potential clinical side effects depend on the nature of each drug, dosage and duration of treatment, simultaneous administration of other drugs and foods, individual metabolic pattern of the patient and other factors. Further studies on factors preventing and potentiating adverse effects of amphiphilic drugs are indicated. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. PMID:6376111

  14. Antiplatelet Drugs

    PubMed Central

    Hirsh, Jack; Spencer, Frederick A.; Baglin, Trevor P.; Weitz, Jeffrey I.

    2012-01-01

    The article describes the mechanisms of action, pharmacokinetics, and pharmacodynamics of aspirin, dipyridamole, cilostazol, the thienopyridines, and the glycoprotein IIb/IIIa antagonists. The relationships among dose, efficacy, and safety are discussed along with a mechanistic overview of results of randomized clinical trials. The article does not provide specific management recommendations but highlights important practical aspects of antiplatelet therapy, including optimal dosing, the variable balance between benefits and risks when antiplatelet therapies are used alone or in combination with other antiplatelet drugs in different clinical settings, and the implications of persistently high platelet reactivity despite such treatment. PMID:22315278

  15. Brain Injury Alters Volatile Metabolome.

    PubMed

    Kimball, Bruce A; Cohen, Akiva S; Gordon, Amy R; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N; Beauchamp, Gary K

    2016-06-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function-which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. PMID:26926034

  16. Drugs Approved for Neuroblastoma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for neuroblastoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  17. Drugs Approved for Retinoblastoma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for retinoblastoma. The list includes generic names and brand names. The drug names link to NCI’s Cancer Drug Information summaries.

  18. Drugs Approved for Leukemia

    Cancer.gov

    This page lists cancer drugs approved by the FDA for use in leukemia. The drug names link to NCI's Cancer Drug Information summaries. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters.

  19. Drug Plan Coverage Rules

    MedlinePlus

    ... works with other insurance Find health & drug plans Drug plan coverage rules Note Call your Medicare drug ... shingles vaccine) when medically necessary to prevent illness. Drugs you get in hospital outpatient settings In most ...