Science.gov

Sample records for alters maize nad-dependent

  1. Mild reductions in mitochondrial NAD-dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth.

    PubMed

    Sienkiewicz-Porzucek, Agata; Sulpice, Ronan; Osorio, Sonia; Krahnert, Ina; Leisse, Andrea; Urbanczyk-Wochniak, Ewa; Hodges, Michael; Fernie, Alisdair R; Nunes-Nesi, Adriano

    2010-01-01

    Transgenic tomato (Solanum lycopersicum) plants were generated expressing a fragment of the mitochondrial NAD-dependent isocitrate dehydrogenase gene (SlIDH1) in the antisense orientation. The transgenic plants displayed a mild reduction in the activity of the target enzyme in the leaves but essentially no visible alteration in growth from the wild-type. Fruit size and yield were, however, reduced. These plants were characterized by relatively few changes in photosynthetic parameters, but they displayed a minor decrease in maximum photosynthetic efficiency (Fv/Fm). Furthermore, a clear reduction in flux through the tricarboxylic acid (TCA) cycle was observed in the transformants. Additionally, biochemical analyses revealed that the transgenic lines exhibited considerably altered metabolism, being characterized by slight decreases in the levels of amino acids, intermediates of the TCA cycle, photosynthetic pigments, starch, and NAD(P)H levels, but increased levels of nitrate and protein. Results from these studies show that even small changes in mitochondrial NAD-dependent isocitrate dehydrogenase activity lead to noticeable alterations in nitrate assimilation and suggest the presence of different strategies by which metabolism is reprogrammed to compensate for this deficiency.

  2. Alteration of hydrogen metabolism of ldh-deleted Enterobacter aerogenes by overexpression of NAD+-dependent formate dehydrogenase.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Wu, Xi; Xing, Xin-Hui

    2010-03-01

    The NAD+-dependent formate dehydrogenase FDH1 gene (fdh1), cloned from Candida boidinii, was expressed in the ldh-deleted mutant of Enterobacter aerogenes IAM1183 strain. The plasmid of pCom10 driven by the PalkB promoter was used to construct the fdh1 expression system and thus introduce a new dihydronicotinamide adenine dinucleotide (NADH) regeneration pathway from formate in the ldh-deleted mutant. The knockout of NADH-consuming lactate pathway affected the whole cellular metabolism, and the hydrogen yield increased by 11.4% compared with the wild strain. Expression of fdh1 in the ldh-deleted mutant caused lower final cell concentration and final pH after 16 h cultivation, and finally resulted in 86.8% of increase in hydrogen yield per mole consumed glucose. The analysis of cellular metabolites and estimated redox state balance in the fdhl-expressed strain showed that more excess of reducing power was formed by the rewired NADH regeneration pathway, changing the metabolic distribution and promoting the hydrogen production.

  3. Structural Basis of Inhibition of the Human NAD+ -Dependent Deacetylase SIRT5 by Suramin

    SciTech Connect

    Schuetz,A.; Min, J.; Antoshenko, T.; Wang, C.; Allali-Hassani, A.; Dong, A.; Loppnau, P.; vedadi, M.; Bochkarev, A.; et al.

    2007-01-01

    Sirtuins are NAD+-dependent protein deacetylases and are emerging as molecular targets for the development of pharmaceuticals to treat human metabolic and neurological diseases and cancer. To date, several sirtuin inhibitors and activators have been identified, but the structural mechanisms of how these compounds modulate sirtuin activity have not yet been determined. We identified suramin as a compound that binds to human SIRT5 and showed that it inhibits SIRT5 NAD+-dependent deacetylase activity with an IC50 value of 22 {mu}M. To provide insights into how sirtuin function is altered by inhibitors, we determined two crystal structures of SIRT5, one in complex with ADP-ribose, the other bound to suramin. Our structural studies provide a view of a synthetic inhibitory compound in a sirtuin active site revealing that suramin binds into the NAD+, the product, and the substrate-binding site. Finally, our structures may enable the rational design of more potent inhibitors.

  4. Allosteric substrate inhibition of Arabidopsis NAD-dependent malic enzyme 1 is released by fumarate.

    PubMed

    Tronconi, Marcos Ariel; Wheeler, Mariel Claudia Gerrard; Martinatto, Andrea; Zubimendi, Juan Pablo; Andreo, Carlos Santiago; Drincovich, María Fabiana

    2015-03-01

    Plant mitochondria can use L-malate and fumarate, which accumulate in large levels, as respiratory substrates. In part, this property is due to the presence of NAD-dependent malic enzymes (NAD-ME) with particular biochemical characteristics. Arabidopsis NAD-ME1 exhibits a non-hyperbolic behavior for the substrate L-malate, and its activity is strongly stimulated by fumarate. Here, the possible structural connection between these properties was explored through mutagenesis, kinetics, and fluorescence studies. The results indicated that NAD-ME1 has a regulatory site for L-malate that can also bind fumarate. L-Malate binding to this site elicits a sigmoidal and low substrate-affinity response, whereas fumarate binding turns NAD-ME1 into a hyperbolic and high substrate affinity enzyme. This effect was also observed when the allosteric site was either removed or altered. Hence, fumarate is not really an activator, but suppresses the inhibitory effect of l-malate. In addition, residues Arg50, Arg80 and Arg84 showed different roles in organic acid binding. These residues form a triad, which is the basis of the homo and heterotrophic effects that characterize NAD-ME1. The binding of L-malate and fumarate at the same allosteric site is herein reported for a malic enzyme and clearly indicates an important role of NAD-ME1 in processes that control flow of C4 organic acids in Arabidopsis mitochondrial metabolism.

  5. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity.

    PubMed

    Stokes, Suzanne S; Huynh, Hoan; Gowravaram, Madhusudhan; Albert, Robert; Cavero-Tomas, Marta; Chen, Brendan; Harang, Jenna; Loch, James T; Lu, Min; Mullen, George B; Zhao, Shannon; Liu, Ce-Feng; Mills, Scott D

    2011-08-01

    Optimization of adenosine analog inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. Antibacterial activity against Streptococcus pneumoniae and Staphylococcus aureus was improved by modification of the 2-position substituent on the adenine ring and 3'- and 5'-substituents on the ribose. Compounds with logD values 1.5-2.5 maximized potency and maintained drug-like physical properties.

  6. Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo.

    PubMed

    Mills, Scott D; Eakin, Ann E; Buurman, Ed T; Newman, Joseph V; Gao, Ning; Huynh, Hoan; Johnson, Kenneth D; Lahiri, Sushmita; Shapiro, Adam B; Walkup, Grant K; Yang, Wei; Stokes, Suzanne S

    2011-03-01

    DNA ligases are indispensable enzymes playing a critical role in DNA replication, recombination, and repair in all living organisms. Bacterial NAD+-dependent DNA ligase (LigA) was evaluated for its potential as a broad-spectrum antibacterial target. A novel class of substituted adenosine analogs was discovered by target-based high-throughput screening (HTS), and these compounds were optimized to render them more effective and selective inhibitors of LigA. The adenosine analogs inhibited the LigA activities of Escherichia coli, Haemophilus influenzae, Mycoplasma pneumoniae, Streptococcus pneumoniae, and Staphylococcus aureus, with inhibitory activities in the nanomolar range. They were selective for bacterial NAD+-dependent DNA ligases, showing no inhibitory activity against ATP-dependent human DNA ligase 1 or bacteriophage T4 ligase. Enzyme kinetic measurements demonstrated that the compounds bind competitively with NAD+. X-ray crystallography demonstrated that the adenosine analogs bind in the AMP-binding pocket of the LigA adenylation domain. Antibacterial activity was observed against pathogenic Gram-positive and atypical bacteria, such as S. aureus, S. pneumoniae, Streptococcus pyogenes, and M. pneumoniae, as well as against Gram-negative pathogens, such as H. influenzae and Moraxella catarrhalis. The mode of action was verified using recombinant strains with altered LigA expression, an Okazaki fragment accumulation assay, and the isolation of resistant strains with ligA mutations. In vivo efficacy was demonstrated in a murine S. aureus thigh infection model and a murine S. pneumoniae lung infection model. Treatment with the adenosine analogs reduced the bacterial burden (expressed in CFU) in the corresponding infected organ tissue as much as 1,000-fold, thus validating LigA as a target for antibacterial therapy.

  7. Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus.

    PubMed

    Lu, Jing; Tong, Jie; Feng, Hong; Huang, Jianmin; Afonso, Claudio L; Rock, Dan L; Barany, Francis; Cao, Weiguo

    2004-09-01

    The eukaryotic Melanoplus sanguinipes entomopoxvirus (MsEPV) genome reveals a homologous sequence to eubacterial nicotinamide adenine dinucleotide (NAD(+))-dependent DNA ligases [J. Virol. 73 (1999) 533]. This 522-amino acid open reading frame (ORF) contains all conserved nucleotidyl transferase motifs but lacks the zinc finger motif and BRCT domain found in conventional eubacterial NAD(+) ligases. Nevertheless, cloned MsEPV ligase seals DNA nicks in a NAD(+)-dependent fashion, while adenosine 5'-monophosphate (ATP) cannot serve as an adenylation cofactor. The ligation activity of MsEPV ligase requires Mg(2+) or Mn(2+). MsEPV ligase seals sticky ends efficiently, but has little activity on 1-nucleotide gap or blunt-ended DNA substrates even in the presence of polyethylene glycol. In comparison, bacterial NAD(+)-dependent ligases seal blunt-ended DNA substrates in the presence of polyethylene glycol. MsEPV DNA ligase readily joins DNA nicks with mismatches at either side of the nick junction, except for mismatches at the nick junction containing an A base in the template strand (A/A, G/A, and C/A). MsEPV NAD(+)-dependent DNA ligase can join DNA probes on RNA templates, a unique property that distinguishes this enzyme from other conventional bacterial NAD(+) DNA ligases. T4 ATP-dependent DNA ligase shows no detectable mismatch ligation at the 3' side of the nick but substantial 5' T/G mismatch ligation on an RNA template. In contrast, MsEPV ligase joins mismatches at the 3' side of the nick more frequently than at the 5' side of the nick on an RNA template. The complementary specificities of these two enzymes suggest alternative primer design for genomic profiling approaches that use allele-specific detection directly from RNA transcripts.

  8. Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase

    PubMed Central

    Beaufay, François; De Bolle, Xavier; Hallez, Régis

    2016-01-01

    ABSTRACT Prior to initiate energy-consuming processes, such as DNA replication or cell division, cells need to evaluate their metabolic status. We have recently identified and characterized a new connection between metabolism and cell division in the α-proteobacterium Caulobacter crescentus. We showed that an NAD-dependent glutamate dehydrogenase (GdhZ) coordinates growth with cell division according to its enzymatic activity. Here we report the conserved role of GdhZ in controlling cell division in another α-proteobacterium, the facultative intracellular pathogen Brucella abortus. We also discuss the importance of amino acids as a main carbon source for α-proteobacteria. PMID:27066186

  9. Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae.

    PubMed

    Coschigano, P W; Miller, S M; Magasanik, B

    1991-09-01

    We found that cells of Saccharomyces cerevisiae have an elevated level of the NAD-dependent glutamate dehydrogenase (NAD-GDH; encoded by the GDH2 gene) when grown with a nonfermentable carbon source or with limiting amounts of glucose, even in the presence of the repressing nitrogen source glutamine. This regulation was found to be transcriptional, and an upstream activation site (GDH2 UASc) sufficient for activation of transcription during respiratory growth conditions was identified. This UAS was found to be separable from a neighboring element which is necessary for the nitrogen source regulation of the gene, and strains deficient for the GLN3 gene product, required for expression of NAD-GDH during growth with the activating nitrogen source glutamate, were unaffected for the expression of NAD-GDH during growth with activating carbon sources. Two classes of mutations which prevented the normal activation of NAD-GDH in response to growth with nonfermentable carbon sources, but which did not affect the nitrogen-regulated expression of NAD-GDH, were found and characterized. Carbon regulation of GDH2 was found to be normal in hxk2, hap3, and hap4 strains and to be only slightly altered in a ssn6 strain; thus, in comparison with the regulation of previously identified glucose-repressed genes, a new pathway appears to be involved in the regulation of GDH2.

  10. Structure of the adenylation domain of NAD(+)-dependent DNA ligase from Staphylococcus aureus.

    PubMed

    Han, Seungil; Chang, Jeanne S; Griffor, Matt

    2009-11-01

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3'-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD(+)-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD(+)-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD(+)-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  11. Sirt5 Is an NAD-Dependent Protein Lysine Demalonylase and Desuccinylase*

    PubMed Central

    Du, Jintang; Zhou, Yeyun; Su, Xiaoyang; Yu, Jiu Jiu; Khan, Saba; Jiang, Hong; Kim, Jungwoo; Woo, Jimin; Kim, Jun Huyn; Choi, Brian Hyun; He, Bin; Chen, Wei; Zhang, Sheng; Cerione, Richard A.; Auwerx, Johan; Hao, Quan; Lin, Hening

    2011-01-01

    Sirtuins are NAD-dependent deacetylases that regulate important biological processes. Mammals have seven sirtuins, Sirt1-7. Four of them (Sirt4-7) have no detectable or very weak deacetylase activity. Here we found that Sirt5 is an efficient protein lysine desuccinylase and demalonylase in vitro. The preference for succinyl and malonyl groups was explained by the presence of an arginine residue (Arg105) and tyrosine residue (Tyr102) in the acyl pocket of Sirt5. Several mammalian proteins were identified to have succinyl or malonyl lysine modifications by mass spectrometry. Deletion of Sirt5 in mice appeared to increases the level of succinylation on carbamoyl phosphate synthase 1, a known target of Sirt5. Thus protein lysine succinylation may represent a posttranslational modification that can be reversed by Sirt5 in vivo. PMID:22076378

  12. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus

    PubMed Central

    Beaufay, François; Coppine, Jérôme; Mayard, Aurélie; Laloux, Géraldine; De Bolle, Xavier; Hallez, Régis

    2015-01-01

    Coupling cell cycle with nutrient availability is a crucial process for all living cells. But how bacteria control cell division according to metabolic supplies remains poorly understood. Here, we describe a molecular mechanism that coordinates central metabolism with cell division in the α-proteobacterium Caulobacter crescentus. This mechanism involves the NAD-dependent glutamate dehydrogenase GdhZ and the oxidoreductase-like KidO. While enzymatically active GdhZ directly interferes with FtsZ polymerization by stimulating its GTPase activity, KidO bound to NADH destabilizes lateral interactions between FtsZ protofilaments. Both GdhZ and KidO share the same regulatory network to concomitantly stimulate the rapid disassembly of the Z-ring, necessary for the subsequent release of progeny cells. Thus, this mechanism illustrates how proteins initially dedicated to metabolism coordinate cell cycle progression with nutrient availability. PMID:25953831

  13. NAD(+)- dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A member of the sirtuin family of NAD (+)-dependent deacetylases, SIRT3, is located in mammalian mitochondria and is important for regulation of mitochondrial metabolism, cell survival, and longevity. In this study, MRPL10 (mitochondrial ribosomal protein L10) was identified as the major acetylated ...

  14. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells

    NASA Astrophysics Data System (ADS)

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-08-01

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.

  15. Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation.

    PubMed

    Kalous, Kelsey S; Wynia-Smith, Sarah L; Olp, Michael D; Smith, Brian C

    2016-12-02

    The sirtuin family of proteins catalyze the NAD(+)-dependent deacylation of acyl-lysine residues. Humans encode seven sirtuins (Sirt1-7), and recent studies have suggested that post-translational modification of Sirt1 by cysteine S-nitrosation correlates with increased acetylation of Sirt1 deacetylase substrates. However, the mechanism of Sirt1 inhibition by S-nitrosation was unknown. Here, we show that Sirt1 is transnitrosated and inhibited by the physiologically relevant nitrosothiol S-nitrosoglutathione. Steady-state kinetic analyses and binding assays were consistent with Sirt1 S-nitrosation inhibiting binding of both the NAD(+) and acetyl-lysine substrates. Sirt1 S-nitrosation correlated with Zn(2+) release from the conserved sirtuin Zn(2+)-tetrathiolate and a loss of α-helical structure without overall thermal destabilization of the enzyme. Molecular dynamics simulations suggested that Zn(2+) loss due to Sirt1 S-nitrosation results in repositioning of the tetrathiolate subdomain away from the rest of the catalytic domain, thereby disrupting the NAD(+) and acetyl-lysine-binding sites. Sirt1 S-nitrosation was reversed upon exposure to the thiol-based reducing agents, including physiologically relevant concentrations of the cellular reducing agent glutathione. Reversal of S-nitrosation resulted in full restoration of Sirt1 activity only in the presence of Zn(2+), consistent with S-nitrosation of the Zn(2+)-tetrathiolate as the primary source of Sirt1 inhibition upon S-nitrosoglutathione treatment.

  16. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus.

    PubMed

    Tong, J; Barany, F; Cao, W

    2000-03-15

    An NAD(+)-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg(2+)or Mn(2+)as the metal cofactor. Ca(2+)and Ni(2+)mainly support formation of DNA-adenylate intermediates. The catalytic cycle is characterized by a low k (cat)value of 2 min(-1)with concomitant accumulation of the DNA - adenylate intermediate when Mg(2+)is used as the metal cofactor. The ligation rates of matched substrates vary by up to 4-fold, but exhibit a general trend of T/A < or = G/C < C/G < A/T on both the 3'- and 5'-side of the nick. Consistent with previous studies on Thermus ligases, this Aquifex ligase exhibits greater discrimination against a mismatched base pair on the 3'-side of the nick junction. The requirement of 3' complementarity for a ligation reaction is reaffirmed by results from 1 nt insertions on either the 3'- or 5'-side of the nick. Furthermore, most of the unligatable 3' mismatched base pairs prohibit formation of the DNA-adenylate intermediate, indicating that the substrate adenylation step is also a control point for ligation fidelity. Unlike previously studied ATP ligases, gapped substrates cannot be ligated and intermediate accumulation is minimal, suggesting that complete elimination of base pair complementarity on one side of the nick affects substrate adenylation on the 5'-side of the nick junction. Relationships among metal cofactors, ligation products and intermediate, and ligation fidelity are discussed.

  17. NAD+-dependent glutamate dehydrogenase of the edible mushroom Agaricus bisporus: biochemical and molecular characterization.

    PubMed

    Kersten, M A; Müller, Y; Baars, J J; Op den Camp, H J; van der Drift, C; Van Griensven, L J; Visser, J; Schaap, P J

    1999-04-01

    The NAD+-dependent glutamate dehydrogenase (NAD-GDH) of Agaricus bisporus, a key enzyme in nitrogen metabolism, was purified to homogeneity. The apparent molecular mass of the native enzyme is 474 kDa comprising four subunits of 116 kDa. The isoelectric point of the enzyme is about 7.0. Km values for ammonium, 2-oxoglutarate, NADH, glutamate and NAD+ were 6.5, 3.5, 0.06, 37.1 and 0.046 mM, respectively. The enzyme is specific for NAD(H). The gene encoding this enzyme (gdhB) was isolated from an A. bisporus H39 recombinant lambda phage library. The deduced amino acid sequence specifies a 1029-amino acid protein with a deduced molecular mass of 115,463 Da, which displays a significant degree of similarity with NAD-GDH of Saccharomyces cerevisiae and Neurospora crassa. The ORF is interrupted by fifteen introns. Northern analysis combined with enzyme activity measurements suggest that NAD-GDH from A. bisporus is regulated by the nitrogen source. NAD-GDH levels in mycelium grown on glutamate were higher than NAD-GDH levels in mycelium grown on ammonium as a nitrogen source. Combined with the kinetic parameters, these results suggest a catabolic role for NAD-GDH. However, upon addition of ammonium to the culture transcription of the gene is not repressed as strongly as that of the gene encoding NADP-GDH (gdhA). To date, tetrameric NAD-GDHs with large subunits, and their corresponding genes, have only been isolated from a few species. This enzyme represents the first NAD-GDH of basidiomycete origin to be purified and is the first such enzyme from basidiomycetes whose sequence has been determined.

  18. M. tuberculosis Sliding β-Clamp Does Not Interact Directly with the NAD+ -Dependent DNA Ligase

    PubMed Central

    Kukshal, Vandna; Khanam, Taran; Chopra, Deepti; Singh, Nidhi; Sanyal, Sabyasachi; Ramachandran, Ravishankar

    2012-01-01

    The sliding β-clamp, an important component of the DNA replication and repair machinery, is drawing increasing attention as a therapeutic target. We report the crystal structure of the M. tuberculosis β-clamp (Mtbβ-clamp) to 3.0 Å resolution. The protein crystallized in the space group C2221 with cell-dimensions a = 72.7, b = 234.9 & c = 125.1 Å respectively. Mtbβ-clamp is a dimer, and exhibits head-to-tail association similar to other bacterial clamps. Each monomer folds into three domains with similar structures respectively and associates with its dimeric partner through 6 salt-bridges and about 21 polar interactions. Affinity experiments involving a blunt DNA duplex, primed-DNA and nicked DNA respectively show that Mtbβ-clamp binds specifically to primed DNA about 1.8 times stronger compared to the other two substrates and with an apparent Kd of 300 nM. In bacteria like E. coli, the β-clamp is known to interact with subunits of the clamp loader, NAD+ -dependent DNA ligase (LigA) and other partners. We tested the interactions of the Mtbβ-clamp with MtbLigA and the γ-clamp loader subunit through radioactive gel shift assays, size exclusion chromatography, yeast-two hybrid experiments and also functionally. Intriguingly while Mtbβ-clamp interacts in vitro with the γ-clamp loader, it does not interact with MtbLigA unlike in bacteria like E. coli where it does. Modeling studies involving earlier peptide complexes reveal that the peptide-binding site is largely conserved despite lower sequence identity between bacterial clamps. Overall the results suggest that other as-yet-unidentified factors may mediate interactions between the clamp, LigA and DNA in mycobacteria. PMID:22545130

  19. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.

    PubMed

    Madsen, Andreas S; Andersen, Christian; Daoud, Mohammad; Anderson, Kristin A; Laursen, Jonas S; Chakladar, Saswati; Huynh, Frank K; Colaço, Ana R; Backos, Donald S; Fristrup, Peter; Hirschey, Matthew D; Olsen, Christian A

    2016-03-25

    Protein lysine posttranslational modification by an increasing number of different acyl groups is becoming appreciated as a regulatory mechanism in cellular biology. Sirtuins are class III histone deacylases that use NAD(+)as a co-substrate during amide bond hydrolysis. Several studies have described the sirtuins as sensors of the NAD(+)/NADH ratio, but it has not been formally tested for all the mammalian sirtuinsin vitro To address this problem, we first synthesized a wide variety of peptide-based probes, which were used to identify the range of hydrolytic activities of human sirtuins. These probes included aliphatic ϵ-N-acyllysine modifications with hydrocarbon lengths ranging from formyl (C1) to palmitoyl (C16) as well as negatively charged dicarboxyl-derived modifications. In addition to the well established activities of the sirtuins, "long chain" acyllysine modifications were also shown to be prone to hydrolytic cleavage by SIRT1-3 and SIRT6, supporting recent findings. We then tested the ability of NADH, ADP-ribose, and nicotinamide to inhibit these NAD(+)-dependent deacylase activities of the sirtuins. In the commonly used 7-amino-4-methylcoumarin-coupled fluorescence-based assay, the fluorophore has significant spectral overlap with NADH and therefore cannot be used to measure inhibition by NADH. Therefore, we turned to an HPLC-MS-based assay to directly monitor the conversion of acylated peptides to their deacylated forms. All tested sirtuin deacylase activities showed sensitivity to NADH in this assay. However, the inhibitory concentrations of NADH in these assays are far greater than the predicted concentrations of NADH in cells; therefore, our data indicate that NADH is unlikely to inhibit sirtuinsin vivo These data suggest a re-evaluation of the sirtuins as direct sensors of the NAD(+)/NADH ratio.

  20. NAD+-dependent Deacetylase SIRT3 Regulates Mitochondrial Protein Synthesis by Deacetylation of the Ribosomal Protein MRPL10*

    PubMed Central

    Yang, Yongjie; Cimen, Huseyin; Han, Min-Joon; Shi, Tong; Deng, Jian-Hong; Koc, Hasan; Palacios, Orsolya M.; Montier, Laura; Bai, Yidong; Tong, Qiang; Koc, Emine C.

    2010-01-01

    A member of the sirtuin family of NAD+-dependent deacetylases, SIRT3, is located in mammalian mitochondria and is important for regulation of mitochondrial metabolism, cell survival, and longevity. In this study, MRPL10 (mitochondrial ribosomal protein L10) was identified as the major acetylated protein in the mitochondrial ribosome. Ribosome-associated SIRT3 was found to be responsible for deacetylation of MRPL10 in an NAD+-dependent manner. We mapped the acetylated Lys residues by tandem mass spectrometry and determined the role of these residues in acetylation of MRPL10 by site-directed mutagenesis. Furthermore, we observed that the increased acetylation of MRPL10 led to an increase in translational activity of mitochondrial ribosomes in Sirt3−/− mice. In a similar manner, ectopic expression and knockdown of SIRT3 in C2C12 cells resulted in the suppression and enhancement of mitochondrial protein synthesis, respectively. Our findings constitute the first evidence for the regulation of mitochondrial protein synthesis by the reversible acetylation of the mitochondrial ribosome and characterize MRPL10 as a novel substrate of the NAD+-dependent deacetylase, SIRT3. PMID:20042612

  1. Chloroplast Structure and Function Is Altered in the NCS2 Maize Mitochondrial Mutant 1

    PubMed Central

    Roussell, Deborah L.; Thompson, Deborah L.; Pallardy, Steve G.; Miles, Donald; Newton, Kathleen J.

    1991-01-01

    The nonchromosomal stripe 2 (NCS2) mutant of maize (Zea mays L.) has a DNA rearrangement in the mitochondrial genome that segregates with the abnormal growth phenotype. Yet, the NCS2 characteristic phenotype includes striped sectors of pale-green tissue on the leaves. This suggests a chloroplast abnormality. To characterize the chloroplasts present in the mutant sectors, we examined the chloroplast structure by electron microscopy, chloroplast function by radiolabeled carbon dioxide fixation and fluorescence induction kinetics, and thylakoid protein composition by polyacrylamide gel electrophoresis. The data from these analyses suggest abnormal or prematurely arrested chloroplast development. Deleterious effects of the NCS2 mutant mitochondria upon the cells of the leaf include structural and functional alterations in the both the bundle sheath and mesophyll chloroplasts. ImagesFigure 1Figure 2Figure 3Figure 5Figure 6 PMID:16668157

  2. Molecular Characterization of NAD+-Dependent DNA Ligase from Wolbachia Endosymbiont of Lymphatic Filarial Parasite Brugia malayi

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra Kumar; Misra-Bhattacharya, Shailja

    2012-01-01

    The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD+-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD+-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD+-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies. PMID:22815933

  3. Alteration of gene expression profile in maize infected with a double-stranded RNA fijivirus associated with symptom development.

    PubMed

    Jia, Meng-Ao; Li, Yongqiang; Lei, Lei; Di, Dianping; Miao, Hongqin; Fan, Zaifeng

    2012-04-01

    Maize rough dwarf disease caused by Rice black-streaked dwarf virus (RBSDV) is a major viral disease in China. It has been suggested that the viral infection of plants might cause distinct disease symptoms through the inhibition or activation of host gene transcription. We scanned the gene expression profile of RBSDV-infected maize through oligomer-based microarrays to reveal possible expression changes associated with symptom development. Our results demonstrate that various resistance-related maize genes and cell wall- and development-related genes, such as those for cellulose synthesis, are among the genes whose expression is dramatically altered. These results could aid in research into new strategies to protect cereal crops against viruses, and reveal the molecular mechanisms of development of specific symptoms in rough dwarf-related diseases.

  4. Expression of NAD+-dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production.

    PubMed

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Wu, Xi; Xing, Xin-Hui

    2009-10-01

    An expression system for NAD(+)-dependent formate dehydrogenase gene (fdh1), from Candida boidinii, was constructed and cloned into Enterobacter aerogenes IAM1183. With the fdh1 expression, the total H(2) yield was attributed to a decrease in activity of the lactate pathway and an increase of the formate pathway flux due to the NADH regeneration. Analysis of the redox state balance and ethanol-to-acetate ratio in the fdhl-expressed strain showed that increased reducing power arose from the reconstruction of NADH regeneration pathway from formate thereby contributing to the improved H(2) production.

  5. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity.

    PubMed

    Mishra, Aradhana; Chauhan, Puneet Singh; Chaudhry, Vasvi; Tripathi, Manisha; Nautiyal, Chandra Shekhar

    2011-10-01

    Plant growth promoting Pantoea agglomerans NBRISRM (NBRISRM) was able to produce 60.4 μg/ml indole acetic acid and solubilize 77.5 μg/ml tri-calcium phosphate under in vitro conditions. Addition of 2% NaCl (w/v) in the media induced the IAA production and phosphate solubilization by 11% and 7%, respectively. For evaluating the plant growth promotory effect of NBRISRM inoculation a micro plot trial was conducted using maize and chickpea as host plants. The results revealed significant increase in all growth parameters tested in NBRISRM inoculated maize and chickpea plants, which were further confirmed by higher macronutrients (N, P and K) accumulation as compared to un-inoculated controls. Throughout the growing season of maize and chickpea, rhizosphere population of NBRISRM were in the range 10(7)-10(8) CFU/g soil and competing with 10(7)-10(9) CFU/g soil with heterogeneous bacterial population. Functional richness, diversity, and evenness were found significantly higher in maize rhizosphere as compared to chickpea, whereas NBRISRM inoculation were not able to change it, in both crops as compared to their un-inoculated control. To the best of our knowledge this is first report where we demonstrated the effect of P. agglomerans strain for improving maize and chickpea growth without altering the functional diversity.

  6. Alterations in Soluble Class III Peroxidases of Maize Shoots by Flooding Stress

    PubMed Central

    Meisrimler, Claudia-Nicole; Buck, Friedrich; Lüthje, Sabine

    2014-01-01

    Due to changing climate, flooding (waterlogged soils and submergence) becomes a major problem in agriculture and crop production. In the present study, the effect of waterlogging was investigated on peroxidases of maize (Zea mays L.) leaves. The plants showed typical adaptations to flooding stress, i.e., alterations in chlorophyll a/b ratios and increased basal shoot diameter. Seven peroxidase bands could be detected by first dimension modified SDS-PAGE and 10 bands by first dimension high resolution Clear Native Electrophoresis that altered in dependence on plant development and time of waterlogging. Native isoelectric focusing revealed three acidic to neutral and four alkaline guaiacol peroxidases that could be further separated by high resolution Clear Native Electrophorese in the second dimension. One neutral peroxidase (pI 7.0) appeared to be down-regulated within four hours after flooding, whereas alkaline peroxidases (pI 9.2, 8.0 and 7.8) were up-regulated after 28 or 52 h. Second dimensions revealed molecular masses of 133 kDa and 85 kDa for peroxidases at pI 8.0 and 7.8, respectively. Size exclusion chromatography revealed native molecular masses of 30–58 kDa for peroxidases identified as class III peroxidases and ascorbate peroxidases by mass spectrometry. Possible functions of these peroxidases in flooding stress will be discussed. PMID:28250383

  7. Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize.

    PubMed

    Stelpflug, Scott C; Eichten, Steven R; Hermanson, Peter J; Springer, Nathan M; Kaeppler, Shawn M

    2014-09-01

    Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies of maize using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic sites across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states.

  8. Sequence and ionomic analysis of divergent strains of maize inbred line B73 with an altered growth phenotype.

    PubMed

    Mascher, Martin; Gerlach, Nina; Gahrtz, Manfred; Bucher, Marcel; Scholz, Uwe; Dresselhaus, Thomas

    2014-01-01

    Maize (Zea mays) is the most widely grown crop species in the world and a classical model organism for plant research. The completion of a high-quality reference genome sequence and the advent of high-throughput sequencing have greatly empowered re-sequencing studies in maize. In this study, plants of maize inbred line B73 descended from two different sets of seed material grown for several generations either in the field or in the greenhouse were found to show a different growth phenotype and ionome under phosphate starvation conditions and moreover a different responsiveness towards mycorrhizal fungi of the species Glomus intraradices (syn: Rhizophagus irregularis). Whole genome re-sequencing of individuals from both sets and comparison to the B73 reference sequence revealed three cryptic introgressions on chromosomes 1, 5 and 10 in the line grown in the greenhouse summing up to a total of 5,257 single-nucleotide polymorphisms (SNPs). Transcriptome sequencing of three individuals from each set lent further support to the location of the introgression intervals and confirmed them to be fixed in all sequenced individuals. Moreover, we identified >120 genes differentially expressed between the two B73 lines. We thus have found a nearly-isogenic line (NIL) of maize inbred line B73 that is characterized by an altered growth phenotype under phosphate starvation conditions and an improved responsiveness towards symbiosis with mycorrhizal fungi. Through next-generation sequencing of the genomes and transcriptomes we were able to delineate exact introgression intervals. Putative de novo mutations appeared approximately uniformly distributed along the ten maize chromosomes mainly representing G:C -> A:T transitions. The plant material described in this study will be a valuable tool both for functional studies of genes differentially expressed in both B73 lines and for research on growth behavior especially in response to symbiosis between maize and mycorrhizal fungi.

  9. NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.

    PubMed

    Cerutti, Raffaele; Pirinen, Eija; Lamperti, Costanza; Marchet, Silvia; Sauve, Anthony A; Li, Wei; Leoni, Valerio; Schon, Eric A; Dantzer, Françoise; Auwerx, Johan; Viscomi, Carlo; Zeviani, Massimo

    2014-06-03

    Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD(+)-dependent protein deacetylase. As NAD(+) boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD(+) play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD(+) precursor, or reduction of NAD(+) consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans.

  10. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.

    PubMed

    Feldman, Jessica L; Dittenhafer-Reed, Kristin E; Kudo, Norio; Thelen, Julie N; Ito, Akihiro; Yoshida, Minoru; Denu, John M

    2015-05-19

    Acylation of lysine is an important protein modification regulating diverse biological processes. It was recently demonstrated that members of the human Sirtuin family are capable of catalyzing long chain deacylation, in addition to the well-known NAD(+)-dependent deacetylation activity [Feldman, J. L., Baeza, J., and Denu, J. M. (2013) J. Biol. Chem. 288, 31350-31356]. Here we provide a detailed kinetic and structural analysis that describes the interdependence of NAD(+)-binding and acyl-group selectivity for a diverse series of human Sirtuins, SIRT1-SIRT3 and SIRT6. Steady-state and rapid-quench kinetic analyses indicated that differences in NAD(+) saturation and susceptibility to nicotinamide inhibition reflect unique kinetic behavior displayed by each Sirtuin and depend on acyl substrate chain length. Though the rate of nucleophilic attack of the 2'-hydroxyl on the C1'-O-alkylimidate intermediate varies with acyl substrate chain length, this step remains rate-determining for SIRT2 and SIRT3; however, for SIRT6, this step is no longer rate-limiting for long chain substrates. Cocrystallization of SIRT2 with myristoylated peptide and NAD(+) yielded a co-complex structure with reaction product 2'-O-myristoyl-ADP-ribose, revealing a latent hydrophobic cavity to accommodate the long chain acyl group, and suggesting a general mechanism for long chain deacylation. Comparing two separately determined co-complex structures containing either a myristoylated peptide or 2'-O-myristoyl-ADP-ribose indicates there are conformational changes at the myristoyl-ribose linkage with minimal structural differences in the enzyme active site. During the deacylation reaction, the fatty acyl group is held in a relatively fixed position. We describe a kinetic and structural model to explain how various Sirtuins display unique acyl substrate preferences and how different reaction kinetics influence NAD(+) dependence. The biological implications are discussed.

  11. Adenylation-Dependent Conformation and Unfolding Pathways of the NAD+-Dependent DNA Ligase from the Thermophile Thermus scotoductus

    PubMed Central

    Georlette, Daphné; Blaise, Vinciane; Bouillenne, Fabrice; Damien, Benjamin; Thorbjarnardóttir, Sigridur H.; Depiereux, Eric; Gerday, Charles; Uversky, Vladimir N.; Feller, Georges

    2004-01-01

    In the last few years, an increased attention has been focused on NAD+-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD+-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD+-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced “open-closure” process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates. PMID:14747344

  12. Resistance to Bt maize in Mythimna unipuncta (Lepidoptera: Noctuidae) is mediated by alteration in Cry1Ab protein activation.

    PubMed

    González-Cabrera, Joel; García, Matías; Hernández-Crespo, Pedro; Farinós, Gema P; Ortego, Félix; Castañera, Pedro

    2013-08-01

    Bt maize cultivars based on the event MON810 (expressing Cry1Ab) have shown high efficacy for controlling corn borers. However, their efficiency for controlling some secondary lepidopteran pests such as Mythimna unipuncta has been questioned, raising concerns about potential outbreaks and its economic consequences. We have selected a resistant strain (MR) of M. unipuncta, which is capable of completing its life cycle on Bt maize and displays a similar performance when feeding on both Bt and non-Bt maize. The proteolytic activation of the protoxin and the binding of active toxin to brush border membrane vesicles were investigated in the resistant and a control strain. A reduction in the activity of proteolytic enzymes, which correlates with impaired capacity of midgut extracts to activate the Cry1Ab protoxin has been observed in the resistant strain. Moreover, resistance in larvae of the MR strain was reverted when treated with Cry1Ab toxin activated with midgut juice from the control strain. All these data indicate that resistance in the MR strain is mediated by alteration of toxin activation rather than to an increase in the proteolytic degradation of the protein. By contrast, binding assays performed with biotin labelled Cry1Ab suggest that binding to midgut receptors does not play a major role in the resistance to Bt maize. Our results emphasize the risk of development of resistance in field populations of M. unipuncta and the need to consider this secondary pest in ongoing resistance management programs to avoid the likely negative agronomic and environmental consequences.

  13. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha*

    PubMed Central

    Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ

    2016-01-01

    We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD+-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its MoV state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center. PMID:26553877

  14. Analysis of the promoter region of the gene encoding NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase.

    PubMed Central

    Bélanger, C; Peri, K G; MacKenzie, R E

    1991-01-01

    Sequence analysis of the 5'-flanking region of the gene encoding NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) revealed several putative cis-regulatory elements. To delineate the function of these regulatory elements, various deletion mutants of the 5'-flanking region were connected to the reporter gene chloramphenicol acetyltransferase (CAT) and promoter activity was measured in transient transfection assays. Transfection experiments performed with the sequence extending from -508 to +59 produced a high-level transient expression of the CAT gene in BALB/c 3T3-SV-T2 and NIH 3T3 cells. Removal of the sequence from +16 to +59 which includes the second transcription start point at +43, a TATA-like box and 5'-untranslated sequences abolished the promoter activity. Deletion analysis of 5'-upstream sequences revealed that the region from positions -55 to +59 is sufficient to mediate a high CAT activity comparable to the level obtained with the construct -508/+59. Within this region are found a CAAT box, a TATA-like box and two putative GC boxes. A functional analysis of the promoter showed that the sequence from -55 to +59 is sufficient to respond to stimulation by serum. Images PMID:1843253

  15. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha.

    PubMed

    Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ

    2016-01-15

    We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD(+)-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its Mo(V) state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center.

  16. Molecular mechanism of the allosteric regulation of the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase

    PubMed Central

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase catalyzes the decarboxylation of isocitrate (ICT) into α-ketoglutarate in the Krebs cycle. It exists as the α2βγ heterotetramer composed of the αβ and αγ heterodimers. Previously, we have demonstrated biochemically that the α2βγ heterotetramer and αγ heterodimer can be allosterically activated by citrate (CIT) and ADP. In this work, we report the crystal structures of the αγ heterodimer with the γ subunit bound without or with different activators. Structural analyses show that CIT, ADP and Mg2+ bind adjacent to each other at the allosteric site. The CIT binding induces conformational changes at the allosteric site, which are transmitted to the active site through the heterodimer interface, leading to stabilization of the ICT binding at the active site and thus activation of the enzyme. The ADP binding induces no further conformational changes but enhances the CIT binding through Mg2+-mediated interactions, yielding a synergistic activation effect. ICT can also bind to the CIT-binding subsite, which induces similar conformational changes but exhibits a weaker activation effect. The functional roles of the key residues are verified by mutagenesis, kinetic and structural studies. Our structural and functional data together reveal the molecular mechanism of the allosteric regulation of the αγ heterodimer. PMID:28098230

  17. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I

    PubMed Central

    Srivastava, Sandeep Kumar; Dube, Divya; Tewari, Neetu; Dwivedi, Namrata; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2005-01-01

    DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD+ binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, Nn-bis-(5-deoxy-α-d-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD+ for binding and inhibit enzyme activity with IC50 values in the µM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD+ with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATP-dependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents. PMID:16361267

  18. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I.

    PubMed

    Srivastava, Sandeep Kumar; Dube, Divya; Tewari, Neetu; Dwivedi, Namrata; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2005-01-01

    DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD+ binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, N(n)-bis-(5-deoxy-alpha-D-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD+ for binding and inhibit enzyme activity with IC50 values in the microM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD+ with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATP-dependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.

  19. Wheat glutenin alters protein body structure in maize but not levels of endogenous storage proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal grains are an important nutritional source of amino acids for humans and livestock worldwide. They belong to three subfamilies of grasses or Poaceae. Wheat, barley, and oats belong to the subfamily Pooideae, rice to the Ehrhartoideae, and maize, millets, sugarcane, and sorghum to the Panicoid...

  20. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38.

    PubMed

    Aksoy, Pinar; Escande, Carlos; White, Thomas A; Thompson, Michael; Soares, Sandra; Benech, Juan Claudio; Chini, Eduardo N

    2006-10-13

    The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1 enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes.

  1. Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38

    SciTech Connect

    Aksoy, Pinar; Escande, Carlos; White, Thomas A.; Thompson, Michael; Soares, Sandra; Benech, Juan Claudio; Chini, Eduardo N. . E-mail: chini.eduardo@mayo.edu

    2006-10-13

    The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1 enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes.

  2. Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize.

    PubMed Central

    Parker, W B; Marshall, L C; Burton, J D; Somers, D A; Wyse, D L; Gronwald, J W; Gengenbach, B G

    1990-01-01

    A partially dominant mutation exhibiting increased tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides was isolated by exposing susceptible maize (Zea mays) tissue cultures to increasingly inhibitory concentrations of sethoxydim (a cyclohexanedione). The selected tissue culture (S2) was greater than 40-fold more tolerant to sethoxydim and 20-fold more tolerant to haloxyfop (an aryloxyphenoxypropionate) than the nonselected wild-type tissue culture. Regenerated S2 plants were heterozygous for the mutant allele and exhibited a high-level, but not complete, tolerance to both herbicides. Homozygous mutant families derived by self-pollinating the regenerated S2 plants exhibited no injury after treatment with 0.8 kg of sethoxydim per ha, which was greater than 16-fold the rate lethal to wild-type plants. Acetyl-coenzyme A carboxylase (ACCase; EC 6.4.1.2) is the target enzyme of cyclohexanedione and aryloxyphenoxypropionate herbicides. ACCase activities of the nonselected wild-type and homozygous mutant seedlings were similar in the absence of herbicide. ACCase activity from homozygous tolerant plants required greater than 100-fold more sethoxydim and 16-fold more haloxyfop for 50% inhibition than ACCase from wild-type plants. These results indicate that tolerance to sethoxydim and haloxyfop is controlled by a partially dominant nuclear mutation encoding a herbicide-insensitive alteration in maize ACCase. Images PMID:1976254

  3. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions.

    PubMed

    Habben, Jeffrey E; Bao, Xiaoming; Bate, Nicholas J; DeBruin, Jason L; Dolan, Dennis; Hasegawa, Darren; Helentjaris, Timothy G; Lafitte, Renee H; Lovan, Nina; Mo, Hua; Reimann, Kellie; Schussler, Jeffrey R

    2014-08-01

    A transgenic gene-silencing approach was used to modulate the levels of ethylene biosynthesis in maize (Zea mays L.) and determine its effect on grain yield under drought stress in a comprehensive set of field trials. Commercially relevant transgenic events were created with down-regulated ACC synthases (ACSs), enzymes that catalyse the rate-limiting step in ethylene biosynthesis. These events had ethylene emission levels reduced approximately 50% compared with nontransgenic nulls. Multiple, independent transgenic hybrids and controls were tested in field trials at managed drought-stress and rain-fed locations throughout the US. Analysis of yield data indicated that transgenic events had significantly increased grain yield over the null comparators, with the best event having a 0.58 Mg/ha (9.3 bushel/acre) increase after a flowering period drought stress. A (genotype × transgene) × environment interaction existed among the events, highlighting the need to better understand the context in which the down-regulation of ACSs functions in maize. Analysis of secondary traits showed that there was a consistent decrease in the anthesis-silking interval and a concomitant increase in kernel number/ear in transgene-positive events versus nulls. Selected events were also field tested under a low-nitrogen treatment, and the best event was found to have a significant 0.44 Mg/ha (7.1 bushel/acre) yield increase. This set of extensive field evaluations demonstrated that down-regulating the ethylene biosynthetic pathway can improve the grain yield of maize under abiotic stress conditions.

  4. Giardia duodenalis GlSir2.2, homolog of SIRT1, is a nuclear-located and NAD(+)-dependent deacethylase.

    PubMed

    Wang, Yun-Hua; Zheng, Guo-Xia; Li, Ya-Jie

    2016-10-01

    Sir2 family proteins are highly conserved and catalyze Nicotinamide Adenine Dinucleotide (NAD(+))-dependent protein deacetylation reaction that regulates multiple cellular processes. Little is known about Sir2 family proteins in Giardia. In this research, Sir2 homologs of Giardia were Phylogenetically analyzed. GL50803_10707 (GlSIR2.2) showed strong homology to SIRT1 and was the only parasite SIRT1 homolog being reported to date. Recombinant GlSIR2.2 (rGlSIR2.2) was expressed and purified. The renaturied recombinant protein showed a typical NAD-dependent protein deacetylase activity that could be inhibited by nicotinamide, with IC50 of 4.47 mM rGlSIR2.2 displayed deacetylase activity under varied NAD(+), with Km, kcat and kcat/Km values of 31.71 μM, 1.4 × 10(-3) s(-1), and 4.42 × 10(-5) μM(-1) s(-1). Similarly, the steady-state kinetic parameters with varied ZMAL, yielded Km, kcat and kcat/Km values of 96.89 μM, 4.7 × 10(-3) s(-1), and 4.85 × 10(-5) μM(-1) s(-1). Anti-rGlSIR2.2 serum was used to probe subcellular localization of GlSIR2.2 and strong staining was found predominantly in the nucleus. So we demonstrated that GlSIR2.2 was a SIRT1-like, nuclear-located, NAD(+)-dependent deacetylase. This is the first report of deacetylase activity of Sir2 family protein in Giardia.

  5. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.

    PubMed

    Boles, E; Lehnert, W; Zimmermann, F K

    1993-10-01

    Phosphoglucose isomerase pgi1-deletion mutants of Saccharomyces cerevisiae cannot grow on glucose as the sole carbon source and are even inhibited by glucose. These growth defects could be suppressed by an over-expression on a multi-copy plasmid of the structural gene GDH2 coding for the NAD-dependent glutamate dehydrogenase. GDH2 codes for a protein with 1092 amino acids which is located on chromosome XII and shows high sequence similarity to the Neurospora crassa NAD-glutamate dehydrogenase. Suppression of the pgi1 deletion by over-expression of GDH2 was abolished in strains with a deletion of the glucose-6-phosphate dehydrogenase gene ZWF1 or gene GDH1 coding for the NADPH-dependent glutamate dehydrogenase. Moreover, this suppression required functional mitochondria. It is proposed that the growth defect of pgi1 deletion mutants on glucose is due to a rapid depletion of NADP which is needed as a cofactor in the oxidative reactions of the pentose phosphate pathway. Over-expression of the NAD-dependent glutamate dehydrogenase leads to a very efficient conversion of glutamate with NADH generation to 2-oxoglutarate which can be converted back to glutamate by the NADPH-dependent glutamate dehydrogenase with the consumption of NADPH. Consequently, over-expression of the NAD-dependent glutamate dehydrogenase causes a substrate cycling between 2-oxoglutarate and glutamate which restores NADP from NADPH through the coupled conversion of NAD to NADH which can be oxidized in the mitochondria. Furthermore, the requirement for an increase in NADPH consumption for the suppression of the phosphoglucose isomerase defect could be met by addition of oxidizing agents which are known to reduce the level of NADPH.

  6. A "stripping" ligand tactic for use with the kinetic locking-on strategy: its use in the resolution and bioaffinity chromatographic purification of NAD(+)-dependent dehydrogenases.

    PubMed

    O'Flaherty, M; O'Carra, P; McMahon, M; Mulcahy, P

    1999-08-01

    The kinetic locking-on strategy utilizes soluble analogues of the target enzymes' specific substrate to promote selective adsorption of individual NAD(+)-dependent dehydrogenases on their complementary immobilized cofactor derivative. Application of this strategy to the purification of NAD(+)-dependent dehydrogenases from crude extracts has proven that it can yield bioaffinity systems capable of producing one-chromatographic-step purifications with yields approaching 100%. However, in some cases the purified enzyme preparation was found to be contaminated with other proteins weakly bound to the immobilized cofactor derivative through binary complex formation and/or nonspecific interactions, which continuously "dribbled" off the matrix during the chromatographic procedure. The fact that this problem can be overcome by including a short pulse of 5'-AMP (stripping ligand) in the irrigant a couple of column volumes prior to the discontinuation of the specific substrate analogue (locking-on ligand) is clear from the results presented in this report. The general effectiveness of this auxiliary tactic has been assessed using model studies and through incorporation into an actual purification from a crude cellular extract. The results confirm the usefulness of the stripping-ligand tactic for the resolution and purification of NAD(+)-dependent dehydrogenases when using the locking-on strategy. These studies have been carried out using bovine liver glutamate dehydrogenase (GDH, EC 1.4.1.3), yeast alcohol dehydrogenase (YADH, EC 1.1.1.1), porcine heart mitochondrial malate dehydrogenase (mMDH, EC 1.1.1.37), and bovine heart L-lactate dehydrogenase (l-LDH, EC 1.1.1.27).

  7. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize.

    PubMed

    Liu, Xiuxia; Zhai, Shumei; Zhao, Yajie; Sun, Baocheng; Liu, Cheng; Yang, Aifang; Zhang, Juren

    2013-05-01

    Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and real-time RT-PCR assay. The electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up-regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the pre-flowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.

  8. Cofactor binding modulates the conformational stabilities and unfolding patterns of NAD(+)-dependent DNA ligases from Escherichia coli and Thermus scotoductus.

    PubMed

    Georlette, Daphné; Blaise, Vinciane; Dohmen, Christophe; Bouillenne, Fabrice; Damien, Benjamin; Depiereux, Eric; Gerday, Charles; Uversky, Vladimir N; Feller, Georges

    2003-12-12

    DNA ligases are important enzymes required for cellular processes such as DNA replication, recombination, and repair. NAD(+)-dependent DNA ligases are essentially restricted to eubacteria, thus constituting an attractive target in the development of novel antibiotics. Although such a project might involve the systematic testing of a vast number of chemical compounds, it can essentially gain from the preliminary deciphering of the conformational stability and structural perturbations associated with the formation of the catalytically active adenylated enzyme. We have, therefore, investigated the adenylation-induced conformational changes in the mesophilic Escherichia coli and thermophilic Thermus scotoductus NAD(+)-DNA ligases, and the resistance of these enzymes to thermal and chemical (guanidine hydrochloride) denaturation. Our results clearly demonstrate that anchoring of the cofactor induces a conformational rearrangement within the active site of both mesophilic and thermophilic enzymes accompanied by their partial compaction. Furthermore, the adenylation of enzymes increases their resistance to thermal and chemical denaturation, establishing a thermodynamic link between cofactor binding and conformational stability enhancement. Finally, guanidine hydrochloride-induced unfolding of NAD(+)-dependent DNA ligases is shown to be a complex process that involves accumulation of at least two equilibrium intermediates, the molten globule and its precursor.

  9. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.

    PubMed

    Adachi, O; Fujii, Y; Ano, Y; Moonmangmee, D; Toyama, H; Shinagawa, E; Theeragool, G; Lotong, N; Matsushita, K

    2001-01-01

    To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be

  10. An Altered State of a Specific EN Regulatory Element Induced in a Maize Tiller

    PubMed Central

    Fowler, Robert G.; Peterson, Peter A.

    1978-01-01

    There are numerous states of the regulatory element, Enhancer (En). With specific receptor alleles, such as a2m(r-pa-pu) or a2m(r), specific mutability patterns are expressed. One specific derivative En allele, En-v (En-variable), was originally identified with a coarse pattern of mutability with the a2m(r-pa-pu) allele and giving progeny with varied En expression (standard to reduced within an ear progeny). Derivatives of En-v were subsequently found on numerous occasions to give only a very reduced expression (fewer mutant spots) with the a2m(r-pa-pu) allele in the ears derived from the main stalk of the corn plant. When a comparison is made of the effect of this changed En-v state between tiller ears and main stalk ears of the same plant, the tiller ears show an increased level of En-v expression (coarse pattern), while the main-stalk ears continue to show the very reduced level of En-v expression (low frequency of very late variegation). This increased level of mutability of the tiller ears is maintained when transmitted through the main-stalk ear in the subsequent generation. These results indicate that heritable alterations of controlling elements can be produced by endogenous environmental factors present during normal plant development. PMID:17248873

  11. [Activity of liver mitochondrial NAD+-dependent dehydrogenases of the krebs cycle in rats with acetaminophen-induced hepatitis developed under conditions of alimentary protein deficiency].

    PubMed

    Voloshchuk, O N; Kopylchuk, G P

    2016-01-01

    Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.

  12. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    SciTech Connect

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E.

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  13. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD(+)-dependent DNA ligase inhibitor.

    PubMed

    Zhou, Xiaofeng; Cai, Guoqiang; He, Yi; Tong, Guotong

    2016-09-01

    Cordycepin exhibits various bio-activities, including anticancer, antibacterial, antiviral and immune regulation activities, and is a significant focus of research. However, the preparation of high-purity cordycepin remains challenging. Also, the molecular target with which cordycepin interacts to cause an antibacterial effect remains unknown. In the present study, cordycepin was prepared by preparative high-performance liquid chromatography (prep-HPLC) and the purity obtained was 99.6%, indicating that this technique may be useful for the large-scale isolation of cordycepin in the future. The results of computational molecular docking analysis indicated that the interaction energy between cordycepin and NAD+-dependent DNA ligase (LigA) was lower than that between cordycepin and other common antibacterial targets. The highly pure cordycepin obtained by prep-HPLC demonstrated inhibitory activity against LigA from various bacteria in vitro. In conclusion, cordycepin may be useful as a broad-spectrum antibiotic targeting LigA in various bacteria.

  14. Homology modeling of NAD+-dependent DNA ligase of the Wolbachia endosymbiont of Brugia malayi and its drug target potential using dispiro-cycloalkanones.

    PubMed

    Shrivastava, Nidhi; Nag, Jeetendra K; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran; Misra-Bhattacharya, Shailja

    2015-07-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD(+)-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates.

  15. Homology Modeling of NAD+-Dependent DNA Ligase of the Wolbachia Endosymbiont of Brugia malayi and Its Drug Target Potential Using Dispiro-Cycloalkanones

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra K.; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran

    2015-01-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD+-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD+-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD+ cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates. PMID:25845868

  16. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    PubMed

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6.

  17. Multitrophic Interaction in the Rhizosphere of Maize: Root Feeding of Western Corn Rootworm Larvae Alters the Microbial Community Composition

    PubMed Central

    Dematheis, Flavia; Zimmerling, Ute; Flocco, Cecilia; Kurtz, Benedikt; Vidal, Stefan; Kropf, Siegfried; Smalla, Kornelia

    2012-01-01

    Background Larvae of the Western Corn Rootworm (WCR) feeding on maize roots cause heavy economical losses in the US and in Europe. New or adapted pest management strategies urgently require a better understanding of the multitrophic interaction in the rhizosphere. This study aimed to investigate the effect of WCR root feeding on the microbial communities colonizing the maize rhizosphere. Methodology/Principal Findings In a greenhouse experiment, maize lines KWS13, KWS14, KWS15 and MON88017 were grown in three different soil types in presence and in absence of WCR larvae. Bacterial and fungal community structures were analyzed by denaturing gradient gel electrophoresis (DGGE) of the16S rRNA gene and ITS fragments, PCR amplified from the total rhizosphere community DNA. DGGE bands with increased intensity were excised from the gel, cloned and sequenced in order to identify specific bacteria responding to WCR larval feeding. DGGE fingerprints showed that the soil type and the maize line influenced the fungal and bacterial communities inhabiting the maize rhizosphere. WCR larval feeding affected the rhiyosphere microbial populations in a soil type and maize line dependent manner. DGGE band sequencing revealed an increased abundance of Acinetobacter calcoaceticus in the rhizosphere of several maize lines in all soil types upon WCR larval feeding. Conclusion/Significance The effects of both rhizosphere and WCR larval feeding seemed to be stronger on bacterial communities than on fungi. Bacterial and fungal community shifts in response to larval feeding were most likely due to changes of root exudation patterns. The increased abundance of A. calcoaceticus suggested that phenolic compounds were released upon WCR wounding. PMID:22629377

  18. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize

    PubMed Central

    2014-01-01

    Background There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. Results An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. Conclusion We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications

  19. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2008-11-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants.

  20. Altered ethylene levels and ethylene-related transcripts are seen in developing seeds of two sugar mutants in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we explore maize kernel development with focus on sugar metabolism and starch production. Specifically, we use sugar metabolism mutants miniature1-1 (mn1-1, cell-wall-invertase deficient) and sugary1 (su1, starch-synthase deficient) to understand the possible significance of sugar sig...

  1. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to climate change, heat waves are predicted to become more frequent and severe. While long-term studies on temperature stress have been conducted on important crops such as maize (Zea mays), the immediate and or long-term effects of short duration but extreme high temperature events during key d...

  2. Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight.

    PubMed

    Flachowsky, Henryk; Szankowski, Iris; Fischer, Thilo C; Richter, Klaus; Peil, Andreas; Höfer, Monika; Dörschel, Claudia; Schmoock, Sylvia; Gau, Achim E; Halbwirth, Heidrun; Hanke, Magda-Viola

    2010-02-01

    Transgenic apple plants (Malus x domestica cv. 'Holsteiner Cox') overexpressing the Leaf Colour (Lc) gene from maize (Zea mays) exhibit strongly increased production of anthocyanins and flavan-3-ols (catechins, proanthocyanidins). Greenhouse plants investigated in this study exhibit altered phenotypes with regard to growth habit and resistance traits. Lc-transgenic plants show reduced size, transversal gravitropism of lateral shoots, reduced trichome development, and frequently reduced shoot diameter and abnormal leaf development with fused leaves. Such phenotypes seem to be in accordance with a direct or an indirect effect on polar-auxin-transport in the transgenic plants. Furthermore, leaves often develop necrotic lesions resembling hypersensitive response lesions. In tests, higher resistance against fire blight (caused by the bacterium Erwinia amylovora) and against scab (caused by the fungus Venturia inaequalis) is observed. These phenotypes are discussed with respect to the underlying altered physiology of the Lc-transgenic plants. The results are expected to be considered in apple breeding strategies.

  3. The β and γ subunits play distinct functional roles in the α2βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Liu, Yabing; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase existing as the α2βγ heterotetramer, catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the Krebs cycle, and is allosterically regulated by citrate, ADP and ATP. To explore the functional roles of the regulatory β and γ subunits, we systematically characterized the enzymatic properties of the holoenzyme and the composing αβ and αγ heterodimers in the absence and presence of regulators. The biochemical and mutagenesis data show that αβ and αγ alone have considerable basal activity but the full activity of α2βγ requires the assembly and cooperative function of both heterodimers. α2βγ and αγ can be activated by citrate or/and ADP, whereas αβ cannot. The binding of citrate or/and ADP decreases the S0.5,isocitrate and thus enhances the catalytic efficiencies of the enzymes, and the two activators can act independently or synergistically. Moreover, ATP can activate α2βγ and αγ at low concentration and inhibit the enzymes at high concentration, but has only inhibitory effect on αβ. Furthermore, the allosteric activation of α2βγ is through the γ subunit not the β subunit. These results demonstrate that the γ subunit plays regulatory role to activate the holoenzyme, and the β subunit the structural role to facilitate the assembly of the holoenzyme.

  4. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor

    PubMed Central

    Zhou, Xiaofeng; Cai, Guoqiang; He, Yi; Tong, Guotong

    2016-01-01

    Cordycepin exhibits various bio-activities, including anticancer, antibacterial, antiviral and immune regulation activities, and is a significant focus of research. However, the preparation of high-purity cordycepin remains challenging. Also, the molecular target with which cordycepin interacts to cause an antibacterial effect remains unknown. In the present study, cordycepin was prepared by preparative high-performance liquid chromatography (prep-HPLC) and the purity obtained was 99.6%, indicating that this technique may be useful for the large-scale isolation of cordycepin in the future. The results of computational molecular docking analysis indicated that the interaction energy between cordycepin and NAD+-dependent DNA ligase (LigA) was lower than that between cordycepin and other common antibacterial targets. The highly pure cordycepin obtained by prep-HPLC demonstrated inhibitory activity against LigA from various bacteria in vitro. In conclusion, cordycepin may be useful as a broad-spectrum antibiotic targeting LigA in various bacteria. PMID:27588098

  5. The β and γ subunits play distinct functional roles in the α2βγ heterotetramer of human NAD-dependent isocitrate dehydrogenase

    PubMed Central

    Ma, Tengfei; Peng, Yingjie; Huang, Wei; Liu, Yabing; Ding, Jianping

    2017-01-01

    Human NAD-dependent isocitrate dehydrogenase existing as the α2βγ heterotetramer, catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the Krebs cycle, and is allosterically regulated by citrate, ADP and ATP. To explore the functional roles of the regulatory β and γ subunits, we systematically characterized the enzymatic properties of the holoenzyme and the composing αβ and αγ heterodimers in the absence and presence of regulators. The biochemical and mutagenesis data show that αβ and αγ alone have considerable basal activity but the full activity of α2βγ requires the assembly and cooperative function of both heterodimers. α2βγ and αγ can be activated by citrate or/and ADP, whereas αβ cannot. The binding of citrate or/and ADP decreases the S0.5,isocitrate and thus enhances the catalytic efficiencies of the enzymes, and the two activators can act independently or synergistically. Moreover, ATP can activate α2βγ and αγ at low concentration and inhibit the enzymes at high concentration, but has only inhibitory effect on αβ. Furthermore, the allosteric activation of α2βγ is through the γ subunit not the β subunit. These results demonstrate that the γ subunit plays regulatory role to activate the holoenzyme, and the β subunit the structural role to facilitate the assembly of the holoenzyme. PMID:28139779

  6. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors.

    PubMed

    Srivastava, Sandeep Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2005-08-26

    DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents.

  7. Whole Transcriptome Profiling of Maize during Early Somatic Embryogenesis Reveals Altered Expression of Stress Factors and Embryogenesis-Related Genes

    PubMed Central

    Salvo, Stella A. G. D.; Hirsch, Candice N.; Buell, C. Robin; Kaeppler, Shawn M.; Kaeppler, Heidi F.

    2014-01-01

    Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq) to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species. PMID:25356773

  8. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel.

    PubMed

    Rouble, Andrew N; Storey, Kenneth B

    2015-10-01

    Hibernating mammals employ strong metabolic rate depression to survive the winter, thereby avoiding the high energy costs of maintaining a euthermic lifestyle in the face of low seasonal temperatures and limited food resources. Characteristics of this natural torpor include a significant reduction in body temperature, a shift to a lipid-based metabolism, global suppression of ATP-expensive activities, and the upregulation of selected genes that mediate biochemical reorganization and cytoprotection. Sirtuin (SIRT) proteins, an evolutionarily conserved family of NAD(+)-dependent protein deacetylases, have been shown to play important roles in the post-translational regulation of many metabolic and cytoprotective processes, suggesting a potential function for these enzymes in the control of hibernation. To assess this possibility, protein levels of the seven mammalian SIRTs (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7), total SIRT activity, and the acetylation status of two downstream SIRT targets (SOD2K68 and NF-κB p65K310) were measured in skeletal muscle, liver, brown adipose and white adipose tissues of the hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) over the course of the torpor-arousal cycle. The analysis revealed tissue-specific responses of different SIRTs at various points throughout hibernation, including a potentially interesting correlation between increased levels of SIRT3 protein, heightened total SIRT activity, and decreased acetylation of SIRT3 downstream target SOD2K68 in skeletal muscle during late torpor. These results provide evidence to suggest a possible role for the SIRT family of protein deacetylases in the regulation of the metabolic and cellular protective pathways that mediate the process of mammalian hibernation.

  9. D-arabitol metabolism in Candida albicans: studies of the biosynthetic pathway and the gene that encodes NAD-dependent D-arabitol dehydrogenase.

    PubMed Central

    Wong, B; Murray, J S; Castellanos, M; Croen, K D

    1993-01-01

    Candida albicans produces large amounts of the pentitol D-arabitol in culture and in infected mammalian hosts, but the functional and pathogenic significance of D-arabitol in C. albicans is not known. In this study, we sought to elucidate the pathway by which C. albicans synthesizes D-arabitol and to identify and characterize key enzymes in this pathway. C. albicans B311 produced D-[14C-1]arabitol from [14C-2]glucose; this finding implies on structural grounds that D-ribulose-5-PO4 from the pentose pathway is the major metabolic precursor of D-arabitol. NAD- or NADP-dependent pentitol dehydrogenases catalyze the final steps in D-arabitol biosynthesis in other fungi; therefore, lysates of C. albicans B311 were tested for enzymes of this class and were found to contain a previously unknown NAD-dependent D-arabitol dehydrogenase (ArDH). The ArDH structural gene was cloned by constructing a new D-arabitol utilization pathway in Escherichia coli. The C. albicans ArDH gene expressed in E. coli and Saccharomyces cerevisiae an enzyme that catalyzes the reaction D-arabitol + NAD <-->D-ribulose + NADH; this gene was present as a single copy per haploid genome, and its deduced peptide sequence was homologous with sequences of several members of the short-chain dehydrogenase family of enzymes. These results suggest that (i) C. albicans synthesizes D-arabitol by dephosphorylating and reducing the pentose pathway intermediate D-ribulose-5-PO4 and (ii) ArDH catalyzes the final step in this pathway. Images PMID:8407803

  10. [Alteration of transport activity of proton pumps in coleoptile cells during early development stages of maize seedlings].

    PubMed

    Shishova, M F; Tankeliun, O V; Rudashevskaia, E L; Emel'ianov, V V; Shakhova, N V; Kirpichnikova, A A

    2012-01-01

    Comparative analysis of the transport activity of proton pumps (plasmalemma H+-ATPase, vacuolar H+-ATPase, and vacuolar H+-pyrophosphatase) in the membrane preparations obtained from coleoptile cells ofetiolated maize seedlings (Zea mays L.) was carried out. The highest level ofvacuolar pyrophosphatase activity was observed during the early development of coleoptile cells under growth intensification through the elongation. The role of ATPase pumps of tonoplast and plasmalemma in the transport of hydrogen ions increases during further development. The plasmalemma activity in this process is higher. When the growth stops, the activity of proton pumps becomes significantly lower. Nevertheless, their substrate specificity and sensitivity to proton pump inhibitors do not change, which can be an evidence of physiological significance of pumps in the maintenance of cell homeostasis.

  11. Genes and small RNA transcripts exhibit dosage-dependent expression pattern in maize copy-number alterations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy-number alterations are widespread in animal and plant genomes, but their immediate impact on gene expression is still unclear. In animals, copy-number alterations usually exhibit dosage effects, except for sex chromosomes that tend to be dosage compensated. In plants, genes within small duplica...

  12. The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD(+)-dependent glutamate dehydrogenase which is subject to allosteric regulation.

    PubMed

    Lu, C D; Abdelal, A T

    2001-01-01

    The NAD(+)-dependent glutamate dehydrogenase (NAD-GDH) from Pseudomonas aeruginosa PAO1 was purified, and its amino-terminal amino acid sequence was determined. This sequence information was used in identifying and cloning the encoding gdhB gene and its flanking regions. The molecular mass predicted from the derived sequence for the encoded NAD-GDH was 182.6 kDa, in close agreement with that determined from sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme (180 kDa). Cross-linking studies established that the native NAD-GDH is a tetramer of equal subunits. Comparison of the derived amino acid sequence of NAD-GDH from P. aeruginosa with the GenBank database showed the highest homology with hypothetical polypeptides from Pseudomonas putida, Mycobacterium tuberculosis, Rickettsia prowazakii, Legionella pneumophila, Vibrio cholerae, Shewanella putrefaciens, Sinorhizobium meliloti, and Caulobacter crescentus. A moderate degree of homology, primarily in the central domain, was observed with the smaller tetrameric NAD-GDH (protomeric mass of 110 kDa) from Saccharomyces cerevisiae or Neurospora crassa. Comparison with the yet smaller hexameric GDH (protomeric mass of 48 to 55 kDa) of other prokaryotes yielded a low degree of homology that was limited to residues important for binding of substrates and for catalytic function. NAD-GDH was induced 27-fold by exogenous arginine and only 3-fold by exogenous glutamate. Primer extension experiments established that transcription of gdhB is initiated from an arginine-inducible promoter and that this induction is dependent on the arginine regulatory protein, ArgR, a member of the AraC/XyIS family of regulatory proteins. NAD-GDH was purified to homogeneity from a recombinant strain of P. aeruginosa and characterized. The glutamate saturation curve was sigmoid, indicating positive cooperativity in the binding of glutamate. NAD-GDH activity was subject to allosteric control by arginine and citrate, which

  13. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  14. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development.

    PubMed

    Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng

    2016-01-04

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis.

  15. Stacking transgenic event DAS-Ø15Ø7-1 alters maize composition less than traditional breeding.

    PubMed

    Herman, Rod A; Fast, Brandon J; Scherer, Peter N; Brune, Alyssa M; de Cerqueira, Denise T; Schafer, Barry W; Ekmay, Ricardo D; Harrigan, George G; Bradfisch, Greg A

    2017-02-20

    The impact of crossing ("stacking") genetically modified (GM) events on maize-grain biochemical composition was compared with the impact of generating non-GM hybrids. The compositional similarity of seven GM stacks containing event DAS-Ø15Ø7-1 and their matched non-GM near-isogenic hybrids (iso-hybrids) was compared with the compositional similarity of concurrently grown non-GM hybrids and these same iso-hybrids. Scatter plots were used to visualize comparisons among hybrids and a coefficient of identity (percent of variation explained by line of identity) was calculated to quantify the relationships within analyte profiles. The composition of GM breeding stacks was more similar to the composition of iso-hybrids than was the composition of non-GM hybrids. Non-GM breeding more strongly influenced crop composition than did transgenesis or stacking of GM events. These findings call into question the value of uniquely requiring composition studies for GM crops, especially for breeding stacks composed of GM events previously found to be compositionally normal. This article is protected by copyright. All rights reserved.

  16. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development

    PubMed Central

    Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng

    2016-01-01

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis. PMID:26727353

  17. Enhanced heat stability and kinetic parameters of maize endosperm ADPglucose pyrophosphorylase by alteration of phylogenetically identified amino acids.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; Georgelis, Nikolaos; Hannah, L Curtis

    2014-02-01

    ADP-glucose pyrophosphorylase (AGPase) controls the rate-limiting step in starch biosynthesis and is regulated at various levels. Cereal endosperm enzymes, in contrast to other plant AGPases, are particularly heat labile and transgenic studies highlight the importance of temperature for cereal yield. Previously, a phylogenetic approach identified Type II and positively selected amino acid positions in the large subunit of maize endosperm AGPase. Glycogen content, kinetic parameters and heat stability were measured in AGPases having mutations in these sites and interesting differences were observed. This study expands on our earlier evolutionary work by determining how all Type II and positively selected sites affect kinetic constants, heat stability and catalytic rates at increased temperatures. Variants with enhanced properties were identified and combined into one gene, designated Sh2-E. Enhanced properties include: heat stability, enhanced activity at 37 °C, activity at 55 °C, reduced Ka and activity in the absence of activator. The resulting enzyme exhibited all improved properties of the various individual changes. Additionally, Sh2-E was expressed with a small subunit variant with enhanced enzyme properties resulting in an enzyme that has exceptional heat stability, a high catalytic rate at increased temperatures and significantly decreased Km values for both substrates in the absence of the activator.

  18. Maize databases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter is a succinct overview of maize data held in the species-specific database MaizeGDB (the Maize Genomics and Genetics Database), and selected multi-species data repositories, such as Gramene/Ensembl Plants, Phytozome, UniProt and the National Center for Biotechnology Information (NCBI), ...

  19. The auxin-deficient defective kernel18 (dek18) mutation alters the expression of seed-specific biosynthethic genes in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dek18 mutant of maize has decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology in maize seed development. Seeds of the dek18 mutants are smaller compared to wild type seeds and the vegetative d...

  20. Inhibiting NAD+-dependent DNA ligase activity with 2-(cyclopentyloxy)-5'-deoxyadenosine (CPOdA) offers a new tool for DNA replication and repair studies in the model archaeon Haloferax volcanii.

    PubMed

    Giroux, Xavier; MacNeill, Stuart A

    2015-11-01

    DNA ligases play an essential role in many aspects of DNA metabolism in all three domains of life. The haloarchaeal organism Haloferax volcanii encodes both ATP- and NAD(+)-dependent DNA ligase enzymes designated LigA and LigN, respectively. Neither LigA nor LigN alone is required for cell viability but they share an essential function, most likely the ligation of Okazaki fragments during chromosome replication. Here we show that 2-(cyclopentyloxy)-5'-deoxyadenosine (referred to as CPOdA), originally developed as a inhibitor of bacterial NAD(+)-dependent DNA ligases, is a potent inhibitor of the growth of Hfx. volcanii cells expressing LigN alone, causing chromosome fragmentation and cell death, while cells expressing LigA are unaffected. Growth inhibition occurs at significantly lower CPOdA concentrations (MIC ≤ 50 ng ml(-1)) than those required for inhibition of bacterial growth (≥2 μg ml(-1)). CPOdA has the potential to become a vital tool in DNA replication and repair studies in this important model organism.

  1. Reshaping of the maize transcriptome by domestication

    PubMed Central

    Swanson-Wagner, Ruth; Briskine, Roman; Schaefer, Robert; Hufford, Matthew B.; Ross-Ibarra, Jeffrey; Myers, Chad L.; Tiffin, Peter; Springer, Nathan M.

    2012-01-01

    Through domestication, humans have substantially altered the morphology of Zea mays ssp. parviglumis (teosinte) into the currently recognizable maize. This system serves as a model for studying adaptation, genome evolution, and the genetics and evolution of complex traits. To examine how domestication has reshaped the transcriptome of maize seedlings, we used expression profiling of 18,242 genes for 38 diverse maize genotypes and 24 teosinte genotypes. We detected evidence for more than 600 genes having significantly different expression levels in maize compared with teosinte. Moreover, more than 1,100 genes showed significantly altered coexpression profiles, reflective of substantial rewiring of the transcriptome since domestication. The genes with altered expression show a significant enrichment for genes previously identified through population genetic analyses as likely targets of selection during maize domestication and improvement; 46 genes previously identified as putative targets of selection also exhibit altered expression levels and coexpression relationships. We also identified 45 genes with altered, primarily higher, expression in inbred relative to outcrossed teosinte. These genes are enriched for functions related to biotic stress and may reflect responses to the effects of inbreeding. This study not only documents alterations in the maize transcriptome following domestication, identifying several genes that may have contributed to the evolution of maize, but highlights the complementary information that can be gained by combining gene expression with population genetic analyses. PMID:22753482

  2. Cytological modifications in maize plants infected by barley yellow dwarf virus and maize dwarf mosaic virus.

    PubMed

    Musetti, R; Bruni, L; Favali, M A

    2002-01-01

    Three inbred lines of maize (33-16, MO17 and B73) differing in their susceptibility to Barley yellow dwarf virus and Maize dwarf mosaic virus were studied to compare the ultrastructural modifications induced by the two viruses in leaf tissues of different age. The results demonstrate that the alterations induced by the two viruses in the different maize lines could depend on the particular line tested.

  3. NAD-dependent ADP-ribosylation of the human antimicrobial and immune-modulatory peptide LL-37 by ADP-ribosyltransferase-1.

    PubMed

    Picchianti, Monica; Russo, Carla; Castagnini, Marta; Biagini, Massimiliano; Soldaini, Elisabetta; Balducci, Enrico

    2015-04-01

    LL-37 is a cationic peptide belonging to the cathelicidin family that has antimicrobial and immune-modulatory properties. Here we show that the mammalian mono-ADP-ribosyltransferase-1 (ART1), which selectively transfers the ADP-ribose moiety from NAD to arginine residues, ADP-ribosylates LL-37 in vitro. The incorporation of ADP-ribose was first observed by Western blot analysis and then confirmed by MALDI-TOF. Mass-spectrometry showed that up to four of the five arginine residues present in LL-37 could be ADP-ribosylated on the same peptide when incubated at a high NAD concentration in the presence of ART1. The attachment of negatively charged ADP-ribose moieties considerably alters the positive charge of the arginine residues thus reducing the cationicity of LL-37. The cationic nature of LL-37 is key for its ability to interact with cell membranes or negatively charged biomolecules, such as DNA, RNA, F-actin and glycosaminoglycans. Thus, the ADP-ribosylation of LL-37 is expected to have the potential to modulate LL-37 biological activities in several physiological and pathological settings.

  4. Reinventing MaizeGDB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Maize Database (MaizeDB) to the Maize Genetics and Genomics Database (MaizeGDB) turns 20 this year, and such a significant milestone must be celebrated! With the release of the B73 reference sequence and more sequenced genomes on the way, the maize community needs to address various opportunitie...

  5. Mutation of the maize sbe1a and ae genes alters morphology and physical behavior of wx-type endosperm starch granules.

    PubMed

    Li, Ji-Hong; Guiltinan, Mark J; Thompson, Donald B

    2007-12-10

    In maize, three isoforms of starch-branching enzyme, SBEI, SBEIIa, and SBEIIb, are encoded by the Sbe1a, Sbe2a, and Amylose extender (Ae) genes, respectively. The objective of this research was to explore the effects of null mutations in the Sbe1a and Ae genes alone and in combination in wx background on kernel characteristics and on the morphology and physical behavior of endosperm starch granules. Differences in kernel morphology and weight, starch accumulation, starch granule size and size distribution, starch microstructure, and thermal properties were observed between the ae wx and sbe1a ae wx plants but not between the sbe1a wx mutants when compared to wx. Starch from sbe1a ae wx plants exhibited a larger granule size with a wider gelatinization temperature range and a lower endotherm enthalpy than ae wx. Microscopy shows weaker iodine staining in sbe1a ae wx starch granules. X-ray diffraction revealed A-type crystallinity in wx and sbe1a wx starches and B-type in sbe1a ae wx and ae wx. This study suggests that, while the SBEIIb isoform plays a dominant role in maize endosperm starch synthesis, SBEI also plays a role, which is only observable in the presence of the ae mutation.

  6. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, O.E.; Pan, D.

    1994-07-19

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating. 2 figs.

  7. Mutant maize variety containing the glt1-1 allele

    DOEpatents

    Nelson, Oliver E.; Pan, David

    1994-01-01

    A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating.

  8. Ustilago maydis Infection Strongly Alters Organic Nitrogen Allocation in Maize and Stimulates Productivity of Systemic Source Leaves1[W][OA

    PubMed Central

    Horst, Robin J.; Doehlemann, Gunther; Wahl, Ramon; Hofmann, Jörg; Schmiedl, Alfred; Kahmann, Regine; Kämper, Jörg; Sonnewald, Uwe; Voll, Lars M.

    2010-01-01

    The basidiomycete Ustilago maydis is the causal agent of corn smut disease and induces tumor formation during biotrophic growth in its host maize (Zea mays). We have conducted a combined metabolome and transcriptome survey of infected leaves between 1 d post infection (dpi) and 8 dpi, representing infected leaf primordia and fully developed tumors, respectively. At 4 and 8 dpi, we observed a substantial increase in contents of the nitrogen-rich amino acids glutamine and asparagine, while the activities of enzymes involved in primary nitrogen assimilation and the content of ammonia and nitrate were reduced by 50% in tumors compared with mock controls. Employing stable isotope labeling, we could demonstrate that U. maydis-induced tumors show a reduced assimilation of soil-derived 15NO3− and represent strong sinks for nitrogen. Specific labeling of the free amino acid pool of systemic source leaves with [15N]urea revealed an increased import of organic nitrogen from systemic leaves to tumor tissue, indicating that organic nitrogen provision supports the formation of U. maydis-induced tumors. In turn, amino acid export from systemic source leaves was doubled in infected plants. The analysis of the phloem amino acid pool revealed that glutamine and asparagine are not transported to the tumor tissue, although these two amino acids were found to accumulate within the tumor. Photosynthesis was increased and senescence was delayed in systemic source leaves upon tumor development on infected plants, indicating that the elevated sink demand for nitrogen could determine photosynthetic rates in source leaves. PMID:19923237

  9. The low phytic acid1-241 (lpa1-241) maize mutation alters the accumulation of anthocyanin pigment in the kernel.

    PubMed

    Badone, Francesco Cerino; Cassani, Elena; Landoni, Michela; Doria, Enrico; Panzeri, Dario; Lago, Chiara; Mesiti, Francesca; Nielsen, Erik; Pilu, Roberto

    2010-04-01

    The lpa1 mutations in maize are caused by lesions in the ZmMRP4 (multidrug resistance-associated proteins 4) gene. In previous studies (Raboy et al. in Plant Physiol 124:355-368, 2000; Pilu et al. in Theor Appl Genet 107:980-987, 2003a; Shi et al. Nat Biotechnol 25:930-937, 2007), several mutations have been isolated in this locus causing a reduction of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, or InsP(6)) content and an equivalent increasing of free phosphate. In particular, the lpa1-241 mutation causes a reduction of up to 90% of phytic acid, associated with strong pleiotropic effects on the whole plant. In this work, we show, for the first time to our knowledge, an interaction between the accumulation of anthocyanin pigments in the kernel and the lpa mutations. In fact the lpa1-241 mutant accumulates a higher level of anthocyanins as compared to wild type either in the embryo (about 3.8-fold) or in the aleurone layer (about 0.3-fold) in a genotype able to accumulate anthocyanin. Furthermore, we demonstrate that these pigments are mislocalised in the cytoplasm, conferring a blue pigmentation of the scutellum, because of the neutral/basic pH of this cellular compartment. As a matter of fact, the propionate treatment, causing a specific acidification of the cytoplasm, restored the red pigmentation of the scutellum in the mutant and expression analysis showed a reduction of ZmMRP3 anthocyanins' transporter gene expression. On the whole, these data strongly suggest a possible interaction between the lpa mutation and anthocyanin accumulation and compartmentalisation in the kernel.

  10. The Maize Viviparous8 Locus, Encoding a Putative ALTERED MERISTEM PROGRAM1-Like Peptidase, Regulates Abscisic Acid Accumulation and Coordinates Embryo and Endosperm Development1[W

    PubMed Central

    Suzuki, Masaharu; Latshaw, Susan; Sato, Yutaka; Settles, A. Mark; Koch, Karen E.; Hannah, L. Curtis; Kojima, Mikiko; Sakakibara, Hitoshi; McCarty, Donald R.

    2008-01-01

    We describe a mutant of Zea mays isolated from a W22 inbred transposon population, widow's peak mutant1 (wpk1), with an altered pattern of anthocyanin synthesis and aleurone cell differentiation in endosperm. In addition, a failure of the developing mutant embryo to form leaf initials is associated with decreased expression of a subset of meristem regulatory genes that includes Abphyl1 and Td1. We show that the viviparous8 (vp8) mutant has a similar pleiotropic phenotype in the W22 inbred background in contrast to the viviparous embryo phenotype exhibited in the standard genetic background, and we confirmed that wpk1 is allelic to vp8. Further genetic analysis revealed that the standard vp8 stock contains an unlinked, partially dominant suppressor of the vp8 mutation that is not present in W22. Consistent with the early-onset viviparous phenotype of vp8, expression of several embryonic regulators, including LEC1/B3 domain transcription factors, was reduced in the mutant embryo. Moreover, reduced abscisic acid (ABA) content of vp8/wpk1 embryos was correlated with altered regulation of ABA biosynthesis, as well as ABA catabolic pathways. The ABA biosynthetic gene Vp14 was down-regulated in the nonsuppressed background, whereas the ZmABA8′oxA1a ABA 8′-hydroxylase gene was strongly up-regulated in both genetic backgrounds. Molecular analysis revealed that Vp8 encodes a putative peptidase closely related to Arabidopsis thaliana ALTERED MERISTEM PROGRAM1. Because the Vp8 regulates meristem development as well as seed maturation processes, including ABA accumulation, we propose that VP8 is required for synthesis of an unidentified signal that integrates meristem and embryo formation in seeds. PMID:18203869

  11. The Maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development.

    PubMed

    Suzuki, Masaharu; Latshaw, Susan; Sato, Yutaka; Settles, A Mark; Koch, Karen E; Hannah, L Curtis; Kojima, Mikiko; Sakakibara, Hitoshi; McCarty, Donald R

    2008-03-01

    We describe a mutant of Zea mays isolated from a W22 inbred transposon population, widow's peak mutant1 (wpk1), with an altered pattern of anthocyanin synthesis and aleurone cell differentiation in endosperm. In addition, a failure of the developing mutant embryo to form leaf initials is associated with decreased expression of a subset of meristem regulatory genes that includes Abphyl1 and Td1. We show that the viviparous8 (vp8) mutant has a similar pleiotropic phenotype in the W22 inbred background in contrast to the viviparous embryo phenotype exhibited in the standard genetic background, and we confirmed that wpk1 is allelic to vp8. Further genetic analysis revealed that the standard vp8 stock contains an unlinked, partially dominant suppressor of the vp8 mutation that is not present in W22. Consistent with the early-onset viviparous phenotype of vp8, expression of several embryonic regulators, including LEC1/B3 domain transcription factors, was reduced in the mutant embryo. Moreover, reduced abscisic acid (ABA) content of vp8/wpk1 embryos was correlated with altered regulation of ABA biosynthesis, as well as ABA catabolic pathways. The ABA biosynthetic gene Vp14 was down-regulated in the nonsuppressed background, whereas the ZmABA8'oxA1a ABA 8'-hydroxylase gene was strongly up-regulated in both genetic backgrounds. Molecular analysis revealed that Vp8 encodes a putative peptidase closely related to Arabidopsis thaliana ALTERED MERISTEM PROGRAM1. Because the Vp8 regulates meristem development as well as seed maturation processes, including ABA accumulation, we propose that VP8 is required for synthesis of an unidentified signal that integrates meristem and embryo formation in seeds.

  12. MaizeCyc: Metabolic networks in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeCyc is a catalog of known and predicted metabolic and transport pathways that enables plant researchers to graphically represent the metabolome of maize (Zea mays), thereby supporting integrated systems-biology analysis. Supported analyses include molecular and genetic/phenotypic profiling (e.g...

  13. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  14. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism.

    PubMed

    Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Kohli, Ravinder Kumar

    2016-07-01

    The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and β-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.

  15. [New technology in maize breeding].

    PubMed

    Konstantinov, K; Mladenović, S; Stojkov, S; Delić, N; Gosić, S; Petrović, R; Lević, J; Denić, M

    1992-01-01

    Results obtained by several approaches in the application of Biotechnology in maize breeding are reviewed. RFLP technology in the determination of genetic variation; gene transfer by the use of different methods of gene delivery and the determination of gene integration. Three technologies for foreign gene introduction have been applied; injection of plasmid pRT100 neo into archesporial tissue before micro and macro sporogenesis, slightly modified pollen-tube pathway technology and dry seed incubation in plasmid DNA solution. NPTII gene integration was followed by dot-blot and Southern blot analysis of plant DNA of both T1 and T2 plants. Gene expression was analysed by neomycin phosphotransferase activity. Transformed plants contained the selective NPTII gene sequence in an active form. Bacterial gene integration induced several heritable changes of plant phenotype. As an important change, alteration of the flowering time has been used as a criterion for selection and plant propagation to keep transformed progeny. Besides plant genome transformation, endogenous bacteria living in different maize tissue were found. As a perspective approach for biotechnology application in maize breeding biological vaccine construction has been selected. Therefore, antagonistic effect of gram positive bacterial strains to several pathogenic fungi was investigated. Results obtained after in vivo experiments are discussed.

  16. The TIGR Maize Database.

    PubMed

    Chan, Agnes P; Pertea, Geo; Cheung, Foo; Lee, Dan; Zheng, Li; Whitelaw, Cathy; Pontaroli, Ana C; SanMiguel, Phillip; Yuan, Yinan; Bennetzen, Jeffrey; Barbazuk, William Brad; Quackenbush, John; Rabinowicz, Pablo D

    2006-01-01

    Maize is a staple crop of the grass family and also an excellent model for plant genetics. Owing to the large size and repetitiveness of its genome, we previously investigated two approaches to accelerate gene discovery and genome analysis in maize: methylation filtration and high C(0)t selection. These techniques allow the construction of gene-enriched genomic libraries by minimizing repeat sequences due to either their methylation status or their copy number, yielding a 7-fold enrichment in genic sequences relative to a random genomic library. Approximately 900,000 gene-enriched reads from maize were generated and clustered into Assembled Zea mays (AZM) sequences. Here we report the current AZM release, which consists of approximately 298 Mb representing 243,807 sequence assemblies and singletons. In order to provide a repository of publicly available maize genomic sequences, we have created the TIGR Maize Database (http://maize.tigr.org). In this resource, we have assembled and annotated the AZMs and used available sequenced markers to anchor AZMs to maize chromosomes. We have constructed a maize repeat database and generated draft sequence assemblies of 287 maize bacterial artificial chromosome (BAC) clone sequences, which we annotated along with 172 additional publicly available BAC clones. All sequences, assemblies and annotations are available at the project website via web interfaces and FTP downloads.

  17. MaizeGDB, the maize model organism database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB is the maize research community's database for maize genetic and genomic information. In this seminar I will outline our current endeavors including a full website redesign, the status of maize genome assembly and annotation projects, and work toward genome functional annotation. Mechanis...

  18. Sorghum and Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum and maize are closely related cereal grains grown throughout the world. Sorghum, a drought tolerant crop grown in semi-arid regions, is a basic food staple in many parts of the developing world, while primarily an animal feed in western countries. Maize, a major worldwide crop, is used for...

  19. Maize Genetic Resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the resources held at the Maize Genetics Cooperation • Stock Center in detail and also provides some information about the North Central Regional Plant Introduction Station (NCRPIS) in Ames, IA, Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) in Mexico, and the N...

  20. MAIZE ALLELIC DIVERSITY PROJECT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the estimated 250-300 races of maize, only 24 races are represented in materials utilized by the Germplasm Enhancement of Maize (GEM) project, a collaborative effort between USDA-ARS and public and private sector research scientists. This is largely a result of poor performance of many races in ...

  1. Adaptation responses in C4 photosynthesis of maize under salinity.

    PubMed

    Omoto, Eiji; Taniguchi, Mitsutaka; Miyake, Hiroshi

    2012-03-15

    The effect of salinity on C(4) photosynthesis was examined in leaves of maize, a NADP-malic enzyme (NADP-ME) type C(4) species. Potted plants with the fourth leaf blade fully developed were treated with 3% NaCl solution for 5d. Under salt treatment, the activities of pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent malate dehydrogenase (NADP-MDH) and NAD-dependent malate dehydrogenase (NAD-MDH), which are derived mainly from mesophyll cells, increased, whereas those of NADP-ME and ribulose-1,5-bisphosphate carboxylase, which are derived mainly from bundle sheath cells (BSCs), decreased. Immunocytochemical studies by electron microscopy revealed that PPDK protein increased, while the content of ribulose-1,5-bisphosphate carboxylase/oxygenase protein decreased under salinity. In salt-treated plants, the photosynthetic metabolites malate, pyruvate and starch decreased by 40, 89 and 81%, respectively. Gas-exchange analysis revealed that the net photosynthetic rate, the transpiration rate, stomatal conductance (g(s)) and the intercellular CO(2) concentration decreased strongly in salt-treated plants. The carbon isotope ratio (δ(13)C) in these plants was significantly lower than that in control. These findings suggest that the decrease in photosynthetic metabolites under salinity was induced by a reduction in gas-exchange. Moreover, in addition to the decrease in g(s), the decrease in enzyme activities in BSCs was responsible for the decline of C(4) photosynthesis. The increase of PPDK, PEPCase, NADP-MDH, and NAD-MDH activities and the decrease of NADP-ME activity are interpreted as adaptation responses to salinity.

  2. Digital gene expression signatures for maize development.

    PubMed

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  3. Effects of temperature changes on maize production in Mozambique

    USGS Publications Warehouse

    Harrison, L.; Michaelsen, J.; Funk, C.; Husak, G.

    2011-01-01

    We examined intraseasonal changes in maize phenology and heat stress exposure over the 1979-2008 period, using Mozambique meteorological station data and maize growth requirements in a growing degree-day model. Identifying historical effects of warming on maize growth is particularly important in Mozambique because national food security is highly dependent on domestic food production, most of which is grown in already warm to hot environments. Warming temperatures speed plant development, shortening the length of growth periods necessary for optimum plant and grain size. This faster phenological development also alters the timing of maximum plant water demand. In hot growing environments, temperature increases during maize pollination threaten to make midseason crop failure the norm. In addition to creating a harsher thermal environment, we find that early season temperature increases have caused the maize reproductive period to start earlier, increasing the risk of heat and water stress. Declines in time to maize maturation suggest that, independent of effects to water availability, yield potential is becoming increasingly limited by warming itself. Regional variations in effects are a function of the timing and magnitude of temperature increases and growing season characteristics. Continuation of current climatic trends could induce substantial yield losses in some locations. Farmers could avoid some losses through simple changes to planting dates and maize varietal types.

  4. Ustilago maydis induced accumulation of putrescine in maize leaves

    PubMed Central

    Rodríguez-Kessler, Margarita

    2009-01-01

    Polyamines are implicated in the regulation of many processes in the plant cell, including functioning of ion channels, DNA replication, gene transcription, mRNA translation, cell proliferation and programmed cell death. Plant polyamines occur either in free form, covalently bound to proteins, or conjugated to hydroxycinnamic acids forming phenol amides. Ustilago maydis is a dimorphic and biotrophic pathogenic fungus responsible for common smut or “huitlacoche” in maize; and it is considered an excellent model for the study of plant-pathogen interactions. Recently, we reported alterations in polyamine metabolism of maize tumors induced on leaf blades by Ustilago maydis infection. Our data revealed a striking increase in maize polyamine biosynthesis, mainly free and conjugated putrescine in the tumors and in the green plant tissue surrounding the tumor. In this addendum, we describe that changes in polyamine metabolism take place even in earlier stages of maize plant infection with Ustilago maydis. PMID:19794848

  5. Maize (Zea mays L.).

    PubMed

    Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

  6. Gene Loss and Movement in the Maize Genome

    PubMed Central

    Lai, Jinsheng; Ma, Jianxin; Swigoňová, Zuzana; Ramakrishna, Wusirika; Linton, Eric; Llaca, Victor; Tanyolac, Bahattin; Park, Yong-Jin; Jeong, O-Young; Bennetzen, Jeffrey L.; Messing, Joachim

    2004-01-01

    Maize (Zea mays L. ssp. mays), one of the most important agricultural crops in the world, originated by hybridization of two closely related progenitors. To investigate the fate of its genes after tetraploidization, we analyzed the sequence of five duplicated regions from different chromosomal locations. We also compared corresponding regions from sorghum and rice, two important crops that have largely collinear maps with maize. The split of sorghum and maize progenitors was recently estimated to be 11.9 Mya, whereas rice diverged from the common ancestor of maize and sorghum ∼50 Mya. A data set of roughly 4 Mb yielded 206 predicted genes from the three species, excluding any transposon-related genes, but including eight gene remnants. On average, 14% of the genes within the aligned regions are noncollinear between any two species. However, scoring each maize region separately, the set of noncollinear genes between all four regions jumps to 68%. This is largely because at least 50% of the duplicated genes from the two progenitors of maize have been lost over a very short period of time, possibly as short as 5 million years. Using the nearly completed rice sequence, we found noncollinear genes in other chromosomal positions, frequently in more than one. This demonstrates that many genes in these species have moved to new chromosomal locations in the last 50 million years or less, most as single gene events that did not dramatically alter gene structure. PMID:15466290

  7. Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase.

    PubMed

    Berzin, Vel; Tyurin, Michael; Kiriukhin, Michael

    2013-02-01

    Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60% CO and 40% H₂ in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated the production of 297 mM of n-butanol (p < 0.005). The metabolic engineering comprised Cre-lox66/lox71-based elimination of phosphotransacetylase and acetaldehyde dehydrogenase along with integration to chromosome synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. This is the first report on elimination of acetate and ethanol production genes and expression of synthetic gene cluster encoding n-butanol biosynthesis pathway in acetogen biocatalyst for selective fuel n-butanol production with no antibiotic support for the introduced genes.

  8. Ionomics of the Maize Nested Association Mapping Panel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterogeneity in the elemental composition of soils is among the major causes of plant stress worldwide. In order to adapt to these conditions, plants frequently alter their elemental content. We employed mineral nutrient and trace element profiling in diverse maize germplasm, to examine the connect...

  9. Genomic variation in maize

    SciTech Connect

    Rivin, C.J.

    1990-01-01

    We have endeavored to learn to learn how different DNA sequences and sequence arrangements contribute to genome plasticity in maize. We describe quantitative variation among maize inbred lines for tandemly arrayed and dispersed repeated DNA sequences and gene families, and qualitative variation for sequences homologous to the Mutator family of transposons. The potential of these sequences to undergo unequal crossing over, non-allelic (ectopic) recombination and transposition makes them a source of genome instability. We have found examples of rapid genomic change involving these sequences in F1 hybrids, tissue culture cells and regenerated plants.

  10. MaizeGDB - Past, present, and future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Maize Genetics and Genomics Database (MaizeGDB) turns 20 this year. This editorial outlines MaizeGDB's history and connection to the Maize Genetics Cooperation, describes key components of how the MaizeGDB interface will be completely redesigned over the course of the next two years to meet cur...

  11. (Genomic variation in maize)

    SciTech Connect

    Rivin, C.J.

    1991-01-01

    These studies have sought to learn how different DNA sequences and sequence arrangements contribute to genome plasticity in maize. We describe quantitative variation among maize inbred lines for tandemly arrayed and dispersed repeated DNA sequences and gene families, and qualitative variation for sequences homologous to the Mutator family of transposons. The potential of these sequences to undergo unequal crossing over, non-allelic (ectopic) recombination and transposition makes them a source of genome instability. We have found examples of rapid genomic change involving these sequences in Fl hybrids, tissue culture cells and regenerated plants. We describe the repetitive portion of the maize genome as composed primarily of sequences that vary markedly in copy number among different genetic stocks. The most highly variable is the 185 bp repeat associated with the heterochromatic chromosome knobs. Even in lines without visible knobs, there is a considerable quantity of tandemly arrayed repeats. We also found a high degree of variability for the tandemly arrayed 5S and ribosomal DNA repeats. While such variation might be expected as the result of unequal cross-over, we were surprised to find considerable variation among lower copy number, dispersed repeats as well. One highly repeated sequence that showed a complex tandem and dispersed arrangement stood out as showing no detectable variability among the maize lines. In striking contrast to the variability seen between the inbred stocks, individuals within a stock were indistinguishable with regard to their repeated sequence multiplicities.

  12. Betaine deficiency in maize

    SciTech Connect

    Lerma, C. ); Rich, P.J.; Ju, G.C.; Yang, Wenju; Rhodes, D. ); Hanson, A.D. )

    1991-04-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency. This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positive and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline {r arrow} betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde.

  13. Surface chemical modification of waxy maize starch nanocrystals.

    PubMed

    Angellier, Hélène; Molina-Boisseau, Sonia; Belgacem, Mohamed Naceur; Dufresne, Alain

    2005-03-15

    The surface of waxy maize starch nanocrystals obtained from sulfuric acid hydrolysis of native waxy maize starch granules was chemically modified using two different reagents, namely, alkenyl succinic anhydride and phenyl isocyanate. The occurrence of chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies. Contact angle measurements from which the surface energy of the materials under investigation was deduced showed that chemical modification led to more hydrophobic particles. Chemical modification altered the morphology of particles, as shown by observation by transmission electron microscopy, but not their crystallinity (X-ray diffraction analysis).

  14. Nutritive value of maize silage in relation to dairy cow performance and milk quality.

    PubMed

    Khan, Nazir A; Yu, Peiqiang; Ali, Mubarak; Cone, John W; Hendriks, Wouter H

    2015-01-01

    Maize silage has become the major forage component in the ration of dairy cows over the last few decades. This review provides information on the mean content and variability in chemical composition, fatty acid (FA) profile and ensiling quality of maize silages, and discusses the major factors which cause these variations. In addition, the effect of the broad range in chemical composition of maize silages on the total tract digestibility of dietary nutrients, milk production and milk composition of dairy cows is quantified and discussed. Finally, the optimum inclusion level of maize silage in the ration of dairy cows for milk production and composition is reviewed. The data showed that the nutritive value of maize silages is highly variable and that most of this variation is caused by large differences in maturity at harvest. Maize silages ensiled at a very early stage (dry matter (DM) < 250 g kg(-1)) were particularly low in starch content and starch/neutral detergent fibre (NDF) ratio, and resulted in a lower DM intake (DMI), milk yield and milk protein content. The DMI, milk yield and milk protein content increased with advancing maturity, reaching an optimum level for maize silages ensiled at DM contents of 300-350 g kg(-1), and then declined slightly at further maturity beyond 350 g kg(-1). The increases in milk (R(2) = 0.599) and protein (R(2) = 0.605) yields with maturity of maize silages were positively related to the increase in starch/NDF ratio of the maize silages. On average, the inclusion of maize silage in grass silage-based diets improved the forage DMI by 2 kg d(-1), milk yield by 1.9 kg d(-1) and milk protein content by 1.2 g kg(-1). Further comparisons showed that, in terms of milk and milk constituent yields, the optimum grass/maize silage ratio depends on the quality of both the grass and maize silages. Replacement of grass silage with maize silage in the ration, as well as an increasing maturity of the maize silages, altered the milk FA profile

  15. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings.

    PubMed

    Zanin, Laura; Venuti, Silvia; Tomasi, Nicola; Zamboni, Anita; De Brito Francisco, Rita M; Varanini, Zeno; Pinton, Roberto

    2016-01-01

    To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients.

  16. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings

    PubMed Central

    Zanin, Laura; Venuti, Silvia; Tomasi, Nicola; Zamboni, Anita; De Brito Francisco, Rita M.; Varanini, Zeno; Pinton, Roberto

    2016-01-01

    To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients. PMID:27446099

  17. MaizeGDB: The Maize Genetics and Genomics Database.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project’s website...

  18. Genetic mechanisms of Maize dwarf mosaic virus resistance in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize resistance to viruses has been well-characterized at the genetic level, and loci responsible for resistance to potyviruses including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Johnsongrass mosaic virus (JGMV), have been mapped in several ge...

  19. Maize Genetics and Genomics Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report is provided each year to our stakeholders in the maize genetic community. In this report, we describe the five-year plan for MaizeGDB reviewed in early 2008 by the USDA-ARS peer review process and which was developed with inputs from our Working Group and the Allerton 2007 Report (MNL 82...

  20. Maize variety and method of production

    DOEpatents

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  1. The MaizeGDB Genome Browser

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB (http://www.maizegdb.org) is the community database for maize genetics and genomics. As part of an effort to develop MaizeGDB as a more sequence-centric resource, we implemented a genome browser based on information we gathered by surveying the community of maize geneticists. Based on commu...

  2. Metabolic pathway resources at MaizeGDB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two maize metabolic networks are available at MaizeGDB: MaizeCyc (http://maizecyc.maizegdb.org, also at Gramene) and CornCyc (http://corncyc.maizegdb.org, also at the Plant Metabolic Network). MaizeCyc was developed by Gramene, and CornCyc by the Plant Metabolic Network, both in collaboration with M...

  3. Advances in Maize Transformation Technologies and Development of Transgenic Maize

    PubMed Central

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K.

    2017-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium-mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area. PMID:28111576

  4. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme.

    PubMed

    Avalos, José L; Bever, Katherine M; Wolberger, Cynthia

    2005-03-18

    Sir2 enzymes form a unique class of NAD(+)-dependent deacetylases required for diverse biological processes, including transcriptional silencing, regulation of apoptosis, fat mobilization, and lifespan regulation. Sir2 activity is regulated by nicotinamide, a noncompetitive inhibitor that promotes a base-exchange reaction at the expense of deacetylation. To elucidate the mechanism of nicotinamide inhibition, we determined ternary complex structures of Sir2 enzymes containing nicotinamide. The structures show that free nicotinamide binds in a conserved pocket that participates in NAD(+) binding and catalysis. Based on our structures, we engineered a mutant that deacetylates peptides by using nicotinic acid adenine dinucleotide (NAAD) as a cosubstrate and is inhibited by nicotinic acid. The characteristics of the altered specificity enzyme establish that Sir2 enzymes contain a single site that participates in catalysis and nicotinamide regulation and provides additional insights into the Sir2 catalytic mechanism.

  5. MaizeGDB: The Maize Genetics and Genomics Database.

    PubMed

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  6. Arbuscular mycorrhizae reducing water loss in maize plants under low temperature stress.

    PubMed

    Zhu, Xian Can; Song, Feng Bin; Liu, Tie Dong; Liu, Sheng Qun

    2010-05-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic mycorrhizal symbiotic associations with the roots of approximately 80% of all terrestrial plant species while facilitate the uptake of soil mineral nutrients by plants and in exchange obtain carbohydrates, thus representing a large sink for photosynthetically fixed carbon. Also, AM symbiosis increase plants resistance to abiotic stress such as chilling. In a recent study we reported that AM fungi improve low temperature stress in maize plants via alterations in host water status and photosynthesis. Here, the influence of AM fungus, Glomus etunicatum, on water loss rate and growth of maize plants was studied in pot culture under low temperature stress. The results indicated that low temperature stress significantly decreases the total fresh weight of maize plants, and AM symbiosis alleviate the water loss in leaves of maize plants.

  7. Sequencing the maize genome.

    PubMed

    Martienssen, Robert A; Rabinowicz, Pablo D; O'Shaughnessy, Andrew; McCombie, W Richard

    2004-04-01

    Sequencing of complex genomes can be accomplished by enriching shotgun libraries for genes. In maize, gene-enrichment by copy-number normalization (high C(0)t) and methylation filtration (MF) have been used to generate up to two-fold coverage of the gene-space with less than 1 million sequencing reads. Simulations using sequenced bacterial artificial chromosome (BAC) clones predict that 5x coverage of gene-rich regions, accompanied by less than 1x coverage of subclones from BAC contigs, will generate high-quality mapped sequence that meets the needs of geneticists while accommodating unusually high levels of structural polymorphism. By sequencing several inbred strains, we propose a strategy for capturing this polymorphism to investigate hybrid vigor or heterosis.

  8. Influence of maize/lablab intercropping on lepidopterous stem borer infestation in maize.

    PubMed

    Maluleke, Mary H; Addo-Bediako, Abraham; Ayisi, Kingsley K

    2005-04-01

    Lepidopterous stem borers seriously affect production of maize, Zea mays L., in sub-Saharan Africa. Intercropping maize with legumes such as lablab, Lablab purpurens (L.), is one of the effective systems to control stem borers. Sole culture maize and maize/lablab intercrop system of different lablab densities were planted at two locations to investigate the effects of intercrop system on incidence and severity of stem borers with particular reference to Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae). Stem borer infestation was found to be more severe in sole culture maize than maize in maize/lablab intercrop. There was a significantly negative relationship between lablab densities and maize grain yields, suggesting a possible competition for resources between the two crops. It was concluded that density of lablab and date of planting of lablab in maize/lablab intercropping have significant affects on stem borer populations and maize grain yields.

  9. Inbreeding drives maize centromere evolution.

    PubMed

    Schneider, Kevin L; Xie, Zidian; Wolfgruber, Thomas K; Presting, Gernot G

    2016-02-23

    Functional centromeres, the chromosomal sites of spindle attachment during cell division, are marked epigenetically by the centromere-specific histone H3 variant cenH3 and typically contain long stretches of centromere-specific tandem DNA repeats (∼1.8 Mb in maize). In 23 inbreds of domesticated maize chosen to represent the genetic diversity of maize germplasm, partial or nearly complete loss of the tandem DNA repeat CentC precedes 57 independent cenH3 relocation events that result in neocentromere formation. Chromosomal regions with newly acquired cenH3 are colonized by the centromere-specific retrotransposon CR2 at a rate that would result in centromere-sized CR2 clusters in 20,000-95,000 y. Three lines of evidence indicate that CentC loss is linked to inbreeding, including (i) CEN10 of temperate lineages, presumed to have experienced a genetic bottleneck, contain less CentC than their tropical relatives; (ii) strong selection for centromere-linked genes in domesticated maize reduced diversity at seven of the ten maize centromeres to only one or two postdomestication haplotypes; and (iii) the centromere with the largest number of haplotypes in domesticated maize (CEN7) has the highest CentC levels in nearly all domesticated lines. Rare recombinations introduced one (CEN2) or more (CEN5) alternate CEN haplotypes while retaining a single haplotype at domestication loci linked to these centromeres. Taken together, this evidence strongly suggests that inbreeding, favored by postdomestication selection for centromere-linked genes affecting key domestication or agricultural traits, drives replacement of the tandem centromere repeats in maize and other crop plants. Similar forces may act during speciation in natural systems.

  10. MaizeGDB: New tools and resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB, the USDA-ARS genetics and genomics database, is a highly curated, community-oriented informatics service to researchers focused on the crop plant and model organism Zea mays. MaizeGDB facilitates maize research by curating, integrating, and maintaining a database that serves as the central...

  11. The Genetic Architecture of Maize Flowering Time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flowering time is the key trait controlling adaptation of plants to their local environment, and, in an outcrossing species like maize, it is a complex trait. Variation for this complex trait was dissected in maize using a novel set of 5000 recombinant inbred lines (maize Nested Association Mapping...

  12. MaizeGDB's New Genome Browser Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB (http://www.maizegdb.org) is the community database for maize genetics and genomics. Based upon the 2006 MaizeGDB Working Group Report (available at http://www.maizegdb.org/working_group.php) and the Allerton Report (http://www.maizegdb.org/AllertonReport.doc), it has become evident that th...

  13. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    SciTech Connect

    Pauly, Markus; Hake, Sarah

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  14. Maize, tropical (Zea mays L.).

    PubMed

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  15. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice.

    PubMed

    Finamore, Alberto; Roselli, Marianna; Britti, Serena; Monastra, Giovanni; Ambra, Roberto; Turrini, Aida; Mengheri, Elena

    2008-12-10

    This study evaluated the gut and peripheral immune response to genetically modified (GM) maize in mice in vulnerable conditions. Weaning and old mice were fed a diet containing MON810 or its parental control maize or a pellet diet containing a GM-free maize for 30 and 90 days. The immunophenotype of intestinal intraepithelial, spleen, and blood lymphocytes of control maize fed mice was similar to that of pellet fed mice. As compared to control maize, MON810 maize induced alterations in the percentage of T and B cells and of CD4(+), CD8(+), gammadeltaT, and alphabetaT subpopulations of weaning and old mice fed for 30 or 90 days, respectively, at the gut and peripheral sites. An increase of serum IL-6, IL-13, IL-12p70, and MIP-1beta after MON810 feeding was also found. These results suggest the importance of the gut and peripheral immune response to GM crop ingestion as well as the age of the consumer in the GMO safety evaluation.

  16. Global maize production, utilization, and consumption.

    PubMed

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification.

  17. The maize milkweed pod1 mutant reveals a mechanism to modify organ morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD-ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive ...

  18. Photosynthesis, growth and maize yields in the context of global change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is the third most important grain crop behind wheat and rice. Global mean temperatures are rising primarily due to anthropogenic carbon dioxide emissions into the earth’s atmosphere. Warmer temperatures over major landmasses are predicted to alter precipitation patterns and to increase the f...

  19. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase.

    PubMed

    Makarevitch, Irina; Thompson, Addie; Muehlbauer, Gary J; Springer, Nathan M

    2012-01-01

    The role of brassinosteroids in plant growth and development has been well-characterized in a number of plant species. However, very little is known about the role of brassinosteroids in maize. Map-based cloning of a severe dwarf mutant in maize revealed a nonsense mutation in an ortholog of a brassinosteroid C-6 oxidase, termed brd1, the gene encoding the enzyme that catalyzes the final steps of brassinosteroid synthesis. Homozygous brd1-m1 maize plants have essentially no internode elongation and exhibit no etiolation response when germinated in the dark. These phenotypes could be rescued by exogenous application of brassinolide, confirming the molecular defect in the maize brd1-m1 mutant. The brd1-m1 mutant plants also display alterations in leaf and floral morphology. The meristem is not altered in size but there is evidence for differences in the cellular structure of several tissues. The isolation of a maize mutant defective in brassinosteroid synthesis will provide opportunities for the analysis of the role of brassinosteroids in this important crop system.

  20. Maize-targeted mutagenesis: A knockout resource for maize.

    PubMed

    May, Bruce P; Liu, Hong; Vollbrecht, Erik; Senior, Lynn; Rabinowicz, Pablo D; Roh, Donna; Pan, Xiaokang; Stein, Lincoln; Freeling, Mike; Alexander, Danny; Martienssen, Rob

    2003-09-30

    We describe an efficient system for site-selected transposon mutagenesis in maize. A total of 43,776 F1 plants were generated by using Robertson's Mutator (Mu) pollen parents and self-pollinated to establish a library of transposon-mutagenized seed. The frequency of new seed mutants was between 10-4 and 10-5 per F1 plant. As a service to the maize community, maize-targeted mutagenesis selects insertions in genes of interest from this library by using the PCR. Pedigree, knockout, sequence, phenotype, and other information is stored in a powerful interactive database (maize-targeted mutagenesis database) that enables analysis of the entire population and the handling of knockout requests. By inhibiting Mu activity in most F1 plants, we sought to reduce somatic insertions that may cause false positives selected from pooled tissue. By monitoring the remaining Mu activity in the F2, however, we demonstrate that seed phenotypes depend on it, and false positives occur in lines that appear to lack it. We conclude that more than half of all mutations arising in this population are suppressed on losing Mu activity. These results have implications for epigenetic models of inbreeding and for functional genomics.

  1. Betaine Deficiency in Maize 1

    PubMed Central

    Lerma, Claudia; Rich, Patrick J.; Ju, Grace C.; Yang, Wen-Ju; Hanson, Andrew D.; Rhodes, David

    1991-01-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency (D Rhodes, PJ Rich [1988] Plant Physiol 88: 102-108). This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positive and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline → betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde. PMID:16668098

  2. Maize Genetics and Genomics Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2007 report for MaizeGDB lists the new hires who will focus on curation/outreach and the genome sequence, respectively. Currently all sequence in the database comes from a PlantGDB pipeline and is presented with deep links to external resources such as PlantGDB, Dana Farber, GenBank, the Arizona...

  3. Ontogeny of the maize shoot apical meristem.

    PubMed

    Takacs, Elizabeth M; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J; Schnable, Patrick S; Timmermans, Marja C P; Sun, Qi; Nettleton, Dan; Scanlon, Michael J

    2012-08-01

    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize.

  4. Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass.

    PubMed

    Ray, Swayamjit; Gaffor, Iffa; Acevedo, Flor E; Helms, Anjel; Chuang, Wen-Po; Tooker, John; Felton, Gary W; Luthe, Dawn S

    2015-09-01

    Caterpillar behaviors such as feeding, crawling, and oviposition are known to induce defenses in maize and other plant species. We examined plant defense responses to another important caterpillar behavior, their defecation. Fall armyworms (FAW, Spodoptera frugiperda), a major threat to maize (Zea mays), are voracious eaters and deposit copious amounts of frass in the enclosed whorl tissue surrounding their feeding site, where it remains for long periods of time. FAW frass is composed of molecules derived from the host plant, the insect itself, and associated microbes, and hence provides abundant cues that may alter plant defense responses. We observed that proteins from FAW frass initially induced wound-responsive defense genes in maize; however, a pathogenesis-related (pr) defense gene was induced as the time after application increased. Elicitation of pathogen defenses by frass proteins was correlated with increased herbivore performance and reduced fungal pathogen performance over time. These responses differ from the typical plant response to oral secretions of the FAW. The results pave the way for identification of protein molecule(s) from the excretion of an herbivore that elicits pathogen defense responses while attenuating herbivore defenses in plants.

  5. Phytochrome Control of Maize Coleoptile Section Elongation 1

    PubMed Central

    Warner, Timothy J.; Ross, James D.; Coombs, James

    1981-01-01

    A rapid loss of far red light (FR) reversibility of red-light (R) stimulated elongation of maize coleoptile sections was observed. Reversal was not possible when the interval between R and FR treatment was greater than 45 seconds. Most of the R-stimulated elongation occurred during the first 15 hours after irradiation. Exogenous gibberellic acid did not alter the time course of R/FR reversibility loss. These results are interpreted as indicating independence of R- and gibberellic acid-stimulated elongation in this system. PMID:16661674

  6. MaizeGDB: Global support for maize research through open access information [abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB is the open-access global repository for maize genetic and genomic information – from single genes that determine nutritional quality to whole genome-scale data for complex traits including yield and drought tolerance. The data and tools at MaizeGDB enable researchers from Ethiopia to Ghan...

  7. Fate of Transgenic DNA from Orally Administered Bt MON810 Maize and Effects on Immune Response and Growth in Pigs

    PubMed Central

    Walsh, Maria C.; Buzoianu, Stefan G.; Gardiner, Gillian E.; Rea, Mary C.; Gelencsér, Eva; Jánosi, Anna; Epstein, Michelle M.; Ross, R. Paul; Lawlor, Peadar G.

    2011-01-01

    We assessed the effect of short-term feeding of genetically modified (GM: Bt MON810) maize on immune responses and growth in weanling pigs and determined the fate of the transgenic DNA and protein in-vivo. Pigs were fed a diet containing 38.9% GM or non-GM isogenic parent line maize for 31 days. We observed that IL-12 and IFNγ production from mitogenic stimulated peripheral blood mononuclear cells decreased (P<0.10) following 31 days of GM maize exposure. While Cry1Ab-specific IgG and IgA were not detected in the plasma of GM maize-fed pigs, the detection of the cry1Ab gene and protein was limited to the gastrointestinal digesta and was not found in the kidneys, liver, spleen, muscle, heart or blood. Feeding GM maize to weanling pigs had no effect on growth performance or body weight. IL-6 and IL-4 production from isolated splenocytes were increased (P<0.05) in response to feeding GM maize while the proportion of CD4+ T cells in the spleen decreased. In the ileum, the proportion of B cells and macrophages decreased while the proportion of CD4+ T cells increased in GM maize-fed pigs. IL-8 and IL-4 production from isolated intraepithelial and lamina propria lymphocytes were also increased (P<0.05) in response to feeding GM maize. In conclusion, there was no evidence of cry1Ab gene or protein translocation to the organs and blood of weaning pigs. The growth of pigs was not affected by feeding GM maize. Alterations in immune responses were detected; however, their biologic relevance is questionable. PMID:22132091

  8. Fate of transgenic DNA from orally administered Bt MON810 maize and effects on immune response and growth in pigs.

    PubMed

    Walsh, Maria C; Buzoianu, Stefan G; Gardiner, Gillian E; Rea, Mary C; Gelencsér, Eva; Jánosi, Anna; Epstein, Michelle M; Ross, R Paul; Lawlor, Peadar G

    2011-01-01

    We assessed the effect of short-term feeding of genetically modified (GM: Bt MON810) maize on immune responses and growth in weanling pigs and determined the fate of the transgenic DNA and protein in-vivo. Pigs were fed a diet containing 38.9% GM or non-GM isogenic parent line maize for 31 days. We observed that IL-12 and IFNγ production from mitogenic stimulated peripheral blood mononuclear cells decreased (P<0.10) following 31 days of GM maize exposure. While Cry1Ab-specific IgG and IgA were not detected in the plasma of GM maize-fed pigs, the detection of the cry1Ab gene and protein was limited to the gastrointestinal digesta and was not found in the kidneys, liver, spleen, muscle, heart or blood. Feeding GM maize to weanling pigs had no effect on growth performance or body weight. IL-6 and IL-4 production from isolated splenocytes were increased (P<0.05) in response to feeding GM maize while the proportion of CD4(+) T cells in the spleen decreased. In the ileum, the proportion of B cells and macrophages decreased while the proportion of CD4(+) T cells increased in GM maize-fed pigs. IL-8 and IL-4 production from isolated intraepithelial and lamina propria lymphocytes were also increased (P<0.05) in response to feeding GM maize. In conclusion, there was no evidence of cry1Ab gene or protein translocation to the organs and blood of weaning pigs. The growth of pigs was not affected by feeding GM maize. Alterations in immune responses were detected; however, their biologic relevance is questionable.

  9. Maize genome sequencing by methylation filtration.

    PubMed

    Palmer, Lance E; Rabinowicz, Pablo D; O'Shaughnessy, Andrew L; Balija, Vivekanand S; Nascimento, Lidia U; Dike, Sujit; de la Bastide, Melissa; Martienssen, Robert A; McCombie, W Richard

    2003-12-19

    Gene enrichment strategies offer an alternative to sequencing large and repetitive genomes such as that of maize. We report the generation and analysis of nearly 100,000 undermethylated (or methylation filtration) maize sequences. Comparison with the rice genome reveals that methylation filtration results in a more comprehensive representation of maize genes than those that result from expressed sequence tags or transposon insertion sites sequences. About 7% of the repetitive DNA is unmethylated and thus selected in our libraries, but potentially active transposons and unmethylated organelle genomes can be identified. Reverse transcription polymerase chain reaction can be used to finish the maize transcriptome.

  10. Individual Maize Chromosomes in the C3 Plant Oat Can Increase Bundle Sheath Cell Size and Vein Density1[W][OA

    PubMed Central

    Tolley, Ben J.; Sage, Tammy L.; Langdale, Jane A.; Hibberd, Julian M.

    2012-01-01

    C4 photosynthesis has evolved in at least 66 lineages within the angiosperms and involves alterations to the biochemistry, cell biology, and development of leaves. The characteristic “Kranz” anatomy of most C4 leaves was discovered in the 1890s, but the genetic basis of these traits remains poorly defined. Oat × maize addition lines allow the effects of individual maize (Zea mays; C4) chromosomes to be investigated in an oat (Avena sativa; C3) genetic background. Here, we have determined the extent to which maize chromosomes can introduce C4 characteristics into oat and have associated any C4-like changes with specific maize chromosomes. While there is no indication of a simultaneous change to C4 biochemistry, leaf anatomy, and ultrastructure in any of the oat × maize addition lines, the C3 oat leaf can be modified at multiple levels. Maize genes encoding phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, and the 2′-oxoglutarate/malate transporter are expressed in oat and generate transcripts of the correct size. Three maize chromosomes independently cause increases in vein density, and maize chromosome 3 results in larger bundle sheath cells with increased cell wall lipid deposition in oat leaves. These data provide proof of principle that aspects of C4 biology could be integrated into leaves of C3 crops. PMID:22675083

  11. Calcium modulates membrane association, positional specificity, and product distribution in dual positional specific maize lipoxygenase-1.

    PubMed

    Cho, Kyoungwon; Han, Jihoon; Rakwal, Randeep; Han, Oksoo

    2015-06-01

    This study investigates how calcium modulates the properties of dual positional specific maize lipoxygenase-1, including its interaction with substrate, association with subcellular membrane and alteration of product distribution. Bioinformatic analyses identified Asp(38), Glu(127) and Glu(201) as putative calcium binding residues and Leu(37) as a flanking hydrophobic residue also potentially involved in calcium-mediated binding of the enzyme to subcellular membranes. Asp(38) and Leu(37) were shown to be important but not essential for calcium-mediated association of maize lipoxygenase-1 to subcellular membranes in vitro. Kinetic studies demonstrate that catalytic efficiency (Vmax/Km) shows a bell-shaped dependence on log of the molar ratio of substrate to unbound calcium. Calcium also modulates product distribution of the maize lipoxygenase-1 reaction, favoring 13-positional specificity and increasing the relative amount of (E,Z)-isomeric products. The results suggest that calcium regulates the maize lipoxygenase-1 reaction by binding to substrate, and by promoting binding of substrate to enzyme and association of maize lipoxygenase-1 to subcellular membranes.

  12. Comparative proteomic analyses provide new insights into low phosphorus stress responses in maize leaves.

    PubMed

    Zhang, Kewei; Liu, Hanhan; Tao, Peilin; Chen, Huan

    2014-01-01

    Phosphorus deficiency limits plant growth and development. To better understand the mechanisms behind how maize responds to phosphate stress, we compared the proteome analysis results of two groups of maize leaves that were treated separately with 1,000 µM (control, +P) and 5 µM of KH2PO4 (intervention group, -P) for 25 days. In total, 1,342 protein spots were detected on 2-DE maps and 15.43% had changed (P<0.05; ≥1.5-fold) significantly in quantity between the +P and -P groups. These proteins are involved in several major metabolic pathways, including photosynthesis, carbohydrate metabolism, energy metabolism, secondary metabolism, signal transduction, protein synthesis, cell rescue and cell defense and virulence. The results showed that the reduction in photosynthesis under low phosphorus treatment was due to the down-regulation of the proteins involved in CO2 enrichment, the Calvin cycle and the electron transport system. Electron transport and photosynthesis restrictions resulted in a large accumulation of peroxides. Maize has developed many different reactive oxygen species (ROS) scavenging mechanisms to cope with low phosphorus stress, including up-regulating its antioxidant content and antioxidase activity. After being subjected to phosphorus stress over a long period, maize may increase its internal phosphorus utilization efficiency by altering photorespiration, starch synthesis and lipid composition. These results provide important information about how maize responds to low phosphorus stress.

  13. Comparison of Non-Mutant and Mutant Waxy Genes in Rice and Maize

    PubMed Central

    Okagaki, R. J.; Wessler, S. R.

    1988-01-01

    The waxy gene, which is responsible for the synthesis of amylose in endosperm and pollen, is genetically well characterized in many grasses including maize and rice. Homology between the previously cloned maize waxy gene and the rice gene has facilitated our cloning of a 15-kb HindIII fragment that contains the entire rice gene. A comparison of the restriction maps of the maize and rice genes indicates that many restriction sites within translated exons are conserved. In addition, the rice gene encodes a 2.4-kb transcript that programs the in vitro synthesis of a 64-kD pre-protein which is efficiently precipitated with maize waxy antisera. We demonstrate that these gene products are altered in rice strains containing mutant waxy genes. Southern blot analysis of 16 rice strains, ten containing waxy mutations, reveals that the waxy gene and flanking restriction fragments are virtually identical. These results contrast dramatically with the high level of insertions and deletions associated with restriction fragment length polymorphism and spontaneous mutations among the waxy alleles of maize. PMID:2906308

  14. Comparative Proteomic Analyses Provide New Insights into Low Phosphorus Stress Responses in Maize Leaves

    PubMed Central

    Zhang, Kewei; Liu, Hanhan; Tao, Peilin; Chen, Huan

    2014-01-01

    Phosphorus deficiency limits plant growth and development. To better understand the mechanisms behind how maize responds to phosphate stress, we compared the proteome analysis results of two groups of maize leaves that were treated separately with 1,000 µM (control, +P) and 5 µM of KH2PO4 (intervention group, −P) for 25 days. In total, 1,342 protein spots were detected on 2-DE maps and 15.43% had changed (P<0.05; ≥1.5-fold) significantly in quantity between the +P and −P groups. These proteins are involved in several major metabolic pathways, including photosynthesis, carbohydrate metabolism, energy metabolism, secondary metabolism, signal transduction, protein synthesis, cell rescue and cell defense and virulence. The results showed that the reduction in photosynthesis under low phosphorus treatment was due to the down-regulation of the proteins involved in CO2 enrichment, the Calvin cycle and the electron transport system. Electron transport and photosynthesis restrictions resulted in a large accumulation of peroxides. Maize has developed many different reactive oxygen species (ROS) scavenging mechanisms to cope with low phosphorus stress, including up-regulating its antioxidant content and antioxidase activity. After being subjected to phosphorus stress over a long period, maize may increase its internal phosphorus utilization efficiency by altering photorespiration, starch synthesis and lipid composition. These results provide important information about how maize responds to low phosphorus stress. PMID:24858307

  15. The iojap gene in maize

    SciTech Connect

    Martienssen, Robert

    2001-12-01

    The classical maize mutant iojap (Iodent japonica) has variegated green and white leaves. Green sectors have cells with normal chloroplasts whereas white sectors have cells where plastids fail to differentiate. These mutant plastids, when transmitted through the female gametophyte, do not recover in the presence of wild type Iojap. We cloned the Ij locus, and we have investigated the mechanism of epigenetic inheritance and phenotypic expression. More recently, a modifier of this type of variegation, ''Inhibitor of striate'', has also been cloned. Both the iojap and inhibitor of striate proteins have homologs in bacteria and are members of ancient conserved families found in multiple species. These tools can be used to address fundamental questions of inheritance and variegation associated with this classical conundrum of maize genetics. Since the work of Rhoades there has been considerable speculation concerning the nature of the Iojap gene product, the origin of leaf variegation and the mechanism behind the material inheritance of defective plastids. This has made Iojap a textbook paradigm for cytoplasmic inheritance and nuclear-organellar interaction for almost 50 years. Cloning of the Iojap gene in maize, and homologs in other plants and bacteria, provides a new means to address the origin of heteroplastidity, variegation and cytoplasmic inheritance in higher plants.

  16. Resistance of maize landraces to the maize weevil Sitophilus zeamais Motsch. (Coleoptera: Curculionidae).

    PubMed

    Mikami, A Y; Carpentieri-Pípolo, V; Ventura, Maurício Ursi

    2012-10-01

    The maize weevil Sitophilus zeamais Motsch. is an important pest of maize that attacks the grain both in the field and during storage. The damage caused by the maize weevil S. zeamais on maize landraces, Amarelo Antigo, Asteca, Caiano, Carioca, and Ferrinho, was evaluated by no-choice tests under laboratory conditions. The commercial varieties Sol da Manhã, BR 106, BR 451, and the synthetics PC 0203 and PC 9903 were evaluated for comparisons with the maize landraces. The parameters evaluated were susceptibility index, number of weevil progeny, development time, weevil progeny dry weight, and grain dry weight loss. The landraces were more susceptible to the maize weevil as compared to the commercial varieties. Based on the cluster analysis, two groups of susceptibility to the maize weevil were observed: one of more susceptible populations formed by local landraces and BR 451, and another less susceptible, with commercial varieties, synthetics, and the landrace Amarelo.

  17. Randomly amplified polymorphic-DNA analysis for detecting genotoxic effects of Boron on maize (Zea mays L.).

    PubMed

    Sakcali, M Serdal; Kekec, Guzin; Uzonur, Irem; Alpsoy, Lokman; Tombuloglu, Huseyin

    2015-08-01

    This study was carried out to investigate the genotoxic effect of boron (B) on maize using randomly amplified polymorphic DNA (RAPD) method. Experimental design was conducted under 0, 5, 10, 25, 50, 100, 125, and 150 ppm B exposures, and physiological changes have revealed a sharp decrease in root growth rates from 28% to 85%, starting from 25 ppm to 150 ppm, respectively. RAPD-polymerase chain reaction (PCR) analysis shows that DNA alterations are clearly observed from beginning to 100 ppm. B-induced inhibition in root growth had a positive correlation with DNA alterations. Total soluble protein, root and stem lengths, and B content analysis in root and leaves encourage these results as a consequence. These preliminary findings reveal that B causes chromosomal aberration and genotoxic effects on maize. Meanwhile, usage of RAPD-PCR technique is a suitable biomarker to detect genotoxic effect of B on maize and other crops for the future.

  18. Registration of maize inbred line 'GT888'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize (Zea mays L.) inbred line GT888 (PI 670116) was developed and released by the USDA-ARS in cooperation with the University of Georgia, and in participation with the USDA Germplasm Enhancement of Maize (GEM) project. GT888 was derived from GEM population DK888:N11 (GEMN-0177), which has 50% tro...

  19. Use of tropical maize for bioethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lo...

  20. A meteorologically driven maize stress indicator model

    NASA Technical Reports Server (NTRS)

    Taylor, T. W.; Ravet, F. W. (Principal Investigator)

    1981-01-01

    A maize soil moisture and temperature stress model is described which was developed to serve as a meteorological data filter to alert commodity analysts to potential stress conditions in the major maize-producing areas of the world. The model also identifies optimum climatic conditions and planting/harvest problems associated with poor tractability.

  1. Maize metabolic network construction and transcriptome analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for understanding the synthesis and catalysis of metabolites and other biochemicals by proteins is crucial for unraveling the physiology of cells. To create such a framework for Zea mays ssp. mays (maize), we developed MaizeCyc a metabolic network of enzyme catalysts, proteins, carbohydr...

  2. The genetic architecture of maize height

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Height is one of the most heritable and easily measured traits in maize (Zea mays L.). Given a pedigree or estimates of the genomic identity-by-state (IBS) among related plants, height is also accurately predictable. But, mapping alleles explaining natural variation in maize height remains a formida...

  3. Effect of planting density, irrigation regimes, and maize hybrids with varying ear size on yield, and aflatoxin and fumonisin contamination levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (maize, Zea mays L.) hybrids expressing the flexibility trait in ear size (number of kernels per ear) are marketed for ability to give higher yields under adverse conditions. Altered kernel number is associated with altered number of silk, a major route for infection of kernels by aflatoxin-pr...

  4. Viruses in maize and Johnsongrass in southern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two major maize viruses in the United States, Maize dwarf mosaic virus and Maize chlorotic dwarf virus, were first described in Southern Ohio and surrounding regions in the 1960s when they were major problems in maize (Zea mays L.) production. Planting resistant varieties and changing cultural prac...

  5. Transcriptome Analysis of Flowering Time Genes under Drought Stress in Maize Leaves

    PubMed Central

    Song, Kitae; Kim, Hyo Chul; Shin, Seungho; Kim, Kyung-Hee; Moon, Jun-Cheol; Kim, Jae Yoon; Lee, Byung-Moo

    2017-01-01

    Flowering time is an important factor determining yield and seed quality in maize. A change in flowering time is a strategy used to survive abiotic stresses. Among abiotic stresses, drought can increase anthesis-silking intervals (ASI), resulting in negative effects on maize yield. We have analyzed the correlation between flowering time and drought stress using RNA-seq and bioinformatics tools. Our results identified a total of 619 genes and 126 transcripts whose expression was altered by drought stress in the maize B73 leaves under short-day condition. Among drought responsive genes, we also identified 20 genes involved in flowering times. Gene Ontology (GO) enrichment analysis was used to predict the functions of the drought-responsive genes and transcripts. GO categories related to flowering time included reproduction, flower development, pollen–pistil interaction, and post-embryonic development. Transcript levels of several genes that have previously been shown to affect flowering time, such as PRR37, transcription factor HY5, and CONSTANS, were significantly altered by drought conditions. Furthermore, we also identified several drought-responsive transcripts containing C2H2 zinc finger, CCCH, and NAC domains, which are frequently involved in transcriptional regulation and may thus have potential to alter gene expression programs to change maize flowering time. Overall, our results provide a genome-wide analysis of differentially expressed genes (DEGs), novel transcripts, and isoform variants expressed during the reproductive stage of maize plants subjected to drought stress and short-day condition. Further characterization of the drought-responsive transcripts identified in this study has the potential to advance our understanding of the mechanisms that regulate flowering time under drought stress. PMID:28298916

  6. Molecular genetic approaches to developing quality protein maize.

    PubMed

    Gibbon, Bryan C; Larkins, Brian A

    2005-04-01

    Since its development more than two decades ago, Quality Protein Maize (QPM) has been adopted for cultivation in many regions of the developing world. Given the potential benefits of widespread use of QPM, research to better understand the genetic and biochemical mechanisms responsible for its altered kernel texture and protein quality is important. Recent investigations into the improved protein quality of the opaque2 mutant and the genetic mechanisms that can suppress its starchy kernel phenotype provide new insights to support the continued improvement of QPM. Chief among these developments are the use of transgenic approaches to improve nutritional quality and the discovery that an important component of modified endosperm texture in QPM is related to altered starch granule structure.

  7. Transgenic maize plants by tissue electroporation.

    PubMed Central

    D'Halluin, K; Bonne, E; Bossut, M; De Beuckeleer, M; Leemans, J

    1992-01-01

    In this paper, we describe the transformation of regenerable maize tissues by electroporation. In many maize lines, immature zygotic embryos can give rise to embryogenic callus cultures from which plants can be regenerated. Immature zygotic embryos or embryogenic type I calli were wounded either enzymatically or mechanically and subsequently electroporated with a chimeric gene encoding neomycin phosphotransferase (neo). Transformed embryogenic calli were selected from electroporated tissues on kanamycin-containing media and fertile transgenic maize plants were regenerated. The neo gene was transmitted to the progeny of kanamycin-resistant transformants in a Mendelian fashion. This showed that all transformants were nonchimeric, suggesting that transformation and regeneration are a single-cell event. The maize transformation procedure presented here does not require the establishment of genotype-dependent embryogenic type II callus or cell suspension cultures and facilitates the engineering of new traits into agronomically relevant maize inbred lines. PMID:1334743

  8. High nitrate supply reduces growth in maize, from cell to whole plant.

    PubMed

    Saiz-Fernández, Iñigo; De Diego, Nuria; Sampedro, Maria Carmen; Mena-Petite, Amaia; Ortiz-Barredo, Amaia; Lacuesta, Maite

    2015-01-15

    Nitrogen (N) is an essential macronutrient that limits agricultural productivity, and both low and high N supply have been suggested to alter plant growth. The overall aim of this work is to study the impact of nitrate (NO3(-)) in maize yield and the possible causes that induce this alteration. High NO3(-) doses did not increase the yield of maize grown neither in the field nor under controlled conditions. In fact, plants grown under controlled conditions for 45 days with NO3(-) concentrations over 5mM showed a decrease in biomass production. This reduction was perceptible in shoots prior to roots, where phytomer expansion was reduced. Cell size and number were also reduced in the leaves of plants with high NO3(-). This alteration was correlated with the increase of 1-aminocyclopropane-1-carboxylic acid in leaves, which was probably translocated from the roots in order to synthesize ethylene. Cytokinins (CKs) also showed a relevant role in this inhibitory effect, increasing in high NO3(-) plants with a reduction in root and shoot growth, inhibition of apical dominance and a strong decrease of leaf expansion, symptoms described previously as "CK syndrome". We propose that high NO3(-) inhibits maize growth by causing hormonal alterations that modify plant growth from cell to whole plant.

  9. Co-infection and disease severity of Ohio Maize dwarf mosaic virus and Maize chlorotic dwarf virus strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two major maize viruses have been reported in the United States: Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV). These viruses co-occur in regions where maize is grown such that co-infections are likely. Co-infection of different strains of MCDV is also observed frequently...

  10. Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5 deacetylation function

    SciTech Connect

    Lieber, Charles S. Leo, Maria Anna; Wang, Xiaolei; DeCarli, Leonore M.

    2008-08-22

    Chronic alcohol consumption affects the gene expression of a NAD-dependent deacetylase Sirtuis 1 (SIRT1) and the peroxisome proliferator-activated receptor-{gamma} coactivator1{alpha} (PGC-1{alpha}). Our aim was to verify that it also alters the forkhead (FoxO1) and p53 transcription factor proteins, critical in the hepatic response to oxidative stress and regulated by SIRT1 through its deacetylating capacity. Accordingly, rats were pair-fed the Lieber-DeCarli alcohol-containing liquid diets for 28 days. Alcohol increased hepatic mRNA expression of FoxO1 (p = 0.003) and p53 (p = 0.001) while corresponding protein levels remained unchanged. However phospho-FoxO1 and phospho-Akt (protein kinase) were both decreased by alcohol consumption (p = 0.04 and p = 0.02, respectively) while hepatic p53 was found hyperacetylated (p = 0.017). Furthermore, mitochondrial SIRT5 was reduced (p = 0.0025), and PGC-1{alpha} hyperacetylated (p = 0.027), establishing their role in protein modification. Thus, alcohol consumption disrupts nuclear-mitochondrial interactions by post-translation protein modifications, which contribute to alteration of mitochondrial biogenesis through the newly discovered reduction of SIRT5.

  11. INTEGRATED WEED CONTROL IN MAIZE.

    PubMed

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach.

  12. The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution.

    PubMed

    Gao, Jian; Zhang, Yongzhong; Lu, Chaolong; Peng, Hua; Luo, Mao; Li, Gaoke; Shen, Yaou; Ding, Haiping; Zhang, Zhiming; Pan, Guangtang; Lin, Haijian

    2015-03-06

    Lead (Pb), as a heavy metal element, has become the most important metal pollutant of the environment. With allocating a relatively higher proportion of its biomass in roots, maize could be a potential important model to study the phytoremediation of Pb-contaminated soil. Here we analyzed the maize root transcriptome of inbred lines 9782 under heavy metal lead (Pb) pollution, which was identified as a non-hyperaccumulator for Pb in roots. In the present study, more than 98 millions reads were mapped to define gene structure and detect polymorphism, thereby to qualify transcript abundance along roots development under Pb treatment. A total of 17,707, 17,440, 16,998 and 16,586 genes were identified in maize roots at four developmental stages (0, 12 h, 24 h and 48 h) respectively and 2,825, 2,626, 2161 and 2260 stage-specifically expressed genes were also identified respectively. In addition, based on our RNA-Seq data, transcriptomic changes during maize root development responsive to Pb were investigated. A total of 384 differentially expressed genes (DEGs) (log2Ratio ≥ 1, FDR ≤ 0.001) were identified, of which, 36 genes with significant alteration in expression were detected in four developmental stages; 12 DEGs were randomly selected and successful validated by qRT-PCR. Additionally, many transcription factor families might act as the important regulators at different developmental stages, such as bZIP, ERF and GARP et al. These results will expand our understanding of the complex molecular and cellular events in maize root development and provide a foundation for future study on root development in maize under heavy metal pollution and other cereal crops.

  13. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch.

    PubMed

    Wang, Wei; Zhou, Hongxian; Yang, Hong; Zhao, Siming; Liu, Youming; Liu, Ru

    2017-01-01

    The objective of this study was to evaluate the effects of salts on the gelatinization and retrogradation of maize and waxy maize starch. Experimental results showed that the salting-out or structure-making ions, such as F(-) and SO4(2-), decreased the swelling power, solubility and transparency of both starches, but increased the gelatinization temperature, enthalpy, and syneresis, due to the tendency of these ions to protect the hydrogen bond links among starch molecules. On the other hand, the salting-in or structure-breaking ions, such as I(-) and SCN(-), exhibited the opposite effects. Microscopic observations confirmed such effects of salts on both starches. Furthermore, the effects of salts were more significant on waxy maize and on normal maize starch. Generally, salts could significantly influence on the gelatinization and retrogradation of maize and waxy maize starch, following the order of the Hofmeister series.

  14. Hardness methods for testing maize kernels.

    PubMed

    Fox, Glen; Manley, Marena

    2009-07-08

    Maize is a highly important crop to many countries around the world, through the sale of the maize crop to domestic processors and subsequent production of maize products and also provides a staple food to subsistance farms in undeveloped countries. In many countries, there have been long-term research efforts to develop a suitable hardness method that could assist the maize industry in improving efficiency in processing as well as possibly providing a quality specification for maize growers, which could attract a premium. This paper focuses specifically on hardness and reviews a number of methodologies as well as important biochemical aspects of maize that contribute to maize hardness used internationally. Numerous foods are produced from maize, and hardness has been described as having an impact on food quality. However, the basis of hardness and measurement of hardness are very general and would apply to any use of maize from any country. From the published literature, it would appear that one of the simpler methods used to measure hardness is a grinding step followed by a sieving step, using multiple sieve sizes. This would allow the range in hardness within a sample as well as average particle size and/or coarse/fine ratio to be calculated. Any of these parameters could easily be used as reference values for the development of near-infrared (NIR) spectroscopy calibrations. The development of precise NIR calibrations will provide an excellent tool for breeders, handlers, and processors to deliver specific cultivars in the case of growers and bulk loads in the case of handlers, thereby ensuring the most efficient use of maize by domestic and international processors. This paper also considers previous research describing the biochemical aspects of maize that have been related to maize hardness. Both starch and protein affect hardness, with most research focusing on the storage proteins (zeins). Both the content and composition of the zein fractions affect

  15. MaizeGDB: The Maize Model Organism Database for Basic, Translational, and Applied Research

    PubMed Central

    Lawrence, Carolyn J.; Harper, Lisa C.; Schaeffer, Mary L.; Sen, Taner Z.; Seigfried, Trent E.; Campbell, Darwin A.

    2008-01-01

    In 2001 maize became the number one production crop in the world with the Food and Agriculture Organization of the United Nations reporting over 614 million tonnes produced. Its success is due to the high productivity per acre in tandem with a wide variety of commercial uses. Not only is maize an excellent source of food, feed, and fuel, but also its by-products are used in the production of various commercial products. Maize's unparalleled success in agriculture stems from basic research, the outcomes of which drive breeding and product development. In order for basic, translational, and applied researchers to benefit from others' investigations, newly generated data must be made freely and easily accessible. MaizeGDB is the maize research community's central repository for genetics and genomics information. The overall goals of MaizeGDB are to facilitate access to the outcomes of maize research by integrating new maize data into the database and to support the maize research community by coordinating group activities. PMID:18769488

  16. Choosing a Genome Browser for a Model Organism Database (MOD): Surveying the Maize Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the maize genome sequencing is nearing its completion, the Maize Genetics and Genomics Database (MaizeGDB), the Model Organism Database for maize, integrated a genome browser to its already existing Web interface and database. The addition of the MaizeGDB Genome Browser to MaizeGDB will allow it ...

  17. Evaluation of maize yield in an on-farm maize-soybean and maize-Lablab crop rotation systems in the Northern Guinea Savanna of Nigeria.

    PubMed

    Okogun, J A; Sanginga, N; Abaidoo, R C

    2007-11-01

    An attempt was made to solving the problem of shortfall of fertilizer to maize production in the Northern Guinea Savanna (NGS) of Nigeria by harnessing the potentials of legume/cereal crop rotation in on-farm trials. The yield of maize that succeeded two soybean varieties and Lablab in a two-cycle of soybean/maize and Lablab/maize crop rotation in NGS Nigeria was assessed in researcher-managed and farmer-managed plots. Though maize that followed the soybean received between 5 kg N ha(-1) from improved soybean variety (TGx 1448-2E) and 17 kg N ha(-1) from farmer soybean variety (Samsoy-2) as N balance, this did not significantly (p = 0.05) affect the maize yields. The soybean shed 90-100% of its leaves at physiological maturity which resulted in about 110 kg N ha(-1) N uptake. This source of N might be one of the factors responsible for the increase in maize yield that followed soybean (20 to 24%) compared with continuous maize yield plot. Maize yield in previous Lablab plot was significantly (p = 0.05) higher than in all other treatments. Maize yield in farmer-managed plot ranged between 0.13 and 4.53 t ha(-1), maize yield in researcher-managed plot was over 200% higher than maize yield in farmer-managed plot because of poor crop management on the part of the farmer.

  18. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  19. High-value products from transgenic maize.

    PubMed

    Naqvi, Shaista; Ramessar, Koreen; Farré, Gemma; Sabalza, Maite; Miralpeix, Bruna; Twyman, Richard M; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2011-01-01

    Maize (also known as corn) is a domesticated cereal grain that has been grown as food and animal feed for tens of thousands of years. It is currently the most widely grown crop in the world, and is used not only for food/feed but also to produce ethanol, industrial starches and oils. Maize is now at the beginning of a new agricultural revolution, where the grains are used as factories to synthesize high-value molecules. In this article we look at the diversity of high-value products from maize, recent technological advances in the field and the emerging regulatory framework that governs how transgenic maize plants and their products are grown, used and traded.

  20. [Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems].

    PubMed

    Wang, Xiao-Chun; Yang, Wen-Yu; Deng, Xiao-Yan; Zhang, Qun; Yong, Tai-Wen; Liu, Wei-Guo; Yang, Feng; Mao, Shu-Ming

    2014-10-01

    A large amount of nitrogen (N) fertilizers poured into the fields severely pollute the environment. Reasonable application of N fertilizer has always been the research hotpot. The effects of N management on maize N utilization and residual nitrate N in soil under maize/soybean and maize/ sweet potato relay strip intercropping systems were reported in a field experiment in southwest China. It was found that maize N accumulation, N harvest index, N absorption efficiency, N contribution proportion after the anthesis stage in maize/soybean relay strip intercropping were increased by 6.1%, 5.4%, 4.3%, and 15.1% than under maize/sweet potato with an increase of 22.6% for maize yield after sustainable growing of maize/soybean intercropping system. Nitrate N accumulation in the 0-60 cm soil layer was 12.9% higher under maize/soybean intercropping than under maize/sweet potato intercropping. However, nitrate N concentration in the 60-120 cm soil layer when intercropped with soybean decreased by 10.3% than when intercropped with sweet potato, indicating a decrease of N leaching loss. Increasing of N application rate enhanced N accumulation of maize and decreased N use efficiency and significantly increased nitrate concentration in the soil profile except in the 60-100 cm soil layer, where no significant difference was observed with nitrogen application rate at 0 to 270 kg · hm(-2). Further application of N fertilizer significantly enhanced nitrate leaching loss. Postponing N application increased nitrate accumulation in the 60-100 cm soil layer. The results suggested that N application rates and ratio of base to top dressing had different influences on maize N concentration and nitrate N between maize/soybean and maize/sweet potato intercropping. Maize N concentration in the late growing stage, N harvest index and N use efficiency under maize/soybean intercropping increased (with N application rate at 180-270 kg · hm(-2) and ratio of base to top dressing = 3:2:5) and

  1. Global warming presents new challenges for maize pest management

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Krupke, Christian H.; White, Michael A.; Alexander, Corinne E.

    2008-10-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  2. The psychedelic genes of maize redundantly promote carbohydrate export from leaves.

    PubMed

    Slewinski, Thomas L; Braun, David M

    2010-05-01

    Whole-plant carbohydrate partitioning involves the assimilation of carbon in leaves and its translocation to nonphotosynthetic tissues. This process is fundamental to plant growth and development, but its regulation is poorly understood. To identify genes controlling carbohydrate partitioning, we isolated mutants that are defective in exporting fixed carbon from leaves. Here we describe psychedelic (psc), a new mutant of maize (Zea mays) that is perturbed in carbohydrate partitioning. psc mutants exhibit stable, discrete chlorotic and green regions within their leaves. psc chlorotic tissues hyperaccumulate starch and soluble sugars, while psc green tissues appear comparable to wild-type leaves. The psc chlorotic and green tissue boundaries are usually delineated by larger veins, suggesting that translocation of a mobile compound through the veins may influence the tissue phenotype. psc mutants display altered biomass partitioning, which is consistent with reduced carbohydrate export from leaves to developing tissues. We determined that the psc mutation is unlinked to previously characterized maize leaf carbohydrate hyperaccumulation mutants. Additionally, we found that the psc mutant phenotype is inherited as a recessive, duplicate-factor trait in some inbred lines. Genetic analyses with other maize mutants with variegated leaves and impaired carbohydrate partitioning suggest that Psc defines an independent pathway. Therefore, investigations into the psc mutation have uncovered two previously unknown genes that redundantly function to regulate carbohydrate partitioning in maize.

  3. Transcriptome analysis of near-isogenic lines provides molecular insights into starch biosynthesis in maize kernel.

    PubMed

    Xiao, Yingni; Thatcher, Shawn; Wang, Min; Wang, Tingting; Beatty, Mary; Zastrow-Hayes, Gina; Li, Lin; Li, Jiansheng; Li, Bailin; Yang, Xiaohong

    2016-08-01

    Starch is the major component in maize kernels, providing a stable carbohydrate source for humans and livestock as well as raw material for the biofuel industry. Increasing maize kernel starch content will help meet industry demands and has the potential to increase overall yields. We developed a pair of maize near-isogenic lines (NILs) with different alleles for a starch quantitative trait locus on chromosome 3 (qHS3), resulting in different kernel starch content. To investigate the candidate genes for qHS3 and elucidate their effects on starch metabolism, RNA-Seq was performed for the developing kernels of the NILs at 14 and 21 d after pollination (DAP). Analysis of genomic and transcriptomic data identified 76 genes with nonsynonymous single nucleotide polymorphisms and 384 differentially expressed genes (DEGs) in the introgressed fragment, including a hexokinase gene, ZmHXK3a, which catalyzes the conversion of glucose to glucose-6-phosphate and may play a key role in starch metabolism. The expression pattern of all DEGs in starch metabolism shows that altered expression of the candidate genes for qHS3 promoted starch synthesis, with positive consequences for kernel starch content. These results expand the current understanding of starch biosynthesis and accumulation in maize kernels and provide potential candidate genes to increase starch content.

  4. Climate Change and Maize Yield in Iowa

    PubMed Central

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10–20% by the end of the 21st century. PMID:27219116

  5. Climate Change and Maize Yield in Iowa.

    PubMed

    Xu, Hong; Twine, Tracy E; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.

  6. MaizeGDB: The Maize Model Organism Database for Basic, Translational, and Applied Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2001, maize became the number one production crop in the world (with over 614 million tons produced; http://faostat.fao.org). Its success is due to the high productivity per acre in tandem with a wide variety of commercial uses: not only is maize an excellent source of food, feed, and fuel, its...

  7. MaizeGDB update: New tools, data, and interface for the maize model organism database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, ...

  8. Impact of 9 years of Bt-maize cultivation on the distribution of maize viruses.

    PubMed

    Achon, Maria Angeles; Alonso-Dueñas, Natalia

    2009-06-01

    This study assesses the effect of Bt-maize on the distribution of maize viruses. Random surveys were conducted in Spain between 2001 and 2006 to evaluate the occurrence of maize viruses in Bt-maize cultivation areas and in areas where this crop had not been introduced. Maize dwarf mosaic virus (MDMV) was the predominant virus in Bt-areas, and Maize rough dwarf virus (MRDV) was the most predominant one in non-Bt-areas, with MRDV an emergent virus in both types of areas. A decline in the occurrence of MDMV and an increase in that of Sugarcane mosaic virus was observed in Bt-areas. Additionally, data obtained over 6 years in experimental fields showed non-significant differences between the infection rates exhibited by two generations of Bt varieties and the non-transformed isogenics varieties for any of the viruses. Our data suggest that differences in virus distribution are linked to the genetic background of the maize varieties and the distribution of virus reservoirs rather than to Bt-maize cultivation.

  9. Expression of an anthranilate synthase from maize mutant bf-1 in maize line HiII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize mutant bf-1 was one of a series of maize mutants generated by radiation from the Bikini Atoll atomic bomb test in 1946. It is characterized by blue fluorescence in seedlings and anthers under ultraviolet illumination and by mutant plants giving off a characteristic grape-like odor due to the ...

  10. Identification of resistance to Maize rayado fino virus in maize inbred lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize rayado fino virus (MRFV) is one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in populations, but few inbred lines have been identifie...

  11. Expanding maize genetic resources with predomestication alleles: maize-teosinte introgression populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teosinte (Zea mays ssp. parviglumis) has greater genetic diversity than maize inbreds and landraces (Z. mays ssp. mays). There are, however, limited genetic resources to efficiently evaluate and tap this diversity. To broaden resources for genetic diversity studies in maize, we developed and evaluat...

  12. Network analysis of maize RNA transport pathway genes associated with maize resistance to aflatoxin accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a pathogenic fungus producing alfatoxins that cause significant economic losses in maize production. This study analyzes the differences in expression levels of maize genes in response to A. flavus infection and aflatoxin accumulation. Identification of defense related genes an...

  13. Overexpression of SIRT1 in Rat Skeletal Muscle Does Not Alter Glucose Induced Insulin Resistance

    PubMed Central

    Brandon, Amanda E.; Tid-Ang, Jennifer; Wright, Lauren E.; Stuart, Ella; Suryana, Eurwin; Bentley, Nicholas; Turner, Nigel; Cooney, Gregory J.; Ruderman, Neil B.; Kraegen, Edward W.

    2015-01-01

    SIRT1 is a NAD+-dependent deacetylase thought to regulate cellular metabolic pathways in response to alterations in nutrient flux. In the current study we investigated whether acute changes in SIRT1 expression affect markers of muscle mitochondrial content and also determined whether SIRT1 influenced muscle insulin resistance induced by acute glucose oversupply. In male Wistar rats either SIRT1 or a deacetylase inactive mutant form (H363Y) was electroprated into the tibialis cranialis (TC) muscle. The other leg was electroporated with an empty control vector. One week later, glucose was infused and hyperglycaemia was maintained at ~11mM. After 5 hours, 11mM glucose induced significant insulin resistance in skeletal muscle. Interestingly, overexpression of either SIRT1 or SIRT1 (H363Y) for 1 week did not change markers of mitochondrial content or function. SIRT1 or SIRT1 (H363Y) overexpression had no effect on the reduction in glucose uptake and glycogen synthesis in muscle in response to hyperglycemia. Therefore we conclude that acute increases in SIRT1 protein have little impact on mitochondrial content and that overexpressing SIRT1 does not prevent the development of insulin resistance during hyperglycaemia. PMID:25798922

  14. Concentration and dissipation of chlorantraniliprole and thiamethoxam residues in maize straw, maize, and soil.

    PubMed

    He, Min; Song, Dan; Jia, Hong C; Zheng, Yongquan

    2016-09-01

    To study the dissipation rates and final residual levels of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil, two independent field trials were conducted during the 2014 cropping season in Beijing and Anhui Provinces of China. A 40% wettable powder (20% chlorantraniliprole + 20% thiamethoxam) was sprayed onto maize straw and soil at an application rate of 118 g of active ingredient per hectare (g a.i.ha(-1)). The residual concentrations were determined by ultra-high-performance liquid chromatography-tandem mass spectrometry. The chlorantraniliprole half-lives in maize straw and soil were 9.0-10.8 and 9.5-21.7 days, respectively. The thiamethoxam half-lives in maize straw and soil were 8.4-9.8 and 4.3-11.7 days, respectively. The final residues of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil were measured after the pesticides had been sprayed two and three times with an interval of 7 days using 1 and 1.5 times the recommended rate (72 g a.i. ha(-1) and 108 g a.i. ha(-1), respectively). Representative maize straw, maize, and soil samples were collected after the last treatment at pre-harvest intervals of 7, 14, and 28 days. The chlorantraniliprole residue was below 0.01 mg kg(-1) in maize, between 0.01 and 0.31 mg kg(-1) in maize straw, and between 0.03 and 1.91 mg kg(-1) in soil. The thiamethoxam residue concentrations in maize, maize straw, and soil were <0.01, <0.01, and 0.01-0.03 mg kg(-1), respectively. The final pesticide residues on maize were lower than the maximum residue limit (MRL) of 0.02 mg kg(-1) after a 14-day pre-harvest interval. Therefore, a dosage of 72 g a.i. ha(-1) was recommended, as it can be considered safe to human beings and animals.

  15. Transposition-mediated DNA re-replication in maize

    PubMed Central

    Zhang, Jianbo; Zuo, Tao; Wang, Dafang; Peterson, Thomas

    2014-01-01

    Every DNA segment in a eukaryotic genome normally replicates once and only once per cell cycle to maintain genome stability. We show here that this restriction can be bypassed through alternative transposition, a transposition reaction that utilizes the termini of two separate, nearby transposable elements (TEs). Our results suggest that alternative transposition during S phase can induce re-replication of the TEs and their flanking sequences. The DNA re-replication can spontaneously abort to generate double-strand breaks, which can be repaired to generate Composite Insertions composed of transposon termini flanking segmental duplications of various lengths. These results show how alternative transposition coupled with DNA replication and repair can significantly alter genome structure and may have contributed to rapid genome evolution in maize and possibly other eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.03724.001 PMID:25406063

  16. A Gene-Oriented Haplotype Comparison Reveals Recently Selected Genomic Regions in Temperate and Tropical Maize Germplasm

    PubMed Central

    Zhang, Jie; Li, Yongxiang; Zheng, Jun; Zhang, Hongwei; Yang, Xiaohong; Wang, Jianhua; Wang, Guoying

    2017-01-01

    The extensive genetic variation present in maize (Zea mays) germplasm makes it possible to detect signatures of positive artificial selection that occurred during temperate and tropical maize improvement. Here we report an analysis of 532,815 polymorphisms from a maize association panel consisting of 368 diverse temperate and tropical inbred lines. We developed a gene-oriented approach adapting exonic polymorphisms to identify recently selected alleles by comparing haplotypes across the maize genome. This analysis revealed evidence of selection for more than 1100 genomic regions during recent improvement, and included regulatory genes and key genes with visible mutant phenotypes. We find that selected candidate target genes in temperate maize are enriched in biosynthetic processes, and further examination of these candidates highlights two cases, sucrose flux and oil storage, in which multiple genes in a common pathway can be cooperatively selected. Finally, based on available parallel gene expression data, we hypothesize that some genes were selected for regulatory variations, resulting in altered gene expression. PMID:28099470

  17. Leaf transpiration efficiency of some drought-resistant maize lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  18. Genetic architecture of domestication-related traits in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strong directional selection occurred during the domestication of maize from its wild ancestor teosinte, reducing its genetic diversity, particularly at genes controlling domestication-related traits. Nevertheless, variability for some domestication-related traits is maintained in maize. The genet...

  19. Sporisorium reilianum infection changes inflorescence and branching architectures of maize.

    PubMed

    Ghareeb, Hassan; Becker, Annette; Iven, Tim; Feussner, Ivo; Schirawski, Jan

    2011-08-01

    Sporisorium reilianum is a biotrophic maize (Zea mays) pathogen of increasing economic importance. Symptoms become obvious at flowering time, when the fungus causes spore formation and phyllody in the inflorescences. To understand how S. reilianum changes the inflorescence and floral developmental program of its host plant, we investigated the induced morphological and transcriptional alterations. S. reilianum infection promoted the outgrowth of subapical ears, suggesting that fungal presence suppressed apical dominance. Female inflorescences showed two distinct morphologies, here termed "leafy ear" and "eary ear." In leafy ears, all floral organs were replaced by vegetative organs. In eary ears, modified carpels enclosed a new female inflorescence harboring additional female inflorescences at every spikelet position. Similar changes in meristem fate and organ identity were observed in the tassel of infected plants, which formed male inflorescences at spikelet positions. Thus, S. reilianum triggered a loss of organ and meristem identity and a loss of meristem determinacy in male and female inflorescences and flowers. Microarray analysis showed that these developmental changes were accompanied by transcriptional regulation of genes proposed to regulate floral organ and meristem identity as well as meristem determinacy in maize. S. reilianum colonization also led to a 30% increase in the total auxin content of the inflorescence as well as a dramatic accumulation of reactive oxygen species. We propose a model describing the architectural changes of infected inflorescence as a consequence of transcriptional, hormonal, and redox modulation, which will be the basis for further molecular investigation of the underlying mechanism of S. reilianum-induced alteration of floral development.

  20. Study Progress on Tissue Culture of Maize Mature Embryo

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  1. The genetic architecture of maize height.

    PubMed

    Peiffer, Jason A; Romay, Maria C; Gore, Michael A; Flint-Garcia, Sherry A; Zhang, Zhiwu; Millard, Mark J; Gardner, Candice A C; McMullen, Michael D; Holland, James B; Bradbury, Peter J; Buckler, Edward S

    2014-04-01

    Height is one of the most heritable and easily measured traits in maize (Zea mays L.). Given a pedigree or estimates of the genomic identity-by-state among related plants, height is also accurately predictable. But, mapping alleles explaining natural variation in maize height remains a formidable challenge. To address this challenge, we measured the plant height, ear height, flowering time, and node counts of plants grown in >64,500 plots across 13 environments. These plots contained >7300 inbreds representing most publically available maize inbreds in the United States and families of the maize Nested Association Mapping (NAM) panel. Joint-linkage mapping of quantitative trait loci (QTL), fine mapping in near isogenic lines (NILs), genome-wide association studies (GWAS), and genomic best linear unbiased prediction (GBLUP) were performed. The heritability of maize height was estimated to be >90%. Mapping NAM family-nested QTL revealed the largest explained 2.1 ± 0.9% of height variation. The effects of two tropical alleles at this QTL were independently validated by fine mapping in NIL families. Several significant associations found by GWAS colocalized with established height loci, including brassinosteroid-deficient dwarf1, dwarf plant1, and semi-dwarf2. GBLUP explained >80% of height variation in the panels and outperformed bootstrap aggregation of family-nested QTL models in evaluations of prediction accuracy. These results revealed maize height was under strong genetic control and had a highly polygenic genetic architecture. They also showed that multiple models of genetic architecture differing in polygenicity and effect sizes can plausibly explain a population's variation in maize height, but they may vary in predictive efficacy.

  2. Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food.

    PubMed

    Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre

    2002-01-01

    Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.

  3. Biochar mitigation of allelopathy induced yield loss in continuous maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous maize yields are often 1 to 2 Mg/ha lower than those achieved when maize is grown in rotation with soybean in the U.S. Midwest. One factor contributing to this difference is the release of phytotoxic compounds as the previous year’s maize residue decomposes. Based on laboratory results sh...

  4. Comprehensive genotyping of the USA national maize inbred seed bank

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germplasm bank at the USDA-ARS North Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa, preserves maize inbred lines from breeding programs from all over the world, including some of the key lines from the breeding history of maize. We genotyped 2,815 maize inbred accessions, mo...

  5. MaizeGDB: everything old is new again! [abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of genetic, genomic, and breeding research evolves over time, making it necessary to continually redefine the paradigm for data access and data analysis tools. Here we report the reinvention of MaizeGDB, the maize genetics and genomics database, to meet maize researchers’ ever changing nee...

  6. Quantitative trait loci for resistance to Maize rayado fino virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize rayado fino virus (MRFV) causes one of the most important virus diseases of maize in regions of Mexico, Central and South America, where it causes moderate to severe yield losses. The virus is found from the southern United States. to northern Argentina where its vector, the maize leafhopper D...

  7. Biochar mitigation of allelopathy induced yield loss in continuous maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous maize yields are limited by the release of phytotoxic compounds as the previous year’s maize residue decomposes. We tested the hypothesis that soil biochar applications could help mitigate maize autotoxicity and the associated yield depression. Eighteen small field plots (23.7 m2) were es...

  8. Mapping QTL Contributing to SCMV Resistance in Tropical Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane mosaic virus (SCMV) has been increasing in importance as a maize disease in Brazil. In this study, were mapped and characterized quantitative trait loci (QTL) associated to resistance to SCMV in a maize population consisting of 150 F2:3 families from the cross between two tropical maize i...

  9. Fate of maize intrinsic and recombinant genes in calves fed genetically modified maize Bt11.

    PubMed

    Chowdhury, Emdadull H; Mikami, Osamu; Murata, Hideo; Sultana, Parvin; Shimada, Nobuaki; Yoshioka, Miyako; Guruge, Keerthi S; Yamamoto, Sachiko; Miyazaki, Shigeru; Yamanaka, Noriko; Nakajima, Yasuyuki

    2004-02-01

    The presence of maize intrinsic and recombinant cry1Ab genes in the gastrointestinal (GI) contents, peripheral blood mononuclear cells (PBMC), and visceral organs of calves fed genetically modified Bt11 maize was examined by PCR in a subchronic 90-day performance study. Samples were collected from six Japanese Black/Holstein calves fed Bt11 maize and from six calves fed non-Bt maize. Fragments of maize zein (Ze1), invertase, chloroplast, and cry1Ab were detected inconsistently in the rumen fluid and rectal contents 5 and 18 h after feeding. The chloroplast DNA fragments of ribulose-1,5-bisphosphate carboxylase/oxygenase and tRNA were detected inconsistently in the PBMC, the visceral organs, and the longissimus muscle, while the cry1Ab gene was never detected in PBMC or in the visceral organs. These results suggest that feed-derived maize DNA was mostly degraded in the GI tract but that fragmented DNA was detectable in the GI contents as a possible source of transfer to calf tissues. These results also suggest that the recombinant cry1Ab genes were not transferred to the PBMC and tissues of calves fed Bt11 maize.

  10. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain.

    PubMed

    Bakan, B; Melcion, D; Richard-Molard, D; Cahagnier, B

    2002-02-13

    Fungi of the genus Fusarium are common fungal contaminants of maize and are also known to produce mycotoxins. Maize that has been genetically modified to express a Bt endotoxin has been used to study the effect of insect resistance on fungal infection of maize grains by Fusarium species and their related mycotoxins. Maize grain from Bt hybrids and near-isogenic traditional hybrids was collected in France and Spain from the 1999 crop, which was grown under natural conditions. According to the ergosterol level, the fungal biomass formed on Bt maize grain was 4-18 times lower than that on isogenic maize. Fumonisin B(1) grain concentrations ranged from 0.05 to 0.3 ppm for Bt maize and from 0.4 to 9 ppm for isogenic maize. Moderate to low concentrations of trichothecenes and zearalenone were measured on transgenic as well as on non-transgenic maize. Nevertheless, significant differences were obtained in certain regions. The protection of maize plants against insect damage (European corn borer and pink stem borer) through the use of Bt technology seems to be a way to reduce the contamination of maize by Fusarium species and the resultant fumonisins in maize grain grown in France and Spain.

  11. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on...

  12. [Effect of dynamic high-pressure micro-fluidization on the structure of maize amylose].

    PubMed

    Tu, Zong-Cai; Yin, Yue-Bin; Zhang, Qiu; Wang, Hui

    2013-05-01

    The effect of dynamic high-pressure micro-fluidization (DHPM) at 80, 120, 160, and 200 MPa on the structure of maize amylose was investigated using scanning electron microscopy (SEM), atomic force microscope (AFM), Xray diffraction, and FT-IR spectroscopy. SEM analysis showed that the surface appearances of maize amylose were altered and the starch granules were partially congregated together after DHPM treatment. AFM images showed that the treated starch molecules are cross-linked to each other and arranged in a close mesh structure. Xray diffraction spectra and IR spectra indicated that relative crystallinity declined gradually with the pressure increasing. The results provide a theoretical basis for starch modification of DHPM.

  13. Household dietary exposure to aflatoxins from maize and maize products in Kenya.

    PubMed

    Kilonzo, Robert M; Imungi, Jasper K; Muiru, William M; Lamuka, Peter O; Njage, Patrick M Kamau

    2014-01-01

    Aflatoxicosis has repeatedly affected Kenyans, particularly in the eastern region, due to consumption of contaminated maize. However, save for the cases of acute toxicity, the levels of sub-lethal exposure have not been adequately assessed. It is believed that this type of exposure does exist even during the seasons when acute toxicity does not occur. This study, therefore, was designed to assess the exposure of households to aflatoxins through consumption of maize and maize products. Twenty samples each of maize kernels, muthokoi and maize meal were randomly sampled from households in Kibwezi District of Makueni County in Eastern Kenya and analysed for aflatoxin contamination. The samples were quantitatively analysed for aflatoxin contamination using HPLC. The uncertainty and variability in dietary exposure was quantitatively modelled in Ms Excel using Monte Carlo simulation in @Risk software. Aflatoxins were found in 45% of maize kernels at between 18 and 480 μg kg⁻¹, 20% of muthokoi at between 12 and 123 μg kg⁻¹, and 35% of maize meal at between 6 and 30 μg kg⁻¹. The mean dietary exposure to aflatoxin in maize kernels was 292 ± 1567 ng kg⁻¹ body weight day⁻¹, while the mean dietary exposure to aflatoxin in maize meal and muthokoi were 59 ± 62 and 27 ± 154 ng kg⁻¹ body weight day⁻¹ respectively. The results showed that the amount and frequency of consumption of the three foods is the more important contributing factor than the mean aflatoxin concentration levels, to the risk of dietary exposure to aflatoxins.

  14. Blue Maize Extract Improves Blood Pressure, Lipid Profiles, and Adipose Tissue in High-Sucrose Diet-Induced Metabolic Syndrome in Rats.

    PubMed

    Guzmán-Gerónimo, Rosa Isela; Alarcón-Zavaleta, Tania Margarita; Oliart-Ros, Rosa María; Meza-Alvarado, José Enrique; Herrera-Meza, Socorro; Chávez-Servia, José Luis

    2017-02-01

    The effect of blue maize extract in factors related to metabolic syndrome (MS) in Wistar rats was investigated. Total polyphenols, monomeric anthocyanins, and antioxidant activity were analyzed in blue maize. MS was induced in Wistar rats fed with high-sucrose (HS) diet for 12 weeks. During a period of 4 weeks, blue maize extract was administrated to HS groups fed with high-sucrose and high-cholesterol-high-sucrose (HS+C) diets. In the blue maize extract administered by orogastric cannulation, the levels of total polyphenols and anthocyanins were 9.97 and 2.92 mg/kg of weight, respectively. HS diet administered during a period of 12 weeks increased significantly systolic blood pressure, serum triglycerides, and decreased high-density lipoprotein cholesterol (HDL-C), alterations related to the MS. Abdominal adipose tissue was only increased in the HS + C group. Blue maize extract administration enhanced HDL-C and decreased systolic blood pressure, serum triglycerides, total cholesterol, and epididymal adipose tissue weight. The blue maize may represent a promising nutraceutical option for the treatment of MS.

  15. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.

    PubMed

    Feng, Shangguo; Yue, Runqing; Tao, Sun; Yang, Yanjun; Zhang, Lei; Xu, Mingfeng; Wang, Huizhong; Shen, Chenjia

    2015-09-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.

  16. Evaluation of maize grain and polyunsaturated fatty acid (PUFA) as energy sources for breeding rams based on hormonal, sperm functional parameters and fertility.

    PubMed

    Selvaraju, Sellappan; Raju, Priyadarshini; Rao, Somu Bala Nageswara; Raghavendra, Subbarao; Nandi, Sumantha; Dineshkumar, Dhanasekaran; Thayakumar, Allen; Parthipan, Shivashanmugam; Ravindra, Janivara Parameswaraiah

    2012-01-01

    The objective of the present study was to elucidate the effect of different sources of dietary energy (maize vs polyunsaturated fatty acid (PUFA) on semen functional parameters and fertility of adult rams. Eighteen adult rams were divided into two groups (maize and PUFA, n=9). The main energy source for the rams in the maize group was coarsely ground maize grain, whereas in the PUFA group it was sunflower oil (rich in 18:2 linoleic acid, an omega-6 acid). The ration was fed for a minimum period of 60 days and thereafter semen was collected for evaluation. The proportion of progressive forward motility was significantly (P<0.05) higher in the PUFA group compared with the maize group. Sperm lipid peroxidation as measured by malondialdehyde formation (µM per 1×10(9) spermatozoa) was significantly (P<0.05) higher in the PUFA group compared with the maize group. When the semen was diluted with Tris-egg yolk-citrate buffer and incubated for 24h at 4°C, the proportions of plasmalemma integrity, the sperm subpopulation positive for functional membrane and acrosomal integrities, and mitochondrial membrane potential were significantly (P<0.05) higher in PUFA-fed than in maize-fed animals. The different sources of energy did not influence the serum and seminal plasma IGF-I levels. The cleavage rate (percentage) did not differ significantly between PUFA- (45.4±4.91) and maize- (44.63±6.8) fed animals. In conclusion, PUFA feeding influenced sperm quality by altering or stabilising membrane integrity. The present study indicates that PUFA may improve semen quality but did not improve in vitro fertilisation.

  17. Blue maize: morphology and starch synthase characterization of starch granule.

    PubMed

    Utrilla-Coello, Rubi G; Agama-Acevedo, Edith; de la Rosa, Ana Paulina Barba; Martinez-Salgado, Jose L; Rodriguez-Ambriz, Sandra L; Bello-Perez, Luis A

    2009-03-01

    The use of pigmented maize varieties has increased due to their high anthocyanins content, but very few studies are reported about the starch properties of these grains. The aim of this work was to isolate the starch granules from pigmented blue maize and carry out the morphological, physicochemical, and biochemical characterization studies. The proximate composition of starch granules showed high protein contents, after purification, the blue maize starch presented lower protein amount than starch from white maize (control). Although the purity of starch granules was increased, the damaged starch (determined for the Maltase cross absence) was also increased. Scanning electron microscopy showed the presence of some pores and channels in the blue maize starch. The electrophoretic protein profiles showed differences in the bands that correspond to the enzymes involved in the starch biosynthesis; these differences could explain the variation in morphological characteristics of blue maize starches against starch from white maize.

  18. Early Events in Maize Seed Development 1

    PubMed Central

    Fong, Franklin; Smith, James D.; Koehler, Don E.

    1983-01-01

    Preharvest sprouting or vivipary is induced in developing maize (Zea mays, inbred Tx 5855 and Va 35) seeds by fluridone, a pyridinone inhibitor of carotenoid biosynthesis. Fluridone has a maximal effect on vivipary at 11 days after pollination (DAP) and little effect at 13 DAP in the inbred maize line Tx 5855. Abscisic acid partially reversed the chemically induced vivipary. Though the precise mechanism of fluridone-induced vivipary is unknown, these results indicate that there are important developmental changes occurring at 11 DAP which reversibly commit the immature embryo to vivipary or dormancy. Images Fig. 1 PMID:16663339

  19. Genomic variation in maize. Progress report, 1990

    SciTech Connect

    Rivin, C.J.

    1990-12-31

    We have endeavored to learn to learn how different DNA sequences and sequence arrangements contribute to genome plasticity in maize. We describe quantitative variation among maize inbred lines for tandemly arrayed and dispersed repeated DNA sequences and gene families, and qualitative variation for sequences homologous to the Mutator family of transposons. The potential of these sequences to undergo unequal crossing over, non-allelic (ectopic) recombination and transposition makes them a source of genome instability. We have found examples of rapid genomic change involving these sequences in F1 hybrids, tissue culture cells and regenerated plants.

  20. Sequencing, assembly, and annotation of Maize B104 : A maize transformation resource

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize transformation is complicated. Most lines are not readily cultured and transformed, making the germplasm available for genome engineering extremely limited. Developing a better understanding of the genomic regions responsible for differences in culturability and transformability would be a goo...

  1. [Detection of genetic modification in maize and maize products by ELISA-test].

    PubMed

    Urbanek-Karłowska, Bogumiła; Sawilska-Rautenstrauch, Dorota; Jedra, Małgorzata; Badowski, Paweł

    2003-01-01

    Enzyme immunoassay methods--TRAIT Test--was applied for detection of genetic modification in maize seeds and foodstuffs, which have been produced from this crop. TRAIT Test is based on the identification GMO protein Cry 1Ab produced by a gene derived from Bacillus thuringiensis (Bt) incorporated into insect resistant corn grain. The experiment was carried out on maize standards and foodstuffs from Warsaw market. The positive result was obtained for one maize product, which was not labelled as GMO. The presence of GMO material was approximately equal to 1%. In conclusion, this test is proper for fast routine qualitative (yes/no) determination GMO material in maize seeds and unprocessed food products.

  2. Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize

    PubMed Central

    Zhou, Yu; Xu, Zhennan; Duan, Canxing; Chen, Yanping; Meng, Qingchang; Wu, Jirong; Hao, Zhuanfang; Wang, Zhenhua; Li, Mingshun; Yong, Hongjun; Zhang, Degui; Zhang, Shihuang; Weng, Jianfeng; Li, Xinhai

    2016-01-01

    Maize rough dwarf disease (MRDD) is a viral infection that results in heavy yield losses in maize worldwide, particularly in the summer maize-growing regions of China. MRDD is caused by the Rice black-streaked dwarf virus (RBSDV). In the present study, analyses of microRNAs (miRNAs), the degradome, and transcriptome sequences were used to elucidate the RBSDV-responsive pathway(s) in maize. Genomic analysis indicated that the expression of three non-conserved and 28 conserved miRNAs, representing 17 known miRNA families and 14 novel miRNAs, were significantly altered in response to RBSDV when maize was inoculated at the V3 (third leaf) stage. A total of 99 target transcripts from 48 genes of 10 known miRNAs were found to be responsive to RBSDV infection. The annotations of these target genes include a SQUAMOSA promoter binding (SPB) protein, a P450 reductase, an oxidoreductase, and a ubiquitin-related gene, among others. Characterization of the entire transcriptome suggested that a total of 28 and 1085 differentially expressed genes (DEGs) were detected at 1.5 and 3.0 d, respectively, after artificial inoculation with RBSDV. The expression patterns of cell wall- and chloroplast-related genes, and disease resistance- and stress-related genes changed significantly in response to RBSDV infection. The negatively regulated genes GRMZM2G069316 and GRMZM2G031169, which are the target genes for miR169i-p5 and miR8155, were identified as a nucleolin and a NAD(P)-binding Rossmann-fold superfamily protein in maize, respectively. The gene ontology term GO:0003824, including GRMZM2G031169 and other 51 DEGs, was designated as responsive to RBSDV. PMID:27493226

  3. Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Kondo, Kazunari; Tanaka, Asako; Liu, Ming S; Oguchi, Taichi; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro; Teshima, Reiko

    2008-03-26

    In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation.

  4. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    PubMed Central

    Mousa, Walaa K.; Shearer, Charles R.; Limay-Rios, Victor; Zhou, Ting; Raizada, Manish N.

    2015-01-01

    Wild maize (teosinte) has been reported to be less susceptible to pests than their modern maize (corn) relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER) in modern maize and produces the mycotoxin, deoxynivalenol (DON). In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense. PMID:26500660

  5. Use and impact of Bt maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is an invited article for a free science library and personal training tool sponsored by Nature Publishing Group, which will be included under the topics Agriculture and Biotechnology (http://www.nature.com/scitable). The focus of this article is on Bacillus thuringiensis (Bt) maize. Growers of...

  6. The genetic architecture of maize stalk strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stalk strength is an important trait in maize (Zea mays L.). Strong stalks reduce lodging and maximize harvestable yield. Studies show rind penetrometer resistance (RPR), or the force required to pierce a stalk rind with a spike, is a valid approximation of strength. We measured RPR across 4,892 rec...

  7. Registration of maize inbred line GT603

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GT603 (Reg. No. xxxx, PI xxxxxx) is a yellow dent maize (Zea mays L.) inbred line developed and released by the USDA-ARS Crop Protection and Management Research Unit in cooperation with the University of Georgia Coastal Plain Experiment Station in 2010. GT603 was developed through seven generations ...

  8. Maize and tripsacum: experiments in intergeneric hybridization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in maize-Tripsacum hybridization is extensive and encompasses a period of more than 60 years of collective research. The publication “The origin of Indian corn and its relatives” describes some of the initial research in this area (Mangelsdorf and Reeves, 1939) and is recommended reading f...

  9. Synthesis and Functions of Jasmonates in Maize

    PubMed Central

    Borrego, Eli J.; Kolomiets, Michael V.

    2016-01-01

    Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA) remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins in diverse physiological processes. JA serves as the model plant oxylipin species and regulates defense and development. For several decades, the biology of JA has been characterized in a few dicot species, yet the function of JA in monocots has only recently begun to be elucidated. In this work, the synthesis and function of JA in maize is presented from the perspective of oxylipin biology. The maize genes responsible for catalyzing the reactions in the JA biosynthesis are clarified and described. Recent studies into the function of JA in maize defense against insect herbivory, pathogens and its role in growth and development are highlighted. Additionally, a list of JA-responsive genes is presented for use as biological markers for improving future investigations into JA signaling in maize. PMID:27916835

  10. The transcriptome landscape of early maize meiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  11. [Genomic variation in maize]. Final project report

    SciTech Connect

    Rivin, C.J.

    1991-12-31

    These studies have sought to learn how different DNA sequences and sequence arrangements contribute to genome plasticity in maize. We describe quantitative variation among maize inbred lines for tandemly arrayed and dispersed repeated DNA sequences and gene families, and qualitative variation for sequences homologous to the Mutator family of transposons. The potential of these sequences to undergo unequal crossing over, non-allelic (ectopic) recombination and transposition makes them a source of genome instability. We have found examples of rapid genomic change involving these sequences in Fl hybrids, tissue culture cells and regenerated plants. We describe the repetitive portion of the maize genome as composed primarily of sequences that vary markedly in copy number among different genetic stocks. The most highly variable is the 185 bp repeat associated with the heterochromatic chromosome knobs. Even in lines without visible knobs, there is a considerable quantity of tandemly arrayed repeats. We also found a high degree of variability for the tandemly arrayed 5S and ribosomal DNA repeats. While such variation might be expected as the result of unequal cross-over, we were surprised to find considerable variation among lower copy number, dispersed repeats as well. One highly repeated sequence that showed a complex tandem and dispersed arrangement stood out as showing no detectable variability among the maize lines. In striking contrast to the variability seen between the inbred stocks, individuals within a stock were indistinguishable with regard to their repeated sequence multiplicities.

  12. Regulatory modules controlling maize inflorescence architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...

  13. New trait data at MaizeGDB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB has several ways to archive trait data used for QTL and GWAS analyses. The simplest is simple posting of files provided by researchers along with links to the publication. More recently we have begun to integrate these data for diversity recombinant germplasm, and association panels. The go...

  14. Effect of organic fertilizers on maize production in Eastern Georgia

    NASA Astrophysics Data System (ADS)

    Jolokhava, Tamar; Kenchiashvili, Naira; Tarkhnishvili, Maia; Ghambashidze, Giorgi

    2016-04-01

    Maize remains to be the most important cereal crop in Georgia. Total area of arable land under cereal crops production equals to 184 thousands hectares (FAO statistical yearbook, 2014), from which maize takes the biggest share. Leading position of maize among other cereal crops is caused by its dual purpose as food and feed product. In Spite of a relatively high production of maize to other cereals there is still a high demand on it, especially as feed for animal husbandry. The same tendency is seen in organic production, where producers of livestock and poultry products require organically grown maize, the average yield of which is much less than those produced conventionally. Therefore, it is important to increase productivity of maize in organic farms. Current study aimed to improve maize yield using locally produced organic fertilizers and to compare them to the effect of mineral fertilizers. The study was carried out in Eastern Georgia under dry subtropical climate conditions on local hybrid of maize. This is the first attempt to use hybrid maize (developed with organic plant breeding method) in organic field trials in Georgia. The results shown, that grain yield from two different types of organic fertilizers reached 70% of the yields achieved with industrial mineral fertilizers. As on farm level differences between organic and conventional maize production are much severe, the results from the field trials seems to be promising for future improvement of organic cereal crop production.

  15. Ontogeny of the Maize Shoot Apical Meristem[W][OA

    PubMed Central

    Takacs, Elizabeth M.; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J.; Schnable, Patrick S.; Timmermans, Marja C.P.; Sun, Qi; Nettleton, Dan; Scanlon, Michael J.

    2012-01-01

    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize. PMID:22911570

  16. NAD-dependent aromatic alcohol dehydrogenase in wheats (Triticum L.) and goatgrasses (Aegilops L.): evolutionary genetics.

    PubMed

    Jaaska, V

    1984-04-01

    Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E(0.58)/E(0.64). The slowest isoenzyme, E(0.58), is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. 'Chinese Spring' and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E(0.64), is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E(0.56)/E(0.71), whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E(0.58)/E(0.64) (the commonest), E(0.58)/E(0.71), E(0.45)/E(0.58), E(0.48)/E(0.58) and E(0.56)/E(0.58) recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E(0.58)/E(0.64). Ae. cylindrica and polyploid goatgrasses of the C(u)-genome group, excepting Ae. kotschyi, are homozygous for E(0.64). Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E(0.56)/E(0.64) and A(0.49)/A(0.56).

  17. NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis.

    PubMed

    Cattelan, Arianna; Ceolotto, Giulio; Bova, Sergio; Albiero, Mattia; Kuppusamy, Maniselvan; De Martin, Sara; Semplicini, Andrea; Fadini, Gian Paolo; de Kreutzenberg, Saula Vigili; Avogaro, Angelo

    2015-07-01

    Ischemia-reperfusion (IR) leads to severe organ injury and dysfunction. Sirtuins (SIRTs) are a family of histone deacetylases (HDACs) that require nicotinamide adenine dinucleotide (NAD(+)) for the deacetylation reaction. SIRTs play a major role in counteracting cellular stress and apoptosis. This study aimed to investigate the mechanisms of heart protection against apoptosis by SIRTs and the molecular pathways involved in SIRTs regulation and function in a rat model of IR injury. Hearts of male Wistar-Kyoto rats were subjected to 30-min ischemia followed by reperfusion up to 6h. IR increased cardiomyocyte apoptosis; the cleavage of caspase 3, induced a transient upregulation of SIRT1 and downregulation of SIRT6 expression, but decreased SIRT1 activity and reduced NAD(+) content. IR also increased forkhead box protein O1 (FoxO1) expression and FoxO1 binding to SIRT1 promoter region. Resveratrol restored SIRT1 activity and NAD(+) level by an AMPK-dependent mechanism, reduced cardiomyocyte apoptosis, and attenuated caspase 3 cleavage via heat shock factor-1 deacetylation and heat shock protein (HSP) expression upregulation. Our data show new potential molecular mechanisms of up and downstream regulation of SIRT1 in IR. The interplay among FoxO1, SIRT1, NAD(+), AMPK, HSP, and SIRT6 depicts a complex molecular network that protects the heart from apoptosis during IR and may be susceptible to therapeutic interventions.

  18. The 50th Annual Maize Genetics Conference

    SciTech Connect

    Cone, Karen

    2014-03-26

    The 50th Annual Maize Genetics Conference was held February 27 - March 2, 2008 at the Marriott Wardman Park Hotel in Washington, D.C. As the golden anniversary of the Conference and coinciding with the release of a draft of the maize genome sequence, this was a special meeting. To publicize this unique occasion, meeting organizers hosted a press conference, which was attended by members of the press representing science and non-science publications, and an evening reception at the Smithsonian National Museum of Natural History, where the draft sequence was announced and awards were presented to Dr. Mary Clutter and Senator Kit Bond to thank them for their outstanding contributions to maize genetics and genomics research. As usual, the Conference provided an invigorating forum for exchange of recent research results in many areas of maize genetics, e.g., cytogenetics, development, molecular genetics, transposable element biology, biochemical genetics, and genomics. Results were shared via both oral and poster presentations. Invited talks were given by four distinguished geneticists: Vicki Chandler, University of Arizona; John Doebley, University of Wisconsin; Susan Wessler, University of Georgia; and Richard Wilson, Washington University. There were 46 short talks and 241 poster presentations. The Conference was attended by over 500 participants. This included a large number of first-time participants in the meeting and an increasingly visible presence by individuals from underrepresented groups. Although we do not have concrete counts, there seem to be more African American, African and Hispanic/Latino attendees coming to the meeting than in years past. In addition, this meeting attracted many participants from outside the U.S. Student participation continues to be hallmark of the spirit of free exchange and cooperation characteristic of the maize genetics community. With the generous support provided by DOE, USDA NSF, and corporate/private donors, organizers were

  19. Evolution of Anthocyanin Biosynthesis in Maize Kernels: The Role of Regulatory and Enzymatic Loci

    PubMed Central

    Hanson, M. A.; Gaut, B. S.; Stec, A. O.; Fuerstenberg, S. I.; Goodman, M. M.; Coe, E. H.; Doebley, J. F.

    1996-01-01

    Understanding which genes contribute to evolutionary change and the nature of the alterations in them are fundamental challenges in evolution. We analyzed regulatory and enzymatic genes in the maize anthocyanin pathway as related to the evolution of anthocyanin-pigmented kernels in maize from colorless kernels of its progenitor, teosinte. Genetic tests indicate that teosinte possesses functional alleles at all enzymatic loci. At two regulatory loci, most teosintes possess alleles that encode functional proteins, but ones that are not expressed during kernel development and not capable of activating anthocyanin biosynthesis there. We investigated nucleotide polymorphism at one of the regulatory loci, c1. Several observations suggest that c1 has not evolved in a strictly neutral manner, including an exceptionally low level of polymorphism and a biased representation of haplotypes in maize. Curiously, sequence data show that most of our teosinte samples possess a promoter element necessary for the activation of the anthocyanin pathway during kernel development, although genetic tests indicate that teosinte c1 alleles are not active during kernel development. Our analyses suggest that the evolution of the purple kernels resulted from changes in cis regulatory elements at regulatory loci and not changes in either regulatory protein function nor the enzymatic loci. PMID:8807310

  20. Impact of enhanced ultraviolet-B irradiance on maize yield formation and structure: a field evaluation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zheng, Youfei; Slusser, James R.; He, Yuhong; Zhang, Ronggang

    2003-11-01

    Stratospheric ozone depletion and enhanced solar ultraviolet-B (UV-B) irradiance may have adverse impacts on the productivity of agricultural crops. Though only a small portion of the total solar electromagnetic spectrum, UV-B irradiance has a disproportionately large photobiological effect, largely because it is readily absorbed by important macromolecules such as proteins and nucleic acids. Numerous investigations have demonstrated that the effect of UV-B enhancements on plants includes a reduction in grain yield, alteration in species competition, susceptibility to disease, and changes in plant structure and pigmentation. Many experiments examining UV-B radiation effects on plants were conducted in growth chambers or greenhouses. It has been questioned if the effect of UV-B radiation on plants can be extrapolated to field responses from indoor studies because of the unnaturally high ratios of UV-B/UV-A and UV-B/PAR in many indoor studies. Field studies on UV-B radiation effect on plants have been recommended in order to use the UV and PAR irradiance provided by natural light. This study found the maize yield formation and yield structural elements responded to enhanced UV-B radiation under field conditions. Enhanced UV-B radiation caused a significant reduction of the dry matter accumulation and the maize grain yield in turn was affected. Analysis of yield structure indicates that the maize yield decreased with increased UV-B radiation and was evidently related to the decreased kernel weight and kernel number per ear.

  1. Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N.

    PubMed

    Yan, Huifeng; Li, Ke; Ding, Hong; Liao, Chengsong; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2011-07-01

    The primary objective of this study was to better understand how root morphological alteration stimulates N uptake in maize plants after root growth restriction, by investigating the changes in length and number of lateral roots, (15)NO(3)(-) influx, the expression level of the low-affinity Nitrate transporter ZmNrt1.1, and proteomic composition of primary roots. Maize seedlings were hydroponically cultured with three different types of root systems: an intact root system, embryonic roots only, or primary roots only. In spite of sufficient N supply, root growth restriction stimulated compensatory growth of remaining roots, as indicated by the increased lateral root number and root density. On the other hand, there was no significant difference in (15)NO(3)(-) influx between control and primary root plants; neither in ZmNrt1.1 expression levels in primary roots of different treatments. Our data suggested that increased N uptake by maize seedlings experiencing root growth restriction is attributed to root morphological adaptation, rather than explained by the variation in N uptake activity. Eight proteins were differentially accumulated in embryonic and primary root plants compared to control plants. These differentially accumulated proteins were closely related to signal transduction and increased root growth.

  2. Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize.

    PubMed

    Fornalé, Silvia; Rencoret, Jorge; Garcia-Calvo, Laura; Capellades, Montserrat; Encina, Antonio; Santiago, Rogelio; Rigau, Joan; Gutiérrez, Ana; Del Río, José-Carlos; Caparros-Ruiz, David

    2015-07-01

    Coumarate 3-hydroxylase (C3H) catalyzes a key step of the synthesis of the two main lignin subunits, guaiacyl (G) and syringyl (S) in dicotyledonous species. As no functional data are available in regards to this enzyme in monocotyledonous species, we generated C3H1 knock-down maize plants. The results obtained indicate that C3H1 participates in lignin biosynthesis as its down-regulation redirects the phenylpropanoid flux: as a result, increased amounts of p-hydroxyphenyl (H) units, lignin-associated ferulates and the flavone tricin were detected in transgenic stems cell walls. Altogether, these changes make stem cell walls more degradable in the most C3H1-repressed plants, despite their unaltered polysaccharide content. The increase in H monomers is moderate compared to C3H deficient Arabidopsis and alfalfa plants. This could be due to the existence of a second maize C3H protein (C3H2) that can compensate the reduced levels of C3H1 in these C3H1-RNAi maize plants. The reduced expression of C3H1 alters the macroscopic phenotype of the plants, whose growth is inhibited proportionally to the extent of C3H1 repression. Finally, the down-regulation of C3H1 also increases the synthesis of flavonoids, leading to the accumulation of anthocyanins in transgenic leaves.

  3. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus

    PubMed Central

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F.; Peterson, Thomas

    2015-01-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize. PMID:26434719

  4. Glossy15 Controls the Epidermal Juvenile-to-Adult Phase Transition in Maize.

    PubMed Central

    Moose, S. P.; Sisco, P. H.

    1994-01-01

    Loss-of-function mutations at the maize Glossy15 (Gl15) locus alter the normal transition from juvenile-to-adult growth by conditioning the abbreviated expression of juvenile epidermal cell traits and the coordinate precocious expression of adult epidermal cell features. These include epicuticular wax composition, cell wall characteristics, and the presence or absence of differentiated epidermal cell types (e.g., epidermal macrohairs and bulliform cells). A transposon-induced mutable allele of Glossy15 (gl15-m1) was isolated and employed in both phenotypic and genetic analyses to characterize the role of Gl15 in the maize juvenile-to-adult phase transition. Comparisons between Gl15-active and Gl15-inactive somatic sectors in the leaves of variegated plants demonstrated that the Gl15 gene product acts in a cell-autonomous manner to direct juvenile epidermal differentiation but does not affect factors that regulate the overall process of phase change. Examination of the gl15-m1 phenotype in the Corngrass1, Teopod1, and Teopod2 mutant backgrounds showed that the prolonged expression of juvenile epidermal traits associated with these mutations also required Gl15 activity. These results support a model whereby the cell-autonomous Gl15 gene product responds to a juvenility program that operates throughout the vegetative shoot to condition the juvenile differentiation of maize leaf epidermal cells. PMID:12244224

  5. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation.

    PubMed

    Kretschmer, Matthias; Croll, Daniel; Kronstad, James W

    2016-08-26

    The ability of biotrophic fungi to metabolically adapt to the host environment is a critical factor in fungal diseases of crop plants. In this study, we analysed the transcriptome of maize tumours induced by Ustilago maydis to identify key features underlying metabolic shifts during disease. Among other metabolic changes, this analysis highlighted modifications during infection in the transcriptional regulation of carbohydrate allocation and starch metabolism. We confirmed the relevance of these changes by establishing that symptom development was altered in an id1 (indeterminate1) mutant that showed increased accumulation of sucrose as well as being defective in the vegetative to reproductive transition. We further established the relevance of specific metabolic functions related to carbohydrate allocation by assaying disease in su1 (sugary1) mutant plants with altered starch metabolism and in plants treated with glucose, sucrose and silver nitrate during infection. We propose that specific regulatory and metabolic changes influence the balance between susceptibility and resistance by altering carbon allocation to promote fungal growth or to influence plant defence. Taken together, these studies reveal key aspects of metabolism that are critical for biotrophic adaptation during the maize-U. maydis interaction.

  6. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment.

    PubMed

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J; Balog, Adalbert

    2014-06-17

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.

  7. Processing maize flour and corn meal food products

    PubMed Central

    Gwirtz, Jeffrey A; Garcia-Casal, Maria Nieves

    2014-01-01

    Corn is the cereal with the highest production worldwide and is used for human consumption, livestock feed, and fuel. Various food technologies are currently used for processing industrially produced maize flours and corn meals in different parts of the world to obtain precooked refined maize flour, dehydrated nixtamalized flour, fermented maize flours, and other maize products. These products have different intrinsic vitamin and mineral contents, and their processing follows different pathways from raw grain to the consumer final product, which entail changes in nutrient composition. Dry maize mechanical processing creates whole or fractionated products, separated by anatomical features such as bran, germ, and endosperm. Wet maize processing separates by chemical compound classification such as starch and protein. Various industrial processes, including whole grain, dry milling fractionation, and nixtamalization, are described. Vitamin and mineral losses during processing are identified and the nutritional impacts outlined. Also discussed are the vitamin and mineral contents of corn. PMID:24329576

  8. The Dynamics of DNA Methylation in Maize Roots under Pb Stress

    PubMed Central

    Ding, Haiping; Gao, Jian; Qin, Cheng; Ma, Haixia; Huang, Hong; Song, Pan; Luo, Xirong; Lin, Haijian; Shen, Ya’ou; Pan, Guangtang; Zhang, Zhiming

    2014-01-01

    Plants adapt to adverse conditions through a series of physiological, cellular, and molecular processes, culminating in stress tolerance. However, little is known about the associated regulatory mechanisms at the epigenetic level in maize under lead (Pb) stress. Therefore, in this study, we aimed to compare DNA methylation profiles during the dynamic development of maize roots following Pb treatment to identify candidate genes involved in the response to Pb stress. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation patterns in maize roots under normal condition (A1) and 3 mM Pb(NO3)2 stress for 12 h (K2), 24 h (K3) and 48 h (K4). The results showed that the average methylation density was the highest in CpG islands (CGIs), followed by the intergenic regions. Within the gene body, the methylation density of the introns was higher than those of the UTRs and exons. In total, 3857 methylated genes were found in 4 tested samples, including 1805 differentially methylated genes for K2 versus A1, 1508 for K3 versus A1, and 1660 for K4 versus A1. Further analysis showed that 140 genes exhibited altered DNA methylation in all three comparisons, including some well-known stress-responsive transcription factors and proteins, such as MYB, AP2/ERF, bZIP, serine-threonine/tyrosine-proteins, pentatricopeptide repeat proteins, RING zinc finger proteins, F-box proteins, leucine-rich repeat proteins and tetratricopeptide repeat proteins. This study revealed the genome-scale DNA methylation patterns of maize roots in response to Pb exposure and identified candidate genes that potentially regulate root dynamic development under Pb stress at the methylation level. PMID:25526567

  9. How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors?

    NASA Technical Reports Server (NTRS)

    Bassu, Simona; Brisson, Nadine; Grassini, Patricio; Durand, Jean-Louis; Boote, Kenneth; Lizaso, Jon; Jones, James W.; Rosenzweig, Cynthia; Ruane, Alex C.; Adam, Myriam; Baron, Christian; Basso, Bruno; Biernath, Christian; Boogaard, Hendrik; Conijn, Sjaak; Corbeels, Marc; Deryng, Delphine; DeSanctis, Giacomo; Gayler, Sebastian; Grassini, Patricio; Hatfield, Jerry; Hoek, Steven; Izaurralde, Cesar; Jongschaap, Raymond; Kemanian, Armen R.; Kersebaum, K. Christian

    2014-01-01

    Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.

  10. Using Association Mapping in Teosinte to Investigate the Function of Maize Selection-Candidate Genes

    PubMed Central

    Weber, Allison L.; Zhao, Qiong; McMullen, Michael D.; Doebley, John F.

    2009-01-01

    Background Large-scale screens of the maize genome identified 48 genes that show the putative signature of artificial selection during maize domestication or improvement. These selection-candidate genes may act as quantitative trait loci (QTL) that control the phenotypic differences between maize and its progenitor, teosinte. The selection-candidate genes appear to be located closer in the genome to domestication QTL than expected by chance. Methods and Findings As a step toward defining the traits controlled by these genes, we performed phenotype-genotype association mapping in teosinte for 32 of the 48 plus three other selection-candidate genes. Our analyses assayed 32 phenotypic traits, many of which were altered during maize domestication or improvement. We observed several significant associations between SNPs in the selection-candidate genes and trait variation in teosinte. These included two associations that surpassed the Bonferroni correction and five instances where a gene significantly associated with the same trait in both of our association mapping panels. Despite these significant associations, when compared as a group the selection-candidate genes performed no better than randomly chosen genes. Conclusions Our results suggest association analyses can be helpful for identifying traits under the control of selection-candidate genes. Indeed, we present evidence for new functions for several selection-candidate genes. However, with the current set of selection-candidate genes and our association mapping strategy, we found very few significant associations overall and no more than we would have found with randomly chosen genes. We discuss possible reasons that a large number of significant genotype-phenotype associations were not discovered. PMID:20011044

  11. The Bacterial Community Structure and Dynamics of Carbon and Nitrogen when Maize (Zea mays L.) and Its Neutral Detergent Fibre Were Added to Soil from Zimbabwe with Contrasting Management Practices.

    PubMed

    De la Cruz-Barrón, Magali; Cruz-Mendoza, Alejandra; Navarro-Noya, Yendi E; Ruiz-Valdiviezo, Victor M; Ortíz-Gutiérrez, Daniel; Ramírez-Villanueva, Daniel A; Luna-Guido, Marco; Thierfelder, Cristian; Wall, Patrick C; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2017-01-01

    Water infiltration, soil carbon content, aggregate stability and yields increased in conservation agriculture practices compared to conventionally ploughed control treatments at the Henderson research station near Mazowe (Zimbabwe). How these changes in soil characteristics affect the bacterial community structure and the bacteria involved in the degradation of applied organic material remains unanswered. Soil was sampled from three agricultural systems at Henderson, i.e. (1) conventional mouldboard ploughing with continuous maize (conventional tillage), (2) direct seeding with a Fitarelli jab planter and continuous maize (direct seeding with continuous maize) and (3) direct seeding with a Fitarelli jab planter with rotation of maize sunn hemp (direct seeding with crop rotation). Soil was amended with young maize plants or their neutral detergent fibre (NDF) and incubated aerobically for 56 days, while C and N mineralization and the bacterial community structure were monitored. Bacillus (Bacillales), Micrococcaceae (Actinomycetales) and phylotypes belonging to the Pseudomonadales were first degraders of the applied maize plants. At day 3, Streptomyces (Actinomycetales), Chitinophagaceae ([Saprospirales]) and Dyella (Xanthomonadales) participated in the degradation of the applied maize and at day 7 Oxalobacteraceae (Burkholderiales). Phylotypes belonging to Halomonas (Oceanospirillales) were the first degraders of NDF and were replaced by Phenylobacterium (Caulobacterales) and phylotypes belonging to Pseudomonadales at day 3. Afterwards, similar bacterial groups were favoured by application of NDF as they were by the application of maize plants, but there were also clear differences. Phylotypes belonging to the Micrococcaceae and Bacillus did not participate in the degradation of NDF or its metabolic products, while phylotypes belonging to the Acidobacteriaceae participated in the degradation of NDF but not in that of maize plants. It was found that agricultural

  12. Genome-Wide Association Implicates Candidate Genes Conferring Resistance to Maize Rough Dwarf Disease in Maize.

    PubMed

    Chen, Gengshen; Wang, Xiaoming; Hao, Junjie; Yan, Jianbing; Ding, Junqiang

    2015-01-01

    Maize rough dwarf disease (MRDD) is a destructive viral disease in China, which results in 20-30% of the maize yield losses in affected areas and even as high as 100% in severely infected fields. Understanding the genetic basis of resistance will provide important insights for maize breeding program. In this study, a diverse maize population comprising of 527 inbred lines was evaluated in four environments and a genome-wide association study (GWAS) was undertaken with over 556000 SNP markers. Fifteen candidate genes associated with MRDD resistance were identified, including ten genes with annotated protein encoding functions. The homologous of nine candidate genes were predicted to relate to plant defense in different species based on published results. Significant correlation (R2 = 0.79) between the MRDD severity and the number of resistance alleles was observed. Consequently, we have broadened the resistant germplasm to MRDD and identified a number of resistance alleles by GWAS. The results in present study also imply the candidate genes in defense pathway play an important role in resistance to MRDD in maize.

  13. Close Split of Sorghum and Maize Genome Progenitors

    PubMed Central

    Swigoňová, Zuzana; Lai, Jinsheng; Ma, Jianxin; Ramakrishna, Wusirika; Llaca, Victor; Bennetzen, Jeffrey L.; Messing, Joachim

    2004-01-01

    It is generally believed that maize (Zea mays L. ssp. mays) arose as a tetraploid; however, the two progenitor genomes cannot be unequivocally traced within the genome of modern maize. We have taken a new approach to investigate the origin of the maize genome. We isolated and sequenced large genomic fragments from the regions surrounding five duplicated loci from the maize genome and their orthologous loci in sorghum, and then we compared these sequences with the orthologous regions in the rice genome. Within the studied segments, we identified 11 genes that were conserved in location, order, and orientation. We performed phylogenetic and distance analyses and examined the patterns of estimated times of divergence for sorghum and maize gene orthologs and also the time of divergence for maize orthologs. Our results support a tetraploid origin of maize. This analysis also indicates contemporaneous divergence of the ancestral sorghum genome and the two maize progenitor genomes about 11.9 million years ago (Mya). On the basis of a putative conversion event detected for one of the genes, tetraploidization must have occurred before 4.8 Mya, and therefore, preceded the major maize genome expansion by gene amplification and retrotransposition. PMID:15466289

  14. Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance.

    PubMed

    Abou Alhamed, M F; Shebany, Y M

    2012-09-01

    This study aims at characterisation of the impact of Chaetomium globosum on copper stress resistance of maize seedlings. Higher levels of copper treatment decreased maize dry weight and induced a marked increase in osmotic solutes, antioxidant enzyme activity and the level of lipid peroxidation. On the other hand, addition of the endophytic C. globosum alleviated the toxic effect of copper on maize growth. The combination of copper sulphate and Chaetomium increased seedling dry weight, osmotic solute content and antioxidant enzyme activity compared to copper sulphate alone, while lipid peroxidation levels were also decreased. The fungal scavenger system might be important for supporting the ability of maize seedlings to resist copper toxicity.

  15. Bt maize and integrated pest management--a European perspective.

    PubMed

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests.

  16. Ultraweak photon emission from herbivory-injured maize plants

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Naoko; Kato, Kimihiko; Kageyama, Chizuko; Fujisaki, Kenji; Nishida, Ritsuo; Mori, Naoki

    2006-01-01

    Following perception of herbivory or infection, plants exhibit a wide range of inducible responses. In this study, we found ultraweak photon emissions from maize leaves damaged by Helicoverpa armigera (Noctuidae). Interestingly, mechanically damaged maize leaves treated with caterpillar regurgitants emitted the same intensity and pattern of photon emissions as those from maize leaves damaged by caterpillars. Furthermore, two-dimensional imaging of the leaf section treated with the oral secretions clearly shows that photon emissions were observed specifically at the lip of the wound exposed to the secretions. These results suggest that the direct interaction between maize leaf cells and chemicals contained in caterpillar regurgitants triggers these photon emissions.

  17. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids

    PubMed Central

    Song, Qingxin; Juenger, Thomas E.

    2016-01-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. PMID:27467757

  18. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids.

    PubMed

    Ko, Dae Kwan; Rohozinski, Dominica; Song, Qingxin; Taylor, Samuel H; Juenger, Thomas E; Harmon, Frank G; Chen, Z Jeffrey

    2016-07-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy.

  19. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    PubMed

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  20. The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms.

    PubMed

    Cheeke, Tanya E; Pace, Brian A; Rosenstiel, Todd N; Cruzan, Mitchell B

    2011-02-01

    Crop plants genetically modified for the expression of Bacillus thuringiensis (Bt) insecticidal toxins have broad appeal for reducing insect damage in agricultural systems, yet questions remain about the impact of Bt plants on symbiotic soil organisms. Here, arbuscular mycorrhizal fungal (AMF) colonization of transgenic maize isoline Bt 11 (expressing Cry1Ab) and its non-Bt parental line (Providence) was evaluated under different fertilizer level and spore density scenarios. In a three-way factorial design, Bt 11 and non-Bt maize were inoculated with 0, 40, or 80 spores of Glomus mosseae and treated weekly with 'No' (0 g L(-1) ), 'Low' (0.23 g L(-1) ), or 'High' (1.87 g L(-1) ) levels of a complete fertilizer and grown for 60 days in a greenhouse. While no difference in AMF colonization was detected between the Bt 11 and Providence maize cultivars in the lower spore/higher fertilizer treatments, microcosm experiments demonstrated a significant reduction in AMF colonization in Bt 11 maize roots in the 80 spore treatments when fertilizer was limited. These results confirm previous work indicating an altered relationship between this Bt 11 maize isoline and AMF and demonstrate that the magnitude of this response is strongly dependent on both nutrient supply and AMF spore inoculation level.

  1. Susceptibilities of Different Test Systems from Maize (Zea mays), Poa annua, and Festuca rubra to Herbicides That Inhibit the Enzyme Acetyl-Coenzyme A Carboxylase

    PubMed

    Herbert; Cole; Pallett; Harwood

    1996-06-01

    The susceptibilities of maize (Zea mays cv. Champ) and two graminicide-resistant grass species, Poa annua (annual meadow grass) and Festuca rubra (red fescue), to two aryloxyphenoxypropionates (quizalofop and fluazifop) and a cyclohexanedione (sethoxydim) graminicide were evaluated in leaf blades and isolated chloroplasts, and by assaying acetyl-coenzyme A carboxylase (ACCase) in desalted leaf homogenates. The graminicide resistance of P. annua and F. rubra appeared to be at the level of ACCase. Festuca rubra ACCase was highly insensitive and P. annua ACCase was partially insensitive to the graminicides that were tested. Fatty acid synthesis in isolated maize chloroplasts was more susceptible to inhibition than was ACCase activity from whole leaves. There was a smaller difference in graminicide sensitivity between these two test systems in P. annua. The developmental pattern of ACCase specific activity and its inhibition by quizalofop was measured in maize and P. annua leaf blades. There was an age-dependent increase in the sensitivity of maize leaf ACCase activity to inhibition by quizalofop. Together with the greater susceptibility of chloroplasts compared with leaf homogenates this could imply that a graminicide-insensitive (extrachloroplastic) ACCase isoform is less highly expressed in older leaves. Poa annua ACCase did not significantly alter in sensitivity as leaves aged, consistent with the smaller difference in the level of inhibition between chloroplasts and leaf homogenates in this species. A small pyruvate carboxylase activity was detected in maize leaves after 9 days. By 38 days, when leaves were senescing, pyruvate carboxylase activity predominated over ACCase.

  2. Iron bioavailability of maize hemoglobin in a Caco-2 cell culture model.

    PubMed

    Bodnar, Anastasia L; Proulx, Amy K; Scott, M Paul; Beavers, Alyssa; Reddy, Manju B

    2013-07-31

    Maize ( Zea mays ) is an important staple crop in many parts of the world but has low iron bioavailability, in part due to its high phytate content. Hemoglobin is a form of iron that is highly bioavailable, and its bioavailability is not inhibited by phytate. It was hypothesized that maize hemoglobin is a highly bioavailable iron source and that biofortification of maize with iron can be accomplished by overexpression of maize globin in the endosperm. Maize was transformed with a gene construct encoding a translational fusion of maize globin and green fluorescent protein under transcriptional control of the maize 27 kDa γ-zein promoter. Iron bioavailability of maize hemoglobin produced in Escherichia coli and of stably transformed seeds expressing the maize globin-GFP fusion was determined using an in vitro Caco-2 cell culture model. Maize flour fortified with maize hemoglobin was found to have iron bioavailability that is not significantly different from that of flour fortified with ferrous sulfate or bovine hemoglobin but is significantly higher than unfortified flour. Transformed maize grain expressing maize globin was found to have iron bioavailability similar to that of untransformed seeds. These results suggest that maize globin produced in E. coli may be an effective iron fortificant, but overexpressing maize globin in maize endosperm may require a different strategy to increase bioavailable iron content in maize.

  3. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  4. Maize arabinoxylan gels as protein delivery matrices.

    PubMed

    Berlanga-Reyes, Claudia M; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Marquez-Escalante, Jorge A; Martínez-López, Ana Luisa

    2009-04-08

    The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v) in the presence of insulin or beta-lactoglobulin at 0.1% (w/v) was investigated. Insulin and beta-lacto-globulin did not modify either the gel elasticity (9 Pa) or the cross-links content (0.03 and 0.015 microg di- and triferulic acids/mg arabinoxylan, respectively). The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 x 10(-7) and 0.79 x 10(-7) cm(2)/s for insulin (5 kDa) and beta-lactoglobulin (18 kDa), respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  5. Peptide regulation of Maize defense reponses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ZmPEP1 is a peptide signal encoded by a previously uncharacterized maize gene that we have named ZmPROPEP1. The ZmPROPEP1 gene was identified by homology to the Arabidopsis AtPROPEP1 gene that encodes the precursor protein to the peptide signal AtPEP1. Together with its receptors, AtPEPR1 and AtPEP...

  6. Genetic erosion in maize's center of origin.

    PubMed

    Dyer, George A; López-Feldman, Alejandro; Yúnez-Naude, Antonio; Taylor, J Edward

    2014-09-30

    Crop genetic diversity is an indispensable resource for farmers and professional breeders responding to changing climate, pests, and diseases. Anecdotal appraisals in centers of crop origin have suggested serious threats to this diversity for over half a century. However, a nationwide inventory recently found all maize races previously described for Mexico, including some formerly considered nearly extinct. A flurry of social studies seems to confirm that farmers maintain considerable diversity. Here, we compare estimates of maize diversity from case studies over the past 15 y with nationally and regionally representative matched longitudinal data from farmers across rural Mexico. Our findings reveal an increasing bias in inferences based on case study results and widespread loss of diversity. Cross-sectional, case study data suggest that farm-level richness has increased by 0.04 y(-1) nationwide; however, direct estimates using matched longitudinal data reveal that richness dropped -0.04 y(-1) between 2002 and 2007, from 1.43 to 1.22 varieties per farm. Varietal losses occurred across regions and altitudinal zones, and regardless of farm turnover within the sector. Extinction of local maize populations may not have resulted in an immediate loss of alleles, but low varietal richness and changes in maize's metapopulation dynamics may prevent farmers from accessing germplasm suitable to a rapidly changing climate. Declining yields could then lead farmers to leave the sector and result in a further loss of diversity. Similarities in research approaches across crops suggest that methodological biases could conceal a loss of diversity at other centers of crop origin.

  7. Intraspecific variation of recombination rate in maize

    PubMed Central

    2013-01-01

    Background In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation. Results Here, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotype 23 doubled-haploid populations derived from crosses between these lines with a 50 k-SNP array and construct high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtain the recombination rates along chromosomes specific to each population. We identify significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework reveals a negative association between recombination rate and interference strength. Conclusions To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms. PMID:24050704

  8. Gibberellins and Heterosis in Maize 1

    PubMed Central

    Rood, Stewart B.; Blake, Terence J.; Pharis, Richard P.

    1983-01-01

    Two maize inbreds, CM7 and CM49, and CM7 × CM49, their F1 hybrid (which displayed significant heterosis), were examined with regard to response to exogenous gibberellin A3 (GA3), and in their ability to metabolize GA20, a native GA of maize. The leaf sheath elongation response to GA3 was far greater for the imbreds than for their hybrid. The inbreds also displayed significant elongation of the leaf blades in response to GA3, whereas the hybrid was unaffected. Promotion of cell division in the leaf sheath of CM7 and the hybrid was effected by GA3, but no promotion of cell elongation was observed in CM49, even though significant leaf sheath elongation occurred. Shoot dry weight of both inbreds was significantly increased by GA3, but response by the hybrid in this parameter was slight and variable. Root dry weight of CM7 was significantly increased by GA3, but was unchanged in CM49 and the hybrid. Thus, inbred shoot dry weight increases effected by GA3 were not at the expense of the root system. Rapid metabolism of [2,3-3H]GA20 occurred in all genotypes, although genotypic differences were observed. The hybrid had the highest rates of metabolism to GA glucosyl conjugate-like substances. Oxidative metabolism was also fastest in the hybrid, followed by CM7, and slowest in CM49, the slowest-growing inbred. Thus, rate of GA20 metabolism is under genetic control in normal (i.e. not dwarfed) maize genotypes. These results, taken together with previous reports that the hybrid has significantly enhanced levels of endogenous GA-like substances, suggest that GA play a role in the expression of heterosis in maize. Images Fig. 2 PMID:16662881

  9. Effects of Selected Diazotrophs on Maize Growth

    PubMed Central

    Kifle, Medhin H.; Laing, Mark D.

    2016-01-01

    Laboratory, greenhouse, and field experiments were conducted at the University of KwaZulu-Natal, Pietermaritzburg, South Africa in the 2010/2011 and 2011∖2012 seasons to study the effects of eight strains of diazotrophic bacteria on the growth and yield of maize. Maize seeds were treated with Bacillus megaterium (V16), Pseudomonas sp. (StB5, A3, A6, and A61), Burkholderia ambifaria (V9), Enterobacter cloacae (L1) and Pantoea ananatis (LB5), aiming to stimulate plant growth, and maintain or increase yields while reducing the need for N fertilization. All the diazotrophic bacteria increased germination of maize seed, and Pseudomonas sp. (StB5) and B. megaterium (V16) significantly increased shoot length. Pseudomonas sp. (StB5), B. megaterium (V16), E. cloacae (L1), B. ambifaria (V9), and Pseudomonas sp. (A3) very significantly increased root length and seed vigor index. Under greenhouse conditions, plants treated with diazotrophic bacteria developed more leaf chlorophyll and greater dry weight, albeit not significantly (n.s.). In a field trial in 2010/2011, application of the best five diazotrophic bacteria, with or without 33% N-fertilizer, had no significant effect on germination, grain yield, dry weight, plant height and leaf chlorophyll. In the 2011/2012 growing season, at 60 days after planting (DAP), all the diazotrophic bacteria increased plant dry weights to equal that of the fertilized control (33%N-fertilizer) (n.s.). After inoculation with the diazotrophs alone increased plant heights (n.s.), and chlorophyll contents (n.s.). With the addition of 33%N-fertilizer at planting, the diazotrophs still caused increases of chlorophyll content relative to the control with 33%N (n.s.). It may be concluded that the tested diazotrophs alone may be beneficial for use on maize growth. PMID:27713756

  10. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  11. Phenotyping maize for adaptation to drought

    PubMed Central

    Araus, Jose L.; Serret, María D.; Edmeades, Gregory O.

    2012-01-01

    The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice. PMID:22934056

  12. Natural maize phenolic acids for control of aflatoxigenic fungi on maize.

    PubMed

    Nesci, A; Gsponer, N; Etcheverry, M

    2007-06-01

    Natural phytochemicals may be an alternative to synthetic chemicals for controlling fungal growth and mycotoxin production in stored maize. A key to progress in this field is to select the best natural maize phytochemicals to be applied in a storage maize ecosystem. This research was undertaken to evaluate the effects of the natural phytochemicals trans-cinnamic acid (CA) and ferulic acid (FA) alone at concentrations of 20 to 30 mM and in 5 combinations on Aspergillus flavus Link and A. parasiticus Speare populations and aflatoxin B(1) production. Studies on Aspergillus population and aflatoxin B(1) production were carried out in maize grain in relation to a water activity a(w) of 0.99, 0.97, 0.95, and 0.93. CA and FA at concentrations of 25 to 30 mM, respectively, and CA-FA mixture T9 (25 + 30 mM) were the treatments most effective at inhibiting A. flavus and A. parasiticus population at all a(w) assayed after 11 d of incubation. At all a(w) values, the mixture CA-FA T9 (25 + 30 mM) completely inhibited (100%) aflatoxin B(1) production by both strains at a(w)= 0.99, 0.97, 0.95, and 0.93. Decreased aflatoxin B(1) levels in comparison with the control were observed with mixtures CA-FA T6 (10 + 25 mM), T7 (20 + 20 mM), and T8 (20 + 30 mM) of both strains in the majority of a(w) assayed. The data show that CA and FA could be considered as effective fungitoxicants for A. flavus and A. parasiticus in maize in the a(w) range 0.99 to 0.93. The information obtained shows promise for controlling aflatoxigenic fungi in stored maize.

  13. Brassinosteroid control of sex determination in maize.

    PubMed

    Hartwig, Thomas; Chuck, George S; Fujioka, Shozo; Klempien, Antje; Weizbauer, Renate; Potluri, Devi Prasad V; Choe, Sunghwa; Johal, Gurmukh S; Schulz, Burkhard

    2011-12-06

    Brassinosteroids (BRs) are plant hormones that regulate growth and development. They share structural similarities with animal steroids, which are decisive factors of sex determination. BRs are known to regulate morphogenesis and environmental stress responses, but their involvement in sex determination in plants has been only speculative. We show that BRs control sex determination in maize revealed through characterization of the classical dwarf mutant nana plant1 (na1), which also feminizes male flowers. na1 plants carry a loss-of-function mutation in a DET2 homolog--a gene in the BR biosynthetic pathway. The mutant accumulates the DET2-specific substrate (24R)-24-methylcholest-4-en-3-one with a concomitant decrease of downstream BR metabolites. Treatment of wild-type maize plants with BR biosynthesis inhibitors completely mimicked both dwarf and tasselseed phenotypes of na1 mutants. Tissue-specific na1 expression in anthers throughout their development supports the hypothesis that BRs promote masculinity of the male inflorescence. These findings suggest that, in the monoecious plant maize, BRs have been coopted to perform a sex determination function not found in plants with bisexual flowers.

  14. Historical genomics of North American maize.

    PubMed

    van Heerwaarden, Joost; Hufford, Matthew B; Ross-Ibarra, Jeffrey

    2012-07-31

    Since the advent of modern plant breeding in the 1930s, North American maize has undergone a dramatic adaptation to high-input agriculture. Despite the importance of genetic contributions to historical yield increases, little is known about the underlying genomic changes. Here we use high-density SNP genotyping to characterize a set of North American maize lines spanning the history of modern breeding. We provide a unique analysis of genome-wide developments in genetic diversity, ancestry, and selection. The genomic history of maize is marked by a steady increase in genetic differentiation and linkage disequilibrium, whereas allele frequencies in the total population have remained relatively constant. These changes are associated with increasing genetic separation of breeding pools and decreased diversity in the ancestry of individual lines. We confirm that modern heterotic groups are the product of ongoing divergence from a relatively homogeneous landrace population, but show that differential landrace ancestry remains evident. Using a recent association approach, we characterize signals of directional selection throughout the genome, identifying a number of candidate genes of potential agronomic relevance. However, overall we find that selection has had limited impact on genome-wide patterns of diversity and ancestry, with little evidence for individual lines contributing disproportionately to the accumulation of favorable alleles in today's elite germplasm. Our data suggest breeding progress has mainly involved selection and recombination of relatively common alleles, contributed by a representative but limited set of ancestral lines.

  15. Sequence composition and genome organization of maize

    PubMed Central

    Messing, Joachim; Bharti, Arvind K.; Karlowski, Wojciech M.; Gundlach, Heidrun; Kim, Hye Ran; Yu, Yeisoo; Wei, Fusheng; Fuks, Galina; Soderlund, Carol A.; Mayer, Klaus F. X.; Wing, Rod A.

    2004-01-01

    Zea mays L. ssp. mays, or corn, one of the most important crops and a model for plant genetics, has a genome ≈80% the size of the human genome. To gain global insight into the organization of its genome, we have sequenced the ends of large insert clones, yielding a cumulative length of one-eighth of the genome with a DNA sequence read every 6.2 kb, thereby describing a large percentage of the genes and transposable elements of maize in an unbiased approach. Based on the accumulative 307 Mb of sequence, repeat sequences occupy 58% and genic regions occupy 7.5%. A conservative estimate predicts ≈59,000 genes, which is higher than in any other organism sequenced so far. Because the sequences are derived from bacterial artificial chromosome clones, which are ordered in overlapping bins, tagged genes are also ordered along continuous chromosomal segments. Based on this positional information, roughly one-third of the genes appear to consist of tandemly arrayed gene families. Although the ancestor of maize arose by tetraploidization, fewer than half of the genes appear to be present in two orthologous copies, indicating that the maize genome has undergone significant gene loss since the duplication event. PMID:15388850

  16. Aflatoxin Control in Maize by Trametes versicolor

    PubMed Central

    Scarpari, Marzia; Bello, Cristiano; Pietricola, Chiara; Zaccaria, Marco; Bertocchi, Luigi; Angelucci, Alessandra; Ricciardi, Maria Rosaria; Scala, Valeria; Parroni, Alessia; Fabbri, Anna A.; Reverberi, Massimo; Zjalic, Slaven; Fanelli, Corrado

    2014-01-01

    Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1. PMID:25525683

  17. Distribution of expansins in graviresponding maize roots

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    To test if expansins, wall loosening proteins that disrupt binding between microfibrils and cell wall matrix, participate in the differential elongation of graviresponding roots, Zea mays L. cv. Merit roots were gravistimulated and used for immunolocalization with anti-expansin. Western blots showed cross-reaction with two proteins of maize, one of the same mass as cucumber expansin (29 kDa), the second slightly larger (32 kDa). Maize roots contained mainly the larger protein, but both were found in coleoptiles. The expansin distribution in cucumber roots and hypocotyls was similar to the distribution in maize. Roots showed stronger expansin signals on the expanding convex side than the concave flank as early as 30 min after gravistimulation. Treatment with brefeldin A, a vesicle transport inhibitor, or the auxin transport inhibitor, naphthylphthalamic acid, showed delayed graviresponse and the appearance of differential staining. Our results indicate that expansins may be transported and secreted to cell walls via vesicles and function in wall expansion.

  18. Transcriptome Dynamics during Maize Endosperm Development

    PubMed Central

    Feng, Jiaojiao; Xu, Shutu; Wang, Lei; Li, Feifei; Li, Yibo; Zhang, Renhe; Zhang, Xinghua; Xue, Jiquan; Guo, Dongwei

    2016-01-01

    The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq) analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP). We found that more than 11,000 protein-coding genes underwent alternative splicing (AS) events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs), were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize. PMID:27695101

  19. The mycotoxin distribution in maize milling fractions under experimental conditions.

    PubMed

    Burger, H-M; Shephard, G S; Louw, W; Rheeder, J P; Gelderblom, W C A

    2013-07-01

    Mycotoxin contamination of maize and maize-based food and feed products poses a health risk to humans and animals if not adequately controlled and managed. The current study investigates the effect of dry milling on the reduction of fumonisins (FB), deoxynivalenol (DON) and zearalenone (ZEA) in maize. Five composite samples, constructed to represent different mycotoxin contamination levels were degermed yielding degermed maize and the germ. The degermed maize was milled under laboratory conditions and four major milling fractions (SPECIAL, SUPER, semolina (SEM) and milling hominy feed) collected. The whole maize, degermed maize and total hominy feed (germ+milling hominy feed) were reconstructed to ensure homogenous samples for mycotoxin analyses. For comparison, commercial dry milling fractions (whole maize, SPECIAL, SUPER and total hominy feed), collected from three South African industrial mills, were analysed for the same mycotoxins and hence a more accurate assessment of the distribution between the different milling fractions. The distribution of the mycotoxins during the experimental dry milling of the degermed maize differs, with FB mainly concentrated in the SPECIAL, DON in the SEM whereas ZEA was equally distributed between the two milling fractions. Distribution of mycotoxins between the fractions obtained during commercial dry milling generally provided similar results with the total hominy feed containing the highest and the SUPER milling fractions the lowest mycotoxin levels although variations existed. Although milling is an effective way to reduce mycotoxins in maize, kernel characteristics and resultant fungal colonisation may impact on the distribution of specific mycotoxins among the different milling fractions. Differences in industrial dry milling practices and problems encountered in sampling bulk maize remain a large problem in assessing mycotoxin contamination in milling fractions intended for human consumption.

  20. Aflatoxin Regulations in a Network of Global Maize Trade

    PubMed Central

    Wu, Felicia; Guclu, Hasan

    2012-01-01

    Worldwide, food supplies often contain unavoidable contaminants, many of which adversely affect health and hence are subject to regulations of maximum tolerable levels in food. These regulations differ from nation to nation, and may affect patterns of food trade. We soughtto determine whether there is an association between nations' food safety regulations and global food trade patterns, with implications for public health and policymaking. We developed a network model of maize trade around the world. From maize import/export data for 217 nations from 2000–2009, we calculated basic statistics on volumes of trade; then examined how regulations of aflatoxin, a common contaminant of maize, are similar or different between pairs of nations engaging in significant amounts of maize trade. Globally, market segregation appears to occur among clusters of nations. The United States is at the center of one cluster; European countries make up another cluster with hardly any maize trade with the US; and Argentina, Brazil, and China export maize all over the world. Pairs of nations trading large amounts of maize have very similar aflatoxin regulations: nations with strict standards tend to trade maize with each other, while nations with more relaxed standards tend to trade maize with each other. Rarely among the top pairs of maize-trading nations do total aflatoxin standards (standards based on the sum of the levels of aflatoxins B1, B2, G1, and G2) differ by more than 5 µg/kg. These results suggest that, globally, separate maize trading communities emerge; and nations tend to trade with other nations that have very similar food safety standards. PMID:23049773

  1. Aflatoxin regulations in a network of global maize trade.

    PubMed

    Wu, Felicia; Guclu, Hasan

    2012-01-01

    Worldwide, food supplies often contain unavoidable contaminants, many of which adversely affect health and hence are subject to regulations of maximum tolerable levels in food. These regulations differ from nation to nation, and may affect patterns of food trade. We soughtto determine whether there is an association between nations' food safety regulations and global food trade patterns, with implications for public health and policymaking. We developed a network model of maize trade around the world. From maize import/export data for 217 nations from 2000-2009, we calculated basic statistics on volumes of trade; then examined how regulations of aflatoxin, a common contaminant of maize, are similar or different between pairs of nations engaging in significant amounts of maize trade. Globally, market segregation appears to occur among clusters of nations. The United States is at the center of one cluster; European countries make up another cluster with hardly any maize trade with the US; and Argentina, Brazil, and China export maize all over the world. Pairs of nations trading large amounts of maize have very similar aflatoxin regulations: nations with strict standards tend to trade maize with each other, while nations with more relaxed standards tend to trade maize with each other. Rarely among the top pairs of maize-trading nations do total aflatoxin standards (standards based on the sum of the levels of aflatoxins B(1), B(2), G(1), and G(2)) differ by more than 5 µg/kg. These results suggest that, globally, separate maize trading communities emerge; and nations tend to trade with other nations that have very similar food safety standards.

  2. Characteristics and mechanisms of acrylate polymer damage to maize seedlings.

    PubMed

    Chen, Xian; Mao, Xiaoyun; Lu, Qin; Liao, Zongwen; He, Zhenli

    2016-07-01

    Superabsorbent acrylate polymers (SAPs) have been widely used to maintain soil moisture in agricultural management, but they may cause damage to plants, and the mechanisms are not well understood. In this study, seed germination, soil pot culture, hydroponic experiments, and SAPs degradation were conducted to investigate damage characteristics and mechanisms associated with SAPs application. The Results showed that SAPs inhibited maize growth and altered root morphology (irregular and loose arrangement of cells and breakage of cortex parenchyma), and the inhibitory effects were enhanced at higher SAPs rates. After 1h SAP hydrogels treatment, root malondialdehyde (MDA) content was significantly increased, while superoxide dismutase (SOD) and catalase (CAT) content were significantly decreased. Hydroponics experiment indicated that root and shoot growth was inhibited at 2.5mgL(-1) acrylic acid (AA), and the inhibition was enhanced with increasing AA rates. This effect was exacerbated by the presence of Na(+) at a high concentration in the hydrogels. Release and degradation of AA were enhanced at higher soil moisture levels. A complete degradation of AA occurred between 15 and 20 days after incubation (DAI), but it took longer for Na(+) concentration to decrease to a safe level. These results indicate that high concentration of both AA and Na(+) present in the SAPs inhibits plant growth. The finding of this study may provide a guideline for appropriate application of SAPs in agriculture.

  3. Microfilament Distribution in Maize Meiotic Mutants Correlates with Microtubule Organization.

    PubMed Central

    Staiger, CJ; Cande, WZ

    1991-01-01

    Microtubules and microfilaments often codistribute in plants; their presumed interaction can be tested with drugs although it is not always clear that these are without side effects. In this study, we exploited mutants defective in meiotic cell division to investigate in a noninvasive way the relationship between the two cytoskeletal elements. By staining unfixed, permeabilized cells with rhodamine-phalloidin, spatial and temporal changes in microfilament distribution during maize meiosis were examined. In wild-type microsporocytes, a microtubule array that radiates from the nucleus disappeared during spindle formation and returned at late telophase. This result differed from the complex cytoplasmic microfilament array that is present at all stages, including karyokinesis and cytokinesis. During division, a second class of microfilaments also was observed in the spindle and phragmoplast. To analyze this apparent association of microtubules and microfilaments, we examined several meiotic mutants known to have stage-specific disruptions in their microtubule arrays. Two mutations that altered the number or form of meiotic spindles also led to a dramatic reorganization of F-actin. In contrast, rearrangement of nonspindle, cytoplasmic microtubules did not lead to concomitant changes in F-actin distribution. These results suggested that microtubules and microfilaments interact in a cell cycle-specific and site-specific fashion during higher plant meiosis. PMID:12324607

  4. Recombination patterns in maize reveal limits to crossover homeostasis.

    PubMed

    Sidhu, Gaganpreet K; Fang, Celestia; Olson, Mischa A; Falque, Matthieu; Martin, Olivier C; Pawlowski, Wojciech P

    2015-12-29

    During meiotic recombination, double-strand breaks (DSBs) are formed in chromosomal DNA and then repaired as either crossovers (COs) or non-crossovers (NCOs). In most taxa, the number of DSBs vastly exceeds the number of COs. COs are required for generating genetic diversity in the progeny, as well as proper chromosome segregation. Their formation is tightly controlled so that there is at least one CO per pair of homologous chromosomes whereas the maximum number of COs per chromosome pair is fairly limited. One of the main mechanisms controlling the number of recombination events per meiosis is CO homeostasis, which maintains a stable CO number even when the DSB number is dramatically altered. The existence of CO homeostasis has been reported in several species, including mouse, yeast, and Caenorhabditis elegans. However, it is not known whether homeostasis exists in the same form in all species. In addition, the studies of homeostasis have been conducted using mutants and/or transgenic lines exhibiting fairly severe meiotic phenotypes, and it is unclear how important homeostasis is under normal physiological conditions. We found that, in maize, CO control is robust only to ensure one CO per chromosome pair. However, once this limit is reached, the CO number is linearly related to the DSB number. We propose that CO control is a multifaceted process whose different aspects have a varying degree of importance in different species.

  5. Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis.

    PubMed

    Tomaz, Tiago; Bagard, Matthieu; Pracharoenwattana, Itsara; Lindén, Pernilla; Lee, Chun Pong; Carroll, Adam J; Ströher, Elke; Smith, Steven M; Gardeström, Per; Millar, A Harvey

    2010-11-01

    Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms

  6. Intraplant communication in maize contributes to defense against insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Fur...

  7. Fumonisin biomarkers in maize eaters and implications for human disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is the predominant food source contaminated by fumonisins and this has particular health risks for communities consuming maize as a staple diet. The main biochemical effect of fumonisins is the inhibition of ceramide biosynthesis causing an increase in sphingoid bases and sphingoid base 1-pho...

  8. Genetic, evoluntionary and plant breedinginsights from the domestication of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large pa...

  9. Maize development: cell wall changes in leaves and sheaths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...

  10. Genetic Properties of the Maize Nested Association Mapping Population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is one of the world’s most diverse species, and this variation can be used to understand the molecular basis of phenotypic variation and to improve agricultural efficiency and sustainability. To access this genetic variation, 25 diverse inbred maize lines were crossed to the B73 reference lin...

  11. Genetic analysis of teosinte for kernel composition traits in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp. mays). Teosinte contains greater genetic diversity compared to maize inbreds and landraces, but its use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic ...

  12. Maize flour fortification in Africa: markets, feasibility, coverage, and costs.

    PubMed

    Fiedler, John L; Afidra, Ronald; Mugambi, Gladys; Tehinse, John; Kabaghe, Gladys; Zulu, Rodah; Lividini, Keith; Smitz, Marc-Francois; Jallier, Vincent; Guyondet, Christophe; Bermudez, Odilia

    2014-04-01

    The economic feasibility of maize flour and maize meal fortification in Kenya, Uganda, and Zambia is assessed using information about the maize milling industry, households' purchases and consumption levels of maize flour, and the incremental cost and estimated price impacts of fortification. Premix costs comprise the overwhelming share of incremental fortification costs and vary by 50% in Kenya and by more than 100% across the three countries. The estimated incremental cost of maize flour fortification per metric ton varies from $3.19 in Zambia to $4.41 in Uganda. Assuming all incremental costs are passed onto the consumer, fortification in Zambia would result in at most a 0.9% increase in the price of maize flour, and would increase annual outlays of the average maize flour-consuming household by 0.2%. The increases for Kenyans and Ugandans would be even less. Although the coverage of maize flour fortification is not likely to be as high as some advocates have predicted, fortification is economically feasible, and would reduce deficiencies of multiple micronutrients, which are significant public health problems in each of these countries.

  13. Sporophytic control of pollen tube growth and guidance in maize

    PubMed Central

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-01-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50–100 μm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize. PMID:19926683

  14. Climate change compromises the immune response of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is by quantity the most important C4 cereal crop in the US; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2] is a driving force behind the warmer temperatures and drought, whi...

  15. Interaction of F. verticillioides and Talaromyces sp. in maize seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted studies in maize fields (Illinois, USA, 2013) to observe the interactions of Talaromyces species with fumonisin producing Fusarium verticillioides in corn seeds. Maize ears were inoculated during the milk phase using sterile wooden toothpicks dipped in conidium suspensions, or sterile d...

  16. Entering the second century of maize quantitative genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...

  17. Stewardship of the Maize B73 feference genome assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The release of version 4 of the B73 reference genome assembly is imminent. However, continued improvement of the assembly is likely to fall to the maize research community. Toward this end, and recognizing the importance of an accurate and well-curated reference genome, MaizeGDB, Gramene, and the Ge...

  18. The art and design of genetic screens: maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible...

  19. Entering the second century of maize quantitative genetics

    PubMed Central

    Wallace, J G; Larsson, S J; Buckler, E S

    2014-01-01

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architecture more similar to other outcrossing organisms than to self-pollinating crops and model plants. In this review, we summarize recent advances in maize genetics, including the development of powerful populations for genetic mapping and genome-wide association studies (GWAS), and the insights these studies yield on the mechanisms underlying complex maize traits. Most maize traits are controlled by a large number of genes, and linkage analysis of several traits implicates a ‘common gene, rare allele' model of genetic variation where some genes have many individually rare alleles contributing. Most natural alleles exhibit small effect sizes with little-to-no detectable pleiotropy or epistasis. Additionally, many of these genes are locked away in low-recombination regions that encourage the formation of multi-gene blocks that may underlie maize's strong heterotic effect. Domestication left strong marks on the maize genome, and some of the differences in trait architectures may be due to different selective pressures over time. Overall, maize's advantages as a model system make it highly desirable for studying the genetics of outcrossing species, and results from it can provide insight into other such species, including humans. PMID:23462502

  20. A Single Molecule Scaffold for the Maize Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 80% of the maize genome consists of highly repetitive sequences that are interspersed by low copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone may not be sufficie...

  1. Maize water use in living mulch systems with stover removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constraints to maize stover biomass harvest may be mitigated by using a living mulch (LM) to offset C exports and control soil erosion. Living mulches can compete with the main crop for resources, particularly water. The objectives of this research were to quantify soil water dynamics and maize wate...

  2. Comparative population genomics of maize domestication and improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestication and modern breeding represent exemplary case studies of evolution in action. Maize is an outcrossing species with a complex genome, and an understanding of maize evolution is thus relevant for both plant and animal systems. This study is the largest plant resequencing effort to date, ...

  3. Constructing a Cytogenetic Map of the Maize Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are developing a pachytene cytogenetic FISH (Fluorescence in situ Hybridization) map of the maize (Zea mays L.) genome using maize marker-selected sorghum BACs (Bacterial Artificial Chromosome) as described by Koumbaris and Bass (2003, Plant J. 35:647). The two main projects are the production of...

  4. Susceptibility to aflatoxin contamination among maize landraces from Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize, the critical staple food for billions of people, was domesticated in Mexico about 9,000 YBP. Today, a great array of maize land races (MLRs) across rural Mexico is harbored in a living library that has been passed among generations since before establishment of the modern state. MLRs have bee...

  5. Molecular and Ultrastructural Properties of Maize White Line Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the complete nucleotide sequence of the genome of Maize white line mosaic virus (MWLMV) and describes the ultrastructural features of infected maize cells. The viral genome is an RNA molecule 4293 nt in size with the same structural organization of members of the Aureusvirus and ...

  6. Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xeno-metabolites). The fermentable dietary fiber—high amylose maize...

  7. Effects of free air carbon dioxide enrichment and drought stress on the feed value of maize silage fed to sheep at different thermal regimes.

    PubMed

    Lohölter, Malte; Meyer, Ulrich; Manderscheid, Remy; Weigel, Hans-Joachim; Erbs, Martin; Flachowsky, Gerhard; Dänicke, Sven

    2012-08-01

    Information about the effects of rising atmospheric CO2 concentration and drought on the feed value of maize silage and interactions with the thermal environment during feeding is limited. A free air carbon dioxide enrichment facility was operated in a maize field to generate an elevated CO2 concentration of 550 ppm. Drought was induced by the exclusion of precipitation in one half of all experimental plots. Plants were harvested, chopped and ensiled. In a balance experiment on sheep, the nutrient digestibility was determined for three climatic treatments (temperate, temperature humidity index (THI) 57-63; mild heat, THI 68-71; severe heat, THI 75-80). The CO2 concentration and drought did not alter the crude nutrient content of silage dry matter (DM) or nutrient and organic matter (OM) digestibility. Drought increased the concentration of deoxynivalenol (DON, p < 0.001). The drought-associated increase of DON was reduced by CO2 enrichment (p = 0.003). The lowest digestibility of acid detergent fibre (p = 0.024) and neutral detergent fibre (p = 0.005) was observed during the coldest climate. OM digestibility increased during mild heat (p = 0.023). This study did not indicate considerable alterations of the feed value of maize silage due to increased atmospheric CO2 and drought. Enriched CO2 may decrease DON contaminations during drought. The thermal environment during the balance experiment did not interact with feeding maize silage grown under elevated CO2, but may affect cell wall and OM digestibility.

  8. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading...

  9. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading...

  10. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading...

  11. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading...

  12. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading...

  13. Sequence Resources at MaizeGDB with Emphasis on POPcorn: A Project Portal for Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB is the maize research community’s centralized, long-term repository for genetic and genomic information about the crop plant and model organism Zea mays ssp. mays. The MaizeGDB team endeavors to meet the needs of the maize research community based on feedback and guidance. Recent work has f...

  14. Breeder survey, tools, and resources to visualize diversity and pedigree relationships at MaizeGDB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In collaboration with maize researchers, the MaizeGDB Team prepared a survey to identify breeder needs for visualizing pedigrees, diversity data, and haplotypes, and distributed it to the maize community on behalf of the Maize Genetics Executive Committee (Summer 2015). We received 48 responses from...

  15. Impact of deficit irrigation on maize physical and chemical properties and ethanol yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the effect of irrigation levels (five levels from 102 to 457 mm of water) on the physical and chemical properties and ethanol fermentation performance of maize. Twenty maize samples with two crop rotation systems, grain sorghum–maize and maize–maize, were ...

  16. Mining natural variation for maize improvement: Selection on phenotypes and genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is highly genetically and phenotypically diverse. Tropical maize and teosinte are important genetic resources that harbor unique alleles not found in temperate maize hybrids. To access these resources, breeders must be able to extract favorable unique alleles from tropical maize and teosinte f...

  17. MaizeGDB: enabling access to basic, translational, and applied research information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB is the Maize Genetics and Genomics Database (available online at http://www.maizegdb.org). The MaizeGDB project is not simply an online database and website but rather an information service to maize researchers that supports customized data access and analysis needs to individual research...

  18. Studies of aberrant phyllotaxy1 Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem1[W][OA

    PubMed Central

    Lee, Byeong-ha; Johnston, Robyn; Yang, Yan; Gallavotti, Andrea; Kojima, Mikiko; Travençolo, Bruno A.N.; Costa, Luciano da F.; Sakakibara, Hitoshi; Jackson, David

    2009-01-01

    One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants. PMID:19321707

  19. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem.

    PubMed

    Lee, Byeong-ha; Johnston, Robyn; Yang, Yan; Gallavotti, Andrea; Kojima, Mikiko; Travençolo, Bruno A N; Costa, Luciano da F; Sakakibara, Hitoshi; Jackson, David

    2009-05-01

    One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.

  20. PzsS3a, a novel endosperm specific promoter from maize (Zea mays L.) induced by ABA.

    PubMed

    Hu, Yu-Feng; Li, Yang-ping; Zhang, Junjie; Liu, Hanmei; Chen, Zhiyu; Huang, Yubi

    2011-07-01

    The maize zsS3a gene codes for starch synthase. Transcriptional analysis revealed that it is mainly expressed in endosperm and is induced by abscisic acid (ABA). The 5'-flanking region of zsS3a was isolated, and a 1772 bp zsS3a promoter (PzsS3a) was fused to a Luc reporter gene with a maize Adh1 intron. Transient expression assay by bombardment transformation showed that, although the addition of the Adh1 intron enhanced the promoter activity approx. 52-fold, it did not alter the promoter specificity. PzsS3a with the Adh1 intron drove the Luc gene preferentially and it was highly expressed in the endosperm relative to the embryo but not in the leaf or root. Furthermore, the promoter activity in the endosperm was enhanced four fold by 100 mM ABA.

  1. Ancient maize from Chacoan great houses: Where was it grown?

    PubMed Central

    Benson, Larry; Cordell, Linda; Vincent, Kirk; Taylor, Howard; Stein, John; Farmer, G. Lang; Futa, Kiyoto

    2003-01-01

    In this article, we compare chemical (87Sr/86Sr and elemental) analyses of archaeological maize from dated contexts within Pueblo Bonito, Chaco Canyon, New Mexico, to potential agricultural sites on the periphery of the San Juan Basin. The oldest maize analyzed from Pueblo Bonito probably was grown in an area located 80 km to the west at the base of the Chuska Mountains. The youngest maize came from the San Juan or Animas river floodplains 90 km to the north. This article demonstrates that maize, a dietary staple of southwestern Native Americans, was transported over considerable distances in pre-Columbian times, a finding fundamental to understanding the organization of pre-Columbian southwestern societies. In addition, this article provides support for the hypothesis that major construction events in Chaco Canyon were made possible because maize was brought in to support extra-local labor forces. PMID:14563925

  2. A Biochemical Phenotype for a Disease Resistance Gene of Maize.

    PubMed Central

    Meeley, RB; Johal, GS; Briggs, SP; Walton, JD

    1992-01-01

    In maize, major resistance to the pathogenic fungus Cochliobolus (Helminthosporium) carbonum race 1 is determined by the dominant allele of the nuclear locus hm. The interaction between C. carbonum race 1 and maize is mediated by a pathogen-produced, low molecular weight compound called HC-toxin. We recently described an enzyme from maize, called HC-toxin reductase, that inactivates HC-toxin by pyridine nucleotide-dependent reduction of an essential carbonyl group. We now report that this enzyme activity is detectable only in extracts of maize that are resistant to C. carbonum race 1 (genotype Hm/Hm or Hm/hm). In several genetic analyses, in vitro HC-toxin reductase activity was without exception associated with resistance to C. carbonum race 1. The results indicate that detoxification of HC-toxin is the biochemical basis of Hm-specific resistance of maize to infection by C. carbonum race 1. PMID:12297630

  3. Maize authentication: quality control methods and multivariate analysis (chemometrics).

    PubMed

    Arvanitoyannis, Ioannis S; Vlachos, Antonios

    2009-06-01

    Maize is one of the most important cereals because of its numerous applications in processed foods where it is the major or minor component. Apart from maize authenticity issues related to cultivar and geographical origin (national and/or international level), there is another important issue related to genetically modified maize. Various objective parameters such as fatty acids, phenolic compounds, pigments, heavy metals were determined in conjunction with subjective (sensory analysis) in order to identify the maize authenticity. However, the implementation of multivariate analysis (principal component analysis, cluster analysis, discriminant analysis, canonical analysis) is of great importance toward reaching valid conclusions on authenticity issues. This review summarized the most important finding of both objective and subjective evaluations of maize in five comprehensive tables in conjunction with the discussion.

  4. Ancient maize from Chacoan great houses: Where was it grown?

    USGS Publications Warehouse

    Benson, L.; Cordell, L.; Vincent, K.; Taylor, H.; Stein, J.; Farmer, G.L.; Futa, K.

    2003-01-01

    In this article, we compare chemical (87Sr/86Sr and elemental) analyses of archaeological maize from dated contexts within Pueblo Bonito, Chaco Canyon, New Mexico, to potential agricultural sites on the periphery of the San Juan Basin. The oldest maize analyzed from Pueblo Bonito probably was grown in an area located 80 km to the west at the base of the Chuska Mountains. The youngest maize came from the San Juan or Animas river flood-plains 90 km to the north. This article demonstrates that maize, a dietary staple of southwestern Native Americans, was transported over considerable distances in pre-Columbian times, a finding fundamental to understanding the organization of pre-Columbian southwestern societies. In addition, this article provides support for the hypothesis that major construction events in Chaco Canyon were made possible because maize was brought in to support extra-local labor forces.

  5. Ancient maize from Chacoan great houses: where was it grown?

    PubMed

    Benson, Larry; Cordell, Linda; Vincent, Kirk; Taylor, Howard; Stein, John; Farmer, G Lang; Futa, Kiyoto

    2003-10-28

    In this article, we compare chemical (87Sr/86Sr and elemental) analyses of archaeological maize from dated contexts within Pueblo Bonito, Chaco Canyon, New Mexico, to potential agricultural sites on the periphery of the San Juan Basin. The oldest maize analyzed from Pueblo Bonito probably was grown in an area located 80 km to the west at the base of the Chuska Mountains. The youngest maize came from the San Juan or Animas river floodplains 90 km to the north. This article demonstrates that maize, a dietary staple of southwestern Native Americans, was transported over considerable distances in pre-Columbian times, a finding fundamental to understanding the organization of pre-Columbian southwestern societies. In addition, this article provides support for the hypothesis that major construction events in Chaco Canyon were made possible because maize was brought in to support extra-local labor forces.

  6. European corn borer (Ostrinia nubilalis) induced defenses in maize enhance susceptibility in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivore-induced plant defenses have been widely described following attack on leaves; however, less attention has been paid to analogous local processes that occur in stems. Early studies of maize responses to stem boring by European corn borer (ECB, Ostrinia nubilalis) larvae revealed the prese...

  7. Maize Haploid Induction and Doubling – Recent Experience with Exotic and Elite Maize Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experience from three maize research projects utilizing the haploid inducer RWS x RWK-76 from the University of Hohenheim will be summarized. These projects result from collaborations between Iowa State Doubled Haploid Facility (http://www.plantbreeding.iastate.edu/DHF/DHF.htm) researchers and USDA...

  8. Maize Haploid Induction and Doubling II – Experience with Exotic and Elite Maize Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a follow-up to our previous study, second year information will be presented addressing questions on haploid induction and doubling, utilizing exotic and elite maize. These projects result from collaborations between Iowa State Doubled Haploid Facility (http://www.plantbreeding.iastate.edu/DHF/D...

  9. Tripsacum-Maize Interaction: A Novel Cytogenetic System

    PubMed Central

    de Wet, J. M. J.; Harlan, J. R.

    1974-01-01

    The genera Zea and Tripsacum cross readily when they are not isolated by gametophytic barriers, and it has been postulated that intergeneric introgression played a role in the evolution of maize. The basic x = 9 Tripsacum and x = 10 Zea genomes have little cytological affinity for each other in hybrids that combine 10 Zea with 18 Tripsacum chromosomes. However, one to four Tripsacum chromosomes sometimes associate with Zea chromosomes in hybrids between Z. mays (2n = 20) and T. dactyloides (2n = 72). These hybrids with 10 Zea and 36 Tripsacum chromosomes frequently produce functional female gametes with 36 Tripsacum chromosomes only. When they are pollinated with maize, their offspring again have 36 Tripsacum and 10 maize chromosomes, but the Tripsacum genome is contaminated with maize genetic material. In these individuals, intergenome pairing is the rule, and when they are pollinated with maize, their offspring have 36 Tripsacum and 10, 12, 14, 16, 18, or 20 Zea chromosomes. Plants with 36 Tripsacum and 20 Zea chromosomes behave cytologically as alloploids, although the Tripsacum genome is contimated with maize, and one basic maize genome is contaminated with with Tripsacum genetic material. When they are pollinated with maize, offspring with 18 Tripsacum and 20 Zea chromosome are obtained. Further successive backcrosses with maize selectively eliminate Tripsacum chromosomes, and eventually plants with 2n = 20 Zea chromosomes are recovered. Many of these maize plants are highly "tripsacoid." Strong gametophytic selection for essentially pure Zea gametes, however, eliminates all obvious traces of Tripsacum morphology within a relatively few generations. PMID:17248666

  10. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition.

    PubMed

    Muraya, Moses M; Schmutzer, Thomas; Ulpinnis, Chris; Scholz, Uwe; Altmann, Thomas

    2015-01-01

    A major goal of maize genomic research is to identify sequence polymorphisms responsible for phenotypic variation in traits of economic importance. Large-scale detection of sequence variation is critical for linking genes, or genomic regions, to phenotypes. However, due to its size and complexity, it remains expensive to generate whole genome sequences of sufficient coverage for divergent maize lines, even with access to next generation sequencing (NGS) technology. Because methods involving reduction of genome complexity, such as genotyping-by-sequencing (GBS), assess only a limited fraction of sequence variation, targeted sequencing of selected genomic loci offers an attractive alternative. We therefore designed a sequence capture assay to target 29 Mb genomic regions and surveyed a total of 4,648 genes possibly affecting biomass production in 21 diverse inbred maize lines (7 flints, 14 dents). Captured and enriched genomic DNA was sequenced using the 454 NGS platform to 19.6-fold average depth coverage, and a broad evaluation of read alignment and variant calling methods was performed to select optimal procedures for variant discovery. Sequence alignment with the B73 reference and de novo assembly identified 383,145 putative single nucleotide polymorphisms (SNPs), of which 42,685 were non-synonymous alterations and 7,139 caused frameshifts. Presence/absence variation (PAV) of genes was also detected. We found that substantial sequence variation exists among genomic regions targeted in this study, which was particularly evident within coding regions. This diversification has the potential to broaden functional diversity and generate phenotypic variation that may lead to new adaptations and the modification of important agronomic traits. Further, annotated SNPs identified here will serve as useful genetic tools and as candidates in searches for phenotype-altering DNA variation. In summary, we demonstrated that sequencing of captured DNA is a powerful approach for

  11. A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants

    PubMed Central

    Orlovskis, Zigmunds; Canale, Maria Cristina; Haryono, Mindia; Lopes, João Roberto Spotti

    2017-01-01

    Background and Aims Maize bushy stunt phytoplasma (MBSP) is a bacterial pathogen of maize (Zea mays L.) across Latin America. MBSP belongs to the 16SrI-B sub-group within the genus ‘Candidatus Phytoplasma’. MBSP and its insect vector Dalbulus maidis (Hemiptera: Cicadellidae) are restricted to maize; both are thought to have coevolved with maize during its domestication from a teosinte-like ancestor. MBSP-infected maize plants show a diversity of symptoms. and it is likely that MBSP is under strong selection for increased virulence and insect transmission on maize hybrids that are widely grown in Brazil. In this study it was investigated whether the differences in genome sequences of MBSP isolates from two maize-growing regions in South-east Brazil explain variations in symptom severity of the MBSP isolates on various maize genotypes. Methods MBSP isolates were collected from maize production fields in Guaíra and Piracicaba in South-east Brazil for infection assays. One representative isolate was chosen for de novo whole-genome assembly and for the alignment of sequence reads from the genomes of other phytoplasma isolates to detect polymorphisms. Statistical methods were applied to investigate the correlation between variations in disease symptoms of infected maize plants and MBSP sequence polymorphisms. Key Results MBSP isolates contributed consistently to organ proliferation symptoms and maize genotype to leaf necrosis, reddening and yellowing of infected maize plants. The symptom differences are associated with polymorphisms in a phase-variable lipoprotein, which is a candidate effector, and an ATP-dependent lipoprotein ABC export protein, whereas no polymorphisms were observed in other candidate effector genes. Lipoproteins and ABC export proteins activate host defence responses, regulate pathogen attachment to host cells and activate effector secretion systems in other pathogens. Conclusions Polymorphisms in two putative virulence genes among MBSP isolates

  12. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding

    PubMed Central

    Santiago, Rogelio; Cao, Ana; Butrón, Ana

    2015-01-01

    Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects. PMID:26308050

  13. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding.

    PubMed

    Santiago, Rogelio; Cao, Ana; Butrón, Ana

    2015-08-20

    Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects.

  14. The maize Dof protein PBF activates transcription of gamma-zein during maize seed development.

    PubMed

    Marzábal, Pau; Gas, Elisabet; Fontanet, Pilar; Vicente-Carbajosa, Jesús; Torrent, Margarita; Ludevid, M Dolores

    2008-07-01

    Maize PBF (prolamin-box binding factor) belongs to the Dof class of plant specific transcription factors containing one highly conserved zinc finger DNA-binding domain, called Dof (DNA binding with one finger) domain. Maize PBF trans-activates the gamma-zein gene (gammaZ) promoter in developing maize seeds as shown by transient expression in maize endosperms. Co-transfection of a gammaZ:GUS construct with 35S:PBF resulted in a sevenfold increase in GUS expression, however, PBF mutation in Cys residues within the Dof domain abolishes both, binding to DNA and the capacity to activate gammaZ promoter. We present two pieces of evidence that PBF transactivates gammaZ promoter by binding to the Pb3 motif (TGTAAAG). First, recombinant Dof domain of PBF (bdPBF) specifically recognized Pb3 site as shown by gel mobility shift assays and second, co-expression of PBF with gammaZ promoter mutated in Pb3 motif suppressed PBF trans-activation capacity. Immunocytochemical analysis on developing endosperm sections shows that PBF is localized in the nuclei of the peripheral layer cells of starchy endosperm, the tissue in which the initial accumulation of gamma-zein protein occurs. By contrast, PBF is detected in the cytosol of the starchy endosperm cells newly differentiated from aleurone daughter cells, where gamma-zein was absent. Taken together these data indicate that maize PBF plays an essential role in the regulation of the temporal and spatial expression of gammaZ gene.

  15. l-Phenylalanine Ammonia-lyase (Maize)

    PubMed Central

    Reid, Philip D.; Havir, Evelyn A.; Marsh, Herbert V.

    1972-01-01

    Extracts of maize leaf sheath tissue deaminate both l-phenylalanine and l-tyrosine. The activities with both substrates are enhanced by treating the plant with gibberellic acid. Both activities decrease rapidly at the same rate when tissue is incubated in a moist atmosphere, and this decrease can be slowed by treatment with cycloheximide. The ratio of the activities was constant throughout a series of purification steps which included acetone and ammonium sulfate precipitation, and passage through an agarose column. The two activities could not be separated by isoelectric focusing. These results support our earlier conclusion that both activities occur at the same catalytic site. PMID:16658200

  16. Viruses in maize and Johnsongrass in southern Ohio.

    PubMed

    Stewart, L R; Teplier, R; Todd, J C; Jones, M W; Cassone, B J; Wijeratne, S; Wijeratne, A; Redinbaugh, M G

    2014-12-01

    The two major U.S. maize viruses, Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV), emerged in southern Ohio and surrounding regions in the 1960s and caused significant losses. Planting resistant varieties and changing cultural practices has dramatically reduced virus impact in subsequent decades. Current information on the distribution, diversity, and impact of known and potential U.S. maize disease-causing viruses is lacking. To assess the current reservoir of viruses present at the sites of past disease emergence, we used a combination of serological testing and next-generation RNA sequencing approaches. Here, we report enzyme-linked immunosorbent assay and RNA-Seq data from samples collected over 2 years to assess the presence of viruses in cultivated maize and an important weedy reservoir, Johnsongrass (Sorghum halepense). Results revealed a persistent reservoir of MDMV and two strains of MCDV in Ohio Johnsongrass. We identified sequences of several other grass-infecting viruses and confirmed the presence of Wheat mosaic virus in Ohio maize. Together, these results provide important data for managing virus disease in field corn and sweet corn maize crops, and identifying potential future virus threats.

  17. Growing sensitivity of maize to water scarcity under climate change.

    PubMed

    Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-25

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  18. Silicon improves maize photosynthesis in saline-alkaline soils.

    PubMed

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg · ha(-1) Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.

  19. Nutritional evaluation of genetically modified maize corn performed on rats.

    PubMed

    Chrenková, Mária; Sommer, A; Ceresnáková, Zuzana; Nitrayová, Sona; Prostredná, Miroslava

    2002-06-01

    The aim of this study was to determine the composition and nutritional value of conventional and transgenic, so-called Roundup Ready (RR) maize with an introduced gene of glyphosate resistance. Crude protein, crude fibre, ash, fat, starch, sugar, amino acids, fatty acid and macroelement levels were determined by chemical analysis. In both maize lines a low level of Ca (0.15 g.kg-1 DM) and of the essential amino acids lysine and tryptophan (2.6 and 1.7 g.kg-1 DM, respectively) were observed. In the biological experiment carried out on rats the tested maize lines were the only dietary sources of nitrogen, thus, the experimental diets contained 9% CP in dietary dry matter. In the feeding experiment no significant differences in the protein efficiency ratio (PER) were observed between groups receiving conventional or transgenic maize (1.51 and 1.41, respectively). Also almost equal results were obtained in the balance experiments. Both maize lines revealed a high nitrogen digestibility (84.9 and 84.5%, respectively) and the net protein utilization amounted to 63.5 and 63.2%, respectively. From these results can be concluded that regarding nutrient composition and utilisation, genetically modified (RR) maize is equivalent to isogenic maize.

  20. Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils

    PubMed Central

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), and intercellular CO2 concentration (Ci) of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1) of Si supplying. Experimental results showed that the values of Pn, gs, and Ci of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg·ha−1 Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize. PMID:25629083

  1. Genetic diversity and selection in the maize starch pathway

    PubMed Central

    Whitt, Sherry R.; Wilson, Larissa M.; Tenaillon, Maud I.; Gaut, Brandon S.; Buckler, Edward S.

    2002-01-01

    Maize is both phenotypically and genetically diverse. Sequence studies generally confirm the extensive genetic variability in modern maize is consistent with a lack of selection. For more than 6,000 years, Native Americans and modern breeders have exploited the tremendous genetic diversity of maize (Zea mays ssp. mays) to create the highest yielding grain crop in the world. Nonetheless, some loci have relatively low levels of genetic variation, particularly loci that have been the target of artificial selection, like c1 and tb1. However, there is limited information on how selection may affect an agronomically important pathway for any crop. These pathways may retain the signature of artificial selection and may lack genetic variation in contrast to the rest of the genome. To evaluate the impact of selection across an agronomically important pathway, we surveyed nucleotide diversity at six major genes involved in starch metabolism and found unusually low genetic diversity and strong evidence of selection. Low diversity in these critical genes suggests that a paradigm shift may be required for future maize breeding. Rather than relying solely on the diversity within maize or on transgenics, future maize breeding would perhaps benefit from the incorporation of alleles from maize's wild relatives. PMID:12244216

  2. Structure and expression of maize phytochrome family homeologs.

    PubMed Central

    Sheehan, Moira J; Farmer, Phyllis R; Brutnell, Thomas P

    2004-01-01

    To begin the study of phytochrome signaling in maize, we have cloned and characterized the phytochrome gene family from the inbred B73. Through DNA gel blot analysis of maize genomic DNA and BAC library screens, we show that the PhyA, PhyB, and PhyC genes are each duplicated once in the genome of maize. Each gene pair was positioned to homeologous regions of the genome using recombinant inbred mapping populations. These results strongly suggest that the duplication of the phytochrome gene family in maize arose as a consequence of an ancient tetraploidization in the maize ancestral lineage. Furthermore, sequencing of Phy genes directly from BAC clones indicates that there are six functional phytochrome genes in maize. Through Northern gel blot analysis and a semiquantitative reverse transcriptase polymerase chain reaction assay, we determined that all six phytochrome genes are transcribed in several seedling tissues. However, expression from PhyA1, PhyB1, and PhyC1 predominate in all seedling tissues examined. Dark-grown seedlings express higher levels of PhyA and PhyB than do light-grown plants but PhyC genes are expressed at similar levels under light and dark growth conditions. These results are discussed in relation to phytochrome gene regulation in model eudicots and monocots and in light of current genome sequencing efforts in maize. PMID:15280251

  3. Definition and feasibility of isolation distances for transgenic maize cultivation.

    PubMed

    Sanvido, Olivier; Widmer, Franco; Winzeler, Michael; Streit, Bernhard; Szerencsits, Erich; Bigler, Franz

    2008-06-01

    A major concern related to the adoption of genetically modified (GM) crops in agricultural systems is the possibility of unwanted GM inputs into non-GM crop production systems. Given the increasing commercial cultivation of GM crops in the European Union (EU), there is an urgent need to define measures to prevent mixing of GM with non-GM products during crop production. Cross-fertilization is one of the various mechanisms that could lead to GM-inputs into non-GM crop systems. Isolation distances between GM and non-GM fields are widely accepted to be an effective measure to reduce these inputs. However, the question of adequate isolation distances between GM and non-GM maize is still subject of controversy both amongst scientists and regulators. As several European countries have proposed largely differing isolation distances for maize ranging from 25 to 800 m, there is a need for scientific criteria when using cross-fertilization data of maize to define isolation distances between GM and non-GM maize. We have reviewed existing cross-fertilization studies in maize, established relevant criteria for the evaluation of these studies and applied these criteria to define science-based isolation distances. To keep GM-inputs in the final product well below the 0.9% threshold defined by the EU, isolation distances of 20 m for silage and 50 m for grain maize, respectively, are proposed. An evaluation using statistical data on maize acreage and an aerial photographs assessment of a typical agricultural landscape by means of Geographic Information Systems (GIS) showed that spatial resources would allow applying the defined isolation distances for the cultivation of GM maize in the majority of the cases under actual Swiss agricultural conditions. The here developed approach, using defined criteria to consider the agricultural context of maize cultivation, may be of assistance for the analysis of cross-fertilization data in other countries.

  4. A single molecule scaffold for the maize genome.

    PubMed

    Zhou, Shiguo; Wei, Fusheng; Nguyen, John; Bechner, Mike; Potamousis, Konstantinos; Goldstein, Steve; Pape, Louise; Mehan, Michael R; Churas, Chris; Pasternak, Shiran; Forrest, Dan K; Wise, Roger; Ware, Doreen; Wing, Rod A; Waterman, Michael S; Livny, Miron; Schwartz, David C

    2009-11-01

    About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/ approximately 23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/ approximately 2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars.

  5. Studies on the transfer techniques of three maize genes.

    PubMed

    Wang, G; Zhang, H; Ding, Q; Xie, Y; Dai, J

    1996-01-01

    Maize transformation has been carried out through microprojectile bombardment, ultrasonication in a DNA buffer, and ovary-injection with a self-made microinjector. The plasmid pB48.415, which carries a 3'-truncated Bt-toxin protein gene and a hygromycin phosphotransferase (hpt) gene, was used in the transformation. Transgenic maize plants were obtained from immature embryos and embryogenic calli bombarded with a particle gun, embryogenic calli ultrasonicated under different conditions of ovaries injected 10-20 hours after pollination. The results of Dot blotting and Southern blotting analyses proved the integration of the Bt gene into maize genome.

  6. Controlling-Element Events at the Shrunken Locus in Maize

    PubMed Central

    Burr, B.; Burr, F. A.

    1981-01-01

    We have examined insertions of the controlling element Ds at the Shrunken locus of maize. A cDNA probe complementary to a portion of the Shrunken locus mRNA was prepared. This probe recognizes a unique sequence in maize DNA. Using lines carrying derivatives of the same short arm of chromosome 9, we have detected modifications at the nucleic acid level caused by Ds. The changes appear to be large insertions, one of which may be more than 20 kilobase pairs in length. These observations provide a basis for the isolation and molecular characterization of one of the maize controlling elements. PMID:17249083

  7. Polypeptides of the Maize Amyloplast Stroma1

    PubMed Central

    Yu, Ying; He Mu, Helen; Mu-Forster, Chen; Wasserman, Bruce P.

    1998-01-01

    In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast. PMID:9536063

  8. Phytotoxic lesions of chromium in maize.

    PubMed

    Sharma, D C; Sharma, C P; Tripathi, R D

    2003-04-01

    Chromium (Cr) is fairly abundant in the earth's crust and ranks fourth among the 29 elements of biological importance. Besides natural sources, Cr enters biotic components of the ecosystem in various ways. Of other major industrial sources, tanning and chrome-plating industries are prominent sources. Cr(VI) form of chromium is highly reactive and influences both plants and animals. Due to Mn present in soil, Cr(III) is oxidized to Cr(VI) which remains in soil for a long time and can affect plant growth and development. Since maize is an important food and fodder plant for human beings and cattle, a study was conducted to investigate the effects of Cr on some metabolic activities of maize (Zea mays L. cv. Ganga 5). Chromium caused visible lesions of interveinal chlorosis. Young leaves showed vein clearing. Also, a papery appearance was observed in leaves. Margins of leaves were curled and the leaves appeared pale at greater Cr exposure. Concentrations of both chlorophyll a and b were reduced by exposure to Cr, the activities of ribonuclease and phenyl phosphatase were greater while the activity of iron-porphyrin enzyme catalase was less and the activity of amylase was also much less in plants exposed to Cr. Chromium also caused retardation of soluble protein. Accumulation of Cr in roots was much at all the levels of chromium supply. Exposure to Cr resulted in reduction in grain production and quality.

  9. Neocentromere-mediated Chromosome Movement in Maize

    PubMed Central

    Yu, Hong-Guo; Hiatt, Evelyn N.; Chan, Annette; Sweeney, Mary; Dawe, R. Kelly

    1997-01-01

    Neocentromere activity is a classic example of nonkinetochore chromosome movement. In maize, neocentromeres are induced by a gene or genes on Abnormal chromosome 10 (Ab10) which causes heterochromatic knobs to move poleward at meiotic anaphase. Here we describe experiments that test how neocentromere activity affects the function of linked centromere/kinetochores (kinetochores) and whether neocentromeres and kinetochores are mobilized on the spindle by the same mechanism. Using a newly developed system for observing meiotic chromosome congression and segregation in living maize cells, we show that neocentromeres are active from prometaphase through anaphase. During mid-anaphase, normal chromosomes move on the spindle at an average rate of 0.79 μm/min. The presence of Ab10 does not affect the rate of normal chromosome movement but propels neocentromeres poleward at rates as high as 1.4 μm/min. Kinetochore-mediated chromosome movement is only marginally affected by the activity of a linked neocentromere. Combined in situ hybridization/immunocytochemistry is used to demonstrate that unlike kinetochores, neocentromeres associate laterally with microtubules and that neocentromere movement is correlated with knob size. These data suggest that microtubule depolymerization is not required for neocentromere motility. We argue that neocentromeres are mobilized on microtubules by the activity of minus end–directed motor proteins that interact either directly or indirectly with knob DNA sequences. PMID:9362502

  10. Maize endophytic bacteria as mineral phosphate solubilizers.

    PubMed

    de Abreu, C S; Figueiredo, J E F; Oliveira, C A; Dos Santos, V L; Gomes, E A; Ribeiro, V P; Barros, B A; Lana, U G P; Marriel, I E

    2017-02-16

    In the present study, we demonstrated the in vitro activity of endophytic phosphate-solubilizing bacteria (PSB). Fifty-five endophytic PSB that were isolated from sap, leaves, and roots of maize were tested for their ability to solubilize tricalcium phosphate and produce organic acid. Partial sequencing of the 16S rRNA-encoding gene showed that the isolates were from the genus Bacillus and different species of Enterobacteriaceae. The phosphate solubilization index on solid medium and phosphate solubilization in liquid medium varied significantly among the isolates. There was a statistically significant difference (P ≤ 0.05) for both, the values of phosphate-solubilizing activity and pH of the growth medium, among the isolates. Pearson correlation was statistically significant (P ≤ 0.05) between P-solubilization and pH (R = -0.38), and between the gluconic acid production and the lowering of the pH of the liquid medium at 6 (R = 0.28) and 9 days (R = 0.39). Gluconic acid production was prevalent in all the PSB studied, and Bacillus species were most efficient in solubilizing phosphate. This is the first report on the characterization of bacterial endophytes from maize and their use as potential biofertilizers. In addition, this may provide an alternative strategy for improving the phosphorus acquisition efficiency of crop plants in tropical soils.

  11. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome.

    PubMed

    Li, Qing; Gent, Jonathan I; Zynda, Greg; Song, Jawon; Makarevitch, Irina; Hirsch, Cory D; Hirsch, Candice N; Dawe, R Kelly; Madzima, Thelma F; McGinnis, Karen M; Lisch, Damon; Schmitz, Robert J; Vaughn, Matthew W; Springer, Nathan M

    2015-11-24

    The maize genome is relatively large (∼ 2.3 Gb) and has a complex organization of interspersed genes and transposable elements, which necessitates frequent boundaries between different types of chromatin. The examination of maize genes and conserved noncoding sequences revealed that many of these are flanked by regions of elevated asymmetric CHH (where H is A, C, or T) methylation (termed mCHH islands). These mCHH islands are quite short (∼ 100 bp), are enriched near active genes, and often occur at the edge of the transposon that is located nearest to genes. The analysis of DNA methylation in other sequence contexts and several chromatin modifications revealed that mCHH islands mark the transition from heterochromatin-associated modifications to euchromatin-associated modifications. The presence of an mCHH island is fairly consistent in several distinct tissues that were surveyed but shows some variation among different haplotypes. The presence of insertion/deletions in promoters often influences the presence and position of an mCHH island. The mCHH islands are dependent upon RNA-directed DNA methylation activities and are lost in mop1 and mop3 mutants, but the nearby genes rarely exhibit altered expression levels. Instead, loss of an mCHH island is often accompanied by additional loss of DNA methylation in CG and CHG contexts associated with heterochromatin in nearby transposons. This suggests that mCHH islands and RNA-directed DNA methylation near maize genes may act to preserve the silencing of transposons from activity of nearby genes.

  12. Inheritance patterns and stability of DNA methylation variation in maize near-isogenic lines.

    PubMed

    Li, Qing; Eichten, Steven R; Hermanson, Peter J; Springer, Nathan M

    2014-03-01

    DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance. DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.

  13. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome

    PubMed Central

    Li, Qing; Gent, Jonathan I.; Zynda, Greg; Song, Jawon; Makarevitch, Irina; Hirsch, Cory D.; Hirsch, Candice N.; Dawe, R. Kelly; Madzima, Thelma F.; McGinnis, Karen M.; Lisch, Damon; Schmitz, Robert J.; Vaughn, Matthew W.; Springer, Nathan M.

    2015-01-01

    The maize genome is relatively large (∼2.3 Gb) and has a complex organization of interspersed genes and transposable elements, which necessitates frequent boundaries between different types of chromatin. The examination of maize genes and conserved noncoding sequences revealed that many of these are flanked by regions of elevated asymmetric CHH (where H is A, C, or T) methylation (termed mCHH islands). These mCHH islands are quite short (∼100 bp), are enriched near active genes, and often occur at the edge of the transposon that is located nearest to genes. The analysis of DNA methylation in other sequence contexts and several chromatin modifications revealed that mCHH islands mark the transition from heterochromatin-associated modifications to euchromatin-associated modifications. The presence of an mCHH island is fairly consistent in several distinct tissues that were surveyed but shows some variation among different haplotypes. The presence of insertion/deletions in promoters often influences the presence and position of an mCHH island. The mCHH islands are dependent upon RNA-directed DNA methylation activities and are lost in mop1 and mop3 mutants, but the nearby genes rarely exhibit altered expression levels. Instead, loss of an mCHH island is often accompanied by additional loss of DNA methylation in CG and CHG contexts associated with heterochromatin in nearby transposons. This suggests that mCHH islands and RNA-directed DNA methylation near maize genes may act to preserve the silencing of transposons from activity of nearby genes. PMID:26553984

  14. Real-time TaqMan RT-PCR for detection of maize chlorotic mottle virus in maize seeds.

    PubMed

    Zhang, Yongjiang; Zhao, Wenjun; Li, Mingfu; Chen, Hongjun; Zhu, Shuifang; Fan, Zaifeng

    2011-01-01

    Maize chlorotic mottle virus (MCMV) causes corn lethal necrosis disease, and can be transmitted through infected maize seeds. It remains a challenge to detect this virus in the seeds to prevent its introduction and infection. For this purpose, a real-time TaqMan RT-PCR procedure for efficient detection of MCMV was developed. The sensitivity of the method was 4 fg of total RNA or 25 copies of RNA transcripts, which was approximately ten-fold higher than conventional RT-PCR gel electrophoresis method. The successful detection of MCMV in maize seeds suggested the feasibility of this procedure for routine testing.

  15. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize

    PubMed Central

    2014-01-01

    Background Maize is a major economic crop worldwide, with substantial crop loss attributed to flooding. During a stress response, programmed cell death (PCD) can be an effective way for plants better adapt. To identify flooding stress related PCD proteins in maize leaves, proteomic analysis was performed using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry. Results Comparative proteomics was combined with physiological and biochemical analysis of maize leaves under flooding stress. Fv/Fm, qP, qN and relative water content (RWC) were found to be altered in response to flooding stress, with an increase in H2O2 content noted in vivo. Furthermore, DNA ladder detection indicated that PCD had occurred under flooding treatment. The maize leaf proteome was analyzed via 2D-DIGE gel, with a total of 32 differentially expressed spots isolated, 31 spots were successfully identified via MALDI-TOF/TOF MS which represent 28 proteins. The identified proteins were related to energy metabolism and photosynthesis, PCD, phytohormones and polyamines. To better characterize the role of translationally controlled tumor protein (TCTP) in PCD during a stress response, mRNA expression was examined in different plants by stress-induced PCD. These included heat stress induced rice protoplasts, Tobacco Mosaic Virus infected tobacco leaves and dark induced rice and Arabidopsis thaliana leaves, all of which showed active PCD, and TCTP expression was increased in different degrees. Moreover, S-adenosylmethionine synthase 2 (SAMS2) and S-adenosylmethionine decarboxylase (SAMDC) mRNA expression were also increased, but ACC synthase (ACS) and ACC oxidase (ACO) mRNA expression were not found in maize leaves following flooding. Lastly, ethylene and polyamine concentrations were increased in response to flooding treatment in maize leaves. Conclusions Following flooding stress, the photosynthetic systems were damaged, resulting in a disruption in energy

  16. Effects of short-term feeding of Bt MON810 maize on growth performance, organ morphology and function in pigs.

    PubMed

    Walsh, Maria C; Buzoianu, Stefan G; Gardiner, Gillian E; Rea, Mary C; Ross, R Paul; Cassidy, Joseph P; Lawlor, Peadar G

    2012-02-01

    Male weanling pigs (n 32) with a mean initial body weight of 7·5 kg and a mean weaning age of 28 d were used in a 31 d study to investigate the effects of feeding GM (Bt MON810) maize on growth performance, intestinal histology and organ weight and function. At weaning, the pigs were fed a non-GM starter diet during a 6 d acclimatisation period. The pigs were then blocked by weight and litter ancestry and assigned to diets containing 38·9 % GM (Bt MON810) or non-GM isogenic parent line maize for 31 d. Body weight and feed disappearance were recorded on a weekly basis (n 16/treatment), and the pigs (n 10/treatment) were killed on day 31 for the collection of organ, tissue and blood samples. GM maize-fed pigs consumed more feed than the control pigs during the 31 d study (P < 0·05) and were less efficient at converting feed to gain during days 14-30 (P < 0·01). The kidneys of the pigs fed GM maize tended to be heavier than those of control pigs (P = 0·06); however, no histopathological changes or alterations in blood biochemistry were evident. Small intestinal morphology was not different between treatments. However, duodenal villi of GM maize-fed pigs tended to have fewer goblet cells/μm of villus compared with control pigs (P = 0·10). In conclusion, short-term feeding of Bt MON810 maize to weaned pigs resulted in increased feed consumption, less efficient conversion of feed to gain and a decrease in goblet cells/μm of duodenal villus. There was also a tendency for an increase in kidney weight, but this was not associated with changes in histopathology or blood biochemistry. The biological significance of these findings is currently being clarified in long-term exposure studies in pigs.

  17. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns.

    PubMed

    Yu, Peng; Baldauf, Jutta A; Lithio, Andrew; Marcon, Caroline; Nettleton, Dan; Li, Chunjian; Hochholdinger, Frank

    2016-03-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments.

  18. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene.

    PubMed Central

    Rapp, W D; Stern, D B

    1992-01-01

    To determine the structure of a functional plant mitochondrial promoter, we have partially purified an RNA polymerase activity that correctly initiates transcription at the maize mitochondrial atp1 promoter in vitro. Using a series of 5' deletion constructs, we found that essential sequences are located within--19 nucleotides (nt) of the transcription initiation site. The region surrounding the initiation site includes conserved sequence motifs previously proposed to be maize mitochondrial promoter elements. Deletion of a conserved 11 nt sequence showed that it is critical for promoter function, but deletion or alteration of conserved upstream G(A/T)3-4 repeats had no effect. When the atp1 11 nt sequence was inserted into different plasmids lacking mitochondrial promoter activity, transcription was only observed for one of these constructs. We infer from these data that the functional promoter extends beyond this motif, most likely in the 5' direction. The maize mitochondrial cox3 and atp6 promoters also direct transcription initiation in this in vitro system, suggesting that it may be widely applicable for studies of mitochondrial transcription in this species. Images PMID:1372246

  19. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency

    PubMed Central

    Shao, Ruixin; Xin, Longfei; Mao, Jun; Li, Leilei; Kang, Guozhang; Yang, Qinghua

    2015-01-01

    After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG)-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA) content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE) method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency. PMID:26370980

  20. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize.

    PubMed

    Shen, Bo; Allen, William B; Zheng, Peizhong; Li, Changjiang; Glassman, Kimberly; Ranch, Jerry; Nubel, Douglas; Tarczynski, Mitchell C

    2010-07-01

    Increasing seed oil production is a major goal for global agriculture to meet the strong demand for oil consumption by humans and for biodiesel production. Previous studies to increase oil synthesis in plants have focused mainly on manipulation of oil pathway genes. As an alternative to single-enzyme approaches, transcription factors provide an attractive solution for altering complex traits, with the caveat that transcription factors may face the challenge of undesirable pleiotropic effects. Here, we report that overexpression of maize (Zea mays) LEAFY COTYLEDON1 (ZmLEC1) increases seed oil by as much as 48% but reduces seed germination and leaf growth in maize. To uncouple oil increase from the undesirable agronomic traits, we identified a LEC1 downstream transcription factor, maize WRINKLED1 (ZmWRI1). Overexpression of ZmWRI1 results in an oil increase similar to overexpression of ZmLEC1 without affecting germination, seedling growth, or grain yield. These results emphasize the importance of field testing for developing a commercial high-oil product and highlight ZmWRI1 as a promising target for increasing oil production in crops.

  1. Breakage-fusion-bridge cycles and de novo telomere formation on broken chromosomes in maize callus cultures.

    PubMed

    Santos-Serejo, Janay A; Aguiar-Perecin, Margarida L R

    2016-06-01

    Breakpoints involved in chromosome alterations associated with heterochromatin have been detected in maize plants regenerated from callus culture. A cytogenetic analysis of plants regenerated from a maize callus was performed aiming to analyze the stability of a chromosome 7 bearing a deficiency-duplication (Df-Dp), which was interpreted as derived from a chromatid type breakage-fusion-bridge (BFB) cycle. The Df-Dp chromosome 7 was stable in mitotic and meiotic cells of the regenerated plants. Fluorescence in situ hybridization showed signals of telomeric sequences on the broken chromosome arm and provided evidence of de novo telomere formation. The stability of two types of altered chromosome 7 was investigated in C-banded metaphases from samples of the original callus that were collected during a period of 30-42 months after culture initiation. New alterations involving heterochromatic knobs of chromosomes 7 and 9 were observed. The aberrant chromosomes were stable in the subcultures, thus providing evidence of broken chromosome healing. The examination of anaphases showed the presence of bridges, which was consistent with the occurrence of BFB cycles. De novo telomere formation occurred in euchromatic and heterochromatic chromosome termini. The results point to events of chromosomal evolution that might occur in plants.

  2. Quantitative detection system for maize sample containing combined-trait genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Watanabe, Takahiro; Wakabayashi, Kaoru; Nakade, Shinsuke; Yasui, Shuji; Sakata, Kozue; Chiba, Ryoko; Spiegelhalter, Frank; Hino, Akihiro; Maitani, Tamio

    2005-11-15

    Various countries have established regulations that stipulate the labeling of agricultural commodities, feed, and food products that contain or are made from genetically modified (GM) material or that contain adventitious GM material in amounts that exceed certain threshold levels. While regulations in some countries refer to GM material on a weight per weight (w/w) percentage, the currently applied detection methods do not directly measure the w/w percentage of the GM material. Depending on the particular method and the sample matrix it is applied to, the conversion of analytical results to a w/w percentage is challenging or not possible. The first rapid PCR system for GM maize detection on a single kernel basis has been developed. The equipment for the grinding of individual kernels and a silica membrane-based 96-well DNA extraction kit were both significantly revised and optimized for this particular purpose, respectively. We developed a multiplex real-time PCR method for the rapid quantification of GM DNA sequences in the obtained DNA solutions. In addition, a multiplex qualitative PCR detection method allows for the simultaneous detection of different GM maize traits in each kernel and thereby for identification of individual kernels that contain a combination of two or more GM traits. Especially for grain samples that potentially contain combined-trait GM maize kernels, the proposed methods can deliver informative results in a rapid, precise, and reliable manner.

  3. Infrared Imaging of Sunflower and Maize Root Anatomy

    SciTech Connect

    Dokken,K.; Davis, L.

    2007-01-01

    Synchrotron radiation infrared microspectroscopy (SR-IMS) permits the direct analysis of plant cell-wall architecture at the cellular level in situ, combining spatially localized information and chemical information from IR absorbances to produce a chemical map that can be linked to a particular morphology or functional group. This study demonstrated the use of SR-IMS to probe biopolymers, such as cellulose, lignin, and proteins, in the root tissue of hydroponically grown sunflower and maize plants. Principal components analysis (PCA) was employed to reveal the major spectral variance between maize and sunflower plant tissues. The use of PCA showed distinct separation of maize and sunflower samples using the IR spectra of the epidermis and xylem. The infrared band at 1635 cm-1, representing hydrocinnamic acid in (H type) lignin, provided a conclusive means of distinguishing between maize and sunflower plant tissues.

  4. Assessment of factors influencing the biomethane yield of maize silages.

    PubMed

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Foucart, Guy; Flammang, Jos; Lemaigre, Sébastien; Sinnaeve, Georges; Dardenne, Pierre; Delfosse, Philippe

    2014-02-01

    A large set of maize silage samples was produced to assess the major traits influencing the biomethane production of this crop. The biomass yield, the volatile solids contents and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare (average=7266m(3)ha(-1)). The most influential factor controlling the biomethane yield was the cropping environment. The biomass yield had more impact than the anaerobic digestibility. Nevertheless, the anaerobic digestibility of maize silages was negatively affected by high VS content in mature maize. Late maturing maize varieties produced high biomass yield with high digestibility resulting in high biomethane yield per hectare. The BMP was predicted with good accuracy using solely the VS content.

  5. Positional cloning in maize (Zea mays subsp. mays, Poaceae)1

    PubMed Central

    Gallavotti, Andrea; Whipple, Clinton J.

    2015-01-01

    • Premise of the study: Positional (or map-based) cloning is a common approach to identify the molecular lesions causing mutant phenotypes. Despite its large and complex genome, positional cloning has been recently shown to be feasible in maize, opening up a diverse collection of mutants to molecular characterization. • Methods and Results: Here we outline a general protocol for positional cloning in maize. While the general strategy is similar to that used in other plant species, we focus on the unique resources and approaches that should be considered when applied to maize mutants. • Conclusions: Positional cloning approaches are appropriate for maize mutants and quantitative traits, opening up to molecular characterization the large array of genetic diversity in this agronomically important species. The cloning approach described should be broadly applicable to other species as more plant genomes become available. PMID:25606355

  6. Is there a strategy I iron uptake mechanism in maize?

    PubMed

    Li, Suzhen; Zhou, Xiaojin; Chen, Jingtang; Chen, Rumei

    2016-03-28

    Iron is a metal micronutrient that is essential for plant growth and development. Graminaceous and nongraminaceous plants have evolved different mechanisms to mediate Fe uptake. Generally, strategy I is used by nongraminaceous plants like Arabidopsis, while graminaceous plants, such as rice, barley, and maize, are considered to use strategy II Fe uptake. Upon the functional characterization of OsIRT1 and OsIRT2 in rice, it was suggested that rice, as an exceptional graminaceous plant, utilizes both strategy I and strategy II Fe uptake systems. Similarly, ZmIRT1 and ZmZIP3 were identified as functional zinc and iron transporters in the maize genome, along with the determination of several genes encoding Zn and Fe transporters, raising the possibility that strategy I Fe uptake also occurs in maize. This mini-review integrates previous reports and recent evidence to obtain a better understanding of the mechanisms of Fe uptake in maize.

  7. Micronutrient and functional compounds biofortification of maize grains.

    PubMed

    Messias, Rafael da Silva; Galli, Vanessa; Silva, Sérgio Delmar Dos Anjos E; Schirmer, Manoel Artigas; Rombaldi, César Valmor

    2015-01-01

    Maize, in addition to being the main staple food in many countries, is used in the production of hundreds of products. It is rich in compounds with potential benefits to health, such as carotenoids, phenolic compounds, vitamin E, and minerals that act as cofactors for antioxidant enzymes. Many of these compounds have been neglected thus far in the scientific literature. Nevertheless, deficiencies in the precursors of vitamin A and some minerals, such as iron and zinc, in maize, in association with the great genetic variability in its cultivars and our genomic, transcriptomic, and metabolomic knowledge of this species make targeted biofortification strategies for maize promising. This review discusses the potential of the main microconstituents found in maize with a focus on studies aimed at biofortification.

  8. Early allelic selection in maize as revealed by ancient DNA.

    PubMed

    Jaenicke-Després, Viviane; Buckler, Ed S; Smith, Bruce D; Gilbert, M Thomas P; Cooper, Alan; Doebley, John; Pääbo, Svante

    2003-11-14

    Maize was domesticated from teosinte, a wild grass, by approximately 6300 years ago in Mexico. After initial domestication, early farmers continued to select for advantageous morphological and biochemical traits in this important crop. However, the timing and sequence of character selection are, thus far, known only for morphological features discernible in corn cobs. We have analyzed three genes involved in the control of plant architecture, storage protein synthesis, and starch production from archaeological maize samples from Mexico and the southwestern United States. The results reveal that the alleles typical of contemporary maize were present in Mexican maize by 4400 years ago. However, as recently as 2000 years ago, allelic selection at one of the genes may not yet have been complete.

  9. Determining density of maize canopy. 1: Digitized photography

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Swain, P. H.

    1972-01-01

    The relationship between different densities of maize (Zea mays L.) canopies and the energy reflected by these canopies was studied. Field plots were laid out, representing four growth stages of maize, on a dark soil and on a very light colored surface soil. Spectral and spatial data were obtained from color and color infrared photography taken from a vertical distance of 10 m above the maize canopies. Estimates of ground cover were related to field measurements of leaf area index. Ground cover was predicted from leaf area index measurements by a second order equation. Color infrared photography proved helpful in determining the density of maize canopy on dark soils. Color photography was useful for determining canopy density on light colored soils. The near infrared dye layer is the most valuable in canopy density determinations.

  10. Modelling of maize production in Croatia: present and future climate

    PubMed Central

    VUČETIĆ, V.

    2011-01-01

    SUMMARY Maize is one of the most important agricultural crops in Croatia, and was selected for research of the effect of climate warming on yields. The Decision Support System for the Agrotechnology Transfer model (DSSAT) is one of the most utilized crop–weather models in the world, and was used in this paper for the investigation of maize growth and production in the present and future climate. The impact of present climate on maize yield was studied using DSSAT 4.0 with meteorological data from the Zagreb–Maksimir station covering the period 1949–2004. Pedological, physiological and genetic data from a 1999 field maize experiment at the same location were added. The location is representative of the continental climate in central Croatia. The linear trends of model outputs and the non-parametric Mann–Kendall test indicate that the beginning of silking has advanced significantly by 1·4 days/decade since the mid-1990s, and maturity by 4·5 days/decade. It also shows a decrease in biomass by 122 kg/ha and in maize yield by 216 kg/ha in 10 years. Estimates of the sensitivity of maize growth and yield in future climates were made by changing the initial weather and CO2 conditions of the DSSAT 4.0 model according to the different climatic scenarios for Croatia at the end of the 21st century. Changed climate suggests increases in global solar radiation, minimal temperature and maximal temperature (×1·07, 2 and 4°C, respectively), but a decrease in the amount of precipitation (×0·92), compared with weather data from the period 1949–2004. The reduction of maize yield was caused by the increase in minimal and maximal temperature and the decrease in precipitation amount, related to the present climate, is 6, 12 and 3%, respectively. A doubling of CO2 concentration stimulates leaf assimilation, but maize yield is only 1% higher, while global solar radiation growth by 7% increases evapotranspiration by 3%. Simultaneous application of all these climate changes

  11. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses.

    PubMed

    Benevenuto, Rafael Fonseca; Agapito-Tenfen, Sarah Zanon; Vilperte, Vinicius; Wikmark, Odd-Gunnar; van Rensburg, Peet Jansen; Nodari, Rubens Onofre

    2017-01-01

    Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses.

  12. The maize milkweed pod1 mutant reveals a mechanism to modify organ morphology.

    PubMed

    Johnston, Robyn; Candela, Héctor; Hake, Sarah; Foster, Toshi

    2010-07-01

    Plant lateral organs, such as leaves, have three primary axes of growth-proximal-distal, medial--lateral and adaxial-abaxial (dorsal-ventral). Although most leaves are planar, modified leaf forms, such as the bikeeled grass prophyll, can be found in nature. A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD-ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive mutations in the maize (Zea mays) KANADI (KAN) gene milkweed pod1 (mwp1), which promotes abaxial cell identity, strongly affect development of the prophyll and silks (fused carpels). The prophyll is reduced to two unfused midribs and the silks are narrow and misshapen. Our data indicate that the prophyll and other fused organs are particularly sensitive to disruptions in adaxial-abaxial polarity. In addition, lateral and proximal-distal growth of most lateral organs is reduced in the mwp1-R mutant, supporting a role for the adaxial-abaxial boundary in promoting growth along both axes. We propose that the adaxial-abaxial patterning mechanism has been co-opted during evolution to generate diverse organ morphologies.

  13. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses

    PubMed Central

    Benevenuto, Rafael Fonseca; Agapito-Tenfen, Sarah Zanon; Vilperte, Vinicius; Wikmark, Odd-Gunnar; van Rensburg, Peet Jansen; Nodari, Rubens Onofre

    2017-01-01

    Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses. PMID:28245233

  14. Proteome Changes in Maize Embryo (Zea mays L) Induced by Ion Beam Implantation Treatment

    NASA Astrophysics Data System (ADS)

    Li, Yongliang; Tang, Jihua; Qin, Guangyong; Huo, Yuping; Tian, Shuangqi

    2009-08-01

    Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than 1100 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up-regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, 11 were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.

  15. Toward linking maize chemistry to archaeological agricultural sites in the North American Southwest

    USGS Publications Warehouse

    Cordell, L.S.; Durand, S.R.; Antweiler, R.C.; Taylor, H.E.

    2001-01-01

    Maize (Zea mays L.) was the staple domestic food crop for Ancestral Pueblo people throughout the northern American Southwest. It is thought to have been the basic food of the inhabitants of Chaco Canyon. New Mexico, a location that was a major centre of Ancestral Pueblo building and population during the 11th and early 12th centuries AD. Modern heirloom varieties of Native American corn have been difficult to grow in experimental fields in Chaco Canyon. Given an abundance of apparent storage structures in Chacoan buildings, it is possible that some corn recovered from archaeological contexts, was imported from surrounding areas. The ultimate goal of this research is to determine whether the corn in Chaco Canyon was grown locally or imported. This paper establishes the feasibility of a method to accomplish this goal. This study reports the results of using inductively coupled plasma-mass spectrometric (ICP-MS) instrumentation to determine chemical constituents of experimental fields and modern heirloom varieties of Native American corn. Analysis of 19 elements is adequate to differentiate soil and corn from three field areas. These results are promising: however, a number of problems, including post-depositional alterations in maize, remain to be solved. ?? 2001 Academic Press.

  16. Pullulanase and Starch Synthase III Are Associated with Formation of Vitreous Endosperm in Quality Protein Maize

    PubMed Central

    Wu, Hao; Clay, Kasi; Thompson, Stephanie S.; Hennen-Bierwagen, Tracie A.; Andrews, Bethany J.; Zechmann, Bernd; Gibbon, Bryan C.

    2015-01-01

    The opaque-2 (o2) mutation of maize increases lysine content, but the low seed density and soft texture of this type of mutant are undesirable. Lines with modifiers of the soft kernel phenotype (mo2) called “Quality Protein Maize” (QPM) have high lysine and kernel phenotypes similar to normal maize. Prior research indicated that the formation of vitreous endosperm in QPM might involve changes in starch granule structure. In this study, we focused on analysis of two starch biosynthetic enzymes that may influence kernel vitreousness. Analysis of recombinant inbred lines derived from a cross of W64Ao2 and K0326Y revealed that pullulanase activity had significant positive correlation with kernel vitreousness. We also found that decreased Starch Synthase III abundance may decrease the pullulanase activity and average glucan chain length given the same Zpu1 genotype. Therefore, Starch Synthase III could indirectly influence the kernel vitreousness by affecting pullulanase activity and coordinating with pullulanase to alter the glucan chain length distribution of amylopectin, resulting in different starch structural properties. The glucan chain length distribution had strong positive correlation with the polydispersity index of glucan chains, which was positively associated with the kernel vitreousness based on nonlinear regression analysis. Therefore, we propose that pullulanase and Starch Synthase III are two important factors responsible for the formation of the vitreous phenotype of QPM endosperms. PMID:26115014

  17. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.

    PubMed

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.

  18. A single gene mutation that increases maize seed weight

    SciTech Connect

    Giroux, M.J.; Shaw, J.; Hannah, L.C. |

    1996-06-11

    The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3 feet to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts. 20 refs., 5 figs., 5 tabs.

  19. The Role of cis Regulatory Evolution in Maize Domestication

    PubMed Central

    Lemmon, Zachary H.; Bukowski, Robert; Sun, Qi; Doebley, John F.

    2014-01-01

    Gene expression differences between divergent lineages caused by modification of cis regulatory elements are thought to be important in evolution. We assayed genome-wide cis and trans regulatory differences between maize and its wild progenitor, teosinte, using deep RNA sequencing in F1 hybrid and parent inbred lines for three tissue types (ear, leaf and stem). Pervasive regulatory variation was observed with approximately 70% of ∼17,000 genes showing evidence of regulatory divergence between maize and teosinte. However, many fewer genes (1,079 genes) show consistent cis differences with all sampled maize and teosinte lines. For ∼70% of these 1,079 genes, the cis differences are specific to a single tissue. The number of genes with cis regulatory differences is greatest for ear tissue, which underwent a drastic transformation in form during domestication. As expected from the domestication bottleneck, maize possesses less cis regulatory variation than teosinte with this deficit greatest for genes showing maize-teosinte cis regulatory divergence, suggesting selection on cis regulatory differences during domestication. Consistent with selection on cis regulatory elements, genes with cis effects correlated strongly with genes under positive selection during maize domestication and improvement, while genes with trans regulatory effects did not. We observed a directional bias such that genes with cis differences showed higher expression of the maize allele more often than the teosinte allele, suggesting domestication favored up-regulation of gene expression. Finally, this work documents the cis and trans regulatory changes between maize and teosinte in over 17,000 genes for three tissues. PMID:25375861

  20. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    PubMed

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses.

  1. Root Interactions in a Maize/Soybean Intercropping System Control Soybean Soil-Borne Disease, Red Crown Rot

    PubMed Central

    Gao, Xiang; Wu, Man; Xu, Ruineng; Wang, Xiurong; Pan, Ruqian; Kim, Hye-Ji; Liao, Hong

    2014-01-01

    Background Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. Principal Findings In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum). The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. Conclusions To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices. PMID:24810161

  2. Heat shock increases oxidative stress to modulate growth and physico-chemical attributes in diverse maize cultivars

    NASA Astrophysics Data System (ADS)

    Hussain, Iqbal; Ashraf, Muhammad Arslan; Rasheed, Rizwan; Iqbal, Muhammad; Ibrahim, Muhammad; Ashraf, Shamila

    2016-10-01

    The present investigation was conducted to appraise the physiochemical adjustments in contrasting maize cultivars, namely, PakAfgoi (tolerant) and EV-5098 (sensitive) subjected to heat shock. Seven-day-old seedlings were exposed to heat shock for different time intervals (1, 3, 6, 24, 48 and 72 h) and data for various physiochemical attributes determined to appraise time course changes in maize. After 72 h of heat shock, the plants were grown under normal conditions for 5 d and data for different growth attributes and photosynthetic pigments recorded. Exposure to heat shock reduced growth and photosynthetic pigments in maize cultivars. The plants exposed to heat shock for up to 3 h recovered growth and photosynthetic pigments when stress was relieved. A time course rise in the relative membrane permeability, hydrogen peroxide (H2O2) and malondialdehyde contents was recorded particularly in the EV-5098 indicating that heat shock-induced oxidative stress. Activities of different enzymatic antioxidants greatly altered due to heat shock. For instance, an increase in superoxide dismutase activity was recorded in both maize cultivars. The activity of ascorbate peroxidase was greater in Pak-Afgoi. However, the peroxidase and catalase activities were higher in plants of EV-5098. Heat shock caused a significant rise in the proline and decline in the total free amino acids. Overall, the performance of Pak-Afgoi was better in terms of having lesser oxidative damage and greater cellular levels of proline. The results suggested that oxidative stress indicators (relative membrane permeability, H2O2 and malondialdehyde) and proline can be used as markers for heat shock tolerant plants.

  3. Meiotic drive of chromosomal knobs reshaped the maize genome.

    PubMed Central

    Buckler, E S; Phelps-Durr, T L; Buckler, C S; Dawe, R K; Doebley, J F; Holtsford, T P

    1999-01-01

    Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods. PMID:10471723

  4. Recruitment of entomopathogenic nematodes by insect-damaged maize roots.

    PubMed

    Rasmann, Sergio; Köllner, Tobias G; Degenhardt, Jörg; Hiltpold, Ivan; Toepfer, Stefan; Kuhlmann, Ulrich; Gershenzon, Jonathan; Turlings, Ted C J

    2005-04-07

    Plants under attack by arthropod herbivores often emit volatile compounds from their leaves that attract natural enemies of the herbivores. Here we report the first identification of an insect-induced belowground plant signal, (E)-beta-caryophyllene, which strongly attracts an entomopathogenic nematode. Maize roots release this sesquiterpene in response to feeding by larvae of the beetle Diabrotica virgifera virgifera, a maize pest that is currently invading Europe. Most North American maize lines do not release (E)-beta-caryophyllene, whereas European lines and the wild maize ancestor, teosinte, readily do so in response to D. v. virgifera attack. This difference was consistent with striking differences in the attractiveness of representative lines in the laboratory. Field experiments showed a fivefold higher nematode infection rate of D. v. virgifera larvae on a maize variety that produces the signal than on a variety that does not, whereas spiking the soil near the latter variety with authentic (E)-beta-caryophyllene decreased the emergence of adult D. v. virgifera to less than half. North American maize lines must have lost the signal during the breeding process. Development of new varieties that release the attractant in adequate amounts should help enhance the efficacy of nematodes as biological control agents against root pests like D. v. virgifera.

  5. Photomorphogenic Responses in Maize Seedling Development1[w

    PubMed Central

    Markelz, Nicole H.; Costich, Denise E.; Brutnell, Thomas P.

    2003-01-01

    As an emerging maize (Zea mays) seedling senses light, there is a decrease in the rate of mesocotyl elongation, an induction of root growth, and an expansion of leaves. In leaf tissues, mesophyll and bundle sheath cell fate is determined, and the proplastids of each differentiate into the dimorphic chloroplasts typical of each cell type. Although it has been inferred from recent studies in several model plant species that multiple photoreceptor systems mediate this process, surprisingly little is known of light signal transduction in maize. Here, we examine two photomorphogenic responses in maize: inhibition of mesocotyl elongation and C4 photosynthetic differentiation. Through an extensive survey of white, red, far-red, and blue light responses among a diverse collection of germplasm, including a phytochrome-deficient mutant elm1, we show that light response is a highly variable trait in maize. Although all inbreds examined appear to have a functional phytochrome signal transduction pathway, several lines showed reduced sensitivity to blue light. A significant correlation was observed between light response and subpopulation, suggesting that light responsiveness may be a target of artificial selection. An examination of C4 gene expression patterns under various light regimes in the standard W22 inbred and elm1 indicate that cell-specific patterns of C4 gene expression are maintained in fully differentiated tissues independent of light quality. To our knowledge, these findings represent the first comprehensive survey of light response in maize and are discussed in relation to maize breeding strategies. PMID:14645729

  6. Post-Domestication Selection in the Maize Starch Pathway

    PubMed Central

    Fan, Longjiang; Bao, Jiandong; Wang, Yu; Yao, Jianqiang; Gui, Yijie; Hu, Weiming; Zhu, Jinqing; Zeng, Mengqian; Li, Yu; Xu, Yunbi

    2009-01-01

    Modern crops have usually experienced domestication selection and subsequent genetic improvement (post-domestication selection). Chinese waxy maize, which originated from non-glutinous domesticated maize (Zea mays ssp. mays), provides a unique model for investigating the post-domestication selection of maize. In this study, the genetic diversity of six key genes in the starch pathway was investigated in a glutinous population that included 55 Chinese waxy accessions, and a selective bottleneck that resulted in apparent reductions in diversity in Chinese waxy maize was observed. Significant positive selection in waxy (wx) but not amylose extender1 (ae1) was detected in the glutinous population, in complete contrast to the findings in non-glutinous maize, which indicated a shift in the selection target from ae1 to wx during the improvement of Chinese waxy maize. Our results suggest that an agronomic trait can be quickly improved into a target trait with changes in the selection target among genes in a crop pathway. PMID:19859548

  7. Genomic variation in recently collected maize landraces from Mexico.

    PubMed

    Arteaga, María Clara; Moreno-Letelier, Alejandra; Mastretta-Yanes, Alicia; Vázquez-Lobo, Alejandra; Breña-Ochoa, Alejandra; Moreno-Estrada, Andrés; Eguiarte, Luis E; Piñero, Daniel

    2016-03-01

    The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (H E = 0.234 to 0.318 (mean 0.311), while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (H E = 0.262 and 0.234, respectively). The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law.

  8. Genomic variation in recently collected maize landraces from Mexico

    PubMed Central

    Arteaga, María Clara; Moreno-Letelier, Alejandra; Mastretta-Yanes, Alicia; Vázquez-Lobo, Alejandra; Breña-Ochoa, Alejandra; Moreno-Estrada, Andrés; Eguiarte, Luis E.; Piñero, Daniel

    2015-01-01

    The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (HE = 0.234 to 0.318 (mean 0.311), while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (HE = 0.262 and 0.234, respectively). The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law. PMID:26981357

  9. A crop population perspective on maize seed systems in Mexico

    PubMed Central

    Dyer, George A.; Taylor, J. Edward

    2008-01-01

    Improvement of local germplasm through artificial selection is regarded as the main force behind maize evolution and diversity in Mexico, the crop's center of origin. This perspective neglects the larger social context of maize evolution. Using a theoretical approach and Mexico-wide data, we show that farmer-led evolution of maize is largely driven by a technological diffusion and appropriation process that selectively integrates nonlocal germplasm into local seed stocks. Our approach construes farmer practices as events in the life history of seed to build a demographic model. The model shows how random and systematic differences in management combine to structure maize seed populations into subpopulations that can spread or become extinct, in some cases independently of visible agronomic advantages. The process involves continuous population bottlenecks that can lead to diversity loss. Nonlocal germplasm thus might play a critical role in maintaining diversity in individual localities. Empirical estimates show that introduction of nonlocal seed in Central and Southeastern Mexico is rarer than previously thought; prompt replacement further prevents new seed from spreading. Yet introduced seed perceived as valuable diffuses rapidly, contributing variation in the form of type diversity or through introgression into local seed. Maize seed dynamics and evolution are thus part of a complex social process driven by farmers' desire to appropriate the value in maize farming, not always achieved by preserving or improving local seed stocks. PMID:18184814

  10. MaizeGDB: curation and outreach go hand-in-hand.

    PubMed

    Schaeffer, Mary L; Harper, Lisa C; Gardiner, Jack M; Andorf, Carson M; Campbell, Darwin A; Cannon, Ethalinda K S; Sen, Taner Z; Lawrence, Carolyn J

    2011-01-01

    First released in 1991 with the name MaizeDB, the Maize Genetics and Genomics Database, now MaizeGDB, celebrates its 20th anniversary this year. MaizeGDB has transitioned from a focus on comprehensive curation of the literature, genetic maps and stocks to a paradigm that accommodates the recent release of a reference maize genome sequence, multiple diverse maize genomes and sequence-based gene expression data sets. The MaizeGDB Team is relatively small, and relies heavily on the research community to provide data, nomenclature standards and most importantly, to recommend future directions, priorities and strategies. Key aspects of MaizeGDB's intimate interaction with the community are the co-location of curators with maize research groups in multiple locations across the USA as well as coordination with MaizeGDB's close partner, the Maize Genetics Cooperation--Stock Center. In this report, we describe how the MaizeGDB Team currently interacts with the maize research community and our plan for future interactions that will support updates to the functional and structural annotation of the B73 reference genome.

  11. Genetic control of leaf curl in maize.

    PubMed

    Entringer, G C; Guedes, F L; Oliveira, A A; Nascimento, J P; Souza, J C

    2014-03-17

    Among the many implications of climatic change on agriculture, drought is expected to continue to have a major impact on agribusinesses. Leaf curling is an anatomical characteristic that might be potentially used to enhance plant tolerance to water deficit. Hence, we aimed to study the genetic control of leaf curl in maize. From 2 contrasting inbred lines for the trait, generations F1, F2, and the backcrosses were obtained. All of these generations were evaluated in a randomized block design with 2 replicates. Leaf curl samples were collected from 3 leaves above the first ear at the tasseling stage, and quantified by dividing the width of the leaf blade with natural curling against its extended width. The mean and variance components were estimated by the weighted least square method. It was found that the trait studied has predominance of the additive effects, with genetic control being attributed to few genes that favor selection and exhibit minimal influence from the environment.

  12. Maize mitochondria synthesize organ-specific polypeptides

    SciTech Connect

    Newton, K.J.; Walbot, V.

    1985-10-01

    The authors detected both quantitative and qualitative organ-specific differences in the total protein composition of mitochondria of maize. Labeling of isolated mitochondria from each organ demonstrated that a few protein differences are due to changes in the polypeptides synthesized by the organelle. The synthesis of developmental stage-specific mitochondrial polypeptides was found in the scutella of developing and germinating kernels. The approximately 13-kDa polypeptide synthesized by mitochondria from seedlings of the Texas (T) male-sterile cytoplasm was shown to be constitutively expressed in all organs of line B37T tested. Methomyl, an insecticide known to inhibit the growth of T sterile plants, was shown to be an effective inhibitor of protein synthesis in mitochondria from T plants.

  13. Regulatory modules controlling maize inflorescence architecture.

    PubMed

    Eveland, Andrea L; Goldshmidt, Alexander; Pautler, Michael; Morohashi, Kengo; Liseron-Monfils, Christophe; Lewis, Michael W; Kumari, Sunita; Hiraga, Susumu; Yang, Fang; Unger-Wallace, Erica; Olson, Andrew; Hake, Sarah; Vollbrecht, Erik; Grotewold, Erich; Ware, Doreen; Jackson, David

    2014-03-01

    Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures.

  14. Hydrothermal carbonization of anaerobically digested maize silage.

    PubMed

    Mumme, Jan; Eckervogt, Lion; Pielert, Judith; Diakité, Mamadou; Rupp, Fabian; Kern, Jürgen

    2011-10-01

    Hydrochars were prepared by hydrothermal carbonization (HTC) of maize silage previously treated at 55 °C in a two-stage solid-state reactor system. The HTC was carried out in a 1-L stirred pressure reactor with pH regulation by citric acid. The treated silage carbonized at relatively mild conditions (190 °C, 2 h), and the hydrochars showed mainly amorphous macro-size features with a carbon content of 59-79% (ash-free, dry) and a higher heating value of 25-36 MJ kg⁻¹. Temperature was the main influencing factor. The surface area according to Brunauer-Emmett-Teller (BET) analysis was highest at 190 °C (12.3 m²) g⁻¹). Based on these results, the hydrochars are potentially interesting for applications such as an alternative fuel or a soil conditioner.

  15. Hexokinase from Maize Endosperm and Scutellum 1

    PubMed Central

    Cox, Edward L.; Dickinson, David B.

    1973-01-01

    Hexokinase (EC 2.7.1.1) was isolated from endosperm and scutellum of developing and germinating maize (Zea mays) seeds. With fructose as the variable substate, Michaelis constant values for the scutellum enzyme were about onethird those of the endosperm enzyme (0.05 versus 0.15 mm), and no developmental differences were observed. With glucose as the variable substrate, Michaelis constant values were all in the range 0.1 to 0.2 mm. The enzyme preparation from germinating scutellum was studied further; when glucose was varied over a wide range, a Michaelis constant of 3.4 mm was observed in addition to the much lower Michaelis constant noted above. This low affinity binding of glucose may have regulatory significance and may indicate the presence of a glucokinase in addition to hexokinase. PMID:16658446

  16. Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles--impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses.

    PubMed

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but

  17. Bt-maize (MON810) and Non-GM Soybean Meal in Diets for Atlantic Salmon (Salmo salar L.) Juveniles – Impact on Survival, Growth Performance, Development, Digestive Function, and Transcriptional Expression of Intestinal Immune and Stress Responses

    PubMed Central

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C.; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but

  18. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat

    PubMed Central

    2016-01-01

    Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cerealis, F. equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae, F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize and DON in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops. PMID:27366645

  19. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat.

    PubMed

    Basler, Ryan

    2016-01-01

    Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cerealis, F. equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae, F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize and DON in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops.

  20. Zealactones. Novel natural strigolactones from maize.

    PubMed

    Charnikhova, Tatsiana V; Gaus, Katharina; Lumbroso, Alexandre; Sanders, Mark; Vincken, Jean-Paul; De Mesmaeker, Alain; Ruyter-Spira, Carolien P; Screpanti, Claudio; Bouwmeester, Harro J

    2017-05-01

    In the root exudate and root extracts of maize hybrid cv NK Falkone seven putative strigolactones were detected using UPLC-TQ-MS-MS. All seven compounds displayed MS-MS-fragmentation common for strigolactones and particularly the presence of a fragment of m/z 97 Da, which may indicate the presence of the so-called D-ring, suggests they are strigolactones. The levels of all these putative strigolactones increased upon phosphate starvation and decreased upon fluridone (carotenoid biosynthesis inhibitor) treatment, both of which are a common response for strigolactones. All seven compounds were subsequently isolated with prep-HPLC-MS. They all exhibited Striga hermonthica seed germination inducing activity just as the synthetic strigolactone analog GR24. The structure of two of the seven compounds was elucidated by NMR spectroscopy as: methyl (2E,3E)-4-(3,3-dimethyl-5-oxo-2-(prop-1-en-2-yl)tetrahydrofuran-2-yl)-2-(((4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)but-3-enoate (two diastereomers 1a and 1b). Strigolactones (1a/b) are closely related to the methyl ester of carlactonoic acid (MeCLA) and heliolactone. However, they contain a unique 4,4-dimethyltetrahydrofuran-2-one motif as the "A-ring" instead of the classical (di)methylcyclohexene. Because these compounds were isolated from maize (Zea mays) we called them "zealactone 1a and 1b". The implications of this discovery for our view on strigolactones and their biosynthesis are discussed.

  1. Data assimilation of MODIS and TM observations into CERES-Maize model to estimate regional maize yield

    NASA Astrophysics Data System (ADS)

    Jin, Huaan; Wang, Jindi; Bo, Yanchen; Chen, Guifen; Xue, Huazhu

    2010-08-01

    Accurate and real-time estimation of crop yield over large areas is critical for many applications such as crop management, and agricultural management decision-making. This study presents a scheme to assimilate multi-temporal MODIS and Landsat TM reflectance data into the CERES-Maize crop growth model which is coupled with the radiative transfer model SAIL for maize yield estimation. We extract the directional reflectance data of MODIS subpixels corresponding to pure maize conditions with the objective to increase time series observations at the TM scale. The variables to be assimilated were chosen by conducting the sensitivity analysis on the coupled model. The SCE-UA algorithm was applied to determine the optimal set of these sensitive variables. Finally the maize yields maps were produced at TM scale with the coupled assimilation model. The proposed scheme was applied over Yushu County located in Jilin province of Northeast China and validated by using field yield measurement dataset during the maize growing season in 2007. The measurement data include the species of planting maize, soil type and fertility, field observed leaf, canopy and soil reflectance data etc. Furthermore, yield data were gained in specially designed experimental campaigns. The validation results indicate that the yield estimation scheme using multiple remote sensing data assimilation is very promising. The accuracy of TM yield map produced by adding time series MODIS subpixel information was improved comparing with that only using TM data.

  2. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-amylose maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Our working hypothesis is that HAMRS2-induced...

  3. Addition of individual chromosomes of maize inbreds B73 and Mo17 to oat cultivars Starter and Sun II: maize chromosome retention, transmission, and plant phenotype.

    PubMed

    Rines, Howard W; Phillips, Ronald L; Kynast, Ralf G; Okagaki, Ron J; Galatowitsch, Mark W; Huettl, Paul A; Stec, Adrian O; Jacobs, Morrison S; Suresh, Jayanti; Porter, Hedera L; Walch, Matthew D; Cabral, Candida B

    2009-11-01

    Oat-maize addition (OMA) lines with one, or occasionally more, chromosomes of maize (Zea mays L., 2n = 2x = 20) added to an oat (Avena sativa L., 2n = 6x = 42) genomic background can be produced via embryo rescue from sexual crosses of oat x maize. Self-fertile disomic addition lines of different oat genotypes, mainly cultivar Starter, as recipient for maize chromosomes 1, 2, 3, 4, 5, 6, 7, 9, and the short arm of 10 and a monosomic addition line for chromosome 8, have been reported previously in which the sweet corn hybrid Seneca 60 served as the maize chromosome donor. Here we report the production and characterization of a series of new OMA lines with inbreds B73 and Mo17 as maize chromosome donors and with oat cultivars Starter and Sun II as maize chromosome recipients. Fertile disomic OMA lines were recovered for B73 chromosomes 1, 2, 4, 5, 6, 8, 9, and 10 and Mo17 chromosomes 2, 4, 5, 6, 8, and 10. These lines together with non-fertile (oat x maize) F(1) plants with chromosome 3 and chromosome 7 of Mo17 individually added to Starter oat provide DNA of additions to oat of all ten individual maize chromosomes between the two maize inbreds. The Mo17 chromosome 10 OMA line was the first fertile disomic OMA line obtained carrying a complete chromosome 10. The B73 OMA line for chromosome 1 and the B73 and Mo17 OMA lines for chromosome 8 represent disomic OMA lines with improved fertility and transmission of the addition chromosome compared to earlier Seneca 60 versions. Comparisons among the four oat-maize parental genotype combinations revealed varying parental effects and interactions on frequencies of embryo recovery, embryo germination, F(1) plantlets with maize chromosomes, the specific maize chromosomes retained and transmitted to F(2) progeny, and phenotypes of self-fertile disomic addition plants. As opposed to the previous use of a hybrid Seneca 60 maize stock as donor of the added maize chromosomes, the recovered B73 and Mo17 OMA lines provide predictable

  4. Prospects for reducing fumonisin contamination of maize through genetic modification.

    PubMed Central

    Duvick, J

    2001-01-01

    Fumonisins (FB) are mycotoxins found in (italic)Fusarium verticillioides-infected maize grain worldwide. Attention has focused on FBs because of their widespread occurrence, acute toxicity to certain livestock, and their potential carcinogenicity. FBs are present at low levels in most field-grown maize but may spike to high levels depending on both the environment and genetics of the host plant. Among the strategies for reducing risk of FB contamination in maize supplied to the market, development and deployment of Fusarium ear mold-resistant maize germplasm is a high priority. Breeding for increased ear mold tolerance and reduced mycotoxin levels is being practiced today in both commercial and public programs, but the amount of resistance achievable may be limited due to complicated genetics and/or linkage to undesirable agronomic traits. Molecular markers can be employed to speed up the incorporation of chromosomal regions that have a quantitative effect on resistance (quantitative trait loci). Transgenic approaches to ear mold/mycotoxin resistance are now feasible as well. These potentially include genetically enhanced resistance to insect feeding, increased fungal resistance, and detoxification/prevention of mycotoxins in the grain. An example of the first of these approaches is already on the market, namely transgenic maize expressing Bacillus thuringiensis (Bt) toxin, targeted to the European corn borer. Some Bt maize hybrids have the potential to reduce FB levels in field-harvested grain, presumably through reduced feeding of Bt-susceptible insects in ear tissues. However, improved ear mold resistance per se is still an important goal, as the plant will still be vulnerable to noninsect routes of entry to (italic)Fusarium. A second approach, transgene-mediated control of the ability of Fusarium to infect and colonize the ear, could potentially be achieved through overexpression of specific antifungal proteins and metabolites, or enhancement of the plant's own

  5. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    SciTech Connect

    Vesper, M.J. ); Cross, J.W. )

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  6. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    PubMed

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  7. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    PubMed Central

    Pechanova, Olga; Pechan, Tibor

    2015-01-01

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus. PMID:26633370

  8. Sporisorium reilianum Infection Changes Inflorescence and Branching Architectures of Maize1[C][W][OA

    PubMed Central

    Ghareeb, Hassan; Becker, Annette; Iven, Tim; Feussner, Ivo; Schirawski, Jan

    2011-01-01

    Sporisorium reilianum is a biotrophic maize (Zea mays) pathogen of increasing economic importance. Symptoms become obvious at flowering time, when the fungus causes spore formation and phyllody in the inflorescences. To understand how S. reilianum changes the inflorescence and floral developmental program of its host plant, we investigated the induced morphological and transcriptional alterations. S. reilianum infection promoted the outgrowth of subapical ears, suggesting that fungal presence suppressed apical dominance. Female inflorescences showed two distinct morphologies, here termed “leafy ear” and “eary ear.” In leafy ears, all floral organs were replaced by vegetative organs. In eary ears, modified carpels enclosed a new female inflorescence harboring additional female inflorescences at every spikelet position. Similar changes in meristem fate and organ identity were observed in the tassel of infected plants, which formed male inflorescences at spikelet positions. Thus, S. reilianum triggered a loss of organ and meristem identity and a loss of meristem determinacy in male and female inflorescences and flowers. Microarray analysis showed that these developmental changes were accompanied by transcriptional regulation of genes proposed to regulate floral organ and meristem identity as well as meristem determinacy in maize. S. reilianum colonization also led to a 30% increase in the total auxin content of the inflorescence as well as a dramatic accumulation of reactive oxygen species. We propose a model describing the architectural changes of infected inflorescence as a consequence of transcriptional, hormonal, and redox modulation, which will be the basis for further molecular investigation of the underlying mechanism of S. reilianum-induced alteration of floral development. PMID:21653782

  9. Uneven chromosome contraction and expansion in the maize genome.

    PubMed

    Bruggmann, Rémy; Bharti, Arvind K; Gundlach, Heidrun; Lai, Jinsheng; Young, Sarah; Pontaroli, Ana C; Wei, Fusheng; Haberer, Georg; Fuks, Galina; Du, Chunguang; Raymond, Christina; Estep, Matt C; Liu, Renyi; Bennetzen, Jeffrey L; Chan, Agnes P; Rabinowicz, Pablo D; Quackenbush, John; Barbazuk, W Brad; Wing, Rod A; Birren, Bruce; Nusbaum, Chad; Rounsley, Steve; Mayer, Klaus F X; Messing, Joachim

    2006-10-01

    Maize (Zea mays or corn), both a major food source and an important cytogenetic model, evolved from a tetraploid that arose about 4.8 million years ago (Mya). As a result, maize has extensive duplicated regions within its genome. We have sequenced the two copies of one such region, generating 7.8 Mb of sequence spanning 17.4 cM of the short arm of chromosome 1 and 6.6 Mb (25.6 cM) from the long arm of chromosome 9. Rice, which did not undergo a similar whole genome duplication event, has only one orthologous region (4.9 Mb) on the short arm of chromosome 3, and can be used as reference for the maize homoeologous regions. Alignment of the three regions allowed identification of syntenic blocks, and indicated that the maize regions have undergone differential contraction in genic and intergenic regions and expansion by the insertion of retrotransposable elements. Approximately 9% of the predicted genes in each duplicated region are completely missing in the rice genome, and almost 20% have moved to other genomic locations. Predicted genes within these regions tend to be larger in maize than in rice, primarily because of the presence of predicted genes in maize with larger introns. Interestingly, the general gene methylation patterns in the maize homoeologous regions do not appear to have changed with contraction or expansion of their chromosomes. In addition, no differences in methylation of single genes and tandemly repeated gene copies have been detected. These results, therefore, provide new insights into the diploidization of polyploid species.

  10. Functional properties of selected starter cultures for sour maize bread.

    PubMed

    Edema, Mojisola O; Sanni, Abiodun I

    2008-06-01

    This paper focuses on the functional properties of maize sour-dough microflora selected and tested for their use as starter cultures for sour maize bread. Lactic acid bacteria and yeasts isolated from spontaneously fermented maize dough were selected based on dominance during fermentation and presence at the end of fermentation. Functional properties examined included acidification, leavening and production of some antimicrobial compounds in the fermenting matrix. The organisms previously identified as Lactobacillus plantarum, Lb. brevis, Lb. fermentum, Lb. acidophilus, Pediococcus acidilactici, Leuconostoc mesenteroides and Leuconostoc dextranicum and Saccharomyces cerevisiae were used singly and as mixed cultures in the fermentation (fermentation time: 12h at 28+/-2 degrees C) of maize meal (particle size >0.2mm). The pH fell from an initial value of 5.62-3.05 in maize meals fermented with Lb. plantarum; 4.37 in L. dextranicum+S. cerevisiae compared with the value for the control (no starter) of 4.54. Significant differences (P maize dough were confirmed by their abilities to inhibit the growth of Salmonella typhi, Escherichia coli, Staphylococcus aureus and Aspergillus flavus from an initial inoculum concentration of 7 log cfu ml(-1)) for test bacteria and zone of inhibition of up to 1.33 cm for aflatoxigenic A. flavus. The findings of this study form a database for further studies on the

  11. The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency

    PubMed Central

    Liu, Haitao; Tang, Caixian; Li, Chunjian

    2016-01-01

    Root morphological/physiological modifications are important for phosphorus (P) acquisition of plants under P deficiency, but strategies differ among plant species. Detailed studies on the response of maize roots to P deficiency are limited. Nitrogen (N) form influences root morphology/physiology, and thus may influence root responses to P deficiency. This work investigated adaptive mechanisms of maize roots to low P by comparison with white lupin and faba bean supplied with two N forms. Plants were grown for 7–16 days in hydroponics with sufficient (250 µmol L−1) and deficient P supply (1 µmol L−1) under supply of NH4NO3 or Ca(NO3)2. Plant growth and P uptake were measured, and release of protons and organic acid anions, and acid phosphatase activity in the root were monitored. The results showed that P deficiency significantly decreased shoot growth while increased root growth and total root length of maize and faba bean, but not white lupin. It enhanced the release of protons and organic acid anions, and acid phosphatase activity, from the roots of both legumes but not maize. Compared with Ca(NO3)2, NH4NO3 dramatically increased proton release by roots but did not alter root morphology or physiology of the three species in response to low P. It is concluded that the N form did not fundamentally change root morphological/physiological responses of the three species to P deficiency. Morphological variation in maize and morpho-physiological modifications in white lupin and faba bean were the main adaptive strategies to P deficiency. PMID:27519912

  12. Influence of Zn-contaminated soils in the antioxidative defence system of wheat (Triticum aestivum) and maize (Zea mays) at different exposure times: potential use as biomarkers.

    PubMed

    Alonso-Blázquez, Nieves; García-Gómez, Concepción; Fernández, María Dolores

    2015-03-01

    In this study, we evaluated the antioxidant responses of wheat and maize growing in Zn-treated soils (200, 450 and 900 mg kg(-1)) at different exposure times (7, 14, 21 and 35 days). The Zn concentration in the plants increased with an increase in the Zn concentration in the soil, thereby causing an increase in the accumulation of Mg and Mn. The emergence of wheat and the growth of maize were inhibited by Zn. The chlorophyll levels increased in wheat, whereas the opposite effect was observed in maize. Regarding enzymatic activities, Zn only provoked pronounced increases in the ascorbate peroxidase activity in maize at the early exposure times and occasionally in the superoxide dismutase (14 days) and catalase (7 and 35 days) activities in wheat. The most notable effect of the exposure of plants to Zn was an inhibition of antioxidative activities after 35 days in both plant species. The reduced glutathione levels increased in wheat and maize after 35 days and the protein levels in wheat after 7 and 35 days. The only significant alteration of lipid peroxidation was a decrease in the malondialdehyde level in wheat after 35 days. Results of this work suggest that Zn may generate oxidative stress by interfering with the plant antioxidant defence system (peroxidases, catalases and superoxide dismutase) responsible for free radical detoxification. The enzymatic activities, particularly ascorbate peroxidase, and the content of reduced glutathione could be considered good biomarkers of serious stress by Zn in soils.

  13. Genome-wide association study of maize identifies genes affecting leaf architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. maize yield has increased eightfold in the past 80 years with half of the improvement attributed to genetics. Changes in maize leaf angle and size provided a basis for more efficient light capture as plant densities increased. Through a genome wide association study (GWAS) of the maize nested a...

  14. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Qayyum, Muhammad Farooq; Ok, Yong Sik; Zia-Ur-Rehman, Muhammad; Abbas, Zaheer; Hannan, Fakhir

    2017-04-01

    Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.

  15. Susceptibility to Bt proteins not required for Agrotis ipsilon aversion to Bt maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although Bacillus thuringiensis (Bt) maize has been widely adopted in diverse regions around the world, relatively little is known about the susceptibility and behavioral response of certain insect pests to Bt maize in countries where this maize is not currently cultivated. These are important facto...

  16. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments

    PubMed Central

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil’s scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost. PMID:26694874

  17. [Contamination with genetically modified maize MON863 of processed foods on the market].

    PubMed

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  18. Fast-flowering mini-maize: seed to seed in 60 days

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generatio...

  19. Effect of feeding cows genetically modified maize on the bacterial community in the bovine rumen.

    PubMed

    Wiedemann, S; Gürtler, P; Albrecht, C

    2007-12-01

    Rumen-cannulated cows (n = 4) were fed successively silage made from either conventional or genetically modified (GM) maize. Results revealed no effects of GM maize on the dynamics of six ruminal bacterial strains (investigated by real-time PCR) compared to the conventional maize silage.

  20. Identification of a bioactive Bowman-Birk inhibitor from an insect-resistant early maize inbred

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding of maize, Zea mays, has improved insect resistance, but the genetic and biochemical basis of many of these improvements is unknown. Maize oligonucleotide microarrays were utilized to identify differentially expressed genes in leaves of three maize inbreds, parents Oh40B and W8 and progeny O...

  1. Occurrence of Pyrrocidine and Dihydroresorcyclide Production among Acremonium zeae Populations from Maize Grown in Different Regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acremonium zeae is recognized as a protective endophyte of maize. It is thus a potential confounding variable in maize variety trials for resistance to pathogenic microbes and their mycotoxins. This fungus grows systemically in maize and produces pyrrocidines A and B, polyketide amino acid derived...

  2. Maize redness in Serbia caused by stolbur phytoplasma is transmitted by Reptalus panzeri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize redness (MR) causes midrib, leaf and stalk reddening and abnormal ear development in maize in Serbia, Romania and Bulgaria. High populations of the ciixid Reptalus panzeri were found in MR affected maize fields in the southern Banat region of Serbia in 2005 and 2006, and stolbur phytoplasma w...

  3. Evaluation of maize cultivars for drought tolerance based on physiological traits associated with cell wall plasticity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is negatively affected by many environmental factors during growth, with drought stress being one of the most common causes for reduction in maize yield world-wide. There is wide variation in stand establishment for various maize cultivars to water deficit condition, such as occur in in arid a...

  4. MADS-box genes in maize: Frequent targets of selection during domestication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 random loci from the maize genome and investigated their involvement in maize domestication and improvement. Using n...

  5. Physiological and molecular analysis of selected Kenyan maize lines for aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance. 112 Kenyan maize accessio...

  6. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn fiber gum (CFG) is a novel arabinoxylan hydrocolloid. Recent research showed its considerable potential in food processing. In this study, the interactions of maize starch and CFG were studied. Maize starch/CFG blend gels were prepared from maize starch suspension mixed with 0.1%, 0.25%, 0.5%, ...

  7. Mortality impact of MON863 transgenic maize roots on western corn rootworm larvae in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mortality of western corn rootworm (Diabrotica virgifera virgifera LeConte) larvae due to feeding on MON863 transgenic maize (Zea mays L.) expressing the Cry3Bb1 protein relative to survivorship on maize with the same genetic background without the gene (isoline maize) was evaluated at three Missour...

  8. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    PubMed

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  9. Gene Flow Among Different Teosinte Taxa and Into the Domesticated Maize Gene Pool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize (Zea mays ssp. mays) was domesticated from one wild species ancestor, the Balsas teosinte (Zea mays ssp. parviglumis) about 9000 years ago. Higher levels of gene diversity are found in teosinte taxa compared to maize following domestication and selection bottlenecks. Diversity in maize can b...

  10. Genome wide association mapping of Aspergillus flavus and aflatoxin accumulation resistance in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of maize with aflatoxin, produced by the fungus Aspergillus flavus, has severe health and economic consequences. Efforts to reduce aflatoxin accumulation in maize have focused on identifying and selecting germplasm with natural host resistance factors, and several maize lines with sign...

  11. Complete genome sequences of Maize dwarf mosaic and Sugarcane mosaic virus isolates coinfecting maize in Spain.

    PubMed

    Achon, M A; Serrano, L; Alonso-Dueñas, N; Porta, C

    2007-01-01

    The genomes of Spanish isolates of Maize dwarf mosaic virus (MDMV-Sp) and Sugarcane mosaic virus (SCMV-Sp) were completely sequenced. Nucleotide sequence identities of SCMV-Sp to those of other SCMV isolates ranged from 79 to 90%. MDMV-Sp shared 85% nucleotide identity with the only other fully sequenced isolate of MDMV. MDMV-Sp and SCMV-Sp differed from each other by 31% in their nucleotide sequences. Phylogenetic analyses showed that SCMV isolates group by host rather than by geographical location. Two significant recombination signals were identified in the NIa and NIb regions of the SCMV-Sp genome.

  12. Maize Domestication and Anti-Herbivore Defences: Leaf-Specific Dynamics during Early Ontogeny of Maize and Its Wild Ancestors

    PubMed Central

    Maag, Daniel; Erb, Matthias; Bernal, Julio S.; Wolfender, Jean-Luc; Turlings, Ted C. J.; Glauser, Gaétan

    2015-01-01

    As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate

  13. Amazing Altered Books

    ERIC Educational Resources Information Center

    Kieling, Linda W.

    2006-01-01

    Linda Kieling, an art teacher at Rosemont Ridge Middle school in West Linn, Oregon, describes an altered book art project she introduced to her students. Alteration of books is a form of recycling that started in the eleventh century when Italian monks recycled old manuscripts written on vellum by scraping off the ink and adding new text and…

  14. Nitrogen-regulated changes in total amino acid profile of maize genotypes having contrasting response to nitrogen deficit.

    PubMed

    Ganie, Arshid Hussain; Ahmad, Altaf; Yousuf, Peerzada Yasir; Pandey, Renu; Ahmad, Sayeed; Aref, Ibrahim M; Iqbal, Muhammad

    2017-03-31

    Sustainable development of cellular organisms depends on a precise coordination between the carbon and nitrogen metabolisms within the living system. Inorganic N is assimilated into amino acids which serve as an important N source for various regulatory metabolic pathways in plants. This study investigates the role of amino acids in C/N balance by examining changes in amino acid profile in the leaves and roots of low-N-tolerant (PHEM-2) and low-N-sensitive (HM-4) maize genotypes grown hydroponically under N-sufficient (4.5 mM), N-deficient (0.05 mM) and N-restoration conditions. N application effectively altered the level of cysteine, methionine, asparagine, arginine, phenylalanine, glycine, glutamine, aspartate and glutamate in both genotypes. Under low N (0.05 mM), the asparagine and glutamine contents increased, while those of glutamate, phenylalanine and aspartate decreased in both genotypes. However, serine content increased in PHEM-2 but decreased in HM-4. Resupply of N to low-N-grown plants of both genotypes restored the amino acids level to that in the control; the restoration was quicker and more consistent in PHEM-2 than in HM-4. Based on alteration of amino acid level, a strategy can be developed to improve the ability of maize to adapt to low-N environments by way of an improved N utilization.

  15. Effect of soybean fortification on Ghanaian fermented maize dough aroma.

    PubMed

    Annan, N T; Plahar, W A; Poll, L; Jakobsen, M

    2005-08-01

    The effect of soy fortification on the development of aroma compounds, dough acidity and growth of the predominant microorganisms were investigated in Ghanaian maize dough fermented spontaneously over a period of 72 h. The fortified maize dough was prepared from a milled mixture of soaked maize grains and pre-soaked, blanched and dehulled soybeans added at 20% replacement level. Extracts of volatiles from the soy-fortified and unfortified dough samples were obtained by Likens-Nickerson simultaneous distillation and extraction method analysed by gas chromatography-mass spectrometry and gas chromatography-olfactometry (gas chromatography-sniffing). Major aroma compound groups identified in the fermented dough samples were carbonyls, alcohols, esters and volatile organic acids. Twenty-nine carbonyls were found in soy-fortified maize dough compared with 21 in the unfortified dough. Although the same alcohols were found in both dough samples, the total concentration of alcohols was slightly different, being less for the soy-fortified sample. Total concentration of esters in soy-fortified dough decreased after 72 h while levels in the unfortified dough increased. Increases in the production of lactic and acetic acids occurred in soy-fortified samples, but the maximum concentrations of acetic acid achieved did not differ significantly between the two types of dough. Twenty-three compounds were perceived to be contributing to the typical aroma of soy-fortified maize dough by the method of gas chromatography-sniffing. These included 12 carbonyls, six alcohols, two esters, two acids and one furan.

  16. Mapping the Diversity of Maize Races in Mexico

    PubMed Central

    Perales, Hugo; Golicher, Duncan

    2014-01-01

    Traditional landraces of maize are cultivated throughout more than one-half of Mexico's cropland. Efforts to organize in situ conservation of this important genetic resource have been limited by the lack of knowledge of regional diversity patterns. We used recent and historic collections of maize classified for race type to determine biogeographic regions and centers of landrace diversity. We also analyzed how diversity has changed over the last sixty years. Based on racial composition of maize we found that Mexico can be divided into 11 biogeographic regions. Six of these biogeographic regions are in the center and west of the country and contain more than 90% of the reported samples for 38 of the 47 races studied; these six regions are also the most diverse. We found no evidence of rapid overall decline in landrace diversity for this period. However, several races are now less frequently reported and two regions seem to support lower diversity than in previous collection periods. Our results are consistent with a previous hypothesis for diversification centers and for migration routes of original maize populations merging in western central Mexico. We provide maps of regional diversity patterns and landrace based biogeographic regions that may guide efforts to conserve maize genetic resources. PMID:25486121

  17. Mapping the diversity of maize races in Mexico.

    PubMed

    Perales, Hugo; Golicher, Duncan

    2014-01-01

    Traditional landraces of maize are cultivated throughout more than one-half of Mexico's cropland. Efforts to organize in situ conservation of this important genetic resource have been limited by the lack of knowledge of regional diversity patterns. We used recent and historic collections of maize classified for race type to determine biogeographic regions and centers of landrace diversity. We also analyzed how diversity has changed over the last sixty years. Based on racial composition of maize we found that Mexico can be divided into 11 biogeographic regions. Six of these biogeographic regions are in the center and west of the country and contain more than 90% of the reported samples for 38 of the 47 races studied; these six regions are also the most diverse. We found no evidence of rapid overall decline in landrace diversity for this period. However, several races are now less frequently reported and two regions seem to support lower diversity than in previous collection periods. Our results are consistent with a previous hypothesis for diversification centers and for migration routes of original maize populations merging in western central Mexico. We provide maps of regional diversity patterns and landrace based biogeographic regions that may guide efforts to conserve maize genetic resources.

  18. MODEM: multi-omics data envelopment and mining in maize

    PubMed Central

    Liu, Haijun; Wang, Fan; Xiao, Yingjie; Tian, Zonglin; Wen, Weiwei; Zhang, Xuehai; Chen, Xi; Liu, Nannan; Li, Wenqiang; Liu, Lei; Liu, Jie; Yan, Jianbing; Liu, Jianxiao

    2016-01-01

    MODEM is a comprehensive database of maize multidimensional omics data, including genomic, transcriptomic, metabolic and phenotypic information from the cellular to individual plant level. This initial release contains approximately 1.06 M high quality SNPs for 508 diverse inbred lines obtained by combining variations from RNA sequencing on whole kernels (15 days after pollination) of 368 lines and a 50 K array for all 508 individuals. As all of these data were derived from the same diverse panel of lines, the database also allows various types of genetic mapping (including characterization of phenotypic QTLs, pQTLs; expression QTLs, eQTLs and metabolic QTLs, mQTLs). MODEM is thus designed to promote a better understanding of maize genetic architecture and deep functional annotation of the complex maize genome (and potentially those of other crop plants) and to explore the genotype–phenotype relationships and regulation of maize kernel development at multiple scales, which is also comprehensive for developing novel methods. MODEM is additionally designed to link with other databases to make full use of current resources, and it provides visualization tools for easy browsing. All of the original data and the related mapping results are freely available for easy query and download. This platform also provides helpful tools for general analyses and will be continually updated with additional materials, features and public data related to maize genetics or regulation as they become available. Database URL: (http://modem.hzau.edu.cn) PMID:27504011

  19. Maize transformation technology development for commercial event generation

    PubMed Central

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170

  20. Detection of moniliformin in maize using capillary zone electrophoresis.

    PubMed

    Maragos, C M

    2004-08-01

    Moniliformin is a mycotoxin produced by certain fungi pathogenic to maize. It is capable of causing disease in domestic animals, possibly through inhibition of pyruvate dehydrogenase. Testing for MON commonly involves extraction of maize, isolation of moniliformin using solid-phase extraction columns and detection with high-performance liquid chromatography (HPLC) or gas chromatography. A capillary zone electrophoresis-diode array detection (CZE-DAD) method for determination of moniliformin in maize is reported. The extraction and isolation procedures are similar to those of a commonly used HPLC method, while the detection step requires only 10 min. Sixty-three samples of maize were tested by an established HPLC method using absorbance at 229 nm (HPLC-ultraviolet light) and by the CZE-DAD method. The limit of detection of the CZE-DAD method was 0.1 microg MON g(-1) maize compared with 0.05 microg g(-1) for the HPLC-ultraviolet light method. The CZE-DAD method gave good agreement with the HPLC-ultraviolet light method for samples tested at levels up to 1500 microg g(-1), with a linear regression of r(2) = 0.996.

  1. Incidence of Fusarium species and mycotoxins in silage maize.

    PubMed

    Eckard, Sonja; Wettstein, Felix E; Forrer, Hans-Rudolf; Vogelgsang, Susanne

    2011-08-01

    Maize is frequently infected by the Fusarium species producing mycotoxins. Numerous investigations have focused on grain maize, but little is known about the Fusarium species in the entire plant used for silage. Furthermore, mycotoxins persist during the ensiling process and thus endanger feed safety. In the current study, we analyzed 20 Swiss silage maize samples from growers' fields for the incidence of Fusarium species and mycotoxins. The species spectrum was analyzed morphologically and mycotoxins were measured by LC-MS/MS. A pre-harvest visual disease rating showed few disease symptoms. In contrast, the infection rate of two-thirds of the harvest samples ranged from 25 to 75% and twelve different Fusarium species were isolated. The prevailing species were F. sporotrichioides, F. verticillioides and F. graminearum. No infection specificity for certain plant parts was observed. The trichothecene deoxynivalenol (DON) was found in each sample (ranging from 780 to 2990 µg kg(-1)). Other toxins detected in descending order were zearalenone, further trichothecenes (nivalenol, HT-2 and T-2 toxin, acetylated DON) and fumonisins. A generalized linear regression model containing the three cropping factors harvest date, pre-precrop and seed treatment was established, to explain DON contamination of silage maize. Based on these findings, we suggest a European-wide survey on silage maize.

  2. Field trials to evaluate the effects of transgenic cry1le maize on the community characteristics of arthropod natural enemies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Possible non-target effects of transgenic cry1Ie gene maize exerts on natural enemy community biodiversity in the field is unresolved. In the present study, a 2-yr study of transgenic cry1Ie gene maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) on natural enemy community...

  3. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the maize genomic features would be useful for the study of genetic diversity and evolution and for maize breeding. Here, we used two maize nested association mapping (NAM) populations separately derived in China (CN-NAM) and the US (US-NAM) to explore the maize genomic features. The t...

  4. Surveying the maize community for their diversity and pedigree visualization needs to prioritize tool development and curation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data, and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on beh...

  5. Assessing changes to South African maize production areas in 2055 using empirical and process-based crop models

    NASA Astrophysics Data System (ADS)

    Estes, L.; Bradley, B.; Oppenheimer, M.; Beukes, H.; Schulze, R. E.; Tadross, M.

    2010-12-01

    Rising temperatures and altered precipitation patterns associated with climate change pose a significant threat to crop production, particularly in developing countries. In South Africa, a semi-arid country with a diverse agricultural sector, anthropogenic climate change is likely to affect staple crops and decrease food security. Here, we focus on maize production, South Africa’s most widely grown crop and one with high socio-economic value. We build on previous coarser-scaled studies by working at a finer spatial resolution and by employing two different modeling approaches: the process-based DSSAT Cropping System Model (CSM, version 4.5), and an empirical distribution model (Maxent). For climate projections, we use an ensemble of 10 general circulation models (GCMs) run under both high and low CO2 emissions scenarios (SRES A2 and B1). The models were down-scaled to historical climate records for 5838 quinary-scale catchments covering South Africa (mean area = 164.8 km2), using a technique based on self-organizing maps (SOMs) that generates precipitation patterns more consistent with observed gradients than those produced by the parent GCMs. Soil hydrological and mechanical properties were derived from textural and compositional data linked to a map of 26422 land forms (mean area = 46 km2), while organic carbon from 3377 soil profiles was mapped using regression kriging with 8 spatial predictors. CSM was run using typical management parameters for the several major dryland maize production regions, and with projected CO2 values. The Maxent distribution model was trained using maize locations identified using annual phenology derived from satellite images coupled with airborne crop sampling observations. Temperature and precipitation projections were based on GCM output, with an additional 10% increase in precipitation to simulate higher water-use efficiency under future CO2 concentrations. The two modeling approaches provide spatially explicit projections of

  6. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed.

    PubMed

    Landoni, Michela; Cerino Badone, Francesco; Haman, Nabil; Schiraldi, Alberto; Fessas, Dimitrios; Cesari, Valentina; Toschi, Ivan; Cremona, Roberta; Delogu, Chiara; Villa, Daniela; Cassani, Elena; Pilu, Roberto

    2013-05-15

    Monogastric animals are unable to digest phytic acid, so it represents an antinutritional factor and also an environmental problem. One strategy to solve this problem is the utilization of low phytic acid (lpa) mutants that accumulate low levels of phytic P and high levels of free phosphate in the seeds; among the lpa maize mutants lpa1 exhibited the highest reduction of phytic acid in the seed. This study indicated that the low phytic acid mutations exerted pleiotropic effects not directly connected to the phytic acid pathway, such as on seed density, content of ions, and the antioxidant compounds present in the kernels. Furthermore some nutritional properties of the flour were altered by the lpa1 mutations, in particular lignin and protein content, while the starch does not seem to be modified as to the total amount and in the amylose/amylopectin ratio, but alterations were noticed in the structure and size of granules.

  7. Effects of replacing grass silage with either maize or whole-crop wheat silages on the performance and meat quality of beef cattle offered two levels of concentrates.

    PubMed

    Keady, T W J; Lively, F O; Kilpatrick, D J; Moss, B W

    2007-05-01

    A randomised design involving 66 continental cross beef steers (initial live weight 523 kg) was undertaken to evaluate the effects of the inclusion of maize or whole-crop wheat silages in grass silage-based diets on animal performance, carcass composition, and meat quality of beef cattle. Grass silage was offered either as the sole forage or in addition to either maize or whole-crop wheat silages at a ratio of 40:60, on a dry matter (DM) basis, alternative forage: grass silage. For the grass, maize, and whole-crop wheat silages, DM concentrations were 192, 276, and 319 g/kg, ammonia-nitrogen concentrations were 110, 90, and 150 g/kg nitrogen, starch concentrations were not determined, 225, and 209 g/kg DM and in vivo DM digestibilities were 0.69, 0.69, and 0.58; respectively. The forages were offered ad libitum following mixing in a paddle type complete diet mixer wagon once per day, supplemented with either 3 or 5 kg concentrates per steer per day, in two equal feeds, for 92 days. For the grass, grass plus maize and grass plus whole-crop wheat silage-based diets food intakes were 8.38, 9.08, and 9.14 kg DM per day, estimated carcass gains were 514, 602, and 496 g/day and carcass weights were 326, 334, and 325 kg; respectively. Altering the silage component of the diet did not influence carcass composition or meat eating quality. Increasing concentrate feed level tended ( P = 0.09) to increase estimated carcass fat concentration and increased sarcomere length ( P < 0.05), and lean a* ( P < 0.01), b* ( P < 0.05), and chroma ( P < 0.01). There were no significant silage type by concentrate feed level interactions for food intake, steer performance, carcass characteristics or meat eating quality. It is concluded that replacing grass silage with maize silage increased carcass gain, and weight due to higher intakes, and improved utilisation of metabolisable energy. Whilst replacing grass silage with whole-crop wheat silage increased live

  8. Exploring the Bacterial Microbiota of Colombian Fermented Maize Dough "Masa Agria" (Maiz Añejo).

    PubMed

    Chaves-Lopez, Clemencia; Serio, Annalisa; Delgado-Ospina, Johannes; Rossi, Chiara; Grande-Tovar, Carlos D; Paparella, Antonello

    2016-01-01

    Masa Agria is a naturally fermented maize dough produced in Colombia, very common in the traditional gastronomy. In this study we used culture-dependent and RNA-based pyrosequencing to investigate the bacterial community structure of Masa Agria samples produced in the south west of Colombia. The mean value of cell density was 7.6 log CFU/g of presumptive lactic acid bacteria, 5.4 log cfu/g for presumptive acetic bacteria and 5.6 og CFU/g for yeasts. The abundance of these microorganisms is also responsible for the low pH (3.1-3.7) registered. Although the 16S rRNA pyrosequencing revealed that the analyzed samples were different in bacteria richness and diversity, the genera Lactobacillus, Weissella, and Acetobacter were predominant. In particular, the most common species were Lactobacillus plantarum and Acetobacter fabarum, followed by L. fermentum, L. vaccinostercus, and Pediococcus argentinicus. Several microorganisms of environmental origin, such as Dechloromonas and most of all Sphingobium spp., revealed in each sample, were detected, and also bacteria related to maize, such as Phytoplasma. In conclusion, our results elucidated for the first time the structures of the bacterial communities of Masa Agria samples obtained from different producers, identifying the specific dominant species and revealing a complete picture of the bacterial consortium in this specific niche. The selective pressure of tropical environments may favor microbial biodiversity characterized by a useful technological potential.

  9. A novel maize-infecting mastrevirus from La Réunion Island.

    PubMed

    Pande, Daniel; Kraberger, Simona; Lefeuvre, Pierre; Lett, Jean-Michel; Shepherd, Dionne N; Varsani, Arvind; Martin, Darren P

    2012-08-01

    Despite extensive sampling, only one virus belonging to the genus Mastrevirus of the family Geminiviridae, maize streak virus (MSV), has until now been detected in maize with maize streak disease (MSD) symptoms. Here, we report for the first time a second, highly divergent, mastrevirus isolated from two maize plants displaying characteristic MSD-like symptoms, sampled on the South-west Indian Ocean Island, La Réunion. The two isolates shared <57 % genome-wide identity with all other known mastreviruses. We propose calling the new species Maize streak Réunion virus.

  10. Maize Leaves Turn Away from Neighbors1

    PubMed Central

    Maddonni, Gustavo Angel; Otegui, María Elena; Andrieu, Bruno; Chelle, Michael; Casal, Jorge J.

    2002-01-01

    In commercial crops, maize (Zea mays) plants are typically grown at a larger distance between rows (70 cm) than within the same row (16–23 cm). This rectangular arrangement creates a heterogeneous environment in which the plants receive higher red light (R) to far-red light (FR) ratios from the interrow spaces. In field crops, the hybrid Dekalb 696 (DK696) showed an increased proportion of leaves toward interrow spaces, whereas the experimental hybrid 980 (Exp980) retained random leaf orientation. Mirrors reflecting FR were placed close to isolated plants to simulate the presence of neighbors in the field. In addition, localized FR was applied to target leaves in a growth chamber. During their expansion, the leaves of DK696 turned away from the low R to FR ratio signals, whereas Exp980 leaves remained unaffected. On the contrary, tillering was reduced and plant height was increased by low R to FR ratios in Exp980 but not in DK696. Isolated plants preconditioned with low R/FR-simulating neighbors in a North-South row showed reduced mutual shading among leaves when the plants were actually grouped in North-South rows. These observations contradict the current view that phytochrome-mediated responses to low R/FR are a relic from wild conditions, detrimental for crop yield. PMID:12427985

  11. Auxin signaling modules regulate maize inflorescence architecture

    PubMed Central

    Galli, Mary; Liu, Qiujie; Moss, Britney L.; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L.; Gallavotti, Andrea

    2015-01-01

    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species. PMID:26464512

  12. Auxin signaling modules regulate maize inflorescence architecture.

    PubMed

    Galli, Mary; Liu, Qiujie; Moss, Britney L; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L; Gallavotti, Andrea

    2015-10-27

    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.

  13. Maize leaves turn away from neighbors.

    PubMed

    Maddonni, Gustavo Angel; Otegui, María Elena; Andrieu, Bruno; Chelle, Michael; Casal, Jorge J

    2002-11-01

    In commercial crops, maize (Zea mays) plants are typically grown at a larger distance between rows (70 cm) than within the same row (16-23 cm). This rectangular arrangement creates a heterogeneous environment in which the plants receive higher red light (R) to far-red light (FR) ratios from the interrow spaces. In field crops, the hybrid Dekalb 696 (DK696) showed an increased proportion of leaves toward interrow spaces, whereas the experimental hybrid 980 (Exp980) retained random leaf orientation. Mirrors reflecting FR were placed close to isolated plants to simulate the presence of neighbors in the field. In addition, localized FR was applied to target leaves in a growth chamber. During their expansion, the leaves of DK696 turned away from the low R to FR ratio signals, whereas Exp980 leaves remained unaffected. On the contrary, tillering was reduced and plant height was increased by low R to FR ratios in Exp980 but not in DK696. Isolated plants preconditioned with low R/FR-simulating neighbors in a North-South row showed reduced mutual shading among leaves when the plants were actually grouped in North-South rows. These observations contradict the current view that phytochrome-mediated responses to low R/FR are a relic from wild conditions, detrimental for crop yield.

  14. Biological control of Fusarium moniliforme in maize.

    PubMed Central

    Bacon, C W; Yates, I E; Hinton, D M; Meredith, F

    2001-01-01

    Fusarium moniliforme Sheldon, a biological species of the mating populations within the (italic)Gibberella fujikuroi species complex, i.e., population A [= G. moniliformis (Sheld.) Wineland], is an example of a facultative fungal endophyte. During the biotrophic endophytic association with maize, as well as during saprophytic growth, F. moniliforme produces the fumonisins. The fungus is transmitted vertically and horizontally to the next generation of plants via clonal infection of seeds and plant debris. Horizontal infection is the manner by which this fungus is spread contagiously and through which infection occurs from the outside that can be reduced by application of certain fungicides. The endophytic phase is vertically transmitted. This type infection is important because it is not controlled by seed applications of fungicides, and it remains the reservoir from which infection and toxin biosynthesis takes place in each generation of plants. Thus, vertical transmission of this fungus is just as important as horizontal transmission. A biological control system using an endophytic bacterium, Bacillus subtilis, has been developed that shows great promise for reducing mycotoxin accumulation during the endophytic (vertical transmission) growth phase. Because this bacterium occupies the identical ecological niche within the plant, it is considered an ecological homologue to F. moniliforme, and the inhibitory mechanism, regardless of the mode of action, operates on the competitive exclusion principle. In addition to this bacterium, an isolate of a species of the fungus Trichoderma shows promise in the postharvest control of the growth and toxin accumulation from F. moniliforme on corn in storage. PMID:11359703

  15. Amyloplast sedimentation kinetics in gravistimulated maize roots

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Suyemoto, M. M.; Leopold, A. C.

    1985-01-01

    Amyloplast sedimentation in gravistimulated maize (Zea mays L.) roots was measured using the change in angle from the center of the cell to each amyloplast as an index of sedimentation. Using tissue fixed after gravistimulation, the relationship between mean amyloplast angle and the duration of gravistimulation was found to be linear when plotted on a logarithmic time scale. Extrapolated values for the onset of angular change are 5.9 s after the start of gravistimulation for the entire population of amyloplasts and 11.8 s for lead amyloplasts. By multiplying the instantaneous angular velocity (in radians) by the cell center to amyloplast radius, it is possible to calculate the initial sedimentation velocity to be 19.1 micrometers min-1 at 5.9 s. During sedimentation, the mean amyloplast angles surpass the calculated cell corner angle of 123 at 2.2 min for all amyloplasts and at 19 s for lead amyloplasts near the new lower wall. Thus, substantial sedimentation occurs within the presentation time, calculated to be 4.1 min. These kinetics are consistent with several hypotheses of graviperception.

  16. Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize

    PubMed Central

    Wang, Qiang; Zhang, Chao; Wang, Chunyan; Qian, Yajuan; Li, Zhenghe; Hong, Jian; Zhou, Xueping

    2017-01-01

    Maize chlorotic mottle virus (MCMV) was first reported in maize in China in 2009. In this study we further analyzed the epidemiology of MCMV and corn lethal necrosis disease (CLND) in China. We determined that CLND observed in China was caused by co-infection of MCMV and sugarcane mosaic virus (SCMV). Phylogenetic analysis using four full-length MCMV cDNA sequences obtained in this study and the available MCMV sequences retrieved from GenBank indicated that Chinese MCMV isolates were derived from the same source. To screen for maize germplasm resistance against MCMV infection, we constructed an infectious clone of MCMV isolate YN2 (pMCMV) and developed an Agrobacterium-mediated injection procedure to allow high throughput inoculations of maize with the MCMV infectious clone. Electron microscopy showed that chloroplast photosynthesis in leaves was significantly impeded by the co-infection of MCMV and SCMV. Mitochondria in the MCMV and SCMV co-infected cells were more severely damaged than in MCMV-infected cells. The results of this study provide further insight into the epidemiology of MCMV in China and shed new light on physiological and cytopathological changes related to CLND in maize. PMID:28059116

  17. Circadian expression of the maize catalase Cat3 gene is highly conserved among diverse maize genotypes with structurally different promoters.

    PubMed Central

    Polidoros, A N; Scandalios, J G

    1998-01-01

    The Cat3 gene of maize exhibits a transcriptionally regulated circadian rhythm. In the present study we examined the following: (1) the extent of the circadian Cat3 expression between maize genotypes of diverse origin; (2) the functional significance of a Tourist transposable element located in the Cat3 promoter of the inbred line W64A, which harbors putative regulatory elements (GATA repeat, CCAAT boxes) shown to be involved in the light induction and circadian regulation of the Arabidopsis CAB2, as well as other plant genes; and (3) aspects of the physiological role of CAT-3 in maize metabolism. Results confirm that the circadian Cat3 expression is a general phenomenon in maize. Regulation of Cat3 gene expression is not dependent on the presence of the Tourist element in the promoter of the gene nor on the presence of motifs similar to those found significant in the circadian expression of the Arabidopsis CAB2 gene. Structural diversity was revealed in the Cat3 promoters of maize genotypes of diverse origins. However, highly conserved regions with putative regulatory motifs were identified. Relevance of the conserved regions to the circadian regulation of the gene is discussed. Possible physiological roles of CAT-3 are suggested. PMID:9584112

  18. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos.

    PubMed

    Lee, Hyeyoung; Zhang, Zhanyuan J

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is one of the most efficient and simple gene delivery systems for genetic improvement and biology studies in maize. This system has become more widely used by both public and private laboratories. However, transformation efficiencies vary greatly from laboratory to laboratory for the same genotype. Here, we illustrate our advanced Agrobacterium-mediated transformation method in Hi-II maize using simple binary vectors. The protocol utilizes immature embryos as starting explants and the bar gene as a selectable marker coupled with bialaphos as a selective agent. The protocol offers efficient transformation results with high reproducibility, provided that some experimental conditions are well controlled. This transformation method, with minor modifications, can be also employed to transform certain maize inbreds.

  19. Equity in access to fortified maize flour and corn meal

    PubMed Central

    Zamora, Gerardo; De-Regil, Luz Maria

    2014-01-01

    Mass fortification of maize flour and corn meal with a single or multiple micronutrients is a public health intervention that aims to improve vitamin and mineral intake, micronutrient nutritional status, health, and development of the general population. Micronutrient malnutrition is unevenly distributed among population groups and is importantly determined by social factors, such as living conditions, socioeconomic position, gender, cultural norms, health systems, and the socioeconomic and political context in which people access food. Efforts trying to make fortified foods accessible to the population groups that most need them require acknowledgment of the role of these determinants. Using a perspective of social determinants of health, this article presents a conceptual framework to approach equity in access to fortified maize flour and corn meal, and provides nonexhaustive examples that illustrate the different levels included in the framework. Key monitoring areas and issues to consider in order to expand and guarantee a more equitable access to maize flour and corn meal are described. PMID:24329609

  20. Accuracy of genomic selection in European maize elite breeding populations.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  1. A first-generation haplotype map of maize.

    PubMed

    Gore, Michael A; Chia, Jer-Ming; Elshire, Robert J; Sun, Qi; Ersoz, Elhan S; Hurwitz, Bonnie L; Peiffer, Jason A; McMullen, Michael D; Grills, George S; Ross-Ibarra, Jeffrey; Ware, Doreen H; Buckler, Edward S

    2009-11-20

    Maize is an important crop species of high genetic diversity. We identified and genotyped several million sequence polymorphisms among 27 diverse maize inbred lines and discovered that the genome was characterized by highly divergent haplotypes and showed 10- to 30-fold variation in recombination rates. Most chromosomes have pericentromeric regions with highly suppressed recombination that appear to have influenced the effectiveness of selection during maize inbred development and may be a major component of heterosis. We found hundreds of selective sweeps and highly differentiated regions that probably contain loci that are key to geographic adaptation. This survey of genetic diversity provides a foundation for uniting breeding efforts across the world and for dissecting complex traits through genome-wide association studies.

  2. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites.

    PubMed

    Angellier, Hélène; Molina-Boisseau, Sonia; Dole, Patrice; Dufresne, Alain

    2006-02-01

    Waxy maize starch nanocrystals obtained by hydrolysis of native granules were used as a reinforcing agent in a thermoplastic waxy maize starch matrix plasticized with glycerol. Compared to our previous studies on starch nanocrystals reinforced natural rubber (NR) [Macromolecules 2005, 38, 3783; 2005, 38, 9161], the present system presents two particularities: (i) thermoplastic starch is a polar matrix, contrarily to NR, and (ii) the chemical structures of the matrix and the filler are similar. The influence of the glycerol content, filler content, and aging on the reinforcing properties of waxy maize starch nanocrystals (tensile tests, DMA) and crystalline structure (X-ray diffraction) of materials were studied. It was shown that the reinforcing effect of starch nanocrystals can be attributed to strong filler/filler and filler/matrix interactions due to the establishment of hydrogen bonding. The presence of starch nanocrystals leads to a slowing down of the recrystallization of the matrix during aging in humid atmosphere.

  3. Agroclimatological suitability mapping for dryland maize production in Lesotho

    NASA Astrophysics Data System (ADS)

    Moeletsi, Mokhele Edmond; Walker, Sue

    2013-10-01

    The climatic potential of maize under dryland farming in Lesotho, southern Africa, was investigated using five suitability indices comprising probability of accumulating heat units of greater than 1,500 growing degree days, probability of a frost-free growing season, probability of seasonal rainfall of more than 500 mm, probability of drought during the flowering to grain-filling stages and the slope of an area. A geographic information system layer was prepared for each of these parameters and the layers overlaid using different weights for each of the climatic suitability indices to obtain an agroclimatic maize suitability map for Lesotho. This analysis yielded different suitability classes. This variability points to prevalence of climatic constraints that need to be acknowledged when attempting to identify management strategies that can optimize the rain-fed maize production in climatically variable environments.

  4. PPIM: A Protein-Protein Interaction Database for Maize1

    PubMed Central

    Wu, Aibo; Xu, Xin-Jian; Lu, Le; Liu, Jingdong; Cao, Yongwei; Chen, Luonan; Wu, Jun; Zhao, Xing-Ming

    2016-01-01

    Maize (Zea mays) is one of the most important crops worldwide. To understand the biological processes underlying various traits of the crop (e.g. yield and response to stress), a detailed protein-protein interaction (PPI) network is highly demanded. Unfortunately, there are very few such PPIs available in the literature. Therefore, in this work, we present the Protein-Protein Interaction Database for Maize (PPIM), which covers 2,762,560 interactions among 14,000 proteins. The PPIM contains not only accurately predicted PPIs but also those molecular interactions collected from the literature. The database is freely available at http://comp-sysbio.org/ppim with a user-friendly powerful interface. We believe that the PPIM resource can help biologists better understand the maize crop. PMID:26620522

  5. Red card for pathogens: phytoalexins in sorghum and maize.

    PubMed

    Poloni, Alana; Schirawski, Jan

    2014-06-30

    Cereal crop plants such as maize and sorghum are constantly being attacked by a great variety of pathogens that cause large economic losses. Plants protect themselves against pathogens by synthesizing antimicrobial compounds, which include phytoalexins. In this review we summarize the current knowledge on phytoalexins produced by sorghum (luteolinidin, apigeninidin) and maize (zealexin, kauralexin, DIMBOA and HDMBOA). For these molecules, we highlight biosynthetic pathways, known intermediates, proposed enzymes, and mechanisms of elicitation. Finally, we discuss the involvement of phytoalexins in plant resistance and their possible application in technology, medicine and agriculture. For those whose world is round we tried to set the scene in the context of a hypothetical football game in which pathogens fight with phytoalexins on the different playing fields provided by maize and sorghum.

  6. Susceptibility to aflatoxin contamination among maize landraces from Mexico.

    PubMed

    Ortega-Beltran, Alejandro; Guerrero-Herrera, Manuel D J; Ortega-Corona, Alejandro; Vidal-Martinez, Victor A; Cotty, Peter J

    2014-09-01

    Maize, the critical staple food for billions of people, was domesticated in Mexico about 9,000 YBP. Today, a great array of maize landraces (MLRs) across rural Mexico is harbored in a living library that has been passed among generations since before the establishment of the modern state. MLRs have been selected over hundreds of generations by ethnic groups for adaptation to diverse environmental settings. The genetic diversity of MLRs in Mexico is an outstanding resource for development of maize cultivars with beneficial traits. Maize is frequently contaminated with aflatoxins by Aspergillus flavus, and resistance to accumulation of these potent carcinogens has been sought for over three decades. However, MLRs from Mexico have not been evaluated as potential sources of resistance. Variation in susceptibility to both A. flavus reproduction and aflatoxin contamination was evaluated on viable maize kernels in laboratory experiments that included 74 MLR accessions collected from 2006 to 2008 in the central west and northwest regions of Mexico. Resistant and susceptible MLR accessions were detected in both regions. The most resistant accessions accumulated over 99 % less aflatoxin B1 than did the commercial hybrid control Pioneer P33B50. Accessions supporting lower aflatoxin accumulation also supported reduced A. flavus sporulation. Sporulation on the MLRs was positively correlated with aflatoxin accumulation (R = 0.5336, P < 0.0001), suggesting that resistance to fungal reproduction is associated with MLR aflatoxin resistance. Results of the current study indicate that MLRs from Mexico are potentially important sources of aflatoxin resistance that may contribute to the breeding of commercially acceptable and safe maize hybrids and/or open pollinated cultivars for human and animal consumption.

  7. The Genomic Signature of Crop-Wild Introgression in Maize

    PubMed Central

    Hufford, Matthew B.; Lubinksy, Pesach; Pyhäjärvi, Tanja; Devengenzo, Michael T.; Ellstrand, Norman C.; Ross-Ibarra, Jeffrey

    2013-01-01

    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes appeared resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these genomic regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly inform our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies. PMID:23671421

  8. A 90-day toxicity study of GmTMT transgenic maize in Sprague-Dawley rats.

    PubMed

    Fang, Jin; Feng, Yongquan; Zhi, Yuan; Zhang, Lan; Yu, Zhou; Jia, Xudong

    2017-04-01

    GmTMT transgenic maize is a genetically modified maize plant that overexpresses the γ-tocopherol methyltransferase (γ-TMT) from Glycine max (Gm). The γ-TMT gene was introduced into maize line Zhen58 to encode the GmTMT2a protein which can convert γ-tocopherol into α-tocopherol. Overexpression of GmTMT2a significantly increased the α-tocopherol content in transgenic maize. The present study was designed to investigate any potential effects of GmTMT maize grain in a 90-day subchronic rodent feeding study. Maize grains from GmTMT or Zhen58 were incorporated into rodent diets at low (12.5%), medium (25%) or high (50%) concentrations and administered to Sprague-Dawley rats (n = 10/sex/group) for 90 days. The negative control group of rats (n = 10/sex/group) were fed with common maize diets. Results from body weights, feed consumption, clinical chemistry, hematology, absolute and relative organ weights indicated no treatment-related side effects of GmTMT maize grain on rats in comparison with rats consuming diets containing Zhen58 maize grain. In addition, no treatment-related changes were found in necropsy and histopathology examinations. Altogether, our data indicates that GmTMT transgenic maize is as safe and nutritious as its conventional non-transgenic maize.

  9. “Omics” of Maize Stress Response for Sustainable Food Production: Opportunities and Challenges

    PubMed Central

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli

    2014-01-01

    Abstract Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study. PMID:25401749

  10. Global Maize Trade and Food Security: Implications from a Social Network Model

    PubMed Central

    Wu, Felicia; Guclu, Hasan

    2013-01-01

    In this study, we developed a social network model of the global trade of maize: one of the most important food, feed, and industrial crops worldwide, and critical to food security. We used this model to analyze patterns of maize trade among nations, and to determine where vulnerabilities in food security might arise if maize availability were decreased due to factors such as diversion to non-food uses, climatic factors, or plant diseases. Using data on imports and exports from the United Nations Commodity Trade Statistics Database for each year from 2000 to 2009 inclusive, we summarized statistics on volumes of maize trade between pairs of nations for 217 nations. There is evidence of market segregation among clusters of nations; with three prominent clusters representing Europe, Brazil and Argentina, and the United States. The United States is by far the largest exporter of maize worldwide, while Japan and the Republic of Korea are the largest maize importers. In particular, the star-shaped cluster of the network that represents US maize trade to other nations indicates the potential for food security risks because of the lack of trade these other nations conduct with other maize exporters. If a scenario arose in which US maize could not be exported in as large quantities, maize supplies in many nations could be jeopardized. We discuss this in the context of recent maize ethanol production and its attendant impacts on food prices elsewhere worldwide. PMID:23656551

  11. "Omics" of maize stress response for sustainable food production: opportunities and challenges.

    PubMed

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli; Wang, Wei

    2014-12-01

    Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.

  12. Global maize trade and food security: implications from a social network model.

    PubMed

    Wu, Felicia; Guclu, Hasan

    2013-12-01

    In this study, we developed a social network model of the global trade of maize: one of the most important food, feed, and industrial crops worldwide, and critical to food security. We used this model to analyze patterns of maize trade among nations, and to determine where vulnerabilities in food security might arise if maize availability was decreased due to factors such as diversion to nonfood uses, climatic factors, or plant diseases. Using data on imports and exports from the U.N. Commodity Trade Statistics Database for each year from 2000 to 2009 inclusive, we summarized statistics on volumes of maize trade between pairs of nations for 217 nations. There is evidence of market segregation among clusters of nations; with three prominent clusters representing Europe, Brazil and Argentina, and the United States. The United States is by far the largest exporter of maize worldwide, whereas Japan and the Republic of Korea are the largest maize importers. In particular, the star-shaped cluster of the network that represents U.S. maize trade to other nations indicates the potential for food security risks because of the lack of trade these other nations conduct with other maize exporters. If a scenario arose in which U.S. maize could not be exported in as large quantities, maize supplies in many nations could be jeopardized. We discuss this in the context of recent maize ethanol production and its attendant impacts on food prices elsewhere worldwide.

  13. Control of Aspergillus flavus in maize with plant essential oils and their components.

    PubMed

    Montes-Belmont, R; Carvajal, M

    1998-05-01

    The effects of 11 plant essential oils for maize kernel protection against Aspergillus flavus were studied. Tests were conducted to determine optimal levels of dosages for maize protection, effects of combinations of essential oils, and residual effects and toxicity of essential oils to maize plants. Principal constituents of eight essential oils were tested for ability to protect maize kernels. Essential oils of Cinnamomum zeylanicum (cinnamon), Mentha piperita (peppermint), Ocimum basilicum (basil), Origanum vulgare (origanum), Teloxys ambrosioides (the flavoring herb epazote), Syzygium aromaticum (clove), and Thymus vulgaris (thyme) caused a total inhibition of fungal development on maize kernels. Thymol and o-methoxycinnamaldehyde significantly reduced maize grain contamination. The optimal dosage for protection of maize varied from 3 to 8%. Combinations of C. zeylanicum with the remaining oils gave efficient control. A residual effect of C. zeylanicum was detected after 4 weeks of kernel treatment. No phytotoxic effect on germination and corn growth was detected with any of these oils.

  14. Does Whole Grain Consumption Alter Gut Microbiota and Satiety?

    PubMed Central

    Cooper, Danielle N.; Martin, Roy J.; Keim, Nancy L.

    2015-01-01

    This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control. PMID:27417768

  15. Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina.

    PubMed

    Fumero, María Verónica; Reynoso, María Marta; Chulze, Sofía

    2015-04-16

    Fusarium temperatum and Fusarium subglutinans isolated from the Northwest region (NOA region) of Argentina were characterized using a polyphasic approach based on morphological, biological and molecular markers. Some interfertility between the species was observed. The phylogenetic analysis showed that the two species represented two clades strongly supported by bootstrap values. The toxigenic profile of the strains was also determined. F. temperatum strains were fusaproliferin and beauvericin producers, and only some strains were fumonisin B1 producers. All F. subglutinans strains produced fusaproliferin but none produced beauvericin, indicating a potential toxicological risk from maize harvested in the NOA region of Argentina. This study provides new information about F. temperatum isolated from maize in Argentina.

  16. Molecular basis for the CAT-2 null phenotype in maize

    SciTech Connect

    Bethards, L.A.; Scandalios, J.G.

    1988-01-01

    Previous reports have described several maize lines whose developmental patterns of catalase gene expression vary from the typical maize line, W64A. Among these variants are the lines A16 and A338, both found to be null for the CAT-2 protein. Identification of a third CAT-2 null line, designated A340, is described. RNA blots and S1 nuclease protection analysis, using (/sup 32/P)-labeled dCTP, indicate that all three CAT-2 null lines produce a similarly shortened Cat2 transcript. The molecular basis for this aberrant Cat2 transcript is discussed.

  17. Water repellency in the rhizosphere of maize: measurements and modelling

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez; Kroener, Eva; Carminati, Andrea

    2016-04-01

    Although maize roots have been extensively studied, there is limited information on the effect of root exudates on the hydraulic properties of maize rhizosphere. Recent experiments suggested that the mucilaginous fraction of root exudates may cause water repellency of the rhizosphere. Our objectives were: 1) to investigate whether maize rhizosphere turns hydrophobic after drying and subsequent rewetting; 2) to develop a new method to collect root mucilage and test whether maize mucilage is hydrophobic; and 3) to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. Maize plants were grown in aluminum containers filled with a sandy soil. When the plants were three-weeks-old, the soil was let dry and then it was irrigated. The soil water content during irrigation was imaged using neutron radiography. In a parallel experiment, ten maize plants were grown in sandy soil for five weeks. Mucilage was collected from young brace roots using a new developed method. Mucilage was placed on glass slides and let dry. The contact angle was measured with the sessile drop method for varying mucilage concentration. Additionally, we used neutron radiography to perform capillary rise experiments in soils of varying particle size mixed with maize mucilage. We then used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that rewetting of a pore is impeded when the concentration of mucilage on the pore surface (g cm-2) is higher than a given threshold value. The threshold value depended on soil matric potential, pore radius and contact angle. Then, we randomly distributed mucilage in the pore network and we calculated the percolation of water across a cubic lattice for varying soil particle size, mucilage concentration and matric potential. Our results showed that: 1) the rhizosphere of maize stayed temporarily dry after irrigation; 2) mucilage became water

  18. [Impacts of high temperature on maize production and adaptation measures in Northeast China].

    PubMed

    Yin, Xiao-gang; Wang, Meng; Kong, Qing-xin; Wang, Zhan-biao; Zhang, Hai-lin; Chu, Qing-quan; Wen, Xin-ya; Chen, Fu

    2015-01-01

    Heat stress is one of the major agro-meteorological hazards that affect maize production significantly in the farming region of Northeast China (NFR). This study analyzed the temporal and spatial changes of the accumulated temperature above 30 °C (AT) and the accumulated days with the maximum temperature above 30 °C (AD) in different maize growing phases under global warming. It further evaluated the impacts of extreme heat on maize yield in different regions, and put forward some adaptation measures to cope with heat stress for maize production in NFR. The results showed that during 1961 to 2010, the temperature in the maize growing season increased significantly. The maximum temperature in flowering phase was much larger than that in the other growing phases. Temperature increased at rates of 0. 16, 0. 14, 0.06 and 0.23 °C every ten years in the whole maize growing season, vegetative growth phase (from sowing to 11 days before flowering), flowering phase, and late growth phase (from 11 days after flowering to maturity), respectively. The AT in the whole maize growing season increased in NFR during the last 50 years with the highest in the southwest part of NFR, and that in the vegetative growth phase increased faster than in the other two phases. The AD in the whole maize growing season increased during the last 50 years with the highest in the southwest part of NFR, and that in the late growth phase increased faster than in the other two phases. Heat stress negatively affected maize yield during the maize growing season, particularly in the vegetative growth phase. The heat stress in Songliao Plain was much higher in comparison to the other regions. The adaptation measures of maize production to heat stress in NFR included optimizing crop structure, cultivating high temperature resistant maize varieties, improving maize production management and developing the maize production system that could cope with disasters.

  19. Maize plants infestation by Fusarium spp. and deoxynivalenol in genetically modified corn hybrid and traditional maize cultivars.

    PubMed

    Selwet, Marek

    2011-01-01

    The objective of the performed investigations was to isolate pathogenic fungi from contaminated maize cobs, to assess the appearance of maize cob fusariosis and to determine grain contamination with deoxynivalenol in the cultivation of genetically modified maize containing a gene resistance against European corn borer (Ostrinia nubilalis Hbn) as well as selected non-modified cultivars. The plant material comprised the following genetically modified maize cultivar: DKC 3421 YG (MON 810) and non-modified cultivars obtained from Smolice Plant Breeding Ltd., IHAR Group: Junak (FAO 210-220), Prosna (FAO 220), SMH (FAO 230), Baca (FAO 220). Prior to harvesting, the occurrence of maize cob fusariosis was determined in the 89 (BBCH) developmental ripening stage. Microbiological assessment was carried out on grains selected from cobs characterized by various pathological symptoms. In 2008, a total of 133 isolates was obtained from the examined samples of infected maize plants, of which 51 isolates were species-identified, while in 2009, the total of 123 isolates were determined, of which 63 were species-identified. In both experimental years, the majority of isolates contained fungi from the Fusarium genus. The performed analysis of mean levels of cob contamination by fusarioses revealed that DKC 3421 YG (MON 810) and SMH (FAO 230) cultivars showed the smallest levels of contamination as well as the lowest percent of cob contamination per plant, while Junak (FAO 210-220) and Baca (FAO 220) cultivars were characterized by the highest degree of contamination. The lowest deoxynivalenol concentrations were determined in years 2008 and 2009 in the case of the DKC 3421 YG (MON 810) cultivar, whereas Prosna (FAO 220) cultivar was characterized by the highest deoxynivalenol concentration.

  20. Glycoprotein Synthesis in Maize Endosperm Cells

    PubMed Central

    Riedell, Walter E.; Miernyk, Jan A.

    1988-01-01

    Microsomal membrane preparations from maize (Zea mays L., inbred A636) endosperm cultures contained enzymes that transferred sugar moieties from uridine diphosphate-N-acetylglucosamine, guanosine diphosphate-mannose, and uridine diphosphate-glucose to dolichol-phosphate. These enzyme activities were characterized with respect to detergent and pH optima, substrate kinetic constants, and product and antibiotic inhibition constants. It was demonstrated by mild acid hydrolysis and high performance liquid chromatography that the products of the N-acetylglucosamine transferases were N-acetylglucosamine-pyrophosphoryl-dolichol and N,N′-diacetyl-chitobiosyl-pyrophosphoryl-dolichol and that the product of the mannose transferase was mannosyl-phosphoryl-dolichol. A large proportion of the products of the glucose transferase activity was stable to mild acid hydrolysis. However, the proportion that was labile was identified as glucosyl-phosphoryl-dolichol. Rate zonal sedimentation and isopycnic banding in linear sucrose density gradients in the presence of 1 millimolar ethylenediaminetetraacetic acid indicated that the glycosyltransferase activities were located in the endoplasmic reticulum. The glycosyltransferases were not solubilized by 500 millimolar KCl or by sequential washes with tris-(hydroxymethyl)aminomethane and water, treatments that release peripheral membrane proteins. Solubilization was achieved with low concentrations of Triton X-100. When sealed microsomal vesicles were incubated with trypsin for 30 minutes in absence of detergent, the activity of N-acetylglucosaminyl-transferase was substantially reduced, while the activity of the glucosyl-transferase was somewhat reduced. Activity of the mannosyl-transferase was resistant to inactivation by incubation with trypsin unless Triton was present. PMID:16666157

  1. Glycaemic Response to Quality Protein Maize Grits

    PubMed Central

    Panlasigui, Leonora N.; Bayaga, Cecile L. T.; Barrios, Erniel B.; Cochon, Kim L.

    2010-01-01

    Background. Carbohydrates have varied rates of digestion and absorption that induces different hormonal and metabolic responses in the body. Given the abundance of carbohydrate sources in the Philippines, the determination of the glycaemic index (GI) of local foods may prove beneficial in promoting health and decreasing the risk of diabetes in the country. Methods. The GI of Quality Protein Maize (QPM) grits, milled rice, and the mixture of these two food items were determined in ten female subjects. Using a randomized crossover design, the control bread and three test foods were given on separate occasions after an overnight fast. Blood samples were collected through finger prick at time intervals of 0, 15, 30, 45, 60, 90, and 120 min and analyzed for glucose concentrations. Results. The computed incremental area under the glucose response curve (IAUC) varies significantly across test foods (P < .0379) with the pure QPM grits yielding the lowest IAUC relative to the control by 46.38. Resulting GI values of the test foods (bootstrapped) were 80.36 (SEM 14.24), 119.78 (SEM 18.81), and 93.17 (SEM 27.27) for pure QPM grits, milled rice, and rice-QPM grits mixture, respectively. Conclusion. Pure QPM corn grits has a lower glycaemic response compared to milled rice and the rice-corn grits mixture, which may be related in part to differences in their dietary fibre composition and physicochemical characteristics. Pure QPM corn grits may be a more health beneficial food for diabetic and hyperlipidemic individuals. PMID:20862364

  2. Genomic Predictability of Interconnected Biparental Maize Populations

    PubMed Central

    Riedelsheimer, Christian; Endelman, Jeffrey B.; Stange, Michael; Sorrells, Mark E.; Jannink, Jean-Luc; Melchinger, Albrecht E.

    2013-01-01

    Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS. PMID:23535384

  3. Reserve Carbohydrate in Maize Stem 1

    PubMed Central

    Setter, Tim Lloyd; Meller, Victoria H.

    1984-01-01

    Maize (Zea mays L.) stem is thought to function alternately as a net importing and net exporting organ during ontogeny, depending on whole plant photosynthetic source and sink status. The [14C]sucrose and [14C]glucose uptake capacity of stem tissues was investigated to increase our understanding of the transport factors which may influence sink status. Uptake from solutions containing up to 200 millimolar radiolabeled sugar showed that d-glucose uptake consisted of saturable and nonsaturable components, while sucrose uptake was primarily nonsaturable during the kernel-fill stages. l-Glucose uptake lacked the saturable component but both d and l isomers apparently had similar slopes for the nonsaturable component. Uptake was sensitive to inhibitors and temperature, and was increased slightly by lowered pH. The seasonal chronology for saturable uptake by isolated vascular bundles and associated pith revealed highest rates between anthesis and early kernel growth, corresponding with the stage when net sugar accumulation rates were highest. For isolated pith, the rates increased at the final stages of plant development. The rate of labeled l-glucose movement from vascular bundles into pith in isolated stem segments was greater at the silking stage than at later developmental stages, suggesting a lower resistance to diffusive transport from vascular bundles into pith at silking. Studies with stem plus ear explants showed that the capability for sugar transport from pith to vascular bundles and for phloem loading and export from the stem region was present throughout the developmental period from early kernel fill (milk) to late kernel fill (dent). PMID:16663675

  4. Testing potential effects of maize expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting.

    PubMed

    Verbruggen, Erik; Kuramae, Eiko E; Hillekens, Remy; de Hollander, Mattias; Kiers, E Toby; Röling, Wilfred F M; Kowalchuk, George A; van der Heijden, Marcel G A

    2012-10-01

    The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.

  5. European Corn Borer (Ostrinia nubilalis) Induced Responses Enhance Susceptibility in Maize

    PubMed Central

    Dafoe, Nicole J.; Thomas, James D.; Shirk, Paul D.; Legaspi, Michelle E.; Vaughan, Martha M.; Huffaker, Alisa; Teal, Peter E.; Schmelz, Eric A.

    2013-01-01

    Herbivore-induced plant responses have been widely described following attack on leaves; however, less attention has been paid to analogous local processes that occur in stems. Early studies of maize (Zea mays) responses to stem boring by European corn borer (ECB, Ostrinianubilalis) larvae revealed the presence of inducible acidic diterpenoid phytoalexins, termed kauralexins, and increases in the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucose (HDMBOA-Glc) after 24 h of herbivory. Despite these rapidly activated defenses, larval growth was not altered in short-term feeding assays. Unexpectedly, ECB growth significantly improved in assays using stem tissue preconditioned by 48 h of larval tunneling. Correspondingly, measures of total soluble protein increased over 2.6-fold in these challenged tissues and were accompanied by elevated levels of sucrose and free linoleic acid. While microarray analyses revealed up-regulation of over 1100 transcripts, fewer individual protein increases were demonstrable. Consistent with induced endoreduplication, both wounding and ECB stem attack resulted in similar significant expansion of the nucleus, nucleolus and levels of extractable DNA from challenged tissues. While many of these responses are triggered by wounding alone, biochemical changes further enhanced in response to ECB may be due to larval secreted effectors. Unlike other Lepidoptera examined, ECB excrete exceedingly high levels of the auxin indole-3-acetic acid (IAA) in their frass which is likely to contact and contaminate the surrounding feeding tunnel. Stem exposure to a metabolically stable auxin, such as 2,4-dichlorophenoxyacetic acid (2,4-D), promoted significant protein accumulation above wounding alone. As a future testable hypothesis, we propose that ECB-associated IAA may function as a candidate herbivore effector promoting the increased nutritional content of maize stems. PMID:24023868

  6. European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize.

    PubMed

    Dafoe, Nicole J; Thomas, James D; Shirk, Paul D; Legaspi, Michelle E; Vaughan, Martha M; Huffaker, Alisa; Teal, Peter E; Schmelz, Eric A

    2013-01-01

    Herbivore-induced plant responses have been widely described following attack on leaves; however, less attention has been paid to analogous local processes that occur in stems. Early studies of maize (Zea mays) responses to stem boring by European corn borer (ECB, Ostrinianubilalis) larvae revealed the presence of inducible acidic diterpenoid phytoalexins, termed kauralexins, and increases in the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucose (HDMBOA-Glc) after 24 h of herbivory. Despite these rapidly activated defenses, larval growth was not altered in short-term feeding assays. Unexpectedly, ECB growth significantly improved in assays using stem tissue preconditioned by 48 h of larval tunneling. Correspondingly, measures of total soluble protein increased over 2.6-fold in these challenged tissues and were accompanied by elevated levels of sucrose and free linoleic acid. While microarray analyses revealed up-regulation of over 1100 transcripts, fewer individual protein increases were demonstrable. Consistent with induced endoreduplication, both wounding and ECB stem attack resulted in similar significant expansion of the nucleus, nucleolus and levels of extractable DNA from challenged tissues. While many of these responses are triggered by wounding alone, biochemical changes further enhanced in response to ECB may be due to larval secreted effectors. Unlike other Lepidoptera examined, ECB excrete exceedingly high levels of the auxin indole-3-acetic acid (IAA) in their frass which is likely to contact and contaminate the surrounding feeding tunnel. Stem exposure to a metabolically stable auxin, such as 2,4-dichlorophenoxyacetic acid (2,4-D), promoted significant protein accumulation above wounding alone. As a future testable hypothesis, we propose that ECB-associated IAA may function as a candidate herbivore effector promoting the increased nutritional content of maize stems.

  7. Maize Opaque Endosperm Mutations Create Extensive Changes in Patterns of Gene ExpressionW⃞

    PubMed Central

    Hunter, Brenda G.; Beatty, Mary K.; Singletary, George W.; Hamaker, Bruce R.; Dilkes, Brian P.; Larkins, Brian A.; Jung, Rudolf

    2002-01-01

    Maize starchy endosperm mutants have kernel phenotypes that include a brittle texture, susceptibility to insect pests, and inferior functional characteristics of products made from their flour. At least 18 such mutants have been identified, but only in the cases of opaque2 (o2) and floury2 (fl2), which affect different aspects of storage protein synthesis, is the molecular basis of the mutation known. To better understand the relationship between the phenotypes of these mutants and their biochemical bases, we characterized the protein and amino acid composition, as well as the mRNA transcript profiles, of nearly isogenic inbred lines of W64A o1, o2, o5, o9, o11, Mucuronate (Mc), Defective endosperm B30 (DeB30), and fl2. The largest reductions in zein protein synthesis occur in the W64A o2, DeB30, and fl2 mutants, which have ∼35 to 55% of the wild-type level of storage proteins. Zeins in W64A o5, o9, o11, and Mc are within 80 to 90% of the amount found in the wild type. Only in the cases of o5 and Mc were significant qualitative changes in zein synthesis observed. The pattern of gene expression in normal and mutant genotypes was assayed by profiling endosperm mRNA transcripts at 18 days after pollination with an Affymetrix GeneChip containing >1400 selected maize gene sequences. Compared with W64A sugary1, a mutant defective in starch synthesis, alterations in the gene expression patterns of the opaque mutants are very pleiotropic. Increased expression of genes associated with physiological stress, and the unfolded protein response, are common features of the opaque mutants. Based on global patterns of gene expression, these mutants were categorized in four phenotypic groups as follows: W64A+ and o1; o2; o5/o9/o11; and Mc and fl2. PMID:12368507

  8. [Isolation of the capsid protein gene of maize dwarf mosaic virus and its transformation in maize].

    PubMed

    Liu, Xiao-Hong; Zhang, Hong-Wei; Liu, Xin; Liu, Xin-Jie; Tan, Zhen-Bo; Rong, Ting-Zhao

    2005-01-01

    The MDMV (Maize Dwarf Mosaic Virus, MDMV) CP (Coat Protein, CP) gene was cloned by RT-PCR method and introduced into the embryonic calli derived from immature embryos of elite inbred 18-599hong and 18-599bai via particle bombardment. Bombarded calli were selected on selection medium containing 5-10 mg/L (PPT) Bialaphos. From resistant calli, 79 plantlets were regenerated. 18 of 79 were grown and harvested. The results of Southern blotting and PCR analysis demonstrated that MDMV CP have been integrated into the genome of the transgenic plants. PCR-positive progeny plants were artificially inoculated with MDMV strain B, and the average chlorosis of the functional leaves of each plant was investigated. The typical symptoms were observed from the leaves of the control inbreds. while, the presence of the MDMV CP gene provided resistance to inoculation with MDMV strain B.

  9. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA)

    PubMed Central

    Chauleau, Mathieu; Shuman, Stewart

    2016-01-01

    Escherichia coli DNA ligase (EcoLigA) repairs 3′-OH/5′-PO4 nicks in duplex DNA via reaction of LigA with NAD+ to form a covalent LigA-(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the nick 5′-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3′-OH on AppDNA to form a 3′-5′ phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA–AMP. For substrates with correctly base-paired 3′-OH/5′-PO4 nicks, kstep2 was fast (6.8–27 s−1) and similar to kstep3 (8.3–42 s−1). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3′-OH base mispairs and 3′ N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3′ A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3′ nucleoside for catalysis of 5′ adenylylation; and (ii) EcoLigA's potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5′-phosphate base mispairs and 5′ N:abasic lesions. PMID:26857547

  10. Crystal structures of type III{sub H} NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    SciTech Connect

    Kumar, S.M.; Pampa, K.J.; Manjula, M.; Hemantha Kumar, G.; Kunishima, Naoki; Lokanath, N.K.

    2014-08-15

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III{sub H} PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III{sub H} and such PGDHs structures having this type are reported for the first time.

  11. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.

    PubMed

    Zhao, Kehao; Harshaw, Robyn; Chai, Xiaomei; Marmorstein, Ronen

    2004-06-08

    Sir2 enzymes are broadly conserved from bacteria to humans and have been implicated to play roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. These enzymes bind NAD(+) and acetyllysine within protein targets and generate lysine, 2'-O-acetyl-ADP-ribose, and nicotinamide products. To provide structural insights into the chemistry catalyzed by Sir2 proteins we report the high-resolution ternary structure of yeast Hst2 (homologue of Sir two 2) with an acetyllysine histone H4 peptide and a nonhydrolyzable NAD(+) analogue, carba-NAD(+), as well as an analogous ternary complex with a reaction intermediate analog formed immediately after nicotinamide hydrolysis, ADP-ribose. The ternary complex with carba-NAD(+) reveals that the nicotinamide group makes stabilizing interactions within a binding pocket harboring conserved Sir2 residues. Moreover, an asparagine residue, N116, strictly conserved within Sir2 proteins and shown to be essential for nicotinamide exchange, is in position to stabilize the oxocarbenium intermediate that has been proposed to proceed the hydrolysis of nicotinamide. A comparison of this structure with the ADP-ribose ternary complex and a previously reported ternary complex with the 2'-O-acetyl-ADP-ribose reaction product reveals that the ribose ring of the cofactor and the highly conserved beta1-alpha2 loop of the protein undergo significant structural rearrangements to facilitate the ordered NAD(+) reactions of nicotinamide cleavage and ADP-ribose transfer to acetate. Together, these studies provide insights into the chemistry of NAD(+) cleavage and acetylation by Sir2 proteins and have implications for the design of Sir2-specific regulatory molecules.

  12. The role of NAD(+)-dependent isocitrate dehydrogenase 3 subunit α in AFB1 induced liver lesion.

    PubMed

    Yang, Chi; Fan, Jue; Zhuang, Zhenhong; Fang, Yi; Zhang, Yanfeng; Wang, Shihua

    2014-01-30

    Aflatoxin B1 (AFB1) is a potent hepatocarcinogen that causes carcinogenesis in many animal species. In previous study, we found that isocitrate dehydrogenase 3α subunit (IDH3α) was upregulated in AFB1-induced carcinogenesis process. In this study, the sequences of IDH3α from various species were compared and the protein expression levels in different organs were examined, and the results showed that IDH3α was a widely distributed protein and shared highly conserved sequence in various species. In the same time, IDH3α was demonstrated to accumulate in a dose-dependent manner induced by AFB1 in cells, and was also up-regulated in the process of AFB1-induced liver lesion. Similar results were observed when H2O2 was used to replace AFB1. Over-expression of IDH3α increased the phosphorylation level of Akt (Protein kinase B) and neutralized the cellular toxicity induced by AFB1 or H2O2 and apoptosis induced by AFB1, while the reduced expression of IDH3α by siRNA decreased the phosphorylation, indicating that IDH3α played important roles in oxidative stress-induced PI3K/Akt pathway. Overall, the results suggested that AFB1 treatment could increase the expression of IDH3α, and the activated PI3K/Akt pathway by IDH3α eventually neutralized the apoptosis induced by AFB1.

  13. High-Affinity Inhibitors of Human NAD+-Dependent 15-Hydroxyprostaglandin Dehydrogenase: Mechanisms of Inhibition and Structure-Activity Relationships

    PubMed Central

    Niesen, Frank H.; Schultz, Lena; Jadhav, Ajit; Bhatia, Chitra; Guo, Kunde; Maloney, David J.; Pilka, Ewa S.; Wang, Minghua; Oppermann, Udo; Heightman, Tom D.; Simeonov, Anton

    2010-01-01

    Background 15-hydroxyprostaglandin dehydrogenase (15-PGDH, EC 1.1.1.141) is the key enzyme for the inactivation of prostaglandins, regulating processes such as inflammation or proliferation. The anabolic pathways of prostaglandins, especially with respect to regulation of the cyclooxygenase (COX) enzymes have been studied in detail; however, little is known about downstream events including functional interaction of prostaglandin-processing and -metabolizing enzymes. High-affinity probes for 15-PGDH will, therefore, represent important tools for further studies. Principal Findings To identify novel high-affinity inhibitors of 15-PGDH we performed a quantitative high-throughput screen (qHTS) by testing >160 thousand compounds in a concentration-response format and identified compounds that act as noncompetitive inhibitors as well as a competitive inhibitor, with nanomolar affinity. Both types of inhibitors caused strong thermal stabilization of the enzyme, with cofactor dependencies correlating with their mechanism of action. We solved the structure of human 15-PGDH and explored the binding modes of the inhibitors to the enzyme in silico. We found binding modes that are consistent with the observed mechanisms of action. Conclusions Low cross-reactivity in screens of over 320 targets, including three other human dehydrogenases/reductases, suggest selectivity of the present inhibitors for 15-PGDH. The high potencies and different mechanisms of action of these chemotypes make them a useful set of complementary chemical probes for functional studies of prostaglandin-signaling pathways. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S2. PMID:21072165

  14. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize

    PubMed Central

    Gutiérrez, Marco Antonio; Guzmán Rodríguez, José Luis; Horak, Michael J.; Madueño Martínez, Jesús Ignacio; Schapaugh, Adam W.; Stojšin, Duška; Uribe Montes, Hugo Raúl

    2015-01-01

    Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives. PMID:26162097

  15. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.

    PubMed

    Baltazar, Baltazar M; Castro Espinoza, Luciano; Espinoza Banda, Armando; de la Fuente Martínez, Juan Manuel; Garzón Tiznado, José Antonio; González García, Juvencio; Gutiérrez, Marco Antonio; Guzmán Rodríguez, José Luis; Heredia Díaz, Oscar; Horak, Michael J; Madueño Martínez, Jesús Ignacio; Schapaugh, Adam W; Stojšin, Duška; Uribe Montes, Hugo Raúl; Zavala García, Francisco

    2015-01-01

    Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives.

  16. Zinc Absorption from Biofortified Maize Meets the Requirements of Young Rural Zambian Children12

    PubMed Central

    Chomba, Elwyn; Westcott, Claire M; Westcott, Jamie E; Mpabalwani, Evans M; Krebs, Nancy F; Patinkin, Zachary W; Palacios, Natalia; Hambidge, K Michael

    2015-01-01

    Background: The zinc content of maize, a major global food staple, is generally insufficient alone to meet the requirements of young children. Objectives: The primary objective of this study was to determine whether substitution of biofortified maize (34 μg zinc/g grain) for control maize (21 μg zinc/g) was adequate to meet zinc physiologic requirements in young children for whom maize was the major food staple. A secondary objective was to compare total daily zinc absorption when maize flour was fortified with zinc oxide to a total concentration of 60 μg zinc/g. Methods: Participants included 60 rural Zambian children with a mean age of 29 mo who were randomly assigned to receive 1 of 3 maize types (control, biofortified, or fortified) all of which were readily consumed (>100 g on 1 d). Total daily zinc intake (from maize and low-zinc relish) was determined from duplicate diet collections. Multiplication by fractional absorption of zinc, measured by a dual isotope ratio technique, determined the total daily zinc absorption on the day the test meals were given. Results: The mean ± SD total daily zinc intake (milligrams per day) from the biofortified maize (5.0 ± 2.2) was higher (P < 0.0001) than for the control maize (2.3 ± 0.9). Intake of zinc from the fortified maize (6.3 ± 2.6) did not differ from the biofortified maize. Fractional absorption of zinc from control maize (0.28 ± 0.10) did not differ from the biofortified maize (0.22 ± 0.06). Total daily absorption of zinc (milligrams per day) from the biofortified maize (1.1 ± 0.5) was higher (P = 0.0001) than for the control maize (0.6 ± 0.2), but did not differ from the fortified maize (1.2 ± 0.4). Conclusions: These results indicate that feeding biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for this vulnerable population. This trial was registered at clinicaltrials.gov as NCT02208635. PMID:25733467

  17. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    PubMed Central

    Wu, Xiaolin; Gong, Fangping; Yang, Le; Hu, Xiuli; Tai, Fuju; Wang, Wei

    2014-01-01

    ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation. PMID:25653661

  18. Genomic prediction in CIMMYT maize and wheat breeding programs

    PubMed Central

    Crossa, J; Pérez, P; Hickey, J; Burgueño, J; Ornella, L; Cerón-Rojas, J; Zhang, X; Dreisigacker, S; Babu, R; Li, Y; Bonnett, D; Mathews, K

    2014-01-01

    Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and those used to train the models for prediction, number of markers, sample size and genotype × environment interaction (GE). The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat Improvement Center's (CIMMYT's) maize and wheat breeding programs, from the initial assessment of the predictive ability of different models using pedigree and marker information to the present, when methods for implementing GS in practical global maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure) accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed. However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing information from correlated environments. Several questions on how to incorporate GS into CIMMYT's maize and wheat programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is required. PMID:23572121

  19. USDA-ARS Colorado maize water productivity data set

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-Agricultural Research Service conducted a water productivity field trial for irrigated maize in northeastern Colorado in 2008 through 2011. The dataset, which is available online from the USDA National Agricultural Library, includes measurements of irrigation, precipitation, soil water sto...

  20. Heritable site-specific mutagenesis using TALENs in maize.

    PubMed

    Char, Si Nian; Unger-Wallace, Erica; Frame, Bronwyn; Briggs, Sarah A; Main, Marcy; Spalding, Martin H; Vollbrecht, Erik; Wang, Kan; Yang, Bing

    2015-09-01

    Transcription activator-like effector nuclease (TALEN) technology has been utilized widely for targeted gene mutagenesis, especially for gene inactivation, in many organisms, including agriculturally important plants such as rice, wheat, tomato and barley. This report describes application of this technology to generate heritable genome modifications in maize. TALENs were employed to generate stable, heritable mutations at the maize glossy2 (gl2) locus. Transgenic lines containing mono- or di-allelic mutations were obtained from the maize genotype Hi-II at a frequency of about 10% (nine mutated events in 91 transgenic events). In addition, three of the novel alleles were tested for function in progeny seedlings, where they were able to confer the glossy phenotype. In a majority of the events, the integrated TALEN T-DNA segregated independently from the new loss of function alleles, producing mutated null-segregant progeny in T1 generation. Our results demonstrate that TALENs are an effective tool for genome mutagenesis in maize, empowering the discovery of gene function and the development of trait improvement.